WorldWideScience

Sample records for thickened flood water

  1. Thickening agent for flood water in secondary recovery of oil and for other aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Roth, H H

    1966-04-14

    Alkenyl-aromatic polymer sulfonates are good thickeners for some aqueous solutions, but addition of salts to such solutions reduces the desirable viscosity. High-molecular, water-soluble alkenyl-aromatic polymers which carry sulfonic acid or sulfonate groups substituted at the aromatic nuclei yield thickened solutions (e.g., for waterflooding) which are not influenced by the presence of water-soluble salts. Such polymers are derivatives of polyvinyltoluene, alone or in combination with about 5% acrylonitrile. It was also found that such thickening agents are less adsorbed on the rock matrix in a waterflood formation. (1 claim)

  2. Water-bearing explosives thickened with a partially hydrolyzed acrylamide polymer

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, W.M.

    1971-11-23

    Thickened water-bearing explosives are provided which do not segregate and are water-resistant over a wide range of viscosities. Preferred compositions have a unique combination of pourability and fluidity coupled with resistance to water and segregation which makes them particularly suitable in small diameter holes and in holes partially filled with water. Accordingly, water-bearing explosive compositions also are provided which consist of inorganic oxidizing salt, fuel, and water, which improvement consists of thickening the compositions with the combination of polyacrylamide and cross-linked galactomannan. The weight ratio of the polyacrylamide to galactomanan is from about ratio 0.1:1 to 10:1, and preferably 1:1 to 5:1. (1 claim)

  3. Finger Thickening during Extra-Heavy Oil Waterflooding: Simulation and Interpretation Using Pore-Scale Modelling.

    Directory of Open Access Journals (Sweden)

    Mohamed Regaieg

    Full Text Available Although thermal methods have been popular and successfully applied in heavy oil recovery, they are often found to be uneconomic or impractical. Therefore, alternative production protocols are being actively pursued and interesting options include water injection and polymer flooding. Indeed, such techniques have been successfully tested in recent laboratory investigations, where X-ray scans performed on homogeneous rock slabs during water flooding experiments have shown evidence of an interesting new phenomenon-post-breakthrough, highly dendritic water fingers have been observed to thicken and coalesce, forming braided water channels that improve sweep efficiency. However, these experimental studies involve displacement mechanisms that are still poorly understood, and so the optimization of this process for eventual field application is still somewhat problematic. Ideally, a combination of two-phase flow experiments and simulations should be put in place to help understand this process more fully. To this end, a fully dynamic network model is described and used to investigate finger thickening during water flooding of extra-heavy oils. The displacement physics has been implemented at the pore scale and this is followed by a successful benchmarking exercise of the numerical simulations against the groundbreaking micromodel experiments reported by Lenormand and co-workers in the 1980s. A range of slab-scale simulations has also been carried out and compared with the corresponding experimental observations. We show that the model is able to replicate finger architectures similar to those observed in the experiments and go on to reproduce and interpret, for the first time to our knowledge, finger thickening following water breakthrough. We note that this phenomenon has been observed here in homogeneous (i.e. un-fractured media: the presence of fractures could be expected to exacerbate such fingering still further. Finally, we examine the impact of

  4. PEG and Thickeners: A Critical Interaction Between Polyethylene Glycol Laxative and Starch-Based Thickeners.

    Science.gov (United States)

    Carlisle, Brian J; Craft, Garrett; Harmon, Julie P; Ilkevitch, Alina; Nicoghosian, Jenik; Sheyner, Inna; Stewart, Jonathan T

    2016-09-01

    Clinicians commonly encounter dysphagia and constipation in a skilled nursing population. Increasing the viscosity of liquids, usually with a starch- or xanthan gum-based thickener, serves as a key intervention for patients with dysphagia. We report a newly identified and potentially dangerous interaction between polyethylene glycol 3350 laxative (PEG) and starch-thickened liquids. A patient requiring nectar-thickened liquids became constipated, and medical staff prescribed PEG for constipation. His nurse observed that the thickened apple juice immediately thinned to near-water consistency when PEG was added. She obtained the same results with thickened water and coffee. We quantified this phenomenon by isothermal rotational rheology. Results confirmed a precipitous loss of thickening when PEG was added to starch-based thickeners but not with xanthan gum-based thickeners. Clinicians and front-line staff should be aware of this potentially critical interaction between PEG- and starch-based thickeners. Although confirmatory studies are needed, our preliminary data suggest that PEG may be compatible with xanthan gum-- based thickeners. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.

  5. Rheological characteristics of cold thickened beverages containing xanthan gum-based food thickeners used for dysphagia diets.

    Science.gov (United States)

    Cho, Hyun M; Yoo, Byoungseung

    2015-01-01

    Cold beverages are commonly thickened with commercial gum-based food thickeners for consumption by patients with dysphagia. In this study, the rheological properties of a thickened water and five thickened beverages (orange juice, apple juice, grape juice, whole milk, and a sport drink) that were prepared with four commercial instant xanthan gum-based thickeners (coded A-D) were investigated at a 3% thickener concentration. All thickened samples showed high shear-thinning behavior with yield stress at the serving temperature of 8°C. The magnitudes of apparent viscosity (ηa,50), consistency index (K), storage modulus (G'), and loss modulus (G'') of the thickened beverages, except for water, with food thickener A were significantly higher compared with other thickeners (B, C, and D) (Pbeverages were observed at 1-hour storage, and at longer times their K values, except for milk, remained approximately constant. Rheological parameters demonstrated statistically significant differences in flow and dynamic behaviors between the cold thickened beverages prepared with the xanthan gum-based food thickeners (Pfood thickener, and storage time. In particular, appropriately selecting a commercial food thickener for preparing thickened beverages seems to be of importance for managing dysphagia. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  6. Multichannel thickener of flotation tailings

    Energy Technology Data Exchange (ETDEWEB)

    Kondratenko, A F; Shuliko, A N; Zinchenko, A F

    1983-04-01

    A multichannel thickener of flotation tailings developed by Ukrniiugleobogashchenie is described. Tailings with solid content ranging from 40 to 60 g/l are mixed with flocculation reagents (quantity ratio from 60 to 70 g/l) in a turbulent mixer: waste water with tailings fed to the mixer is divided into three streams, flocculation reagents are batched in stages with each water stream. After turbulent mixing, water, tailings and reagent are fed to the settling chamber. Settling chamber (dimensions 2.4 x 1.5 x 1.0 m) is divided into a number of channels by settling surfaces of 0.35 m/sup 2/ each, inclined at an angle of 55 degrees. Distance between the surfaces is 50 mm. The thickener has a total settling surface of 18.7 m/sup 2/. Water with tailings flows upwards, cleaned water is removed by a separating system and settled tailings move downward and accumulate in the compacting chamber (dimensions 1.5 x 1.5 x 0.9 m). From the compacting chamber thickened slurry with solid content from 90 to 150 g/l is removed by a hydraulic system. During performance testing in some plants preparing coal difficult to wash, thickening efficiency amounted to 100%. The results of performance testing are shown in two tables. Factors which influence thickener productivity are evaluated. (In Russian)

  7. Optimal Water Recovery with Emphasis on Flocculant Consumption Rate in the Thickener

    Directory of Open Access Journals (Sweden)

    Marzieh Hosseininasab

    2017-11-01

    Full Text Available Water plays a vital role in mineral processing as evidenced by the approximately 2 to 3 tons of water used for the treatment of one ton of ore. A major portion of this water may be recovered in thickeners. This study aimed to control the wet tailings output of the Hematite Gol-e-Gohar plant by changing  flocculant dosage and type and solid percentage in the feed in order to enhance effluent clarity and reduce water consumption. Materials and A series of settling experiments were performed using different combinations of the flocculants (A25, A26 Yazd, A26 Esfahan, A27, and A28, flocculant doses (20, 25, 30, 35, and 40 gr/ton, and solid loads in the feed (5, 7, 9, 10, and 11% to the thickener. The L25 Taguchi design method was chosen to handle the five different levels of the three factors. Adopting a 95% confidence interval, the results of analysis of variance (ANOVA revealed that flocculant consumption rate had a high effect on settling velocity (p = 0.006 while flocculant type and solid percentage in the feed had no significant effects. Moreover, it was found that A26 (Akhtar-chemistry Company, Yazd used at a rate of 40 g/ton improved the settling performance to yield an optimal water clarity. Using the findings of this study in process planning at the plant led to a considerable reduction (from the original 0.86 to 0.49 m3 in average water consumption per ton of input material so that the solid content of the thickener underflow rose from 7 to 45%.

  8. Flood Finder: Mobile-based automated water level estimation and mapping during floods

    International Nuclear Information System (INIS)

    Pongsiriyaporn, B; Jariyavajee, C; Laoharawee, N; Narkthong, N; Pitichat, T; Goldin, S E

    2014-01-01

    Every year, Southeast Asia faces numerous flooding disasters, resulting in very high human and economic loss. Responding to a sudden flood is difficult due to the lack of accurate and up-to- date information about the incoming water status. We have developed a mobile application called Flood Finder to solve this problem. Flood Finder allows smartphone users to measure, share and search for water level information at specified locations. The application uses image processing to compute the water level from a photo taken by users. The photo must be of a known reference object with a standard size. These water levels are more reliable and consistent than human estimates since they are derived from an algorithmic measuring function. Flood Finder uploads water level readings to the server, where they can be searched and mapped by other users via the mobile phone app or standard browsers. Given the widespread availability of smartphones in Asia, Flood Finder can provide more accurate and up-to-date information for better preparation for a flood disaster as well as life safety and property protection

  9. Thickened water-based hydraulic fluid with reduced dependence of viscosity on temperature

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C. F.

    1985-01-01

    Improved hydraulic fluids or metalworking lubricants, utilizing mixtures of water, metal lubricants, metal corrosion inhibitors, and an associative polyether thickener, have reduced dependence of the viscosity on temperature achieved by the incorporation therein of an ethoxylated polyether surfactant.

  10. Modeling Wettability Variation during Long-Term Water Flooding

    Directory of Open Access Journals (Sweden)

    Renyi Cao

    2015-01-01

    Full Text Available Surface property of rock affects oil recovery during water flooding. Oil-wet polar substances adsorbed on the surface of the rock will gradually be desorbed during water flooding, and original reservoir wettability will change towards water-wet, and the change will reduce the residual oil saturation and improve the oil displacement efficiency. However there is a lack of an accurate description of wettability alternation model during long-term water flooding and it will lead to difficulties in history match and unreliable forecasts using reservoir simulators. This paper summarizes the mechanism of wettability variation and characterizes the adsorption of polar substance during long-term water flooding from injecting water or aquifer and relates the residual oil saturation and relative permeability to the polar substance adsorbed on clay and pore volumes of flooding water. A mathematical model is presented to simulate the long-term water flooding and the model is validated with experimental results. The simulation results of long-term water flooding are also discussed.

  11. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    Science.gov (United States)

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  12. Flood impacts on a water distribution network

    Science.gov (United States)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio

    2017-12-01

    Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.

  13. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  14. Water Quality Dynamics of Urban Water Bodies during Flooding in Can Tho City, Vietnam

    Directory of Open Access Journals (Sweden)

    Hong Quan Nguyen

    2017-04-01

    Full Text Available Water pollution associated with flooding is one of the major problems in cities in the global South. However, studies of water quality dynamics during flood events are not often reported in literature, probably due to difficult conditions for sampling during flood events. Water quality parameters in open water (canals, rivers, and lakes, flood water on roads and water in sewers have been monitored during the extreme fluvial flood event on 7 October 2013 in the city of Can Tho, Vietnam. This is the pioneering study of urban flood water pollution in real time in Vietnam. The results showed that water quality is very dynamic during flooding, especially at the beginning of the event. In addition, it was observed that the pathogen and contaminant levels in the flood water are almost as high as in sewers. The findings show that population exposed to flood water runs a health risk that is nearly equal to that of being in contact with sewer water. Therefore, the people of Can Tho not only face physical risk due to flooding, but are also exposed to health risks.

  15. Water flooding criticality study for ZrH flight reactor

    International Nuclear Information System (INIS)

    Anderson, R.V.

    1970-01-01

    Five analytical criticality calculations were performed to study the effects of: (1) water reflecting only (no core flooding), (2) water reflection with 10 percent core flooding, (3) water reflection with 35 percent flooding, (4) water reflection plus complete core flooding, and (5) the negative reactivity feedback associated with rapid core expansion induced by a destructive transient. (U.S.)

  16. Water supply and tree growth. Part II. Flooding

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T.T.

    1982-02-01

    Continuous or periodic flooding of soil with fresh or salt water is a common occurrence. Although flooding rapidly depletes soil oxygen the problem of poor soil aeration also exists in extensive areas of unflooded, fine-textured soils. Compounds that may be phytotoxic and accumulate in flooded soils include ethanol, acetaldehyde, cyanogenic compounds, sulphides, CO/sub 2/, iron, manganese, ethane, propylene, fatty acids, hydroxy and dicarboxylic acids, unsaturated acids, aldehydes, ketones, mercaptans, and ethylene. Flooding affects seed germination, stomatal aperture, photosynthesis, permeability of roots, mineral relations, and growth and survival of trees. Although growth of most trees is reduced by flooding it is sometimes increased in a few flood-tolerant species. Flood tolerance of trees varies widely with species, age of trees, and periodicity, duration, and season of occurrence of flooding. Standing water is much more harmful than moving water. Physiological dysfunctions associated with flooding are complex and variously involve the influence of oxygen deficiency, excess CO/sub 2/, a variety of toxic compounds, and altered hormone metabolism. Flood tolerance involves both morphological and physiological adaptations. Important morphological adaptations include formation of lenticels and root regeneration. Physiological adaptations may reflect avoidance of accumulation of ethanol as well as capacity to oxidize the rhizosphere and to tolerate high CO/sub 2/ concentrations in the soil. Adaptations to flooding by salt water include mechanisms for both salt tolerance and avoidance.

  17. Carbonated water flooding : Process overview in the frame of co2 flooding

    NARCIS (Netherlands)

    Peksa, A.E.

    2017-01-01

    The main scope of the work related to the physical and dynamical processes associated with the injection of carbonated water in porous media. Carbonated water flooding is an alternative for traditional CO2 flooding. Both methods have the potential to recover any oil left behind after primary and

  18. Sensory and rheological characteristics of thickened liquids differing concentrations of a xanthan gum-based thickener.

    Science.gov (United States)

    Kim, Hyeri; Hwang, Han-Im; Song, Ki-Won; Lee, Jeehyun

    2017-12-01

    The objectives of this study were to develop and compare sensory characteristics of beverages and soups thickened with different concentrations of a xanthan gum-based thickener, and to examine, using rheological measurement, whether the viscosity of the thickened liquids conformed to the recommendations of the National Dysphagia Diet (NDD) Task Force. Beverages tested included water, apple juice, orange juice, soymilk, and Yakult. The thickening agent was added to samples at concentrations of 1, 2, or 3%. Addition of the thickening agent had a significant effect on the appearance, texture, and starchy flavor, which were evaluated by descriptive sensory evaluation. The reference standards of viscosity used in sensory descriptive analysis could be useful to practitioners who have to make dysphagia diets and need to learn to make them properly. In rheological measurement, viscosity of thickened liquids in stationary state would be perceived as higher compared to that while swallowing, because of the shear thinning property. This could lead to noncompliance of the medical advice or malnutrition. It is necessary to determine optimal proportion of xanthan gum-based thickener or uncover alternatives, which have shear thinning properties lower than those of xanthan gum, for the acceptance of dysphagia patients. There was no pudding-like viscosity as classified by NDD, when prepared following instructions. Future studies should include higher concentrations of thickener to find out the concentration of the thickener resulting in pudding-like viscosity as recommended by NDD. When a manufacturer modifies or develops a xanthan gum-based thickener, findings from this study can be utilized to understand sensory and rheological characteristics of thickened liquid. For practitioners who have to make dysphagia diets, the reference standards of viscosity used in sensory descriptive analysis could be helpful for deciding the viscosity level of thickened liquids based only on visual

  19. Non-aqueous slurries used as thickeners

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, J C

    1982-04-07

    A non-aqueous slurry is described that is suitable for use as a thickener or viscosifier in oil or gas drilling, fracturing, flow diversion completion or workover fluids. The slurry comprises a water-soluble cellulose ether polymer, a water-insoluble liquid hydrocarbon, a non-ionic surfactant having an HLB of from 7 to 14, and an organo modified clay. There also is described a process for thickening or viscosifying a drilling, fracturing, flow diversion, completion or workover fluid. The use of the slurry prevents bumping during addition to aqueous fluids. (27 claims)

  20. Inexpensive CO2 Thickening Agents for Improved Mobility Control of CO2 Floods

    Energy Technology Data Exchange (ETDEWEB)

    Robert Enick; Eric Beckman; Andrew Hamilton

    2005-08-31

    The objective of this research was the design, synthesis and evaluation of inexpensive, non-fluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to design a CO{sub 2}-thickener based on these CO{sub 2}-philic polymers. Two types of thickeners were considered. The first was a copolymer in which the CO{sub 2}-philic monomer was combined with a small proportion of CO{sub 2}-phobic associating groups that could cause viscosity-enhancing intermolecular interactions to occur. The second was a small hydrogen-bonding compound with urea groups in the core to promote intermolecular interactions that would cause the molecules to 'stack' in solution while the arms were composed of the CO{sub 2}-philic oligomers. Although we were not able to develop a viable thickener that exhibited high enough CO{sub 2} solubility at EOR MMP conditions to induce a viscosity increase, we made significant progress in our understanding of CO{sub 2}-soluble compounds that can be used in subsequent studies to design CO{sub 2}-soluble thickeners or CO{sub 2}-soluble surfactant-based foaming agents. These findings are detailed in this final report. In summary, we assessed many polymers and verified that the most CO{sub 2}-soluble oxygenated hydrocarbon polymer is poly(vinyl acetate), PVAc. This is primarily due to the presence of both ether and carbonyl oxygens associated with acetate-rich compounds. In addition to polymers, we also made small acetate-rich molecules that were also capable of associating in solution via the inclusion of hydrogen-bonding groups in hopes of forming viscosity-enhancing macromolecules. Despite the presence of multiple acetate groups in these compounds, which can impart incredible CO{sub 2}-solubility to many

  1. Sensory characteristics of liquids thickened with commercial thickeners to levels specified in the International Dysphagia Diet Standardization Initiative (IDDSI) framework.

    Science.gov (United States)

    Ong, Jane Jun-Xin; Steele, Catriona M; Duizer, Lisa M

    2018-06-01

    Sensory characteristics are important for the acceptance of thickened liquids, but those of liquids thickened to the new standards put forth by the International Dysphagia Diet Standardization Initiative (IDDSI) are unknown. This research sought to identify and rate the perception of important sensory properties of liquids thickened to levels specified in the IDDSI framework. Samples were made with water, with and without added barium sulfate, and were thickened with a cornstarch or xanthan gum based thickener. Samples were characterized using projective mapping/ultra-flash profiling to identify important sample attributes, and then with trained descriptive analysis panels to characterize those attributes in non-barium and barium thickened liquids. Three main groups of attributes were observed. Taste and flavor attributes decreased in intensity with increasing thickener. Thickener specific attributes included graininess and chalkiness for the cornstarch thickened samples, and slipperiness for the xanthan gum samples. Within the same type of thickener, ratings of thickness-related attributes (perceived viscosity, adhesiveness, manipulation, and swallowing) at different IDDSI levels were significantly different from each other. However, in non-barium samples, cornstarch samples were perceived as thicker than xanthan gum samples even though they had similar apparent viscosities at 50 s -1 . On the other hand, the two thickeners had similar perceived thickness in the barium samples even though the apparent viscosities of cornstarch samples were higher than those of the xanthan gum samples. In conclusion, IDDSI levels can be distinguished based on sensory properties, but these properties may be affected by the type of thickener and medium being thickened.

  2. Characterization of oils sands thickened tailings

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J.D.; Jeeravipoolvarn, S.; Donahue, R.; Ozum, B. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    This presentation discussed the characterization of oils sands thickened tailings. The problem statement was defined as the fact that many laboratory procedures to characterize fine tailings do not take into account the extraction process, and instead use standardized laboratory tests. The purpose of this presentation was to demonstrate how different extraction processes affect the fine tailings geotechnical properties and water chemistry. Properties that were characterized included particle size analysis from hydrometer-sieve tests; per cent clay from methylene blue tests; per cent clay from mineralogy tests; Atterberg limits; water chemistry; and morphology by scanning electron microscopy. The presentation discussed the origin of fines (silt and clay) in tailings; where fine particles come from; tailings materials; mineralogy of tailings; the hydrometer-sieve test on fine tailings and thickened tailings; and the methylene blue test. It was concluded that the great majority of clay minerals in the tailings come from the clay-shale discontinuous seams and layers. For thickened tailings, the dispersed and non-dispersed hydrometer tests show considerable difference in the amount of clay size material. tabs., figs.

  3. A Probabilistic Analysis of Surface Water Flood Risk in London.

    Science.gov (United States)

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2017-10-30

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  4. iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region

    Science.gov (United States)

    Sumi, S. J.; Ferreira, C.

    2017-12-01

    Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system

  5. INEXPENSIVE CO{sub 2} THICKENING AGENTS FOR IMPROVED MOBILITY CONTROL OF CO{sub 2} FLOODS

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Enick; Eric J. Beckman; Andrew Hamilton

    2004-10-01

    The objective of this research was the design, synthesis and evaluation of inexpensive, nonfluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to be completed only when a CO{sub 2}-soluble polymer that was soluble in CO{sub 2} at pressures comparable to the MMP was identified. In the second step, viscosity-enhancing associating groups were to be incorporated into the polymer to make it a viable thickener that exhibited high CO{sub 2} solubility at EOR MMP conditions. This final report documents the CO{sub 2} solubility of a series of commercial and novel polymers composed of carbon, hydrogen, oxygen and, in some cases, nitrogen.

  6. The flood risk management plan: towards spatial water governance

    NARCIS (Netherlands)

    Hartmann, T.; Driessen, P.

    2017-01-01

    The flood risk management plan challenges both water engineers and spatial planners. It calls for a new mode of governance for flood risk management. This contribution analyses how this mode of governance distinguishes from prevalent approaches. Spatial planning and water management in Europe are

  7. Slug flooding in air-water countercurrent vertical flow

    International Nuclear Information System (INIS)

    Lee, Jae Young; Raman, Roger; Chang, Jen-Shih

    2000-01-01

    This paper is to study slug flooding in the vertical air-water countercurrent flow loop with a porous liquid injector in the upper plenum. More water penetration into the bottom plenum in slug flooding is observed than the annular flooding because the flow regime changes from the slug flow regime or periodic slug/annular flow regime to annular flow regime due to the hysteresis between the onset of flooding and the bridging film. Experiments were made tubes of 0.995 cm, 2.07 cm, and 5.08 cm in diameter. A mechanistic model for the slug flooding with the solitary wave whose height is four time of the mean film thickness is developed to produce relations of the critical liquid flow rate and the mean film thickness. After fitting the critical liquid flow rate with the experimental data as a function of the Bond number, the gas flow rate for the slug flooding is obtained by substituting the critical liquid flow rate to the annular flooding criteria. The present experimental data evaluate the slug flooding condition developed here by substituting the correlations for mean film thickness models in the literature. The best prediction was made by the correlation for the mean film thickness of the present study which is same as Feind's correlation multiplied by 1.35. (author)

  8. A study of Water flooding modeling for DMFC at cathode channel

    International Nuclear Information System (INIS)

    Dong, Sang Keun; Yoo, Ki Soo; Lee, Dae Keun; Chung, Myung Kyoon

    2007-01-01

    The present paper addresses the water flooding model validation in cathode channel for DMFC. Water flooding not only reduces DMFC stack performance but also causes O 2 starve that damages membrane at cathode channel. Although the water flooding problem is critical in operating DMFC, it has not been resolved yet since the effect of temperature, H 2 O vapor and liquid partial pressure effects on the H 2 O vapor saturation is very complex. Therefore, the operating feasible range in the dynamic control of DMFC is inevitably narrow. In order to be able to dynamically control the DMFC to prevent water flooding problem at cathode channel, 3D numerical model was validated by comparison with experimental result. We performed numerical simulation for a wide range of Vcell - current density for 1 layer-1 cell DMFC and the results were compared with experimental data. It was found that the 3D simulation model for the DMFC can be used to accurately predict the water flooding at cathode channel

  9. Coupled modelling of subsurface water flux for an integrated flood risk management

    Directory of Open Access Journals (Sweden)

    T. Sommer

    2009-07-01

    Full Text Available Flood events cause significant damage not only on the surface but also underground. Infiltration of surface water into soil, flooding through the urban sewer system and, in consequence, rising groundwater are the main causes of subsurface damage. The modelling of flooding events is an important part of flood risk assessment. The processes of subsurface discharge of infiltrated water necessitate coupled modelling tools of both, surface and subsurface water fluxes. Therefore, codes for surface flooding, for discharge in the sewerage system and for groundwater flow were coupled with each other. A coupling software was used to amalgamate the individual programs in terms of mapping between the different model geometries, time synchronization and data exchange. The coupling of the models was realized on two scales in the Saxon capital of Dresden (Germany. As a result of the coupled modelling it could be shown that surface flooding dominates processes of any flood event. Compared to flood simulations without coupled modelling no substantial changes of the surface inundation area could be determined. Regarding sewerage, the comparison between the influx of groundwater into sewerage and the loading due to infiltration by flood water showed infiltration of surface flood water to be the main reason for sewerage overloading. Concurrent rainfalls can intensify the problem. The infiltration of the sewerage system by rising groundwater contributes only marginally to the loading of the sewerage and the distribution of water by sewerage has only local impacts on groundwater rise. However, the localization of risk areas due to rising groundwater requires the consideration of all components of the subsurface water fluxes. The coupled modelling has shown that high groundwater levels are the result of a multi-causal process that occurs before and during the flood event.

  10. Modeling Flood & Drought Scenario for Water Management in Porali River Basin, Balochistan

    Directory of Open Access Journals (Sweden)

    Shoaib Ahmed

    2013-12-01

    Full Text Available Recent history shows that floods have become a frequently occurring disaster in Balochistan, especially during monsoon season. Two rivers, river Porali and river Kud overflows, inundating its banks and causing destruction to cultivated land and property. This study is an attempt to identify flood prone areas of Porali river basin for future flood scenario and propose possible reservoir locations for excess flood water storage. Computer-based models Hydrological Simulation Program-FORTRAN (HSPF and HEC-river analysis system (HEC-RAS are used as tools to simulate existing and future flood and drought scenarios. Models are calibrated and validated using data from 3 weather stations, namely Wadh, Bela, and Uthal and stream flow data from two gauging stations. The highest and the lowest 10 years of precipitation data are extracted, from historic dataset of all stations, to attain future flooding and drought scenarios, respectively. Flood inundation map is generated highlighting agricultural prone land and settlements of the watershed. Using Digital Elevation Model (DEM and volume of water calculated from the flood scenario, possible locations for reservoirs are marked that can store excess water for the use in drought years. Flow and volume of water has also been simulated for drought scenario. Analyses show that 3 × 109 m3 of water available due to immense flooding that is sufficient for the survival for one drought year, as the volume of water for latter scenario is 2.9 × 108m3.

  11. Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield

    Science.gov (United States)

    Chen, Rong; Qi, Mei; Zhang, Guohui; Yi, Chenggao

    2018-02-01

    The application of polymer flooding technology in oilfields can result in polymer content increased in produced water. This increasing made produced water quality become poor. The efficiency of produced water processing decreased significantly. Processed water quality seriously exceeded criterion’s stipulation. The presence of the polymer in produced water is the main reason for more difficulties in processing of produced water, therefore the polymer degradation technology is a key coefficient in produced water processing for polymer flooding oilfields. We evaluated several physical and chemical polymer degradation methods with the solution of separated water from polymer flooding oilfields and hydrolyzed polyacrylamide. The experiment results can provide a basis for produced water processing technologies application in polymer flooding oilfields.

  12. Urban Surface Water Quality, Flood Water Quality and Human Health Impacts in Chinese Cities. What Do We Know?

    Directory of Open Access Journals (Sweden)

    Yuhan Rui

    2018-02-01

    Full Text Available Climate change and urbanization have led to an increase in the frequency of extreme water related events such as flooding, which has negative impacts on the environment, economy and human health. With respect to the latter, our understanding of the interrelationship between flooding, urban surface water and human health is still very limited. More in-depth research in this area is needed to further strengthen the process of planning and implementation of responses to mitigate the negative health impacts of flooding in urban areas. The objective of this paper is to assess the state of the research on the interrelationship between surface water quality, flood water quality and human health in urban areas based on the published literature. These insights will be instrumental in identifying and prioritizing future research needs in this area. In this study, research publications in the domain of urban flooding, surface water quality and human health were collated using keyword searches. A detailed assessment of these publications substantiated the limited number of publications focusing on the link between flooding and human health. There was also an uneven geographical distribution of the study areas, as most of the studies focused on developed countries. A few studies have focused on developing countries, although the severity of water quality issues is higher in these countries. The study also revealed a disparity of research in this field across regions in China as most of the studies focused on the populous south-eastern region of China. The lack of studies in some regions has been attributed to the absence of flood water quality monitoring systems which allow the collection of real-time water quality monitoring data during flooding in urban areas. The widespread implementation of cost effective real-time water quality monitoring systems which are based on the latest remote or mobile phone based data acquisition techniques is recommended

  13. Flooding of a large, passive, pressure-tube light water reactor

    International Nuclear Information System (INIS)

    Hejzlar, P.; Todreas, N.E.; Driscoll, M.J.

    1997-01-01

    A reactor concept has been developed which can survive loss of coolant accidents without scram and without replenishing primary coolant inventory, while maintaining safe temperature limits on the fuel and pressure tubes. The proposed concept is a pressure tube type reactor of similar design to CANDU reactors, but differing in three key aspects. First, a solid SiC-coated graphite fuel matrix is used in place of fuel pin bundles to enable the dissipation of decay heat from the fuel in the absence of primary coolant. Second, the heavy water coolant in the pressure tubes is replaced by light water, which also serves as the moderator. Finally, the calandria tank, surrounded by a graphite reflector, contains a low pressure gas instead of heavy water moderator, and this normally-voided calandria is connected to a light water heat sink. The cover gas displaces the light water from the calandria during normal operation, while during loss of coolant or loss of heat sink accidents it allows passive calandria flooding. Calandria flooding also provides redundant and diverse reactor shutdown. This paper describes the thermal hydraulic characteristics of the passively initiated, gravity driven calandria flooding process. Flooding the calandria space with light water is a unique and very important feature of the proposed pressure-tube light water reactor (PTLWR) concept. The flooding of the top row of fuel channels must be accomplished fast enough so that in the total loss of coolant, none of the critical components of the fuel channel, i.e. the pressure tube, the calandria tube, the matrix and the fuel, exceed their design limits. The flooding process has been modeled and shown to be rapid enough to maintain all components within their design limits. (orig.)

  14. Flooding experiments with steam and water in a large diameter vertical tube

    International Nuclear Information System (INIS)

    Williams, S.N.; Solom, M.; Draznin, O.; Choutapalli, I.; Vierow, K.

    2009-01-01

    An experimental study on flooding in a large diameter tube is being conducted. In a countercurrent, two-phase flow system, flooding can be defined as the onset of flow reversal of the liquid component which results in cocurrent flow. Flooding can be perceived as a limit to two-phase countercurrent flow, meaning that pairs of liquid and gas flow rates exist that define the envelope for stable countercurrent flow for a given system. Flooding in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA. Analysis of hypothetical severe accidents with current simplified flooding models show that these models represent the largest uncertainty in steam generator tube creep rupture. During a hypothetical station blackout scenario without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. Experiments have been conducted in a 3-inch (76.2 mm) diameter tube with subcooled water and superheated steam as the working fluids at atmospheric pressure. Water flows down the inside of the tube as an annulus while the steam flows upward in the middle. Water flow rates vary from 3.5 to 12 GPM (0.00022 to 0.00076 m 3 /s) and the water inlet temperature is about 70degC. The steam inlet temperature is about 110degC. It was found that a larger steam flow rate was needed to achieve flooding for a lower water flow rate and for a higher water flow rate. This unique data for flooding in steam-water systems in large diameter tubes will reduce uncertainty in flooding models currently utilized in reactor safety codes. (author)

  15. Household water insecurity after a historic flood: Diarrhea and dehydration in the Bolivian Amazon.

    Science.gov (United States)

    Rosinger, Asher Y

    2018-01-01

    While 884 million people worldwide lack access to clean water, millions live in flood-prone regions. Unexpected flooding increases risk of diarrheal diseases and is expected to occur with increased frequency in the 21st century. Water insecurity is linked to mental distress in water scarce regions, yet this construct has not been examined closely among populations living in flood-prone regions. This paper examines how differences in water sources and lifestyle among Tsimane' forager-horticulturalists in lowland Bolivia are related to water insecurity after a historic flood in 2014, and in turn, how water insecurity is associated with diarrhea and dehydration. Pre-flood data come from qualitative interviews with 36 household heads, anthropometrics, participant observation, and water quality analysis between September 2013-January 2014 used to create a locally-adapted water insecurity questionnaire. Water insecurity was measured after the historic flood; no pre-flood water insecurity measures are available. Post-flood data were collected through surveys, water quality analysis, and health exams using near-exhaustive sampling in two villages, yielding 118 adults and 115 children (aged 2-12 years) in 62 households between March-April 2014. Overall, 89% of adults reported medium or high water insecurity. Only hand-pumps tested negative for pathogenic bacteria both pre- and post-flood. Tobit regressions suggest that hand-pumps (when available) and adult age were associated with lower water insecurity scores. Multiple logistic regressions suggest that adults with high water insecurity were more likely to report diarrhea than adults with low (Odds Ratio [OR] 9.2; 95% CI: 1.27-67.1). Children from households with medium (OR: 6.8; 95% CI: 1.41-32.5) or high (OR: 14.0; 95% CI: 2.40-81.5) water insecurity had significantly higher odds of dehydration than children in households with low water insecurity. Catastrophic flooding may systematically increase dimensions of household

  16. Study on the water flooding in the cathode of direct methanol fuel cells.

    Science.gov (United States)

    Im, Hun Suk; Kim, Sang-Kyung; Lim, Seongyop; Peck, Dong-Hyun; Jung, Doohwan; Hong, Won Hi

    2011-07-01

    Water flooding phenomena in the cathode of direct methanol fuel cells were analyzed by using electrochemical impedance spectroscopy. Two kinds of commercial gas diffusion layers with different PTFE contents of 5 wt% (GDL A5) and 20 wt% (GDL B20) were used to investigate the water flooding under various operating conditions. Water flooding was divided into two types: catalyst flooding and backing flooding. The cathode impedance spectra of each gas diffusion layer was obtained and compared under the same conditions. The diameter of the capacitive semicircle became larger with increasing current density for both, and this increase was greater for GDL B20 than GDL A5. Catalyst flooding is dominant and backing flooding is negligible when the air flow rate is high and current density is low. An equivalent model was suggested and fitted to the experimental data. Parameters for catalyst flooding and backing flooding were individually obtained. The capacitance of the catalyst layer decreases as the air flow rate decreases when the catalyst flooding is dominant.

  17. Improved flooding tolerance and carbohydrate status of flood-tolerant plant Arundinella anomala at lower water temperature.

    Directory of Open Access Journals (Sweden)

    Xiao Qi Ye

    Full Text Available Operation of the Three Gorges Reservoir (TGR, China imposes a new water fluctuation regime, including a prolonged winter submergence in contrast to the natural short summer flooding of the rivers. The contrasting water temperature regimes may remarkably affect the survival of submerged plants in the TGR. Plant survival in such prolonged flooding might depend on the carbohydrate status of the plants. Therefore, we investigated the effects of water temperature on survival and carbohydrate status in a flood-tolerant plant species and predicted that both survival and carbohydrate status would be improved by lower water temperatures.A growth chamber experiment with controlled water temperature were performed with the flood-tolerant species Arundinella anomala from the TGR region. The plants were submerged (80 cm deep water above soil surface with a constant water temperature at 30°C, 20°C or 10°C. The water temperature effects on survival, plant biomass and carbohydrate content (glucose, fructose and sucrose and starch in the viable and dead tissues were investigated.The results showed that the survival percentage of A.anomala plants was greatly dependent on water temperature. The two-month submergence survival percentage was 100% at 10°C, 40% at 20°C and 0% at 30°C. Decreasing the water temperature led to both later leaf death and slower biomass loss. Temperature decrease also induced less reduction in glucose, fructose and sucrose in the roots and leaves (before decay, p 0.05. Different water temperatures did not alter the carbon pool size in the stems, leaves and whole plants (p > 0.05, but a clear difference was found in the roots (p < 0.05, with a larger pool size at a lower temperature.We concluded that (1 A. anomala is characterized by high flooding tolerance and sustained capability to mobilize carbohydrate pool. (2 The survival percentage and carbohydrate status of submerged A. anomala plants were remarkably improved by lower water

  18. Effect of dyke construction on water dynamics in the flooding savannahs of Venezuela

    NARCIS (Netherlands)

    Smith, J.K.; Chacon Moreno, E.J.; Jongman, R.H.G.; Wenting, P.F.M.; Loedeman, J.H.

    2006-01-01

    In the flooded savannahs water is the main factor determining the ecosystem and its change. During flooding, the level of water and the duration of flooding are highly dependent on the relative height position of the ecosystem unit. To understand the spatial processes in the ecosvstem one must know

  19. Effect of Flood Water Diffuser on Flow Pattern of Water during Road Crossing

    Directory of Open Access Journals (Sweden)

    Abdul Ghani A.N.

    2014-03-01

    Full Text Available One of the methods to reduce the velocity of flood water flow across roads is to design obstacle objects as diffusers and place them alongside the road shoulder. The velocity reduction of water flow depends on the diffusion pattern of water. The pattern of diffused water depends on the design of the obstacle objects. The main purpose of this study is to investigate the design of obstacle objects and their water diffusing patterns and their capability to reduce the velocity of the flood water flow during road crossing. Variety of designs and orientation of the obstacle objects were tested in the environmental laboratory on a scale of 1:20. The results are classified into three distinguishable patterns of diffusion. Finally, two diffuser shapes and arrangements are recommended for further investigations in full scale or CFD model.

  20. Flash flood swift water rescues, Texas, 2005–2014

    Directory of Open Access Journals (Sweden)

    Vaidehi Shah

    2017-01-01

    Full Text Available Although rainfall patterns are complex and difficult to predict, climate models suggest precipitation in Texas will occur less frequently and with greater intensity in the future. In combination with rapid population growth and development, extreme rainfall events are likely to lead to flash floods and necessitate swift water rescues. Swift water rescues are used to retrieve person(s from swift water flowing at a rate of 1 knot or greater. Data were obtained from the Texas Fire Marshal’s Office and analyzed to describe spatial and temporal characteristics of rescues. Between 2005 and 2014, 3256 swift water rescues were reported from 136 of 254 (54% counties. Over half (54.6%, n = 1777 occurred in counties known as Flash Flood Alley, which includes Texas’ largest and fastest growing cities. Less than 1.0% (n = 18 were reported from 49 counties designated as completely rural, or with an urban population less than 2500. Increases in swift water rescues were seen between March and September and during major weather events such as tropical storms. Because county-level data was utilized and demographic data was missing in all but 2% (n = 47 of the incidents, our ability to identify populations at risk or target interventions in the future using this data is limited. Despite the frequency of flash flood events and swift water rescues in Texas, knowledge gaps persist that should be addressed through the conduct of interdisciplinary research by epidemiologists and climatologists and by disseminating evidence-based health education and safety programs, particularly in rapidly growing counties that make up Texas’ Flash Flood Alley.

  1. National water summary 1988-89: Hydrologic events and floods and droughts

    Science.gov (United States)

    Paulson, Richard W.; Chase, Edith B.; Roberts, Robert S.; Moody, David W.

    1991-01-01

    National Water Summary 1988-89 - Hydrologic Events and Floods and Droughts documents the occurrence in the United States, Puerto Rico, and the U.S. Virgin Islands of two types of extreme hydrologic events floods and droughts on the basis of analysis of stream-discharge data. This report details, for the first time, the areal extent of the most notable floods and droughts in each State, portrays their severity in terms of annual peak discharge for floods and annual departure from long-term discharge for droughts for selected stream-gaging stations, and estimates how frequently floods and droughts of such severity can be expected to recur. These two types of extreme hydrologic events are very different in their duration, cause, areal extent, and effect on human activities. Floods are short-term phenomena that typically last only a few hours to a few days and are associated with weather systems that produce unusually large amounts of rain or that cause snow to melt quickly. The large amount of runoff produced causes rivers to overflow their banks and, thus, is highly dangerous to human life and property. In contrast, droughts are long-term phenomena that typically persist for months to a decade or more and are associated with the absence of precipitation producing weather. They affect large geographic areas that can be statewide, regional, or even nationwide in extent. Droughts can cause great economic hardship and even loss of life in developing countries, although the loss of life results almost wholly from diminished water supplies and catastrophic crop failures rather than from the direct and obvious peril to human life that is common to floods. The following discussion is an overview of the three parts of this 1988-89 National Water Summary "Hydrologic Conditions and Water-Related Events, Water Years 1988-89," "Hydrologic Perspectives on Water Issues," and "State Summaries of Floods and Droughts." Background information on sources of atmospheric moisture to the

  2. Quality of drinking water from rural water supply after the may flood 2014 in the area of Kraljevo

    Directory of Open Access Journals (Sweden)

    Marinović Dragan D.

    2016-01-01

    Full Text Available The May floods in 2014 affected a large number of rural households in the vicinity of the town of Kraljevo. The flood affected a large number of villages that are located along the river West Morava and villages along the river Godačica. It was necessary to analyze the microbiological and physical chemical quality of drinking water, in order to see the impact of the May floods on the quality of drinking water rural water flooded the city, for the protection of human health, water supply and the ecosystem in general. This paper presents the results of a project which was implemented by the city of Kraljevo and funded humanitarian organization ADRA (Adventist Development and humanitarian organizations. The results of microbiological and physical chemical analysis of drinking water are shown, whose maximum allowable values are given in Regulation on hygienic quality of drinking water Fig. FRY, No.42 / 98 and 44/99 [1]. Upon the approval of funds for drinking water samples, which were tested in the laboratories of the Institute of Public Health of Kraljevo, were sampled in September and October 2014 in eight flooded villages around the town of Kraljevo. The tests were based on the analysis of microbial load of the water system and the physical and chemical parameters and the preservation of water quality.

  3. Controlling flooding and water pollution with upland and streamside vegetation systems

    Science.gov (United States)

    Michael Dosskey

    2003-01-01

    Substantial research and development effort in the U.S. is being spent on developing strategies that address flooding and water pollution problems in agricultural areas. Concerns have been raised about the costs of flood damage, degradation of productive farm land, and declining water quality that are now recognized as unintended consequences of intensive, high-yield...

  4. From flood protection to flood risk management: condition-based and performance-based regulations in German water law

    NARCIS (Netherlands)

    Hartmann, T.; Albrecht, J.

    2014-01-01

    In many European countries, a paradigm shift from technically oriented flood protection to a holistic approach of flood risk management is taking place. In Germany, this approach is currently being implemented after several amendments of the Federal Water Act. The paradigm shift is also reflected in

  5. Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes

    Science.gov (United States)

    Fink, Gabriel; Wessels, Martin; Wüest, Alfred

    2016-09-01

    Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.

  6. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

  7. Responses to flooding of plant water relations and leaf gas exchange in tropical tolerant trees of a black-water wetland.

    Science.gov (United States)

    Herrera, A

    2013-01-01

    This review summarizes the research on physiological responses to flooding of trees in the seasonal black-water wetland of the Mapire River in Venezuela. Inter-annual variability was found during 8 years of sampling, in spite of which a general picture emerged of increased stomatal conductance (gs) and photosynthetic rate (PN) during the flooded period to values as high as or higher than in plants in drained wet soil. Models explaining the initial inhibitory responses and the acclimation to flooding are proposed. In the inhibitory phase of flooding, hypoxia generated by flooding causes a decrease in root water absorption and stomatal closure. An increase with flooding in xylem water potential (ψ) suggests that flooding does not cause water deficit. The PN decreases due to changes in relative stomatal and non-stomatal limitations to photosynthesis; an increase in the latter is due to reduced chlorophyll and total soluble protein content. Total non-structural carbohydrates (TNC) accumulate in leaves but their content begins to decrease during the acclimatized phase at full flooding, coinciding with the resumption of high gs and PN. The reversal of the diminution in gs is associated, in some but not all species, to the growth of adventitious roots. The occurrence of morpho-anatomical and biochemical adaptations which improve oxygen supply would cause the acclimation, including increased water absorption by the roots, increased rubisco and chlorophyll contents and ultimately increased PN. Therefore, trees would perform as if flooding did not signify a stress to their physiology.

  8. Texture Adaption in Dysphagia: Acceptability Differences Between Thickened and Naturally Thick Beverages.

    Science.gov (United States)

    Gerschke, Marco; Seehafer, Peggy

    The aim of the study was to investigate differences in the acceptability between thickened and naturally viscous beverages. This was an exploratory, cross-sectional study. One hundred twenty-eight healthy volunteers rated overall liking/disliking of a selection of each of three thickened drinks and three beverages of natural viscosity pre- and postconsumption. Mean ratings were subjected to statistical analysis done with t tests. Although all naturally thick beverages evoked good expectations, there were significant differences in expected acceptance of thickened fluids concerning the kind of beverage. Postconsumption of naturally thick beverages were rated significantly better than thickened. The findings suggest an alternative offer of naturally thick drinks and waiver of thickening water when viscosity adaption is needed. The sufficient and safe oral fluid intake in dysphagia requires compliance to dietetic recommendations. Naturally thick beverages can contribute to increase the appeal of texture-modified diet.

  9. INVESTIGATION OF QUANTIFICATION OF FLOOD CONTROL AND WATER UTILIZATION EFFECT OF RAINFALL INFILTRATION FACILITY BY USING WATER BALANCE ANALYSIS MODEL

    OpenAIRE

    文, 勇起; BUN, Yuki

    2013-01-01

    In recent years, many flood damage and drought attributed to urbanization has occurred. At present infiltration facility is suggested for the solution of these problems. Based on this background, the purpose of this study is investigation of quantification of flood control and water utilization effect of rainfall infiltration facility by using water balance analysis model. Key Words : flood control, water utilization , rainfall infiltration facility

  10. Legal instruments of the protection from waters (floods and droughts and of the protection of waters

    Directory of Open Access Journals (Sweden)

    Salma Jožef

    2013-01-01

    Full Text Available In this paper the author analyzes the Serbian law, the laws of several European countries (Germany, France, Austria, Hungary and Croatia and European Union rules in respect of the protection from harmful effects of waters, such as floods, erosion, torrents, icing on the surface of waters, just as well as the rules on diverting of water from a territory where it is in surplus, on the one hand, or directing it from the territory where it is in surplus to the one with water shortage (amelioration, on the other. The subject of analysis is the instruments of water management in the function of protection from high-water, too, such as the long and short term planning of protection from floods, measures necessary to prevent them and elimination of their effects. The maintenance of required water regime is also considered as an instrument of protection from high-water, especially the construction and upkeep of facilities for protection from floods. Facilities for utilization of water resources, such as roads and bridges, should be constructed in accordance with environmental permits, at the level well above the high water level measured in a longer period of time.

  11. Missoula flood dynamics and magnitudes inferred from sedimentology of slack-water deposits on the Columbia Plateau, Washington

    International Nuclear Information System (INIS)

    Smith, G.A.

    1993-01-01

    Sedimentological study of late Wisconsin, Missoula-flood slack-water sediments deposited along the Columbia and Tucannon Rivers in southern Washington reveals important aspects of flood dynamics. Most flood facies were deposited by energetic flood surges (velocities>6 m/sec) entering protected areas along the flood tract, or flowing up and then directly out of tributary valleys. True still-water facies are less voluminous and restricted to elevations below 230 m. High flood stages attended the initial arrival of the flood wave and were not associated with subsequent hydraulic ponding upslope from channel constrictions. Among 186 flood beds studied in 12 sections, 57% have bioturbated tops, and about half of these bioturbated beds are separated from overlying flood beds by nonflood sediments. A single graded flood bed was deposited at most sites during most floods. Sequences in which 2-9 graded beds were deposited during a single flood are restricted to low elevations. These sequences imply complex, multi-peaked hydrographs in which the first flood surge was generally the largest, and subsequent surges were attenuated by water already present in slack-water areas. Slack-water - sediment stratigraphy suggests a wide range of flood discharges and volumes. Of >40 documented late Wisconsin floods that inundated the Pasco Basin, only about 20 crossed the Palouse-Snake divide. Floods younger than the set-S tephras from Mount St.Helens were generally smaller than earlier floods of late Wisconsin age, although most still crossed the Palouse-Snake divide. These late floods primarily traversed the Cheney-Palouse scabland because stratigraphy of slack-water sediment along the Columbia River implies that the largest flood volumes did not enter the Pasco Basin by way of the Columbia River. 47 refs., 17 figs., 2 tabs

  12. Responses to flooding of plant water relations and leaf gas exchange in tropical tolerant trees of a black-water wetland

    Directory of Open Access Journals (Sweden)

    Ana eHerrera

    2013-05-01

    Full Text Available This review summarizes the research on physiological responses to flooding of trees in the seasonal black-water wetland of the Mapire River in Venezuela. Inter-annual variability was found during eight years of sampling, in spite of which a general picture emerged of increased stomatal conductance (gs and photosynthetic rate (PN during the flooded period to values as high as or higher than in plants in drained wet soil. Models explaining the initial inhibitory responses and the acclimation to flooding are proposed. In the inhibitory phase of flooding, hypoxia generated by flooding causes a decrease in root water absorption and stomatal closure. An increase with flooding in xylem water potential ( suggests that flooding does not cause water deficit. The PN decreases due to changes in relative stomatal and non-stomatal limitations to photosynthesis; an increase in the latter is due to reduced chlorophyll and total soluble protein content. Total non-structural carbohydrates accumulate in leaves but their content begins to decrease during the acclimatized phase at full flooding, coinciding with the resumption of high gs and PN. The reversal of the diminution in gs is associated, in some but not all species, to the growth of adventitious roots. The occurrence of morpho-anatomical and biochemical adaptations which improve oxygen supply would cause the acclimation, including increased water absorption by the roots, increased rubisco and chlorophyll contents and ultimately increased PN. Therefore, trees would perform as if flooding did not signify a stress to their physiology.

  13. Impacts of extreme flooding on riverbank filtration water quality.

    Science.gov (United States)

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) 400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration

  14. Surface water flood risk and management strategies for London: An Agent-Based Model approach

    Directory of Open Access Journals (Sweden)

    Jenkins Katie

    2016-01-01

    Full Text Available Flooding is recognised as one of the most common and costliest natural disasters in England. Flooding in urban areas during heavy rainfall is known as ‘surface water flooding’, considered to be the most likely cause of flood events and one of the greatest short-term climate risks for London. In this paper we present results from a novel Agent-Based Model designed to assess the interplay between different adaptation options, different agents, and the role of flood insurance and the flood insurance pool, Flood Re, in the context of climate change. The model illustrates how investment in adaptation options could reduce London’s surface water flood risk, today and in the future. However, benefits can be outweighed by continued development in high risk areas and the effects of climate change. Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, it offers no additional benefits in terms of overall risk reduction, and will face increasing pressure due to rising surface water flood risk in the future. The modelling approach and findings are highly relevant for reviewing the proposed Flood Re scheme, as well as for wider discussions on the potential of insurance schemes, and broader multi-sectoral partnerships, to incentivise flood risk management in the UK and internationally.

  15. Elasticity and electrical resistivity of chalk and greensand during water flooding with selective ions

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Alexeev, Artem

    2018-01-01

    is water-wet after flooding. Greensand remained mixed wet throughout the experiments. Electrical resistivity data are in agreement with this interpretation. The electrical resistivity data during flooding revealed that the formation brine is not fully replaced by the injected water in both chalk......Water flooding with selective ions has in some cases lead to increased oil recovery. We investigate the physical processes on a pore scale that are responsible for changes in petrophysical and mechanical properties of four oil-bearing chalk and four oil-bearing greensand samples caused by flooding...... with brines containing varying amounts of dissolved NaCl, Na2SO4, MgCl2 and MgSO4. Ultrasonic P-wave velocity and AC resistivity measurements were performed prior to, during and after flow through experiments in order to identify and quantify the processes related to water flooding with selective ions. Low...

  16. Thickened infant formula: What to know

    NARCIS (Netherlands)

    Salvatore, Silvia; Savino, Francesco; Singendonk, Maartje; Tabbers, Merit; Benninga, Marc A.; Staiano, Annamaria; Vandenplas, Yvan

    2018-01-01

    This study aimed to provide an overview of the characteristics of thickened formulas to aid health care providers manage infants with regurgitations. The indications, properties, and efficacy of different thickening agents and thickened formulas on regurgitation and gastroesophageal reflux in

  17. Microbiological evaluation of water during the 2011 flood crisis in Thailand

    International Nuclear Information System (INIS)

    Chaturongkasumrit, Yuphakhun; Techaruvichit, Punnida; Takahashi, Hajime; Kimura, Bon; Keeratipibul, Suwimon

    2013-01-01

    In 2011, a severe flood occurred in Thailand, covering nearly half the country in water for several months. The contamination of floodwater and subsequent contamination of water for human consumption could have potentially led to a widespread health crisis. However, to date, no study has been conducted to determine the safety of the waters used for human consumption in Thailand during the severe flood. Therefore, we conducted microbiological analysis of 4 kinds of water (floodwater, river water, tap water, and filtered tap water) collected from industrial and residential areas that were damaged due to flooding. Higher net levels of bacteria were found in water with a higher turbidity. No clear trend was observed in the pH value of all 4 water samples. The level of total bacterial contamination in the water samples was estimated by real-time quantitative polymerase chain reaction (PCR). Eleven of the 12 tap water samples and all of the filtered tap water samples had a total bacterial load that exceeded the Thai water quality standards. One of the tap water samples and one of the filtered tap water samples were found to be positive for Shigella sp., although none of the floodwater samples showed detectable levels of this pathogen as determined by PCR analysis. One of the samples of floodwater was also found to be positive for Leptospira sp., but none of the tap water or filtered tap water samples were positive. Most of the tap water samples and all filtered tap water samples were found to be contaminated with Vibrio cholerae. Bacterial contamination in water samples was also analyzed by denaturing gradient gel electrophoresis (DGGE) analysis. These results revealed that several microorganisms were transferred via floodwater to different areas in the central part of Thailand and cross-contaminated between floodwater and water for human consumption. - Highlights: • We investigated the flood impact on the waters used for human consumption. • Higher net levels of

  18. Microbiological evaluation of water during the 2011 flood crisis in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Chaturongkasumrit, Yuphakhun; Techaruvichit, Punnida; Takahashi, Hajime; Kimura, Bon [Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477 (Japan); Keeratipibul, Suwimon, E-mail: Suwimon.k@chula.ac.th [Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand)

    2013-10-01

    In 2011, a severe flood occurred in Thailand, covering nearly half the country in water for several months. The contamination of floodwater and subsequent contamination of water for human consumption could have potentially led to a widespread health crisis. However, to date, no study has been conducted to determine the safety of the waters used for human consumption in Thailand during the severe flood. Therefore, we conducted microbiological analysis of 4 kinds of water (floodwater, river water, tap water, and filtered tap water) collected from industrial and residential areas that were damaged due to flooding. Higher net levels of bacteria were found in water with a higher turbidity. No clear trend was observed in the pH value of all 4 water samples. The level of total bacterial contamination in the water samples was estimated by real-time quantitative polymerase chain reaction (PCR). Eleven of the 12 tap water samples and all of the filtered tap water samples had a total bacterial load that exceeded the Thai water quality standards. One of the tap water samples and one of the filtered tap water samples were found to be positive for Shigella sp., although none of the floodwater samples showed detectable levels of this pathogen as determined by PCR analysis. One of the samples of floodwater was also found to be positive for Leptospira sp., but none of the tap water or filtered tap water samples were positive. Most of the tap water samples and all filtered tap water samples were found to be contaminated with Vibrio cholerae. Bacterial contamination in water samples was also analyzed by denaturing gradient gel electrophoresis (DGGE) analysis. These results revealed that several microorganisms were transferred via floodwater to different areas in the central part of Thailand and cross-contaminated between floodwater and water for human consumption. - Highlights: • We investigated the flood impact on the waters used for human consumption. • Higher net levels of

  19. Evaluation methodology for flood damage reduction by preliminary water release from hydroelectric dams

    Science.gov (United States)

    Ando, T.; Kawasaki, A.; Koike, T.

    2017-12-01

    IPCC AR5 (2014) reported that rainfall in the middle latitudes of the Northern Hemisphere has been increasing since 1901, and it is claimed that warmer climate will increase the risk of floods. In contrast, world water demand is forecasted to exceed a sustainable supply by 40 percent by 2030. In order to avoid this expectable water shortage, securing new water resources has become an utmost challenge. However, flood risk prevention and the secure of water resources are contradictory. To solve this problem, we can use existing hydroelectric dams not only as energy resources but also for flood control. However, in case of Japan, hydroelectric dams take no responsibility for it, and benefits have not been discussed accrued by controlling flood by hydroelectric dams, namely by using preliminary water release from them. Therefore, our paper proposes methodology for assessing those benefits. This methodology has three stages as shown in Fig. 1. First, RRI model is used to model flood events, taking account of the probability of rainfall. Second, flood damage is calculated using assets in inundation areas multiplied by the inundation depths generated by that RRI model. Third, the losses stemming from preliminary water release are calculated, and adding them to flood damage, overall losses are calculated. We can evaluate the benefits by changing the volume of preliminary release. As a result, shown in Fig. 2, the use of hydroelectric dams to control flooding creates 20 billion Yen benefits, in the probability of three-day-ahead rainfall prediction of the assumed maximum rainfall in Oi River, in the Shizuoka Pref. of Japan. As the third priority in the Sendai Framework for Disaster Risk Reduction 2015-2030, `investing in disaster risk reduction for resilience - public and private investment in disaster risk prevention and reduction through structural and non-structural measures' was adopted. The accuracy of rainfall prediction is the key factor in maximizing the benefits

  20. The Effect Of Anisotropy In Formation Permeability On The Efficiency Of Cyclic Water Flooding

    Directory of Open Access Journals (Sweden)

    Al-Obaidi SH

    2017-11-01

    Full Text Available In oil industry one of the most worldwide used methods a among the hydrodynamic enhanced oil recovery methods is the water flooding including the cyclic water flooding. The efficiency of cyclic water flooding is affected by a number of geophysical and field technological factors. In this work and based on three-dimensional hydrodynamic simulation it is shown that anisotropy of formation permeability has significant effect on justification of the half-cycle time and the technological effectiveness of the method.

  1. A New Thickener for CO2 Anhydrous Fracturing Fluid

    Directory of Open Access Journals (Sweden)

    Zhang Jian

    2015-01-01

    Full Text Available CO2 dry fracturing technology is well-known for its advantages. Little water is used in this technology, which is able to ease the pressure of consumption on water resources. Many abroad theoretical researches, laboratory experiments and field tests have been taken to explore the yield mechanism, the adaptability and the technology of pure liquid CO2 fracturing. These achievements have been applied to a variety of reservoirs transformation and improven the effectiveness of stimulation treatment in a degree. The researches and studies in the domestic didn’t get popular until recent years. Thus, this article firstly introduces the main development and application about pure CO2 anhydrous fracturing technology, and sums up the effect and evaluation of its fluid through application examples both in the domestic and abroad. However, although this technology has many excellent qualities, but systematic studies indicate that its proppant-carrying capacity is less competitive because of the low viscosity of pure CO2 liquid and other reasons. In a consequence, it is necessary to develop an appropriate thickener for CO2 anhydrous fracturing fluid to improve its carrying capacity. Then this article describes some studies of previous scholars about CO2 thickener. Then we put forward our own research ideas and transform it into actual experiments. Thanks to the valid performances of these tests, we successfully develop a thickener X and cosolvent B.

  2. A Novel Model for the Entire Settling-Thickening Process in a Secondary Settling Tank.

    Science.gov (United States)

    He, Zhijiang; Zhang, Yuankai; Wang, Hongchen; Qi, Lu; Yin, Xunfei; Zhang, Xiaojun; Wen, Yang

    2016-12-01

      Sludge settling and thickening occur simultaneously in secondary settling tanks (SSTs). The ability to accurately calculate the settling and thickening capacity of activated sludge was of great importance. Despite extensive studies on the development of settling velocity models for use with SSTs, these models have not been applied due to the difficulty in calibrating the related parameters. Additionally, there have been some studies of the thickening behavior of the activated sludge in SSTs. In this study, a novel settling and thickening model for activated sludge was developed, and the model was validated using experimental data (R2 = 0.830 to 0.963, p settling and thickening behavior of the activated sludge in an SST. The application of these models requires only one critical parameter, namely, the stirred sludge volume index SSVI3.5, which is readily available in a water resource recovery facility.

  3. The Influence of Thickener Content on the Properties of Acryl Emulsion Resin

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Sam; Choi, Sang Goo [Department of Chemical Technology, Ho-Won University, Kunsan (Korea)

    2001-04-01

    HW-100 (acryl oligomer), Aerosil 200 (fine silica), HEMC (hydroxyethyl methylcellulose) and HPMC (hydroxypropyl methylcellulose) were each mixed with acryl emulsion resin. For each mixture, various physical properties were tested experimentally. HW-100 mixtures showed higher viscosity and thixotropy than the other mixtures. The viscosity increased rapidly with adding of thickener. Fabrication workability decreased substantially with increased thixotropy. Aerosil mixture represented good properties in workability, adhesive strength and water-resistance, however, it had large shrinkage. The shrinkage was typically influenced by content of water and void. HEMC mixture showed higher pH and adhesion than others, while HPMC mixture had long drying-time and excellent alkali-resistance characteristics. Water-resistance and alkali-resistance were mainly influenced by the molecular structure of thickener and the content of void. 26 refs., 12 figs.

  4. Classification and assessment of water bodies as adaptive structural measures for flood risk management planning.

    Science.gov (United States)

    McMinn, William R; Yang, Qinli; Scholz, Miklas

    2010-09-01

    Severe rainfall events have become increasingly common in Europe. Flood defence engineering works are highly capital intensive and can be limited by land availability, leaving land and communities exposed to repeated flooding. Any adaptive drainage structure must have engineered inlets and outlets that control the water level and the rate of release. In Scotland, there are a relatively high number of drinking water reservoirs (operated by Scottish Water), which fall within this defined category and could contribute to flood management control. Reducing the rate of runoff from the upper reaches of a catchment will reduce the volume and peak flows of flood events downstream, thus allowing flood defences to be reduced in size, decreasing the corresponding capital costs. A database of retention basins with flood control potential has been developed for Scotland. The research shows that the majority of small and former drinking water reservoirs are kept full and their spillways are continuously in operation. Utilising some of the available capacity to contribute to flood control could reduce the costs of complying with the EU Flood Directive. Furthermore, the application of a previously developed classification model for Baden in Germany for the Scottish data set showed a lower diversity for basins in Scotland due to less developed infrastructure. The principle value of this approach is a clear and unambiguous categorisation, based on standard variables, which can help to promote communication and understanding between stakeholders. 2010 Elsevier Ltd. All rights reserved.

  5. Air-water flooding in multirod channels: effects of spacer grids and blockages

    International Nuclear Information System (INIS)

    Cha, Jong Hee; Jun, Hyung Gil

    1993-01-01

    This paper presents the experimental results on flooding of countercurrent flow in vertical multirod channels, which consists of falling water film and upward air flow. In particular, the effects of spacer grids, with and without mixing vane, and of blockage in the multirod bundle on the behaviour of flooding were investigated. The 5 x 5 zircaloy tube bundle was used for the test section. The comparison of previous analytical models and empirical correlations with present data on flooding showed that the existing models and correlations predict much higher flooding curves. The spacer grid causes the lower flooding air flow rate to compare with the bare rod bundle. However, the mixing spacer grids need a higher flooding air flow rate for a constant liquid flow rate than the spacer grids without mixing vanes. The bundle containing blockages has the highest flooding air flow rate among the bundles with spacer grids and blokages. Empirical flooding correlations for the three types of test section have been made. (Author)

  6. Effect of stratification on segregation in carbon dioxide miscible flooding in a water-flooded oil reservoir

    International Nuclear Information System (INIS)

    Bhatti, A.A.; Mahmood, S.M.; Amjad, B.

    2013-01-01

    Oil reservoirs are subjected to tertiary recovery by deploying any enhanced oil recovery (EOR) technique for the recovery of left over oil. Amongst many EOR methods one of the widely applied worldwide is CO/sub 2/ flooding through miscible, near miscible or immiscible displacement processes. CO/sub 2/ flooding process responds to a number of reservoir and fluid characteristics. These characteristics have strong effect on overall efficiency of the displacement process. Better understanding of the effect of different characteristics on displacement process is important to plan an efficient displacement process. In this work, the effect of stratification resulting in gravity segregation of the injected fluid is studied in an oil reservoir which is water-flooded during secondary phase of recovery. Sensitivity analysis is performed through successive simulation on Eclipse 300 (compositional) reservoir simulator. Process involves the continuous CO/sub 2/ injection in an oil reservoir with more than 1/3rd of original oil in place left after water flooding. Reservoir model with four different permeability layers is studied. Four patterns by changing the arrangement of the permeabilities of the layers are analysed. The effect of different arrangement or stratification on segregation of CO/sub 2/ and ultimately on the incremental oil recovery, is investigated. It has been observed that out of four arrangements, upward fining pattern relatively overcame the issue of the segregation of CO/sub 2/ and consequently 33% more oil with half injection volume is recovered when compared with the downward fining pattern. (author)

  7. Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator

    International Nuclear Information System (INIS)

    Li, Gang; Li, Xiao-Sen; Li, Bo; Wang, Yi

    2014-01-01

    The combination forms of the hydrate dissociation methods in different well systems are divided into 6 main patterns. Dissociation processes of methane hydrate in porous media using the inverted five-spot water flooding method (Pattern 4) are investigated by the experimental observation and numerical simulation. In situ methane hydrate is synthesized in the Cubic Hydrate Simulator (CHS), a 5.832-L cubic reactor. A center vertical well is used as the hot water injection well, while the four vertical wells at the corner are the gas and water production wells. The gas production begins simultaneously with the hot water injection, while after approximately 20 min of compression, the water begins to be produced. One of the common characteristics of the inverted five-spot water flooding method is that both the gas and water production rates decrease with the reduction of the hydrate dissociation rate. The evaluation of the energy efficiency ratio might indicate the inverted five-spot water flooding as a promising gas producing method from the hydrate reservoir. - Highlights: • A three-dimensional 5.8-L cubic pressure vessel is developed. • Gas production of hydrate using inverted five-spot flooding method is studied. • Water/gas production rate and energy efficiency ratio are evaluated. • Temperature distributions of numerical simulation and experiment agree well. • Hydrate dissociation process is a moving boundary problem in this study

  8. Echocardiography: pericardial thickening and constrictive pericarditis.

    Science.gov (United States)

    Schnittger, I; Bowden, R E; Abrams, J; Popp, R L

    1978-09-01

    A total of 167 patients with pericardial thickening noted on M node echocardiography were studied retrospectively. After the echocardiogram, 72 patients underwent cardiac surgery, cardiac catheterization or autopsy for various heart diseases; 96 patients had none of these procedures. In 49 patients the pericardium was directly visualized at surgery or autopsy; 76 percent of these had pericardial thickening or adhesions. In another 8 percent, pericardial adhesions were absent, but no comment had been made about the appearance of the pericardium itself. In the remaining 16 percent, no comment had been made about the pericardium or percardial space. Cardiac catheterization in 64 patients revealed 24 with hemodynamic findings of constrictive pericarditis or effusive constrictive disease. Seven echocardiographic patterns consistent with pericardial adhesions or pericardial thickening are described and related when possible to the subsequent findings at heart surgery or autopsy. The clinical diagnoses of 167 patients with pericardial thickening are presented. The hemodynamic diagnosis of constrictive pericardial disease was associated with the echocardiographic finding of pericardial thickening, but there were no consistent echocardiographic patterns of pericardial thickening diagnostic of constriction. However, certain other echocardiographic abnormalities of left ventricular posterior wall motion and interventricular septal motion and a high E-Fo slope were suggestive of constriction.

  9. Crushed tablets: does the administration of food vehicles and thickened fluids to aid medication swallowing alter drug release?

    Science.gov (United States)

    Manrique, Yady J; Lee, Danielle J; Islam, Faiza; Nissen, Lisa M; Cichero, Julie A Y; Stokes, Jason R; Steadman, Kathryn J

    2014-01-01

    To evaluate the influence of co-administered vehicles on in vitro dissolution in simulated gastric fluid of crushed immediate release tablets as an indicator for potential drug bioavailability compromise. Release and dissolution of crushed amlodipine, atenolol, carbamazepine and warfarin tablets were tested with six foods and drinks that are frequently used in the clinical setting as mixers for crushed medications (water, orange juice, honey, yoghurt, strawberry jam and water thickened with Easythick powder) in comparison to whole tablets. Five commercial thickening agents (Easythick Advanced, Janbak F, Karicare, Nutilis, Viscaid) at three thickness levels were tested for their effect on the dissolution of crushed atenolol tablets. Atenolol dissolution was unaffected by mixing crushed tablets with thin fluids or food mixers in comparison to whole tablets or crushed tablets in water, but amlodipine was delayed by mixing with jam. Mixing crushed warfarin and carbamazepine tablets with honey, jam or yoghurt caused them to resemble the slow dissolution of whole tablets rather than the faster dissolution of crushed tablets in water or orange juice. Crushing and mixing any of the four medications with thickened water caused a significant delay in dissolution. When tested with atenolol, all types of thickening agents at the greatest thickness significantly restricted dissolution, and products that are primarily based on xanthan gum also delayed dissolution at the intermediate thickness level. Dissolution testing, while simplistic, is a widely used and accepted method for comparing drug release from different formulations as an indicator for in vivo bioavailability. Thickened fluids have the potential to retard drug dissolution when used at the thickest levels. These findings highlight potential clinical implications of the addition of these agents to medications for the purpose of dose delivery and indicate that further investigation of thickened fluids and their

  10. Water, energy and CO2 exchange over a seasonally flooded forest in the Sahel.

    Science.gov (United States)

    Kergoat, L.; Le Dantec, V.; Timouk, F.; Hiernaux, P.; Mougin, E.; Manuela, G.; Diawara, M.

    2014-12-01

    In semi-arid areas like the Sahel, perennial water bodies and temporary-flooded lowlands are critical for a number of activities. In some cases, their existence is simply a necessary condition for human societies to establish. They also play an important role in the water and carbon cycle and have strong ecological values. As a result of the strong multi-decadal drought that impacted the Sahel in the 70' to 90', a paradoxical increase of ponds and surface runoff has been observed ("Less rain, more water in the ponds", Gardelle 2010). In spite of this, there are excessively few data documenting the consequence of such a paradox on the water and carbon cycle. Here we present 2 years of eddy covariance data collected over the Kelma flooded Acacia forest in the Sahel (15.50 °N), in the frame of the AMMA project. The flooded forest is compared to the other major component of this Sahelian landscape: a grassland and a rocky outcrop sites. All sites are involved in the ALMIP2 data/LSM model comparison. The seasonal cycle of the flooded forest strongly departs from the surroundings grassland and bare soil sites. Before the rain season, the forest displays the strongest net radiation and sensible heat flux. Air temperature within the canopy reaches extremely high values. During the flood, it turns to the lowest sensible heat flux. In fact, due to an oasis effect, this flux is negative during the late flood. Water fluxes turn from almost zero in the dry season to strong evaporation during the flood, since it uses additional energy provided by negative sensible heat flux. The eddy covariance fluxes are consistent with sap flow data, showing that the flood greatly increases the length of the growing season. CO2 fluxes over the forest were twice as large as over the grassland, and the growing season was also longer, giving a much larger annual photosynthesis. In view of these data and data over surroundings grasslands and bare soil, as well as data from a long-term ecological

  11. An adaptive robust optimization scheme for water-flooding optimization in oil reservoirs using residual analysis

    NARCIS (Netherlands)

    Siraj, M.M.; Van den Hof, P.M.J.; Jansen, J.D.

    2017-01-01

    Model-based dynamic optimization of the water-flooding process in oil reservoirs is a computationally complex problem and suffers from high levels of uncertainty. A traditional way of quantifying uncertainty in robust water-flooding optimization is by considering an ensemble of uncertain model

  12. Shear-thickening behavior of Fe-ZSM5 zeolite slurry and its removal with alumina/boehmites

    Science.gov (United States)

    Liu, Xiao-guang; Li, Yan; Xue, Wen-dong; Sun, Jia-lin; Tang, Qian

    2018-06-01

    A cryogenic scanning electron microscopy (cryo-SEM) technique was used to explore the shear-thickening behavior of Fe-ZSM5 zeolite pastes and to discover its underlying mechanism. Bare Fe-ZSM5 zeolite samples were found to contain agglomerations, which may break the flow of the pastes and cause shear-thickening behaviors. However, the shear-thickening behaviors can be eliminated by the addition of halloysite and various boehmites because of improved particle packing. Furthermore, compared with pure Fe-ZSM5 zeolite samples and its composite samples with halloysite, the samples with boehmite (Pural SB or Disperal) additions exhibited network structures in their cryo-SEM images; these structures could facilitate the storage and release of flow water, smooth paste flow, and avoid shear-thickening. By contrast, another boehmite (Versal 250) formed agglomerations rather than network structures after being added to the Fe-ZSM5 zeolite paste and resulted in shear-thickening behavior. Consequently, the results suggest that these network structures play key roles in eliminating the shear-thickening behavior.

  13. Final Research Performance Report - Small Molecular Associative Carbon Dioxide (CO2) Thickeners for Improved Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    Enick, Robert M. [Univ. of Pittsburgh, PA (United States)

    2017-12-31

    The initial objective of this project was to promote the application of a CO2 thickener for improved mobility control during CO2 EOR based on solubility tests, viscosity tests, and core floods. Ultimately, it was demonstrated that the CO2-soluble polymeric thickeners are much better suited for use a CO2-soluble conformance control agents for diverting the flow of CO2 away from thief zones. Our team generated several effective small molecule CO2 thickeners with ARPA-e funding. Unfortunately, none of these small molecule thickeners could dissolve in CO2 without the addition of unacceptably large amounts of hexane or toluene as a co-solvent Therefore none were viable candidates for the core flooding studies associated with NETL award. Therefore during the entire core flood testing program associated with this NETL award, our team used only the most promising polymeric CO2 thickener, a polyfluoroacrylate (PFA). In order to produce an environmentally benign polymer, the monomer used to make the new polymers used in this study was a fluoroacrylate that contains only six fluorinated carbons. We verified CO2 solubility with a phase behavior cell. The thickening potential of all polymer samples was substantiated with a falling ball viscometer and a falling cylinder viscometer at Pitt. Two different viscometers were used to determine the increase in CO2 viscosity that could be achieved via the dissolution of PFA. Praxair, which has an interest in thickening CO2 for pilot EOR projects and for waterless hydraulic fracturing, agreed to measure the viscosity of CO2-PFA solutions at no cost to the project. Falling cylinder viscometery was conducted at Pitt in our windowed high pressure phase behavior cell. Both apparatuses indicated that at very low shear rates the CO2 viscosity increased by a factor of roughly 3.5 when 1wt% PFA was

  14. Flood Water Segmentation from Crowdsourced Images

    Science.gov (United States)

    Nguyen, J. K.; Minsker, B. S.

    2017-12-01

    In the United States, 176 people were killed by flooding in 2015. Along with the loss of human lives is the economic cost which is estimated to be $4.5 billion per flood event. Urban flooding has become a recent concern due to the increase in population, urbanization, and global warming. As more and more people are moving into towns and cities with infrastructure incapable of coping with floods, there is a need for more scalable solutions for urban flood management.The proliferation of camera-equipped mobile devices have led to a new source of information for flood research. In-situ photographs captured by people provide information at the local level that remotely sensed images fail to capture. Applications of crowdsourced images to flood research required understanding the content of the image without the need for user input. This paper addresses the problem of how to automatically segment a flooded and non-flooded region in crowdsourced images. Previous works require two images taken at similar angle and perspective of the location when it is flooded and when it is not flooded. We examine three different algorithms from the computer vision literature that are able to perform segmentation using a single flood image without these assumptions. The performance of each algorithm is evaluated on a collection of labeled crowdsourced flood images. We show that it is possible to achieve a segmentation accuracy of 80% using just a single image.

  15. Flooding and Flood Management

    Science.gov (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  16. Combining hydraulic model, hydrogeomorphological observations and chemical analyses of surface waters to improve knowledge on karst flash floods genesis

    Directory of Open Access Journals (Sweden)

    F. Raynaud

    2015-06-01

    Full Text Available During a flood event over a karst watershed, the connections between surface and ground waters appear to be complex ones. The karst may attenuate surface floods by absorbing water or contribute to the surface flood by direct contribution of karst waters in the rivers (perennial and overflowing springs and by diffuse resurgence along the hillslopes. If it is possible to monitor each known outlet of a karst system, the diffuse contribution is yet difficult to assess. Furthermore, all these connections vary over time according to several factors such as the water content of the soil and underground, the rainfall characteristics, the runoff pathways. Therefore, the contribution of each compartment is generally difficult to assess, and flood dynamics are not fully understood. To face these misunderstandings and difficulties, we analysed surface waters during six recent flood events in the Lirou watershed (a karst tributary of the Lez, in South of France. Because of the specific chemical signature of karst waters, chemical analyses can supply information about water pathways and flood dynamics. Then, we used the dilution law to combine chemical results, flow data and field observations to assess the dynamics of the karst component of the flood. To end, we discussed the surface or karst origin of the waters responsible for the apparent runoff coefficient rise during flash karst flood.

  17. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    Science.gov (United States)

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Flood Water Crossing: Laboratory Model Investigations for Water Velocity Reductions

    Directory of Open Access Journals (Sweden)

    Kasnon N.

    2014-01-01

    Full Text Available The occurrence of floods may give a negative impact towards road traffic in terms of difficulties in mobilizing traffic as well as causing damage to the vehicles, which later cause them to be stuck in the traffic and trigger traffic problems. The high velocity of water flows occur when there is no existence of objects capable of diffusing the water velocity on the road surface. The shape, orientation and size of the object to be placed beside the road as a diffuser are important for the effective flow attenuation of water. In order to investigate the water flow, a laboratory experiment was set up and models were constructed to study the flow velocity reduction. The velocity of water before and after passing through the diffuser objects was investigated. This paper focuses on laboratory experiments to determine the flow velocity of the water using sensors before and after passing through two best diffuser objects chosen from a previous flow pattern experiment.

  19. Flood extent and water level estimation from SAR using data-model integration

    Science.gov (United States)

    Ajadi, O. A.; Meyer, F. J.

    2017-12-01

    Synthetic Aperture Radar (SAR) images have long been recognized as a valuable data source for flood mapping. Compared to other sources, SAR's weather and illumination independence and large area coverage at high spatial resolution supports reliable, frequent, and detailed observations of developing flood events. Accordingly, SAR has the potential to greatly aid in the near real-time monitoring of natural hazards, such as flood detection, if combined with automated image processing. This research works towards increasing the reliability and temporal sampling of SAR-derived flood hazard information by integrating information from multiple SAR sensors and SAR modalities (images and Interferometric SAR (InSAR) coherence) and by combining SAR-derived change detection information with hydrologic and hydraulic flood forecast models. First, the combination of multi-temporal SAR intensity images and coherence information for generating flood extent maps is introduced. The application of least-squares estimation integrates flood information from multiple SAR sensors, thus increasing the temporal sampling. SAR-based flood extent information will be combined with a Digital Elevation Model (DEM) to reduce false alarms and to estimate water depth and flood volume. The SAR-based flood extent map is assimilated into the Hydrologic Engineering Center River Analysis System (Hec-RAS) model to aid in hydraulic model calibration. The developed technology is improving the accuracy of flood information by exploiting information from data and models. It also provides enhanced flood information to decision-makers supporting the response to flood extent and improving emergency relief efforts.

  20. Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water budgets

    Science.gov (United States)

    Jauker, Frank; Wassmann, Reiner; Amelung, Wulf; Breuer, Lutz; Butterbach-Bahl, Klaus; Conrad, Ralf; Ekschmitt, Klemens; Goldbach, Heiner; He, Yao; John, Katharina; Kiese, Ralf; Kraus, David; Reinhold-Hurek, Barbara; Siemens, Jan; Weller, Sebastian; Wolters, Volkmar

    2013-04-01

    Rice production consumes about 30% of all freshwater used worldwide and 45% in Asia. Turning away from permanently flooded rice cropping systems for mitigating future water scarcity and reducing methane emissions, however, will alter a variety of ecosystem services with potential adverse effects to both the environment and agricultural production. Moreover, implementing systems that alternate between flooded and non-flooded crops increases the risk of disruptive effects. The multi-disciplinary DFG research unit ICON aims at exploring and quantifying the ecological consequences of altered water regimes (flooded vs. non-flooded), crop diversification (irrigated rice vs. aerobic rice vs. maize), and different fertilization strategies (conventional, site-specific, and zero N fertilization). ICON particularly focuses on the biogeochemical cycling of carbon and nitrogen, green-house gas (GHG) emissions, water balance, soil biotic processes and other important ecosystem services. The overarching goal is to provide the basic process understanding that is necessary for balancing the revenues and environmental impacts of high-yield rice cropping systems while maintaining their vital ecosystem services. To this aim, a large-scale field experiment has been established at the experimental farm of the International Rice Research Institute (IRRI, Philippines). Ultimately, the experimental results are analyzed in the context of management scenarios by an integrated modeling of crop development (ORYZA), carbon and nitrogen cycling (MoBiLE-DNDC), and water fluxes (CMF), providing the basis for developing pathways to a conversion of rice-based systems towards higher yield potentials under minimized environmental impacts. In our presentation, we demonstrate the set-up of the controlled large-scale field experiment for simultaneous assessment of carbon and nitrogen fluxes and water budgets. We show and discuss first results for: - Quantification and assessment of the net-fluxes of CH4

  1. Towards a better understanding of flood generation and surface water inundation mechanisms using NASA remote sensing data products

    Science.gov (United States)

    Lucey, J.; Reager, J. T., II; Lopez, S. R.

    2017-12-01

    Floods annually cause several weather-related fatalities and financial losses. According to NOAA and FEMA, there were 43 deaths and 18 billion dollars paid out in flood insurance policies during 2005. The goal of this work is to improve flood prediction and flood risk assessment by creating a general model of predictability of extreme runoff generation using various NASA products. Using satellite-based flood inundation observations, we can relate surface water formation processes to changes in other hydrological variables, such as precipitation, storage and soil moisture, and understand how runoff generation response to these forcings is modulated by local topography and land cover. Since it is known that a flood event would cause an abnormal increase in surface water, we examine these underlying physical relationships in comparison with the Dartmouth Flood Observatory archive of historic flood events globally. Using ground water storage observations (GRACE), precipitation (TRMM or GPCP), land use (MODIS), elevation (SRTM) and surface inundation levels (SWAMPS), an assessment of geological and climate conditions can be performed for any location around the world. This project utilizes multiple linear regression analysis evaluating the relationship between surface water inundation, total water storage anomalies and precipitation values, grouped by average slope or land use, to determine their statistical relationships and influences on inundation data. This research demonstrates the potential benefits of using global data products for early flood prediction and will improve our understanding of runoff generation processes.

  2. 2013 Flood Waters "Flush" Pharmaceuticals and other Contaminants of Emerging Concern into the Water and Sediment of the South Platte River, Colorado

    Science.gov (United States)

    Battaglin, W. A.; Bradley, P. M.; Paschke, S.; Plumlee, G. S.; Kimbrough, R.

    2016-12-01

    In September 2013, heavy rainfall caused severe flooding in Rocky Mountain National Park (ROMO) and environs extending downstream into the main stem of the South Platte River. In ROMO, flooding damaged infrastructure and local roads. In the tributary canyons, flooding damaged homes, septic systems, and roads. On the plains, flooding damaged several wastewater treatment plants. The occurrence and fate of pharmaceuticals and other contaminants of emerging concern (CECs) in streams during flood conditions is poorly understood. We assessed the occurrence and fate of CECs in this flood by collecting water samples (post-peak flow) from 4 headwaters sites in ROMO, 7 sites on tributaries to the South Platte River, and 6 sites on the main stem of the South Platte; and by collecting flood sediment samples (post-flood depositional) from 14 sites on tributaries and 10 sites on the main stem. Water samples were analysed for 110 pharmaceuticals and 69 wastewater indicators. Sediment samples were analysed for 57 wastewater indicators. Concentrations and numbers of CECs detected in water increased markedly as floodwaters moved downstream and some were not diluted despite the large flow increases in downstream reaches of the affected rivers. For example, in the Cache la Poudre River in ROMO, no pharmaceuticals and 1 wastewater indicator compound (camphor) were detected. At Greeley, the Cache la Poudre was transporting 19 pharmaceuticals [total concentration of 0.69 parts-per-billion (ppb)] and 22 wastewater indicators (total concentration of 2.81 ppb). In the South Platte downstream from Greeley, 24 pharmaceuticals (total concentration of 1.47 ppb) and 24 wastewater indicators (total concentration of 2.35 ppb) were detected. Some CECs such as the combustion products pyrene, fluoranthene, and benzo(a)pyrene were detected only at sub-ppb concentrations in water, but were detected at concentrations in the hundreds of ppb in flood sediment samples.

  3. Flooding in Jakarta : Towards a blue city with improved water management

    Directory of Open Access Journals (Sweden)

    Peter J.M. Nas

    2005-01-01

    Full Text Available Sunday, 27 January 2002, a large flood swept down on Jakarta and inundated several parts of the city. From the evening of 27 January to the morning of 28 January rain came streaming down, and the dike south of Jakarta broke. The pungent black water, with a hefty cargo of garbage, poured onto the main roads to Bogor, Kramat Jati and East Jakarta. In North Jakarta, in Kelurahan Pejagalan, Kecamatan Penjaringan, the flooding or banjir hit at midnight and continued until five o’clock in the morning, reaching levels as high as 20 cm. Even harder hit was Kelurahan Kapuk Muara, inundated with 70 cm of water.

  4. Water quality restoration during and after flooding of the underground Banat mines

    International Nuclear Information System (INIS)

    Iuhas, T.; Bragadireanu, M.; Filip, D.; Dumitrescu, N.

    2001-01-01

    Closing out and flooding of the underground Banat mines are priority concerns of the Uranium National Company S.A during the period 2000-2007, the economical uranium ores being exhausted after some 45 years of underground exploitation. Water quality restoration during the flooding process and after its completion was a part of a pilot project undertaken in the frame of a PHARE programme. The mines have two water treatment plants in operation with four modules with 3 ion exchange columns each, being in exploitation. The long term plans for the remediation of uranium mines will stop the Ciudanovita water treatment facility, all the underground mine waters being further pumped and treated within a single plant located at Lisava. The exploitation of the treatment plant will be ensured as long as needed, with a first foreseen period of ten years after total flooding of the Banat mines, linked with a long term environment monitoring programme. Necessary measures to be taken for ensuring the foreseen both uranium and radium separation are presented within this paper. Proposals for radium removal are present as a decision should be taken in the nearest future. (orig.)

  5. Experimental studies of low salinity water flooding in carbonate reservoirs: A new promising approach

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Skauge, Arne

    2012-01-01

    Low salinity water flooding is well studied for sandstone reservoirs, both laboratory and field tests have showed improvement in the oil recovery in many cases. Up to very recently, the low salinity effect has been indeterminated for carbonates. Most recently, Saudi Aramco reported that substantial...... additional oil recovery can be achieved when successively flooding composite carbonate core plugs with various diluted versions of seawater. The experimental data on carbonates is very limited, so more data and better understanding of the mechanisms involved is needed to utilize this method for carbonate...... reservoirs. In this paper, we have experimentally investigated the oil recovery potential of low salinity water flooding for carbonate rocks. We used both reservoir carbonate and outcrop chalk core plugs. The flooding experiments were carried out initially with the seawater, and afterwards additional oil...

  6. MSWT-01, flood disaster water treatment solution from common ideas

    Science.gov (United States)

    Ananto, Gamawan; Setiawan, Albertus B.; Z, Darman M.

    2013-06-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  7. MSWT-01, flood disaster water treatment solution from common ideas

    International Nuclear Information System (INIS)

    Ananto, Gamawan; Setiawan, Albertus B; Darman M Z

    2013-01-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m 3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  8. [Residual pleural thickening in tuberculous pleuritis. Associated factors

    Science.gov (United States)

    Ruiz, E; Alegre, J; Alemán, C; Vizcaya, S; Armadans, L; Segura, R M; Andreu, J; Iglesias, D; Fernández de Sevilla, T

    2000-10-01

    To study the factors related to the development of residual pleural thickening in pleural tuberculosis. We studied 39 patients with tuberculous pleural effusion. A chest X-ray was taken of each patient at the end of treatment. The patients' medical histories, pleural fluid findings and diagnostic chest films were evaluated. Residual pleural thickening was defined as thickening that was visibly greater than 2 mm in the lower side portion of the chest film. Residual pleural thickening developed in 26% of patients and was found mainly in men (RR = 3.86). In no patients with Löwenstein-Jensen cultures positive for Mycobacterium tuberculosis did pleural complications develop. Residual pleural thickening is a common complication of tuberculous pleural effusion. Residual pleural thickening in tuberculous pleurisy occurs more often in men and older patients, and in cases in which pleural liquid culture is negative for M. tuberculosis.

  9. Development of Flexible Extremities Protection utilizing Shear Thickening Fluid/Fabric Composites

    Science.gov (United States)

    2012-01-19

    The influence of Interparticle Interactions and Hydrodynamic Forces on Shear Thickening in Concentrated Colloidal Dispersions and Slurries 10...Armor Using Fumed SiO2 Nanoparticles Dispersed into Polyethylene Glycol (PEG) through Sonic Cavitation , NSTI-Nanotech 2006. 2006/05/07 00:00:00...for a wide variety of suspensions such as clay–water [17], calcium carbonate–water [18], polystyrene spheres in silicon oil [19], iron particles in

  10. 76 FR 39091 - San Luis Obispo Flood Control and Water Conservation District; Notice of Effectiveness of Surrender

    Science.gov (United States)

    2011-07-05

    ... Flood Control and Water Conservation District; Notice of Effectiveness of Surrender On October 27, 1981... \\1\\ to the San Luis Obispo Flood Control and Water Conservation District (District) for the Lopez... and Water Conservation District, 17 FERC ] 62,113 (1981). On October 24, 2005, the District filed an...

  11. Study of shear thickening behavior in colloidal suspensions

    Directory of Open Access Journals (Sweden)

    N Maleki Jirsaraee

    2015-01-01

    Full Text Available We studied the shear thickening behavior of the nano silica suspension (silica nanoparticles 12 nm in size suspended in ethylene glycol under steady shear. The critical shear rate for transition into shear thickening phase was determined at different concentrations and temperatures. The effect of temperature and concentration was studied on the shear thickening behavior. In silica suspension, it was observed that all the samples had a transition into shear thickening phase and also by increasing the temperature, critical shear rate increased and viscosity decreased. Our observations showed that movement in silica suspension was Brownian and temperature could cause a delay in transition into shear thickening phase. Yet, we observed that increasing the concentration would decrease critical shear rate and increase viscosity. Increasing temperature increased Brownian forces and increasing concentration increased hydrodynamic forces, confirming the contrast between these two forces for transition into shear thickening phase for the suspensions containing nano particles

  12. Flood monitoring and damage assessment using water indices: A case study of Pakistan flood-2012

    Directory of Open Access Journals (Sweden)

    Akhtar Ali Memon

    2015-06-01

    Full Text Available This paper uses Normalized Difference Water Index (NDWI of McFeeters (1996, Water Index (WI introduced by Rogers and Kearney (2004, referred to as Red and Short Wave Infra-Red (RSWIR and WI suggested as the best by Ji et al. (2009, referred to as Green and Short Wave Infra-Red (GSWIR for delineating and mapping of surface water using MODIS (Terra near real time images during 2012 floods in Pakistan. The results from above indices have been compared with Landsat ETM+ classified images aiming to assess the accuracy of the indices. Accuracy assessment has been performed using spatial statistical techniques and found NDWI, RSWIR and GSWIR with kappa coefficient (κ of 46.66%, 70.80% and 60.61% respectively. It has been observed using statistical analysis and visual interpretation (expert knowledge gained by past experience that the NDWI and GSWIR have tendencies to underestimate and overestimate respectively the inundated area. Keeping in view the above facts, RSWIR has proved to be the best of the three indices. In addition, assessment of the damages has been carried out considering accumulated flood extent obtained from RSWIR. The information derived proved to be essential and valuable for disaster management plan and rehabilitation.

  13. Effect of Time and Temperature on Thickened Infant Formula.

    Science.gov (United States)

    Gosa, Memorie M; Dodrill, Pamela

    2017-04-01

    Unlike adult populations, who primarily depend on liquids for hydration alone, infants rely on liquids to provide them with hydration and nutrition. Speech-language pathologists working within pediatric medical settings often identify dysphagia in patients and subsequently recommend thickened liquids to reduce aspiration risk. Caregivers frequently report difficulty attempting to prepare infant formula to the prescribed thickness. This study was designed to determine (1) the relationship between consistencies in modified barium swallow studies and thickened infant formulas and (2) the effects of time and temperature on the resulting thickness of infant formula. Prepackaged barium consistencies and 1 standard infant formula that was thickened with rice cereal and with 2 commercially available thickening agents were studied. Thickness was determined via a line spread test after various time and temperature conditions were met. There were significant differences between the thickened formula and barium test consistencies. Formula thickened with rice cereal separated over time into thin liquid and solid residue. Formula thickened with a starch-based thickening agent was thicker than the desired consistency immediately after mixing, and it continued to thicken over time. The data from this project suggest that nectar-thick and honey-thick infant formulas undergo significant changes in flow rates within 30 minutes of preparation or if refrigerated and then reheated after 3 hours. Additional empirical evidence is warranted to determine the most reliable methods and safest products for thickening infant formula when necessary for effective dysphagia management.

  14. Water levels shape fishing participation in flood-control reservoirs

    Science.gov (United States)

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  15. Flood Risk Management In Europe: European flood regulation

    NARCIS (Netherlands)

    Hegger, D.L.T.; Bakker, M.H.; Green, C.; Driessen, Peter; Delvaux, B.; Rijswick, H.F.M.W. van; Suykens, C.; Beyers, J-C.; Deketelaere, K.; Doorn-Hoekveld, W. van; Dieperink, C.

    2013-01-01

    In Europe, water management is moving from flood defense to a risk management approach, which takes both the probability and the potential consequences of flooding into account. In this report, we will look at Directives and (non-)EU- initiatives in place to deal with flood risk in Europe indirectly

  16. Mine waters of the flooded Příbram uranium deposit

    OpenAIRE

    Lusk, Karel

    2010-01-01

    From the Příbram deposit, which was the largest exploited uranium deposit in the Czech Republic, mine water has been drained under controlled conditions, treated and discharged into the Kocába River since the flooding of the deposit in October 2005. The amount of water drained in this way is determined at any particular moment by the volume of seepage from precipitation and surface water into the underground mine cavities. The draining of overbalance mine waters is carried out at two points t...

  17. A Review on Applications of Remote Sensing and Geographic Information Systems (GIS in Water Resources and Flood Risk Management

    Directory of Open Access Journals (Sweden)

    Xianwei Wang

    2018-05-01

    Full Text Available Water is one of the most critical natural resources that maintain the ecosystem and support people’s daily life. Pressures on water resources and disaster management are rising primarily due to the unequal spatial and temporal distribution of water resources and pollution, and also partially due to our poor knowledge about the distribution of water resources and poor management of their usage. Remote sensing provides critical data for mapping water resources, measuring hydrological fluxes, monitoring drought and flooding inundation, while geographic information systems (GIS provide the best tools for water resources, drought and flood risk management. This special issue presents the best practices, cutting-edge technologies and applications of remote sensing, GIS and hydrological models for water resource mapping, satellite rainfall measurements, runoff simulation, water body and flood inundation mapping, and risk management. The latest technologies applied include 3D surface model analysis and visualization of glaciers, unmanned aerial vehicle (UAV video image classification for turfgrass mapping and irrigation planning, ground penetration radar for soil moisture estimation, the Tropical Rainfall Measuring Mission (TRMM and the Global Precipitation Measurement (GPM satellite rainfall measurements, storm hyetography analysis, rainfall runoff and urban flooding simulation, and satellite radar and optical image classification for urban water bodies and flooding inundation. The application of those technologies is expected to greatly relieve the pressures on water resources and allow better mitigation of and adaptation to the disastrous impact of droughts and flooding.

  18. The exchangeable cations in soils flooded with sea water

    NARCIS (Netherlands)

    Molen, van der W.H.

    1958-01-01

    The changes in the exchangeable cations of soils flooded with sea-water were extensively studied in the Netherlands after the inundations of 1940, 1945 and 1953. A synopsis of the results was given, both from a theoretical and a practical viewpoint.

    Current formulae for ion-exchange tested in the

  19. Exploitation of Documented Historical Floods for Achieving Better Flood Defense

    Directory of Open Access Journals (Sweden)

    Slobodan Kolaković

    2016-01-01

    Full Text Available Establishing Base Flood Elevation for a stream network corresponding to a big catchment is feasible by interdisciplinary approach, involving stochastic hydrology, river hydraulics, and computer aided simulations. A numerical model calibrated by historical floods has been exploited in this study. The short presentation of the catchment of the Tisza River in this paper is followed by the overview of historical floods which hit the region in the documented period of 130 years. Several well documented historical floods provided opportunity for the calibration of the chosen numerical model. Once established, the model could be used for investigation of different extreme flood scenarios and to establish the Base Flood Elevation. The calibration has shown that the coefficient of friction in case of the Tisza River is dependent both on the actual water level and on the preceding flood events. The effect of flood plain maintenance as well as the activation of six potential detention ponds on flood mitigation has been examined. Furthermore, the expected maximum water levels have also been determined for the case if the ever observed biggest 1888 flood hit the region again. The investigated cases of flood superposition highlighted the impact of tributary Maros on flood mitigation along the Tisza River.

  20. How frequently will the Surface Water and Ocean Topography (SWOT) observe floods?

    Science.gov (United States)

    Frasson, R. P. M.; Schumann, G.

    2017-12-01

    The SWOT mission will measure river width and water surface elevations of rivers wider than 100 m. As the data gathered by this mission will be freely available, it can be of great use for flood modeling, especially in areas where streamgage networks are exceedingly sparse, or when data sharing barriers prevent the timely access to information. Despite having world-wide coverage, SWOT's temporal sampling is limited, with most locations being revisited once or twice every 21 days. Our objective is to evaluate which fraction of world-wide floods SWOT will observe and how many observations per event the satellite will likely obtain. We take advantage of the extensive database of floods constructed by the Dartmouth Flood Observatory, who, since 1985, searches through news sources and governmental agencies, and more recently remote sensing imagery for flood information, including flood duration, location and affected area. We cross-referenced the flood locations in the DFO archive with the SWOT prototype prior database of river centerlines and the anticipated satellite's orbit to identify how many of the SWOT swaths were located within 10 km, 20 km, and 50 km from a flood centroid. Subsequently, we estimated the probability that SWOT would have at least one observation of a flood event per distance bin by multiplying the number of swaths in the distance bin by the flood duration divided by the SWOT orbit repeat period. Our analysis contemplated 132 world-wide floods recorded between May 2016 and May 2017. From these, 29, 52, and 86 floods had at least a 50% probability of having one overpass within 10 km, 20 km, and 50 km respectively. Moreover, after excluding flood events with no river centerlines within 10 km of its centroid, the average number of swaths within 10 km of a flood centroid was 1.79, indicating that in the 37 flood events that were likely caused by river flooding, at least one measurement was guaranteed to happen during the event.

  1. Non-traumatic Thickening of the Anterior Cruciate Ligament

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyun Jun; Park, Jin Gyoon; Song, Sang Gook [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2009-08-15

    To describe the magnetic resonance (MR) imaging findings of non-traumatic thickening of the anterior cruciate ligament (ACL) and to evaluate the associated lesions. Between January 2003 and August 2005, 44 knees of 44 patients who had thickened ACLs on MR images and had no history of knee trauma were analyzed retrospectively. The normal thickness of the ACL was measured on axial T2-weighted images of 40 healthy adult knees. The MR imaging findings of the thickened ACLs and associated lesions were analyzed. In 40 cases of healthy knees, the thickness of the proximal ACL was 3-6 mm. In 44 cases of non-traumatic thickening of the ACL, the thickness of the proximal ACL was 8-14 mm. There was an increased signal intensity and ill-defined border in all cases of thickened ACLs, linear low-signal intensity fibers parallel to the long axis of the thickened ACL (celery stalk appearance) in 24 cases, and entrapment in 10 cases. With respect to associated lesions, there was osteoarthritis in 40 cases, meniscal tears in 42 cases, and degeneration of the posterior cruciate ligament in 7 cases. Non-traumatic thickening of the ACL was associated with osteoarthritis and meniscal tears in almost all cases and showed increased signal intensity and ill-defined borders simulating acute ligamentous tears

  2. Forecasting surface water flooding hazard and impact in real-time

    Science.gov (United States)

    Cole, Steven J.; Moore, Robert J.; Wells, Steven C.

    2016-04-01

    Across the world, there is increasing demand for more robust and timely forecast and alert information on Surface Water Flooding (SWF). Within a UK context, the government Pitt Review into the Summer 2007 floods provided recommendations and impetus to improve the understanding of SWF risk for both off-line design and real-time forecasting and warning. Ongoing development and trial of an end-to-end real-time SWF system is being progressed through the recently formed Natural Hazards Partnership (NHP) with delivery to the Flood Forecasting Centre (FFC) providing coverage over England & Wales. The NHP is a unique forum that aims to deliver coordinated assessments, research and advice on natural hazards for governments and resilience communities across the UK. Within the NHP, a real-time Hazard Impact Model (HIM) framework has been developed that includes SWF as one of three hazards chosen for initial trialling. The trial SWF HIM system uses dynamic gridded surface-runoff estimates from the Grid-to-Grid (G2G) hydrological model to estimate the SWF hazard. National datasets on population, infrastructure, property and transport are available to assess impact severity for a given rarity of SWF hazard. Whilst the SWF hazard footprint is calculated in real-time using 1, 3 and 6 hour accumulations of G2G surface runoff on a 1 km grid, it has been possible to associate these with the effective rainfall design profiles (at 250m resolution) used as input to a detailed flood inundation model (JFlow+) run offline to produce hazard information resolved to 2m resolution. This information is contained in the updated Flood Map for Surface Water (uFMfSW) held by the Environment Agency. The national impact datasets can then be used with the uFMfSW SWF hazard dataset to assess impacts at this scale and severity levels of potential impact assigned at 1km and for aggregated county areas in real-time. The impact component is being led by the Health and Safety Laboratory (HSL) within the NHP

  3. Use of NOAA-N satellites for land/water discrimination and flood monitoring

    Science.gov (United States)

    Tappan, G.; Horvath, N. C.; Doraiswamy, P. C.; Engman, T.; Goss, D. W. (Principal Investigator)

    1983-01-01

    A tool for monitoring the extent of major floods was developed using data collected by the NOAA-6 advanced very high resolution radiometer (AVHRR). A basic understanding of the spectral returns in AVHRR channels 1 and 2 for water, soil, and vegetation was reached using a large number of NOAA-6 scenes from different seasons and geographic locations. A look-up table classifier was developed based on analysis of the reflective channel relationships for each surface feature. The classifier automatically separated land from water and produced classification maps which were registered for a number of acquisitions, including coverage of a major flood on the Parana River of Argentina.

  4. Resolution Enhancement of MODIS-Derived Water Indices for Studying Persistent Flooding

    Science.gov (United States)

    Underwood, L. W.; Kalcic, Maria; Fletcher, Rose

    2012-01-01

    Monitoring coastal marshes for persistent flooding and salinity stress is a high priority issue in Louisiana. Remote sensing can identify environmental variables that can be indicators of marsh habitat conditions, and offer timely and relatively accurate information for aiding wetland vegetation management. Monitoring activity accuracy is often limited by mixed pixels which occur when areas represented by the pixel encompasses more than one cover type. Mixtures of marsh grasses and open water in 250m Moderate Resolution Imaging Spectroradiometer (MODIS) data can impede flood area estimation. Flood mapping of such mixtures requires finer spatial resolution data to better represent the cover type composition within 250m MODIS pixel. Fusion of MODIS and Landsat can improve both spectral and temporal resolution of time series products to resolve rapid changes from forcing mechanisms like hurricane winds and storm surge. For this study, using a method for estimating sub-pixel values from a MODIS time series of a Normalized Difference Water Index (NDWI), using temporal weighting, was implemented to map persistent flooding in Louisiana coastal marshes. Ordinarily NDWI computed from daily 250m MODIS pixels represents a mixture of fragmented marshes and water. Here, sub-pixel NDWI values were derived for MODIS data using Landsat 30-m data. Each MODIS pixel was disaggregated into a mixture of the eight cover types according to the classified image pixels falling inside the MODIS pixel. The Landsat pixel means for each cover type inside a MODIS pixel were computed for the Landsat data preceding the MODIS image in time and for the Landsat data succeeding the MODIS image. The Landsat data were then weighted exponentially according to closeness in date to the MODIS data. The reconstructed MODIS data were produced by summing the product of fractional cover type with estimated NDWI values within each cover type. A new daily time series was produced using both the reconstructed 250

  5. The Use of Water Vapor for Detecting Environments that Lead to Convectively Produced Heavy Precipitation and Flash Floods

    Science.gov (United States)

    Scofield, Rod; Vicente, Gilberto; Hodges, Mike

    2000-01-01

    This Tech Report summarizes years of study and experiences on using GOES Water vapor (6.7 micron and precipitable water) and Special Sensor Microwave Imager (SSM/1) from the Defense Meteorological Satellite Program (DMSP) derived Precipitable Water (PNAI) for detecting environments favorable for convectively produced flash floods. An emphasis is on the moisture. upper air flow, and equivalent potential temperature (Theta(sub e)) patterns that lead to devastating flood events. The 15 minute 6.7 micron water vapor imagery is essential for tracking middle to upper tropospheric disturbances that produce upward vertical motion and initiate flash flood producing systems. Water vapor imagery at 6.7 micron is also used to detect surges of upper level moisture (called tropical water vapor plumes) that have been associated with extremely heavy rainfall. Since the water vapor readily depicts lifting mechanisms and upper level moisture, water vapor imagery is often an excellent source of data for recognizing patterns of heavy precipitation and flash floods. In order to analyze the depth of the moisture, the PW aspects of the troposphere must be measured. The collocation (or nearby location) of high values ofP\\V and instability are antecedent conditions prior to the flash flood or heavy rainfall events. Knowledge of PW magnitudes have been used as thresholds for impending flash flood events, PW trends are essential in flash flood prediction. Conceptual models and water vapor products are used to study some of the characteristics of convective systems that occurred over the United States of America (USA) during the summer of 1997 and the 1997-1998 El Nino. P\\V plumes were associated with most of the \\vest coast heavy precipitation events examined during the winter season of 1997 - 1998, In another study, conducted during the summer season of 1997. results showed that the collocation of water vapor (6.7 micron) and P\\N' plumes possessed higher correlations with predicted

  6. Risk management in oil reservoir water-flooding under economic uncertainty

    NARCIS (Netherlands)

    Siraj, Muhammad; Van den Hof, Paul; Jansen, Jan Dirk

    2015-01-01

    Model-based economic optimization of the water-flooding process in oil reservoirs suffers from high levels of uncertainty. The achievable economic objective is highly uncertain due to the varying economic conditions and the limited knowledge of the reservoir model parameters. For improving

  7. Water availability and flood hazards in the John Day Fossil Beds National Monument, Oregon

    Science.gov (United States)

    Frank, Frank J.; Oster, E.A.

    1979-01-01

    The rock formations of the John Day Fossil Beds National Monument area are aquifers that can be expected to yield less than 10 gallons of water per minute to wells. The most permeable of the geologic units is the alluvium that occurs at low elevations along the John Day River and most of the smaller streams. Wells in the alluvial deposits can be expected to yield adequate water supplies for recreational areas; also, wells completed in the underlying bedrock at depths ranging from 50 to 200 feet could yield as much as 10 gallons per minute. Pumping tests on two unused wells indicated yields of 8 gallons per minute and 2 gallons per minute. Nine of the ten springs measured in and near the monument area in late August of 1978 were flowing 0.2 to 30 gallons per minute. Only the Cant Ranch spring and the Johnny Kirk Spring near the Sheep Rock unit had flows exceeding 6 gallons per minute. Chemical analyses of selected constituents of the ground water indicated generally low concentrations of dissolved minerals. Although cloudbursts in the Painted Hills unit could generate a flood wave on the valley floors, flood danger can be reduced by locating recreational sites on high ground. The campground in Indian Canyon of the Clarno unit is vulnerable to cloudburst flooding. About 80 percent of the proposed campground on the John Day River in the Sheep Rock unit is above the estimated level of 1-percent chance flood (100-year flood) of the river. The 1-percent chance flood would extend about 120 feet from the riverbank into the upstream end of the campground. (USGS).

  8. Estimation of Internal Flooding Frequency for Screening Analysis of Flooding PSA

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Jun Eon

    2005-01-01

    The purpose of this paper is to estimate the internal frequency for the quantitative screening analysis of the flooding PSA (Probabilistic Safety Assessment) with the appropriate data and estimation method. In the case of the existing flood PSA for domestic NPPs (Nuclear Power Plant), the screening analysis was performed firstly and then detailed analysis was performed for the area not screened out. For the quantitative screening analysis, the plant area based flood frequency by MLE (Maximum Likelihood Estimation) method was used, while the component based flood frequency is used for the detailed analysis. The existing quantitative screening analysis for domestic NPPs have used data from all LWRs (Light Water Reactor), namely PWR (Pressurized Water Reactor) and BWR (Boiling Water Reactor) for the internal flood frequency of the auxiliary building and turbine building. However, in the case of the primary auxiliary building, the applicability of the data from all LWRs needs to be examined carefully because of the significant difference in equipments between the PWR and BWR structure. NUREG/CR-5750 suggested the Bayesian update method with Jeffrey's noninformative prior to estimate the initiating event frequency for the flood. It, however, did not describe any procedure of the flood PSA. Recently, Fleming and Lydell suggested the internal flooding frequency in the unit of the plant operation year-pipe length (in meter) by pipe size of each specific system which is susceptible to the flooding such as the service water system and the circulating water system. They used the failure rate, the rupture conditional probability given the failure to estimate the internal flooding frequency, and the Bayesian update to reduce uncertainties. To perform the quantitative screening analysis with the method, it requires pipe length by each pipe size of the specific system per each divided area to change the concept of the component based frequency to the concept of the plant area

  9. Production and properties of a thickener with ability of suspending sand

    Energy Technology Data Exchange (ETDEWEB)

    Qin, B.; Wang, D.; Li, Z.; Chen, J. [China University of Mining and Technology, Xuzhou (China). School of Mineral and Safety Engineering

    2006-06-15

    To overcome the shortcomings of pouring sands, a thickener with the ability to suspend sands was developed. It is mixed with sands to form densified slurry, and can insure the sands against deposition, jamming pipelines and dehydration. The chemical structure of the thickener is introduced in this paper and the production process is studied. The main processes include immersion, decomposition, dilution and addition of additives. In order to produce a thickener with high viscosity to suspend sands, key factors must be controlled in each process: the immersion time is 2 h; the mass fraction of formaldehyde is 0.01% and mass of NaCO{sub 3} accounts for 15% of dry material; the water temperature is 65{sup o}C in summer and 72{sup o}C in winter and the decomposition time is 2 h in the reaction; the densified decomposition solution should be diluted to 1% mass fraction; the additives of calcium ions and pH indicators must be added to the diluted liquid; the mass fraction of CaCl{sub 2} is 0.048% and the pH value of the solution is 7.5. The thickener is a gel with three-dimensional network structure, a liquid with non-Newtonian behaviour and the characteristics of pseudo-plastic material, a solution with little resistance and the ability to revive its oral primary viscosity. It has been successfully applied in Shendong Mines and has great value and wide-spread prospective use. 10 refs., 6 figs.

  10. Criticality-safety analyses of compacted and water-flooded. SP-100 reactors

    International Nuclear Information System (INIS)

    Brandon, D.I.; Sapir, J.L.

    1986-01-01

    Reactivity calculations were performed to determine the sensitivity of three liquid metal-cooled, fast reactor designs to various accident environments. The concepts, proposed for the SP-100 Space Nuclear Power Program, included one thermionic and two fuel-pin designs. Numerous models of each core were developed to analyze the effect of core compaction and of water-flooded lattice spreading. Results indicate that those designs incorporating in-core control are least affected by core compaction and that the thermonic concept can best withstand expansion of the flooded fuel element array

  11. The development and application of high-capacity thickening techniques

    International Nuclear Information System (INIS)

    Ji Zhenwan; Song Yuejie

    1995-01-01

    On the basis of sedimentation theory and comparison between the high-capacity and conventional thickening techniques, the authors analyse the ways to increase capacity and to improve technological parameters of thickeners, describes the construction features, development, application, automatic control and test installations of high-capacity thickeners at home and abroad

  12. Networked environments for stakeholder participation in water resources and flood management

    NARCIS (Netherlands)

    Almoradie, A.D.S.

    2014-01-01

    Stakeholders’ awareness and participation is important in the planning and management of water resources and floods. Stakeholders’ spatial distribution and diverse stakeholders’ interest (even opposed) are some of the hindrances in stakeholder participation. This research developed and implemented

  13. Poster abstract: Water level estimation in urban ultrasonic/passive infrared flash flood sensor networks using supervised learning

    KAUST Repository

    Mousa, Mustafa

    2014-04-01

    This article describes a machine learning approach to water level estimation in a dual ultrasonic/passive infrared urban flood sensor system. We first show that an ultrasonic rangefinder alone is unable to accurately measure the level of water on a road due to thermal effects. Using additional passive infrared sensors, we show that ground temperature and local sensor temperature measurements are sufficient to correct the rangefinder readings and improve the flood detection performance. Since floods occur very rarely, we use a supervised learning approach to estimate the correction to the ultrasonic rangefinder caused by temperature fluctuations. Preliminary data shows that water level can be estimated with an absolute error of less than 2 cm. © 2014 IEEE.

  14. Assessing the value of the ATL13 inland water level product for the Global Flood Partnership

    Science.gov (United States)

    Schumann, G.; Pappenberger, F.; Bates, P. D.; Neal, J. C.; Jasinski, M. F.

    2015-12-01

    This paper reports on the activities and first results of an our ICESat-2 Early Adopter (EA) project for inland water observations. Our team will assess the value of the ICESat-2 water level product using two flood model use cases, one over the California Bay Delta and one over the Niger Inland Delta. Application of the ALT13 product into routine operations will be ensured via an ALT13 database integrated into the pillar "Global Flood Service and Toolbox" (GFST) of the Global Flood Partnership (GFP). GFP is a cooperation framework between scientific organizations and flood disaster managers worldwide to develop flood observational and modelling infrastructure, leveraging on existing initiatives for better predicting and managing flood disaster impacts and flood risk globally. GFP is hosted as an Expert Working Group by the Global Disaster Alert and Coordination System (GDACS). The objective of this EA project is to make the ICESat-2 water level data available to the international GFP community. The EA team believes that the ALT13 product, after successful demonstration of its value in model calibration/validation and monitoring of large floodplain inundation dynamics, should be made easily accessible to the GFP. The GFST will host data outputs and tools from different flood models and for different applications and regions. All these models can benefit from ALT13 if made available to GFP through GFST. Here, we will introduce both test cases and their model setups and report on first preliminary "capabilities" test runs with the Niger model and ICESat-1 as well as radar altimeter data. Based on our results, we will also reflect on expected capabilities and potential of the ICESat-2 mission for river observations.

  15. Floods and climate: emerging perspectives for flood risk assessment and management

    NARCIS (Netherlands)

    Merz, B.; Aerts, J.C.J.H.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; Delgado, J.M.; Gocht, M.; Guzetti, F.; Harrigan, S.; Hirschboeck, K.; Kilsby, C.; Kron, W.; Kwon, H. -H.; Lall, U.; Merz, R.; Nissen, K.; Salvatti, P.; Swierczynski, T.; Ulbrich, U.; Viglione, A.; Ward, P.J.; Weiler, M.; Wilhelm, B.; Nied, M.

    2014-01-01

    Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of

  16. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    Science.gov (United States)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified

  17. Color doppler sonography in thickened gallbladder wall

    International Nuclear Information System (INIS)

    Han, Sang Suk; Choi, Seok Jin; Seo, Chang Hae; Eun, Choong Ki

    1996-01-01

    The thickening of the gallbladder wall is a valuable finding for the diagnosis of cholecystitis, but may be seen in non-cholecystic disease as well as in acute or chronic cholecystitis. The purpose of this study is to determine the value of color Doppler sonography in differentiating the causes of thickened gallbladder wall. Ninety eight patients with thickened gallbladder wall(more than 3mm) which was not due to gallbladder cancer were prospectively evaluated with color Doppler sonography. Sixty-six cases, confirmed by pathologic reports and clinical records, were analyzed for correlation between thickened gallbladder wall and color flow signal according to the underlying causes. Of the 66 patients, 28 cases were cholecystitis and 38 cases had non-cholecystic causes such as liver cirrhosis, ascites, hepatitis, pancreatitis, renal failure, and hypoalbuminemia. Of the 28 patients with cholecystitis(12 acute, 16 chronic), 23(82%) had color Doppler flow signals in the thickened gallbladder wall. Of the 38 patients with non-cholecystic causes, eight(21%) had color Doppler flow signals. There was a statistically significant difference of color Doppler flow signals between the cholecystitis and non-cholecystic groups(p=0.0001). No significant difference of color Doppler flow signals was found between cases of acute and chronic cholecystitis. Of the 23 patients with color Doppler flow signals in 28 cases of cholecystitis, 18(78.3%) showed a linear pattern and five(21.7%) showed a spotty pattern. Of the eight patients with color Doppler flow signals in the 38 non-cholecystic cases, four(50%) showed a linear pattern and four(50%) showed a spotty pattern. In cholecystitis, a linear color Doppler flow signal pattern is a much more frequent finding than a spotty pattern. Color Doppler sonography is a useful and adequate method for determining whether a thickened gallbladder wall is the result of cholecystitis or has non-cholecystic causes

  18. Formulation of lubricating grease using Beeswax thickener

    Science.gov (United States)

    Suhaila, N.; Japar, A.; Aizudin, M.; Aziz, A.; Najib Razali, Mohd

    2018-04-01

    The issues on environmental pollution has brought the industries to seek the alternative green solutions for lubricating grease formulation. The significant challenges in producing modified grease are in which considering the chosen thickener as one of the environmental friendly material. The main purposes of the current research were to formulate lubricant grease using different types of base oils and to study the effect of thickener on the formulated lubricant grease. Used oil and motor oil were used as the base oils for the grease preparation. Beeswax and Damar were used as thickener and additive. The grease is tested based on its consistency, stability and oil bleeding. The prepared greases achieved grease consistency of grade 2 and 3 except for grease with unfiltered used oil. Grease formulated with used oil and synthetic oil tend to harden and loss its lubricating ability under high temperature compared to motor oil’ grease. Grease modification using environmental friendly thickener were successfully formulated but it is considered as a low temperature grease as the beeswax have low melting point of 62°C-65°C.

  19. Influence of spreading urbanization in flood areas on flood damage in Slovenia

    International Nuclear Information System (INIS)

    Komac, B; Zorn, M; Natek, K

    2008-01-01

    Damage caused by natural disasters in Slovenia is frequently linked to the ignoring of natural factors in spatial planning. Historically, the construction of buildings and settlements avoided dangerous flood areas, but later we see increasing construction in dangerous areas. During the floods in 1990, the most affected buildings were located on ill-considered locations, and the majority was built in more recent times. A similar situation occurred during the floods of September 2007. Comparing the effects of these floods, we determined that damage was always greater due to the urbanization of flood areas. This process furthermore increasingly limits the 'manoeuvring space' for water management authorities, who due to the torrential nature of Slovenia's rivers can not ensure the required level of safety from flooding for unsuitably located settlements and infrastructure. Every year, the Environmental Agency of the Republic of Slovenia issues more than one thousand permits for interventions in areas that affect the water regime, and through decrees the government allows construction in riparian zones, which is supposedly forbidden by the Law on Water. If we do not take measures with more suitable policies for spatial planning, we will no long have the possibility in future to reduce the negative consequences of floods. Given that torrential floods strike certain Slovene regions every three years on average and that larger floods occur at least once a decade, it is senseless to lay the blame on climate change.

  20. Thickened cortical bones in congenital neutropenia

    International Nuclear Information System (INIS)

    Boechat, M.I.; Gormley, L.S.; O'Laughlin, B.J.

    1987-01-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described. (orig.)

  1. Thickened cortical bones in congenital neutropenia

    Energy Technology Data Exchange (ETDEWEB)

    Boechat, M.I.; Gormley, L.S.; O' Laughlin, B.J.

    1987-02-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described.

  2. Evaluation of Flooding Risk and Engineering Protection Against Floods for Ulan-Ude

    Science.gov (United States)

    Borisova, T. A.

    2017-11-01

    The report presents the results of the study on analysis and risk assessment in relation to floods for Ulan-Ude and provides the developed recommendations of the activities for engineering protection of the population and economic installations. The current situation is reviewed and the results of the site survey are shown to identify the challenges and areas of negative water influence along with the existing security system. The report presents a summary of floods and index risk assessment. The articles describes the scope of eventual flooding, underflooding and enumerates the economic installations inside the urban areas’ research-based zones of flooding at the rated levels of water to identify the likeliness of exceedance. The assessment of damage from flood equal to 1% is shown.

  3. Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by water infrastructure development and climate change in the Mekong Basin.

    Science.gov (United States)

    Arias, Mauricio E; Cochrane, Thomas A; Piman, Thanapon; Kummu, Matti; Caruso, Brian S; Killeen, Timothy J

    2012-12-15

    The economic value of the Tonle Sap Lake Floodplain to Cambodia is arguably among the highest provided to a nation by a single ecosystem around the world. Nonetheless, the Mekong River Basin is changing rapidly due to accelerating water infrastructure development (hydropower, irrigation, flood control, and water supply) and climate change, bringing considerable modifications to the flood pulse of the Tonle Sap Lake in the foreseeable future. This paper presents research conducted to determine how the historical flooding regime, together with human action, influenced landscape patterns of habitats in the Tonle Sap Lake, and how these habitats might shift as a result of hydrological changes. Maps of water depth, annual flood duration, and flood frequency were created for recent historical hydrological conditions and for simulated future scenarios of water infrastructure development and climate change. Relationships were then established between the historical flood maps and land cover, and these were subsequently applied to assess potential changes to habitat cover in future decades. Five habitat groups were clearly distinguishable based on flood regime, physiognomic patterns, and human activity: (1) Open water, flooded for 12 months in an average hydrological year; (2) Gallery forest, with flood duration of 9 months annually; (3) Seasonally flooded habitats, flooded 5-8 months and dominated by shrublands and grasslands; (4) transitional habitats, flooded 1-5 months and dominated by abandoned agricultural fields, receding rice/floating rice, and lowland grasslands; and (5) Rainfed habitats, flooded up to 1 month and consisting mainly of wet season rice fields and village crops. It was found that water infrastructure development could increase the area of open water (+18 to +21%) and the area of rainfed habitats (+10 to +14%), while reducing the area covered with seasonally flooded habitats (-13 to -22%) and gallery forest (-75 to -83%). Habitat cover shifts as a

  4. The diagnostic significance of thickening of extrapleural fat

    International Nuclear Information System (INIS)

    Zhao Weifeng; Pan Jixu; Liu Fugeng

    1999-01-01

    Objective: To determine the role of thickening of extrapleural fat (EPF) in the diagnosis of pleural and/or para-pleural lung disease. Methods: 166 patients with pleural and/or para-pleural lung disease were studied by CT. Any EPF demonstrated would be near the diseased area, its thickness, and CT number were measured and compared with the CT number of the subcutaneous fat. The anterior thoracic wall of 50 normal subjects were also observed for the normal EPF appearances. Results: In normal group 28(56%) cases showed EPF, its thickness being 1-2 mm. In patient group 106(63.9%) cases showed EPF, among these 88 cases showed the thickness of EPF>2 mm. The mean thickness of the thickened EPF was 5.6 mm. Its mean CT number was -90.3 HU. Higher than that of the subcutaneous fat, the latter's mean CT number was -116.8HU. In this group, the causative disease included radiation lung injury, empyema, chronic lung tuberculosis, thickened and calcified pleura, calcified tuberculoma and lung injury, empyema, chronic lung tuberculosis, thickened and calcified pleura, calcified tuberculoma and lung fibrosis. In the remaining 18 cases, the thickness of EPF was less than 2 mm. No EPF was demonstrated in the other 60 patients. In the latter group the disease included carcinomatous effusion, pleural transudates, peripheral lung caner, thickened pleura, pleural metastasis, tuberculous pleural effusion, acute pneumonia and pleural fibroma. Conclusions: The thickening of EPF was mostly seen in chronic inflammatory and tuberculous diseases. This sign was helpful in differential diagnosis of pleural and/or parapleural lung disease

  5. Flood risk management in Flanders: from flood risk objectives to appropriate measures through state assessment

    Directory of Open Access Journals (Sweden)

    Verbeke Sven

    2016-01-01

    Full Text Available In compliance with the EU Flood Directive to reduce flood risk, flood risk management objectives are indispensable for the delineation of necessary measures. In Flanders, flood risk management objectives are part of the environmental objectives which are judicially integrated by the Decree on Integrated Water Policy. Appropriate objectives were derived by supporting studies and extensive consultation on a local, regional and policy level. Under a general flood risk objective sub-objectives are formulated for different aspects: water management and safety, shipping, ecology, and water supply. By developing a risk matrix, it is possible to assess the current state of flood risk and to judge where action is needed to decrease the risk. Three different states of flood risk are distinguished: a acceptable risk, where no action is needed, b intermediate risk where the risk should be reduced by cost efficient actions, and c unacceptable risk, where action is necessary. For each particular aspect, the severity of the consequences of flooding is assessed by quantifiable indicators, such as economic risk, people at risk and ecological flood tolerance. The framework also allows evaluating the effects of the implemented measures and the autonomous development such as climate change and land use change. This approach gives a quantifiable assessment of state, and enables a prioritization of flood risk measures for the reduction of flood risk in a cost efficient and sustainable way.

  6. REMEDIATION OF LEON WATER FLOOD, BUTLER COUNTY, KANSAS

    Energy Technology Data Exchange (ETDEWEB)

    M.L. Korphage; Kelly Kindscher; Bruce G. Langhus

    2001-11-26

    The Leon Water Flood site has undergone one season of soil amendments and growth of specialized plants meant to colonize and accelerate the remediation of the salt-impacted site. The researchers characterized the impacted soil as to chemistry, added soil amendments, and planted several species of seedlings, and seeded the scarred areas. After the first growing season, the surface soil was again characterized and groundcover was also characterized. While plant growth was quite meager across the area, soil chemistry did improve over most of the two scars.

  7. Water mobility key to improved floods

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B

    1967-03-01

    The use of polymer floods in the U.S. and Canada is discussed. A 2-yr laboratory study conducted by Dow Chemical Co. early in the life of polymer flooding showed that polymers improved the mobility ratio without damage to porosity or permeability of reservoir rock. A pilot test was made in the Niagara Field, Ky., and the results of this pilot compared to the performance of a waterflood that had been operating in this field for about 4 yr. The results showed that polymer flooding was superior to conventional waterflooding and had a distinct behavior. Another pilot flood conducted by Dow in the Albrecht Field, Starr County, Tex., showed similar results. Union Oil Co. of California also conducted pilot tests in 4 of their California reservoirs. Additional recoverable reserves resulting from polymer flooding for 2 of these reservoirs were estimated at 95,000 and 70,000 bbl. The other 2 tests were not as satisfactory, but this behavior is thought to be the result of not using enough polymer. Two other projects discussed are the NE. Hallsville Field unit in East Texas and the Squirrel sand reservoir in Woodson County, Kans., which were conducted by Hunt Oil Co. and Brazos Oil and Gas Co., respectively.

  8. Micromorphology and systematic distribution of pit membrane thickenings in Oleaceae: Tori and pseudo-tori

    NARCIS (Netherlands)

    Rabaey, D.; Huysmans, S.; Lens, F.; Smets, E.; Jansen, S.

    2008-01-01

    Recent studies on the functional significance of pit membranes in water conducting cells have renewed general interest in their micromorphology. At least two types of pit membrane thickenings have been described in angiosperm families, i.e. genuine tori and pseudo-tori. This study explores the

  9. Constructing risks – Internalisation of flood risks in the flood risk management plan

    NARCIS (Netherlands)

    Roos, Matthijs; Hartmann, T.; Spit, T.J.M.; Johann, Georg

    Traditional flood protection methods have focused efforts on different measures to keep water out of floodplains. However, the European Flood Directive challenges this paradigm (Hartmann and Driessen, 2013). Accordingly, flood risk management plans should incorporate measures brought about by

  10. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    Science.gov (United States)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  11. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    Science.gov (United States)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  12. Modelling of the steam-water-countercurrent flow in the rewetting and flooding phase after loss-of-coolant accidents in pressurized water reactors

    International Nuclear Information System (INIS)

    Curca-Tivig, F.

    1990-01-01

    A new interphase momentum exchange model has been developed to simulate the Refill- Reflood Phase after LOCAs. Special phenomena of steam/water- countercurrent flow - like limitation or onset of downward-watee penetration - have been modelled and integrated into a flooding model. The interphase momentum exchange model interconnected with the flooding model has been implemented into the advanced system code RELAP5/MOD1. The new version of this code can now be utilized to predict the hot leg emergency-core-cooling (ECC) injection for German PWRs. The interfacial momentum transfer model developed includes the interphase frictional drag, the force due to virtual mass and the momenta due to interphase mass transfer. The modelling of the interfacial shear or drag accounts for the effects of phase and velocity profiles. The flooding model predicts countercurrent-flow limitation, onset of water penetration and partial delivery. The flooding correlation specifies the maximum down flow liquid velocity in case of countercurrent flow through flow restrictions for a given vapor velocity. (orig./HP) [de

  13. Experimental investigation of flooding in air-water counter-current flow with a vertical adiabatic multi-rod bundle

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Hho Jung; Cha, Jong Hee; Cho, Sung Jae; Chun, Moon Hyun

    1991-01-01

    The process of flooding phenomenon in a vertical adiabatic 3 x 3 tube bundle flow channel has been studied experimentally. A series of tests was performed, using three types of tube bundle differing only in the number of spacer grids attached, to investigate the effects of spacer grids and multi-flow channel interactions on the air-water counter-current flow limitations. Experimentally determined flooding points at various water film Reynolds numbers for three different test sections are presented in graphical form and compared with entrainment criterion for co-current flow and instability criteria. In addition, empirical flooding correlations of the Kutateladze type are obtained for each type of test section using liquid penetration data

  14. Interpreting the impact of flood forecasts by combining policy analysis studies and flood defence

    Directory of Open Access Journals (Sweden)

    Slomp Robert

    2016-01-01

    Full Text Available Flood forecasting is necessary to save lives and reduce damages. Reducing damages is important to save livelihoods and to reduce the recovery time. Flood alerts should contain expected time of the event, location and extent of the event. A flood alert is not only one message but part of a rehearsed flow of information using multiple canals. First people have to accept the fact that there might be a threat and what the threat is about. People need a reference to understand the situation and be aware of possible measures they can take to assure their own safety and reduce damages. Information to the general public has to be consistent with the information used by emergency services and has to be very clear about consequences and context of possible measures (as shelter in place or preventive evacuation. Emergency services should monitor how the public is responding to adapt their communication en operation during a crisis. Flood warnings and emergency services are often coordinated by different government organisations. This is an extra handicap for having consistent information out on time for people to use. In an information based society, where everyone has twitter, email and a camera, public organisations may have to trust the public more and send out the correct information as it comes in. In the Netherlands Rijkswaterstaat, the National Water Authority and the National Public Works Department, is responsible for or involved in forecasting in case of floods, policy studies on flood risk, policy studies on maintenance, assessment and design of flood defences, elaborating rules and regulations for flood defences, advice on crisis management to the national government and for maintaining the main infrastructure in the Netherlands (high ways and water ways. The Water Management Center in the Netherlands (WMCN has developed a number of models to provide flood forecasts. WMCN is run for and by all managers of flood defences and is hosted by

  15. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis.

    Directory of Open Access Journals (Sweden)

    Cheryl A Arcinue

    Full Text Available To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula compared with age-matched HIV-negative controls.Cohort of patients with known HIV under CART (combination Antiretroviral Therapy treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT to assess retinal layers and retinal thickness.Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior, the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308-6,872 cones/mm2. A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea. We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer was also significantly thickened in all the different locations scanned compared with HIV-negative controls.Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.

  16. Case studies of extended model-based flood forecasting: prediction of dike strength and flood impacts

    Science.gov (United States)

    Stuparu, Dana; Bachmann, Daniel; Bogaard, Tom; Twigt, Daniel; Verkade, Jan; de Bruijn, Karin; de Leeuw, Annemargreet

    2017-04-01

    Flood forecasts, warning and emergency response are important components in flood risk management. Most flood forecasting systems use models to translate weather predictions to forecasted discharges or water levels. However, this information is often not sufficient for real time decisions. A sound understanding of the reliability of embankments and flood dynamics is needed to react timely and reduce the negative effects of the flood. Where are the weak points in the dike system? When, how much and where the water will flow? When and where is the greatest impact expected? Model-based flood impact forecasting tries to answer these questions by adding new dimensions to the existing forecasting systems by providing forecasted information about: (a) the dike strength during the event (reliability), (b) the flood extent in case of an overflow or a dike failure (flood spread) and (c) the assets at risk (impacts). This work presents three study-cases in which such a set-up is applied. Special features are highlighted. Forecasting of dike strength. The first study-case focusses on the forecast of dike strength in the Netherlands for the river Rhine branches Waal, Nederrijn and IJssel. A so-called reliability transformation is used to translate the predicted water levels at selected dike sections into failure probabilities during a flood event. The reliability of a dike section is defined by fragility curves - a summary of the dike strength conditional to the water level. The reliability information enhances the emergency management and inspections of embankments. Ensemble forecasting. The second study-case shows the setup of a flood impact forecasting system in Dumfries, Scotland. The existing forecasting system is extended with a 2D flood spreading model in combination with the Delft-FIAT impact model. Ensemble forecasts are used to make use of the uncertainty in the precipitation forecasts, which is useful to quantify the certainty of a forecasted flood event. From global

  17. Petroleum recovery process utilizing formaldehyde-sulfite-reacted polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-09-25

    Micellar slugs followed by thickened water floods were injected into Berea cores (20.4 percent porosity, 398.4 md permeability, see Patent 3,692,113 for pretreatment) for enhanced oil recovery. About 61.1 percent residual oil was produced when the polymer in the thickened water was sulfomethylated hydrolyzed polyacrylamide. However, use of the conventional unhydrolyzed polyacrylamide recovered only 27.7 percent residual oil.

  18. Studies of food thickeners in Nigeria for contamination by ...

    African Journals Online (AJOL)

    Jane

    2011-08-10

    Aug 10, 2011 ... Food thickeners or thickening agents are used in food to absorb the fluid of the ... used in beverages, gravies, sauces and stews. The use of food ... Furthermore, it has also not been possible to develop effective management.

  19. Integration of thickener underflow into thermal dryer circuit. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, A.W.; Breault, R.W.

    1998-12-31

    A large number of coal preparation plants in the United States are troubled with coal fines and associated plant operation problems. As part of their process, these plants use thermal dryers for producing product coal, cyclones for first-stage recovery of coal fines, and wet scrubbers for the second-stage removal of coal fines carry-over from the dryer exhaust gas. The first challenge for these plants is to recover the clean ultra-fine coal captured in the scrubbers rather than to dispose of it in settling ponds. The second challenge is to mitigate the over-dry fine coal dusting problems in the dryer product. Prior to the completion of this program, the difficulties of the first challenge involving the recovery and use of fine clean coal from the thermal dryer scrubber effluent had not been solved. The second challenge, controlling fine coal dusting, was previously met by applying a solution of surfactants and process water to the over-dry coal fraction. As a result of the demonstration provided by the performance of this program, the implementation of a simple process improvement, involving the use of a thickener in combination with a belt press, simultaneously solved both challenges: the de-dusting and the dryer scrubber effluent recovery issues. The objective of this project was to: (1) Use a clean coal thickener with a squeeze belt press to recover the ultra-fine coal in dryer scrubber effluent; (2) Demonstrate that the coal-water mixture (CWM) produced from scrubber sludge of a thermal dryer can be used as a dust suppressant. The thickener/belt press system has increased the production of JWRI Mine Number 4 by approximately 0.7%. This production increase was accomplished by recovering and re-using 3 metric tons/hr (3.3 tons/hr) of coal fines that were previously sent to holding ponds, returning this as a 50% CWM to de-dust the 430 metric tons/hr (470 tons/hr) of existing dryer production.

  20. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    Science.gov (United States)

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve

  1. A web-based Tamsui River flood early-warning system with correction of real-time water stage using monitoring data

    Science.gov (United States)

    Liao, H. Y.; Lin, Y. J.; Chang, H. K.; Shang, R. K.; Kuo, H. C.; Lai, J. S.; Tan, Y. C.

    2017-12-01

    Taiwan encounters heavy rainfalls frequently. There are three to four typhoons striking Taiwan every year. To provide lead time for reducing flood damage, this study attempt to build a flood early-warning system (FEWS) in Tanshui River using time series correction techniques. The predicted rainfall is used as the input for the rainfall-runoff model. Then, the discharges calculated by the rainfall-runoff model is converted to the 1-D river routing model. The 1-D river routing model will output the simulating water stages in 487 cross sections for the future 48-hr. The downstream water stage at the estuary in 1-D river routing model is provided by storm surge simulation. Next, the water stages of 487 cross sections are corrected by time series model such as autoregressive (AR) model using real-time water stage measurements to improve the predicted accuracy. The results of simulated water stages are displayed on a web-based platform. In addition, the models can be performed remotely by any users with web browsers through a user interface. The on-line video surveillance images, real-time monitoring water stages, and rainfalls can also be shown on this platform. If the simulated water stage exceeds the embankments of Tanshui River, the alerting lights of FEWS will be flashing on the screen. This platform runs periodically and automatically to generate the simulation graphic data of flood water stages for flood disaster prevention and decision making.

  2. Monitoring the variability of precipitable water vapor over the Klang Valley, Malaysia during flash flood

    International Nuclear Information System (INIS)

    Suparta, W; Rahman, R; Singh, M S J

    2014-01-01

    Klang Valley is a focal area of Malaysian economic and business activities where the local weather condition is very important to maintain its reputation. Heavy rainfalls for more than an hour were reported up to 40 mm in September 2013 and 35 mm in October 2013. Both events are monitored as the first and second cases of flash flood, respectively. Based on these cases, we investigate the water vapor, rainfall, surface meteorological data (surface pressure, relative humidity, and temperature) and river water level. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) is used to indicate the impact of flash flood on the rainfall. We found that PWV was dropped 4 mm in 2 hours before rainfall reached to 40 mm and dropped 3 mm in 3 hours before 35 mm of rainfall in respective cases. Variation of PWV was higher in September case compared to October case of about 2 mm. We suggest the rainfall phenomena can disturb the GPS propagation and therefore, the impact of PWV before, during and after the flash flood event at three selected GPS stations in Klang Valley is investigated for possible mitigation in the future

  3. Aquatic chemistry of flood events

    Science.gov (United States)

    Klavins, Maris; Rodinov, Valery

    2015-04-01

    During flood events a major discharge of water and dissolved substances happens. However flood waters very much differs from water composition during low-water events. Aquatic chemistry of flood waters also is of importance at the calculation of loadings as well as they might have major impact on water quality in receiving water bodies (lakes, coastal waters and seas). Further flood regime of rivers is subjected to changes due to climate change and growing impact of human activities. The aim of this study is to analyse water chemical composition changes during flood events in respect to low water periods, character of high-water events and characteristics of the corresponding basin. Within this study, the concentrations of major dissolved substances in the major rivers of Latvia have been studied using monitoring data as well as field studies during high water/ low water events. As territories of studies flows of substances in river basins/subbasins with different land-use character and different anthropogenic impacts has been studied to calculate export values depending on the land-use character. Impact of relations between dissolved substances and relations in respect to budgets has been calculated. The dynamics of DOC, nutrient and major dissolved substance flows depending on landuse pattern and soil properties in Latvia has been described, including emissions by industrial and agricultural production. In these changes evidently climate change signals can be identified. The water chemistry of a large number of rivers during flood events has been determined and the possible impact of water chemical composition on DOC and nutrient flows has been evaluated. Long-term changes (1977-2013) of concentrations of dissolved substances do not follow linear trends but rather show oscillating patterns, indicating impact of natural factors, e.g. changing hydrological and climatic conditions. There is a positive correlation between content of inert dissolved substances and

  4. The Measurement of Thickened Liquids Used for the Management of Dysphagia

    Science.gov (United States)

    Nicholson, T. M.; Torley, P. J.; Cichero, J. A. Y.

    2008-07-01

    Dysphagia is a condition where a person has difficulty in swallowing. This can lead to reduced dietary intake, dehydration and malnutrition and also aspiration of material into the lungs and asphyxiation. Using thickened fluids slow the act of swallowing and by doing so enhance safe swallowing. A common method of thickening drinks is to use a powdered thickener, but this can lead to problems in ensuring that the consistency of the degree of thickening appropriate to an individual is maintained by those making up the fiuids. There is also no assurance that the thickness of thickened liquids is consistent across commercial manufacturers. In this field viscosity is typically measured using a Line Spread Test, with the resulting viscosities being described by such terms as nectar- honey- or pudding-thick. This test is prone to many variations in operating conditions and so cannot provide accurate reproducible data. In this paper we have used conventional rheology (dynamic oscillatory using a couette cell) to provide quantitative measurement of the development in thickness of various beverages as a function of time. It was found fruit juices typically required less thickener and milk more to achieve the same thickness, but that the degree of thickening varied non-linearly with addition level.

  5. Geochemistry and flooding as determining factors of plant species composition in Dutch winter-flooded riverine grasslands

    NARCIS (Netherlands)

    Beumer, V.; Wirdum, G. van; Beltman, B.; Griffioen, J.; Grootjans, A.P.; Verhoeven, J.T.A.

    2008-01-01

    Dutch water policy aims for more frequent, controlled flooding of river valley floodplains to avoid unwanted flooding elsewhere; in anticipation of increased flooding risks resulting from climate changes. Controlled flooding usually takes place in winter in parts of the valleys which had not been

  6. Numerical simulation of flood barriers

    Science.gov (United States)

    Srb, Pavel; Petrů, Michal; Kulhavý, Petr

    This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.

  7. Comparison of Strategies for Climate Change Adaptation of Water Supply and Flood Control Reservoirs

    Science.gov (United States)

    Ng, T. L.; Yang, P.; Bhushan, R.

    2016-12-01

    With climate change, streamflows are expected to become more fluctuating, with more frequent and intense floods and droughts. This complicates reservoir operation, which is highly sensitive to inflow variability. We make a comparative evaluation of three strategies for adapting reservoirs to climate-induced shifts in streamflow patterns. Specifically, we examine the effectiveness of (i) expanding the capacities of reservoirs by way of new off-stream reservoirs, (ii) introducing wastewater reclamation to augment supplies, and (iii) improving real-time streamflow forecasts for more optimal decision-making. The first two are hard strategies involving major infrastructure modifications, while the third a soft strategy entailing adjusting the system operation. A comprehensive side-by-side comparison of the three strategies is as yet lacking in the literature despite the many past studies investigating the strategies individually. To this end, we developed an adaptive forward-looking linear program that solves to yield the optimal decisions for the current time as a function of an ensemble forecast of future streamflows. Solving the model repeatedly on a rolling basis with regular updating of the streamflow forecast simulates the system behavior over the entire operating horizon. Results are generated for two hypothetical water supply and flood control reservoirs of differing inflows and demands. Preliminary findings suggest that of the three strategies, improving streamflow forecasts to be most effective in mitigating the effects of climate change. We also found that, in average terms, both additional reservoir capacity and wastewater reclamation have potential to reduce water shortage and downstream flooding. However, in the worst case, the potential of the former to reduce water shortage is limited, and similarly so the potential of the latter to reduce downstream flooding.

  8. Floods and climate: emerging perspectives for flood risk assessment and management

    DEFF Research Database (Denmark)

    Merz, B.; Aerts, J.; Arnbjerg-Nielsen, Karsten

    2014-01-01

    context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical......, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand......Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction...

  9. Significance of appendiceal thickening in association with typhlitis in pediatric oncology patients

    International Nuclear Information System (INIS)

    McCarville, M.B.; Thompson, J.; Adelman, C.S.; Lee, M.O.; Li, C.; Alsammarae, D.; Rao, B.N.; May, M.V.; Jones, S.C.; Sandlund, J.T.

    2004-01-01

    Background: The management of pediatric oncology patients with imaging evidence of appendiceal thickening is complex because they are generally poor surgical candidates and often have confounding clinical findings. Objective: We sought to determine the significance of appendiceal thickening in pediatric oncology patients who also had typhlitis. Specifically, we evaluated the impact of this finding on the duration of typhlitis, its clinical management, and outcome. Materials and methods: From a previous review of the management of typhlitis in 90 children with cancer at our institution, we identified 4 with imaging evidence of appendiceal thickening. We compared colonic wall measurements, duration of typhlitis symptoms, management, and outcome of patients with appendiceal thickening and typhlitis to patients with typhlitis alone. Results: There was no significant difference in duration of typhlitis symptoms between patients with typhlitis only (15.6 ± 1.2 days) and those with typhlitis and appendiceal thickening (14.5 ± 5.8 days; P = 0.9). Two patients with appendiceal thickening required surgical treatment for ischemic bowel, and two were treated medically. Only one patient in the typhlitis without appendiceal thickening group required surgical intervention. There were no deaths in children with appendiceal thickening; two patients died of complications of typhlitis alone. (orig.)

  10. The Effect of Temperature and Injection Rate during Water Flooding Using Carbonate Core Samples: An Experimental Approach

    Directory of Open Access Journals (Sweden)

    Yaser Ahmadi

    2016-10-01

    Full Text Available In many reservoirs, after water flooding, a large volume of oil is still left behind. Hot water injection is the most basic type of thermal recovery which increase recovery by improved sweep efficiency and thermal expansion of crude.In the present work, the effects of injection rate and the temperature of the injected water were surveyed by using core flooding apparatus. Water flooding was performed at different rates (0.2, 0.3, and 0.4 cc/min and temperatures (20 and 90 °C, and the reservoir temperature was about 63 °C. Oil recovery during hot water injection was more than water injection. Moreover, it was concluded that at injection rates of 0.2, 0.3, and 0.4 cc/min breakthrough time in hot water injection occurred 10 min later in comparison to water injection. The results showed that higher oil recovery and longer breakthrough time were obtained as a result of reducing injection rate. In the first 50 minutes, the oil recovery at injection rates of 0.2, 0.3 and 0.4 cc/min was 27.5, 34, and 46% respectively. It was found that at the beginning of injection, thermal and non-thermal injection recovery factors are approximately equal. Moreover, according to the results, recovery factor at the lowest rate in hot water (T=90 °C and q=0.2 cc/min is the best condition to obtain the highest recovery.

  11. Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils

    Directory of Open Access Journals (Sweden)

    Le Qi

    2018-05-01

    Full Text Available In this study, we investigated the greenhouse gas emission under different application of biochar in the conditions of continuous flooding and water-saving irrigation in paddy fields, whereas, plant and soil carbon sequestration were considered in the calculation of net greenhouse gas emissions. The emission rates of methane (CH4, carbon dioxide (CO2, and nitrous oxide (N2O gases were simultaneously monitored once every 7–10 days using the closed-chamber method. As a whole, the net greenhouse gas emission in the water-saving irrigation was more than that of the continuous flooding irrigation conditions. Compared with the water-saving irrigation, the continuous flooding irrigation significantly increased the CH4 in the control (CK and chemical fertilizer treatments (NPK. The CO2 emissions increased in each treatment of the water-saving irrigation condition, especially in the chemical fertilizer treatments (NPKFW. Similarly, the soil N2O emission was very sensitive to the water-saving irrigation condition. An interesting finding is that the biochar application in soils cut down the soil N2O emission more significantly than NPKFW in the water-saving irrigation condition while the effect of biochar increased under the continuous flooding irrigation condition.

  12. Design flood hydrographs from the relationship between flood peak and volume

    Directory of Open Access Journals (Sweden)

    L. Mediero

    2010-12-01

    Full Text Available Hydrological frequency analyses are usually focused on flood peaks. Flood volumes and durations have not been studied as extensively, although there are many practical situations, such as when designing a dam, in which the full hydrograph is of interest. A flood hydrograph may be described by a multivariate function of the peak, volume and duration. Most standard bivariate and trivariate functions do not produce univariate three-parameter functions as marginal distributions, however, three-parameter functions are required to fit highly skewed data, such as flood peak and flood volume series. In this paper, the relationship between flood peak and hydrograph volume is analysed to overcome this problem. A Monte Carlo experiment was conducted to generate an ensemble of hydrographs that maintain the statistical properties of marginal distributions of the peaks, volumes and durations. This ensemble can be applied to determine the Design Flood Hydrograph (DFH for a reservoir, which is not a unique hydrograph, but rather a curve in the peak-volume space. All hydrographs on that curve have the same return period, which can be understood as the inverse of the probability to exceed a certain water level in the reservoir in any given year. The procedure can also be applied to design the length of the spillway crest in terms of the risk of exceeding a given water level in the reservoir.

  13. Flood Risk and Flood hazard maps - Visualisation of hydrological risks

    International Nuclear Information System (INIS)

    Spachinger, Karl; Dorner, Wolfgang; Metzka, Rudolf; Serrhini, Kamal; Fuchs, Sven

    2008-01-01

    Hydrological models are an important basis of flood forecasting and early warning systems. They provide significant data on hydrological risks. In combination with other modelling techniques, such as hydrodynamic models, they can be used to assess the extent and impact of hydrological events. The new European Flood Directive forces all member states to evaluate flood risk on a catchment scale, to compile maps of flood hazard and flood risk for prone areas, and to inform on a local level about these risks. Flood hazard and flood risk maps are important tools to communicate flood risk to different target groups. They provide compiled information to relevant public bodies such as water management authorities, municipalities, or civil protection agencies, but also to the broader public. For almost each section of a river basin, run-off and water levels can be defined based on the likelihood of annual recurrence, using a combination of hydrological and hydrodynamic models, supplemented by an analysis of historical records and mappings. In combination with data related to the vulnerability of a region risk maps can be derived. The project RISKCATCH addressed these issues of hydrological risk and vulnerability assessment focusing on the flood risk management process. Flood hazard maps and flood risk maps were compiled for Austrian and German test sites taking into account existing national and international guidelines. These maps were evaluated by eye-tracking using experimental graphic semiology. Sets of small-scale as well as large-scale risk maps were presented to test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented risk communication. A cognitive survey asking for negative and positive aspects and complexity of each single map complemented the experimental graphic semiology. The results indicate how risk maps can be improved to fit the needs of different user

  14. Estimating design flood and HEC-RAS modelling approach for flood analysis in Bojonegoro city

    Science.gov (United States)

    Prastica, R. M. S.; Maitri, C.; Hermawan, A.; Nugroho, P. C.; Sutjiningsih, D.; Anggraheni, E.

    2018-03-01

    Bojonegoro faces flood every year with less advanced prevention development. Bojonegoro city development could not peak because the flood results material losses. It affects every sectors in Bojonegoro: education, politics, economy, social, and infrastructure development. This research aims to analyse and to ensure that river capacity has high probability to be the main factor of flood in Bojonegoro. Flood discharge analysis uses Nakayasu synthetic unit hydrograph for period of 5 years, 10 years, 25 years, 50 years, and 100 years. They would be compared to the water maximum capacity that could be loaded by downstream part of Bengawan Solo River in Bojonegoro. According to analysis result, Bengawan Solo River in Bojonegoro could not able to load flood discharges. Another method used is HEC-RAS analysis. The conclusion that shown by HEC-RAS analysis has the same view. It could be observed that flood water loading is more than full bank capacity elevation in the river. To conclude, the main factor that should be noticed by government to solve flood problem is river capacity.

  15. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    Science.gov (United States)

    Luke, Adam; Sanders, Brett F.; Goodrich, Kristen A.; Feldman, David L.; Boudreau, Danielle; Eguiarte, Ana; Serrano, Kimberly; Reyes, Abigail; Schubert, Jochen E.; AghaKouchak, Amir; Basolo, Victoria; Matthew, Richard A.

    2018-04-01

    Flood hazard mapping in the United States (US) is deeply tied to the National Flood Insurance Program (NFIP). Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM) such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1) legends that frame flood intensity both qualitatively and quantitatively, and (2) flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1) standing water depths following the flood, (2) the erosive potential of flowing water, and (3) pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating pluvial flood hazards

  16. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)

    Science.gov (United States)

    Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela

    2017-04-01

    Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.

  17. Economic impacts of urban flooding in South Florida: Potential consequences of managing groundwater to prevent salt water intrusion.

    Science.gov (United States)

    Czajkowski, Jeffrey; Engel, Vic; Martinez, Chris; Mirchi, Ali; Watkins, David; Sukop, Michael C; Hughes, Joseph D

    2018-04-15

    High-value urban zones in coastal South Florida are considered particularly vulnerable to salt water intrusion into the groundwater-based, public water supplies caused by sea level rise (SLR) in combination with the low topography, existing high water table, and permeable karst substrate. Managers in the region closely regulate water depths in the extensive South Florida canal network to control closely coupled groundwater levels and thereby reduce the risk of saltwater intrusion into the karst aquifer. Potential SLR adaptation strategies developed by local managers suggest canal and groundwater levels may have to be increased over time to prevent the increased salt water intrusion risk to groundwater resources. However, higher canal and groundwater levels cause the loss of unsaturated zone storage and lead to an increased risk of inland flooding when the recharge from rainfall exceeds the capacity of the unsaturated zone to absorb it and the water table reaches the surface. Consequently, higher canal and groundwater levels are also associated with increased risk of economic losses, especially during the annual wet seasons. To help water managers and urban planners in this region better understand this trade-off, this study models the relationships between flood insurance claims and groundwater levels in Miami-Dade County. Via regression analyses, we relate the incurred number of monthly flood claims in 16 Miami-Dade County watersheds to monthly groundwater levels over the period from 1996 to 2010. We utilize these estimated statistical relationships to further illustrate various monthly flood loss scenarios that could plausibly result, thereby providing an economic quantification of a "too much water" trade-off. Importantly, this understanding is the first of its kind in South Florida and is exceedingly useful for regional-scale hydro-economic optimization models analyzing trade-offs associated with high water levels. Copyright © 2017 Elsevier B.V. All rights

  18. Rheometry-PIV of shear-thickening wormlike micelles.

    Science.gov (United States)

    Marín-Santibañez, Benjamín M; Pérez-Gonzalez, José; de Vargas, Lourdes; Rodríguez-Gonzalez, Francisco; Huelsz, Guadalupe

    2006-04-25

    The shear-thickening behavior of an equimolar semidilute aqueous solution of 40 mM/L cetylpyridinium chloride and sodium salicylate was studied in this work by using a combined method of rheometry and particle image velocimetry (PIV). Experiments were conducted at 27.5 degrees C with Couette, vane-bob, and capillary rheometers in order to explore a wide shear stress range as well as the effect of boundary conditions and time of flow on the creation and destruction of shear-induced structures (SIS). The use of the combined method of capillary rheometry with PIV allowed the detection of fast spatial and temporal variations in the flow kinematics, which are related to the shear-thickening behavior and the dynamics of the SIS but are not distinguished by pure rheometrical measurements. A rich-in-details flow curve was found for this solution, which includes five different regimes. Namely, at very low shear rates a Newtonian behavior was found, followed by a shear thinning one in the second regime. In the third, shear banding was observed, which served as a precursor of the SIS and shear-thickening. The fourth and fifth regimes in the flow curve were separated by a spurtlike behavior, and they clearly evidenced the existence of shear-thickening accompanied by stick-slip oscillations at the wall of the rheometer, which subsequently produced variations in the shear rate under shear stress controlled flow. Such a stick-slip phenomenon prevailed up to the highest shear stresses used in this work and was reflected in asymmetric velocity profiles with spatial and temporal variations linked to the dynamics of creation and breakage of the SIS. The presence of apparent slip at the wall of the rheometer provides an energy release mechanism which leads to breakage of the SIS, followed by their further reformation during the stick part of the cycles. In addition, PIV measurements allowed the detection of apparent slip at the wall, as well as mechanical failures in the bulk of the

  19. Understanding flood-induced water chemistry variability extracting temporal patterns with the LDA method

    Science.gov (United States)

    Aubert, A. H.; Tavenard, R.; Emonet, R.; De Lavenne, A.; Malinowski, S.; Guyet, T.; Quiniou, R.; Odobez, J.; Merot, P.; Gascuel-odoux, C.

    2013-12-01

    Studying floods has been a major issue in hydrological research for years, both in quantitative and qualitative hydrology. Stream chemistry is a mix of solutes, often used as tracers, as they originate from various sources in the catchment and reach the stream by various flow pathways. Previous studies (for instance (1)) hypothesized that stream chemistry reaction to a rainfall event is not unique but varies seasonally, and according to the yearly meteorological conditions. Identifying a typology of flood temporal chemical patterns is a way to better understand catchment processes at the flood and seasonal time scale. We applied a probabilistic model (Latent Dirichlet Allocation or LDA (2)) mining recurrent sequential patterns from a dataset of floods. A set of 472 floods was automatically extracted from a daily 12-year long record of nitrate, dissolved organic carbon, sulfate and chloride concentrations. Rainfall, discharge, water table depth and temperature are also considered. Data comes from a long-term hydrological observatory (AgrHys, western France) located at Kervidy-Naizin. From each flood, a document has been generated that is made of a set of "hydrological words". Each hydrological word corresponds to a measurement: it is a triplet made of the considered variable, the time at which the measurement is made (relative to the beginning of the flood), and its magnitude (that can be low, medium or high). The documents and the number of pattern to be mined are used as input data to the LDA algorithm. LDA relies on spotting co-occurrences (as an alternative to the more traditional study of correlation) between words that appear within the flood documents. It has two nice properties that are its ability to easily deal with missing data and its additive property that allows a document to be seen as a mixture of several flood patterns. The output of LDA is a set of patterns easily represented in graphics. These patterns correspond to typical reactions to rainfall

  20. Impact of the Three-Gorges Dam and water transfer project on Changjiang floods

    Science.gov (United States)

    Nakayama, Tadanobu; Shankman, David

    2013-01-01

    Increasing frequency of severe floods on the middle and lower Changjiang (Yangtze) River during the past few decades can be attributed to both abnormal monsoon rainfall and landscape changes that include extensive deforestation affecting river sedimentation, and shrinking lakes and levee construction that reduced the areas available for floodwater storage. The Three-Gorges Dam (TGD) and the South-to-North Water Transfer Project (SNWTP) will also affect frequency and intensity of severe floods in the Poyang Lake region of the middle Changjiang. Process-based National Integrated Catchment-based Eco-hydrology (NICE) model predicts that the TGD will increase flood risk during the early summer monsoon against the original justifications for building the dam, relating to complex river-lake-groundwater interactions. Several scenarios predict that morphological change will increase flood risk around the lake. This indicates the importance of managing both flood discharge and sediment deposition for the entire basin. Further, the authors assessed the impact of sand mining in the lake after its prohibition on the Changjiang, and clarified that alternative scenario of sand mining in lakes currently disconnected from the mainstream would reduce the flood risk to a greater extent than intensive dredging along junction channel. Because dry biomasses simulated by the model were linearly related to the Time-Integrated Normalized Difference Vegetation Index (TINDVI) estimated from satellite images, its decadal gradient during 1982-1999 showed a spatially heterogeneous distribution and generally decreasing trends beside the lakes, indicating that the increases in lake reclamation and the resultant decrease in rice productivity are closely related to the hydrologic changes. This integrated approach could help to minimize flood damage and promote better decisions addressing sustainable development.

  1. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  2. Development of flood index by characterisation of flood hydrographs

    Science.gov (United States)

    Bhattacharya, Biswa; Suman, Asadusjjaman

    2015-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  3. Public Assistance Worksheets for Damage from 2010 Floods to the East Valley Water District

    Science.gov (United States)

    East Valley Water District (EVWD) in San Bernardino, California had significant damage due to flooding in December 2010. There was a presidentially-declared disaster. EVWD applied to FEMA under the Public Assistance Grant Program.

  4. Enhanced Oil Recovery (EOR by Miscible CO2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils

    Directory of Open Access Journals (Sweden)

    Edwin A. Chukwudeme

    2009-09-01

    Full Text Available An EOR study has been performed applying miscible CO2 flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane, model oil (n-C10, SA, toluene and 0.35 wt % asphaltene and crude oil (10 wt % asphaltene obtained from the Middle East. Stearic acid (SA is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO2 flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years it is shown that there is almost no difference between the recovered oils by water and CO2, after which (> 3 years oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO2 flooding of asphaltenic oil at combined temperatures and pressures of 50 °C/90 bar and 70 °C/120 bar (no significant difference between the two cases, about 1% compared to 80 °C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO2 flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure.

  5. The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation

    Science.gov (United States)

    Hogeboom, Rick J.; Knook, Luuk; Hoekstra, Arjen Y.

    2018-03-01

    For centuries, humans have resorted to building dams to gain control over freshwater available for human consumption. Although dams and their reservoirs have made many important contributions to human development, they receive negative attention as well, because of the large amounts of water they can consume through evaporation. We estimate the blue water footprint of the world's artificial reservoirs and attribute it to the purposes hydroelectricity generation, irrigation water supply, residential and industrial water supply, flood protection, fishing and recreation, based on their economic value. We estimate that economic benefits from 2235 reservoirs included in this study amount to 265 × 109 US a year, with residential and industrial water supply and hydroelectricity generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (<1% contribution) and evaporation from the reservoir's surface area, and globally adds up to 66 × 109 m3 y-1. The largest share of this water footprint (57%) is located in non-water scarce basins and only 1% in year-round scarce basins. The primary purposes of a reservoir change with increasing water scarcity, from mainly hydroelectricity generation in non-scarce basins, to residential and industrial water supply, irrigation water supply and flood control in scarcer areas.

  6. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    Science.gov (United States)

    Minamikawa, Kazunori; Takahashi, Masayoshi; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito

    2015-08-01

    A remarkable feature of nanobubbles (pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils.

  7. HDR flood-water storage-tank modal vibration tests

    International Nuclear Information System (INIS)

    Gorman, V.W.; Thinnes, G.L.

    1983-01-01

    Modal vibration tests were conducted by EG and G Idaho on two vessels located at West Germany's Heissdampfreaktor (HDR) facility which is 25 kilometers east of Frankfurt. The tests were performed during May and June 1982 for the US Nuclear Regulatory Commission (NRC) as part of their cooperative effort with Kernforschungszentrum Karlsruhe (KfK) of West Germany. The primary purpose for performing this task was to determine modal properties (frequencies, mode shapes and associated damping ratios) in order to eventually provide guidelines for standards development by the NRC in modeling similar vessels. One of the vessels tested was a flood water storage tank (FWST) for empty, half full and full water conditions. The FWST was excited randomly with an electromagnetic shaker and by impulsive hammer blows. Excitation or input forces together with measured vessel responses were processed by a digital modal analyzer and stored on magnetic disks for subsequent evaluation

  8. Application of naturally occurring isotopes and artificial radioactive tracer for monitoring water flooding in oil field

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, I.H.; Farooq, M.; Tasneem, M.A.; Rafiq, M.; Din, U.G.; Gul, S.

    2002-03-01

    Water flooding is an important operation to enhance oil recovery. Water is injected in the oil formation under high pressure through an injection well. Movement of the injected water is needed to be traced to test the performance of water flood, investigate unexpected anomalies in flow and verify suspected geological barriers or flow channels, etc. In the present study environmental isotopes and artificial radiotracer (tritium) were used at Fimkassar Oil Field of Oil and Gas Development Company Limited (OGDCL) where water flooding was started in March 1996 in Sakessar formation to maintain its pressure and enhance the oil recovery. Environmental isotopes: /sup 18/O, /sup 2/H and /sup 3/H, and chloride contents were used to determine the breakthrough/transit time and contribution of fresh injected water. Water samples were collected from the injection well, production well and some other fields for reference indices of Sakessar Formation during June 1998 to August 1999. These samples were analyzed for the /sup 18/O, /sup 2/H and /sup 3/H, and chloride contents. Results show that the water of production well is mixture of fresh water and formation water. The fresh water contribution varied from 67% to 80%, while remaining component was the old recharged formation water. This percentage did not change significantly from the time of break-through till the last sampling which indicates good mixing in the reservoir and absence of any quick channel. The initial breakthrough time was 27 months as the fresh water contributed significantly in the first appearance of water in the production well in June 1998. Tritium tracer, which was injected in November 1998, appeared in the production well after 8 months. It show that breakthrough time decreased with the passage of time. /sup 14/C of inorganic carbon in the water in Chorgali and Sakessar Formations was also analyzed which indicates that the water is at least few thousand years old. (author)

  9. Computer-aided detection of bladder wall thickening in CT urography (CTU)

    Science.gov (United States)

    Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon Z.; Gordon, Marshall N.; Samala, Ravi K.

    2018-02-01

    We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). Bladder wall thickening is a manifestation of bladder cancer and its detection is more challenging than the detection of bladder masses. We first segmented the inner and outer bladder walls using our method that combined deep-learning convolutional neural network with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensity-projection-based method. The non-contrast region was smoothed and gray level threshold was applied to the contrast and non-contrast regions separately to extract the bladder wall and potential lesions. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify regions of wall thickening candidates. Volume-based features of the wall thickening candidates were analyzed with linear discriminant analysis (LDA) to differentiate bladder wall thickenings from false positives. A data set of 112 patients, 87 with wall thickening and 25 with normal bladders, was collected retrospectively with IRB approval, and split into independent training and test sets. Of the 57 training cases, 44 had bladder wall thickening and 13 were normal. Of the 55 test cases, 43 had wall thickening and 12 were normal. The LDA classifier was trained with the training set and evaluated with the test set. FROC analysis showed that the system achieved sensitivities of 93.2% and 88.4% for the training and test sets, respectively, at 0.5 FPs/case.

  10. Utilizing NASA Earth Observations to Enhance Flood Impact Products and Mitigation in the Lower Mekong Water Basin

    Science.gov (United States)

    Doyle, C.; Gao, M.; Spruce, J.; Bolten, J. D.; Weber, S.

    2014-12-01

    This presentation discusses results of a project to develop a near real time flood monitoring capability for the Lower Mekong Water Basin (LMB), the largest river basin in Southeast Asia and home to more than sixty million people. The region has seen rapid population growth and socio-economic development, fueling unsustainable deforestation, agricultural expansion, and stream-flow regulation. The basin supports substantial rice farming and other agrarian activities, which heavily depend upon seasonal flooding. But, floods due to typhoons and other severe weather events can result in disasters that cost millions of dollars and cause hardships to millions of people. This study uses near real time and historical Aqua and Terra MODIS 250-m resolution Normalized Difference Vegetation Index (NDVI) products to map flood and drought impact within the LMB. In doing so, NDVI change products are derived by comparing from NDVI during the wet season to a baseline NDVI from the dry season. The method records flood events, which cause drastic decreases in NDVI compared to non-flooded conditions. NDVI change product computation was automated for updating a near real-time system, as part of the Committee on Earth Observing Satellites Disaster Risk Management Observation Strategy. The system is a web-based 'Flood Dashboard that will showcase MODIS flood monitoring products, along with other flood mapping and weather data products. This flood dashboard enables end-users to view and assess a variety of geospatial data to monitor floods and flood impacts in near real-time, as well provides a platform for further data aggregation for flood prediction modeling and post-event assessment.

  11. Hydrochemical aspects of the Aue pit flooding

    International Nuclear Information System (INIS)

    Meyer, J.; Jenk, U.; Schuppan, W.; Knappik, R.

    1998-01-01

    WISMUT is conducting controlled flooding of underground mines at the Schlema-Alberoda and Poehla sites. Flooding of the Poehla mine lasted from January 1992 through September 1995. Flooding at the Niederschlema-Alberoda site began in July 1990 and will continue to approximately 2002. In mid-1998 the flood level had reached the - 420 m level which is about 1,400 m above the lowest mine level. Only ground waters with low mineral and pollutant content are used for flooding purposes. Typically, the flooding process results in elevated levels of mineral salts and of uranium, radium, arsenic, iron, and manganese in flooding waters. However, the mobilised part of these contaminants represents only a small fraction of potential concentrations contained in the surrounding rock. Geochemical and hydrochemical conditions at both mines are characterised by the presence of carbonate buffers and by neutral pH and intermediate to low Eh. Decrease due to oxidation of sulphides in the long term is unlikely. Environmentally relevant metals in flooding waters may be dissolved, colloidal, or suspended solids with uranium present as uranyl carbonate complexes. Intensity of mobilisation is primarily a function of kinetic processes. Post flooding conditions at the Poehla subsite exhibit specific hydrochemical phenomena such as extremely reduced SO 4 concentrations and an increase in Ra concentrations over time. Continued flood monitoring will provide the basis for more in-depth interpretation and prognosis of contaminant mobilisation. Current investigations focus on technically feasible in situ control of mine flooding at the Schlema-Alberoda site to reduce contaminant mobilisation. At both sites water treatment plants are either on stream or under construction. (orig.)

  12. Effects of Flood Control Strategies on Flood Resilience Under Sociohydrological Disturbances

    Science.gov (United States)

    Sung, Kyungmin; Jeong, Hanseok; Sangwan, Nikhil; Yu, David J.

    2018-04-01

    A community capacity to cope with flood hazards, or community flood resilience, emerges from the interplay of hydrological and social processes. This interplay can be significantly influenced by the flood control strategy adopted by a society, i.e., how a society sets its desired flood protection level and strives to achieve this goal. And this interplay can be further complicated by rising land-sea level differences, seasonal water level fluctuations, and economic change. But not much research has been done on how various forms of flood control strategies affect human-flood interactions under these disturbances and therefore flood resilience in the long run. The current study is an effort to address these issues by developing a conceptual model of human-flood interaction mediated by flood control strategies. Our model extends the existing model of Yu et al. (2017), who investigated the flood resilience of a community-based flood protection system in coastal Bangladesh. The major extensions made in this study are inclusions of various forms of flood control strategies (both adaptive and nonadaptive ones), the challenge of rising land-sea level differences, and various high tide level scenarios generated from modifying the statistical variances and averages. Our results show that adaptive forms of flood control strategies tend to outperform nonadaptive ones for maintaining the model community's flood protection system. Adaptive strategies that dynamically adjust target flood protection levels through close monitoring of flood damages and social memories of flood risk can help the model community deal with various disturbances.

  13. River flooding due to intense precipitation

    International Nuclear Information System (INIS)

    Lin, James C.

    2014-01-01

    River stage can rise and cause site flooding due to local intense precipitation (LIP), dam failures, snow melt in conjunction with precipitation or dam failures, etc. As part of the re-evaluation of the design basis as well as the PRA analysis of other external events, the likelihood and consequence of river flooding leading to the site flooding need to be examined more rigorously. To evaluate the effects of intense precipitation on site structures, the site watershed hydrology and pond storage are calculated. To determine if river flooding can cause damage to risk-significant systems, structures, and components (SSC), water surface elevations are analyzed. Typically, the amount and rate of the input water is determined first. For intense precipitation, the fraction of the rainfall in the watershed drainage area not infiltrated into the ground is collected in the river and contributes to the rise of river water elevation. For design basis analysis, the Probable Maximum Flood (PMF) is evaluated using the Probable Maximum Precipitation (PMP) based on the site topography/configuration. The peak runoff flow rate and water surface elevations resulting from the precipitation induced flooding can then be estimated. The runoff flow hydrograph and peak discharge flows can be developed using the synthetic hydrograph method. The standard step method can then be used to determine the water surface elevations along the river channel. Thus, the flood water from the local intense precipitation storm and excess runoff from the nearby river can be evaluated to calculate the water surface elevations, which can be compared with the station grade floor elevation to determine the effects of site flooding on risk-significant SSCs. The analysis needs to consider any possible diversion flow and the effects of changes to the site configurations. Typically, the analysis is performed based on conservative peak rainfall intensity and the assumptions of failure of the site drainage facilities

  14. The flooding incident at the Aagesta pressurized heavy water nuclear power plant

    International Nuclear Information System (INIS)

    Dahlgren, C.

    1996-03-01

    This work is an independent investigation of the consequences of the flooding incident at the Aagesta HPWR, Stockholm in May 1969. The basis for the report is an incident in which, due to short circuits in the wiring because of flooding water, the ECCS is momentarily subjected to a pressure much higher than designed for. The hypothetical scenario analyzed here is the case in which the ECCS breaks due to the high pressure. As a consequence of the break, the pressure and the water level in the reactor vessel decrease. The report is divided into three parts; First the Aagesta HPWR is described as well as the chronology of the incident, an analysis of the effects of a hypothetical break in the ECCS is then developed. The second part is a scoping analysis of the incident, modeling the pressure decrease and mass flow rate out of the break. The heat-up of the core, and the core degradation was modeled as well. The third part is formed by a RELAP5/MOD3.1 modeling of the Aagesta HPWR. 18 refs

  15. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    Directory of Open Access Journals (Sweden)

    A. Luke

    2018-04-01

    Full Text Available Flood hazard mapping in the United States (US is deeply tied to the National Flood Insurance Program (NFIP. Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1 legends that frame flood intensity both qualitatively and quantitatively, and (2 flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1 standing water depths following the flood, (2 the erosive potential of flowing water, and (3 pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating

  16. The receptor-like kinase AtVRLK1 regulates secondary cell wall thickening.

    Science.gov (United States)

    Huang, Cheng; Zhang, Rui; Gui, Jinshan; Zhong, Yu; Li, Laigeng

    2018-04-20

    During the growth and development of land plants, some specialized cells, such as tracheary elements, undergo secondary cell wall thickening. Secondary cell walls contain additional lignin, compared with primary cell walls, thus providing mechanical strength and potentially improving defenses against pathogens. However, the molecular mechanisms that initiate wall thickening are unknown. In this study, we identified an Arabidopsis thaliana leucine-rich repeat receptor-like kinase, encoded by AtVRLK1 (Vascular-Related RLK 1), that is specifically expressed in cells undergoing secondary cell wall thickening. Suppression of AtVRLK1expression resulted in a range of phenotypes that included retarded early elongation of the inflorescence stem, shorter fibers, slower root growth, and shorter flower filaments. In contrast, upregulation of AtVRLK1 led to longer fiber cells, reduced secondary cell wall thickening in fiber and vessel cells, and defects in anther dehiscence. Molecular and cellular analyses showed that downregulation of AtVRLK1 promoted secondary cell wall thickening and upregulation of AtVRLK1 enhanced cell elongation and inhibited secondary cell wall thickening. We propose that AtVRLK1 functions as a signaling component in coordinating cell elongation and cell wall thickening during growth and development. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  17. Simulation of shear thickening in attractive colloidal suspensions.

    Science.gov (United States)

    Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F

    2017-03-01

    The influence of attractive forces between particles under conditions of large particle volume fraction, ϕ, is addressed using numerical simulations which account for hydrodynamic, Brownian, conservative and frictional contact forces. The focus is on conditions for which a significant increase in the apparent viscosity at small shear rates, and possibly the development of a yield stress, is observed. The high shear rate behavior for Brownian suspensions has been shown in recent work [R. Mari, R. Seto, J. F. Morris and M. M. Denn PNAS, 2015, 112, 15326-15330] to be captured by the inclusion of pairwise forces of two forms, one a contact frictional interaction and the second a repulsive force often found in stabilized colloidal dispersions. Under such conditions, shear thickening is observed when shear stress is comparable to the sum of the Brownian stress, kT/a 3 , and a characteristic stress based on the combination of interparticle force, i.e. σ ∼ F 0 /a 2 with kT the thermal energy, F 0 the repulsive force scale and a the particle radius. At sufficiently large ϕ, this shear thickening can be very abrupt. Here it is shown that when attractive interactions are present with the noted forces, the shear thickening is obscured, as the viscosity shear thins with increasing shear rate, eventually descending from an infinite value (yield stress conditions) to a plateau at large stress; this plateau is at the same level as the large-shear rate viscosity found in the shear thickened state without attractive forces. It is shown that this behavior is consistent with prior observations in shear thickening suspensions modified to be attractive through depletion flocculation [V. Gopalakrishnan and C. F. Zukoski J. Rheol., 2004, 48, 1321-1344]. The contributions of the contact, attractive, and hydrodynamics forces to the bulk stress are presented, as are the contact networks found at different attractive strengths.

  18. Predicted high-water elevations for selected flood events at the Albert Pike Recreation Area, Ouachita National Forest

    Science.gov (United States)

    D.A. Marion

    2012-01-01

    The hydraulic characteristics are determined for the June 11, 2010, flood on the Little Missouri River at the Albert Pike Recreation Area in Arkansas. These characteristics are then used to predict the high-water elevations for the 10-, 25-, 50-, and 100-year flood events in the Loop B, C, and D Campgrounds of the recreation area. The peak discharge and related...

  19. Impact of treated wastewater reuse and floods on water quality and fish health within a water reservoir in an arid climate.

    Science.gov (United States)

    Zaibel, Inbal; Zilberg, Dina; Groisman, Ludmila; Arnon, Shai

    2016-07-15

    Treated wastewater (TWW) reuse for agricultural irrigation is a well-established approach to coping with water shortages in semi-arid and arid environments. Recently, additional uses of TWW have emerged, including streamflow augmentation and aquatic ecosystem restoration. The purpose of the current study was to evaluate the water quality and fish health, in an artificial reservoir located in an arid climate (the Yeruham Reservoir, Israel), which regularly receives TWW and sporadic winter floods. The temporal distribution of water levels, nutrients and organic micropollutants (OMPs) were measured during the years 2013-2014. OMPs were also measured in sediment and fish tissues. Finally, the status of fish health was evaluated by histopathology. Water levels and quality were mainly influenced by seasonal processes such as floods and evaporation, and not by the discharge of TWW. Out of 16 tested OMPs, estrone, carbamazepine, diclofenac and bezafibrate were found in the reservoir water, but mostly at concentrations below the predicted no-effect concentration (PNEC) for fish. Concentrations of PCBs and dioxins in fish muscle and liver were much lower than the EU maximal permitted concentrations, and similar to concentrations that were found in food fish in Israel and Europe. In the histopathological analysis, there were no evident tissue abnormalities, and low to moderate infection levels of fish parasites were recorded. The results from the Yeruham Reservoir demonstrated a unique model for the mixture effect between TWW reuse and natural floods to support a unique stable and thriving ecosystem in a water reservoir located in an arid region. This type of reservoir can be widely used for recreation, education, and the social and economic development of a rural environment, such as has occurred in the Yeruham region. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Evaluation of a severe accident management strategy for boiling water reactors -- Drywell flooding

    International Nuclear Information System (INIS)

    Yu, D.; Xing, L.; Kastenberg, W.E.; Okrent, D.

    1994-01-01

    Flooding of the drywell has been suggested as a strategy to prevent reactor vessel and containment failure in boiling water reactors. To evaluate the candidate strategy, this study considers accident management as a decision problem (''drywell flooding'' versus ''do nothing'') and develops a decision-oriented framework, namely, the influence diagram approach. This analysis chooses the long-term station blackout sequence for a Mark 1 nuclear power plant (Peach Bottom), and an influence diagram with a single decision node is constructed. The node probabilities in the influence diagram are obtained from US Nuclear Regulatory Commission reports or estimated by probabilistic risk assessment methodology. In assessing potential benefits compared with adverse effects, this analysis uses two consequence measures, i.e., early and late fatalities, as decision criteria. The analysis concludes that even though potential adverse effects exist, such as ex-vessel steam explosions and containment isolation failure, the drywell flooding strategy is preferred to ''do nothing'' when evaluated in terms of these consequence measures

  1. Sensory texture analysis of thickened liquids during ingestion.

    Science.gov (United States)

    Chambers, Edgar; Jenkins, Alicia; Mertz Garcia, Jane

    2017-12-01

    Practitioners support the use of thickened liquids for many patients with disordered swallowing. Although physical measures have highlighted differences among products there are questions about the ability of the measures to fully explain the sensory texture effects during swallowing of thickened liquids. This study used a trained sensory panel to describe the textural aspects of liquids during ingestion and swallowing. The lexicon was able to characterize differences in beverages, thickeners, and thickness levels with the most important attribute being viscosity, which loaded heavily in the almost one-dimensional space that resulted from the sensory analysis of these beverages. Other effects, such as slipperiness provided some minimal additional information on the products. Trained sensory panelists were shown to be useful in the measurement of differences in thickened liquid products prescribed for patients with dysphagia. They were able to differentiate products based on perceived differences related to flow speed, viscosity, and other parameters suggesting their use in further studies of swallowing behavior and for development of products for disordered swallowing should be considered. Understanding how these variables might relate to clinical decision making about product selection or modification to best meet the nutritional needs of a person with disordered swallowing could be helpful. This is especially true given the difficulties in measuring texture instrumentally in these products. © 2017 Wiley Periodicals, Inc.

  2. Comparison of Microbial Community Compositions of Injection and Production Well Samples in a Long-Term Water-Flooded Petroleum Reservoir

    Science.gov (United States)

    Ren, Hong-Yan; Zhang, Xiao-Jun; Song, Zhi-yong; Rupert, Wieger; Gao, Guang-Jun; Guo, Sheng-xue; Zhao, Li-Ping

    2011-01-01

    Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial communities of production wells are affected by microorganisms introduced with injected water has previously not been adequately studied. Using denaturing gradient gel electrophoresis (DGGE) approach and 16S rRNA gene clone library analysis, the comparison of microbial communities is carried out between one injection water and two production waters collected from a working block of the water-flooded Gudao petroleum reservoir located in the Yellow River Delta. DGGE fingerprints showed that the similarities of the bacterial communities between the injection water and production waters were lower than between the two production waters. It was also observed that the archaeal composition among these three samples showed no significant difference. Analysis of the 16S rRNA gene clone libraries showed that the dominant groups within the injection water were Betaproteobacteria, Gammaproteobacteria and Methanomicrobia, while the dominant groups in the production waters were Gammaproteobacteria and Methanobacteria. Only 2 out of 54 bacterial operational taxonomic units (OTUs) and 5 out of 17 archaeal OTUs in the injection water were detected in the production waters, indicating that most of the microorganisms introduced by the injection water may not survive to be detected in the production waters. Additionally, there were 55.6% and 82.6% unique OTUs in the two production waters respectively, suggesting that each production well has its specific microbial composition, despite both wells being flooded with the same injection water. PMID:21858049

  3. Viscosity of Dysphagia-Oriented Cold-Thickened Beverages: Effect of Setting Time at Refrigeration Temperature

    Science.gov (United States)

    Kim, Sung-Gun; Yoo, Byoungseung

    2015-01-01

    Background: Although extensive literature is available on the viscosity of thickened beverages with food thickeners, no attempt has been made to study the effect of setting time on the viscosity of pudding-like cold-thickened beverages with xanthan gum (XG)-based thickeners by using a rheometer. In particular, it is of considerable practical…

  4. Sinkhole flooding in Murfreesboro, Rutherford County, Tennessee, 2001-02

    Science.gov (United States)

    Bradley, Michael W.; Hileman, Gregg Edward

    2006-01-01

    The U.S. Geological Survey, in cooperation with the City of Murfreesboro, Tennessee, conducted an investigation from January 2001 through April 2002 to delineate sinkholes and sinkhole watersheds in the Murfreesboro area and to characterize the hydrologic response of sinkholes to major rainfall events. Terrain analysis was used to define sinkholes and delineate the sinkhole drainage areas. Flooding in 78 sinkholes in three focus areas was identified and tracked using aerial photography following three major storms in February 2001, January 2002, and March 2002. The three focus areas are located to the east, north, and northwest of Murfreesboro and are underlain primarily by the Ridley Limestone with some outcrops of the underlying Pierce Limestone. The observed sinkhole flooding is controlled by water inflow, water outflow, and the degree of the hydraulic connection (connectivity) to a ground-water conduit system. The observed sinkholes in the focus areas are grouped into three categories based on the sinkhole morphology and the connectivity to the ground-water system as indicated by their response to flooding. The three types of sinkholes described for these focus areas are pan sinkholes with low connectivity, deep sinkholes with high connectivity, and deep sinkholes with low connectivity to the ground-water conduit system. Shallow, broad pan sinkholes flood as water inflow from a storm inundates the depression at land surface. Water overflow from one pan sinkhole can flow downgradient and become inflow to a sinkhole at a lower altitude. Land-surface modifications that direct more water into a pan sinkhole could increase peak-flood altitudes and extend flood durations. Land-surface modifications that increase the outflow by overland drainage could decrease the flood durations. Road construction or alterations that reduce flow within or between pan sinkholes could result in increased flood durations. Flood levels and durations in the deeper sinkholes observed in

  5. Assessment of water quality in the elbe river at flood water conditions based on cluster analysis, principle components analysis, and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Baborowski, Martina [Department of River Ecology, UFZ-Helmholtz Centre for Environmental Research, Magdeburg (Germany); Simeonov, Vasil [Faculty of Chemistry, University of Sofia, Sofia (Bulgaria); Einax, Juergen W. [Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University of Jena, Jena (Germany)

    2012-04-15

    An assessment of water quality measurements during a spring flood in the Elbe River is presented. Daily samples were taken at a site in the middle Elbe, which is part of the network of the International Commission for the Protection of the Elbe River (IKSE/MKOL). Cluster analysis (CA), principal components analysis (PCA), and source apportionment (APCS apportioning) were used to assess the flood-dependent matter transport. As a result, three main components could be extracted as important to the matter transport in the Elbe River basin during flood events: (i) re-suspended contaminated sediments, which led to temporarily increased concentrations of suspended matter and of most of the investigated heavy metals; (ii) water discharge related concentrations of pedogenic dissolved organic matter (DOM) as well as preliminary diluted concentrations of uranium and chloride, parameters with stable pollution background in the river basin; and (iii) abandoned mines, i.e., their dewatering systems, with particular influence on nickel, manganese, and zinc concentrations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Assessment of water quality in the elbe river at flood water conditions based on cluster analysis, principle components analysis, and source apportionment

    International Nuclear Information System (INIS)

    Baborowski, Martina; Simeonov, Vasil; Einax, Juergen W.

    2012-01-01

    An assessment of water quality measurements during a spring flood in the Elbe River is presented. Daily samples were taken at a site in the middle Elbe, which is part of the network of the International Commission for the Protection of the Elbe River (IKSE/MKOL). Cluster analysis (CA), principal components analysis (PCA), and source apportionment (APCS apportioning) were used to assess the flood-dependent matter transport. As a result, three main components could be extracted as important to the matter transport in the Elbe River basin during flood events: (i) re-suspended contaminated sediments, which led to temporarily increased concentrations of suspended matter and of most of the investigated heavy metals; (ii) water discharge related concentrations of pedogenic dissolved organic matter (DOM) as well as preliminary diluted concentrations of uranium and chloride, parameters with stable pollution background in the river basin; and (iii) abandoned mines, i.e., their dewatering systems, with particular influence on nickel, manganese, and zinc concentrations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Quantification of the recovered oil and water fractions during water flooding laboratory experiments

    DEFF Research Database (Denmark)

    Katika, Konstantina; Halim, Amalia Yunita; Shapiro, Alexander

    2015-01-01

    the volume might be less than a few microliters. In this study, we approach the determination of the oil volumes in flooding effluents using predetermined amounts of the North Sea oil with synthetic seawater. The UV/visible spectroscopy method and low-field NMR spectrometry are compared...... for this determination, and an account of advantages and disadvantages of each method is given. Both methods are reproducible with high accuracy. The NMR method was capable of direct quantification of both oil and water fractions, while the UV/visible spectroscopy quantifies only the oil fraction using a standard curve....

  8. Breast disease with skin thickening: differential diagnosis with mammography and ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Rok; Kim, Hak Hee; Cha, Eun Suk; Park, Hye Seong; Kim, Ki Tae; Shinn, Kyung Sub [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    1999-02-01

    Diffuse skin thickening of the breast is produced by lymphedema usually secondary to obstruction of the axillary lymphatics. On physical examination, the affected breast is, due to increased fluid content, larger, heavier, and of higher overall density. Mammography reveals an increased coarse reticular pattern. Thickening of the skin can have many causes. It may be a result of tumor invasion or a tumor in the dermal lymphatics ; or because of lymphatic congestion through obstruction of lymphatic drainage within the breast, in the axilla, or centrally in the mediastinum. Further causes may be congestive heart failure, benign inflammation, primary skin processes such as psoriasis, or systemic diseases which involve the skin. Mammographic appearance is known to be nonspecific. Ultrasound can demonstrate skin thickening directly, but despite some reports suggesting that the cause of skin thickening can be inferred from the results of ultrasound, this is not usually of practical importance. The purpose of this study is to review the causes of skin thickening of the breast and to use mammography and US to differentiate the causes.

  9. A Comparison of the Viscosities of Thickened Liquids for Pediatric Dysphagia.

    Science.gov (United States)

    Wijesinghe, Ranjith; Clifton, Mekale; Tarlton, Morgan; Heinsohn, Erica; Ewing, Mary

    It has been reported that Speech Language Pathologists in different facilities across the nation use a variety of thickening agents and recipes as therapeutic measures for infants and children diagnosed with dysphagia. Limited research has been completed in this area. Viscosity was tested to determine the thickness of each thickening agent mixed with infant formula. The values were then compared to the National Dysphagia Diet liquid levels to determine which thickening agent resulted in the desired viscosity levels. The thickeners were mixed with common infant formulas and soy formulas to determine if the type of formula impacted the viscosity. The main goal was to determine if the assumed thickness level (viscosity) of prescribed thickened liquids was actually being met. This topic is of high concern because of its impact on the safety and well-being of clients with dysphagia. A viscometer was used to collect the viscosity levels. Commercially available formulas selected for this study. The final results of our investigation will be presented during the APS meeting. This work is supported by a Ball State University Immersive Learning Grant.

  10. Shear thickening behavior of nanoparticle suspensions with carbon nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Xiaofei; Yu, Kejing, E-mail: yukejing@gmail.com; Cao, Haijian; Qian, Kun [Ministry of Education, Jiangnan University, Key Laboratory of Eco-textiles (China)

    2013-07-15

    Suspensions comprised of silica nanoparticle (average diameter: 650 nm) and carbon nanofillers dispersed in polyethylene glycol were prepared and investigated. Rheological measurement demonstrated that the mixed suspensions showed a non-Newtonian flow profile, and the shear thickening effect was enhanced by the addition of carbon nanotubes (CNTs) (main range of diameter: 10-20 nm; length: 5-15 {mu}m; purity: >97 wt%) and graphene nanoplatelets (GNs) (average diameter: >50 nm; average length: 20 {mu}m; purity: >92 wt%). It suggested that better the aggregation effect of dispersed particles was, the more significant the shear thickening effect achieved. The results also revealed that the formation of large nanomaterials clusters could be suitable to explain the phenomena. Furthermore, the trend of shear thickening behavior of the silica suspension with CNTs was more striking than that of GNs. The physical reactions between those multi-dispersed phases had been described by the schematic illustrations in papers. Otherwise, a model was built to explain these behaviors, which could be attributed to the unique structures and inherent properties of these two different nanofillers. And the morphologies of the shear thickening fluid which were examined by transmission electron microscopy confirmed this mechanism.

  11. Development of realtime, handheld and portable flood distribution and water quality sensor based android smartphone

    Science.gov (United States)

    Rachmatika, Ratih; Adriyanto, Feri

    2017-09-01

    Current sensors to monitor water quality are made of manual sensors, which reported to have good performance. However, the major problems, which manual process to get the data. In addition, the data interpretation takes a long time. Due to these problems, a new approach needs to be introduced into the process to prevent a long data acquisition. Therefore, the SIAGA application was proposed. The application of SIAGA is divided into two main applications which are SIBA (Siaga Banjir) and SIAB (Siaga Air Bersih). We using WiFi system which is located at points along the flow of river.. The result can be monitored in the online application based on smartphone which is divided into the river water quality, potential sources of pollution and flood area. Each WiFi point is completed with the instruments which are divided into the sensors that can do the identification of parameters to determine the water quality such as temperature, pH, water level and turbidity. This instrument completed using GPS (Global Positioning System), Full Map menu. The instrument was succesfully monitoredthe flood distribution and water quality in Bengawan Solo river.

  12. Flooding Experiments and Modeling for Improved Reactor Safety

    International Nuclear Information System (INIS)

    Solmos, M.; Hogan, K.J.; VIerow, K.

    2008-01-01

    Countercurrent two-phase flow and 'flooding' phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing

  13. Synthesis and Evaluation of CO2 Thickeners Designed with Molecular Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Robert Enick; Erick Beckman; J. Karl Johnson

    2009-08-31

    The objective of this research was to use molecular modeling techniques, coupled with our prior experimental results, to design, synthesize and evaluate inexpensive, non-fluorous carbon dioxide thickening agents. The first type of thickener that was considered was associating polymers. Typically, these thickeners are copolymers that contain a highly CO{sub 2}-philic monomer, and a small concentration of a CO{sub 2}-phobic associating monomer. Yale University was solely responsible for the synthesis of a second type of thickener; small, hydrogen bonding compounds. These molecules have a core that contains one or more hydrogen-bonding groups, such as urea or amide groups. Non-fluorous, CO{sub 2}-philic functional groups were attached to the hydrogen bonding core of the compound to impart CO{sub 2} stability and macromolecular stability to the linear 'stack' of these compounds. The third type of compound initially considered for this investigation was CO{sub 2}-soluble surfactants. These surfactants contain conventional ionic head groups and composed of CO{sub 2}-philic oligomers (short polymers) or small compounds (sugar acetates) previously identified by our research team. Mobility reduction could occur as these surfactant solutions contacted reservoir brine and formed mobility control foams in-situ. The vast majority of the work conducted in this study was devoted to the copolymeric thickeners and the small hydrogen-bonding thickeners; these thickeners were intended to dissolve completely in CO{sub 2} and increase the fluid viscosity. A small but important amount of work was done establishing the groundwork for CO{sub 2}-soluble surfactants that reduced mobility by generating foams in-situ as the CO{sub 2}+surfactant solution mixed with in-situ brine.

  14. Flood Risk, Flood Mitigation, and Location Choice: Evaluating the National Flood Insurance Program's Community Rating System.

    Science.gov (United States)

    Fan, Qin; Davlasheridze, Meri

    2016-06-01

    Climate change is expected to worsen the negative effects of natural disasters like floods. The negative impacts, however, can be mitigated by individuals' adjustments through migration and relocation behaviors. Previous literature has identified flood risk as one significant driver in relocation decisions, but no prior study examines the effect of the National Flood Insurance Program's voluntary program-the Community Rating System (CRS)-on residential location choice. This article fills this gap and tests the hypothesis that flood risk and the CRS-creditable flood control activities affect residential location choices. We employ a two-stage sorting model to empirically estimate the effects. In the first stage, individuals' risk perception and preference heterogeneity for the CRS activities are considered, while mean effects of flood risk and the CRS activities are estimated in the second stage. We then estimate heterogeneous marginal willingness to pay (WTP) for the CRS activities by category. Results show that age, ethnicity and race, educational attainment, and prior exposure to risk explain risk perception. We find significant values for the CRS-creditable mitigation activities, which provides empirical evidence for the benefits associated with the program. The marginal WTP for an additional credit point earned for public information activities, including hazard disclosure, is found to be the highest. Results also suggest that water amenities dominate flood risk. Thus, high amenity values may increase exposure to flood risk, and flood mitigation projects should be strategized in coastal regions accordingly. © 2015 Society for Risk Analysis.

  15. 33 CFR 385.37 - Flood protection.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Flood protection. 385.37 Section... DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN Ensuring Protection of... Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent...

  16. Impact of S fertilizers on pore-water Cu dynamics and transformation in a contaminated paddy soil with various flooding periods.

    Science.gov (United States)

    Yang, Jianjun; Zhu, Shenhai; Zheng, Cuiqing; Sun, Lijuan; Liu, Jin; Shi, Jiyan

    2015-04-09

    Impact of S fertilization on Cu mobility and transformation in contaminated paddy soils has been little reported. In this study, we investigated the dynamics and transformation of dissolved and colloidal Cu in the pore water of a contaminated paddy soil after applying ammonium sulphate (AS) and sulfur coated urea (SCU) with various flooding periods (1, 7 and 60 days). Compared to the control soil, the AS-treated soil released more colloidal and dissolved Cu over the entire flooding period, while the SCU-treated soil had lower colloidal Cu after 7-day flooding but higher colloidal and dissolved Cu after 60-day flooding. Microscopic X-ray fluorescence (μ-XRF) analysis found a close relationship between Fe and Cu distribution on soil colloids after 60-day flooding, implying the formation of colloidal Fe/Cu sulphide coprecipitates. Cu K-edge X-ray absorption near-edge structure (XANES) spectroscopy directly revealed the transformation of outer-sphere complexed Cu(II) species to Cu(II) sulphide and reduced Cu2O in the colloids of S-treated soils after 60-day flooding. These results demonstrated the great influence of S fertilization on pore-water Cu mobility by forming Cu sulphide under flooding conditions, which facilitated our understanding and control of Cu loss in contaminated paddy soils under S fertilization. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Water quality, sediment, and soil characteristics near Fargo-Moorhead urban areas as affected by major flooding of the Red River of the north

    Science.gov (United States)

    A.C. Guy; T.M. DeSutter; F.X.M. Casey; R. Kolka; H. Hakk

    2012-01-01

    Spring flooding of the Red River of the North (RR) is common, but little information exits on how these flood events affect water and overbank sediment quality within an urban area. With the threat of the spring 2009 flood in the RR predicted to be the largest in recorded history and the concerns about the flooding of farmsteads, outbuildings, garages, and basements,...

  18. The role of water and sediment connectivity in integrated flood management: a case study on the island of Saint Lucia

    Science.gov (United States)

    Jetten, Victor; van Westen, Cees; Ettema, Janneke; van den Bout, Bastian

    2016-04-01

    Disaster Risk Management combines the effects of natural hazards in time and space, with elements at risk, such as ourselves, infrastructure or other elements that have a value in our society. The risk in this case is defined as the sum of potential consequences of one or more hazards and can be expressed as potential damages. Generally, we attempt to reduce risk by better risk management, such as increase of resilience, protection and spatial planning. Caribbean islands are hit by hurricanes and tropical storms with a frequency of 1 to 2 every 10 years, with devastating consequences in terms of flash floods and landslides. The islands basically consist of a central (volcanic) mountain range, with medium and small sized catchments radiating outward towards the ocean. The coastal zone is inhabited, while the ring road network is essential for functioning of the island. An example of a case study is given for the island of Saint Lucia. Recorded rainfall intensities during tropical storms of 12 rainfall stations surpass 200 mm/h, causing immediate flash floods. Very often however, sediment is a forgotten variable in flash flood management: protection and mitigation measures as well as spatial planning all focus on the hydrology, the extent and depth of flood water, and sometimes of flood velocities. With recent developments, the opensource model LISEM includes hydrology and runoff, flooding, and erosion, transport and deposition both in runoff, channel flow and flood waters. We will discuss the practical solutions we implemented in connecting slopes, river channels and floodplains in terms of water and sediment, and the strength and weaknesses we have encountered so far. Catchment analysis shows two main effects: on the one hand in almost all cases upstream flooding serves as a temporary water storage that prevents further damage downstream, while on the other hand, erosion upstream often blocks bridges and decreases channel storage downstream, which increases the

  19. Distinguishing benign from malignant gallbladder wall thickening using FDG-PET

    International Nuclear Information System (INIS)

    Oe, Ai; Kawabe, Joji; Torii, Kenji

    2006-01-01

    Because thickening of the gallbladder wall is observed not only in patients with gallbladder cancer but also in those with benign diseases such as chronic cholecystitis and gallbladder adenomyosis, it is difficult to distinguish between benign and malignant gallbladder wall thickening by conventional techniques of diagnostic imaging such as computed tomography (CT), magnetic resonance imaging (MRI), and abdominal ultrasonography (US). In the present study, we attempted to distinguish between benign and malignant gallbladder wall thickening by means of fluorine-18-fluorodeoxyglucose (FDG)-Positron emission tomography (PET). FDG-PET was performed in 12 patients with gallbladder wall thickening detected by CT or US, to determine whether it was benign or malignant. Emission scans were taken, beginning 45 minutes after intravenous administration of FDG, and standardized uptake value (SUV) was calculated as an indicator of glucose metabolism. Of the 12 patients, 4 showed positive uptake of FDG in the gallbladder wall. Of these 4 patients, 3 had gallbladder cancer. The remaining one, who had chronic cholecystitis, had false-positive findings. The other 8 patients had negative uptake of FDG in the gallbladder wall. Two of these 8 underwent surgical resection, which yielded a diagnosis of chronic cholecystitis. The other 6 patients exhibited no sign of gallbladder malignancy and have been followed without active treatment. FDG-PET appears able to distinguish between benign and malignant gallbladder wall thickening. (author)

  20. Penetration of n-hexadecane and water into wood under conditions simulating catastrophic floods

    Science.gov (United States)

    Ganna Baglayeva; Wayne S. Seames; Charles R. Frihart; Jane O' Dell; Evguenii I. Kozliak

    2017-01-01

    To simulate fuel oil spills occurring during catastrophic floods, short-term absorption of two chemicals, n-hexadecane (representative of semivolatile organic compounds in fuel oil) and water, into southern yellow pine was gravimetrically monitored as a function of time at ambient conditions. Different scenarios were run on the basis of (1) the...

  1. Estimation of flood environmental effects using flood zone mapping techniques in Halilrood Kerman, Iran.

    Science.gov (United States)

    Boudaghpour, Siamak; Bagheri, Majid; Bagheri, Zahra

    2014-01-01

    High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone mapping techniques. The intended flood zone map was introduced in four steps. Steps 1 to 3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using of flood zone mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 hectares to 225 hectares and also it can decrease 20% of flood peak intensity. As a result, 14% of flood zone in the study area can be saved environmentally.

  2. Floods in Serbia in the 1999-2009 period: Hydrological analysis and flood protection measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2010-01-01

    Full Text Available The review on greatest floods recorded in Vojvodina and central Serbia within the period from 1999 to 2009 is given in this paper. For 13 hydrological stations, that recorded the greatest floods for the present period, probability of occurrence of these floods has been accomplished. Based on analysis of time series of discharge and water level maximum, performed by applying probability theory and mathematical statistics, and calculated theoretical probability distribution function of floods, probability of occurrence of flood has been obtained. Most often the best agreement with the empirical distribution function had a Log-Pearson III, Pearson III distribution. These results can be used for dimensioning of hydro-technical objects for flood protection. The most significant causes for floods recorded in this period were melting of snow and intensive rainfall. In this paper the current situation of flood protection and future development of flood protection measures were also presented. .

  3. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    International Nuclear Information System (INIS)

    Minamikawa, Kazunori; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito; Takahashi, Masayoshi

    2015-01-01

    A remarkable feature of nanobubbles (<10 –6 m in diameter) is their long lifetime in water. Supplying oxygen-nanobubbles (NBs) to continuously flooded paddy soil may retard the development of reductive conditions, thereby reducing the emission of methane (CH 4 ), a potent greenhouse gas, and dissolution of arsenic, an environmental load. We tested this hypothesis by performing a pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p < 0.05) reduced cumulative CH 4 emission during the rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH 4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p < 0.001). At the end of the experiment, the NB water significantly lowered the soil pH in the 0–5 cm layer, probably because of the raised redox potential. The population of methanogenic Archaea (mcrA copy number) in the 0–5 cm layer was significantly increased by the NB water, but we found no correlation between the mcrA copy number and the cumulative CH 4 emission (r = –0.08, p = 0.85). In pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH 4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils. (letter)

  4. Numerical modeling of cracking pattern's influence on the dynamic response of thickened tailings disposals: a periodic approach

    Science.gov (United States)

    Ferrer, Gabriel; Sáez, Esteban; Ledezma, Christian

    2018-01-01

    Copper production is an essential component of the Chilean economy. During the extraction process of copper, large quantities of waste materials (tailings) are produced, which are typically stored in large tailing ponds. Thickened Tailings Disposal (TTD) is an alternative to conventional tailings ponds. In TTD, a considerable amount of water is extracted from the tailings before their deposition. Once a thickened tailings layer is deposited, it loses water and it shrinks, forming a relatively regular structure of tailings blocks with vertical cracks in between, which are then filled up with "fresh" tailings once the new upper layer is deposited. The dynamic response of a representative column of this complex structure made out of tailings blocks with softer material in between was analyzed using a periodic half-space finite element model. The tailings' behavior was modeled using an elasto-plastic multi-yielding constitutive model, and Chilean earthquake records were used for the seismic analyses. Special attention was given to the liquefaction potential evaluation of TTD.

  5. [Effect of food thickener on disintegration and dissolution of magnesium oxide tablets].

    Science.gov (United States)

    Tomita, Takashi; Goto, Hidekazu; Yoshimura, Yuya; Tsubouchi, Yoshiko; Nakanishi, Rie; Kojima, Chikako; Yoneshima, Mihoko; Yoshida, Tadashi; Tanaka, Katsuya; Sumiya, Kenji; Kohda, Yukinao

    2015-01-01

    It has been reported that magnesium oxide tablets are excreted in a non-disintegrated state in the stool of patients when the tablets are administered after being immersed in a food thickener. Therefore we examined whether immersion in a food thickener affects the pharmacological effect in patients taking magnesium oxide tablets, and whether immersion affects its disintegration and solubility. The mean dosage (1705 mg/d) was higher for patients who took tablets after immersion in a food thickener than for those who took non-immersed tablets (1380 mg/d). The disintegration time and dissolution rate of the immersed tablets were lower than those of non-immersed tablets in vitro. Furthermore, components that constitute the food thickener and differences in composition concentrations differentially affect the disintegration and solubility of magnesium oxide tablets. This suggests that commercially available food thickeners are likely to be associated with changes in the degradation of magnesium oxide tablets, and they therefore should be carefully used in certain clinical situations.

  6. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    Science.gov (United States)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  7. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    Science.gov (United States)

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital

  8. Green River Formation Water Flood Demonstration Project: Final report. [October 21, 1992-April, 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Deo, M.D. [Dept. of Chemical and Fuels Engineering, University of Utah, Salt Lake City (US); Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc., Lomax Exploration Co., Salt Lake City, UT (US); Nielson, D.L.; Lutz, S.J. [Energy and Geoscience Institute at the University of Utah, Salt Lake City (US)

    1996-11-01

    The objectives were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. Comprehensive reservoir characterization and reservoir simulations of the Monument Butte, Travis and Boundary units were presented in the two published project yearly reports. The primary and the secondary production from the Monument Butte unit were typical of oil production from an undersaturated oil reservoir close to its bubble point. The water flood in the smaller Travis unit appeared affected by natural and possibly by large interconnecting hydraulic fractures. Water flooding the boundary unit was considered more complicated due to the presence of an oil water contact in one of the wells. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter c ore, Formation Micro Imaging logs from several wells and Magnetic Resonance Imaging logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir characterization efforts identified new reservoirs in the Travis and the Boundary units. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2000 barrels per day.

  9. Green River Formation Water Flood Demonstration Project: Final report, October 21, 1992-April, 30, 1996

    International Nuclear Information System (INIS)

    Deo, M.D.; Dyer, J.E.; Lomax, J.D.; Nielson, D.L.; Lutz, S.J.

    1996-01-01

    The objectives were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. Comprehensive reservoir characterization and reservoir simulations of the Monument Butte, Travis and Boundary units were presented in the two published project yearly reports. The primary and the secondary production from the Monument Butte unit were typical of oil production from an undersaturated oil reservoir close to its bubble point. The water flood in the smaller Travis unit appeared affected by natural and possibly by large interconnecting hydraulic fractures. Water flooding the boundary unit was considered more complicated due to the presence of an oil water contact in one of the wells. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter c ore, Formation Micro Imaging logs from several wells and Magnetic Resonance Imaging logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir characterization efforts identified new reservoirs in the Travis and the Boundary units. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2000 barrels per day

  10. Lessons learned from international flood PSAS in Korea

    International Nuclear Information System (INIS)

    Kim, Myungro; Lee, Beomsu; Kang, Sunkoo

    1998-01-01

    Risk due to internal flooding has been one of the major concerns for the design and operation of nuclear power plants. To reduce the risk from internal flooding, two design approaches for flood protection systems, active and passive, can be considered. The approaches to flood protection design are different for each plant design, and they are highly dependent on the plant type. The flood PSA revealed that the potential plant risk due to a flooding event is highly dependent on the flood design. The major design characteristics are 1) the location of systems that utilize sea water and their impact to other safety related systems, and 2) the existence of emergency overflow paths and an emergency sump which can transfer and accommodate flood water to prevent a significant flooding event. To identify and compare the effectiveness and potential vulnerability of various Korean nuclear power plants' flood designs, the flood PSAs have been performed for three plant designs, such as existing Korean PWR plants, CANDU type PHWR plants, and Korean Standard Nuclear Plants. Based on the evaluation, several design changes were recommended. (author)

  11. Gallbladder wall thickening: MR imaging and pathologic correlation with emphasis on layered pattern

    International Nuclear Information System (INIS)

    Jung, S.E.; Lee, J.M.; Hahn, S.T.; Lee, K.; Rha, S.E.; Choi, B.G.; Kim, E.K.

    2005-01-01

    The aim of this study was to correlate MR findings of gallbladder wall thickening with pathologic findings on the basis of the layered pattern and to evaluate the diagnostic value of MR imaging in gallbladder disease. We retrospectively evaluated the source images of HASTE sequences for MR cholangiography in 144 patients with gallbladder wall thickening. The layered pattern of thickened wall was classified into four patterns. Type 1 shows two layers with a thin hypointense inner layer and thick hyperintense outer layer. Type 2 has two layers of ill-defined margin. Type 3 shows multiple hyperintense cystic spaces in the wall. Type 4 shows diffuse nodular thickening without layering. MR findings of a layered pattern of thickened gallbladder were well correlated with histopathology. Chronic cholecystitis matched to type 1, acute cholecystitis corresponded to type 2, adenomyomatosis showed type 3, and the gallbladder carcinomas showed type 4. All four layered patterns were associated with PPV of 73% or greater, sensitivity of 92% or greater and specificity of 95% or greater. Our results indicate that MR findings of gallbladder wall thickening are characteristic in each entity and correlate well with pathologic findings. The classification of the layered pattern may be valuable for interpreting thickened gallbladder wall. (orig.)

  12. Enhanced oil recovery (EOR) by miscible CO{sub 2} and water flooding of asphaltenic and non-asphaltenic oils

    Energy Technology Data Exchange (ETDEWEB)

    Chukwudeme, E. A.; Hamouda, A. A. [Department of Petroleum Engineering, University of Stavanger, 4036 Stavanger (Norway)

    2009-07-01

    An EOR study has been performed applying miscible CO{sub 2} flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane), model oil (n-C10, SA, toluene and 0.35 wt % asphaltene) and crude oil (10 wt % asphaltene) obtained from the Middle East. Stearic acid (SA) is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO{sub 2} flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years) it is shown that there is almost no difference between the recovered oils by water and CO{sub 2}, after which (> 3 years) oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO{sub 2} flooding of asphaltenic oil at combined temperatures and pressures of 50 {sup o}C/90 bar and 70 {sup o}C/120 bar (no significant difference between the two cases, about 1%) compared to 80 {sup o}C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO{sub 2} flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure. (author)

  13. Process for the preparation of a thickened explosive slurry

    Energy Technology Data Exchange (ETDEWEB)

    1972-10-25

    A process is described for the preparation of a thickened explosive slurry, substantially aqueous. The composition consists essentially of a suspension of an inorganic oxygen salt for furnishing oxygen in a fluid matrix. This fluid matrix consists of a lower aliphatic glycol (ethylene, diethylene, propylene, dipropylene) thickened with one of the polysaccharides (glucose, mannose, galactose) or mixtures of them. The composition should have a density below 1.8 g per cu cm. (5 claims)

  14. Roughness-dependent tribology effects on discontinuous shear thickening.

    Science.gov (United States)

    Hsu, Chiao-Peng; Ramakrishna, Shivaprakash N; Zanini, Michele; Spencer, Nicholas D; Isa, Lucio

    2018-05-15

    Surface roughness affects many properties of colloids, from depletion and capillary interactions to their dispersibility and use as emulsion stabilizers. It also impacts particle-particle frictional contacts, which have recently emerged as being responsible for the discontinuous shear thickening (DST) of dense suspensions. Tribological properties of these contacts have been rarely experimentally accessed, especially for nonspherical particles. Here, we systematically tackle the effect of nanoscale surface roughness by producing a library of all-silica, raspberry-like colloids and linking their rheology to their tribology. Rougher surfaces lead to a significant anticipation of DST onset, in terms of both shear rate and solid loading. Strikingly, they also eliminate continuous thickening. DST is here due to the interlocking of asperities, which we have identified as "stick-slip" frictional contacts by measuring the sliding of the same particles via lateral force microscopy (LFM). Direct measurements of particle-particle friction therefore highlight the value of an engineering-tribology approach to tuning the thickening of suspensions. Copyright © 2018 the Author(s). Published by PNAS.

  15. A Location Intelligence System for the Assessment of Pluvial Flooding Risk and the Identification of Storm Water Pollutant Sources from Roads in Suburbanised Areas

    Directory of Open Access Journals (Sweden)

    Szymon Szewrański

    2018-06-01

    Full Text Available The interplay of an ever-growing number of inhabitants, sprawl development, soil sealing, changes in urban traffic characteristics, as well as observed climate trends gives rise to more frequent pluvial flooding in cities, a higher run-off of water, and an increasing pollution of surface water. The aim of this research is to develop a location intelligence system for the assessment of pluvial flooding risks and the identification of storm water pollutant sources from roads in newly-developed areas. The system combines geographic information systems and business intelligence software, and it is based on the original Pluvial Flood Risk Assessment tool. The location intelligence system effectively identifies the spatial and temporal distribution of pluvial flood risks, allows to preliminarily evaluate the total run-off from roads, and helps localise potential places for new water management infrastructure. Further improvements concern the modelling of a flow accumulation and drainage system, the application of weather radar precipitation data, and traffic monitoring and modelling.

  16. Flood-inundation maps for the Mississinewa River at Marion, Indiana, 2013

    Science.gov (United States)

    Coon, William F.

    2014-01-01

    Digital flood-inundation maps for a 9-mile (mi) reach of the Mississinewa River from 0.75 mi upstream from the Pennsylvania Street bridge in Marion, Indiana, to 0.2 mi downstream from State Route 15 were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Mississinewa River at Marion (station number 03326500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the current stage-discharge relation at the Mississinewa River streamgage, in combination with water-surface profiles from historic floods and from the current (2002) flood-insurance study for Grant County, Indiana. The hydraulic model was then used to compute seven water-surface profiles for flood stages at 1-fo (ft) intervals referenced to the streamgage datum and ranging from 10 ft, which is near bankfull, to 16 ft, which is between the water levels associated with the estimated 10- and 2-percent annual exceedance probability floods (floods with recurrence interval between 10 and 50 years) and equals the “major flood stage” as defined by the NWS. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging (lidar) data having a 0.98 ft vertical accuracy and 4.9 ft

  17. Flood-inundation maps for the Flatrock River at Columbus, Indiana, 2012

    Science.gov (United States)

    Coon, William F.

    2013-01-01

    Digital flood-inundation maps for a 5-mile reach of the Flatrock River on the western side of Columbus, Indiana, from County Road 400N to the river mouth at the confluence with Driftwood River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Flatrock River at Columbus (station number 03363900). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service, which also presents the USGS data, at http:/water.weather.gov/ahps/. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at the Flatrock River streamgage, high-water marks that were surveyed following the flood of June 7, 2008, and water-surface profiles from the current flood-insurance study for the City of Columbus. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 9 ft or near bankfull to 20 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual exceedance probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37 ft

  18. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    Science.gov (United States)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  19. Feasibility of using the water from the abandoned and flooded coal mines as an energy resource for space heating

    OpenAIRE

    Athresh, AP

    2017-01-01

    This research project aims to study the feasibility of using the water from the abandoned and flooded coal mines for space heating applications using a Ground Source Heat Pump (GSHP) in open loop configuration and take a conceptual idea to a commercial deployment level. The flooded coal mines are the legacy that has been left behind after the three centuries of continuous operations by the coal mining industry. The closure of all coal mines in the UK has led to the flooding of all those aband...

  20. Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.

    Science.gov (United States)

    De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P

    2014-01-01

    Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.

  1. Impacts of Extreme Flooding on Hydrologic Connectivity and Water Quality in the Atlantic Coastal Plain and Implications for Vulnerable Populations

    Science.gov (United States)

    Riveros-Iregui, D. A.; Moser, H. A.; Christenson, E. C.; Gray, J.; Hedgespeth, M. L.; Jass, T. L.; Lowry, D. S.; Martin, K.; Nichols, E. G.; Stewart, J. R.; Emanuel, R. E.

    2017-12-01

    In October 2016, Hurricane Matthew brought extreme flooding to eastern North Carolina, including record regional flooding along the Lumber River and its tributaries in the North Carolina Coastal Plain. Situated in a region dominated by large-scale crop-cultivation and containing some of the highest densities of concentrated animal feeding operations (CAFOs) and animal processing operations in the U.S., the Lumber River watershed is also home to the Lumbee Tribe of American Indians. Most of the tribe's 60,000+ members live within or immediately adjacent to the 3,000 km2 watershed where they maintain deep cultural and historical connections. The region, however, also suffers from high rates of poverty and large disparities in healthcare, education, and infrastructure, conditions exacerbated by Hurricane Matthew. We summarize ongoing efforts to characterize the short- and long-term impacts of extreme flooding on water quality in (1) low gradient streams and riverine wetlands of the watershed; (2) surficial aquifers, which provide water resources for the local communities, and (3) public drinking water supplies, which derive from deeper, confined aquifers but whose infrastructure suffered widespread damage following Hurricane Matthew. Our results provide mechanistic understanding of flood-related connectivity across multiple hydrologic compartments, and provide important implications for how hydrological natural hazards combine with land use to drive water quality impacts and affect vulnerable populations.

  2. Real-time flood extent maps based on social media

    Science.gov (United States)

    Eilander, Dirk; van Loenen, Arnejan; Roskam, Ruud; Wagemaker, Jurjen

    2015-04-01

    During a flood event it is often difficult to get accurate information about the flood extent and the people affected. This information is very important for disaster risk reduction management and crisis relief organizations. In the post flood phase, information about the flood extent is needed for damage estimation and calibrating hydrodynamic models. Currently, flood extent maps are derived from a few sources such as satellite images, areal images and post-flooding flood marks. However, getting accurate real-time or maximum flood extent maps remains difficult. With the rise of social media, we now have a new source of information with large numbers of observations. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at 8 tweets per second during floods in early 2014. A fair amount of these tweets also contains observations of water depth and location. Our hypothesis is that based on the large numbers of tweets it is possible to generate real-time flood extent maps. In this study we use tweets from the city of Jakarta, Indonesia, to generate these flood extent maps. The data-mining procedure looks for tweets with a mention of 'banjir', the Bahasa Indonesia word for flood. It then removes modified and retweeted messages in order to keep unique tweets only. Since tweets are not always sent directly from the location of observation, the geotag in the tweets is unreliable. We therefore extract location information using mentions of names of neighborhoods and points of interest. Finally, where encountered, a mention of a length measure is extracted as water depth. These tweets containing a location reference and a water level are considered to be flood observations. The strength of this method is that it can easily be extended to other regions and languages. Based on the intensity of tweets in Jakarta during a flood event we can provide a rough estimate of the flood extent. To provide more accurate flood extend

  3. Flood-inundation maps for White River at Petersburg, Indiana

    Science.gov (United States)

    Fowler, Kathleen K.

    2015-08-20

    Digital flood-inundation maps for a 7.7-mile reach of the White River at Petersburg, Indiana, were created by the U.S. Geological Survey (USGS), in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at White River at Petersburg, Ind. (03374000). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (PTRI3).

  4. Changes of physicochemical and microbiologicalparameters of infiltration water at Debina intake in Poznan, unique conditions - a flood

    Science.gov (United States)

    Kołaska, Sylwia; Jeż-Walkowiak, Joanna; Dymaczewski, Zbysław

    2018-02-01

    The paper presents characteristics of Debina infiltration intake which provides water for Poznan and neighbouring communes. The evaluation of effectiveness of infiltration process has been done based on the quality parameters of river water and infiltration water. The analysed water quality parameters are as follows: temperature, iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, carbonate hardness, pH, heavy metals, detergents and microorganisms. The paper also includes an assessment of the impact of flood conditions on the quality of infiltration water and operation of infiltration intake. In this part of the paper the following parameters were taken into account: iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, the total number of microorganisms in 36°C (mesophilic), the total number of microorganisms in 22°C (psychrophilic), coli bacteria, Clostridium perfringens, Escherichia coli, Enterococci. Analysis of the effects of flood on infiltration process leads to the following conclusions: the deterioration of infiltration water quality was due to the deterioration of river water quality, substantial shortening of groundwater passage and partial disappearance of the aeration zone. The observed deterioration of infiltration water quality did not affect the treated water quality, produced at water treatment plant.

  5. Flooding, flood risks and coping strategies in urban informal residential areas: The case of Keko Machungwa, Dar es Salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Tumpale Sakijege

    2012-08-01

    Full Text Available This article presents findings from a study carried out in Keko Machungwa informal settlement in Dar es Salaam under the auspices of the Disaster Management Training Centre of Ardhi University, Tanzania. The settlement has experienced frequent flooding in the past five years, and this study explores the causes, risks, extent of flooding and coping strategies of residents as well as municipality and city officials. Key methods employed in capturing empirical evidence included mapping of zones by severity of flooding, interviews with households, sub-ward leaders, and municipal and city officials. Non-participant observation, primarily taking photographs, complemented these methods. Laboratory tests of water samples taken from shallow wells in the settlement were performed to establish the level of pollution. In addition, records of prevalence of water-borne diseases were gathered from a dispensary within the settlement to corroborate flooding events, water pollution and occurrence of such diseases. Findings show that flooding is contributed to by the lack of a coordinated stormwater drainage system; haphazard housing development within the valley; and blocking of the water stream by haphazard dumping of solid waste and construction. Risks associated with flooding include water and air pollution, diseases, waterlogging and blocked accessibility. The most common coping strategies at household level are use of sandbags and tree logs; raised pit latrines and doorsteps; provision of water outlet pipes above plinth level; construction of embankments, protection walls and elevation of house foundations; seasonal displacement; and boiling and chemical treatment of water. Recommendations for future action at household, community and city level are made.

  6. Flood-inundation maps for the Tippecanoe River near Delphi, Indiana

    Science.gov (United States)

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2013-01-01

    Digital flood-inundation maps for an 11-mile reach of the Tippecanoe River that extends from County Road W725N to State Road 18 below Oakdale Dam, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind. Current conditions at the USGS streamgages in Indiana may be obtained online at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind., and USGS streamgage 03332605, Tippecanoe River below Oakdale Dam, Ind. The hydraulic model was then used to simulate 13 water-surface profiles for flood stages at 1-foot intervals reference to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the

  7. Decreasing flood risk perception in Porto Alegre - Brazil and its influence on water resource management decisions

    Science.gov (United States)

    Allasia, D. G.; Tassi, R.; Bemfica, D.; Goldenfum, J. A.

    2015-06-01

    Porto Alegre is the capital and largest city in the Brazilian state of Rio Grande do Sul in Southern Brazil with approximately 1.5 million inhabitants. The city lies on the eastern bank of the Guaiba Lake, formed by the convergence of five rivers and leading to the Lagoa dos Patos, a giant freshwater lagoon navigable by even the largest of ships. This river junction has become an important alluvial port as well as a chief industrial and commercial centre. However, this strategic location resulted in severe damage because of its exposure to flooding from the river system, affecting the city in the years 1873, 1928, 1936, 1941 and 1967. In order to reduce flood risk, a complex system of levees and pump stations was implemented during 1960s and 1970s. Since its construction, not a single large flood event occurred. However, in recent years, the levees in the downtown region of Porto Alegre were severally criticized by city planners and population. Several projects have been proposed to demolish the Mauá Wall due to the false perception of lack of flood risk. Similar opinions and reactions against flood infrastructure have been observed in other cities in Brazil, such as Itajaí and Blumenau, with disastrous consequences. This paper illustrates how the perception of flood risk in Porto Alegre has changed over recent years as a result of flood infrastructure, and how such changes in perceptions can influence water management decisions.

  8. Flood-Inundation Maps for Sugar Creek at Crawfordsville, Indiana

    Science.gov (United States)

    Martin, Zachary W.

    2016-06-06

    Digital flood-inundation maps for a 6.5-mile reach of Sugar Creek at Crawfordsville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site CRWI3).Flood profiles were computed for the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., and high-water marks from the flood of April 19, 2013, which reached a stage of 15.3 feet. The hydraulic model was then used to compute 13 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 4.0 ft (the NWS “action stage”) to 16.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability

  9. Building Adjustable Pre-storm Reservoir Flood-control Release Rules

    Science.gov (United States)

    Yang, Shun-Nien; Chang, Li-Chiu; Chang, Fi-John; Hsieh, Cheng-Daw

    2017-04-01

    Typhoons hit Taiwan several times every year, which could cause serious flood disasters. Because mountainous terrains and steep landforms can rapidly accelerate the speed of flood flow during typhoon events, rivers cannot be a stable source of water supply. Reservoirs become the most effective floodwater storage facilities for alleviating flood damages in Taiwan. The pre-storm flood-control release can significantly increase reservoir storage capacity available to store floodwaters for reducing downstream flood damage, while the uncertainties of total forecasted rainfalls are very high in different stages of an oncoming typhoon, which may cause the risk of water shortage in the future. This study proposes adjustable pre-storm reservoir flood-control release rules in three designed operating stages with various hydrological conditions in the Feitsui Reservoir, a pivot reservoir for water supply to Taipei metropolitan in Taiwan, not only to reduce the risk of reservoir flood control and downstream flooding but also to consider water supply. The three operating stages before an oncoming typhoon are defined upon the timings when: (1) typhoon news is issued (3-7days before typhoon hit); (2) the sea warning is issued (2-4 days before typhoon hit); and (3) the land warning is issued (1-2 days before typhoon hit). We simulate 95 historical typhoon events with 3000 initial water levels and build some pre-storm flood-control release rules to adjust the amount of pre-release based on the total forecasted rainfalls at different operating stages. A great number of simulations (68.4 millions) are conducted to extract their major consequences and then build the adjustable pre-storm reservoir flood-control release rules. Accordingly, given a total forecasted rainfall and a water level, reservoir decision makers can easily identify the corresponding rule to tell the amount of pre-release in any stage. The results show that the proposed adjustable pre-release rules can effectively

  10. Developing a Malaysia flood model

    Science.gov (United States)

    Haseldine, Lucy; Baxter, Stephen; Wheeler, Phil; Thomson, Tina

    2014-05-01

    Faced with growing exposures in Malaysia, insurers have a need for models to help them assess their exposure to flood losses. The need for an improved management of flood risks has been further highlighted by the 2011 floods in Thailand and recent events in Malaysia. The increasing demand for loss accumulation tools in Malaysia has lead to the development of the first nationwide probabilistic Malaysia flood model, which we present here. The model is multi-peril, including river flooding for thousands of kilometres of river and rainfall-driven surface water flooding in major cities, which may cause losses equivalent to river flood in some high-density urban areas. The underlying hazard maps are based on a 30m digital surface model (DSM) and 1D/2D hydraulic modelling in JFlow and RFlow. Key mitigation schemes such as the SMART tunnel and drainage capacities are also considered in the model. The probabilistic element of the model is driven by a stochastic event set based on rainfall data, hence enabling per-event and annual figures to be calculated for a specific insurance portfolio and a range of return periods. Losses are estimated via depth-damage vulnerability functions which link the insured damage to water depths for different property types in Malaysia. The model provides a unique insight into Malaysian flood risk profiles and provides insurers with return period estimates of flood damage and loss to property portfolios through loss exceedance curve outputs. It has been successfully validated against historic flood events in Malaysia and is now being successfully used by insurance companies in the Malaysian market to obtain reinsurance cover.

  11. Swiss Re Global Flood Hazard Zones: Know your flood risk

    Science.gov (United States)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.

    2012-12-01

    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  12. Quantitative characterization of water transport and flooding in the diffusion layers of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Colombo, L.; Galbiati, S.; Marchesi, R. [Department of Energy, Politecnico di Milano, via Lambruschini 4, 20156 Milano (Italy)

    2010-07-01

    Optimization of water management in polymer electrolyte membrane fuel cells (PEMFC) and in direct methanol fuel cells (DMFC) is a very important factor for the achievement of high performances and long lifetime. A good hydration of the electrolyte membrane is essential for high proton conductivity; on the contrary water in excess may lead to electrode flooding and severe reduction in performances. Many studies on water transport across the gas diffusion layer (GDL) have been carried out to improve these components; anyway efforts in this field are affected by lack of effective experimental methods. The present work reports an experimental investigation with the purpose to determine the global coefficient of water transport across different diffusion layers under real operating conditions. An appropriate and accurate experimental apparatus has been designed and built to test the single GDL under a wide range of operating conditions. Data analysis has allowed quantification of both the water vapor transport across different diffusion layers, and the effects of micro-porous layers; furthermore flooding onset and its consequences on the mass transport coefficient have been characterized by means of suitably defined parameters. (author)

  13. Water NOT wanted - Coastal Floods and Flooding Protection in Denmark

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass

    2016-01-01

    vulnerability towards coastal flooding, the country has experienced severe storm surges throughout history, and hitherto safe areas will become increasingly at risk this century as the climate changes. Historically a seafarers’ nation, Denmark has always been connected with the sea. From medieval time ports...

  14. EFFECT OF THICKENERS ON THE TEXTURE OF STIRRED YOGURT

    Directory of Open Access Journals (Sweden)

    D. GONÇALVEZ

    2009-03-01

    Full Text Available

    The effect of the addition of gelatin and starch on the rheological properties of sweetened plain stirred yogurt was studied by manufacturing six samples: two with gelatin (3000 and 6000 ppm, three with starch (1000, 5000, 10000 ppm and a sample without thickener (control. Rheological characterization of the samples was performed using a coaxial cylinder Haake VT500 viscometer. Yield stress ( and hysteresis were also determined. Syneresis (% was measured by centrifugation at 1100 rpm for 10 minutes. Sensory characterization was performed with a panel of trained sensory assessors, who evaluated the following texture attributes: viscosity, ropiness, creaminess and mouthfeel. All samples showed thixotropic and pseudoplastic behaviour. Since the upward curve did not fit a unique model, it was divided in two regions. The first one fitted Herschel-Bulkley’s model. The addition of gelatine decreased flow behaviour index (n, whereas yield stress significantly increased with the addition of both thickeners. Gelatine was more efficient in reducing syneresis than starch. The addition of thickeners significantly increased all the studied sensory texture attributes. Non-oral and oral parameters were highly correlated witch each other and witch rheological parameters. KEYWORDS: Yogurt; texture; thickeners.

  15. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  16. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs

    Directory of Open Access Journals (Sweden)

    P. K. Gao

    2015-06-01

    Full Text Available Microbial communities in injected water are expected to have significant influence on those of reservoir strata in long-term water flooding petroleum reservoirs. To investigate the similarities and differences in microbial communities in injected water and reservoir strata, high-throughput sequencing of microbial partial 16S rRNA of the water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous sandstone reservoir and a heterogeneous conglomerate reservoir were performed. The results indicate that a small number of microbial populations are shared between the water samples from the injection and production wells in the sandstone reservoir, whereas a large number of microbial populations are shared in the conglomerate reservoir. The bacterial and archaeal communities in the reservoir strata have high concentrations, which are similar to those in the injected water. However, microbial population abundance exhibited large differences between the water samples from the injection and production wells. The number of shared populations reflects the influence of microbial communities in injected water on those in reservoir strata to some extent, and show strong association with the unique variation of reservoir environments.

  17. Impacts of a flash flood on drinking water quality: case study of areas most affected by the 2012 Beijing flood

    Directory of Open Access Journals (Sweden)

    Rubao Sun

    2016-02-01

    Full Text Available In this study, we present a method for identifying sources of water pollution and their relative contributions in pollution disasters. The method uses a combination of principal component analysis and factor analysis. We carried out a case study in three rural villages close to Beijing after torrential rain on July 21, 2012. Nine water samples were analyzed for eight parameters, namely turbidity, total hardness, total dissolved solids, sulfates, chlorides, nitrates, total bacterial count, and total coliform groups. All of the samples showed different degrees of pollution, and most were unsuitable for drinking water as concentrations of various parameters exceeded recommended thresholds. Principal component analysis and factor analysis showed that two factors, the degree of mineralization and agricultural runoff, and flood entrainment, explained 82.50% of the total variance. The case study demonstrates that this method is useful for evaluating and interpreting large, complex water-quality data sets.

  18. Effect of thickening agent in the in vitro mouth, stomach and intestine release of tyrosol from enriched custards

    NARCIS (Netherlands)

    Sanz, T.; Luyten, J.M.J.G.

    2006-01-01

    Custards prepared with four thickeners (two modified starches: waxy maize and tapioca, and two derives of cellulose: CMC and HPMC) and at two levels of consistency were enriched with a water-soluble functional ingredient (tyrosol) and its release evaluated after in vitro mouth, stomach and small

  19. Numerical Simulation of Flood Levels for Tropical Rivers

    International Nuclear Information System (INIS)

    Mohammed, Thamer Ahmed; Said, Salim; Bardaie, Mohd Zohadie; Basri, Shah Nor

    2011-01-01

    Flood forecasting is important for flood damage reduction. As a result of advances in the numerical methods and computer technologies, many mathematical models have been developed and used for hydraulic simulation of the flood. These simulations usually include the prediction of the flood width and depth along a watercourse. Results obtained from the application of hydraulic models will help engineers to take precautionary measures to minimize flood damage. Hydraulic models were used to simulate the flood can be classified into dynamic hydraulic models and static hydraulic models. The HEC-2 static hydraulic model was used to predict water surface profiles for Linggi river and Langat river in Malaysia. The model is based on the numerical solution of the one dimensional energy equation of the steady gradually varied flow using the iteration technique. Calibration and verification of the HEC-2 model were conducted using the recorded data for both rivers. After calibration, the model was applied to predict the water surface profiles for Q10, Q30, and Q100 along the watercourse of the Linggi river. The water surface profile for Q200 for Langat river was predicted. The predicted water surface profiles were found in agreement with the recorded water surface profiles. The value of the maximum computed absolute error in the predicted water surface profile was found to be 500 mm while the minimum absolute error was 20 mm only.

  20. Phosphorus Dynamics in Long-Term Flooded, Drained, and Reflooded Soils

    Directory of Open Access Journals (Sweden)

    Juan Tian

    2017-07-01

    Full Text Available In flooded areas, soils are often exposed to standing water and subsequent drainage, thus over fertilization can release excess phosphorus (P into surface water and groundwater. To investigate P release and transformation processes in flooded alkaline soils, wheat-growing soil and vegetable-growing soil were selected. We flooded-drained-reflooded two soils for 35 d, then drained the soils, and 10 d later reflooded the soils for 17 d. Dissolved reactive phosphorus (DRP, soil inorganic P fractions, Olsen P, pH, and Eh in floodwater and pore water were analyzed. The wheat-growing soil had significantly higher floodwater DRP concentrations than vegetable-growing soil, and floodwater DRP in both soils decreased with the number of flooding days. During the reflooding period, DRP in overlying floodwater from both soils was less than 0.87 mg/L, which was 3–25 times less than that during the flooding period. Regardless of flooding or reflooding, pore water DRP decreased with flooding days. The highest concentration of pore water DRP observed at a 5-cm depth. Under the effect of fertilizing and flooding, the risk of vertical P movement in 10–50 cm was enhanced. P diffusion occurred from the top to the bottom of the soils. After flooding, Al-P increased in both soils, and Fe-P, O-P, Ca2-P decreased, while Fe-P, Al-P, and O-P increased after reflooding, When Olsen P in the vegetable-growing soil exceeded 180.7 mg/kg and Olsen P in the wheat-growing soil exceeded 40.8 mg/kg, the concentration of DRP in pore water increased significantly. Our results showed that changes in floodwater and pore water DRP concentrations, soil inorganic P fractions, and Olsen P are significantly affected by fertilizing and flooding; therefore, careful fertilizer management should be employed on flooded soils to avoid excess P loss.

  1. Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability

    Directory of Open Access Journals (Sweden)

    Hyomin Kim

    2016-01-01

    Full Text Available Countermeasures to urban flooding should consider long-term perspectives, because climate change impacts are unpredictable and complex. Urban green spaces have emerged as a potential option to reduce urban flood risks, and their effectiveness has been highlighted in notable urban water management studies. In this study, flooded areas in Seoul, Korea, were divided into four flooded area types by cluster analysis based on topographic and physical characteristics and verified using discriminant analysis. After division by flooded area type, logistic regression analysis was performed to determine how the flooding probability changes with variations in green space area. Type 1 included regions where flooding occurred in a drainage basin that had a flood risk management infrastructure (FRMI. In Type 2, the slope was steep; the TWI (Topographic Wetness Index was relatively low; and soil drainage was favorable. Type 3 represented the gentlest sloping areas, and these were associated with the highest TWI values. In addition, these areas had the worst soil drainage. Type 4 had moderate slopes, imperfect soil drainage and lower than average TWI values. We found that green spaces exerted a considerable influence on urban flooding probabilities in Seoul, and flooding probabilities could be reduced by over 50% depending on the green space area and the locations where green spaces were introduced. Increasing the area of green spaces was the most effective method of decreasing flooding probability in Type 3 areas. In Type 2 areas, the maximum hourly precipitation affected the flooding probability significantly, and the flooding probability in these areas was high despite the extensive green space area. These findings can contribute towards establishing guidelines for urban spatial planning to respond to urban flooding.

  2. Flooding of a large, passive, pressure-tube LWR

    Energy Technology Data Exchange (ETDEWEB)

    Hejzlar, P.; Todreas, N.E.; Driscoll, M.J. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-09-01

    A reactor concept has been developed which can survive LOCA without scram and without replenishing primary coolant inventory. The proposed concept is a pressure tube type reactor similar to CANDU reactors, but differing in three key aspects: (1) a solid SiC-coated graphite fuel matrix is used in place of fuel pin bundles, (2) the heavy water coolant in the pressure tubes is replaced by light water, and (3) the calandria tank contains a low pressure gas instead of heavy water moderator. The gas displaces the light water from the calandria during normal operation, while during loss of coolant or loss of heat sink accidents, it allows passive calandria flooding. This paper describes the thermal hydraulic characteristics of the gravity driven calandria flooding process. Flooding the calandria space with light water is a unique and very important feature of the proposed pressure-tube LWR concept. The flooding of the top row of fuel channels must be accomplished fast enough so that none of the critical components of the fuel channel exceed their design limits. The flooding process has been modeled and shown to be rapid enough to maintain all components within their design limits. Two other considerations are important. The thermal shock experienced by the calandria and pressure tubes has been evaluated and shown to be within acceptable bounds. Finally, although complete flooding renders the reactor deeply subcritical, various steam/water densities can be hypothesized to be present during the flooding process which could cause reactivity to increase from the initially voided calandria case. One such hypothesis which leads to the maximum possible density of the steam/water mixture in the still unflooded calandria space is entrainment from the free surface. It is shown that the steam/water mixture density yielding the maximum reactivity peak cannot be achieved by entrainment because it exceeds thermohydraulically attainable densities of steam/water by an order of magnitude.

  3. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    International Nuclear Information System (INIS)

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2015-01-01

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins

  4. Flood-inundation maps for the White River near Edwardsport, Indiana

    Science.gov (United States)

    Fowler, Kathleen K.

    2014-01-01

    Digital flood-inundation maps for a 3.3-mile reach of the White River near Edwardsport, (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 03360730, White River near Edwardsport, Ind. Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (site EDWI3.)

  5. U.S./China Bilateral Symposium on Extraordinary Floods

    Science.gov (United States)

    Kirby, W.

    Accurate appraisal of the risk of extreme floods has long been of concern to hydrologists and water resources managers in both the United States and China. In order to exchange information, assess current developments, and discuss further needs in extreme flood analysis, the U.S. Geological Survey (USGS) and the Bureau of Hydrology of the Ministry of Water Resources and Electric Power of the People's Republic of China (PRC) held the Bilateral Symposium on the Analysis of Extraordinary Flood Events, October 14-18, 1985, in Nanjing, China. Co-convenors of the symposium were Marshall E. Moss (USGS) and Hua Shiqian (Nanjing Research Institute of Hydrology). Liang Ruiju (East China Technical University of Water Resources) was executive secretary of the organizing committee. Participants included 23 U.S. delegates, 36 Chinese delegates, and five guests from other countries. Of the U.S. delegates, 13 were from federal agencies, seven were from universities, and three were private consultants. The U.S. National Science Foundation gave financial support to the nonfederal U.S. delegates. Major topics covered in the 52 papers presented included detection of historical floods and evaluation of the uncertainties in their peak discharges and times of occurrence,frequency analysis and design flood determination in the presence of extraordinary floods and historic floods, anduse of storm data in determining design storms and design floods, The symposium was followed by a 6-day study tour in central China, during which laboratories, field activities, and offices of various water resources agencies were visited and sites of documented historic floods on the Yangtze River and its tributaries were examined.

  6. The life of phi: the development of phi thickenings in roots of the orchids of the genus Miltoniopsis.

    Science.gov (United States)

    Idris, Nurul A; Collings, David A

    2015-02-01

    Phi thickenings, bands of secondary wall thickenings that reinforce the primary wall of root cortical cells in a wide range of species, are described for the first time in the epiphytic orchid Miltoniopsis. As with phi thickenings found in other plants, the phi thickenings in Miltoniopsis contain highly aligned cellulose running along the lengths of the thickenings, and are lignified but not suberized. Using a combination of histological and immunocytochemical techniques, thickening development can be categorized into three different stages. Microtubules align lengthwise along the thickening during early and intermediate stages of development, and callose is deposited within the thickening in a pattern similar to the microtubules. These developing thickenings also label with the fluorescently tagged lectin wheat germ agglutinin (WGA). These associations with microtubules and callose, and the WGA labeling, all disappear when the phi thickenings are mature. This pattern of callose and WGA deposition show changes in the thickened cell wall composition and may shed light on the function of phi thickenings in plant roots, a role for which has yet to be established.

  7. The Flooding Water Source Analysis following the Feed Line Break at the Compartment outside Containment for Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Park, Young Chan [ACT, Daejeon (Korea, Republic of)

    2007-07-01

    The Periodic Safety Review(PSR) has been performing for the operating nuclear power plant in Korea. One of the PSR evaluation items is environmental qualification. Flooding issue for nuclear power plants designed and built in 1970 is extremely severe for main steam header compartment and main feed water line region of intermediate building and lower floor. This study presents to analyze flood level of feed water line breaks for the Westinghouse nuclear power plant. This analyses provides the mass and energy releases using the developed methodology for a break outside containment. For the analyses RETRAN-3D computer program is used.

  8. Pumping evaluations with paste tailings thickened close to the surface disposal area

    OpenAIRE

    Wennberg, Thord; Sellgren, Anders

    2007-01-01

    An elevated location of a paste thickener on a ridge close to the disposal area is considered at a Swedish iron ore mine. About 0.7 Mtonnes of thickened tailings are planned to be layered as paste in the vicinity of the thickener over several years with pipeline lengths of up to 900 m after about 20 years. In order to clarify the pipeline pumping characteristics of the tailings product for volumetric solids concentration from 40 to 50%, experiments in loop systems with pipeline inner diameter...

  9. Soil structural behaviour of flooded soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to: identify factors determining of the structural behaviour of flooded soils, as compared to those acting in upland soils; analyse the influence of reductive processes on aggregate stabilising agents; discuss mechanisms of structural deterioration and recovery during the flooding-drying cycle, on the basis of a case study: cattle trampling effects in the flooding Pampa of Argentina. Flooded soils, now known as Hydric soils, are characteristic of wetlands and irrigated fields cropped to rice (paddy soils). In them, water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year. Hydric soils belong to different taxa of the FAO-UNESCO Soil Map (2000). Fluvisols, Planosols and Gleysols are widespread distributed in the globe. The generation of redoximorphic features is due to different causes in each of them. Fluvisols are covered part of the year by surface water from river overflows; Planosols are soils having an impervious Bt horizon, supporting perched water during short periods; and Gleysols are soils affected by stagnant water tables during long periods

  10. The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Molina, Sonia; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2014-05-01

    It is known that the presence of arbuscular mycorrhizal fungi within the plant roots enhances the tolerance of the host plant to different environmental stresses, although the positive effect of the fungi in plants under waterlogged conditions has not been well studied. Tolerance of plants to flooding can be achieved through different molecular, physiological and anatomical adaptations, which will affect their water uptake capacity and therefore their root hydraulic properties. Here, we investigated the root hydraulic properties under non-flooded and flooded conditions in non-mycorrhizal tomato plants and plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Only flooded mycorrhizal plants increased their root hydraulic conductivity, and this effect was correlated with a higher expression of the plant aquaporin SlPIP1;7 and the fungal aquaporin GintAQP1. There was also a higher abundance of the PIP2 protein phoshorylated at Ser280 in mycorrhizal flooded plants. The role of plant hormones (ethylene, ABA and IAA) in root hydraulic properties was also taken into consideration, and it was concluded that, in mycorrhizal flooded plants, ethylene has a secondary role regulating root hydraulic conductivity whereas IAA may be the key hormone that allows the enhancement of root hydraulic conductivity in mycorrhizal plants under low oxygen conditions.

  11. Slurry explosive containing an improved thickening agent

    Energy Technology Data Exchange (ETDEWEB)

    Wakazono, Y.; Otsuka, Y.

    1970-08-18

    A slurry explosive having stable physical properties and a thickening agent which when blended with a slurry explosive, maintains it in a uniform and stable state as a good suspended dispersion condition over a long period of time, are described. The slurry explosive has a composition consisting essentially of ammonium nitrate, or a mixture of ammonium nitrate and an alkali metal nitrate, or a mixture of ammonium nitrate and an alkaline earth metal nitrate, or a mixture of ammonium nitrate and an alkali metal nitrate and an alkaline earth metal nitrate, at least one member selected from the group consisting of 2,4,6-trinitrotoluene, aluminum, smokeless powder and fuels, and water, 0.1 to 2.0% guar gum, not more than 0.3% of a borate or borates, and/or not more than 20% of hexamethylene tetramine, and 0.02 to 2.0% of an antimony compound or compounds, all percents being by weight. (6 claims)

  12. Flood-inundation maps for the White River at Noblesville, Indiana

    Science.gov (United States)

    Martin, Zachary W.

    2017-11-02

    Digital flood-inundation maps for a 7.5-mile reach of the White River at Noblesville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the White River at Noblesville, Ind., streamgage (USGS station number 03349000). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at the same site as the USGS streamgage (NWS site NBLI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current (2016) stage-discharge rating at the USGS streamgage 03349000, White River at Noblesville, Ind., and documented high-water marks from the floods of September 4, 2003, and May 6, 2017. The hydraulic model was then used to compute 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 10.0 ft (the NWS “action stage”) to 24.0 ft, which is the highest stage interval of the current (2016) USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with internet

  13. Realistic modelling of external flooding scenarios - A multi-disciplinary approach

    International Nuclear Information System (INIS)

    Brinkman, J.L.

    2014-01-01

    Extreme phenomena, such as storm surges or high river water levels, may endanger the safety of nuclear power plants (NPPs) by inundation of the plant site with subsequent damage on safety-related buildings. Flooding may result in simultaneous failures of safety-related components, such as service water pumps and electrical equipment. In addition, the accessibility of the plant may be impeded due to flooding of the plant environment. These consequences are so severe that, (re)assessments of flood risk and flood protection measures should be based on accurate state-of-the-art methods. Dutch nuclear regulations require that a nuclear power plant shall withstand all external initiating events with a return period lower than one million years. For external flooding, this requirement is the basis of the so-called nuclear design level (nucleair ontwerp peil, NOP) of the buildings for external flooding, i.e. the water level at which a system - among others, the nuclear island and the ultimate heat sink - should still function properly. In determining the NOP, the mean water level, wave height and wave behaviour during storm surges are taken into account. This concept could also be used to implement external flooding in a PSA, by assuming that floods exceeding NOP levels directly lead to core damage. However, this straightforward modelling ignores some important aspects: the first is the mitigating effect of the external flood protection as dikes or dunes; the second aspect is that although water levels lower than NOP will not directly lead to core damage, they could do so indirectly as a result of combinations of system loss by flooding and random failure of required safety systems that have to bring the plant in a safe, stable state. Time is a third aspect: failure mechanisms need time to develop and time (via duration of the flood) determines the amount of water on site. This paper describes a PSA approach that takes the (structural) reliability of the external defences

  14. A Dynamic Model for Roll Motion of Ships Due to Flooding

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    1997-01-01

    A dynamic model is presented of the roll motion of damaged RoRo vessels which couples the internal cross-flooding flow and the air action in the equalizing compartment. The cross flooding flow and the air motion are modelled by a modified Bernoulli equation, where artificial damping is introduced...... to avoid modal instability based on the original Bernoulli equation. The fluid action of the flooded water on the ship is expressed by its influence on the moment of inertia of the ship and the heeling moment, which is a couple created by the gravitational force of the flooded water and the change...... of buoyancy of the ship.Two limiting flooding cases are examined in the present analysis: The sudden ingress of a certain amount of water to the damaged compartment with no further water exchange between the sea and the flooded compartment during the roll motion, and the continuous ingress of water through...

  15. Interactive Web-based Floodplain Simulation System for Realistic Experiments of Flooding and Flood Damage

    Science.gov (United States)

    Demir, I.

    2013-12-01

    Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.

  16. Interactions of fines with base fractions of oil and its implication in smart water flooding

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    Migration of fines, and formation of oil emulsion have been independently observed during smart water flooding both have been suggested to play a vital role in enhanced oil recovery (EOR). But, the exact role of fines and the reason of emulsion formation are not well studied for carbonate...... reservoirs. This study shows that addition of water and crude oil on calcite fines leads to formation of soluble oil emulsions in the water phase. Formation of these emulsions and its implication in EOR has been experimentally analyzed....

  17. Simulating groundwater-induced sewer flooding

    Science.gov (United States)

    Mijic, A.; Mansour, M.; Stanic, M.; Jackson, C. R.

    2016-12-01

    During the last decade, Chalk catchments of southern England experienced severe groundwater flooding. High groundwater levels resulted in the groundwater ingress into the sewer network that led to restricted toilet use and the overflow of diluted, but untreated sewage to road surfaces, rivers and water courses. In response to these events the water and sewerage company Thames Water Utilities Ltd (TWUL) had to allocate significant funds to mitigate the impacts. It was estimated that approximately £19m was spent responding to the extreme wet weather of 2013-14, along with the use of a fleet of over 100 tankers. However, the magnitude of the event was so large that these efforts could not stop the discharge of sewage to the environment. This work presents the analysis of the risk of groundwater-induced sewer flooding within the Chalk catchment of the River Lambourn, Berkshire. A spatially distributed groundwater model was used to assess historic groundwater flood risk and the potential impacts of changes in future climate. We then linked this model to an urban groundwater model to enable us to simulate groundwater-sewer interaction in detail. The modelling setup was used to identify relationships between infiltration into sewers and groundwater levels at specific points on TWUL's sewer network, and to estimate historic and future groundwater flood risk, and how this varies across the catchment. The study showed the significance of understanding the impact of groundwater on the urban water systems, and producing information that can inform a water company's response to groundwater flood risk, their decision making process and their asset management planning. However, the knowledge gained through integrated modelling of groundwater-sewer interactions has highlighted limitations of existing approaches for the simulation of these coupled systems. We conclude this work with number of recommendations about how to improve such hydrological/sewer analysis.

  18. Flood inundation maps and water-surface profiles for tropical storm Irene and selected annual exceedance probability floods for Flint Brook and the Third Branch White River in Roxbury, Vermont

    Science.gov (United States)

    Ahearn, Elizabeth A.; Lombard, Pamela J.

    2014-01-01

    for the 10-, 2-, 1, or 0.2-percent annual exceedance probabilities. The simulated water-surface elevations for August 2011 flood equal the elevations of State Route 12A about 500 ft downstream of Thurston Hill Road adjacent to the troughs between the rearing ponds. Four flood mitigation alternatives being considered by the Vermont Agency of Transportation to improve the hydraulic performance of Flint Brook and reduce the risk of flooding at the hatchery include: (A) no changes to the infrastructure or existing alignment of Flint Brook (existing conditions [2014]), (B) structural changes to the bridges and the existing retaining wall along Flint Brook, (C) realignment of Flint Brook to flow along the south side of Oxbow Road to accommodate larger stream discharges, and (D) a diversion channel for flows greater than 1-percent annual exceedance probability. Although the 10-, 2-, and 1-percent AEP floods do not flood the hatchery under alternative A (no changes to the infrastructure), the 0.2-percent AEP flow still poses a flooding threat to the hatchery because flow will continue to overtop the existing retaining wall and flood the hatchery. Under the other mitigation alternatives (B, C, and D) that include some variation of structural changes to bridges, a retaining wall, and (or) channel, the peak discharges for the 10-, 2-, 1-, and 0.2-percent annual exceedance probabilities do not flood the hatchery. Water-surface profiles and flood inundation maps of the August 2011 flood and the 10-, 2-, 1-, and 0.2-percent AEPs for four mitigation alternatives were developed for Flint Brook and the Third Branch White River in the vicinity of the hatchery and can be used by the Federal, State, and local agencies to better understand the potential for future flooding at the hatchery.

  19. In the Way of Peacemaker Guide Curve between Water Supply and Flood Control for Short Term Reservoir Operation

    Science.gov (United States)

    Uysal, G.; Sensoy, A.; Yavuz, O.; Sorman, A. A.; Gezgin, T.

    2012-04-01

    Effective management of a controlled reservoir system where it involves multiple and sometimes conflicting objectives is a complex problem especially in real time operations. Yuvacık Dam Reservoir, located in the Marmara region of Turkey, is built to supply annual demand of 142 hm3 water for Kocaeli city requires such a complex management strategy since it has relatively small (51 hm3) effective capacity. On the other hand, the drainage basin is fed by both rainfall and snowmelt since the elevation ranges between 80 - 1548 m. Excessive water must be stored behind the radial gates between February and May in terms of sustainability especially for summer and autumn periods. Moreover, the downstream channel physical conditions constraint the spillway releases up to 100 m3/s although the spillway is large enough to handle major floods. Thus, this situation makes short term release decisions the challenging task. Long term water supply curves, based on historical inflows and annual water demand, are in conflict with flood regulation (control) levels, based on flood attenuation and routing curves, for this reservoir. A guide curve, that is generated using both water supply and flood control of downstream channel, generally corresponds to upper elevation of conservation pool for simulation of a reservoir. However, sometimes current operation necessitates exceeding this target elevation. Since guide curves can be developed as a function of external variables, the water potential of a basin can be an indicator to explain current conditions and decide on the further strategies. Besides, releases with respect to guide curve are managed and restricted by user-defined rules. Although the managers operate the reservoir due to several variable conditions and predictions, still the simulation model using variable guide curve is an urgent need to test alternatives quickly. To that end, using HEC-ResSim, the several variable guide curves are defined to meet the requirements by

  20. Impact of fresh and saline water flooding on leaf gas exchange in two Italian provenances of Tamarix africana Poiret.

    Science.gov (United States)

    Abou Jaoudé, R; de Dato, G; Palmegiani, M; De Angelis, P

    2013-01-01

    In Mediterranean coastal areas, changes in precipitation patterns and seawater levels are leading to increased frequency of flooding and to salinization of estuaries and freshwater systems. Tamarix spp. are often the only woody species growing in such environments. These species are known for their tolerance to moderate salinity; however, contrasting information exists regarding their tolerance to flooding, and the combination of the two stresses has never been studied in Tamarix spp. Here, we analyse the photosynthetic responses of T. africana Poiret to temporary flooding (45 days) with fresh or saline water (200 mm) in two Italian provenances (Simeto and Baratz). The measurements were conducted before and after the onset of flooding, to test the possible cumulative effects of the treatments and effects on twig aging, and to analyse the responses of twigs formed during the experimental period. Full tolerance was evident in T. africana with respect to flooding with fresh water, which did not affect photosynthetic performances in either provenance. Saline flooding was differently tolerated by the two provenances. Moreover, salinity tolerance differently affected the two twig generations. In particular, a reduction in net assimilation rate (-48.8%) was only observed in Baratz twigs formed during the experimental period, compared to pre-existing twigs. This reduction was a consequence of non-stomatal limitations (maximum carboxylation rate and electron transport), probably as a result of higher Na transport to the twigs, coupled with reduced Na storage in the roots. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. System of prediction and warning of floods in the water basin of Struma/ Strymonas River

    International Nuclear Information System (INIS)

    Mimides, Theologos; Rizos, Spyros; Soulis, Kostas; Dimitrov, Dobri

    2004-01-01

    Struma is collecting waters from four countries: Bulgaria, Serbia, FYROM and Greece. Most of its basin area is located in Bulgaria and Greece, while the upper part of its basin is in Bulgaria. There are important hydro technical structures just below the Bulgarian-Greek border, and the floods generated in the Bulgarian part of the basin could significantly affect the security of those structures and their operational rules. That is why several years ago a project related to flood warning at Struma/ Strymonas river basin was formulated and its first phase was completed in 2000. The main objective of the project was to demonstrate the principal possibility for issuing reliable warnings for hazardous flood events with sufficient lead-time to organize flood mitigation measures. The project implementation team included various scientists from the Agricultural University of Athens-Greece (leader), from the Center of Remote Sensing, Bristol University-UK, and from the National Institute of Meteorology and Hydrology of Sofia - Bulgaria. The work program of the first project phase included a range of activities implemented by the Bulgarian and Greek team members, coordinated by the Agricultural University of Athens. Among the activities of the Project are included: a) a preliminary model for peak flood hydrographs and specifications of an early warning system, b) a real time flood forecasting by routing flood hydrographs through the system of the river and Kerkini lake, c) thematic maps of vegetation and land cover derived by satellite remote sensing, d) satellite snow monitoring in the basin, e) an adaptation of the Alladin Weather Forecast Model at the hydrological basin and scaling of the Crocus Snow Model at a preliminary stage, and f) development of a geo environmental recording system.(Author)

  2. When high waters recede and the floodplain reemerges: Evaluating the lingering effects of extreme flooding on stream nitrogen cycling.

    Science.gov (United States)

    Neville, J.; Emanuel, R. E.

    2017-12-01

    In 2016 Hurricane Matthew brought immense flooding and devastation to the Lumbee (aka Lumber) River basin. Some impacts are obvious, such as deserted homes and businesses, but other impacts, including long-term environmental, are uncertain. Extreme flooding throughout the basin established temporary hydrologic connectivity between aquatic environments and upland sources of nutrients and other pollutants. Though 27% of the basin is covered by wetlands, hurricane-induced flooding was so intense that wetlands may have had no opportunity to mitigate delivery of nutrients into surface waters. As a result, how Hurricane Matthew impacted nitrate retention and uptake in the Lumbee River remains uncertain. The unknown magnitude of nitrate transported into the Lumbee River from surrounding sources may have lingering impacts on nitrogen cycling in this stream. With these potential impacts in mind, we conducted a Lagrangian water quality sampling campaign to assess the ability of the Lumbee River to retain and process nitrogen following Hurricane Matthew. We collected samples before and after flooding and compare first order nitrogen uptake kinetics of both periods. The analysis and comparisons allow us to evaluate the long-term impacts of Hurricane Matthew on nitrogen cycling after floodwaters recede.

  3. Global and regional aspects for genesis of catastrophic floods - the problems of forecasting and estimates for mass and water balance (surface and groundwater contribution)

    Science.gov (United States)

    Trifonova, Tatiana; Arakelian, Sergei; Trifonov, Dmitriy; Abrakhin, Sergei

    2017-04-01

    1. The principal goal of present talk is, to discuss the existing uncertainty and discrepancy between water balance estimation for the area under heavy rain flood, on the one hand from the theoretical approach and reasonable data base due to rainfall going from atmosphere and, on the other hand the real practicle surface water flow parameters measured by some methods and/or fixed by some eye-witness (cf. [1]). The vital item for our discussion is that the last characteristics sometimes may be noticeably grater than the first ones. Our estimations show the grater water mass discharge observation during the events than it could be expected from the rainfall process estimation only [2]. The fact gives us the founding to take into account the groundwater possible contribution to the event. 2. We carried out such analysis, at least, for two catastrophic water events in 2015, i.e. (1) torrential rain and catastrophic floods in Lousiana (USA), June 16-20; (2) Assam flood (India), Aug. 22 - Sept. 8. 3. Groundwater flood of a river terrace discussed e.g. in [3] but in respect when rise of the water table above the land surface occurs coincided with intense rainfall and being as a relatively rare phenomenon. In our hypothesis the principal part of possible groundwater exit to surface is connected with a crack-net system state in earth-crust (including deep layers) as a water transportation system, first, being in variated pressure field for groundwater basin and, second, modified by different reasons ( both suddenly (the Krimsk-city flash flood event, July 2012, Russia) and/or smoothly (the Amur river flood event, Aug.-Sept. 2013, Russia) ). Such reconstruction of 3D crack-net under external reasons (resulting even in local variation of pressures in any crack-section) is a principal item for presented approach. 4. We believe that in some cases the interconnection of floods and preceding earthquakes may occur. The problem discuss by us for certain events ( e.g. in addition to

  4. Upstream Structural Management Measures for an Urban Area Flooding in Turkey and their Consequences on Flood Risk Management

    Science.gov (United States)

    Akyurek, Z.; Bozoglu, B.; Girayhan, T.

    2015-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is done. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. 1/1000 scaled maps with the buildings for the urbanized area and 1/5000 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of Q5 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The effects of the available structures like bridges across the river on the flooding are presented. The upstream structural measures are studied on scenario basis. Four sub-catchments of Terme River are considered as contributing the downstream flooding. The existing circumstance of the Terme River states that the meanders of the river have a major effect on the flood situation and lead to approximately 35% reduction in the peak discharge between upstream and downstream of the river. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in at least two of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed. Flood risk is obtained by using the flood hazard maps and water depth-damage functions plotted for a variety of building types and occupancies

  5. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara.

    Science.gov (United States)

    Zhang, Qian; Visser, Eric J W; de Kroon, Hans; Huber, Heidrun

    2015-08-01

    Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant's life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants. © The Author 2015. Published by

  6. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom

    Directory of Open Access Journals (Sweden)

    James D. Miller

    2017-08-01

    New hydrological insights: There is a lack of nationally research focused on the dual impacts of climate change and urbanisation on flooding and water quality in UK urban areas. This is despite there being a clear acceptance that flood risk is increasing, water quality is generally not meeting desirable levels, and that combined population and climate change projections pose a pressing challenge. The available evidence has been found to be of medium-high confidence that both pressures will result in (i an increase in pluvial and fluvial flood risk, and (ii further reduction in water quality caused by point source pollution and altered flow regimes. Evidence concerning urban groundwater flooding, diffuse pollution and water temperature was found to be more sparse and was ascribed a low-medium confidence that both pressures will further exacerbate existing issues. The confidence ascribed to evidence was also found to reflect the utility of current science for setting policy and urban planning. Recurring factors that limit the utility of evidence for managing the urban environment includes: (i climate change projection uncertainty and suitability, (ii lack of sub-daily projections for storm rainfall, (iii the complexity of managing and modelling the urban environment, and (iv lack of probable national-scale future urban land-use projections. Suitable climate products are increasingly being developed and their application in applied urban research is critical in the wake of a series of extreme flooding events across the UK and timely for providing state-of-the-art evidence on which to base possible future water quality legislation in a post Brexit-WFD era.

  7. Chemical weathering outputs from the flood plain of the Ganga

    Science.gov (United States)

    Bickle, Michael J.; Chapman, Hazel J.; Tipper, Edward; Galy, Albert; De La Rocha, Christina L.; Ahmad, Talat

    2018-03-01

    Transport of sediment across riverine flood plains contributes a significant but poorly constrained fraction of the total chemical weathering fluxes from rapidly eroding mountain belts which has important implications for chemical fluxes to the oceans and the impact of orogens on long term climate. We report water and bedload chemical analyses from the Ganges flood-plain, a major transit reservoir of sediment from the Himalayan orogen. Our data comprise six major southern tributaries to the Ganga, 31 additional analyses of major rivers from the Himalayan front in Nepal, 79 samples of the Ganga collected close to the mouth below the Farakka barrage every two weeks over three years and 67 water and 8 bedload samples from tributaries confined to the Ganga flood plain. The flood plain tributaries are characterised by a shallow δ18O - δD array, compared to the meteoric water line, with a low δDexcess from evaporative loss from the flood plain which is mirrored in the higher δDexcess of the mountain rivers in Nepal. The stable-isotope data confirms that the waters in the flood plain tributaries are dominantly derived from flood plain rainfall and not by redistribution of waters from the mountains. The flood plain tributaries are chemically distinct from the major Himalayan rivers. They can be divided into two groups. Tributaries from a small area around the Kosi river have 87Sr/86Sr ratios >0.75 and molar Na/Ca ratios as high as 6. Tributaries from the rest of the flood plain have 87Sr/86Sr ratios ≤0.74 and most have Na/Ca ratios waters have lost up to 70% of their Ca (average ∼ 50%) to precipitation of secondary calcite which is abundant as a diagenetic cement in the flood plain sediments. 31% of the Sr, 8% of the Ca and 45% of the Mg are calculated to be derived from silicate minerals. Because of significant evaporative loss of water across the flood plain, and in the absence of hydrological data for flood plain tributaries, chemical weathering fluxes from the

  8. Survey of Microbial Diversity in Flood Areas during Thailand 2011 Flood Crisis Using High-Throughput Tagged Amplicon Pyrosequencing.

    Science.gov (United States)

    Mhuantong, Wuttichai; Wongwilaiwalin, Sarunyou; Laothanachareon, Thanaporn; Eurwilaichitr, Lily; Tangphatsornruang, Sithichoke; Boonchayaanant, Benjaporn; Limpiyakorn, Tawan; Pattaragulwanit, Kobchai; Punmatharith, Thantip; McEvoy, John; Khan, Eakalak; Rachakornkij, Manaskorn; Champreda, Verawat

    2015-01-01

    The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas.

  9. Flood of April 1975 at Williamston, Michigan

    Science.gov (United States)

    Knutilla, R.L.; Swallow, L.A.

    1975-01-01

    On April 18 between 5 p.m. and 12 p.m. the city of Williamston experienced an intense rain storm that caused the Red Cedar River and the many small streams in the area to overflow their banks and resulted in the most devastating flood since at least 1904. Local officials estimated a loss of \\$775,000 in property damage. Damage from flooding by the Red Cedar River was caused primarily by inundation, rather than by water moving at high velocity, as is common when many streams are flooded. During the flood of April 1975 many basements were flooded as well as the lower floors of some homes in the flood plain. Additional damage occurred in places when sewers backed up and flooded basements, and when ground water seeped through basement walls and floors—situations that affected many homes including those that were well outside of the flood plain.During the time of flooding the U.S. Geological Survey obtained aerial photography and data on a streamflow to document the disaster. This report shows on a photomosaic base map the extent of flooding along the Red Cedar River at Williamston, during the flood. It also presents data obtained at stream-gaging stations near Williamston, as well as the results of peak-flow discharge measurements made on the Red Cedar River at Michigan State Highway M-52 east of the city. Information on the magnitude of the flood can guide in making decisions pertaining to the use of flood-plains in the area. It is one of a series of reports on the April 1975 flood in the Lansing metropolitan area.

  10. Contamination of water in Oliwski Stream after the flood in 2016

    Directory of Open Access Journals (Sweden)

    Matej-Łukowicz Karolina

    2017-01-01

    Full Text Available In the article pollution of stream waters with surface runoff from an urbanized area caused by an extremely high rainfall is discussed. The analyzes were carried out after the rainfall of the depth 152 mm which took place in Gdańsk on 14th and 15th July 2016. This extreme rainfall caused urban flooding, damage of several retention ponds and pollution of surface waters. In the article the results of physical and chemical analyzes of the water samples from Oliwski Stream, inflowing to the Gulf of Gdańsk at the beach in Jelitkowo, are presented. The samples were collected at six points along the Stream in order to evaluate potential pollution sources. The results of the study indicated elevated concentrations of phosphorus compounds and nitrates (V. Additionally, the concentrations of total suspended solids (TSS, solids granulometry and grain size distribution along the stream was investigated.

  11. 2d river flood modelling using Hec-ras 5.0

    OpenAIRE

    Flotats Palau, Joan

    2016-01-01

    Flooding may occur as an overflow of water from water bodies, such as a river, lake or ocean, in which the water overtops or breaks levees, resulting in some of that water escaping its usual boundaries. Floods also occur in rivers when the flow rate exceeds the capacity of the river channel. Floods represent the deadliest natural hazard in Europe, resulting in loss of life, damage to buildings, homes, business and structures such as bridges and roads. Since such consequences ar...

  12. Flood Inundation Mapping and Management using RISAT-1 derived Flood Inundation Areas, Cartosat-1 DEM and a River Flow Model

    Science.gov (United States)

    Kuldeep, K.; Garg, P. K.; Garg, R. D.

    2017-12-01

    The frequent occurrence of repeated flood events in many regions of the world causing damage to human life and property has augmented the need for effective flood risk management. Microwave satellite data is becoming an indispensable asset for monitoring of many environmental and climatic applications as numerous space-borne synthetic aperture radar (SAR) sensors are offering the data with high spatial resolutions and multi-polarization capabilities. The implementation and execution of Flood mapping, monitoring and management applications has become easier with the availability of SAR data which has obvious advantages over optical data due to its all weather, day and night capabilities. In this study, the exploitation of the SAR dataset for hydraulic modelling and disaster management has been highlighted using feature extraction techniques for water area identification and water level extraction within the floodplain. The availability of high precision digital elevation model generated from the Cartosat-1 stereo pairs has enhanced the capability of retrieving the water depth maps by incorporating the SAR derived flood extent maps. This paper illustrates the flood event on June 2013 in Yamuna River, Haryana, India. The water surface profile computed by combining the topographic data with the RISAT-1 data accurately reflects the true water line. Water levels that were computed by carrying out the modelling using hydraulic model in HECRAS also suggest that the water surface profiles provided by the combined use of topographic data and SAR accurately reflect the true water line. The proposed approach has also been found better in extraction of inundation within vegetated areas.

  13. Flooding PSA with Plant Specific Operating Experiences of Korean PWRs

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joon Yull

    2006-01-01

    The purpose of this paper is to update the flooding PSA with Korean plant specific operating experience data and the appropriate estimation method for the flooding frequency to improve the PSA quality. The existing flooding PSA used the NPE (Nuclear Power Experience) database up to 1985 for the flooding frequency. They are all USA plant operating experiences. So an upgraded flooding frequency with Korean specific plant operation experience is required. We also propose a method of only using the PWR (Pressurized Water Reactor) data for the flooding frequency estimation in the case of the flooding area in the primary building even though the existing flooding PSA used both PWR and BWR (Boiled Water Reactor) data for all kinds of plant areas. We evaluate the CDF (Core Damage Frequency) with the modified flooding frequency and compare the results with that of the existing flooding PSA method

  14. A method for emergency flooding of the gland in the main circulating pump of pressurized water reactors and the connection therefor

    International Nuclear Information System (INIS)

    Skalicky, A.

    1978-01-01

    A method is described for the emergency flooding of the main circulating pumps of a pressurized water reactor such that in pressure drop in the flooded gland owing to pump suction, the pump head is connected by the pressure difference action to the flooding gland pipe, this via the heat sink and the filter of the emergency flooding circuit connected to the pump head. The emergency flooding circuit consisting of a pressure reducing valve, a check valve and a stop valve is connected to the pump head, behind the heat sink and the filter. The pressure reducing valve separates two pressure spaces. The former is connected to the pump head via the check valve and to the flooding pipe via the stop valve and the check valve. The latter is connected to the suction pump. (B.S.)

  15. Experimental research on microscopic displacement mechanism of CO2-water alternative flooding in low permeability reservoir

    Science.gov (United States)

    Han, Hongyan; Zhu, Weiyao; Long, Yunqian; Song, Hongqing; Huang, Kun

    2018-02-01

    This paper provides an experimental method to deal with the problems of low oil recovery ratio faced with water flooding utilizing the CO2/water alternate displacement technology. A series of CO2/water alternate flooding experiments were carried out under 60°C and 18.4MPa using high temperature / pressure microscopic visualization simulation system. Then, we used the image processing technique and software to analyze the proportion of remaining oil in the displacement process. The results show that CO2 can extract the lighter chemical components in the crude oil and make it easier to form miscible phase, which can reduce the viscosity and favorable mobility ratio of oil. What’s more, the displacement reduces the impact of gas channeling, which can achieve an enlarged sweeping efficiency to improve filtration ability. In addition, the CO2 dissolved in oil and water can greatly reduce the interfacial tension, which can increase the oil displacement efficiency in a large extent. Generally speaking, the recovery rate of residual oil in the micro - model can be elevated up to 15.89% ∼ 16.48% under formation condition by alternate displacement.

  16. 3D cardiac wall thickening assessment for acute myocardial infarction

    Science.gov (United States)

    Khalid, A.; Chan, B. T.; Lim, E.; Liew, Y. M.

    2017-06-01

    Acute myocardial infarction (AMI) is the most severe form of coronary artery disease leading to localized myocardial injury and therefore irregularities in the cardiac wall contractility. Studies have found very limited differences in global indices (such as ejection fraction, myocardial mass and volume) between healthy subjects and AMI patients, and therefore suggested regional assessment. Regional index, specifically cardiac wall thickness (WT) and thickening is closely related to cardiac function and could reveal regional abnormality due to AMI. In this study, we developed a 3D wall thickening assessment method to identify regional wall contractility dysfunction due to localized myocardial injury from infarction. Wall thickness and thickening were assessed from 3D personalized cardiac models reconstructed from cine MRI images by fitting inscribed sphere between endocardial and epicardial wall. The thickening analysis was performed in 5 patients and 3 healthy subjects and the results were compared against the gold standard 2D late-gadolinium-enhanced (LGE) images for infarct localization. The notable finding of this study is the highly accurate estimation and visual representation of the infarct size and location in 3D. This study provides clinicians with an intuitive way to visually and qualitatively assess regional cardiac wall dysfunction due to infarction in AMI patients.

  17. Decreasing flood risk perception in Porto Alegre – Brazil and its influence on water resource management decisions

    Directory of Open Access Journals (Sweden)

    D. G. Allasia

    2015-06-01

    Full Text Available Porto Alegre is the capital and largest city in the Brazilian state of Rio Grande do Sul in Southern Brazil with approximately 1.5 million inhabitants. The city lies on the eastern bank of the Guaiba Lake, formed by the convergence of five rivers and leading to the Lagoa dos Patos, a giant freshwater lagoon navigable by even the largest of ships. This river junction has become an important alluvial port as well as a chief industrial and commercial centre. However, this strategic location resulted in severe damage because of its exposure to flooding from the river system, affecting the city in the years 1873, 1928, 1936, 1941 and 1967. In order to reduce flood risk, a complex system of levees and pump stations was implemented during 1960s and 1970s. Since its construction, not a single large flood event occurred. However, in recent years, the levees in the downtown region of Porto Alegre were severally criticized by city planners and population. Several projects have been proposed to demolish the Mauá Wall due to the false perception of lack of flood risk. Similar opinions and reactions against flood infrastructure have been observed in other cities in Brazil, such as Itajaí and Blumenau, with disastrous consequences. This paper illustrates how the perception of flood risk in Porto Alegre has changed over recent years as a result of flood infrastructure, and how such changes in perceptions can influence water management decisions.

  18. Effect of Human Saliva on the Consistency of Thickened Drinks for Individuals with Dysphagia

    Science.gov (United States)

    Vallons, Katleen J. R.; Helmens, Harold J.; Oudhuis, A. A. C. M.

    2015-01-01

    Background: Thickening of foods and fluids is commonly used in the management of dysphagia to reduce the risk of aspiration. The use of starch-based thickeners is established. However, the use of gums in thickeners is gaining interest as they are resistant to salivary amylase, which may promote safer swallowing. Aims: To compare the effect of…

  19. The water footprint of human-made reservoirs for hydropower, irrigation, water supply, flood prevention, fishing and recreation on a global scale

    Science.gov (United States)

    Hogeboom, Rick; Knook, Luuk; Hoekstra, Arjen

    2017-04-01

    Increasing the availability of freshwater to meet growing and competing demands is on many policy agendas. The Sustainable Development Goals (SDGs) prescribe sustainable management of water for human consumption. For centuries humans have resorted to building dams to store water in periods of excess for use in times of shortage. Although dams and their reservoirs have made important contributions to human development, it is increasingly acknowledged that reservoirs can be substantial water consumers as well. We estimated the water footprint of human-made reservoirs on a global scale and attributed it to the various reservoir purposes (hydropower generation, residential and industrial water supply, irrigation water supply, flood protection, fishing and recreation) based on their economic value. We found that economic benefits from derived products and services from 2235 reservoirs globally, amount to 311 billion US dollar annually, with residential and industrial water supply and hydropower generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (footprint of reservoirs globally adds up to ˜104 km3yr-1. Attribution per purpose shows that, with a global average water footprint of 21,5 m3GJ,-1 hydropower on average is a water intensive form of energy. We contextualized the water footprint of reservoirs and their purposes with regard to the water scarcity level of the river basin in which they occur. We found the lion's share (55%) of the water footprint is located in non-water scarce basins and only 1% in year-round scarce basins. The purpose for which the reservoir is primarily used changes with increasing water scarcity, from mainly hydropower generation in non-scarce basins, to the (more essential) purposes residential and industrial water supply, irrigation and flood control in scarcer areas. The quantitative explication of how the burden of water consumption from reservoirs is

  20. Tribological characteristic enhancement effects by polymer thickened oil in lubricated sliding contacts

    Science.gov (United States)

    Pratomo, Ariawan Wahyu; Muchammad, Tauviqirrahman, Mohammad; Jamari, Bayuseno, Athanasius P.

    2016-04-01

    Polymer thickened oils are the most preferred materials for modern lubrication applications due to their high shear. The present paper explores a lubrication mechanism in sliding contact lubricated with polymer thickened oil considering cavitation. Investigations are carried out by using a numerical method based on commercial CFD (computational fluid dynamic) software ANSYS for fluid flow phenomenon (Fluent) to assess the tribological characteristic (i.e. hydrodynamic pressure distribution) of lubricated sliding contact. The Zwart-Gerber-Belamri model for cavitation is adopted in this simulation to predict the extent of the full film region. The polymer thickened oil is characterized as non-Newtonian power-law fluid. The simulation results show that the cavitation lead lower pressure profile compared to that without cavitation. In addition, it is concluded that the characteristic of the lubrication performance with polymer thickened oil is strongly dependent on the Power-law index of lubricant.

  1. Study of low-velocity impact response of sandwich panels with shear-thickening gel cores

    Science.gov (United States)

    Wang, Yunpeng; Gong, Xinglong; Xuan, Shouhu

    2018-06-01

    The low-velocity impact response of sandwich panels with shear-thickening gel cores was studied. The impact tests indicated that the sandwich panels with shear-thickening gel cores showed excellent properties of energy dissipation and stress distribution. In comparison to the similar sandwich panels with chloroprene rubber cores and ethylene-propylene-diene monomer cores, the shear-thickening gel cores led to the obviously smaller contact forces and the larger energy absorptions. Numerical modelling with finite element analysis was used to investigate the stress distribution of the sandwich panels with shear-thickening gel cores and the results agreed well with the experimental results. Because of the unique mechanical property of the shear-thickening gel, the concentrated stress on the front facesheets were distributed to larger areas on the back facesheets and the peak stresses were reduced greatly.

  2. Flood-inundation maps for the Elkhart River at Goshen, Indiana

    Science.gov (United States)

    Strauch, Kellan R.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Indiana Office of Community and Rural Affairs, created digital flood-inundation maps for an 8.3-mile reach of the Elkhart River at Goshen, Indiana, extending from downstream of the Goshen Dam to downstream from County Road 17. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to nine selected water levels (stages) at the USGS streamgage at Elkhart River at Goshen (station number 04100500). Current conditions for the USGS streamgages in Indiana may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, stream stage data have been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the Elkhart River at Goshen streamgage. The hydraulic model was then used to compute nine water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from approximately bankfull (5 ft) to greater than the highest recorded water level (13 ft). The simulated water-surface profiles were then combined with a geographic information system (GIS) digital-elevation model (DEM), derived from Light Detection and Ranging (LiDAR) data having a 0.37-ft vertical accuracy and 3.9-ft horizontal resolution in order to delineate the area flooded at each

  3. Remote Sensing and Water Quality Indicators in the West Flood Canal Semarang City: Spatio-temporal Structures of Lansat-8 Derived Chlorophyll-a and Total Suspended Solids

    Science.gov (United States)

    Subiyanto, Sawitri

    2017-12-01

    One of the waters that has been contaminated by industrial waste and domestic waste is the waters of West Flood Canal in Semarang City which is the estuary of the river system, which passes through the Western City of Semarang which is dense with residential and industrial. So, it is necessary to have information about the assessment of water quality in the estuary of the West Flood Canal. Remote sensing technology can analyze the results of recording the spectral characteristics of water with water quality parameters. One of the parameters for assessing water quality is Chlorophyll-a and Total Suspended Solid, can be estimated through remote sensing technology using multispectral Lansat-8 Satellite images data from April, June, and August, 2017 and there are three selected algorithms. Based on the results of TSS and Chlorophyll-A processing, the TSS shows values greater than or equal to 100 which can be said that West Flood Canal is damaged (hypertrophic). While the chlorophyll-a shows a value less than 100 indicating Eutrophic status (threatened). This is caused by the number of suspended materials in the water surface and also because of the disturbance of water vegetation in the form of weeds that destroy the function of the actual West Canal Flood.

  4. Investigation of Flooding Water Depth Management on Yield and Quality Indices of Rice Production

    Directory of Open Access Journals (Sweden)

    Hamid Reza Salemi

    2017-03-01

    Full Text Available Introduction: Water crisis as a majorlimitation factor for agriculture, like other arid and semiarid regions exists in Isfahan province which is located in the central part of the Zayandehrud River Basin (ZRB. Rice appears to be the far-most profitable crop but at the same time it has a major impact on basin scale water resources, especially affecting downstream farmers. In the study area (ShahidFozveh Research Station, the water resources for agricultural production face heightened competition from other sectors like industry and domestic use. This necessitates considering different crops, altered agricultural systems and innovative methods that can reduce the water requirements for the irrigation of rice. The Alternative Wetting and Drying (AWD seems to be an effective method reducing water use for rice crops and possibly save the water for downstream users. There have been no qualitative evaluations of rice production under deficit irrigation practices in Isfahan area. This study sought to determine, under study area conditions, the quantities of water irrigation used with AWD practices, the resulting water productivity (WP and the effects of alternative irrigation management on yield, quality indices and rice production performance. Materials and Methods: The ZRB (41,500 km2 is a closed basin with no outlet to the sea. The research was conducted in the Qahderijan region of Isfahan province, which is located in the central part of the ZRB. The ShahidFozveh Agricultural Research Station (32°, 36’ N, 51°, 36’ E is located at the altitude of 1612 m above the sea level. In order to improve WP and illustration of the impact of various levels of flooding depth on grain yield and quality indices at rice production, a field experiment (3000 m2 was conducted at ShahidFozveh Research Station for 2 years arranged in a split plot design with three replications. It will be necessary to use different scenario of water flooding depth management to

  5. The use of water marks mapping to understand flood overflow events inside karstic cavities: Cueva Fría and Cueva Rosa (Asturias, NW Spain)

    Science.gov (United States)

    González Lemos, Saúl; Stoll, Heather M.

    2014-05-01

    Several karst systems in Asturias (NW Spain) present evidence of fluvial deposits cemented in speleothems that may provide good chronology of past flood events inside the caves. This flood record is under research in two karstic caves of this region, Cueva Fría and Cueva Rosa, which have in common the presence of a perennial stream inside the cave and a low gradient of the cave passage. Immediately after a flood overflow event, water marks, foam and detritus are visible at different heights on the cave walls and correspond to heights of bottlenecks in overflow drainage through the cave passage. Flood events also deposit sand and gravel on terraces on the cave wall and move large volumes of sand in the cave bed. We have noted that detrital particles (like sand or silt particles) are preserved as inclusions inside the stalagmites and that their abundance inside coeval stalagmites decreases as altitude and distance from the perennial stream increase, supporting its fluvial affinity. However, not all the stalagmites that contain detrital particles are located close to the perennial streams. In this work, we have mapped the water marks preserved in the cave walls to reconstruct water levels associated to flood overflow events of different magnitude. We have found that water mark correlation along the cave passage is very useful to define the hydrological behaviour and flood model of the cave during these extreme events. The water mark mapping and correlation have been also useful to prove that during periods of high rainfall, the movement of the sand-bars inside the cave can cover partially or completely active stalagmites, facilitating the cementation process and trapping abundant detrital material inside the stalagmite carbonate. 14C and U/Th dating of the stalagmites can provide a chronology for the detrital rich layers, so that the abundance of fluvial material in the stalagmites can reveal periods of enhanced vs. reduced flooding in the cave over the past several

  6. Autocrine role of vascular IL-15 in intimal thickening

    International Nuclear Information System (INIS)

    Cercek, Miha; Matsumoto, Michiaki; Li, Hongyan; Chyu, K.-Y.; Peter, Ashok; Shah, Prediman K.; Dimayuga, Paul C.

    2006-01-01

    Interleukin 15 (IL-15) is a pro-inflammatory cytokine that modulates T cell recruitment and activation, independent of antigen. It has been detected in human atherosclerotic plaques and atherosclerotic plaques of apoE-/- mice. IL-15 regulates fractalkine (FKN)-CX3CR1 chemokine signaling which is involved in atherogenesis and promotes SMC proliferation. We investigated the role of IL-15 in intimal thickening after arterial injury. Treatment of serum-stimulated SMC with IL-15 in vitro attenuated proliferation and suppressed CX3CR1 and FKN mRNA expression. The role of endogenous IL-15 in vivo was investigated in injured carotid arteries of mice. Periadventitial arterial injury resulted in increased IL-15 expression in the media and neointima, paralleled by increased IL-15 receptor α expression. Blockade of endogenous IL-15 increased intimal thickening. FKN and CX3CR1 expression increased after injury and were further augmented after IL-15 blockade. These data suggest that endogenous IL-15 attenuated intimal thickening after arterial injury. The potential mechanism of action is suppression of CX3CR1 signaling

  7. Floods and droughts on the lower Vistula

    Directory of Open Access Journals (Sweden)

    Marzenna Sztobryn

    2013-06-01

    Full Text Available The study analyses floods and droughts on the lower Vistula based on the data (water levels and flow rates recorded in stations of the Institute of Meteorology and Water Management – National Research Institute (IMGW-PIB in Warsaw, Kępa Polska, Toruń and Tczew. It also includes the causes of flooding and drought in the lower Vistula with the hydrological characteristics from the years 1951–2010. The variability in maximum and minimum annual and monthly flow rates has been analysed for the aforementioned period as well. In addition, the authors have analysed changes in the shape of the flood wave after passing through the reservoir and cascade in Włocławek based on the hydrograph of May and June 2010. It has been found that the flood wave is flattened and extended. This phenomenon is favourable from the point of view of flood actions.

  8. A comparative ultrastructural study of pit membranes with plasmodesmata associated thickenings in four angiosperm species.

    Science.gov (United States)

    Rabaey, David; Lens, Frederic; Huysmans, Suzy; Smets, Erik; Jansen, Steven

    2008-11-01

    Recent micromorphological observations of angiosperm pit membranes have extended the number and range of taxa with pseudo-tori in tracheary elements. This study investigates at ultrastructural level (TEM) the development of pseudo-tori in the unrelated Malus yunnanensis, Ligustrum vulgare, Pittosporum tenuifolium, and Vaccinium myrtillus in order to determine whether these plasmodesmata associated thickenings have a similar developmental pattern across flowering plants. At early ontogenetic stages, the formation of a primary thickening was observed, resulting from swelling of the pit membrane in fibre-tracheids and vessel elements. Since plasmodesmata appear to be frequently, but not always, associated with these primary pit membrane thickenings, it remains unclear which ultrastructural characteristics control the formation of pseudo-tori. At a very late stage during xylem differentiation, a secondary thickening is deposited on the primary pit membrane thickening. Plasmodesmata are always associated with pseudo-tori at these final developmental stages. After autolysis, the secondary thickening becomes electron-dense and persistent, while the primary thickening turns transparent and partially or entirely dissolves. The developmental patterns observed in the species studied are similar and agree with former ontogenetic studies in Rosaceae, suggesting that pseudo-tori might be homologous features across angiosperms.

  9. Multivariate pluvial flood damage models

    International Nuclear Information System (INIS)

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom

    2015-01-01

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks

  10. Multivariate pluvial flood damage models

    Energy Technology Data Exchange (ETDEWEB)

    Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)

    2015-09-15

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  11. Geographical information system (GIS) application for flood prediction at Sungai Sembrong

    Science.gov (United States)

    Kamin, Masiri; Ahmad, Nor Farah Atiqah; Razali, Siti Nooraiin Mohd; Hilaham, Mashuda Mohamad; Rahman, Mohamad Abdul; Ngadiman, Norhayati; Sahat, Suhaila

    2017-10-01

    The occurrence of flood is one of natural disaster that often beset Malaysia. The latest incident that happened in 2007 was the worst occurrence of floods ever be set in Johor. Reporting floods mainly focused on rising water rising levels, so about once a focus on the area of flood delineation. A study focused on the effectiveness of using Geographic Information System (GIS) to predict the flood by taking Sg. Sembrong, Batu Pahat, Johor as study area. This study combined hydrological model and water balance model in the display to show the expected flood area for future reference. The minimum, maximum and average rainfall data for January 2007 at Sg Sembrong were used in this study. The data shows that flood does not occurs at the minimum and average rainfall of 17.2mm and 2mm respectively. At maximum rainfall, 203mm, shows the flood area was 9983 hectares with the highest level of the water depth was 2m. The result showed that the combination of hydrological models and water balance model in GIS is very suitable to be used as a tool to obtain preliminary information on flood immediately. Besides that, GIS system is a very powerful tool used in hydrology engineering to help the engineer and planner to imagine the real situation of flood events, doing flood analysis, problem solving and provide a rational, accurate and efficient decision making.

  12. Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens.

    Science.gov (United States)

    Argus, R E; Colmer, T D; Grierson, P F

    2015-06-01

    We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water-limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches. © 2014 John Wiley & Sons Ltd.

  13. Flood-inundation maps for the Wabash River at Lafayette, Indiana

    Science.gov (United States)

    Kim, Moon H.

    2018-05-10

    Digital flood-inundation maps for an approximately 4.8-mile reach of the Wabash River at Lafayette, Indiana (Ind.) were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 03335500, Wabash River at Lafayette, Ind. Current streamflow conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the internet at https://waterdata.usgs.gov/in/nwis/uv?site_no=03335500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (https://water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the Wabash River at Lafayette, Ind. NWS AHPS-forecast peak-stage information may be used with the maps developed in this study to show predicted areas of flood inundation.For this study, flood profiles were computed for the Wabash River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03335500, Wabash River at Lafayette, Ind., and high-water marks from the flood of July 2003 (U.S. Army Corps of Engineers [USACE], 2007). The calibrated hydraulic model was then used to determine 23 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived

  14. Flood-resilient waterfront development in New York City: bridging flood insurance, building codes, and flood zoning.

    Science.gov (United States)

    Aerts, Jeroen C J H; Botzen, W J Wouter

    2011-06-01

    Waterfronts are attractive areas for many-often competing-uses in New York City (NYC) and are seen as multifunctional locations for economic, environmental, and social activities on the interface between land and water. The NYC waterfront plays a crucial role as a first line of flood defense and in managing flood risk and protecting the city from future climate change and sea-level rise. The city of New York has embarked on a climate adaptation program (PlaNYC) outlining the policies needed to anticipate the impacts of climate change. As part of this policy, the Department of City Planning has recently prepared Vision 2020: New York City Comprehensive Waterfront Plan for the over 500 miles of NYC waterfront (NYC-DCP, 2011). An integral part of the vision is to improve resilience to climate change and sea-level rise. This study seeks to provide guidance for advancing the goals of NYC Vision 2020 by assessing how flood insurance, flood zoning, and building code policies can contribute to waterfront development that is more resilient to climate change. © 2011 New York Academy of Sciences.

  15. Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations

    International Nuclear Information System (INIS)

    Gunde, Akshay C.; Bera, Bijoyendra; Mitra, Sushanta K.

    2010-01-01

    The present study reports a numerical investigation of water and CO 2 (carbon dioxide) flooding at the pore scale of a porous medium. We use high resolution micro-computed tomography (micro-CT) images of Berea sandstone core to obtain the pore geometry. The numerical solution used for the simulation was carried out by a finite element based software package. Level Set method is used to determine the position of the interface between two immiscible fluids when oil is displaced by water and CO 2 , respectively. The present formulation is validated against single-phase flow through the porous structure. It is found that, fluid flow inside the pore space takes place through preferential inlet and outlet pores. For two-phase flow, it is observed that continuous displacement of oil occurs during water flooding but CO 2 is able to displace oil at certain locations in the pores. Also, the separation of flow front is observed in the case of CO 2 flooding. A quantitative comparison of the results obtained in two types of flooding simulations suggests that water displaces a higher volume of oil than CO 2 in the time period for which the simulations are performed.

  16. A new approach of proration-injection allocation for water-flooding mature oilfields

    Directory of Open Access Journals (Sweden)

    Shuyong Hu

    2015-03-01

    Full Text Available This paper presents a new method of injection-production allocation estimation for water-flooding mature oilfields. The suggested approach is based on logistic growth rate functions and several type-curve matching methods. Using the relationship between these equations, oil production and water injection rate as well as injection-production ratio can be easily forecasted. The calculation procedure developed and outlined in this paper requires very few production data and is easily implemented. Furthermore, an oilfield case has been analyzed. The synthetic and field cases validate the calculation procedure, so it can be accurately used in forecasting production data, and it is important to optimize the whole injection-production system.

  17. Urban flood return period assessment through rainfall-flood response modelling

    Science.gov (United States)

    Murla Tuyls, Damian; Thorndahl, Søren

    2017-04-01

    order to guarantee quality of the assessment, especially in design of complex UDS, where features as the main slope, hydraulic capacity, permeability, etc. can play an important role. In addition, a novel approach has been applied to map the response time (Tc) of the flood prone areas of the system under study. Together with the flood area and volume RP estimates this provides valuable knowledge suggesting to consider the different subareas of the UDS for design purposes and to establish a robust database that allows urban areas to be resilient against the severe impact of rainfall. Acknowledgement to ERA-NET Cofund Water Works 2014 (project MUFFIN) for the partial funding of this research; to the Danish Wastewater Pollution Committee and the Danish Meteorological Institute (DMI) for providing the rainfall dataset; to the Danish Geodata Agency for providing the DTM data and to DHI for providing license to MIKE software packages. The applied model has been made available for this study by Aarhus Water Utility Services. References DHI, 2014. MIKE by DHI software package 2014. Hørsholm, DK. DS/EN 752, 2008. Drain and sewer systems outside buildings.

  18. On-Farm, Almond Orchard Flooding as a Viable Aquifer Recharge Alternative

    Science.gov (United States)

    Ulrich, C.; Nico, P. S.; Wu, Y.; Newman, G. A.; Conrad, M. E.; Dahlke, H. E.

    2017-12-01

    In 2014, California legislators passed the Sustainable Groundwater Management Act (SGMA), which requires groundwater sustainability agencies (areas) to identify/prioritize water basins, develop current and projected water use/needs, develop a groundwater management plan, develop fees, etc. One of the challenges for implementing SGMA is the lack of data that can support alternative groundwater recharge methods such as on-farm flooding. Prior to anthropogenic river control, river floodplains captured excess water during overbank flow in the rainy season in the CA central valley. Today levees and canals strategically route rainy season high flows to the delta/ocean when irrigation water is not needed. Utilizing farmland once again as infiltration basins for groundwater banking and aquifer recharge could be a viable answer to California's depleted central valley aquifers. Prior to 2017, U.C. Davis had partnered with the Almond Board of California (ABC) and local growers to study the efficacy of agricultural flooding and the effects on annual almond crops (. LBNL joined this team to help understand the conveyance of recharge water, using electrical resistivity tomography (ERT), into the subsurface (i.e. localized fast paths, depth of infiltration, etc.) during flooding events. The fate of the recharge water is what is significant to understanding the viability of on-farm flooding as an aquifer recharge option. In this study two orchards (in Delhi and Modesto, CA), each approximately 2 acres, were flooded during the almond tree dormant period (January), to recharge 2 acre/ft of water into the local aquifers. ERT was used to characterize (soil structure) and monitor water infiltration over a single flooding event to investigate the fate of applied water. Data were collected every hour prior to flooding (baseline), during, and after all flood water had infiltrated (about 5 days total). Our time-lapse ERT results show a heterogeneous soil structure that leads to non

  19. Flood-inundation maps for the White River at Indianapolis, Indiana, 2014

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2015-01-01

    Digital flood-inundation maps for a 6.4-mile reach of the White River in Indianapolis, Indiana, from 0.3 miles upstream of Michigan Street to the Harding Street Generating Station dam (at the confluence with Lick Creek), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the White River at Indianapolis, Ind. (station number 03353000). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/or the National Weather Service (NWS) Advanced Hydrologic Prediction Service athttp://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site.

  20. Flood-inundation maps for the Schoharie Creek at Prattsville, New York, 2014

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2016-02-18

    Digital flood-inundation maps for a 2.6-mile reach of the Schoharie Creek at Prattsville, New York, were created by the U.S. Geological Survey (USGS) in cooperation with the New York State Department of Environmental Conservation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Schoharie Creek at Prattsville (station number 01350000). Near-real-time stages at this streamgage may be obtained online from the USGS National Water Information System (http://waterdata.usgs.gov/) or the National Weather Service Advanced Hydrologic Prediction Service (http://water.weather.gov/ahps/), which also forecasts flood hydrographs at this site. National Weather Service-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas and depths of flood inundation.

  1. Unjust waters. Climate change, flooding and the protection of poor urban communities. Experiences from six African cities

    International Nuclear Information System (INIS)

    2007-02-01

    Floods are natural phenomena, but damage and losses from floods are the consequence of human action. The increasing climatic variability, storminess and more frequent flooding driven by climate change will affect poor urban communities far more than other people living in towns and cities. Although driven by human activities ranging from modernisation and development to land degradation by poor farmers and grazing flocks, climate change in Africa has uneven impacts, affecting the poor severely. Flooding in urban areas is not just related to heavy rainfall and extreme climatic events; it is also related to changes in the built-up areas themselves. Urbanisation aggravates flooding by restricting where floods waters can go, by covering large parts of the ground with roofs, roads and pavements, by obstructing sections of natural channels, and by building drains that ensure that water moves to rivers more rapidly than it did under natural conditions. As people crowd into African cities, these human impacts on urban land surfaces and drainage intensify. The proportions of small stream and river catchment areas that are urbanised will increase. As a result, even quite moderate storms now produce quite high flows in rivers because much more of the catchment area supplies direct surface runoff from its hard surfaces and drains. Where streams flow through a series of culverts and concrete channels, they cannot adjust to changes in the frequency of heavy rain as natural streams do. They often get obstructed by silt and urban debris, particularly when houses are built close to the channels. Such situations frequently arise where poor people build their shelters on low-lying flood plains, over swamps or above the tidewater on the coast. The effects of climate change are superimposed on these people-driven local land surface modifications. The links between changes in land use and in heavy rainfall patterns, the frequency and depth of flooding and the problems of the urban poor

  2. Flood Inundation Mapping in the Logone Floodplain from Multi Temporal Landsat ETM+Imagery

    Science.gov (United States)

    Jung, Hahn Chul; Alsdorf, Douglas E.; Moritz, Mark; Lee, Hyongki; Vassolo, Sara

    2011-01-01

    Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to approximately 5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.

  3. Novel CO{sub 2}-thickeners for improved mobility control

    Energy Technology Data Exchange (ETDEWEB)

    Enick, Dr. Robert M.; Beckman, Dr. Eric J.; Hamilton, Dr. Andrew

    2000-02-02

    The objective of this study was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO{sub 2}. Previously, fluoroacrylate homopolymers and fluorinated telechelic ionomers were shown to increase the viscosity of carbon dioxide by a factor of 3--4 at concentrations of 2--3 at concentrations of 4--5 wt%. This report details the findings for several new types of carbon dioxide thickening candidates. Hydrocarbon-fluorocarbon random copolymers, sulfonated hydrocarbon-fluorocarbon random copolymers, semifluorinated trialkyltin fluorides and small hydrogen-bounding compounds were evaluated.

  4. Lessons Learned from Missing Flooding Barriers Operating Experience

    International Nuclear Information System (INIS)

    Simic, Z.; Veira, M. P.

    2016-01-01

    Flooding hazard is highly significant for nuclear power plant safety because of its potential for common cause impact on safety related systems, and because operating experience reviews regularly identify flooding as a cause of concern. Source of the flooding could be external (location) or internal (plant design). The amount of flooding water could vary but even small amount might suffice to affect redundant trains of safety related systems for power supply and cooling. The protection from the flooding is related to the design-basis flood level (DBFL) and it consists of three elements: structural, organizational and accessibility. Determination of the DBFL is critical, as Fukushima Daiichi accident terribly proved. However, as the topic of flooding is very broad, the scope of this paper is focused only on the issues related to the missing flood barriers. Structural measures are physically preventing flooding water to reach or damage safety related system, and they could be permanent or temporary. For temporary measures it is important to have necessary material, equipment and organizational capacity for the timely implementation. Maintenance is important for permanent protection and periodical review is important for assuring readiness and feasibility of temporary flooding protection. Final flooding protection element is assured accessibility to safety related systems during the flooding. Appropriate flooding protection is based on the right implementation of design requirements, proper maintenance and periodic reviews. Operating experience is constantly proving how numerous water sources and systems interactions make flooding protection challenging. This paper is presenting recent related operating experience feedback involving equipment, procedures and analysis. Most frequent deficiencies are: inadequate, degraded or missing seals that would allow floodwaters into safety related spaces. Procedures are inadequate typically because they underestimate necessary

  5. FloodProBE: technologies for improved safety of the built environment in relation to flood events

    International Nuclear Information System (INIS)

    Ree, C.C.D.F. van; Van, M.A.; Heilemann, K.; Morris, M.W.; Royet, P.; Zevenbergen, C.

    2011-01-01

    The FloodProBE project started as a FP7 research project in November 2009. Floods, together with wind related storms, are considered the major natural hazard in the EU in terms of risk to people and assets. In order to adapt urban areas (in river and coastal zones) to prevent flooding or to be better prepared for floods, decision makers need to determine how to upgrade flood defences and increasing flood resilience of protected buildings and critical infrastructure (power supplies, communications, water, transport, etc.) and assess the expected risk reduction from these measures. The aim of the FloodProBE-project is to improve knowledge on flood resilience and flood protection performance for balancing investments in flood risk management in urban areas. To this end, technologies, methods and tools for assessment purposes and for the adaptation of new and existing buildings and critical infrastructure are developed, tested and disseminated. Three priority areas are addressed by FloodProBE. These are: (i) vulnerability of critical infrastructure and high-density value assets including direct and indirect damage, (ii) the assessment and reliability of urban flood defences including the use of geophysical methods and remote sensing techniques and (iii) concepts and technologies for upgrading weak links in flood defences as well as construction technologies for flood proofing buildings and infrastructure networks to increase the flood resilience of the urban system. The primary impact of FloodProBE in advancing knowledge in these areas is an increase in the cost-effectiveness (i.e. performance) of new and existing flood protection structures and flood resilience measures.

  6. Hurricane coastal flood analysis using multispectral spectral images

    Science.gov (United States)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However

  7. Dynamics of water and nutrients for potted plants induced by flooded bench fertigation : experiments and simulation

    NARCIS (Netherlands)

    Otten, W.

    1994-01-01

    Dynamics of water and nutrients as affected by physical and chemical characteristics of a substrate, fertigation method and schedule, and plant uptake were studied for a flooded bench fertigation system for potted plants, through a detailed experimental study of the root environment and a

  8. Flood-inundation maps for the Wabash River at Terre Haute, Indiana

    Science.gov (United States)

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 6.3-mi reach of the Wabash River from 0.1 mi downstream of the Interstate 70 bridge to 1.1 miles upstream of the Route 63 bridge, Terre Haute, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to select water levels (stages) at the USGS streamgage Wabash River at Terre Haute (station number 03341500). Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03341500&agency_cd=USGS&p"). In addition, the same data are provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps//). Within this system, the NWS forecasts flood hydrographs for the Wabash River at Terre Haute that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the Wabash River at the Terre Haute streamgage. The hydraulic model was then used to compute 22 water-surface profiles for flood stages at 1-ft interval referenced to the streamgage datum and ranging from bank-full to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37-ft vertical accuracy and a 1.02-ft horizontal accuracy) to delineate the area flooded at each water

  9. Creating a Flood Risk Index to Improve Community Resilience

    Science.gov (United States)

    Klima, K.; El Gammal, L.

    2017-12-01

    While flood risk reduction is an existent discourse and agenda in policy and insurance, vulnerabilities vary between communities; some communities may have aging infrastructure, or an older/poorer population less able to absorb a flood, putting them at increased risk from the hazards. As a result, some are considering environmental justice aspects of flood risk reduction. To date, catastrophe models have focused on creating floodmaps (e.g., NOAA's Sea Level Rise Viewer, Climate Central's Surging Seas), or on linking hydrological models to economic loss models (e.g., HEC-RAS + HAZUS). However, this approach may be highly inequitable between areas of different income (as well as other demographics). Some have begun work on combining hydrology with vulnerability information (e.g., USACE's North Atlantic Comprehensive Coastal Study). To our knowledge, no one has tried to adapt the more advanced known heat risk theory to water risk by combining hydrology information (e.g., HEC-RAS, floodplain maps) with the social vulnerability (e.g., Cutter et al.) of the residents. This project will create a method to combine water hazard data with a derived water vulnerability index to help a community understand their current and future water risk. We will use the case study area of Pittsburgh, PA, which faces severe precipitation and riverine flooding hazards. Building on present literature of factors influencing water vulnerability contextualized to the Pittsburgh region, we will identify, quantify, and map the top factors impacting water vulnerability. We will combine these with flood maps to identify the geospatial distribution of water risk. This work will allow policy makers to identify location-specific aspects of water vulnerability and risk in any community, thus promoting environmental justice. It is possible that this type of original research would create maps of relative water risk that may prove as understandable to the general public as other flood maps, and may also

  10. A new methodology for dynamic modelling of health risks arising from wastewater influenced urban flooding

    Science.gov (United States)

    Jørgensen, Claus; Mark, Ole; Djordjevic, Slobodan; Hammond, Michael; Khan, David M.; Erichsen, Anders; Dorrit Enevoldsen, Ann; Heinicke, Gerald; Helwigh, Birgitte

    2015-04-01

    Indroduction Urban flooding due to rainfall exceeding the design capacity of drainage systems is a global problem and it has significant economic and social consequences. While the cost of the direct flood damages of urban flooding is well understood, the indirect damages, like the water borne diseases is in general still poorly understood. Climate changes are expected to increase the frequency of urban flooding in many countries which is likely to increase water borne diseases. Diarrheal diseases are most prevalent in developing countries, where poor sanitation, poor drinking water and poor surface water quality causes a high disease burden and mortality, especially during floods. The level of water borne diarrhea in countries with well-developed water and waste water infrastructure has been reduced to an acceptable level, and the population in general do not consider waste water as being a health risk. Hence, exposure to wastewater influenced urban flood water still has the potential to cause transmission of diarrheal diseases. When managing urban flooding and planning urban climate change adaptations, health risks are rarely taken into consideration. This paper outlines a novel methodology for linking dynamic urban flood modelling with Quantitative Microbial Risk Assessment (QMRA). This provides a unique possibility for understanding the interaction between urban flooding and the health risks caused by direct human contact with flood water and provides an option for reducing the burden of disease in the population through the use of intelligent urban flood risk management. Methodology We have linked hydrodynamic urban flood modelling with quantitative microbial risk assessment (QMRA) to determine the risk of infection caused by exposure to wastewater influenced urban flood water. The deterministic model MIKE Flood, which integrates the sewer network model in MIKE Urban and the 2D surface model MIKE21, was used to calculate the concentration of pathogens in the

  11. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the

  12. Rheological characterization of modified foodstuffs with food grade thickening agents

    Science.gov (United States)

    Reyes-Ocampo, I.; Aguayo-Vallejo, JP; Ascanio, G.; Córdova-Aguilar, MS

    2017-01-01

    This work describes a rheological characterization in terms of shear and extensional properties of whole milk, modified with food grade thickening agents (xanthan and carboxymethyl cellulose) with the purpose of being utilized in dysphagia treatment. Shear viscosity of the thickened fluids (2% wt. of xanthan and CMC) were measured in a stress-controlled rheometer and for extensional viscosity, a custom-built orifice flowmeter was used, with elongation rates from 20 to 3000 s-1. Such elongation-rate values represent the entire swallowing process, including the pharyngeal and esophageal phases. The steady-state shear and extensional flow curves were compared with the flow curve of a pudding consistency BaSO4 suspension (α=05), typically used as a reference fluid for the specialized commercial dysphagia products. The modified fluids presented non-Newtonian behavior in both, shear and extensional flows, and the comparison with the reference fluid show that the thickened milk prepared here, can be safely used for consumption by patients with severe dysphagia.

  13. Flood-inundation maps for the St. Marys River at Fort Wayne, Indiana

    Science.gov (United States)

    Menke, Chad D.; Kim, Moon H.; Fowler, Kathleen K.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the St. Marys River that extends from South Anthony Boulevard to Main Street at Fort Wayne, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Fort Wayne. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. Current conditions at the USGS streamgages in Indiana may be obtained from the National Water Information System: Web Interface. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. The hydraulic model was then used to simulate 11 water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (11 maps in all) so that for any given flood stage users will be

  14. Future flood risk estimates along the river Rhine

    NARCIS (Netherlands)

    te Linde, A.H.; Bubeck, P.; Dekkers, J.E.C.; de Moel, H.; Aerts, J.C.J.H.

    2011-01-01

    In Europe, water management is moving from flood defence to a risk management approach, which takes both the probability and the potential consequences of flooding into account. It is expected that climate change and socio-economic development will lead to an increase in flood risk in the Rhine

  15. Simulating Catchment Scale Afforestation for Mitigating Flooding

    Science.gov (United States)

    Barnes, M. S.; Bathurst, J. C.; Quinn, P. F.; Birkinshaw, S.

    2016-12-01

    After the 2013-14, and the more recent 2015-16, winter floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. However, the role of forests as a natural flood management practice remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. This project aims to improve the understanding of the impacts of upland afforestation on flood risk at the sub-catchment and full catchment scales. This will be achieved through an integrated fieldwork and modelling approach, with the use of a series of process based hydrological models to scale up and examine the effects forestry can have on flooding. Furthermore, there is a need to analyse the extent to which land management practices, catchment system engineering and the installation of runoff attenuation features (RAFs), such as engineered log jams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. Additionally, the proportion of a catchment or riparian reach that would need to be forested in order to achieve a significant impact on reducing downstream flooding will be defined. The consequential impacts of a corresponding reduction in agriculturally productive farmland and the potential decline of water resource availability will also be considered in order to safeguard the UK's food security and satisfy the global demand on water resources.

  16. The 16 May 2005 Flood in Yosemite National Park--A Glimpse into High-Country Flood Generation in the Sierra Nevada

    Science.gov (United States)

    Dettinger, M.; Lundquist, J.; Cayan, D.; Meyer, J.

    2006-12-01

    On 16 May 2005, a Pacific storm drew warm, wet subtropical air into the Sierra Nevada, causing moderate rains and major flooding. The flood raised Hetch Hetchy and Tenaya Lake levels markedly and inundated large parts of Yosemite Valley, requiring evacuations and raising public-safety concerns in Yosemite National Park. This was the first major flood to be recorded by the high-country hydroclimatic network in the Park. Since 2001, scientists from US Geological Survey, Scripps Institution of Oceanography, California Department of Water Resources, National Park Service, and other institutions have developed the network of over 30 streamflow and 50 air-temperature loggers at altitudes ranging from 3000 m above sea level, and 8 snow-instrumentation sites measuring snow-water contents, snow depths, radiation, soil moisture, and temperatures in air, snow, and soil. The network documented flooding that derived its runoff mostly from high-altitude rainfall on soils already wet due to the onset of snowmelt a few days earlier. Air temperatures during the storm were above freezing up to altitudes of nearly 3000 m, so that rain fell to as high as 3000 m, compared with normal winter snowlines nearer 1500 m. Streams flooded below 3000 m, and above that altitude did not flood or contribute much to the flooding below. Meanwhile, no significant snow-water content changes were measured. Thus this flood resulted from rain-through-snow runoff rather than rain-on-snow melting. In the Park as a whole, about five times more catchment area received rain, rather than snow, during this storm than during typical cool winter storms. Because the flood was more a result of the large area that received rainfall than of melting snow, snowpack reductions that are expected if recent warming trends continue would not have reduced the flood. Instead, the opportunity for warm storms may increase if warming continues, in which case the potential for this kind of flooding will increase.

  17. Catchment scale multi-objective flood management

    Science.gov (United States)

    Rose, Steve; Worrall, Peter; Rosolova, Zdenka; Hammond, Gene

    2010-05-01

    Rural land management is known to affect both the generation and propagation of flooding at the local scale, but there is still a general lack of good evidence that this impact is still significant at the larger catchment scale given the complexity of physical interactions and climatic variability taking place at this level. The National Trust, in partnership with the Environment Agency, are managing an innovative project on the Holnicote Estate in south west England to demonstrate the benefits of using good rural land management practices to reduce flood risk at the both the catchment and sub-catchment scales. The Holnicote Estate is owned by the National Trust and comprises about 5,000 hectares of land, from the uplands of Exmoor to the sea, incorporating most of the catchments of the river Horner and Aller Water. There are nearly 100 houses across three villages that are at risk from flooding which could potentially benefit from changes in land management practices in the surrounding catchment providing a more sustainable flood attenuation function. In addition to the contribution being made to flood risk management there are a range of other ecosystems services that will be enhanced through these targeted land management changes. Alterations in land management will create new opportunities for wildlife and habitats and help to improve the local surface water quality. Such improvements will not only create additional wildlife resources locally but also serve the landscape response to climate change effects by creating and enhancing wildlife networks within the region. Land management changes will also restore and sustain landscape heritage resources and provide opportunities for amenity, recreation and tourism. The project delivery team is working with the National Trust from source to sea across the entire Holnicote Estate, to identify and subsequently implement suitable land management techniques to manage local flood risk within the catchments. These

  18. The impact of bathymetry input on flood simulations

    Science.gov (United States)

    Khanam, M.; Cohen, S.

    2017-12-01

    Flood prediction and mitigation systems are inevitable for improving public safety and community resilience all over the worldwide. Hydraulic simulations of flood events are becoming an increasingly efficient tool for studying and predicting flood events and susceptibility. A consistent limitation of hydraulic simulations of riverine dynamics is the lack of information about river bathymetry as most terrain data record water surface elevation. The impact of this limitation on the accuracy on hydraulic simulations of flood has not been well studies over a large range of flood magnitude and modeling frameworks. Advancing our understanding of this topic is timely given emerging national and global efforts for developing automated flood predictions systems (e.g. NOAA National Water Center). Here we study the response of flood simulation to the incorporation of different bathymetry and floodplain surveillance source. Different hydraulic models are compared, Mike-Flood, a 2D hydrodynamic model, and GSSHA, a hydrology/hydraulics model. We test a hypothesis that the impact of inclusion/exclusion of bathymetry data on hydraulic model results will vary in its magnitude as a function of river size. This will allow researcher and stake holders more accurate predictions of flood events providing useful information that will help local communities in a vulnerable flood zone to mitigate flood hazards. Also, it will help to evaluate the accuracy and efficiency of different modeling frameworks and gage their dependency on detailed bathymetry input data.

  19. Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication

    Science.gov (United States)

    Hagemeier-Klose, M.; Wagner, K.

    2009-04-01

    Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey. The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths) which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.

  20. Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication

    Directory of Open Access Journals (Sweden)

    M. Hagemeier-Klose

    2009-04-01

    Full Text Available Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey.

    The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.

  1. Namibian Flood Early Warning SensorWeb Pilot

    Science.gov (United States)

    Mandl, Daniel; Policelli, Fritz; Frye, Stuart; Cappelare, Pat; Langenhove, Guido Van; Szarzynski, Joerg; Sohlberg, Rob

    2010-01-01

    The major goal of the Namibia SensorWeb Pilot Project is a scientifically sound, operational trans-boundary flood management decision support system for Southern African region to provide useful flood and waterborne disease forecasting tools for local decision makers. The Pilot Project established under the auspices of: Namibian Ministry of Agriculture Water and Forestry (MAWF), Department of Water Affairs; Committee on Earth Observing Satellites (CEOS), Working Group on Information Systems and Services (WGISS); and moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). The effort consists of identifying and prototyping technology which enables the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management.

  2. Flood risk on the Black sea coast of Russia

    Science.gov (United States)

    Alekseevsky, Nikolay; Magritsky, Dmitry; Koltermann, Peter; Krylenko, Inna; Umina, Natalya; Aybulatov, Denis; Efremova, Natalya; Lebedeva, Seraphima

    2013-04-01

    The data of unique database "Floods in the coastal zones of Europeans part of Russia", developed by authors, are shown, that frequency of floods and damage in the coastal zones are growing. There is most dangerous situation on the Black sea coast of Russia. Here the main part of settlements, resorts and industry is situated in the river valleys and mouths. All main roads and pipelines cross the river channels. The Black sea rivers have flood regime with high intensity of flood formations and huge destructive flood power. Despite prevalence of floods during the cold period of year the most part of high floods in 100 years of supervision was noted here in the summer-fall (65% in July-October). Usually they were induced by the showers connected with passing of powerful cyclones, atmospheric fronts, and water tornadoes. The insignificant part of floods was connected with snow melting, backwater phenomena, showers in the cities and dam breaks. Thus shower induced floods here are the most widespread and destructive. Usually they arise within two-three watersheds simultaneously. Formation catastrophic heavy rain flood is possible on any site of a river valley of the Black Sea coast. The wave of a high water moves with very high speed, carrying a large number of deposits and garbage. To the mouth the flood can be transformed into debris flow. The water levels during a high water period rise on 3-6 m in the channels, and up to 11-12 m in the river canyons; the maximum depths of flow on the floodplains are 3 m and more. Flooding depths, induced by slope streams, can be to 0,5 m and higher. Flooding proceeds only some hours. After that water rather quickly flows down from a floodplains to the bed of the rivers and into the sea, leaving traces of destructions, a powerful layer of deposits (to 10-20 cm and more) and garbage. In the mouth river deposits quite often form the river mouth bar which is washed away during next storms. The damage from river floods on the Black Sea

  3. Flood Risk Management in Iowa through an Integrated Flood Information System

    Science.gov (United States)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert

  4. Understanding Flood Seasonality and Its Temporal Shifts within the Contiguous United States

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Sheng [Institute of Hydrology and Water Resources, School of Civil Engineering, Zhejiang University, Hangzhou, China; Li, Hong-Yi [Pacific Northwest National Laboratory, Richland, Washington; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland, Washington; Guo, Jiali [College of Civil and Hydropower Engineering, China Three Gorges University, Yichang, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China; Ran, Qihua [Institute of Hydrology and Water Resources, School of Civil Engineering, Zhejiang University, Hangzhou, China; Demissie, Yonas [Department of Civil and Environmental Engineering, Washington State University Tri-Cities, Richland, Washington; Sivapalan, Murugesu [Department of Geography and Geographic Information Science, University of Illinois at Urbana–Champaign, Champaign, Illinois; Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois

    2017-07-01

    Understanding the causes of flood seasonality is critical for better flood management. This study examines the seasonality of annual maximum floods (AMF) and its changes before and after 1980 at over 250 natural catchments across the contiguous United States. Using circular statistics to define a seasonality index, our analysis focuses on the variability of the flood occurrence date. Generally, catchments with more synchronized seasonal water and energy cycles largely inherit their seasonality of AMF from that of annual maximum rainfall (AMR). In contrast, the seasonality of AMF in catchments with loosely synchronized water and energy cycles are more influenced by high antecedent storage, which is responsible for the amplification of the seasonality of AMF over that of AMR. This understanding then effectively explains a statistically significant shift of flood seasonality detected in some catchments in the recent decades. Catchments where the antecedent soil water storage has increased since 1980 exhibit increasing flood seasonality while catchments that have experienced increases in storm rainfall before the floods have shifted towards floods occurring more variably across the seasons. In the eastern catchments, a concurrent widespread increase in event rainfall magnitude and reduced soil water storage have led to a more variable timing of floods. Our findings of the role of antecedent storage and event rainfall on the flood seasonality provide useful insights for understanding future changes in flood seasonality as climate models projected changes in extreme precipitation and aridity over land.

  5. Poster abstract: Water level estimation in urban ultrasonic/passive infrared flash flood sensor networks using supervised learning

    KAUST Repository

    Mousa, Mustafa; Claudel, Christian G.

    2014-01-01

    floods occur very rarely, we use a supervised learning approach to estimate the correction to the ultrasonic rangefinder caused by temperature fluctuations. Preliminary data shows that water level can be estimated with an absolute error of less than 2 cm

  6. Floods and Flash Flooding

    Science.gov (United States)

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  7. Simulation of Columbia River Floods in the Hanford Reach

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.; Serkowski, John A.; Perkins, William A.; Richmond, Marshall C.

    2017-01-30

    Columbia River water elevations and flows in the Hanford Reach affect the environment and facilities along the shoreline, including movement of contaminants in groundwater, fish habitat, and infrastructure subject to flooding. This report describes the hydraulic simulation of hypothetical flood flows using the best available topographic and bathymetric data for the Hanford Reach and the Modular Aquatic Simulation System in 1 Dimension (MASS1) hydrodynamic model. The MASS1 model of the Hanford Reach was previously calibrated to field measurements of water surface elevations. The current model setup can be used for other studies of flow, water levels, and temperature in the Reach. The existing MASS1 channel geometry and roughness and other model configuration inputs for the Hanford Reach were used for this study, and previous calibration and validation results for the model are reprinted here for reference. The flood flows for this study were simulated by setting constant flow rates obtained from the U.S. Army Corps of Engineers (USACE) for the Columbia, Snake, and Yakima Rivers, and a constant water level at McNary Dam, and then running the model to steady state. The discharge levels simulated were all low-probability events; for example, a 100-year flood is one that would occur on average every 100 years, or put another way, in any given year there is a 1% chance that a discharge of that level or higher will occur. The simulated floods and their corresponding Columbia River discharges were 100-year (445,000 cfs), 500-year (520,000 cfs), and the USACE-defined Standard Project Flood (960,000 cfs). The resulting water levels from the steady-state floods can be viewed as “worst case” outcomes for the respective discharge levels. The MASS1 output for water surface elevations was converted to the North American Vertical Datum of 1988 and projected across the channel and land surface to enable mapping of the floodplain for each scenario. Floodplain maps show that for

  8. Flood-inundation maps for the Patoka River in and near Jasper, southwestern Indiana

    Science.gov (United States)

    Fowler, Kathleen K.

    2018-01-23

    Digital flood-inundation maps for a 9.5-mile reach of the Patoka River in and near the city of Jasper, southwestern Indiana (Ind.), from the streamgage near County Road North 175 East, downstream to State Road 162, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage Patoka River at Jasper, Ind. (station number 03375500). The Patoka streamgage is located at the upstream end of the 9.5-mile river reach. Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, although flood forecasts and stages for action and minor, moderate, and major flood stages are not currently (2017) available at this site (JPRI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Patoka River at Jasper, Ind., streamgage and the documented high-water marks from the flood of April 30, 2017. The calibrated hydraulic model was then used to compute five water-surface profiles for flood stages referenced to the streamgage datum ranging from 15 feet (ft), or near bankfull, to 19 ft. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging [lidar] data having a 0.98 ft vertical accuracy and 4.9 ft horizontal resolution) to delineate the area flooded at each water level.The availability of these flood-inundation maps, along with real

  9. Method for the secondary recovery of petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Roth, H H

    1966-10-11

    A method for the secondary recovery of petroleum from subterranean formations consists of flooding these formations with aqueous fluids. These aqueous fluids contain one or more saline solutes which are either present before the flooding or which are dissolved from the formation during flooding. These fluids contain, as a thickening agent, a substantially linear, high molecular weight, water-soluble alkenylaromatic polymer which has sulfonic acid or sulfonate groups on the aromatic nuclei. This saline solute and polymer are mutually compatible. (5 claims)

  10. Floods in Colorado

    Science.gov (United States)

    Follansbee, Robert; Sawyer, Leon R.

    1948-01-01

    resulting from a cloudburst rises so quickly that it is usually described as a 'wall of water.' It has a peak duration of only a few minutes, followed by a rapid subsidence. Nearly 90 cloudburst floods in Colorado are described in varying detail in this report. The earliest recorded cloudburst--called at that time a waterspout--occurred in Golden Gate Gulch, July 14, 1872. The 'wall of water' was described as a 'perpendicular breast of 10 or 12 feet.' A cloudburst flood on Kiowa Creek in May 1878 caused the loss of a standard-gage locomotive, and although search was made by means of long metallic rods, the locomotive was never recovered, as bedrock was about 50 feet below the creek bed. All available information relative to floods in Colorado, beginning with the flood of 1826 on the Arkansas River, is presented in this report, although for many of the earlier floods estimates of discharge are lacking. Floods throughout a large part of the State have occurred in 1844, June 1864, June 1884, May 1894, and June 1921. The highest floods of record were on the larger streams and occurred as follows: South Platte River, June 1921; Rio Grande, June 1927; Colorado River, June and July 1884; San Juan River, October 1911. The greatest floods on the plains streams occurred during May and June 1935 and were caused by cloudbursts. Ranchers living in the vicinity noted rainfalls as high as 24 inches in a 13-hour period, measurements being made in a stock tank. The effect of settlement on channel capacities can be clearly traced. When settlement began, and with it the beginning of the livestock industry, the plains were thickly covered with a luxuriant growth of grasses. With the development of the livestock industry the grass cover was grazed so closely that it afforded little protection against erosion during the violent rains and resulting floods. The intensive grazing packed the soil so hard as to increase greatly the percentage of rainfall that entered the streams. This co

  11. Flood mapping with multitemporal MODIS data

    Science.gov (United States)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2014-05-01

    Flood is one of the most devastating and frequent disasters resulting in loss of human life and serve damage to infrastructure and agricultural production. Flood is phenomenal in the Mekong River Delta (MRD), Vietnam. It annually lasts from July to November. Information on spatiotemporal flood dynamics is thus important for planners to devise successful strategies for flood monitoring and mitigation of its negative effects. The main objective of this study is to develop an approach for weekly mapping flood dynamics with the Moderate Resolution Imaging Spectroradiometer data in MRD using the water fraction model (WFM). The data processed for 2009 comprises three main steps: (1) data pre-processing to construct smooth time series of the difference in the values (DVLE) between land surface water index (LSWI) and enhanced vegetation index (EVI) using the empirical mode decomposition (EMD), (2) flood derivation using WFM, and (3) accuracy assessment. The mapping results were compared with the ground reference data, which were constructed from Envisat Advanced Synthetic Aperture Radar (ASAR) data. As several error sources, including mixed-pixel problems and low-resolution bias between the mapping results and ground reference data, could lower the level of classification accuracy, the comparisons indicated satisfactory results with the overall accuracy of 80.5% and Kappa coefficient of 0.61, respectively. These results were reaffirmed by a close correlation between the MODIS-derived flood area and that of the ground reference map at the provincial level, with the correlation coefficients (R2) of 0.93. Considering the importance of remote sensing for monitoring floods and mitigating the damage caused by floods to crops and infrastructure, this study eventually leads to the realization of the value of using time-series MODIS DVLE data for weekly flood monitoring in MRD with the aid of EMD and WFM. Such an approach that could provide quantitative information on

  12. Design basis flood for nuclear power plants on coastal sites

    International Nuclear Information System (INIS)

    1983-01-01

    This Guide discusses the phenomena causing coastal floods (storm surge, seiche, tsunami and wind-wave) and gives a general description of the methods used and the critical factors involved in the evaluation of such floods and of their associated effects. In addition, some treatment is presented of the possible combinations of two or more of these phenomena to produce a DBF. Methods are also provided for evaluating the reference water levels, taking into account the effect of tides, sea level anomalies and changes in lake level and river flow. Sites vulnerable to coastal flooding are located on open coastal regions, semi-enclosed bodies of water and enclosed bodies of water. Open coastal regions are those portions of land directly exposed to and having a shore on a major body of water. Semi-enclosed bodies of water are lagoons, river estuaries, gulfs, fjords and rias. Enclosed bodies of water are lakes and reservoirs. The phenomena of the lowering of the water level at coastal sites caused by offshore winds, low tides, wave effects or of drawdown caused by tsunamis are discussed. The static and dynamic effects of floods resulting from the various combinations (independent and interdependent) of surface waves of varying frequency are also discussed. Consideration is also given to shoreline instabilities and to the effects of erosion. Estimated flood levels and related effects on the nuclear power plant, which will vary according to the method of analysis and the type of flooding considered, shall be compared with available historical data where this is relevant, to check the conservativeness of the evaluated results

  13. Miniaturized Water Flow and Level Monitoring System for Flood Disaster Early Warning

    Science.gov (United States)

    Ifedapo Abdullahi, Salami; Hadi Habaebi, Mohamed; Surya Gunawan, Teddy; Rafiqul Islam, MD

    2017-11-01

    This study presents the performance of a prototype miniaturised water flow and water level monitoring sensor designed towards supporting flood disaster early warning systems. The design involved selection of sensors, coding to control the system mechanism, and automatic data logging and storage. During the design phase, the apparatus was constructed where all the components were assembled using locally sourced items. Subsequently, under controlled laboratory environment, the system was tested by running water through the inlet during which the flow rate and rising water levels are automatically recorded and stored in a database via Microsoft Excel using Coolterm software. The system is simulated such that the water level readings measured in centimeters is output in meters using a multiplicative of 10. A total number of 80 readings were analyzed to evaluate the performance of the system. The result shows that the system is sensitive to water level rise and yielded accurate measurement of water level. But, the flow rate fluctuates due to the manual water supply that produced inconsistent flow. It was also observed that the flow sensor has a duty cycle of 50% of operating time under normal condition which implies that the performance of the flow sensor is optimal.

  14. [Climate changes, floods, and health consequences].

    Science.gov (United States)

    Michelozzi, Paola; de' Donato, Francesca

    2014-02-01

    In the European Region, floods are the most common natural disaster, causing extensive damage and disruption. In Italy, it has been estimated that over 68% of municipalities are at high hydrogeological risk and with the recent intense rainfall events local populations have been facing severe disruptions. The health consequences of floods are wide ranging and are dependent upon the vulnerability of the environment and the local population. Health effects can be a direct or indirect consequence of flooding. The immediate health impacts of floods include drowning, heart attacks, injuries and hypothermia. The indirect effects include, injuries and infections, water-borne infectious disease, mental health problems, respiratory disease and allergies in both the medium and long term after a flood. Future efforts should be addressed to integrate health preparedness and prevention measures into emergency flood plans and hydrological warning systems.

  15. The use of Natural Flood Management to mitigate local flooding in the rural landscape

    Science.gov (United States)

    Wilkinson, Mark; Quinn, Paul; Ghimire, Sohan; Nicholson, Alex; Addy, Steve

    2014-05-01

    The past decade has seen increases in the occurrence of flood events across Europe, putting a growing number of settlements of varying sizes at risk. The issue of flooding in smaller villages is usually not well publicised. In these small communities, the cost of constructing and maintaining traditional flood defences often outweigh the potential benefits, which has led to a growing quest for more cost effective and sustainable approaches. Here we aim to provide such an approach that alongside flood risk reduction, also has multipurpose benefits of sediment control, water quality amelioration, and habitat creation. Natural flood management (NFM) aims to reduce flooding by working with natural features and characteristics to slow down or temporarily store flood waters. NFM measures include dynamic water storage ponds and wetlands, interception bunds, channel restoration and instream wood placement, and increasing soil infiltration through soil management and tree planting. Based on integrated monitoring and modelling studies, we demonstrate the potential to manage runoff locally using NFM in rural systems by effectively managing flow pathways (hill slopes and small channels) and by exploiting floodplains and buffers strips. Case studies from across the UK show that temporary storage ponds (ranging from 300 to 3000m3) and other NFM measures can reduce peak flows in small catchments (5 to 10 km2) by up to 15 to 30 percent. In addition, increasing the overall effective storage capacity by a network of NFM measures was found to be most effective for total reduction of local flood peaks. Hydraulic modelling has shown that the positioning of such features within the catchment, and how they are connected to the main channel, may also affect their effectiveness. Field evidence has shown that these ponds can collect significant accumulations of fine sediment during flood events. On the other hand, measures such as wetlands could also play an important role during low flow

  16. Risk factors of diarrhoea among flood victims: a controlled epidemiological study.

    Science.gov (United States)

    Mondal, N C; Biswas, R; Manna, A

    2001-01-01

    The concept and practice of 'disaster preparedness and response', instead of traditional casualty relief, is relatively new. Vulnerability analysis and health risks assessment of disaster prone communities are important prerequisites of meaningful preparedness and effective response against any calamity. In this community based study, the risk of diarrhoeal disease and its related epidemiological factors were analysed by collecting data from two selected flood prone block of Midnapur district of West Bengal. The information was compared with that of another population living in two non-flood prone blocks of the same district. The study showed that diarrhoeal disease was the commonest morbidity in flood prone population. Some behaviours, like use of pond water for utensil wash and kitchen purpose, hand washing after defecation without soap, improper hand washing before eating, open field defecation, storage of drinking water in wide mouth vessels etc. were found to be associated with high attack rate of diarrhoea, in both study and control population during flood season compared to pre-flood season. Attack rates were also significantly higher in flood prone population than that of population in non-flood prone area during the same season. Necessity of both community education for proper water use behaviour and personal hygiene along with ensuring safe water and sanitation facilities of flood affected communities were emphasized.

  17. Global Near Real-Time Satellite-based Flood Monitoring and Product Dissemination

    Science.gov (United States)

    Smith, M.; Slayback, D. A.; Policelli, F.; Brakenridge, G. R.; Tokay, M.

    2012-12-01

    Flooding is among the most destructive, frequent, and costly natural disasters faced by modern society, with several major events occurring each year. In the past few years, major floods have devastated parts of China, Thailand, Pakistan, Australia, and the Philippines, among others. The toll of these events, in financial costs, displacement of individuals, and deaths, is substantial and continues to rise as climate change generates more extreme weather events. When these events do occur, the disaster management community requires frequently updated and easily accessible information to better understand the extent of flooding and better coordinate response efforts. With funding from NASA's Applied Sciences program, we have developed, and are now operating, a near real-time global flood mapping system to help provide critical flood extent information within 24-48 hours after flooding events. The system applies a water detection algorithm to MODIS imagery received from the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard. The LANCE system typically processes imagery in less than 3 hours after satellite overpass, and our flood mapping system can output flood products within ½ hour of acquiring the LANCE products. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows an initial assessment of flooding extent by late afternoon, every day, and more robust assessments after accumulating imagery over a longer period; the MODIS sensors are optical, so cloud cover remains an issue, which is partly overcome by using multiple looks over one or more days. Other issues include the relatively coarse scale of the MODIS imagery (250 meters), the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extents. We have made progress on some of these issues

  18. Probabilistic mapping of flood-induced backscatter changes in SAR time series

    Science.gov (United States)

    Schlaffer, Stefan; Chini, Marco; Giustarini, Laura; Matgen, Patrick

    2017-04-01

    The information content of flood extent maps can be increased considerably by including information on the uncertainty of the flood area delineation. This additional information can be of benefit in flood forecasting and monitoring. Furthermore, flood probability maps can be converted to binary maps showing flooded and non-flooded areas by applying a threshold probability value pF = 0.5. In this study, a probabilistic change detection approach for flood mapping based on synthetic aperture radar (SAR) time series is proposed. For this purpose, conditional probability density functions (PDFs) for land and open water surfaces were estimated from ENVISAT ASAR Wide Swath (WS) time series containing >600 images using a reference mask of permanent water bodies. A pixel-wise harmonic model was used to account for seasonality in backscatter from land areas caused by soil moisture and vegetation dynamics. The approach was evaluated for a large-scale flood event along the River Severn, United Kingdom. The retrieved flood probability maps were compared to a reference flood mask derived from high-resolution aerial imagery by means of reliability diagrams. The obtained performance measures indicate both high reliability and confidence although there was a slight under-estimation of the flood extent, which may in part be attributed to topographically induced radar shadows along the edges of the floodplain. Furthermore, the results highlight the importance of local incidence angle for the separability between flooded and non-flooded areas as specular reflection properties of open water surfaces increase with a more oblique viewing geometry.

  19. Flood Risk Management Policy in Scotland: Research Questions Past, Present and Future

    Science.gov (United States)

    Wilkinson, Mark; Hastings, Emily; MacDonald, Jannette

    2016-04-01

    Scotland's Centre of Expertise for Waters (CREW) delivers accessible research and expert opinion to support the Scottish Government and its delivery partners in the development and implementation of water policy. It was established in 2011 by the Scottish Government (Rural and Environmental Science and Analytical Services) in recognition of a gap in the provision of short term advice and research to policy (development and implementation). Key policy areas include the Water Framework Directive, Floods Directive, Drinking Water Directive, Habitats Directive and Scotland's Hydro Nation Strategy. CREW is unique in its demand-driven and free service for policy makers and practitioners, managing the engagement between scientists, policy makers and practitioners to work effectively across this interface. The users of CREW are the Scottish Government, Scottish Environment Protection Agency, Scottish Natural Heritage and Scottish Water. CREW has funded around 100 projects relating to water policy since its inception in 2011. Of these, a significant number relate to flood risk management policy. Based on a review of work to date, this poster will give an overview of these projects and a forward look at the challenges that remain. From learning from community led flood risk management to surface water flood forecasting for urban communities, links will be made between sustainable and traditional flood risk management while considering the perceptions of stakeholders to flood risk management. How can we deliver fully integrated flood risk management options? How policy makers, scientists and land managers can better work together will also be explored.

  20. 2 Dimensional Hydrodynamic Flood Routing Analysis on Flood Forecasting Modelling for Kelantan River Basin

    Directory of Open Access Journals (Sweden)

    Azad Wan Hazdy

    2017-01-01

    Full Text Available Flood disaster occurs quite frequently in Malaysia and has been categorized as the most threatening natural disaster compared to landslides, hurricanes, tsunami, haze and others. A study by Department of Irrigation and Drainage (DID show that 9% of land areas in Malaysia are prone to flood which may affect approximately 4.9 million of the population. 2 Dimensional floods routing modelling demonstrate is turning out to be broadly utilized for flood plain display and is an extremely viable device for evaluating flood. Flood propagations can be better understood by simulating the flow and water level by using hydrodynamic modelling. The hydrodynamic flood routing can be recognized by the spatial complexity of the schematization such as 1D model and 2D model. It was found that most of available hydrological models for flood forecasting are more focus on short duration as compared to long duration hydrological model using the Probabilistic Distribution Moisture Model (PDM. The aim of this paper is to discuss preliminary findings on development of flood forecasting model using Probabilistic Distribution Moisture Model (PDM for Kelantan river basin. Among the findings discuss in this paper includes preliminary calibrated PDM model, which performed reasonably for the Dec 2014, but underestimated the peak flows. Apart from that, this paper also discusses findings on Soil Moisture Deficit (SMD and flood plain analysis. Flood forecasting is the complex process that begins with an understanding of the geographical makeup of the catchment and knowledge of the preferential regions of heavy rainfall and flood behaviour for the area of responsibility. Therefore, to decreases the uncertainty in the model output, so it is important to increase the complexity of the model.

  1. Flood-inundation maps for the West Branch Delaware River, Delhi, New York, 2012

    Science.gov (United States)

    Coon, William F.; Breaker, Brian K.

    2012-01-01

    Digital flood-inundation maps for a 5-mile reach of the West Branch Delaware River through the Village and part of the Town of Delhi, New York, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of Delhi, the Delaware County Soil and Water Conservation District, and the Delaware County Planning Department. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) referenced to the USGS streamgage at West Branch Delaware River upstream from Delhi, N.Y. (station number 01421900). In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model that had been used to produce the flood insurance rate maps for the most recent flood insurance study for the Town and Village of Delhi. This hydraulic model was used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 7 ft or near bankfull to 16 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual-exceedance-probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model, which was derived from Light Detection and Ranging (LiDAR) data with a 1.2-ft (0.61-ft root mean squared error) vertical accuracy and 3.3-ft (1-meter) horizontal resolution, to delineate the area flooded at each water level. A map that was produced using this method to delineate the inundated area for the flood that occurred on August 28, 2011, agreed well with highwater marks that had been located in the field using a

  2. The cumulative impacts of repeated heavy rainfall, flooding and altered water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia.

    Science.gov (United States)

    Butler, I R; Sommer, B; Zann, M; Zhao, J-X; Pandolfi, J M

    2015-07-15

    Terrestrial runoff and flooding have resulted in major impacts on coral communities worldwide, but we lack detailed understanding of flood plume conditions and their ecological effects. Over the course of repeated flooding between 2010 and 2013, we measured coral cover and water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia. In 2013, salinity, total suspended solids, total nitrogen and total phosphorus were altered for up to six months post-flooding. Submarine groundwater caused hypo-saline conditions for a further four months. Despite the greater magnitude of flooding in 2013, declines in coral abundance (∼28%) from these floods were lower than the 2011 flood (∼40%), which occurred immediately after a decade of severe drought. There was an overall cumulative decrease of coral by ∼56% from 2010 to 2013. Our study highlights the need for local scale monitoring and research to facilitate informed management and conservation of catchments and marine environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Top flooding modeling with MAAP4 code

    International Nuclear Information System (INIS)

    Brunet-Thibault, E.; Marguet, S.

    2006-01-01

    An engineering top flooding model was developed in MAAP4.04d.4, the severe accident code used in EDF, to simulate the thermal-hydraulic phenomena that should take place if emergency core cooling (ECC) water was injected in hot leg during quenching. In the framework of the ISTC (International Science and Technology Centre), a top flooding test was proposed in the PARAMETER facility (Podolsk, Russia). The MAAP calculation of the PARAMETER top flooding test is presented in this paper. A comparison between top and bottom flooding was made on the bundle test geometry. According to this study, top flooding appears to cool quickly and effectively the upper plenum internals. (author)

  4. Condensation of the steam in the horizontal steam line during cold water flooding

    International Nuclear Information System (INIS)

    Strubelj, L.; Tiselj, I.

    2006-01-01

    Direct contact condensation and condensation induced water-hammer in a horizontal pipe was experimentally investigated at PMK-2 test facility of the Hungarian Atomic Energy Research Institute KFKI. The experiment is preformed in the horizontal section of the steam line of the PMK-2 integral test facility. As liquid water floods the horizontal part of the pipeline, the counter current horizontally stratified flow is being observed. During the flooding of the steam line, the vapour-liquid interface area increases and therefore the vapour condensation rate and the vapour velocity also increase. Similar phenomena can occur in the cold/hot leg of the primary loop of PWR nuclear power plant during loss of coolant accident, when emergency core cooling system is activated. Water level at one cross-section and four local void fraction and temperature at the top of steam line was measured and compared with simulation. Condensed steam increases the water temperature that is why the local temperature measurements are the most important information, from which condensation rate can be estimated, since mass of condensed steam was not measured. Free surface simulation of the experiment with thermal phase change model is presented. Surface renewal concept with small eddies is used for calculation of heat transfer coefficient. With surface renewal theory we did not get results similar to experiment, that is why heat transfer coefficient was increased by factor 20. In simulation with heat transfer coefficient calculated with surface renewal concept bubble entrapment is due to reflection of the wave from the end of the pipe. When heat transfer coefficient is increased, condensation rate and steam velocity are also increased, bubble entrapment is due to Kelvin-Helmholtz instability of the free surface, and the results become similar to the measurements. (author)

  5. On the reliable use of satellite-derived surface water products for global flood monitoring

    Science.gov (United States)

    Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.

    2015-12-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.

  6. Flood-inundation maps for the East Fork White River at Columbus, Indiana

    Science.gov (United States)

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 5.4-mile reach of the East Fork White River at Columbus, Indiana, from where the Flatrock and Driftwood Rivers combine to make up East Fork White River to just upstream of the confluence of Clifty Creek with the East Fork White River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03364000&agency_cd=USGS&). The National Weather Service (NWS) forecasts flood hydrographs for the East Fork White River at Columbus, Indiana at their Advanced Hydrologic Prediction Service (AHPS) flood warning system Website (http://water.weather.gov/ahps/), that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. The calibrated hydraulic model was then used to determine 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data), having a 0.37-ft vertical accuracy and a 1.02 ft

  7. Cyber Surveillance for Flood Disasters

    Directory of Open Access Journals (Sweden)

    Shi-Wei Lo

    2015-01-01

    Full Text Available Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective.

  8. Keurbooms Estuary floods and sedimentation

    Directory of Open Access Journals (Sweden)

    Eckart H. Schumann

    2015-11-01

    Full Text Available The Keurbooms Estuary at Plettenberg Bay lies on a wave-dominated, microtidal coast. It has a dune-topped sandy barrier, or barrier dune, almost 4 km long, with a narrow back-barrier lagoon connected to its source rivers, the Keurbooms and Bitou. The estuary exits to the sea through this barrier dune, and it is the geomorphology and mouth position in relation to floods, which is the subject of this paper. Measurements of rainfall, water level, waves and high- and low-tide water lines were used to analyse the mouth variability over the years 2006–2012. Two major floods occurred during this time, with the first in November 2007 eroding away more than 500 000 m3 of sediment. The new mouth was established at the Lookout Rocks limit – the first time since 1915. The second flood occurred in July 2012 and opened up a new mouth about 1 km to the north-east; high waves also affected the position of the breach. The mouth has a tendency to migrate southwards against the longshore drift, but at any stage this movement can be augmented or reversed. The effectiveness of floods in breaching a new mouth through the barrier dune depends on the flood size and the nature of the exit channel in the back-barrier lagoon. Other factors such as ocean waves, sea level, vegetative state of the dune and duration of the flood are also important and can determine where the breach occurs, and if the new mouth will dominate the old mouth.

  9. A simple empirical model for the clarification-thickening process in wastewater treatment plants.

    Science.gov (United States)

    Zhang, Y K; Wang, H C; Qi, L; Liu, G H; He, Z J; Fan, H T

    2015-01-01

    In wastewater treatment plants (WWTPs), activated sludge is thickened in secondary settling tanks and recycled into the biological reactor to maintain enough biomass for wastewater treatment. Accurately estimating the activated sludge concentration in the lower portion of the secondary clarifiers is of great importance for evaluating and controlling the sludge recycled ratio, ensuring smooth and efficient operation of the WWTP. By dividing the overall activated sludge-thickening curve into a hindered zone and a compression zone, an empirical model describing activated sludge thickening in the compression zone was obtained by empirical regression. This empirical model was developed through experiments conducted using sludge from five WWTPs, and validated by the measured data from a sixth WWTP, which fit the model well (R² = 0.98, p settling was also developed. Finally, the effects of denitrification and addition of a polymer were also analysed because of their effect on sludge thickening, which can be useful for WWTP operation, e.g., improving wastewater treatment or the proper use of the polymer.

  10. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees

    Science.gov (United States)

    Copini, Paul; den Ouden, Jan; Robert, Elisabeth M. R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic

  11. Evaluation of internal flooding in a BWR

    International Nuclear Information System (INIS)

    Shiu, K.; Papazoglou, I.A.; Sun, Y.H.; Anavim, E.; Ilberg, D.

    1985-01-01

    Flooding inside a nuclear power station is capable of concurrently disabling redundant safety systems. This paper presents the results of a recent review study performed on internally-generated floods inside a boiling water reactor (BWR) reactor building. The study evaluated the flood initiator frequency due to either maintenance or ruptures using Markovian models. A time phased event tree approach was adopted to quantify the core damage frequency based on the flood initiator frequency. It is found in the study that the contribution to the total core damage due to internal flooding events is not insignificant and is comparable to other transient contributors. The findings also indicate that the operator plays an important role in the prevention as well as the mitigation of a flooding event

  12. 18 CFR 801.8 - Flood plain management and protection.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flood plain management and protection. 801.8 Section 801.8 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands...

  13. Flood-inundation maps for the St. Marys River at Decatur, Indiana

    Science.gov (United States)

    Strauch, Kellan R.

    2015-08-24

    Digital flood-inundation maps for an 8.9-mile reach of the St. Marys River at Decatur, Indiana, were developed by the U.S. Geological Survey (USGS), in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site (http://water.usgs.gov/osw/flood_inundation/), depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) of the St. Marys River at Decatur (USGS station number 04181500). The maps are useful for estimating near-real-time areas of inundation by referencing concurrent USGS streamgage information at http://waterdata.usgs.gov/. In addition, the streamgage information was provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service flood warning system (http:/water.weather.gov/ahps/). NWS-forecasted peak-stage information may be used in conjunction with the maps developed during this study to show predicted areas of flood inundation.

  14. Polders as active element of flood control

    International Nuclear Information System (INIS)

    Zilavy, M.

    2004-01-01

    In this presentation author deals with use of the polders as active element of flood control on the example Kysuca River and Podluzianka River (Slovakia). It was concluded that it is necessary: - dense network of rain gauge stations; - network of water level recorders; revision of design process for hydraulic objects - degree of safety; changes in legislation - permission for construction in flood-plains; maintenance of channel capacity; early flood forecasting - forecasting and warning service; river training works and maintenance; design of retention areas; preparation of retention areas prior to flood propagation

  15. Flood-inundation maps for the North Branch Elkhart River at Cosperville, Indiana

    Science.gov (United States)

    Kim, Moon H.; Johnson, Esther M.

    2014-01-01

    Digital flood-inundation maps for a reach of the North Branch Elkhart River at Cosperville, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers, Detroit District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=04100222. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the North Branch Elkhart River at Cosperville, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the North Branch Elkhart River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind., and preliminary high-water marks from the flood of March 1982. The calibrated hydraulic model was then used to determine four water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS

  16. Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models

    Science.gov (United States)

    Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.

    2016-12-01

    This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.

  17. Mathematical modelling of flooding at Magela Creek

    International Nuclear Information System (INIS)

    Vardavas, I.

    1989-01-01

    The extent and frequency of the flooding at Magela Creek can be predicted from a mathematical/computer model describing the hydrological phases of surface runoff. Surface runoff involves complex water transfer processes over very inhomogeneous terrain. A simple mathematical model of these has been developed which includes the interception of rainfall by the plant canopy, evapotranspiration, infiltration of surface water into the soil, the storage of water in surface depressions, and overland and subsurface water flow. The rainfall-runoff model has then been incorporated into a more complex computer model to predict the amount of water that enters and leaves the Magela Creek flood plain, downstream of the mine. 2 figs., ills

  18. Scour hole ('wielen') sediments as historical archive of floods, vegetation, and air and water quality in lowlands

    NARCIS (Netherlands)

    Cremer, Holger; van Hoof, Thomas; Bunnik, Frans; Donders, Timme

    2010-01-01

    The sediment record from a maximum 18 m deep scour hole lake (Haarsteegse Wiel) near the embanked Meuse River in the Netherlands was studied for past changes in flooding frequency, water quality, and landscape change using a combined geochemical, geobiological and historical approach. The results

  19. Flood management of Dongting Lake after operation of Three Gorges Dam

    Directory of Open Access Journals (Sweden)

    Xi-jun Lai

    2017-10-01

    Full Text Available Full operation of the Three Gorges Dam (TGD reduces flood risk of the middle and lower parts of the Yangtze River Basin. However, Dongting Lake, which is located in the Yangtze River Basin, is still at high risk for potentially severe flooding in the future. The effects of the TGD on flood processes were investigated using a hydrodynamic model. The 1998 and 2010 flood events before and after the operation of the TGD, respectively, were analyzed. The numerical results show that the operation of the TGD changes flood processes, including the timing and magnitude of flood peaks in Dongting Lake. The TGD can effectively reduce the flood level in Dongting Lake, which is mainly caused by the flood water from the upper reach of the Yangtze River. This is not the case, however, for floods mainly induced by flood water from four main rivers in the catchment. In view of this, a comprehensive strategy for flood management in Dongting Lake is required. Non-engineering measures, such as warning systems and combined operation of the TGD and other reservoirs in the catchment, as well as traditional engineering measures, should be further improved. Meanwhile, a sustainable philosophy for flood control, including natural flood management and lake restoration, is recommended to reduce the flood risk.

  20. Source and composition of surface water dissolved organic matter (DOM) and the effect of flood events on the organic matter cycling

    Science.gov (United States)

    Bondar-Kunze, Elisabeth; Welti, Nina; Tritthart, Michael; Baker, Andrew; Pinay, Gilles; Hein, Thomas

    2014-05-01

    Floodplains are often simultaneously affected by land use change, river regulation and loss of hydrological dynamics which alter the surface water connectivity between floodplain and river main channel. These alterations can have significant impacts on the sources of organic matter and their degradation and thus, the carbon cycling of riverine landscapes. Although floodplains are known to be important sources of dissolved organic matter (DOM) within watersheds, reduced hydrological connectivity impair their role. The key questions of our research were to determine i) to what extent the degree of connection between the Danube River and its floodplain controlled the DOM composition with its backwater systems, and ii) what were the effects of the DOM changes on carbon cycling in floodplains during two flood events with different magnitude? In this study we report on the variations in DOM spectrophotometric properties of surface waters in different connected floodplain areas and during two flood events of different magnitude in a section of the Alluvial Zone National Park of the Danube River downstream Vienna, Austria. Two backwater floodplain systems were studied, one backwater system mostly disconnected from the fluvial dynamics except during high flood events (Lower Lobau) and the second one, recently restored and connected even during mean flow conditions (Orth). Fluorescence excitation-emission matrix (EEM) spectrophotometry and water chemical analyses were applied to investigate the DOM dynamics. In both backwater systems 15 sites were sampled monthly for two years and every second day during a flood event.

  1. Long-lasting floods buffer the thermal regime of the Pampas

    Science.gov (United States)

    Houspanossian, Javier; Kuppel, Sylvain; Nosetto, Marcelo; Di Bella, Carlos; Oricchio, Patricio; Barrucand, Mariana; Rusticucci, Matilde; Jobbágy, Esteban

    2018-01-01

    The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r 2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape ( 2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses.

  2. Performance of the Taber South polymer flood

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R A; Stright, Jr, D H

    1975-01-01

    A polymer flood was initiated in the Taber South Manville B Pool in Feb. 1967. The reservoir, which contains a viscous, highly undersaturated crude oil with no bottom water was depleted to the bubble-point pressure of 400 psig prior to polymer flooding. A 20% hydrocarbon pore volume slug of polyacrylamide (Pusher 700) was injected at the center of this long, narrow Lower Cretaceous sandstone reservoir. In early 1972, injection was converted to plain water by gradually reducing polymer concentration. The reservoir was studied with numerical reservoir simulation models in an attempt to evaluate the polymer flood performance. Additional laboratory work was initiated to evaluate polymer quality and to investigate wettability. The study results are presented.

  3. A Comparative Study Between Modified Starch and Xanthan Gum Thickeners in Post-Stroke Oropharyngeal Dysphagia.

    Science.gov (United States)

    Vilardell, N; Rofes, L; Arreola, V; Speyer, R; Clavé, P

    2016-04-01

    Thickeners are used in post-stroke oropharyngeal dysphagia (OD) as a compensatory therapeutic strategy against aspirations. To compare the therapeutic effects of modified starch (MS) and xanthan gum (XG) thickeners on swallow safety and efficacy in chronic post-stroke OD patients using clinical and videofluoroscopic (VFS) assessment. Patients were studied by clinical assessment (volume-viscosity swallow test, V-VST) and VFS using 3 volumes (5, 10, 20 mL) and 3 viscosities (liquid, nectar and spoon thick), comparing MS and XG. We studied 122 patients (46MS, 76XG). (A) V-VST showed that both thickeners similarly improved safety of swallow. Prevalence of safe swallowing significantly increased with enhanced viscosity (P < 0.001 vs liquid), MS: 47.83 % at liquid, 84.93 % at nectar and 92.96 % at spoon thick; XG: 55.31 % at liquid, 77.78 % at nectar and 97.84 % at spoon thick. Patients on MS reported higher prevalence of pharyngeal residue at spoon-thick viscosities. (B) VFS: increasing bolus viscosity with either thickener increased prevalence of safe swallows (P < 0.001 vs liquid), MS: 30.25 % liquid, 61.07 % nectar and 92.64 % spoon thick; XG: 29.12 % liquid, 71.30 % nectar and 89.91 % spoon thick. Penetration-aspiration scale score was significantly reduced with increased viscosity with both thickeners. MS increased oral and pharyngeal residues at nectar and spoon-thick viscosities but XG did not. Timing of airway protection mechanisms and bolus velocity were not affected by either thickener. Increasing bolus viscosity with MS and XG thickeners strongly and similarly improved safety of swallow in chronic post-stroke OD by a compensatory mechanism; in contrast only MS thickeners increased oropharyngeal residue.

  4. Flood frequency analysis of historical flood data under stationary and non-stationary modelling

    Science.gov (United States)

    Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.

    2015-06-01

    Historical records are an important source of information on extreme and rare floods and fundamental to establish a reliable flood return frequency. The use of long historical records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 yr flood record from the Tagus River in Aranjuez (central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their contribution within hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations in flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation (NAO) index. Over the systematic gauge record (1913-2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators, and (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, which incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency

  5. Early Warning System of Flood Disaster Based on Ultrasonic Sensors and Wireless Technology

    Science.gov (United States)

    Indrasari, W.; Iswanto, B. H.; Andayani, M.

    2018-04-01

    A flood disaster provides considerable losses to the people who live around the river. To mitigate losses of material due to flood disaster required an early warning system of flood disaster. For that reason, it necessary to design a system that provide alert to the people prior the flood disaster. And this paper describes development of a device for early detection system of flood disasters. This device consists of two ultrasonic sensors as a water level detector, and a water flow sensor as a water flow velocity sensor. The wireless technology and GSM is used as an information medium. The system is designed based on water level conditions in the Katulampa Dam, Bogor. Characterization of water level detector showed that the device effectively works in a range of water level of 14-250 cm, with a maximum relative error of 4.3%. Meanwhile the wireless works properly as far as 75 m, and the SMS transmission time is 8.20 second.

  6. Flood of July 21, 1975 in Mercer County, New Jersey

    Science.gov (United States)

    Stankowski, Stephen J.; Schopp, Robert D.; Velnich, Anthony J.

    1975-01-01

    Intense rainfall during the evening of July 20 and early morning hours of July 21, 1975 caused flooding of unprecedented magnitude in highly urbanized Mercer County, New Jersey. Over 6 inches (152 millimetres) of rainfall was recorded during a 10-hour period at Trenton, the capital of New Jersey. No lives were lost but damages to highways and bridges, to industrial, business, and residential buildings, to farmlands and crops, and to water supply systems were severe. This report illustrates the magnitude of the flood and provides hydrologic data needed for planning and design to control or lessen damages from future floods. It includes discussions of the antecedent conditions and meteorological aspects of the storm; a description of the flood and comparison to previous floods; a summary of flood stages and discharges; a discussion of flood frequency; and photomosaics which show inundated areas. More than 200 high-water marks are described as to location and elevation above mean sea level.

  7. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks

    Science.gov (United States)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.

    2017-12-01

    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  8. Dynamic Water Storage during Flash Flood Events in the Mountainous Area of Rio de Janeiro/Brazil - Case study: Piabanha River Basin

    Science.gov (United States)

    Araujo, L.; Silva, F. P. D.; Moreira, D. M.; Vásquez P, I. L.; Justi da Silva, M. G. A.; Fernandes, N.; Rotunno Filho, O. C.

    2017-12-01

    Flash floods are characterized by a rapid rise in water levels, high flow rates and large amounts of debris. Several factors have relevance to the occurrence of these phenomena, including high precipitation rates, terrain slope, soil saturation degree, vegetation cover, soil type, among others. In general, the greater the precipitation intensity, the more likely is the occurrence of a significant increase in flow rate. Particularly on steep and rocky plains or heavily urbanized areas, relatively small rain rates can trigger a flash flood event. In addition, high rain rates in short time intervals can temporarily saturate the surface soil layer acting as waterproofing and favoring the occurrence of greater runoff rates due to non-infiltration of rainwater into the soil. Thus, although precipitation is considered the most important factor for flooding, the interaction between rainfall and the soil can sometimes be of greater importance. In this context, this work investigates the dynamic storage of water associated with flash flood events for Quitandinha river watershed, a tributary of Piabanha river, occurred between 2013 and 2014, by means of water balance analyses applied to three watersheds of varying magnitudes (9.25 km², 260 km² and 429 km²) along the rainy season under different time steps (hourly and daily) using remotely sensed and observational precipitation data. The research work is driven by the hypothesis of a hydrologically active bedrock layer, as the watershed is located in a humid region, having intemperate (fractured) rock layer, just below a shallow soil layer, in the higher part of the basin where steep slopes prevail. The results showed a delay of the variation of the dynamic storage in relation to rainfall peaks and water levels. Such behavior indicates that the surface soil layer, which is not very thick in the region, becomes rapidly saturated along rainfall events. Subsequently, the water infiltrates into the rocky layer and the water

  9. Computer simulations of shear thickening of concentrated dispersions

    NARCIS (Netherlands)

    Boersma, W.H.; Laven, J.; Stein, H.N.

    1995-01-01

    Stokesian dynamics computer simulations were performed on monolayers of equally sized spheres. The influence of repulsive and attractive forces on the rheological behavior and on the microstructure were studied. Under specific conditions shear thickening could be observed in the simulations, usually

  10. Modeling Compound Flood Hazards in Coastal Embayments

    Science.gov (United States)

    Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.

    2017-12-01

    Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the

  11. The 2000/60/EC Water Framework Directive and the Flooding of the Brown Coal Meirama Open Pit (NW Spain)

    Science.gov (United States)

    Delgado, J.; Juncosa, R.

    2009-04-01

    Coal mining in Galicia (NW Spain) has been an important activity which came to an end in December, 2007. Hence, for different reasons, the two large brown coal mines in Galicia (the As Pontes mine, run by ENDESA GENERACIÓN, and the Meirama mine, owned by Lignitos de Meirama, S.A., LIMEISA), have started closure procedures, both of which are considering the flooding of the mine pits to create two large lakes (~8 km2 in As Pontes and ~2 km2 in Meirama). They will be unique in Galicia, a nearly lake-free territory. An important point to consider as regards the flooding of the lignite mine pits in Galicia is how the process of the creation of a body of artificial water will adapt to the strict legal demands put forth in the Water Framework Directive. This problem has been carefully examined by different authors in other countries and it raises the question of the need to adapt sampling surveys to monitor a number of key parameters -priority substances, physical and chemical parameters, biological indicators, etc.- that cannot be overlooked. Flooding, in both cases consider the preferential entrance into the mine holes of river-diverted surface waters, in detriment of ground waters in order to minimize acidic inputs. Although both mines are located in the same hydraulic demarcation (i.e. administrative units that, in Spain, are in charge of the public administration and the enforcement of natural water-related laws) the problems facing the corresponding mine managers are different. In the case of Meirama, the mine hole covers the upper third part of the Barcés river catchment, which is a major source of water for the Cecebre reservoir. That reservoir constitutes the only supply of drinking water for the city of A Coruña (~250.000 inhabitants) and its surrounding towns. In this contribution we will discuss how mine managers and the administration have addressed the uncertainties derived from the implementation of the Water Framework Directive in the particular case of

  12. FORECAST OF THE DYNAMICS FLOODING OF THE CRIMEAN AREA DURING OF FLASH FLOODS IN 2012ON THE BASIS COMPUTER SIMULATION

    Directory of Open Access Journals (Sweden)

    E. O. Agafonnikova

    2014-01-01

    Full Text Available The dynamics features of the surface waters for the territory of the Crimea area of Krasnodar region in flash flood conditions have been studied. The parameters of flooding depending on the precipitation intensity have been defined.

  13. Real-time flood monitoring and warning system

    Directory of Open Access Journals (Sweden)

    Jirapon Sunkpho

    2011-04-01

    Full Text Available Flooding is one of the major disasters occurring in various parts of the world. The system for real-time monitoring ofwater conditions: water level; flow; and precipitation level, was developed to be employed in monitoring flood in Nakhon SiThammarat, a southern province in Thailand. The two main objectives of the developed system is to serve 1 as informationchannel for flooding between the involved authorities and experts to enhance their responsibilities and collaboration and2 as a web based information source for the public, responding to their need for information on water condition and flooding.The developed system is composed of three major components: sensor network, processing/transmission unit, and database/application server. These real-time data of water condition can be monitored remotely by utilizing wireless sensors networkthat utilizes the mobile General Packet Radio Service (GPRS communication in order to transmit measured data to theapplication server. We implemented a so-called VirtualCOM, a middleware that enables application server to communicatewith the remote sensors connected to a GPRS data unit (GDU. With VirtualCOM, a GDU behaves as if it is a cable directlyconnected the remote sensors to the application server. The application server is a web-based system implemented usingPHP and JAVA as the web application and MySQL as its relational database. Users can view real-time water conditionas well as the forecasting of the water condition directly from the web via web browser or via WAP. The developed systemhas demonstrated the applicability of today’s sensors in wirelessly monitor real-time water conditions.

  14. Propagation and composition of the flood wave on the upper Mississippi River, 1993

    Science.gov (United States)

    Moody, John A.

    1995-01-01

    During spring and summer 1993, record flooding inundated much of the upper Mississippi River Basin. The magnitude of the damages-in terms of property, disrupted business, and personal trauma was unmatched by any other flood disaster in United States history. Property damage alone is expected to exceed $10 billion. Damaged highways and submerged roads disrupted overland transportation throughout the flooded region. The Mississippi and the Missouri Rivers were closed to navigation before, during, and after the flooding. Millions of acres of productive farmland remained under water for weeks during the growing season. Rills and gullies in many tilled fields are the result of the severe erosion that occurred throughout the Midwestern United States farmbelt. The hydrologic effects of extended rainfall throughout the upper Midwestern United States were severe and widespread. The banks and channels of many rivers were severely eroded, and sediment was deposited over large areas of the basin's flood plain. Record flows submerged many areas that had not been affected by previous floods. Industrial and agricultural areas were inundated, which caused concern about the transport and fate of industrial chemicals, sewage effluent, and agricultural chemicals in the floodwaters. The extent and duration of the flooding caused numerous levees to fail. One failed levee on the Raccoon River in Des Moines, Iowa, led to flooding of the city's water treatment plant. As a result, the city was without drinking water for 19 days.As the Nation's principal water-science agency, the U.S. Geological Survey (USGS) is in a unique position to provide an immediate assessment of some of the hydrological effects of the 1993 flood. The USGS maintains a hydrologic data network and conducts extensive water-resources investigations nationwide. Long-term data from this network and information on local and regional hydrology provide the basis for identifying and documenting the effects of the flooding

  15. Flooding in counter-current two-phase flow

    International Nuclear Information System (INIS)

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding

  16. Flooding in counter-current two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.

  17. Development of flood-inundation maps for the Mississippi River in Saint Paul, Minnesota

    Science.gov (United States)

    Czuba, Christiana R.; Fallon, James D.; Lewis, Corby R.; Cooper, Diane F.

    2014-01-01

    Digital flood-inundation maps for a 6.3-mile reach of the Mississippi River in Saint Paul, Minnesota, were developed through a multi-agency effort by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and in collaboration with the National Weather Service. The inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the National Weather Service Advanced Hydrologic Prediction Service site at http://water.weather.gov/ahps/inundation.php, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgage at the Mississippi River at Saint Paul (05331000). The National Weather Service forecasted peak-stage information at the streamgage may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the Mississippi River by means of a one-dimensional step-backwater model. The hydraulic model was calibrated using the most recent stage-discharge relation at the Robert Street location (rating curve number 38.0) of the Mississippi River at Saint Paul (streamgage 05331000), as well as an approximate water-surface elevation-discharge relation at the Mississippi River at South Saint Paul (U.S. Army Corps of Engineers streamgage SSPM5). The model also was verified against observed high-water marks from the recent 2011 flood event and the water-surface profile from existing flood insurance studies. The hydraulic model was then used to determine 25 water-surface profiles for flood stages at 1-foot intervals ranging from approximately bankfull stage to greater than the highest recorded stage at streamgage 05331000. The simulated water-surface profiles were then combined with a geographic information system digital elevation model, derived from high-resolution topography

  18. Assessment of flood Response Characteristics to Urbanization and extreme flood events-Typhoons at Cheongju, Chungbuk

    Science.gov (United States)

    Chang, HyungJoon; Lee, Hyosang; Hwang, Myunggyu; Jang, Sukhwan

    2016-04-01

    The changes of land use influence on the flood characteristics, which depend on rainfall runoff procedures in the catchment. This study assesses the changes of flood characteristics due to land use changes between 1997 and 2012. The catchment model (HEC-HMS) is calibrated with flood events of 1990's and 2000's respectively, then the design rainfall of 100, 200, 500year return period are applied to this model, which represent the catchment in 1990's and 2000's, to assess the flood peaks. Then the extreme flood events (i.e., 6 typhoon events) are applied to assess the flood responses. The results of comparison between 1990's and 2000's show that the flood peak and level of 2000's are increasing and time to peak of 2000's is decreasing comparing to those of 1990's :3% to 78% increase in flood peak, 3% in flood level and 10.2% to 16% decrease in time to peak in 100year return period flood. It is due to decreasing of the farmland area (2.18%), mountainous area (8.88%), and increasing of the urbanization of the area (5.86%). This study also estimates the responses to extreme flood events. The results of 2000's show that the increasing of the flood peak and time to peak comparing to 1990's. It indicates that the extreme rainfall is more responsible at unurbanized catchment ( 2000's), which resulting with a 11% increasing of the peak volume. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  19. Flood-inundation maps for Cedar Creek at 18th Street at Auburn, Indiana

    Science.gov (United States)

    Fowler, Kathleen K.

    2018-02-27

    Digital flood-inundation maps for a 1.9-mile reach of Cedar Creek at Auburn, Indiana (Ind.), from the First Street bridge, downstream to the streamgage at 18th Street, then ending approximately 1,100 feet (ft) downstream of the Baltimore and Ohio railroad, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on Cedar Creek at 18th Street at Auburn, Ind. (station number 04179520). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, although forecasts of flood hydrographs are not available at this site (ABBI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Cedar Creek at 18th Street at Auburn, Ind. streamgage and the documented high-water marks from the flood of March 11, 2009. The calibrated hydraulic model was then used to compute seven water-surface profiles for flood stages referenced to the streamgage datum and ranging from 7 ft, or near bankfull, to 13 ft, in 1-foot increments. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each water level.The availability of these maps, along with internet information regarding current stage from the USGS streamgage at Cedar Creek

  20. Flood-inundation maps for the Driftwood River and Sugar Creek near Edinburgh, Indiana

    Science.gov (United States)

    Fowler, Kathleen K.; Kim, Moon H.; Menke, Chad D.

    2012-01-01

    Digital flood-inundation maps for an 11.2 mile reach of the Driftwood River and a 5.2 mile reach of Sugar Creek, both near Edinburgh, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Camp Atterbury Joint Maneuver Training Center, Edinburgh, Indiana. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. Current conditions at the USGS streamgage in Indiana may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system at http://water.weather.gov/ahps/. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. The hydraulic model was then used to determine elevations throughout the study reaches for nine water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to nearly the highest recorded water level at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. The simulated water-surface profiles were then combined with a geospatial digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to

  1. Sea-Level Rise and Flood Potential along the California Coast

    Science.gov (United States)

    Delepine, Q.; Leung, C.

    2013-12-01

    Sea-level rise is becoming an ever-increasing problem in California. Sea-level is expected to rise significantly in the next 100 years, which will raise flood elevations in coastal communities. This will be an issue for private homeowners, businesses, and the state. One study suggests that Venice Beach could lose a total of at least $440 million in tourism spending and tax dollars from flooding and beach erosion if sea level rises 1.4 m by 2100. In addition, several airports, such as San Francisco International Airport, are located in coastal regions that have flooded in the past and will likely be flooded again in the next 30 years, but sea-level rise is expected to worsen the effects of flooding in the coming decades It is vital for coastal communities to understand the risks associated with sea-level rise so that they can plan to adapt to it. By obtaining accurate LiDAR elevation data from the NOAA Digital Coast Website (http://csc.noaa.gov/dataviewer/?keyword=lidar#), we can create flood maps to simulate sea level rise and flooding. The data are uploaded to ArcGIS and contour lines are added for different elevations that represent future coastlines during 100-year flooding. The following variables are used to create the maps: 1. High-resolution land surface elevation data - obtained from NOAA 2. Local mean high water level - from USGS 3. Local 100-year flood water level - from the Pacific Institute 4. Sea-level rise projections for different future dates (2030, 2050, and 2100) - from the National Research Council The values from the last three categories are added to represent sea-level rise plus 100-year flooding. These values are used to make the contour lines that represent the projected flood elevations, which are then exported as KML files, which can be opened in Google Earth. Once these KML files are made available to the public, coastal communities will gain an improved understanding of how flooding and sea-level rise might affect them in the future

  2. A systematic review and meta-analysis of pneumonia associated with thin liquid vs. thickened liquid intake in patients who aspirate.

    Science.gov (United States)

    Kaneoka, Asako; Pisegna, Jessica M; Saito, Hiroki; Lo, Melody; Felling, Katey; Haga, Nobuhiko; LaValley, Michael P; Langmore, Susan E

    2017-08-01

    To investigate whether drinking thin liquids with safety strategies increases the risk for pneumonia as compared with thickened liquids in patients who have demonstrated aspiration of thin liquids. Seven electronic databases, one clinical register, and three conference archives were searched. No language or publication date restrictions were imposed. Reference lists were scanned and authors and experts in the field were contacted. A blind review was performed by two reviewers for published or unpublished randomized controlled trials and prospective non-randomized trials comparing the incidence of pneumonia with intake of thin liquids plus safety strategies vs. thickened liquids in adult patients who aspirated on thin liquids. The data were extracted from included studies. Odds ratios (OR) for pneumonia were calculated from the extracted data. Risk of bias was also assessed with the included published trials. Seven studies out of 2465 studies including 650 patients met the inclusion criteria. All of the seven studies excluded patients with more than one known risk factor for pneumonia. Six studies compared thin water protocols to thickened liquids for pneumonia prevention. A meta-analysis was done on the six studies, showing no significant difference for pneumonia risk (OR = 0.82; 95% CI = 0.05-13.42; p = 0.89). There was no significant difference in the risk of pneumonia in aspirating patients who took thin liquids with safety strategies compared with those who took thickened liquids only. This result, however, is generalizable only for patients with low risk of pneumonia.

  3. Flooding and its Effect on Trees

    Science.gov (United States)

    Stephen Bratkovich; Lisa Burban; Steven Katovich; Craig Locey; Jill Pokorny; Richard Wiest

    1993-01-01

    The 1993 floods along the Missouri and Mississippi Rivers and their tributaries have caused tremendous losses in terms of human life, homes, businesses and crop production. Bottomland areas have been under water for many weeks. Landowners, homeowners, foresters, park managers, and others are concerned about the long-term effect of the flooding on the forests of the...

  4. Towards a Risk Governance Culture in Flood Policy—Findings from the Implementation of the “Floods Directive” in Germany

    Directory of Open Access Journals (Sweden)

    Klaus Wagner

    2012-02-01

    Full Text Available The European Directive on the Assessment and Management of Flood Risks is likely to cause changes to flood policy in Germany and other member states. With its risk governance approach, it introduces a holistic and catchment-oriented flood risk management and tries to overcome shortcomings of the past, such as the event-driven construction of mainly structural measures. However, there is leeway for interpretation in implementing the directive. The present paper gives an overview on the implementation of the floods directive in Germany and is divided into two qualitative empirical case studies. Case Study I investigates the level of acceptance of the floods directive among decision-makers in the German part of the Rhine river basin. Findings show that the federal states respond differently to the impulse given by the floods directive. Whereas some decision-makers opt for a pro-forma implementation, others take it as a starting point to systematically improve their flood policy. Case Study II presents recommendations for a successful implementation of flood risk management plans that have been developed within a project for the water authority in Bavaria and might be interesting for other federal/member states. For a participation of the interested parties on the level of shared decision-making, the planning process has to work on sub-management-plan level (15–20 communities. The water resources authority has to adopt a multi-faceted role (expert, responsible or interested party depending on the discussed topics.

  5. Flood-inundation maps for North Fork Salt Creek at Nashville, Indiana

    Science.gov (United States)

    Martin, Zachary W.

    2017-11-13

    Digital flood-inundation maps for a 3.2-mile reach of North Fork Salt Creek at Nashville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding that correspond to selected water levels (stages) at the North Fork Salt Creek at Nashville, Ind., streamgage (USGS station number 03371650). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also shows observed USGS stages at the same site as the USGS streamgage (NWS site NFSI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current (2015) stage-discharge rating at the USGS streamgage 03371650, North Fork Salt Creek at Nashville, Ind. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals, except for the highest profile of 22.9 ft, referenced to the streamgage datum ranging from 12.0 ft (the NWS “action stage”) to 22.9 ft, which is the highest stage of the current (2015) USGS stage-discharge rating curve and 1.9 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with information regarding current stage from the USGS

  6. Reactivity-flooding effect of the MNSR inner irradiation sites

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-01-01

    For the purpose of safety assessments, evaluation of the reactivity effects of inner irradiation sites, being flooded with water in the MNSR reactor was conducted both numerically and experimentally. Measured and calculated effect of different combination of inner irradiation sites being flooded with water was evaluated numerically and experimentally. Good agreement between measurement and calculated results were obtained

  7. Aerosol retention in the flooded steam generator bundle during SGTR

    International Nuclear Information System (INIS)

    Lind, Terttaliisa; Dehbi, Abdel; Guentay, Salih

    2011-01-01

    Research highlights: → High retention of aerosol particles in a steam generator bundle flooded with water. → Increasing particle inertia, i.e., particle size and velocity, increases retention. → Much higher retention of aerosol particles in the steam generator bundle flooded with water than in a dry bundle. → Much higher retention of aerosol particles in the steam generator bundle than in a bare pool. → Bare pool models have to be adapted to be applicable for flooded bundles. - Abstract: A steam generator tube rupture in a pressurized water reactor may cause accidental release of radioactive particles into the environment. Its specific significance is in its potential to bypass the containment thereby providing a direct pathway of the radioactivity from the primary circuit to the environment. Under certain severe accident scenarios, the steam generator bundle may be flooded with water. In addition, some severe accident management procedures are designed to minimize the release of radioactivity into the environment by flooding the defective steam generator secondary side with water when the steam generator has dried out. To extend our understanding of the particle retention phenomena in the flooded steam generator bundle, tests were conducted in the ARTIST and ARTIST II programs to determine the effect of different parameters on particle retention. The effects of particle type (spherical or agglomerate), particle size, gas mass flow rate, and the break submergence on particle retention were investigated. Results can be summarized as follows: increasing particle inertia was found to increase retention in the flooded bundle. Particle shape, i.e., agglomerate or spherical structure, did not affect retention significantly. Even with a very low submergence, 0.3 m above the tube break, significant aerosol retention took place underlining the importance of the jet-bundle interactions close to the tube break. Droplets were entrained from the water surface with

  8. Lessons learned from Khartoum flash flood impacts: An integrated assessment.

    Science.gov (United States)

    Mahmood, Mohamad Ibrahim; Elagib, Nadir Ahmed; Horn, Finlay; Saad, Suhair A G

    2017-12-01

    This study aims at enabling the compilation of key lessons for decision makers and urban planners in rapidly urbanizing cities regarding the identification of representative, chief causal natural and human factors for the increased level of flash flood risk. To achieve this, the impacts of flash flood events of 2013 and 2014 in the capital of Sudan, Khartoum, were assessed using seven integrated approaches, i.e. rainfall data analysis, document analysis of affected people and houses, observational fieldwork in the worst flood affected areas, people's perception of causes and mitigation measures through household interviews, reported drinking water quality, reported water-related diseases and social risk assessment. Several lessons have been developed as follows. Urban planners must recognize the devastating risks of building within natural pathways of ephemeral watercourses. They must also ensure effective drainage infrastructures and physio-geographical investigations prior to developing urban areas. The existing urban drainage systems become ineffective due to blockage by urban waste. Building of unauthorized drainage and embankment structures by locals often cause greater flood problems than normal. The urban runoff is especially problematic for residential areas built within low-lying areas having naturally low infiltration capacity, as surface water can rapidly collect within hollows and depressions, or beside elevated roads that preclude the free flow of floodwater. Weak housing and infrastructure quality are especially vulnerable to flash flooding and even to rainfall directly. Establishment of services infrastructure is imperative for flash flood disaster risk reduction. Water supply should be from lower aquifers to avoid contaminant groundwater. Regular monitoring of water quality and archiving of its indicators help identify water-related diseases and sources of water contamination in the event of environmental disasters such as floods. Though the

  9. Potentially pathogenic free-living amoebae in some flood-affected areas during 2011 Chiang Mai flood.

    Science.gov (United States)

    Wannasan, Anchalee; Uparanukraw, Pichart; Songsangchun, Apichart; Morakote, Nimit

    2013-01-01

    The survey was carried out to investigate the presence of potentially pathogenic free-living amoebae (FLA) during flood in Chiang Mai, Thailand in 2011. From different crisis flood areas, seven water samples were collected and tested for the presence of amoebae using culture and molecular methods. By monoxenic culture, FLA were detected from all samples at 37 °C incubation. The FLA growing at 37 °C were morphologically identified as Acanthamoeba spp., Naegleria spp. and some unidentified amoebae. Only three samples (42.8%), defined as thermotolerant FLA, continued to grow at 42 °C. By molecular methods, two non-thermotolerant FlA were shown to have 99% identity to Acanthamoeba sp. and 98% identity to Hartmannella vermiformis while the two thermotolerant FLA were identified as Echinamoeba exundans (100% identity) and Hartmannella sp. (99% identity). This first report of the occurrence of FLA in water during the flood disaster will provide information to the public to be aware of potentially pathogenic FLA.

  10. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  11. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    Science.gov (United States)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  12. Flood Risk Index Assessment in Johor River Basin

    International Nuclear Information System (INIS)

    Ahmad Shakir Mohd Saudi; Hafizan Juahir; Azman Azid; Fazureen Azaman; Ahmad Shakir Mohd Saudi

    2015-01-01

    This study is focusing on constructing the flood risk index in the Johor river basin. The application of statistical methods such as factor analysis (FA), statistical process control (SPC) and artificial neural network (ANN) had revealed the most efficient flood risk index. The result in FA was water level has correlation coefficient of 0.738 and the most practicable variable to be used for the warning alert system. The upper control limits (UCL) for the water level in the river basin Johor is 4.423 m and the risk index for the water level has been set by this method consisting of 0-100.The accuracy of prediction has been evaluated by using ANN and the accuracy of the test result was R"2 = 0.96408 with RMSE= 2.5736. The future prediction for UCL in Johor river basin has been predicted and the value was 3.75 m. This model can shows the current and future prediction for flood risk index in the Johor river basin and can help local authorities for flood control and prevention of the state of Johor. (author)

  13. Improvement of CO sub 2 flood performance

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.F.; Heller, J.P.

    1991-06-01

    This is the final report of a six-year research project devoted to the study of processes of oil displacement using dense carbon dioxide. The topics studied have included phase behavior and physical properties of mixtures of crude oil with CO{sub 2}, the phenomena involved in the displacement of oil through reservoir rock under oilfield conditions, the influence of stabilized lamella or CO{sub 2}-foam on this displacement and the development of computer programs to simulate the displacement. In addition, the occurrence of nonuniformities in the displacement pattern has also been considered. The effect on displacement of permeability heterogeneities in the reservoir have been studied geostatistically and by direct numerical modelling. Displacement nonuniformities that are induced by viscosity and density differences between displaced and displacing fluids have also been considered, and efforts are described for the development of two different types of additive for purposes of mobility control of CO{sub 2} floods. One of these is the so-called CO{sub 2}-foam, formed by simultaneous flow through the formation of dense CO{sub 2} with a water solution of a special surfactant. The second type under development in the project is known as direct thickener, and consists of a polymer that is soluble in dense CO{sub 2} and able to viscosify it. Significant progress is reported on all of the topics mentioned above. 174 refs., 186 figs., 41 tabs.

  14. Revision of regional maximum flood (RMF) estimation in Namibia ...

    African Journals Online (AJOL)

    Extreme flood hydrology in Namibia for the past 30 years has largely been based on the South African Department of Water Affairs Technical Report 137 (TR 137) of 1988. This report proposes an empirically established upper limit of flood peaks for regions called the regional maximum flood (RMF), which could be ...

  15. Flood-inundation maps for the Wabash River at Memorial Bridge at Vincennes, Indiana

    Science.gov (United States)

    Fowler, Kathleen K.; Menke, Chad D.

    2017-08-23

    Digital flood-inundation maps for a 10.2-mile reach of the Wabash River from Sevenmile Island to 3.7 mile downstream of Memorial Bridge (officially known as Lincoln Memorial Bridge) at Vincennes, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 03343010, Wabash River at Memorial Bridge at Vincennes, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site.For this study, flood profiles were computed for the Wabash River reach by means of a one-dimensional stepbackwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03343010, Wabash River at Memorial Bridge at Vincennes, Ind., and preliminary high-water marks from a high-water event on April 27, 2013. The calibrated hydraulic model was then used to determine 19 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from 10 feet (ft) or near bankfull to 28 ft, the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar] data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) in order to delineate the area flooded at each water level.The availability of these maps—along with Internet information

  16. Giant deviation of a relaxation time from generalized Newtonian theory in discontinuous shear thickening suspensions

    Science.gov (United States)

    Maharjan, Rijan; Brown, Eric

    2017-12-01

    We investigated the transient relaxation of a discontinuous shear thickening (DST) suspension of cornstarch in water. We performed two types of relaxation experiments starting from a steady shear in a parallel-plate rheometer, followed either by stopping the top plate rotation and measuring the transient torque relaxation or by removing the torque on the plate and measuring the transient rotation of the tool. We found that at low effective weight fraction ϕeffmodel. The regime where the relaxation was inconsistent with the generalized Newtonian model was the same where we found positive normal stress during relaxation, and in some cases we found an oscillatory response, suggestive of a solidlike structure consisting of a system-spanning contact network of particles. This regime also corresponds to the same packing fraction range where we consistently found discontinuous shear thickening in rate-controlled, steady-state measurements. The relaxation time in this range scales with the inverse of the critical shear rate at the onset of shear thickening, which may correspond to a contact relaxation time for nearby particles in the structure to flow away from each other. In this range, the relaxation time was the same in both stress- and rate-controlled relaxation experiments, indicating the relaxation time is more intrinsic than an effective viscosity in this range and is needed in addition to the steady-state viscosity function to describe transient flows. The discrepancy between the measured relaxation times and the generalized Newtonian prediction was found to be as large as four orders of magnitude, and extrapolations diverge in the limit as ϕeff→ϕc as the generalized Newtonian prediction approaches 0. This quantitative discrepancy indicates the relaxation is not controlled by the dissipative terms in the constitutive relation. At the highest weight fractions, the relaxation time scales were measured to be on the order of ˜1 s. The fact that this time scale is

  17. Changes in the quality of river water before, during and after a major flood event associated with a La Niña cycle and treatment for drinking purposes.

    Science.gov (United States)

    Murshed, Mohamad Fared; Aslam, Zeeshan; Lewis, Rosmala; Chow, Christopher; Wang, Dongsheng; Drikas, Mary; van Leeuwen, John

    2014-10-01

    The treatment of organics present in the lower reaches of a major river system (the Murray-Darling Basin, Australia) before (March-July 2010), during (December 2010-May 2011) and after (April-December 2012) a major flood period was investigated. The flood period (over 6months) occurred during an intense La Niña cycle, leading to rapid and high increases in river flows and organic loads in the river water. Dissolved organic carbon (DOC) increased (2-3 times) to high concentrations (up to 16mg/L) and was found to correlate with river flow rates. The treatability of organics was studied using conventional jar tests with alum and an enhanced coagulation model (mEnCo©). Predicted mean alum dose rates (per mg DOC) were higher before (9.1mg alum/mg DOC) and after (8.5mg alum/mg DOC) than during the flood event (8.0mg alum/mg DOC), indicating differences in the character of the organics in raw waters. To assess the character of natural organic matter present in raw and treated waters, high performance size exclusion chromatography with UV and fluorescence detectors were used. During the flood period, high molecular weight UV absorbing compounds (>2kDa) were mostly detected in waters collected, but were not evident in waters collected before and afterwards. The relative abundances of humic-like and protein-like compounds during and following the flood period were also investigated and found to be of a higher molecular weight during the flood period. The treatability of the organics was found to vary over the three climate conditions investigated. Copyright © 2014. Published by Elsevier B.V.

  18. Indirect Damage of Urban Flooding: Investigation of Flood-Induced Traffic Congestion Using Dynamic Modeling

    Directory of Open Access Journals (Sweden)

    Jingxuan Zhu

    2018-05-01

    Full Text Available In many countries, industrialization has led to rapid urbanization. Increased frequency of urban flooding is one consequence of the expansion of urban areas which can seriously affect the productivity and livelihoods of urban residents. Therefore, it is of vital importance to study the effects of rainfall and urban flooding on traffic congestion and driver behavior. In this study, a comprehensive method to analyze the influence of urban flooding on traffic congestion was developed. First, a flood simulation was conducted to predict the spatiotemporal distribution of flooding based on Storm Water Management Model (SWMM and TELAMAC-2D. Second, an agent-based model (ABM was used to simulate driver behavior during a period of urban flooding, and a car-following model was established. Finally, in order to study the mechanisms behind how urban flooding affects traffic congestion, the impact of flooding on urban traffic was investigated based on a case study of the urban area of Lishui, China, covering an area of 4.4 km2. It was found that for most events, two-hour rainfall has a certain impact on traffic congestion over a five-hour period, with the greatest impact during the hour following the cessation of the rain. Furthermore, the effects of rainfall with 10- and 20-year return periods were found to be similar and small, whereas the effects with a 50-year return period were obvious. Based on a combined analysis of hydrology and transportation, the proposed methods and conclusions could help to reduce traffic congestion during flood seasons, to facilitate early warning and risk management of urban flooding, and to assist users in making informed decisions regarding travel.

  19. RHEOLOGICAL CHARACTERIZATION OF COFFEEFLAVORED YOGURT WITH DIFFERENT TYPES OF THICKENER

    Directory of Open Access Journals (Sweden)

    Thiago Rocha dos Santos MATHIAS

    2011-12-01

    Full Text Available Yogurt is a functional food that has great demand due to the consumer’s search for a healthier diet. In order to expand the consumer market of this product, many flavors are available, satisfying the most varied preferences. Besides the taste attribute, consistency and viscosity of yogurt are some of the main factors involved in product quality and acceptance. Therefore, this work is a study of the influence of concentration of thickener in coffee-flavored yogurt. The thickener agent used was gelatin. The rheological behavior (flow and viscosity curves of yogurts with and without addition of gelatin was compared with commercial yogurt, which contains another type of thickener (locust bean gum in its formulation. The flow and viscosity curves were obtained from rotational rheometer Thermo Haake Mars, with a range of shear rate from 0.02 to 100 s-1 (rising curve and 100 to 0.02 s-1 (descendent curve at a total time of 20 minutes. Hysteresis was determined as the area between the curves and adjusted to the models of Bingham, Casson, Herschel-Bulkley and Ostwald-de-Waele. Were also carried out tests of thixotropy, by measuring the viscosity as a function of time at a constant rate of 100 s-1 for 10 minutes. These curves were adjusted by the Weltman model. All samples showed pseudoplastic and thixotropic behavior. The Herschel-Bulkley model was the best fit to the three samples tested. The Weltman’s model well described the thixotropy tests, except for the sample of commercial yogurt. The use of gelatin as a thickener showed protective character, reducing the structural break of the gel.

  20. Characterization of microbial and metal contamination in flooded New York City neighborhoods following Superstorm Sandy

    Science.gov (United States)

    Dueker, M.; O'Mullan, G. D.; Sahajpal, R.

    2013-12-01

    Large scale flooding of waterfront neighborhoods occurred in New York City (NYC) during Superstorm Sandy. While NYC waterways commonly experience combined sewer overflow (CSO) and associated water quality degradation during rain storms, Superstorm Sandy was unique in that these potentially contaminated waters were transported over the banks and into city streets and buildings. Sampling of waterways, storm debris on city streets, and flood water trapped in building basements occurred in the days following Sandy, including in neighborhoods bordering the Gowanus Canal and Newtown Creek, which are both Superfund sites known to frequently contain high levels of sewage associated bacteria and metal contamination. Samples enumerated for the sewage indicating bacterium, Enterococcus, suggest that well-flushed waterways recovered quickly from sewage contamination in the days following the storm, with Enterococci concentrations similar to background levels measured before flooding occurred. In contrast, storm debris on city streets and waters from flooded basements had much higher levels of sewage-associated bacteria days after flooding occurred. Analysis of 180,000 bacterial 16S rRNA gene sequences obtained from flood water samples and flood debris confirmed the presence of bacterial genera often associated with sewage impacted samples (e.g. Escherichia, Streptococcus, Clostridium, Trichococcus, Aeromonas) and a community composition similar to CSO discharge. Elemental analysis suggests low levels of metal contamination in most flood water, but much higher levels of Cu, Pb, and Cr were found in leach from some storm debris samples found adjacent to the Newtown Creek and Gowanus Canal superfund sites. These data suggest a rapid recovery of water quality in local waterways after Superstorm Sandy, but that trapped flood water and debris samples in urban neighborhoods retained elevated levels of microbial sewage pollution, and in some cases metal pollution, days after that

  1. [Analysis of thickening polysaccharides by the improved diethyldithioacetal derivatization method].

    Science.gov (United States)

    Akiyama, Takumi; Yamazaki, Takeshi; Tanamoto, Kenichi

    2011-01-01

    The identification test for thickening polysaccharides containing neutral saccharides and uronic acids was investigated by GC analysis of constituent monosaccharides. The reported method, in which monosaccharides were converted to diethyldithioacetal derivatives with ethanethiol followed by trimethylsilylation, was improved in terms of operability and reproducibility of GC/MS analysis. The suitability of the improved diethyldithioacetal derivatization method was determined for seven thickening polysaccharides, i.e., carob bean gum, guar gum, karaya gum, gum arabic, gum ghatti, tragacanth gum and peach gum. The samples were acid-hydrolyzed to form monosaccharides. The hydrolysates were derivatized and analyzed with GC/FID. Each sugar derivative was detected as a single peak and was well separated from others on the chromatograms. The amounts of constituent monosaccharides in thickening polysaccharides were successfully estimated. Seven polysaccharides were distinguished from each other on the basis of constituent monosaccharides. Further examination of the time period of hydrolysis of polysaccharides using peach gum showed that the optimal times were not the same for all monosaccharides. A longer time was needed to hydrolyze glucuronic acid than neutral saccharides. The findings suggest that hydrolysis time may sometimes affect the analytical results on composition of constituent monosaccharides in polysaccharides.

  2. Iowa Flood Information System

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  3. Effects of salinity and flooding on seedlings of cabbage palm (Sabal palmetto).

    Science.gov (United States)

    Perry, L; Williams, K

    1996-03-01

    Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO 2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO 2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt

  4. Benchmarking flood models from space in near real-time: accommodating SRTM height measurement errors with low resolution flood imagery

    Science.gov (United States)

    Schumann, G.; di Baldassarre, G.; Alsdorf, D.; Bates, P. D.

    2009-04-01

    In February 2000, the Shuttle Radar Topography Mission (SRTM) measured the elevation of most of the Earth's surface with spatially continuous sampling and an absolute vertical accuracy greater than 9 m. The vertical error has been shown to change with topographic complexity, being less important over flat terrain. This allows water surface slopes to be measured and associated discharge volumes to be estimated for open channels in large basins, such as the Amazon. Building on these capabilities, this paper demonstrates that near real-time coarse resolution radar imagery of a recent flood event on a 98 km reach of the River Po (Northern Italy) combined with SRTM terrain height data leads to a water slope remarkably similar to that derived by combining the radar image with highly accurate airborne laser altimetry. Moreover, it is shown that this space-borne flood wave approximation compares well to a hydraulic model and thus allows the performance of the latter, calibrated on a previous event, to be assessed when applied to an event of different magnitude in near real-time. These results are not only of great importance to real-time flood management and flood forecasting but also support the upcoming Surface Water and Ocean Topography (SWOT) mission that will routinely provide water levels and slopes with higher precision around the globe.

  5. Microstructural changes in thickened corpus callosum in children: contribution of magnetic resonance diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Merlini, Laura; Anooshiravani, Mehrak; Kanavaki, Aikaterini; Hanquinet, Sylviane [University of Geneva Children' s Hospital, Pediatric Radiology Unit, Geneva (Switzerland)

    2015-06-15

    Thickened corpus callosum is a rare finding and its pathophysiology is not well known. An anomalous supracallosal bundle has been depicted by fiber tracking in some cases but no diffusion tensor imaging metrics of thickened corpus callosum have been reported. To use diffusion tensor imaging (DTI) in cases of thickened corpus callosum to help in understanding its clinical significance. During a 7-year period five children (ages 6 months to 15 years) with thickened corpus callosum were studied. We determined DTI metrics of fractional anisotropy (FA), mean diffusivity, and axial (λ1) and radial (λ2, λ3) diffusivity and performed 3-D fiber tracking reconstruction of the thickened corpus callosum. We compared our results with data from the literature and 24 age-matched controls. Brain abnormalities were seen in all cases. All children had at least three measurements of corpus callosum thickness above the 97th percentile according to age. In all children 3-D fiber tracking showed an anomalous supracallosal bundle and statistically significant decrease in FA (P = 0.003) and λ1 (P = 0.001) of the corpus callosum compared with controls, but no significant difference in mean diffusivity and radial diffusivity. Thickened corpus callosum was associated with abnormal bundles, suggesting underlying axonal guidance abnormality. DTI metrics suggested abnormal fiber compactness and density, which may be associated with alterations in cognition. (orig.)

  6. Prediction of the flooding process at the Ronneburg site - results of an integrated approach

    International Nuclear Information System (INIS)

    Paul, M.; Saenger, H.-J.; Snagowski, S.; Maerten, H.; Eckart, M.

    1998-01-01

    The flooding process of the Ronneburg uranium mine (WISMUT) was initiated at the turn of the year 1997 to 1998. In order to prepare the flooding process and to derive and optimize technological measures an integrated modelling approach was chosen which includes several coupled modules. The most important issues to be answered are: (1) prediction of the flooding time (2) prediction of the groundwater level at the post-flooding stage, assessment of amount, location and quality of flooding waters entering the receiving streams at the final stage (3) water quality prediction within the mine during the flooding process (4) definition of technological measures and assessment of their efficiency A box model which includes the three-dimensional distribution of the cavity volume in the mine represents the model core. The model considers the various types of dewatered cavity volumes for each mine level / mining field and the degree of vertical and horizontal connection between the mining fields. Different types of open mine space as well as the dewatered geological pore and joint volume are considered taking into account the contour of the depression cone prior to flooding and the characteristics of the different rock types. Based on the mine water balance and the flooding technology the model predicts the rise of the water table over time during the flooding process for each mine field separately. In order to predict the mine water quality and the efficiency of in-situ water treatment the box model was linked to a geochemical model (PHREEQC). A three-dimensional flow model is used to evaluate the post-flooding situation at the Ronneburg site. This model is coupled to the box model. The modelling results of various flooding scenarios show that a prediction of the post-flooding geohydraulic situation is possible despite of uncertainties concerning the input parameters which still exist. The post-flooding water table in the central part of the Ronneburg mine will be 270 m

  7. Analysis of abnormally thickened endometrial patterns on transvaginal sonography

    International Nuclear Information System (INIS)

    Lee, Myung Sook; Cho, Hyeun Cha

    1999-01-01

    To determine whether the transvaginal sonographic appearance of the thickened endometrium can help to predict the underlying endometrial pathologic process. The sonogram reports of fall 41 pre- and 21 postmenopausal women who underwent transvaginal sonogram were retrospectively analyzed. The women undergoing estrogen replacement therapy, tamoxifen therapy or having abnormal cervical cytology were excluded from this study. The analysis of sonographic and histologic results was performed in all patients. Three distinct sonographic patterns were encountered. Type I consisted of heterogeneous endometrial thickening with internal hypoechoic areas (normal [n=4], polyp [n=1] and cancer [n=4] in premenopausal women and cancer [n=4] in postmenopausal women). Type II consisted of echogenic endometrial thickening with or without tiny cysts (normal[n=5], and hyperplasia [n=7] in premenopausal women and normal [n=4], polyp [n=2], and hyperplasia [n=1] in postmenopausal women). Type III consisted of localized well defined endoluminal lesion (normal [n=1], polyp [n=14], hyperplasia [n=1], cancer [n=1], and submucosal mass [n=3] in premenopausal women and normal [n=4], polyp [n=2],submucosal mass [n=3], and hematoma [n=1] in postmenopausal women). The measurement of the endometrial thickness combined with analysis of sonographic echo patterns may be helpful in prediction and differentiation of endometrial disease in pre- and postmenopausal women. Also it can contribute to avoiding unnecessary D and C.

  8. Advances in flash floods understanding and modelling derived from the FloodScale project in South-East France

    Directory of Open Access Journals (Sweden)

    Braud Isabelle

    2016-01-01

    Full Text Available The Mediterranean area is prone to intense rainfall events triggering flash floods, characterized by very short response times that sometimes lead to dramatic consequences in terms of casualties and damages. These events can affect large territories, but their impact may be very local in catchments that are generally ungauged. These events remain difficult to predict and the processes leading to their generation still need to be clarified. The HyMeX initiative (Hydrological Cycle in the Mediterranean Experiment, 2010-2020 aims at increasing our understanding of the water cycle in the Mediterranean basin, in particular in terms of extreme events. In order to better understand processes leading to flash floods, a four-year experiment (2012-2015 was conducted in the Cévennes region (South-East France as part of the FloodScale project. Both continuous and opportunistic measurements during floods were conducted in two large catchments (Ardèche and Gard rivers with nested instrumentation from the hillslopes to catchments of about 1, 10, 100 to 1000 km2 covering contrasted geology and land use. Continuous measurements include distributed rainfall, stream water level, discharge, water temperature and conductivity and soil moisture measurements. Opportunistic measurements include surface soil moisture and geochemistry sampling during events and gauging of floods using non-contact methods: portable radars to measure surface water velocity or image sequence analysis using LS-PIV (Large Scale Particle Image Velocimetry. During the period 2012-2014, and in particular during autumn 2014, several intense events affected the catchments and provided very rich data sets. Data collection was complemented with modelling activity aiming at simulating observed processes. The modelling strategy was setup through a wide range of scales, in order to test hypotheses about physical processes at the smallest scales, and aggregated functioning hypothesis at the largest

  9. Developing a Global Database of Historic Flood Events to Support Machine Learning Flood Prediction in Google Earth Engine

    Science.gov (United States)

    Tellman, B.; Sullivan, J.; Kettner, A.; Brakenridge, G. R.; Slayback, D. A.; Kuhn, C.; Doyle, C.

    2016-12-01

    There is an increasing need to understand flood vulnerability as the societal and economic effects of flooding increases. Risk models from insurance companies and flood models from hydrologists must be calibrated based on flood observations in order to make future predictions that can improve planning and help societies reduce future disasters. Specifically, to improve these models both traditional methods of flood prediction from physically based models as well as data-driven techniques, such as machine learning, require spatial flood observation to validate model outputs and quantify uncertainty. A key dataset that is missing for flood model validation is a global historical geo-database of flood event extents. Currently, the most advanced database of historical flood extent is hosted and maintained at the Dartmouth Flood Observatory (DFO) that has catalogued 4320 floods (1985-2015) but has only mapped 5% of these floods. We are addressing this data gap by mapping the inventory of floods in the DFO database to create a first-of- its-kind, comprehensive, global and historical geospatial database of flood events. To do so, we combine water detection algorithms on MODIS and Landsat 5,7 and 8 imagery in Google Earth Engine to map discrete flood events. The created database will be available in the Earth Engine Catalogue for download by country, region, or time period. This dataset can be leveraged for new data-driven hydrologic modeling using machine learning algorithms in Earth Engine's highly parallelized computing environment, and we will show examples for New York and Senegal.

  10. Channel Shallowing as Mitigation of Coastal Flooding

    Directory of Open Access Journals (Sweden)

    Philip M. Orton

    2015-07-01

    Full Text Available Here, we demonstrate that reductions in the depth of inlets or estuary channels can be used to reduce or prevent coastal flooding. A validated hydrodynamic model of Jamaica Bay, New York City (NYC, is used to test nature-based adaptation measures in ameliorating flooding for NYC's two largest historical coastal flood events. In addition to control runs with modern bathymetry, three altered landscape scenarios are tested: (1 increasing the area of wetlands to their 1879 footprint and bathymetry, but leaving deep shipping channels unaltered; (2 shallowing all areas deeper than 2 m in the bay to be 2 m below Mean Low Water; (3 shallowing only the narrowest part of the inlet to the bay. These three scenarios are deliberately extreme and designed to evaluate the leverage each approach exerts on water levels. They result in peak water level reductions of 0.3%, 15%, and 6.8% for Hurricane Sandy, and 2.4%, 46% and 30% for the Category-3 hurricane of 1821, respectively (bay-wide averages. These results suggest that shallowing can provide greater flood protection than wetland restoration, and it is particularly effective at reducing "fast-pulse" storm surges that rise and fall quickly over several hours, like that of the 1821 storm. Nonetheless, the goal of flood mitigation must be weighed against economic, navigation, and ecological needs, and practical concerns such as the availability of sediment.

  11. Modelling of Salt Solubilities for Smart Water flooding in Carbonate Reservoirs using Extended UNIQUAC Model

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara

    recovery can increase that capture up to 25-30% of original oil in place (OOIP). But cost effective Enhanced Oil Recovery (EOR) techniques if implemented correctly canbe used to produce another 10-15% of the initially available hydrocarbons. Advanced water flooding (i.e. altering injection brine...... compositions by varying concentration of selected ions) is an enhanced oil recovery method which in alow cost, non-toxic manner increases oil recovery from various carbonate reservoirs. Dan and Halfdan are chalk reservoirs from the Danish North Sea, which are matured oil fields that have been flooded......For most oil reservoirs which were drilled with conventional methods, the expected initial recovery of available hydrocarbons maybe as low as 15% – thusleaving 85+% of hydrocarbons in the reservoir. Implementation of mechanical methods including pump jacks and initial gas injection or thermal...

  12. New mechanism under International Flood Initiative toward robustness for flood management in the Asia Pacific region

    Science.gov (United States)

    Murase, M.; Yoshitani, J.; Takeuchi, K.; Koike, T.

    2015-12-01

    Climate change is likely to result in increases in the frequency or intensity of extreme weather events. It is imperative that a good understanding is developed of how climate change affects the events that are reflected in hydrological extremes such as floods and how practitioners in water resources management deal with them. Since there is still major uncertainty as to how the impact of climate change affect actual water resources management, it is important to build robustness into management schemes and communities. Flood management under such variety of uncertainty favors the flexible and adaptive implementation both in top-down and bottom-up approaches. The former uses projections of global or spatially downscaled models to drive resource models and project resource impacts. The latter utilizes policy or planning tools to identify what changes in climate would be most threatening to their long-range operations. Especially for the bottom-up approaches, it is essential to identify the gap between what should be done and what has not been achieved for disaster risks. Indicators or index are appropriate tools to measure such gaps, but they are still in progress to cover the whole world. The International Flood Initiative (IFI), initiated in January 2005 by UNESCO and WMO in close cooperation with UNU and ISDR, IAHS and IAHR, has promoted an integrated approach to flood management to take advantage of floods and use of flood plains while reducing the social, environmental and economic risks. Its secretariat is located in ICHARM. The initiative objective is to support national platforms to practice evidence-based disaster risk reduction through mobilizing scientific and research networks at national, regional and international levels. The initiative is now preparing for a new mechanism to facilitate the integrated approach for flood management on the ground regionally in the Asia Pacific (IFI-AP) through monitoring, assessment and capacity building.

  13. Probabilistic Flood Defence Assessment Tools

    Directory of Open Access Journals (Sweden)

    Slomp Robert

    2016-01-01

    Full Text Available The WTI2017 project is responsible for the development of flood defence assessment tools for the 3600 km of Dutch primary flood defences, dikes/levees, dunes and hydraulic structures. These tools are necessary, as per January 1st 2017, the new flood risk management policy for the Netherlands will be implemented. Then, the seven decades old design practice (maximum water level methodology of 1958 and two decades old safety standards (and maximum hydraulic load methodology of 1996 will formally be replaced by a more risked based approach for the national policy in flood risk management. The formal flood defence assessment is an important part of this new policy, especially for flood defence managers, since national and regional funding for reinforcement is based on this assessment. This new flood defence policy is based on a maximum allowable probability of flooding. For this, a maximum acceptable individual risk was determined at 1/100 000 per year, this is the probability of life loss of for every protected area in the Netherlands. Safety standards of flood defences were then determined based on this acceptable individual risk. The results were adjusted based on information from cost -benefit analysis, societal risk and large scale societal disruption due to the failure of critical infrastructure e.g. power stations. The resulting riskbased flood defence safety standards range from a 300 to a 100 000 year return period for failure. Two policy studies, WV21 (Safety from floods in the 21st century and VNK-2 (the National Flood Risk in 2010 provided the essential information to determine the new risk based safety standards for flood defences. The WTI2017 project will provide the safety assessment tools based on these new standards and is thus an essential element for the implementation of this policy change. A major issue to be tackled was the development of user-friendly tools, as the new assessment is to be carried out by personnel of the

  14. Global Near Real-Time MODIS and Landsat Flood Mapping and Product Delivery

    Science.gov (United States)

    Policelli, F. S.; Slayback, D. A.; Tokay, M. M.; Brakenridge, G. R.

    2014-12-01

    Flooding is the most destructive, frequent, and costly natural disaster faced by modern society, and is increasing in frequency and damage (deaths, displacements, and financial costs) as populations increase and climate change generates more extreme weather events. When major flooding events occur, the disaster management community needs frequently updated and easily accessible information to better understand the extent of flooding and coordinate response efforts. With funding from NASA's Applied Sciences program, we developed and are now operating a near real-time global flood mapping system to help provide flood extent information within 24-48 hours of events. The principal element of the system applies a water detection algorithm to MODIS imagery, which is processed by the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard within a few hours of satellite overpass. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows the system to deliver an initial daily assessment of flood extent by late afternoon, and more robust assessments after accumulating cloud-free imagery over several days. Cloud cover is the primary limitation in detecting surface water from MODIS imagery. Other issues include the relatively coarse scale of the MODIS imagery (250 meters) for some events, the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extent. We are working on improvements to address these limitations. We have also begun delivery of near real time water maps at 30 m resolution from Landsat imagery. Although Landsat is not available daily globally, but only every 8 days if imagery from both operating platforms (Landsat 7 and 8) is accessed, it can provide useful higher resolution data on water extent when a clear acquisition coincides with an active

  15. Flood management: prediction of microbial contamination in large-scale floods in urban environments.

    Science.gov (United States)

    Taylor, Jonathon; Lai, Ka Man; Davies, Mike; Clifton, David; Ridley, Ian; Biddulph, Phillip

    2011-07-01

    With a changing climate and increased urbanisation, the occurrence and the impact of flooding is expected to increase significantly. Floods can bring pathogens into homes and cause lingering damp and microbial growth in buildings, with the level of growth and persistence dependent on the volume and chemical and biological content of the flood water, the properties of the contaminating microbes, and the surrounding environmental conditions, including the restoration time and methods, the heat and moisture transport properties of the envelope design, and the ability of the construction material to sustain the microbial growth. The public health risk will depend on the interaction of these complex processes and the vulnerability and susceptibility of occupants in the affected areas. After the 2007 floods in the UK, the Pitt review noted that there is lack of relevant scientific evidence and consistency with regard to the management and treatment of flooded homes, which not only put the local population at risk but also caused unnecessary delays in the restoration effort. Understanding the drying behaviour of flooded buildings in the UK building stock under different scenarios, and the ability of microbial contaminants to grow, persist, and produce toxins within these buildings can help inform recovery efforts. To contribute to future flood management, this paper proposes the use of building simulations and biological models to predict the risk of microbial contamination in typical UK buildings. We review the state of the art with regard to biological contamination following flooding, relevant building simulation, simulation-linked microbial modelling, and current practical considerations in flood remediation. Using the city of London as an example, a methodology is proposed that uses GIS as a platform to integrate drying models and microbial risk models with the local building stock and flood models. The integrated tool will help local governments, health authorities

  16. Impact of floods induced by extreme precipitation events on public health

    Science.gov (United States)

    Mavroulis, Spyridon; Mavrouli, Maria; Lekkas, Efthymios; Tsakris, Athanassios

    2017-04-01

    Hydrometeorological disasters comprise the most reported type of natural disaster, and floods account for the majority of disasters in this category in both developed and developing countries. Flooding can lead to extensive morbidity and mortality and pose multiple risks to public health throughout the world. This study involved an extensive and systematic literature review of 124 research publications related to public health impact of 98 floods that occurred globally (Oceania 4, Africa 9, America 22, Europe 24, Asia 39) from 1942 to 2014. The inclusion criteria were literature type comprising journal articles and official reports, natural disaster type including floods induced after extreme precipitation events (accumulation of rainwater in poorly-drained environments, riverine and flash floods), population type including humans, and outcome measure characterized by infectious diseases (ID) incidence increase. The potential post-flood ID are classified into 13 groups including rodent-borne (reported in 38 of the total 98 events, 38.78%), water-borne (33, 33.67%), vector-borne (25, 25.51%), respiratory (19, 19.39%), fecal-oral (14, 14.29%), skin (9, 9.18%), blood-borne (4, 4.08%), eye (3, 3.06%), soil-related (3, 3.06%), ear (2, 2.04%), fungal (1, 1.02%) and wound-borne (1, 1.02%) ID. Based on available age and genre data, it is concluded that the most vulnerable population groups are predominantly young children (age ≤ 5 years) and male. The most fatal post-flood ID are leptospirosis and diarrhea followed by respiratory tract infections. The detected risk factors include (1) poor economic status and living in flood prone areas, (2) destruction of infrastructures, disruption of public utilities and interruption of basic public health services such as vector control programs, (3) direct physical exposure to sewage-polluted flood water, (4) lack of adequate potable water and water-supply from contaminated ponds and tube wells along with lack of distribution of

  17. Identification of flood-rich and flood-poor periods in flood series

    Science.gov (United States)

    Mediero, Luis; Santillán, David; Garrote, Luis

    2015-04-01

    Recently, a general concern about non-stationarity of flood series has arisen, as changes in catchment response can be driven by several factors, such as climatic and land-use changes. Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Trends are usually detected by the Mann-Kendall test. However, the results of this test depend on the starting and ending year of the series, which can lead to different results in terms of the period considered. The results can be conditioned to flood-poor and flood-rich periods located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to a set of long series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. Mediero et al. (2014) found a general decreasing trend in flood series in some parts of Spain that could be caused by a flood-rich period observed in 1950-1970, placed at the beginning of the flood series. The results of this study support the findings of Mediero et al. (2014), as a flood-rich period in 1950-1970 was identified in most of the selected sites. References: Mediero, L., Santillán, D., Garrote, L., Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain, Journal of Hydrology, 517, 1072-1088, 2014.

  18. A mathematical model for batch and continuous thickening of flocculent suspensions in vessels with varying section

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, R.; Damasceno, J.J.R.; Karlesen, K.H.

    2001-10-01

    The phenomenological theory of continuous thickening of flocculated suspensions in an ideal cylindrical thickener is extended to vessels having varying cross-section, including divergent or convergent conical vessels. The purpose of this contribution is to draw attention to the corresponding mathematical model, whose key ingredient is a strongly degenerate parabolic partial differential equation. For ideal (non-flocculated) suspensions, which do not form co compressible sediments, the mathematical model reduces to the kinematic approach by Anestis, who developed a method of construction of exact solution by the method of characteristics. The difficulty lies in the fact that characteristics and iso-concentration lines, unlike the conventional Kynch model for cylindrical vessels, do not coincide, and one has to resort to numerical methods to simulate the thickening process. A numerical algorithm is presented and employed for simulations of continuous thickening. Implications of the mathematical model are also demonstrated by steady-state calculations, which lead to new possibilities in thickener design. (author)

  19. Flood Mapping: Assessing the uncertainty associated with flood inundation modelling. A case study of the Mora River, Sweden

    OpenAIRE

    Åberg, Isabelle

    2017-01-01

    Expansion of cities and major infrastructure projects lead to changes in land use and river flows. The probability of flooding is expected to increase in the future as a result of these changes in combination with climate change. Hydraulic models can be used to obtain simulated water levels to investigate the risk of flooding and identify areas that might potentially be flooded due to climate change. Since a model is a simplification of the reality it is important to be aware of a model’s unc...

  20. Probable maximum flood on the Ha Ha River

    International Nuclear Information System (INIS)

    Damov, D.; Masse, B.

    1997-01-01

    Results of a probable maximum flood (PMF) study conducted for various locations along the Ha Ha river, a tributary of the Saguenay River, were discussed. The study was undertaken for use in the design and construction of new hydraulic structures for water supply for a pulp and paper facility, following the Saguenay Flood in July 1996. Many different flood scenarios were considered, including combinations of snow-melt with rainfall. Using computer simulations, it was shown that the largest flood flows were generated by summer-fall PMF. 5 refs., 12 figs

  1. Effect of Flash Flood in the Distribution of Radionuclides of Ground Water and its Environmental Impacts, Wadi Naseib, Southwestern Sinai, Egypt

    International Nuclear Information System (INIS)

    Nada, A.A.; Talaat, S.M.; Abd El Maksoud, T.M.; ElAassy, I.E.; El Galy, M.M.; El Feky, M.G.; Ibrahim, E.M.

    2011-01-01

    Groundwater can either be extracted from bedrock (drilled wells) or from soil aquifer (dug wells). This study was carried out on four dug wells in two successive years. Water samples were collected in April 2010 (after January 2010 flash flood) and April 2011 (with no flash flood). Samples were prepared for gamma spectrometry using hyper pure germanium detector. The results showed variations in the concentrations of 238 U and its decay series nuclides, 232 Th and 40 K. The activity concentration of 238 U was increased from 5 to 6 times after flash flood, while 232 Th was increased around 10 times. The activity concentrations of 214 Pb and 214 Bi were 2 to 9 times higher in 2011 than in 2010 waters. The 234 U/ 238 U ratio is usually more than one. The analyzed groundwater samples recorded higher effective dose than the recommended reference for drinking water by WHO (0.1 mSv/y). ICRP recommendations set the limit for public exposure as an effective dose of 1.0 mSv/y. In this context, the effective dose of the samples collected in April 2010 were higher than the ICRP limit, while the samples of April 2011 were lower than this limit.

  2. Urban flood risk warning under rapid urbanization.

    Science.gov (United States)

    Chen, Yangbo; Zhou, Haolan; Zhang, Hui; Du, Guoming; Zhou, Jinhui

    2015-05-01

    In the past decades, China has observed rapid urbanization, the nation's urban population reached 50% in 2000, and is still in steady increase. Rapid urbanization in China has an adverse impact on urban hydrological processes, particularly in increasing the urban flood risks and causing serious urban flooding losses. Urban flooding also increases health risks such as causing epidemic disease break out, polluting drinking water and damaging the living environment. In the highly urbanized area, non-engineering measurement is the main way for managing urban flood risk, such as flood risk warning. There is no mature method and pilot study for urban flood risk warning, the purpose of this study is to propose the urban flood risk warning method for the rapidly urbanized Chinese cities. This paper first presented an urban flood forecasting model, which produces urban flood inundation index for urban flood risk warning. The model has 5 modules. The drainage system and grid dividing module divides the whole city terrain into drainage systems according to its first-order river system, and delineates the drainage system into grids based on the spatial structure with irregular gridding technique; the precipitation assimilation module assimilates precipitation for every grids which is used as the model input, which could either be the radar based precipitation estimation or interpolated one from rain gauges; runoff production module classifies the surface into pervious and impervious surface, and employs different methods to calculate the runoff respectively; surface runoff routing module routes the surface runoff and determines the inundation index. The routing on surface grid is calculated according to the two dimensional shallow water unsteady flow algorithm, the routing on land channel and special channel is calculated according to the one dimensional unsteady flow algorithm. This paper then proposed the urban flood risk warning method that is called DPSIR model based

  3. Flood-inundation maps for the East Fork White River near Bedford, Indiana

    Science.gov (United States)

    Fowler, Kathleen K.

    2014-01-01

    Digital flood-inundation maps for an 1.8-mile reach of the East Fork White River near Bedford, Indiana (Ind.) were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selectedwater levels (stages) at USGS streamgage 03371500, East Fork White River near Bedford, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=03371500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the East Fork White River near Bedford, Ind. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the East Fork White River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03371500, East Fork White River near Bedford, Ind., and documented high-water marks from the flood of June 2008. The calibrated hydraulic model was then used to determine 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from

  4. Numerical approach for enhanced oil recovery with surfactant flooding

    Directory of Open Access Journals (Sweden)

    Sadegh Keshtkar

    2016-03-01

    Full Text Available The remained oil in the reservoir after conventional water-flooding processes, forms a dispersed phase in the form of oil drops which is trapped by capillary forces and is almost about 70% of the original oil in the place (OOIP. To reduce oil residual saturation in laboratory experiments and field projects, surfactant flooding is effective via decreasing the interfacial tension mobility ratio between oil and water phases. Estimation of the role of design variables, like chemical concentrations, partition coefficient and injection rate in different performance quantities, considering a heterogeneous and multiphase oil reservoir is a critical stage for optimal design. Increasing demand for oil production from water-flooded reservoirs has caused an increasing interest in surfactant-polymer (SP and alkali-surfactant-polymer (ASP. Modeling minimizes the risk of high cost of chemicals by improving our insight of process. In the present paper, a surfactant compositional flood model for a three-component (water, petroleum and surfactant, two phase (aqueous and oleic system is studied. A homogeneous, two-dimensional, isothermal reservoir with no free gas or alkali is assumed. The governing equations are in three categories: the continuity equations for the transport of each component, Darcy's equation for the transport of each phase and other auxiliary equations. The equations are solved by finite-differences using a procedure implicit in pressure and explicit in saturation. The validation of the model is achieved through comparing the modeling results with CMG simulators and Buckley–Leverett theory. The results of modeling showed good agreement with CMG results, and the comparison with Buckley–Leverett theory is explained according to different assumptions. After validation of the model, in order to investigate sensitivity analysis, the effects of system variables (partition coefficient, surface tension, oil viscosity and surface injection

  5. Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego; Prescott, Steven R; Smith, Curtis L; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J; Kinoshita, Robert A

    2011-07-01

    In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.

  6. Towards a Flood Severity Index

    Science.gov (United States)

    Kettner, A.; Chong, A.; Prades, L.; Brakenridge, G. R.; Muir, S.; Amparore, A.; Slayback, D. A.; Poungprom, R.

    2017-12-01

    Flooding is the most common natural hazard worldwide, affecting 21 million people every year. In the immediate moments following a flood event, humanitarian actors like the World Food Program need to make rapid decisions ( 72 hrs) on how to prioritize affected areas impacted by such an event. For other natural disasters like hurricanes/cyclones and earthquakes, there are industry-recognized standards on how the impacted areas are to be classified. Shake maps, quantifying peak ground motion, from for example the US Geological Survey are widely used for assessing earthquakes. Similarly, cyclones are tracked by Joint Typhoon Warning Center (JTWC) and Global Disaster Alert and Coordination System (GDACS) who release storm nodes and tracks (forecasted and actual), with wind buffers and classify the event according to the Saffir-Simpson Hurricane Wind Scale. For floods, the community is usually able to acquire unclassified data of the flood extent as identified from satellite imagery. Most often no water discharge hydrograph is available to classify the event into recurrence intervals simply because there is no gauging station, or the gauging station was unable to record the maximum discharge due to overtopping or flood damage. So, the question remains: How do we methodically turn a flooded area into classified areas of different gradations of impact? Here, we present a first approach towards developing a global applicable flood severity index. The flood severity index is set up such that it considers relatively easily obtainable physical parameters in a short period of time like: flood frequency (relating the current flood to historical events) and magnitude, as well as land cover, slope, and where available pre-event simulated flood depth. The scale includes categories ranging from very minor flooding to catastrophic flooding. We test and evaluate the postulated classification scheme against a set of past flood events. Once a severity category is determined, socio

  7. Hospital infection prevention and control issues relevant to extensive floods.

    Science.gov (United States)

    Apisarnthanarak, Anucha; Mundy, Linda M; Khawcharoenporn, Thana; Glen Mayhall, C

    2013-02-01

    The devastating clinical and economic implications of floods exemplify the need for effective global infection prevention and control (IPC) strategies for natural disasters. Reopening of hospitals after excessive flooding requires a balance between meeting the medical needs of the surrounding communities and restoration of a safe hospital environment. Postflood hospital preparedness plans are a key issue for infection control epidemiologists, healthcare providers, patients, and hospital administrators. We provide recent IPC experiences related to reopening of a hospital after extensive black-water floods necessitated hospital closures in Thailand and the United States. These experiences provide a foundation for the future design, execution, and analysis of black-water flood preparedness plans by IPC stakeholders.

  8. When surging seas meet stronger rain: Nuclear techniques in flood management

    International Nuclear Information System (INIS)

    Quevenco, Rodolfo

    2015-01-01

    Unusually high rainfall in many parts of the world is a result of climate change, scientists say. Since warmer air can hold more water, the rationale goes, increased temperatures will increase the chances of stronger rainfall events. And when surging seas combine with stronger rain, the outcome is almost certain: floods. Floods are the most frequently occurring natural disasters, and south-east Asia is particularly vulnerable. Climate change and variability are expected to bring about increased typhoon activities, rising sea levels and off-season monsoon rains in southeast Asia and other regions. These can cause devastating floods in countries like Cambodia, Laos, Pakistan, the Philippines, Thailand and Viet Nam. For the residents of these countries who have survived the ravages of major floods, the road to recovery can be long and arduous. As the flood water recedes, they have to contend with new forms of flood: floods of concern and worries as to how to rebuild their houses, their lives and their cities. Governments, too, face huge challenges in rebuilding roads, public buildings, infrastructure and natural resources destroyed or polluted by the flood.

  9. Guidance of Autonomous Amphibious Vehicles for Flood Rescue Support

    Directory of Open Access Journals (Sweden)

    Shankarachary Ragi

    2013-01-01

    Full Text Available We develop a path-planning algorithm to guide autonomous amphibious vehicles (AAVs for flood rescue support missions. Specifically, we develop an algorithm to control multiple AAVs to reach/rescue multiple victims (also called targets in a flood scenario in 2D, where the flood water flows across the scene and the targets move (drifted by the flood water along the flood stream. A target is said to be rescued if an AAV lies within a circular region of a certain radius around the target. The goal is to control the AAVs such that each target gets rescued while optimizing a certain performance objective. The algorithm design is based on the theory of partially observable Markov decision process (POMDP. In practice, POMDP problems are hard to solve exactly, so we use an approximation method called nominal belief-state optimization (NBO. We compare the performance of the NBO approach with a greedy approach.

  10. Leptospirosis following a major flood in Central Queensland, Australia.

    Science.gov (United States)

    Smith, J K G; Young, M M; Wilson, K L; Craig, S B

    2013-03-01

    Throughout December 2010 and January 2011, Queensland experienced widespread flooding due to unusually protracted and heavy rainfalls. In mid-January 2011, four individuals from a small community in Central Queensland were hospitalized with leptospirosis. A further five cases were subsequently identified from around Central Queensland, bringing the total to nine. Microscopic agglutination testing found that serovar Arborea (Leptospira borgpetersenii serovar Arborea) was presumptively responsible for leptospirosis in seven of nine confirmed cases. Serovars Hardjo and Australis were identified in samples from two remaining cases. All cases had exposure to flood water. No single exposure source was identified. This is the first reported outbreak of leptospirosis in Central Queensland and the first report of leptospirosis cases associated with flood water inundation in Queensland. Public health authorities should continue to promote awareness of leptospirosis in flood-affected populations. Healthcare providers must maintain a high level of suspicion for leptospirosis during and after flood events.

  11. Analysis of the Tonle Sap Flood Pulse Based on Remote Sensing: how much does Tonle Sap Lake Affect the Mekong River Flood?

    Science.gov (United States)

    Qu, W.; Hu, N.; Fu, J.; Lu, J.; Lu, H.; Lei, T.; Pang, Z.; Li, X.; Li, L.

    2018-04-01

    The economic value of the Tonle Sap Lake Floodplain to Cambodia is among the highest provided to a nation by a single ecosystem around the world. The flow of Mekong River is the primary factor affecting the Tonle Sap Lake Floodplain. The Tonle Sap Lake also plays a very important role in regulating the downstream flood of Mekong River. Hence, it is necessary to understand its temporal changes of lake surface and water storage and to analyse its relation with the flood processes of Mekong River. Monthly lake surface and water storage from July 2013 to May 2014 were first monitored based on remote sensing data. The relationship between water surface and accumulative water storage change was then established. In combination with hydrological modelling results of Mekong River Basin, the relation between the lake's water storage and the runoff of Mekong River was analysed. It is found that the water storage has a sharp increase from September to December and, after reaching its maximum in December, water storage quickly decreases with a 38.8 billion m3 of drop in only half month time from December to January, while it keeps rather stable at a lower level in other months. There is a two months' time lag between the maximum lake water storage and the Mekong River peak flood, which shows the lake's huge flood regulation role to downstream Mekong River. It shows that this remote sensing approach is feasible and reliable in quantitative monitoring of data scarce lakes.

  12. Effect of capillary number on the oil recovery using oil-water emulsion injection in core flooding experiments

    Energy Technology Data Exchange (ETDEWEB)

    Guillen Nunez, Victor Raul; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msn@puc-rio.br; Basante, Vladimir Alvarado [University of Wyoming, Laramie, WY (United States). Dept. of Chemical/Petroleum Engineering], E-mail: valvard@uwyo.edu

    2010-07-01

    The Water injection flooding is a common method to improve reservoir sweep and pressure maintenance. The heavy-oil-recovery efficiency is in part limited by the high water-to-oil mobility ratio. Several enhanced oil recovery methods are being developed as more efficient alternatives to water flooding. Dispersion injection, in particular oil-water emulsion injection, has been tried with relative success as an enhanced oil recovery method, but the technique is not fully developed or understood. If emulsion injection proves to be an effective EOR method, its use would bring the added benefit of disposing produced water with small oil content that could be modified to serve as the injected oil-water emulsion. The use of such methods requires a detailed analysis of the different flow regimes of emulsions through the porous space of a reservoir rock. If the drop size of the disperse phase is of the same order of magnitude as the pore size, the drops may agglomerate and partially block water flow through pores. This flow regime may be used to control the mobility of the injected liquid, leading to higher recovery factor. We have shown in recent experiments of oil displacement in a sandstone core that, the oil recovery factor could be raised from approximately 40 %, obtained with water injection only, up to approximately 75 % by alternating water and emulsion injection. Although these results clearly show the improvement in the recovery factor, the mechanisms responsible for the phenomenon have not been clearly elucidated. In this work, two sandstone cores were used to demonstrate the effect of flow rate (capillary number) on the mobility control by emulsion injection. Figure 1 shows a schematic representation of the experiment set-up. The experiments show that raising the flow rate by a factor of 10 (0.03 ml/min to 0.3 ml/min), the oil recovered factor decreases considerably. (author)

  13. Modeling flood events for long-term stability

    International Nuclear Information System (INIS)

    Schruben, T.; Portillo, R.

    1985-01-01

    The primary objective for the disposal of uranium mill tailings in the Uranium Mill Tailings Remedial Action (UMTRA) Project is isolation and stabilization to prevent their misuse by man and dispersal by natural forces such as wind, rain, and flood waters (40 CFR-192). Stabilization of sites that are located in or near flood plains presents unique problems in design for long-term performance. This paper discusses the process involved with the selection and hydrologic modeling of the design flood event; and hydraulic modeling with geomorphic considerations of the design flood event. The Gunnison, Colorado, and Riverton, Wyoming, sites will be used as examples in describing the process

  14. Detection, modeling and matching of pleural thickenings from CT data towards an early diagnosis of malignant pleural mesothelioma

    Science.gov (United States)

    Chaisaowong, Kraisorn; Kraus, Thomas

    2014-03-01

    Pleural thickenings can be caused by asbestos exposure and may evolve into malignant pleural mesothelioma. While an early diagnosis plays the key role to an early treatment, and therefore helping to reduce morbidity, the growth rate of a pleural thickening can be in turn essential evidence to an early diagnosis of the pleural mesothelioma. The detection of pleural thickenings is today done by a visual inspection of CT data, which is time-consuming and underlies the physician's subjective judgment. Computer-assisted diagnosis systems to automatically assess pleural mesothelioma have been reported worldwide. But in this paper, an image analysis pipeline to automatically detect pleural thickenings and measure their volume is described. We first delineate automatically the pleural contour in the CT images. An adaptive surface-base smoothing technique is then applied to the pleural contours to identify all potential thickenings. A following tissue-specific topology-oriented detection based on a probabilistic Hounsfield Unit model of pleural plaques specify then the genuine pleural thickenings among them. The assessment of the detected pleural thickenings is based on the volumetry of the 3D model, created by mesh construction algorithm followed by Laplace-Beltrami eigenfunction expansion surface smoothing technique. Finally, the spatiotemporal matching of pleural thickenings from consecutive CT data is carried out based on the semi-automatic lung registration towards the assessment of its growth rate. With these methods, a new computer-assisted diagnosis system is presented in order to assure a precise and reproducible assessment of pleural thickenings towards the diagnosis of the pleural mesothelioma in its early stage.

  15. An expanded model: flood-inundation maps for the Leaf River at Hattiesburg, Mississippi, 2013

    Science.gov (United States)

    Storm, John B.

    2014-01-01

    Digital flood-inundation maps for a 6.8-mile reach of the Leaf River at Hattiesburg, Mississippi (Miss.), were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Leaf River at Hattiesburg, Miss. (station no. 02473000). Current conditions for estimating near-real-time areas of inundation by use of USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relations at the Leaf River at Hattiesburg, Miss. streamgage (02473000) and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system (GIS

  16. Feed thickener for infants up to six months of age with gastro-oesophageal reflux.

    Science.gov (United States)

    Kwok, T'ng Chang; Ojha, Shalini; Dorling, Jon

    2017-12-05

    Gastro-oesophageal reflux (GOR) is common in infants, and feed thickeners are often used to manage it in infants as they are simple to use and perceived to be harmless. However, conflicting evidence exists to support the use of feed thickeners. To evaluate the use of feed thickeners in infants up to six months of age with GOR in terms of reduction in a) signs and symptoms of GOR, b) reflux episodes on pH probe monitoring or intraluminal impedance or a combination of both, or c) histological evidence of oesophagitis. We used the standard search strategy of the Cochrane Neonatal Review Group to search the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 2), MEDLINE via PubMed (1966 to 22 November 2016), Embase (1980 to 22 November 2016), and CINAHL (1982 to 22 November 2016). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials. We included randomised controlled trials if they examined the effects of feed thickeners as compared to unthickened feeds (no treatment or placebo) in treating GOR in term infants up to six months of age or six months of corrected gestational age for those born preterm. Two review authors independently identified eligible studies from the literature search. Two review authors independently performed data extraction and quality assessments of the eligible studies. Differences in opinion were resolved by discussion with a third review author, and consensus was reached among all three review authors. We used the GRADE approach to assess the quality of the evidence. Eight trials recruiting a total of 637 infants met the inclusion criteria for the systematic review. The infants included in the review were mainly formula-fed term infants. The trials were of variable methodological quality. Formula-fed term infants with GOR on feed thickeners had nearly two fewer episodes of regurgitation per day (mean difference -1.97 episodes per day

  17. Design of flood early warning system with wifi network based on smartphone

    Science.gov (United States)

    Supani, Ahyar; Andriani, Yuli; Taqwa, Ahmad

    2017-11-01

    Today, the development using internet of things enables activities surrounding us to be monitored, controlled, predicted and calculated remotely through connections to the internet network such as monitoring activities of long-distance flood warning with information technology. Applying an information technology in the field of flood early warning has been developed in the world, either connected to internet network or not. The internet network that has been done in this paper is the design of WiFi network to access data of rainfall, water level and flood status at any time with a smartphone coming from flood early warning system. The results obtained when test of data accessing with smartphone are in form of rainfall and water level graphs against time and flood status indicators consisting of 3 flood states: Standby 2, Standby 1 and Flood. It is concluded that data are from flood early warning system has been able to accessed and displayed on smartphone via WiFi network in any time and real time.

  18. A Cloud-Based Global Flood Disaster Community Cyber-Infrastructure: Development and Demonstration

    Science.gov (United States)

    Wan, Zhanming; Hong, Yang; Khan, Sadiq; Gourley, Jonathan; Flamig, Zachary; Kirschbaum, Dalia; Tang, Guoqiang

    2014-01-01

    Flood disasters have significant impacts on the development of communities globally. This study describes a public cloud-based flood cyber-infrastructure (CyberFlood) that collects, organizes, visualizes, and manages several global flood databases for authorities and the public in real-time, providing location-based eventful visualization as well as statistical analysis and graphing capabilities. In order to expand and update the existing flood inventory, a crowdsourcing data collection methodology is employed for the public with smartphones or Internet to report new flood events, which is also intended to engage citizen-scientists so that they may become motivated and educated about the latest developments in satellite remote sensing and hydrologic modeling technologies. Our shared vision is to better serve the global water community with comprehensive flood information, aided by the state-of-the- art cloud computing and crowdsourcing technology. The CyberFlood presents an opportunity to eventually modernize the existing paradigm used to collect, manage, analyze, and visualize water-related disasters.

  19. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Water-bearing explosive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Gay, G M

    1970-12-21

    An explosive water-bearing composition, with high detonation velocity, comprises a mixture of (1) an inorganic oxidizer salt; (2) nitroglycerine; (3) nitrocellulose; (4) water; and (5) a water thickening agent. (11 claims)

  1. Discontinuous Shear Thickening and Dilatancy: Frictional Effects in Viscous Suspensions

    Science.gov (United States)

    Morris, Jeffrey

    2015-03-01

    Shear thickening in concentrated suspensions has been well-known for quite a long time, yet a firm consensus on the basis for very abrupt or ``discontinuous'' shear thickening (DST) seen in suspensions of large solid fraction, ϕ, has not been reached. This work addresses the DST phenomenon, and proposes a simulation method based in the Stokesian Dynamics algorithm to explore the role of various forces between the particles, including hydrodynamic, conservative potential, and frictional interactions. This work shows that allowance for friction between spherical particles suspended in a viscous liquid causes a significant reduction in the jamming solid fraction of the mixture, ϕmax, taken as the maximum fraction at which the suspension will flow. A consequence of this is a shifting of the singularity in the effective viscosity, η, to smaller ϕmax, and the frictional suspension has a larger viscosity than does the frictionless suspension of the same solid fraction, as is clear from the standard empirical modeling of η (ϕ) =(1 - ϕ /ϕmax) - α , α ~ 2 . When a counterbalancing repulsive force between the particles, representative for example of charge-induced repulsion, is incorporated in the dynamics, the mixture undergoes a transition from frictionless to frictional interactions, and from low to high effective viscosity, at a critical shear rate. Comparison with experimental data shows remarkable agreement in the features of DST captured by the method. The basic algorithm and results of both rate-controlled and stress-controlled simulations will be presented. Like the shear stress, the magnitude of the normal stress exerted by the suspended particles also increases abruptly at the critical shear rate, consistent with the long-standing notion that dilatancy and shear-thickening are synonymous. We will show that considering all shear thickening materials as dilatant is a misconception, but demonstrate the validity of the connection of dilatancy with DST in

  2. Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Patel, Bipen D; Coxson, Harvey O; Pillai, Sreekumar G

    2008-01-01

    RATIONALE: It is unclear whether airway wall thickening and emphysema make independent contributions to airflow limitation in chronic obstructive pulmonary disease (COPD) and whether these phenotypes cluster within families. OBJECTIVES: To determine whether airway wall thickening and emphysema (1...... to airflow obstruction in COPD. These phenotypes show independent aggregation within families of individuals with COPD, suggesting that different genetic factors influence these disease processes....... the severity of airway wall thickening and emphysema. MEASUREMENTS AND MAIN RESULTS: A total of 3,096 individuals were recruited to the study, of whom 1,159 (519 probands and 640 siblings) had technically adequate high-resolution computed tomography scans without significant non-COPD-related thoracic disease...

  3. Development of method for evaluating estimated inundation area by using river flood analysis based on multiple flood scenarios

    Science.gov (United States)

    Ono, T.; Takahashi, T.

    2017-12-01

    Non-structural mitigation measures such as flood hazard map based on estimated inundation area have been more important because heavy rains exceeding the design rainfall frequently occur in recent years. However, conventional method may lead to an underestimation of the area because assumed locations of dike breach in river flood analysis are limited to the cases exceeding the high-water level. The objective of this study is to consider the uncertainty of estimated inundation area with difference of the location of dike breach in river flood analysis. This study proposed multiple flood scenarios which can set automatically multiple locations of dike breach in river flood analysis. The major premise of adopting this method is not to be able to predict the location of dike breach correctly. The proposed method utilized interval of dike breach which is distance of dike breaches placed next to each other. That is, multiple locations of dike breach were set every interval of dike breach. The 2D shallow water equations was adopted as the governing equation of river flood analysis, and the leap-frog scheme with staggered grid was used. The river flood analysis was verified by applying for the 2015 Kinugawa river flooding, and the proposed multiple flood scenarios was applied for the Akutagawa river in Takatsuki city. As the result of computation in the Akutagawa river, a comparison with each computed maximum inundation depth of dike breaches placed next to each other proved that the proposed method enabled to prevent underestimation of estimated inundation area. Further, the analyses on spatial distribution of inundation class and maximum inundation depth in each of the measurement points also proved that the optimum interval of dike breach which can evaluate the maximum inundation area using the minimum assumed locations of dike breach. In brief, this study found the optimum interval of dike breach in the Akutagawa river, which enabled estimated maximum inundation area

  4. Flood Response System—A Case Study

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Singh

    2017-06-01

    Full Text Available Flood Response System (FRS is a network-enabled solution developed using open-source software. The system has query based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. FRS effectively facilitates the management of post-disaster activities caused due to flood, like displaying spatial maps of area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of damage. The inputs to FRS are provided using two components: (1 a semi-automated application developed indigenously, to delineate inundated areas for Near-Real Time Flood Monitoring using Active Microwave Remote Sensing data and (2 a two-dimensional (2D hydrodynamic river model generated outputs for water depth and velocity in flooded areas for an embankment breach scenario. The 2D Hydrodynamic model, CCHE2D (Center for Computational Hydroscience and Engineering Two-Dimensional model, was used to simulate an area of 600 km2 in the flood-prone zone of the Brahmaputra basin. The resultant inundated area from the model was found to be 85% accurate when validated with post-flood optical satellite data.

  5. Leveraging North Carolina's QL2 Lidar to Quantify Sensitivity of National Water Model Derived Flood Inundation Extent to DEM Resolution

    Science.gov (United States)

    Lovette, J. P.; Lenhardt, W. C.; Blanton, B.; Duncan, J. M.; Stillwell, L.

    2017-12-01

    The National Water Model (NWM) has provided a novel framework for near real time flood inundation mapping across CONUS at a 10m resolution. In many regions, this spatial scale is quickly being surpassed through the collection of high resolution lidar (1 - 3m). As one of the leading states in data collection for flood inundation mapping, North Carolina is currently improving their previously available 20 ft statewide elevation product to a Quality Level 2 (QL2) product with a nominal point spacing of 0.7 meters. This QL2 elevation product increases the ground points by roughly ten times over the previous statewide lidar product, and by over 250 times when compared to the 10m NED elevation grid. When combining these new lidar data with the discharge estimates from the NWM, we can further improve statewide flood inundation maps and predictions of at-risk areas. In the context of flood risk management, these improved predictions with higher resolution elevation models consistently represent an improvement on coarser products. Additionally, the QL2 lidar also includes coarse land cover classification data for each point return, opening the possibility for expanding analysis beyond the use of only digital elevation models (e.g. improving estimates of surface roughness, identifying anthropogenic features in floodplains, characterizing riparian zones, etc.). Using the NWM Height Above Nearest Drainage approach, we compare flood inundation extents derived from multiple lidar-derived grid resolutions to assess the tradeoff between precision and computational load in North Carolina's coastal river basins. The elevation data distributed through the state's new lidar collection program provide spatial resolutions ranging from 5-50 feet, with most inland areas also including a 3 ft product. Data storage increases by almost two orders of magnitude across this range, as does processing load. In order to further assess the validity of the higher resolution elevation products on

  6. Flood risk management for large reservoirs

    International Nuclear Information System (INIS)

    Poupart, M.

    2006-01-01

    Floods are a major risk for dams: uncontrolled reservoir water level may cause dam overtopping, and then its failure, particularly for fill dams. Poor control of spillway discharges must be taken into consideration too, as it can increase the flood consequences downstream. In both cases, consequences on the public or on properties may be significant. Spillway design to withstand extreme floods is one response to these risks, but must be complemented by strict operating rules: hydrological forecasting, surveillance and periodic equipment controls, operating guides and the training of operators are mandatory too, in order to guarantee safe operations. (author)

  7. Quick Release of Internal Water Storage in a Glacier Leads to Underestimation of the Hazard Potential of Glacial Lake Outburst Floods From Lake Merzbacher in Central Tian Shan Mountains

    Science.gov (United States)

    Shangguan, Donghui; Ding, Yongjian; Liu, Shiyin; Xie, Zunyi; Pieczonka, Tino; Xu, Junli; Moldobekov, Bolot

    2017-10-01

    Glacial meltwater and ice calving contribute to the flood volume of glacial lakes such as Lake Merzbacher in the Tian Shan Mountains of central Asia. In this study, we simulated the lake's volume by constructing an empirical relationship between the area of Lake Merzbacher, determined from satellite images, and the lake's water storage, derived from digital elevation models. Results showed that the lake water supply rate before Glacial Lake Outburst Floods (GLOFs) generally agreed well with those during the GLOFs from 2009 to 2012 but not in 2008 and 2015. Furthermore, we found that the combination of glacial meltwater and ice calving is not enough to fully explain the supply rate during GLOFs in 1996 and 1999, suggesting other factors affect the supply rate during GLOFs as well. To examine this further, we compared the water supply rate before and during GLOF events in 1999 and 2008. We inferred that quickly released short-term and intermediate-term water storage by glaciers have likely contributed to both flood events in those years. This study highlights the need to improve our understanding of the supply component of outburst floods, such as irregularly released stored water may lead to GLOF events with generally three different types: case I (singular event-triggered englacial water release), case II (glacier melt due to temperature changes), and case III (englacial water release mixed with glacier melt).

  8. Flood simulation and verification with IoT sensors

    Science.gov (United States)

    Chang, Che-Hao; Hsu, Chih-Tsung; Wu, Shiang-Jen; Huang, Sue-Wei

    2017-04-01

    2D flood dynamic simulation is a vivid tool to demonstrate the possible expose area that sustain impact of high rise of water level. Along with progress in high resolution digital terrain model, the simulation results are quite convinced yet not proved to be close to what is really happened. Due to the dynamic and uncertain essence, the expose area usually could not be well defined during a flood event. Recent development in IoT sensors bring a low power and long distance communication which help us to collect real time flood depths. With these time series of flood depths at different locations, we are capable of verifying the simulation results corresponding to the flood event. 16 flood gauges with IoT specification as well as two flood events in Annan district, Tainan city, Taiwan are examined in this study. During the event in 11, June, 2016, 12 flood gauges works well and 8 of them provide observation match to simulation.

  9. An empirical assessment of which inland floods can be managed.

    Science.gov (United States)

    Mogollón, Beatriz; Frimpong, Emmanuel A; Hoegh, Andrew B; Angermeier, Paul L

    2016-02-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m(3)/s) but quicker (0.41 days) floods than non-urban watersheds (50 m(3)/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m(3)/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m(3)/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help

  10. An empirical assessment of which inland floods can be managed

    Science.gov (United States)

    Mogollón, Beatriz; Frimpong, Emmanuel A.; Hoegh, Andrew B.; Angermeier, Paul

    2016-01-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m3/s) but quicker (0.41 days) floods than non-urban watersheds (50 m3/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m3/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m3/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help ensure that

  11. Keep Children Safe From Drowning in Flooded Areas

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    As the cleanup process begins after a natural disaster, there may be areas of flooding. Watch your children to prevent them from playing in or around flood water.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 10/22/2007.

  12. Flood loss modelling with FLF-IT: a new flood loss function for Italian residential structures

    Directory of Open Access Journals (Sweden)

    R. Hasanzadeh Nafari

    2017-07-01

    Full Text Available The damage triggered by different flood events costs the Italian economy millions of euros each year. This cost is likely to increase in the future due to climate variability and economic development. In order to avoid or reduce such significant financial losses, risk management requires tools which can provide a reliable estimate of potential flood impacts across the country. Flood loss functions are an internationally accepted method for estimating physical flood damage in urban areas. In this study, we derived a new flood loss function for Italian residential structures (FLF-IT, on the basis of empirical damage data collected from a recent flood event in the region of Emilia-Romagna. The function was developed based on a new Australian approach (FLFA, which represents the confidence limits that exist around the parameterized functional depth–damage relationship. After model calibration, the performance of the model was validated for the prediction of loss ratios and absolute damage values. It was also contrasted with an uncalibrated relative model with frequent usage in Europe. In this regard, a three-fold cross-validation procedure was carried out over the empirical sample to measure the range of uncertainty from the actual damage data. The predictive capability has also been studied for some sub-classes of water depth. The validation procedure shows that the newly derived function performs well (no bias and only 10 % mean absolute error, especially when the water depth is high. Results of these validation tests illustrate the importance of model calibration. The advantages of the FLF-IT model over other Italian models include calibration with empirical data, consideration of the epistemic uncertainty of data, and the ability to change parameters based on building practices across Italy.

  13. Flood loss modelling with FLF-IT: a new flood loss function for Italian residential structures

    Science.gov (United States)

    Hasanzadeh Nafari, Roozbeh; Amadio, Mattia; Ngo, Tuan; Mysiak, Jaroslav

    2017-07-01

    The damage triggered by different flood events costs the Italian economy millions of euros each year. This cost is likely to increase in the future due to climate variability and economic development. In order to avoid or reduce such significant financial losses, risk management requires tools which can provide a reliable estimate of potential flood impacts across the country. Flood loss functions are an internationally accepted method for estimating physical flood damage in urban areas. In this study, we derived a new flood loss function for Italian residential structures (FLF-IT), on the basis of empirical damage data collected from a recent flood event in the region of Emilia-Romagna. The function was developed based on a new Australian approach (FLFA), which represents the confidence limits that exist around the parameterized functional depth-damage relationship. After model calibration, the performance of the model was validated for the prediction of loss ratios and absolute damage values. It was also contrasted with an uncalibrated relative model with frequent usage in Europe. In this regard, a three-fold cross-validation procedure was carried out over the empirical sample to measure the range of uncertainty from the actual damage data. The predictive capability has also been studied for some sub-classes of water depth. The validation procedure shows that the newly derived function performs well (no bias and only 10 % mean absolute error), especially when the water depth is high. Results of these validation tests illustrate the importance of model calibration. The advantages of the FLF-IT model over other Italian models include calibration with empirical data, consideration of the epistemic uncertainty of data, and the ability to change parameters based on building practices across Italy.

  14. Cross-well 4-D resistivity tomography localizes the oil-water encroachment front during water flooding

    Science.gov (United States)

    Zhang, J.; Revil, A.

    2015-04-01

    The early detection of the oil-water encroachment front is of prime interest during the water flooding of an oil reservoir to maximize the production of oil and to avoid the oil-water encroachment front to come too close to production wells. We propose a new 4-D inversion approach based on the Gauss-Newton approach to invert cross-well resistance data. The goal of this study is to image the position of the oil-water encroachment front in a heterogeneous clayey sand reservoir. This approach is based on explicitly connecting the change of resistivity to the petrophysical properties controlling the position of the front (porosity and permeability) and to the saturation of the water phase through a petrophysical resistivity model accounting for bulk and surface conductivity contributions and saturation. The distributions of the permeability and porosity are also inverted using the time-lapse resistivity data in order to better reconstruct the position of the oil water encroachment front. In our synthetic test case, we get a better position of the front with the by-products of porosity and permeability inferences near the flow trajectory and close to the wells. The numerical simulations show that the position of the front is recovered well but the distribution of the recovered porosity and permeability is only fair. A comparison with a commercial code based on a classical Gauss-Newton approach with no information provided by the two-phase flow model fails to recover the position of the front. The new approach could be used for the time-lapse monitoring of various processes in both geothermal fields and oil and gas reservoirs using a combination of geophysical methods.

  15. BDHI: a French national database on historical floods

    Directory of Open Access Journals (Sweden)

    Lang Michel

    2016-01-01

    Full Text Available The paper describes the various features of the BDHI database (objects, functions, content. This document database provides document sheets on historical floods from various sources: technical reports from water authorities, scientific accounts (meteorology, hydrology, hydraulics..., post-disaster reports, newspapers or book extracts... It is complemented by fact sheets on flood events, which provide a summary text on significant past floods: location, date and duration, type of flood, extent, probability, adverse consequences A search engine is provided for information search based on time (specific date or period, on location (district, basin, city or thematic topic (document type, flood type, flood magnitude, flood impact.... We conclude by some future challenges in relation to the next cycle of the Floods Directive (2016-2022, with the inventory of past floods which had significant adverse impacts. What are the flood events that need to be integrated (new ones later than 2011 and/or previous floods that had not yet been selected? How can the process of historical data integration be extended at a local scale, with an adequate process of validation? How to promote the use of BDHI database in relation with the development of the culture of risk?

  16. The National Flood Interoperability Experiment: Bridging Resesarch and Operations

    Science.gov (United States)

    Salas, F. R.

    2015-12-01

    The National Weather Service's new National Water Center, located on the University of Alabama campus in Tuscaloosa, will become the nation's hub for comprehensive water resources forecasting. In conjunction with its federal partners the US Geological Survey, Army Corps of Engineers and Federal Emergency Management Agency, the National Weather Service will operationally support both short term flood prediction and long term seasonal forecasting of water resource conditions. By summer 2016, the National Water Center will begin evaluating four streamflow data products at the scale of the NHDPlus river reaches (approximately 2.67 million). In preparation for the release of these products, from September 2014 to August 2015, the National Weather Service partnered with the Consortium of Universities for the Advancement of Hydrologic Science, Inc. to support the National Flood Interoperability Experiment which included a seven week in-residence Summer Institute in Tuscaloosa for university students interested in learning about operational hydrology and flood forecasting. As part of the experiment, 15 hour forecasts from the operational High Resolution Rapid Refresh atmospheric model were used to drive a three kilometer Noah-MP land surface model loosely coupled to a RAPID river routing model operating on the NHDPlus dataset. This workflow was run every three hours during the Summer Institute and the results were made available to those engaged to pursue a range of research topics focused on flood forecasting (e.g. reservoir operations, ensemble forecasting, probabilistic flood inundation mapping, rainfall product evaluation etc.) Although the National Flood Interoperability Experiment was finite in length, it provided a platform through which the academic community could engage federal agencies and vice versa to narrow the gap between research and operations and demonstrate how state of the art research infrastructure, models, services, datasets etc. could be utilized

  17. Improved recovery potential in mature heavy oil fields by Alkali-surfactant flooding

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, J.; Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Primary and secondary alkali surfactant (AS) chemical flooding techniques were optimized in this study. Core flooding experiments were conducted in order to investigate the formation of emulsions in bulk liquid system due to flow through rock pores. Cores were dried and then saturated with water or brine in order to measure permeability. The floods were then performed at various injection rates followed by the AS solution. Solutions were also injected without previous waterflooding. Individual oil and water mobilities were then calculated using the experimental data. Individual phase mobilities were calculated using the total pressure gradient measured across the core. Nuclear magnetic resonance (NMR) studies were conducted in order to determine emulsion formation within porous media from in situ flooding tests at 4 different locations. Data from the NMR studies were used to calculate fluid distributions and measurements of in situ emulsification during the chemical floods. The study demonstrated that the use of the surfactants resulted in the in situ formation of oil-water and water-oil emulsions. Responses from de-ionized alkali and brine AS systems were similar. The recovery mechanism blocked off water channels and provided improved sweep efficiency in the core. It was concluded that injection rates and pressure gradients for chemical floods should be lowered in order to optimize their efficiency. 26 refs., 6 tabs., 15 figs.

  18. Flooding characteristics of Goodloe packing

    International Nuclear Information System (INIS)

    Begovich, J.M.; Watson, J.S.

    1976-08-01

    Experimental flooding data for the countercurrent flow of air and water in a 7.62-cm-diam glass column filled with Goodloe packing were compared with a correlation reported by the packing manufacturer. Flooding rates observed in this study were as low as one-half those predicted by the correlation. Rearranging the packing by inverting the column and removing some packing segments yielded results similar to the correlation for liquid-to-gas (L/G) mass flow rate ratios greater than 10, but the experimental flooding curve fell significantly below the correlation at lower L/G ratios. When the column was repacked with new packing, the results were essentially the same as those obtained in the inverted column. Thus, it is believed that a carefully packed column is more likely to yield flooding rates similar to those obtained in the new or inverted columns rather than rates predicted by the original correlation

  19. Hydrological simulation of flood transformations in the upper Danube River: Case study of large flood events

    Directory of Open Access Journals (Sweden)

    Mitková Veronika Bačová

    2016-12-01

    Full Text Available The problem of understand natural processes as factors that restrict, limit or even jeopardize the interests of human society is currently of great concern. The natural transformation of flood waves is increasingly affected and disturbed by artificial interventions in river basins. The Danube River basin is an area of high economic and water management importance. Channel training can result in changes in the transformation of flood waves and different hydrographic shapes of flood waves compared with the past. The estimation and evolution of the transformation of historical flood waves under recent river conditions is only possible by model simulations. For this purpose a nonlinear reservoir cascade model was constructed. The NLN-Danube nonlinear reservoir river model was used to simulate the transformation of flood waves in four sections of the Danube River from Kienstock (Austria to Štúrovo (Slovakia under relatively recent river reach conditions. The model was individually calibrated for two extreme events in August 2002 and June 2013. Some floods that occurred on the Danube during the period of 1991–2002 were used for the validation of the model. The model was used to identify changes in the transformational properties of the Danube channel in the selected river reach for some historical summer floods (1899, 1954 1965 and 1975. Finally, a simulation of flood wave propagation of the most destructive Danube flood of the last millennium (August 1501 is discussed.

  20. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    Science.gov (United States)

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  1. Combining Satellite Measurements and Numerical Flood Prediction Models to Save Lives and Property from Flooding

    Science.gov (United States)

    Saleh, F.; Garambois, P. A.; Biancamaria, S.

    2017-12-01

    Floods are considered the major natural threats to human societies across all continents. Consequences of floods in highly populated areas are more dramatic with losses of human lives and substantial property damage. This risk is projected to increase with the effects of climate change, particularly sea-level rise, increasing storm frequencies and intensities and increasing population and economic assets in such urban watersheds. Despite the advances in computational resources and modeling techniques, significant gaps exist in predicting complex processes and accurately representing the initial state of the system. Improving flood prediction models and data assimilation chains through satellite has become an absolute priority to produce accurate flood forecasts with sufficient lead times. The overarching goal of this work is to assess the benefits of the Surface Water Ocean Topography SWOT satellite data from a flood prediction perspective. The near real time methodology is based on combining satellite data from a simulator that mimics the future SWOT data, numerical models, high resolution elevation data and real-time local measurement in the New York/New Jersey area.

  2. Coastal flooding in Denmark – future outlook

    DEFF Research Database (Denmark)

    Sørensen, C.; Knudsen, P.; Andersen, O. B.

    2014-01-01

    Water loading from all directions due to river discharge, precipitation, groundwater and the sea state (i.e. mean and extreme water levels) need to be carefully considered when dealing with flooding hazards at the coast. Flooding hazard and risk mapping are major topics in low-lying coastal are- ...... this knowledge together to enable a practice-oriented methodology that combines their effects and future sea extremes in hazard and risk mapping and climate change adaptation schemes in Denmark......- as before even considering the adverse effects of climate change and sea level rise (SLR). From an assessment of Danish sea extremes from historical evidence, tide gauge series, and space measurements, we discuss the current and future hazards, exposure, and vulnerability to flooding along the diverse......, land-use, protection measures a.o. that must be taken into account in order to evaluate current and future flooding hazards and management options. We provide examples from Danish case-studies underlining the necessity of including these factors and we outline an interdisciplinary approach to bring...

  3. Managing urban water crises: adaptive policy responses to drought and flood in Southeast Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Brian W. Head

    2014-06-01

    Full Text Available In this case study, I examine the quality of decision-making under conditions of rapidly evolving urban water crises, and the adaptive policy challenges of building regional resilience in response to both drought and flood. Like other regions of Australia, Southeast Queensland has been subject to substantial cycles of drought and flood. I draw on resilience literature concerning sustainability, together with governance literature on policy change, to explain the changing awareness of urban water crises and the strategic options available for addressing these crises in this case study. The problem of resilience thinking opens up a number of important questions about the efficacy and adaptability of the policy system. The case provides insights into the interplay between the ways in which problems are framed, the knowledge bases required for planning and decision-making, the collaborative governance processes required for managing complex and rapidly evolving issues, and the overall capacity for policy learning over time. Regional resilience was proclaimed as a policy goal by government, but the practices remained largely anchored in traditional technical frameworks. Centralized investment decisions and governance restructures provoked conflict between levels of government, undermining the capacity of stakeholders to create more consensual approaches to problem-solving and limiting the collective learning that could have emerged.

  4. Hydrogeochemical situation in the flooding water of a uranium mine - the Niederschlema/Alberoda deposit

    International Nuclear Information System (INIS)

    Wolkersdorfer, C.

    1996-01-01

    For reasons of economic viability and environmental considerations, the former uranium mine Niederschlema/Alberoda near Aue in the Erzgebirge (Ore Mountains) has been flooded since 1991. In statistical and hydrogeochemical evaluation of analyses, each with up to 60 parameters, it is shown that the water in the mine can be classified into three types: drainage water, intermediary water and mine water. All three types show significant differentiation in their chemical characteristics, whereby drainage water has the least mineral content and mine water the most. During the period of examination from January 1991 to December 1994, drainage and intermediary waters revealed no statistically significant changes in their physiochemical parameters, whereas the value of most of the physicochemical parameters of the mine water have increased more or less constantly up to 1994. At the end of 1994 the rate of increases in many of the parameters had slowed down or come to a halt. This is either a result of saturation of the water or it is a balance reaction of limited duration. To determine the hydrodynamic situation of the mine water a tracer experiment was carried out together with numerous deepness dependent temperature, conductibility, pH and redox measurements. (orig./SR) [de

  5. Valuing the reduction of floods: Public officials’ versus citizens’ preferences

    Directory of Open Access Journals (Sweden)

    Elin Spegel

    2017-01-01

    Full Text Available This paper analyses the preferences of public officials and citizens related to the impacts of floods in the Gothenburg region in Sweden. Citizens and public officials in the flood-prone region answered identical choice-experiment surveys characterized by the negative impacts of floods: property damage, traffic disturbances, and water supply security. By having citizens and public officials respond to identical surveys, it was possible to analyse whether and, if so, how priorities and monetary valuation differed in respect of the different negative effects of floods. The overall finding is that public officials’ and citizens’ preferences seem to converge, and that both citizens and public officials are willing to pay to reduce flood-related costs. Public officials have similar priorities to citizens, in that security of drinking water provision was given priority over property damage, while traffic disturbances were ranked lowest. In terms of their respective willingness to pay to avoid the negative impact of floods, public officials were willing to pay more than citizens to pay for securing the drinking water supply and for restoring damaged property, though these differences were not substantial. There are, however, some differences in preference between citizens and public officials: the latter preferred not to spend anything to reduce traffic disturbances caused by floods, whilst citizens were willing to do so. These results imply that decisions made within the public sector will not come to differ substantially from citizens’ preferences.

  6. Flood hazard assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper

  7. Estimating flood discharge using witness movies in post-flood hydrological surveys

    Science.gov (United States)

    Le Coz, Jérôme; Hauet, Alexandre; Le Boursicaud, Raphaël; Pénard, Lionel; Bonnifait, Laurent; Dramais, Guillaume; Thollet, Fabien; Braud, Isabelle

    2015-04-01

    The estimation of streamflow rates based on post-flood surveys is of paramount importance for the investigation of extreme hydrological events. Major uncertainties usually arise from the absence of information on the flow velocities and from the limited spatio-temporal resolution of such surveys. Nowadays, after each flood occuring in populated areas home movies taken from bridges, river banks or even drones are shared by witnesses through Internet platforms like YouTube. Provided that some topography data and additional information are collected, image-based velocimetry techniques can be applied to some of these movie materials, in order to estimate flood discharges. As a contribution to recent post-flood surveys conducted in France, we developed and applied a method for estimating velocities and discharges based on the Large Scale Particle Image Velocimetry (LSPIV) technique. Since the seminal work of Fujita et al. (1998), LSPIV applications to river flows were reported by a number of authors and LSPIV can now be considered a mature technique. However, its application to non-professional movies taken by flood witnesses remains challenging and required some practical developments. The different steps to apply LSPIV analysis to a flood home movie are as follows: (i) select a video of interest; (ii) contact the author for agreement and extra information; (iii) conduct a field topography campaign to georeference Ground Control Points (GCPs), water level and cross-sectional profiles; (iv) preprocess the video before LSPIV analysis: correct lens distortion, align the images, etc.; (v) orthorectify the images to correct perspective effects and know the physical size of pixels; (vi) proceed with the LSPIV analysis to compute the surface velocity field; and (vii) compute discharge according to a user-defined velocity coefficient. Two case studies in French mountainous rivers during extreme floods are presented. The movies were collected on YouTube and field topography

  8. Flood Hazard Assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    1999-01-01

    'A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods.'

  9. Asbestos-related diffuse pleural thickening.

    Science.gov (United States)

    Fujimoto, Nobukazu; Kato, Katsuya; Usami, Ikuji; Sakai, Fumikazu; Tokuyama, Takeshi; Hayashi, Seiji; Miyamoto, Kenji; Kishimoto, Takumi

    2014-01-01

    The clinical features of asbestos-related diffuse pleural thickening (DPT) remain unclear. To clarify the association between radiological findings of DPT and respiratory function. Medical data from patients with asbestos-related DPT were collected, including their history of occupational or neighborhood asbestos exposure, initial symptoms, modified Medical Research Council dyspnea grade, smoking history, radiological findings, and respiratory function test results. There were 106 DPT patients between 2005 and 2010 [i.e. 103 men (97.2%) and 3 women (2.8%)]. The median age at diagnosis was 69 years (range 46-88). Patient occupations related to asbestos exposure included: asbestos product manufacturing (n = 17); the shipbuilding industry (n = 14); the construction industry (n = 13); heat insulation work (n = 12); plumbing, asbestos spraying, and electrical work (n = 7 each), and transportation and demolition work (n = 4 each). The median duration of asbestos exposure was 25 years (range 2-54), and the median latency period before the onset of DPT was 46 years (range 25-66). Involvement of the costophrenic angle (CPA) was also negatively correlated with the percent vital capacity (%VC; r = -0.448, p < 0.01). Pleural thickness and the craniocaudal and horizontal extension of pleural thickening, as determined by chest computed tomography (CT), were also negatively correlated with %VC (r = -0.226, p < 0.05; r = -0.409, p < 0.01, and r = -0.408, p < 0.01, respectively). DPT develops after a long latency period following occupational asbestos exposure and causes marked respiratory dysfunction. The extension of DPT should be evaluated by chest CT, and chest X-ray would be important for the evaluation of the involvement of the CPA.

  10. Flood inundation maps for the Wabash and Eel Rivers at Logansport, Indiana

    Science.gov (United States)

    Fowler, Kathleen K.

    2014-01-01

    Digital flood-inundation maps for an 8.3-mile reach of the Wabash River and a 7.6-mile reach of the Eel River at Logansport, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage Wabash River at Logansport, Ind. (sta. no. 03329000) and USGS streamgage Eel River near Logansport, Ind. (sta. no. 03328500). Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system http:/water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgages 03329000, Wabash River at Logansport, Ind., and 03328500, Eel River near Logansport, Ind. The calibrated hydraulic model was then used to determine five water-surface profiles for flood stage at 1-foot intervals referenced to the Wabash River streamgage datum, and four water-surface profiles for flood stages at 1-foot intervals referenced to the Eel River streamgage datum. The stages range from bankfull to approximately the highest

  11. Optical and Physical Methods for Mapping Flooding with Satellite Imagery

    Science.gov (United States)

    Fayne, Jessica Fayne; Bolten, John; Lakshmi, Venkat; Ahamed, Aakash

    2016-01-01

    Flood and surface water mapping is becoming increasingly necessary, as extreme flooding events worldwide can damage crop yields and contribute to billions of dollars economic damages as well as social effects including fatalities and destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).Utilizing earth observing satellite data to map standing water from space is indispensable to flood mapping for disaster response, mitigation, prevention, and warning (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s(Landsat, USGS 2013), researchers have been able to remotely sense surface processes such as extreme flood events to help offset some of these problems. Researchers have demonstrated countless methods and modifications of those methods to help increase knowledge of areas at risk and areas that are flooded using remote sensing data from optical and radar systems, as well as free publically available and costly commercial datasets.

  12. Integrated Flood Forecast and Virtual Dam Operation System for Water Resources and Flood Risk Management

    Science.gov (United States)

    Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio

    2014-05-01

    While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.

  13. The rheological properties of shear thickening fluid reinforced with SiC nanowires

    Directory of Open Access Journals (Sweden)

    Jianhao Ge

    Full Text Available The rheological properties of shear thickening fluid (STF reinforced with SiC nanowires were investigated in this paper. Pure STF consists of 56 vol% silica nano-particles and polyethylene glycol 400 (PEG 400 solvent was fabricated; and a specific amount of SiC nanowires were dispersed into this pure STF, and then the volume fraction of PEG400 was adjusted to maintain the volume fraction of solid phase in the STF at a constant of 56%. The results showed there was almost 30% increase in the initial and shear thickening viscosity of the STF reinforced with SiC nanowires compared to the pure STF. Combining with the hydrodynamic cluster theory, the effect of the mechanism of SiC nanowire on the viscosity of STF was discussed, and based on the experimental results, an analytical model of viscosity was used to describe the rheological properties of STF, which agreed with the experimental results. Keywords: Shear thickening fluid (STF, Nanowire, Rheology, Viscosity, Analytical model

  14. Impacts of dyke development in flood prone areas in the Vietnamese Mekong Delta to downstream flood hazard

    Science.gov (United States)

    Khanh Triet Nguyen, Van; Dung Nguyen, Viet; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko

    2016-04-01

    The Vietnamese Mekong Delta (VMD) plays an important role in food security and socio-economic development of the country. Being a low-lying coastal region, the VMD is particularly susceptible to both riverine and tidal floods, which provide, on (the) one hand, the basis for the rich agricultural production and the livelihood of the people, but on the other hand pose a considerable hazard depending on the severity of the floods. But despite of potentially hazardous flood, the area remain active as a rice granary due to its nutrient-rich soils and sediment input, and dense waterways, canals and the long standing experience of the population living with floods. In response to both farmers' requests and governmental plans, the construction of flood protection infrastructure in the delta progressed rapidly in the last twenty years, notably at areas prone to deep flooding, i.e. the Plain of Reeds (PoR) and Long Xuyen Quadrangle (LXQ). Triple rice cropping becomes possible in farmlands enclosed by "full-dykes", i.e. dykes strong and high enough to prevent flooding of the flood plains for most of the floods. In these protected flood plains rice can be grown even during the peak flood period (September to November). However, little is known about the possibly (and already alleged) negative impacts of this fully flood protection measure to downstream areas. This study aims at quantifying how the flood regime in the lower part of the VMD (e.g. Can Tho, My Thuan, …) has been changed in the last 2 recent "big flood" events of 2000 and 2011 due to the construction of the full-dyke system in the upper part. First, an evaluation of 35 years of daily water level data was performed in order to detect trends at key gauging stations: Kratie: upper boundary of the Delta, Tan Chau and Chau Doc: areas with full-dyke construction, Can Tho and My Thuan: downstream. Results from the Mann-Kendall (MK) test show a decreasing trend of the annual maximum water level at 3 stations Kratie, Tan

  15. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  16. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    Science.gov (United States)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  17. Floods of Selected Streams in Arkansas, Spring 2008

    Science.gov (United States)

    Funkhouser, Jaysson E.; Eng, Ken

    2009-01-01

    Floods can cause loss of life and extensive destruction to property. Monitoring floods and understanding the reasons for their occurrence are the responsibility of many Federal agencies. The National Weather Service, the U.S. Army Corps of Engineers, and the U.S. Geological Survey are among the most visible of these agencies. Together, these three agencies collect and analyze floodflow information to better understand the variety of mechanisms that cause floods, and how the characteristics and frequencies of floods vary with time and location. The U.S. Geological Survey (USGS) has monitored and assessed the quantity of streamflow in our Nation's streams since the agency's inception in 1879. Because of ongoing collection and assessment of streamflow data, the USGS can provide information about a range of surface-water issues including the suitability of water for public supply and irrigation and the effects of agriculture and urbanization on streamflow. As part of its streamflow-data collection activities, the USGS measured streamflow in multiple streams during extreme flood events in Arkansas in the spring of 2008. The analysis of streamflow information collected during flood events such as these provides a scientific basis for decision making related to resource management and restoration. Additionally, this information can be used by water-resource managers to better define flood-hazard areas and to design bridges, culverts, dams, levees, and other structures. Water levels (stage) and streamflow (discharge) currently are being monitored in near real-time at approximately 150 locations in Arkansas. The streamflow-gaging stations measure and record hydrologic data at 15-minute or hourly intervals; the data then are transmitted through satellites to the USGS database and displayed on the internet every 1 to 4 hours. Streamflow-gaging stations in Arkansas are part of a network of over 7,500 active streamflow-gaging stations operated by the USGS throughout the United

  18. Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing.

    Science.gov (United States)

    Aribisala, Benjamin Segun; Royle, Natalie A; Valdés Hernández, Maria C; Murray, Catherine; Penke, Lars; Gow, Alan; Maniega, Susana Muñoz; Starr, John M; Bastin, Mark; Deary, Ian; Wardlaw, Joanna

    2014-09-01

    intracranial volume (ICV) is commonly used as a marker of premorbid brain size in neuroimaging studies as it is thought to remain fixed throughout adulthood. However, inner skull table thickening would encroach on ICV and could mask actual brain atrophy. we investigated the effect that thickening might have on the associations between brain atrophy and cognition. the sample comprised 57 non-demented older adults who underwent structural brain MRI at mean age 72.7 ± 0.7 years and were assessed on cognitive ability at mean age 11 and 73 years. Principal component analysis was used to derive factors of general cognitive ability (g), information processing speed and memory from the recorded cognitive ability data. The total brain tissue volume and ICV with (estimated original ICV) and without (current ICV) adjusting for the effects of inner table skull thickening were measured. General linear modelling was used to test for associations. all cognitive ability variables were significantly (P skull thickening (g: η(2) = 0.177, speed: η(2) = 0.264 and memory: η(2) = 0.132). After accounting for skull thickening, only speed was significantly associated with percentage total brain volume in ICV (η(2) = 0.085, P = 0.034), not g or memory. not accounting for skull thickening when computing ICV can distort the association between brain atrophy and cognitive ability in old age. Larger samples are required to determine the true effect. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Hydrologic and hydraulic flood forecasting constrained by remote sensing data

    Science.gov (United States)

    Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2017-12-01

    Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.

  20. Global assessment of river flood protection benefits and corresponding residual risks under climate change

    Science.gov (United States)

    Lim, Wee Ho; Yamazaki, Dai; Koirala, Sujan; Hirabayashi, Yukiko; Kanae, Shinjiro; Dadson, Simon J.; Hall, Jim W.

    2016-04-01

    Global warming increases the water-holding capacity of the atmosphere and this could lead to more intense rainfalls and possibly increasing natural hazards in the form of flooding in some regions. This implies that traditional practice of using historical hydrological records alone is somewhat limited for supporting long-term water infrastructure planning. This has motivated recent global scale studies to evaluate river flood risks (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014, Sadoff et al., 2015) and adaptations benefits (e.g., Jongman et al., 2015). To support decision-making in river flood risk reduction, this study takes a further step to examine the benefits and corresponding residual risks for a range of flood protection levels. To do that, we channelled runoff information of a baseline period (forced by observed hydroclimate conditions) and each CMIP5 model (historic and future periods) into a global river routing model called CaMa-Flood (Yamazaki et al., 2011). We incorporated the latest global river width data (Yamazaki et al., 2014) into CaMa-Flood and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the flood protection benefits. We quantify the corresponding residual risks using a mathematical approach that is consistent with the modelling structure of CaMa-Flood. Globally and regionally, we find that the benefits of flood protection level peak somewhere between 20 and 500 years; residual risks diminish

  1. Flood Hazard Recurrence Frequencies for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2001-01-01

    Department of Energy (DOE) regulations outline the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this report is flooding. The facility-specific probabilistic flood hazard curve defines, as a function of water elevation, the annual probability of occurrence or the return period in years. The facility-specific probabilistic flood hazard curves provide basis to avoid unnecessary facility upgrades, to establish appropriate design criteria for new facilities, and to develop emergency preparedness plans to mitigate the consequences of floods. A method based on precipitation, basin runoff and open channel hydraulics was developed to determine probabilistic flood hazard curves for the Savannah River Site. The calculated flood hazard curves show that the probabilities of flooding existing SRS major facilities are significantly less than 1.E-05 per year

  2. Flood Hazard Assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. A method was developed to determine the probabilistic flood hazard curves for SRS facilities. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper

  3. Flood forecasting within urban drainage systems using NARX neural network.

    Science.gov (United States)

    Abou Rjeily, Yves; Abbas, Oras; Sadek, Marwan; Shahrour, Isam; Hage Chehade, Fadi

    2017-11-01

    Urbanization activity and climate change increase the runoff volumes, and consequently the surcharge of the urban drainage systems (UDS). In addition, age and structural failures of these utilities limit their capacities, and thus generate hydraulic operation shortages, leading to flooding events. The large increase in floods within urban areas requires rapid actions from the UDS operators. The proactivity in taking the appropriate actions is a key element in applying efficient management and flood mitigation. Therefore, this work focuses on developing a flooding forecast system (FFS), able to alert in advance the UDS managers for possible flooding. For a forecasted storm event, a quick estimation of the water depth variation within critical manholes allows a reliable evaluation of the flood risk. The Nonlinear Auto Regressive with eXogenous inputs (NARX) neural network was chosen to develop the FFS as due to its calculation nature it is capable of relating water depth variation in manholes to rainfall intensities. The campus of the University of Lille is used as an experimental site to test and evaluate the FFS proposed in this paper.

  4. Floods: vulnerability, risks and management. A joint report of ETC CCA and ICM

    NARCIS (Netherlands)

    Hilden, M.; Dankers, R.; Kjeldsen, T.R.; Hannaford, J.; Kuhlicke, C.; Kuusisto, J.; Linde, te A.H.; Ludwig, F.

    2012-01-01

    This report describes floods in a European context with the purpose of highlighting factors that contribute to the occurrence and adverse consequences of floods, and possibilities to reduce flood risks from inland waters and rainfall. It includes a discussion on changes in flood patterns and

  5. Quantitative monitoring of gas flooding in oil-bearing reservoirs using a pulsed neutron tool

    International Nuclear Information System (INIS)

    Ruhovets, N.; Wyatt, D.F. Jr.

    1991-01-01

    This paper reports on quantitative monitoring of gas flooding in oil bearing reservoirs which is unique in that saturations of three fluids (gas, oil and water) in the effective pore space have to be determined, while in most other applications saturation behind casing is determined only for two fluids: hydrocarbons and water. A new method has been developed to monitor gas flooding of oil reservoirs. The method is based on computing two porosities: true effective (base) porosity determined before gas flooding, and apparent effective (monitor) porosity determined after gas flooding. The base porosity is determined from open and/or cased hole porosity logs run before the flooding. When open hole logs are available, the cased hole porosity logs are calibrated against open hole log. The monitor porosity is determined from one of the cased hole porosity logs, such as a neutron log or count rate ratio curve from a pulsed neutron log run after the gas flooding. The base and monitor porosities provide determination of the hydrogen index of the reservoir fluid after the flooding. This hydrogen index is then used to determine saturation of the flood agent after flooding. Water saturation after flooding can be determined from the equation which relates neutron total cross section (Σm) to volumetric constituent cross sections, using Σm values from a monitor run (after flooding)

  6. Flood-inundation maps for Grand River, Red Cedar River, and Sycamore Creek near Lansing, Michigan

    Science.gov (United States)

    Whitehead, Matthew; Ostheimer, Chad J.

    2015-08-26

    Digital flood-inundation maps for a total of 19.7 miles of the Grand River, the Red Cedar River, and Sycamore Creek were created by the U.S. Geological Survey (USGS) in cooperation with the City of Lansing, Michigan, and the U.S. Army Corps of Engineers. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, show estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at three USGS streamgages: Grand River at Lansing, MI (04113000), Red Cedar River at East Lansing, MI (04112500), and Sycamore Creek at Holt Road near Holt, MI (04112850). Near-real-time stages at these streamgages can be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at all of these sites.

  7. Guidelines for determining flood flow frequency—Bulletin 17C

    Science.gov (United States)

    England, John F.; Cohn, Timothy A.; Faber, Beth A.; Stedinger, Jery R.; Thomas, Wilbert O.; Veilleux, Andrea G.; Kiang, Julie E.; Mason, Robert R.

    2018-03-29

    Accurate estimates of flood frequency and magnitude are a key component of any effective nationwide flood risk management and flood damage abatement program. In addition to accuracy, methods for estimating flood risk must be uniformly and consistently applied because management of the Nation’s water and related land resources is a collaborative effort involving multiple actors including most levels of government and the private sector.Flood frequency guidelines have been published in the United States since 1967, and have undergone periodic revisions. In 1967, the U.S. Water Resources Council presented a coherent approach to flood frequency with Bulletin 15, “A Uniform Technique for Determining Flood Flow Frequencies.” The method it recommended involved fitting the log-Pearson Type III distribution to annual peak flow data by the method of moments.The first extension and update of Bulletin 15 was published in 1976 as Bulletin 17, “Guidelines for Determining Flood Flow Frequency” (Guidelines). It extended the Bulletin 15 procedures by introducing methods for dealing with outliers, historical flood information, and regional skew. Bulletin 17A was published the following year to clarify the computation of weighted skew. The next revision of the Bulletin, the Bulletin 17B, provided a host of improvements and new techniques designed to address situations that often arise in practice, including better methods for estimating and using regional skew, weighting station and regional skew, detection of outliers, and use of the conditional probability adjustment.The current version of these Guidelines are presented in this document, denoted Bulletin 17C. It incorporates changes motivated by four of the items listed as “Future Work” in Bulletin 17B and 30 years of post-17B research on flood processes and statistical methods. The updates include: adoption of a generalized representation of flood data that allows for interval and censored data types; a new method

  8. Flooding and sinking of nuclear merchant ships

    International Nuclear Information System (INIS)

    Lettnin, H.K.J.; Wehowsky, P.

    1978-01-01

    In contrast to land-based power plants for ship reactors the marine environment brings up the peril of sinking. But this peril is low for nuclear ships with its high safety standard. An evaluation of casualties from 1964 - 1974 for ships>8000 GRT allows to estimate a very low sink probability for nuclear ships in the range of 10 -7 to 10 -8 p.a. In spite of this low probability a sinking cannot be excluded absolutely. Therefore passive means must be provided for sinking in deep waters: to maintain the integrity of at least one enclosure as activity barrier; to supply seawater into the safety containment for decay heat removal. For sinking in shallow waters and flooding at least one of the redundant decay heat removal systems including power supply stays operable. A mathematical tool is available for the design of flood openings of sufficient cross sections to flood the containment and to reach a pressure balance in case of postulated sinking in deep waters of any depth

  9. The influence of walls and upper tie plate slots on the flooding mechanism in fuel elements with and without heat transfer between steam and water

    International Nuclear Information System (INIS)

    Spatz, R.; Mewes, D.

    1989-01-01

    The counter-current flow of steam and water was experimentally investigated for the upper part of a PWR fuel element. The actual geometrical shape of the nuclear equipment was simulated by various types of plates, in which bore holes and slots were arranged in different positions. The experiments were performed with and without an installed, unheated rod bundle below the plates. The water was injected at saturated and subcooled temperatures in order to observe the effects of heat transfer on counter-current flow. With increasing steam velocity the flooding occurs initially in the tie-plate area. If the rod bundle is installed in the flow duct, a part of the downwards flowing water is transported upwards from the region of the upper grid spacer to the plate. Heat transfer between the phases can cause in the counter-current flow region an instable transition from downward to near complete upward directed liquid flow. In comparison to experiments with saturated water injection, flooding occurs at larger steam velocities. Different flooding correlations, which are known from the literature, were compared with the experimental data to appraise their applicability to counter-current flow in the core of PWRs. (orig.)

  10. Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois

    Science.gov (United States)

    Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.

    2012-01-01

    Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  11. Socio-hydrology: conceptualising human-flood interactions

    Directory of Open Access Journals (Sweden)

    G. Di Baldassarre

    2013-08-01

    Full Text Available Over history, humankind has tended to settle near streams because of the role of rivers as transportation corridors and the fertility of riparian areas. However, human settlements in floodplains have been threatened by the risk of flooding. Possible responses have been to resettle away and/or modify the river system by building flood control structures. This has led to a complex web of interactions and feedback mechanisms between hydrological and social processes in settled floodplains. This paper is an attempt to conceptualise these interplays for hypothetical human-flood systems. We develop a simple, dynamic model to represent the interactions and feedback loops between hydrological and social processes. The model is then used to explore the dynamics of the human-flood system and the effect of changing individual characteristics, including external forcing such as technological development. The results show that the conceptual model is able to reproduce reciprocal effects between floods and people as well as the emergence of typical patterns. For instance, when levees are built or raised to protect floodplain areas, their presence not only reduces the frequency of flooding, but also exacerbates high water levels. Then, because of this exacerbation, higher flood protection levels are required by society. As a result, more and more flooding events are avoided, but rare and catastrophic events take place.

  12. Flood occurrence mapping of the middle Mahakam lowland area using satellite radar

    Directory of Open Access Journals (Sweden)

    H. Hidayat

    2012-07-01

    Full Text Available Floodplain lakes and peatlands in the middle Mahakam lowland area are considered as ecologically important wetland in East Kalimantan, Indonesia. However, due to a lack of data, the hydrological functioning of the region is still poorly understood. Among remote sensing techniques that can increase data availability, radar is well-suitable for the identification, mapping, and measurement of tropical wetlands, for its cloud unimpeded sensing and night and day operation. Here we aim to extract flood extent and flood occurrence information from a series of radar images of the middle Mahakam lowland area. We explore the use of Phased Array L-band Synthetic Aperture Radar (PALSAR imagery for observing flood inundation dynamics by incorporating field water level measurements. Water level measurements were carried out along the river, in lakes and in peatlands, using pressure transducers. For validation of the open water flood occurrence map, bathymetry measurements were carried out in the main lakes. A series of PALSAR images covering the middle and lower Mahakam area in the years 2007 through 2010 were collected. A fully inundated region can be easily recognized on radar images from a dark signature. Open water flood occurrence was mapped using a threshold value taken from radar backscatter of the permanently inundated river and lakes areas. Radar backscatter intensity analysis of the vegetated floodplain area revealed consistently high backscatter values, indicating flood inundation under forest canopy. We used those values as the threshold for flood occurrence mapping in the vegetated area.

  13. Floods in the Saguenay

    International Nuclear Information System (INIS)

    Martel, R.; Michaud, E.; Tousignant, P.M.

    1997-01-01

    Footage of a natural disaster that occurred between July 20 and 25 1996, in the Saguenay region of Quebec was documented. A heavy downpour of rain raised the water level of the Kenogami Lake reservoir beyond its capacity. This created huge pressure on its dam that upset the fragile balance between nature and rock. The dam raptured, resulting in a flood of previously unseen proportions. The Riviere au Sable in Jonquiere became an overwhelming body of water. The video showed how the shores of the river were eroded and how apartment buildings were engulfed by the torrent of water. A newly constructed electricity power plant had to be decommissioned, roads were washed away and entire neighborhoods were devastated. The devastation suffered by the cities of Chicoutimi, Jonquiere, Ville de la Baie, Ferland-Boileau, and L'Anse St-Jean was recorded. Thousands of victims of the disaster were evacuated with the help of the Canadian Armed Forces. Some of the work of reconstruction, begun even before the total retreat of the flood, involved restoration of roads, bridges and communication networks, was also shown

  14. Evidence of a non-dimensional parameter controlling the flooding of PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buaud, Fabrice; Lelandais, Damien [Heat and Energy Department, Polytech' Nantes, Nantes University, Rue Christian Pauc, BP50609, 44 306 Nantes Cedex 3 (France); Auvity, Bruno [Heat and Energy Department, Polytech' Nantes, Nantes University, Rue Christian Pauc, BP50609, 44 306 Nantes Cedex 3 (France); Laboratoire de Thermocinetique de Nantes (CNRS-UMR 6607) (France)

    2008-06-15

    Water management is a key issue to get satisfactory and stable Polymer exchange membrane fuel cell (PEMFC) performances. The work reported in the present paper focuses on the determination of the operational conditions when using PEMFC stack working with ambient air without extra humidification. The objectives are to reduce as much as possible the auxiliaries consumptions. As far as the reaction air blower is concerned, the specific goal of the present tests is to find the minimum air flow rate to feed the PEMFC stack in order to prevent flooding. Our particular interest concerns the control of a PEMFC stack to power a prototype vehicle for the Shell Eco Marathon race. Tests are then conducted on a wide range of stoichiometry, for different values of current and stack temperature using ambient air. Flooding is shown to depend on all these parameters. A water balance calculation is developed comparing the amount of water produced by the electrochemical reaction to the amount of water transported as vapour in the exit air flow minus the amount of water incoming the stack in the ambient air. A non-dimensional number called the Flooding Number is constructed. This balance is first considered in the ideal case with the theoretical flow rate of reactants and products. It is shown that the stack temperature and the stoichiometry are the main order parameters and that conditions of ambient air have only secondary effects on the water balance. In a second step, the Flooding Number is evaluated for all the experimental tests. A critical Flooding Number appears clearly delimiting the range of operational conditions for which stack flooding appears. This result allows us to control the air blower and the cooling fan during the runs at the Shell Eco Marathon 2007 race in order to reduce hydrogen consumption due to auxiliaries. The non-dimensional number exhibited in the present paper is believed to be relevant to stack flooding. It can be used for any PEMFC stack to make clear

  15. Spatial and temporal dynamics of water in the root environment of potted plants on a flooded bench fertigation system

    NARCIS (Netherlands)

    Otten, W.; Raats, P.A.C.; Baas, R.; Challa, H.; Kabat, P.

    1999-01-01

    The relationship between evapotranspiration of potted Ficus benjamina plants on a flooded bench fertigation system and the distribution of water in the root zone was studied in detail for a range of fertigation schedules. The physical characteristics of the peat-based potting medium were described

  16. Modeling Flood Plain Hydrology and Forest Productivity of Congaree Swamp, South Carolina

    Science.gov (United States)

    Doyle, Thomas W.

    2009-01-01

    An ecological field and modeling study was conducted to examine the flood relations of backswamp forests and park trails of the flood plain portion of Congaree National Park, S.C. Continuous water level gages were distributed across the length and width of the flood plain portion - referred to as 'Congaree Swamp' - to facilitate understanding of the lag and peak flood coupling with stage of the Congaree River. A severe and prolonged drought at study start in 2001 extended into late 2002 before backswamp zones circulated floodwaters. Water levels were monitored at 10 gaging stations over a 4-year period from 2002 to 2006. Historical water level stage and discharge data from the Congaree River were digitized from published sources and U.S. Geological Survey (USGS) archives to obtain long-term daily averages for an upstream gage at Columbia, S.C., dating back to 1892. Elevation of ground surface was surveyed for all park trails, water level gages, and additional circuits of roads and boundaries. Rectified elevation data were interpolated into a digital elevation model of the park trail system. Regression models were applied to establish time lags and stage relations between gages at Columbia, S.C., and gages in the upper, middle, and lower reaches of the river and backswamp within the park. Flood relations among backswamp gages exhibited different retention and recession behavior between flood plain reaches with greater hydroperiod in the lower reach than those in the upper and middle reaches of the Congaree Swamp. A flood plain inundation model was developed from gage relations to predict critical river stages and potential inundation of hiking trails on a real-time basis and to forecast the 24-hour flood In addition, tree-ring analysis was used to evaluate the effects of flood events and flooding history on forest resources at Congaree National Park. Tree cores were collected from populations of loblolly pine (Pinus taeda), baldcypress (Taxodium distichum), water

  17. Creating Flood Inundation Maps For Lower Sakarya River

    Directory of Open Access Journals (Sweden)

    Osman Sönmez

    2013-06-01

    Full Text Available The Sakarya River Basin in Turkey frequently floods. The allure of riverside settlement and of nutrient-rich riverbank soil has led to extensive residential and agricultural development in flood plains. In this study, the 100 years return period possible flood carrying capacites of last 113 km of the Lower Sakarya Riverbed were investigated, also dam break and risk analyses were performed by applying different scenarios for the floods likely to occur. Flooding scenarios and water depth within the floodplain during these scenarios were calculated with the HEC-RAS software program and results were converted into a map in HEC-GeoRAS,ArcGIS 9x and ArcView 3.2 programs. As a result, it was observed that the Lower Sakarya River is susceptible to flooding. Recent observations of the study area confirm the study findings. This study tries to underscore the importance of taking into account the different scenarios regarding flood prevention and reduction studies.

  18. A new methodology for modelling of health risk from urban flooding exemplified by cholera

    DEFF Research Database (Denmark)

    Mark, Ole; Jørgensen, Claus; Hammond, Michael

    2016-01-01

    outlines a novel methodology for linking dynamic urban flood modelling with quantitative microbial risk assessment (QMRA). This provides a unique possibility for understanding the interaction between urban flooding and health risk caused by direct human contact with the flood water and hence gives...... and mortality, especially during floods. At present, there are no software tools capable of combining hydrodynamic modelling and health risk analyses, and the links between urban flooding and the health risk for the population due to direct contact with the flood water are poorly understood. The present paper...... an option for reducing the burden of disease in the population by use of intelligent urban flood risk management. The model linking urban flooding and health risk is applied to Dhaka City in Bangladesh, where waterborne diseases including cholera are endemic. The application to Dhaka City is supported...

  19. Seed Priming Improves Agronomic Trait Performance under Flooding and Non-flooding Conditions in Rice with QTL SUB1

    Directory of Open Access Journals (Sweden)

    Ramni Kumar SARKAR

    2012-12-01

    Full Text Available Farmers in South East Asia are adopting rice crop establishment methods from transplanting to direct wet or dry seeding as it requires less labour and time and comparatively less energy than transplanting. In contrast to irrigated condition, in rainfed lowland, direct seeding is a common practice. Early flooding controls weeds but decreases seedling establishment in direct seeded rice. Anaerobic germination is an important trait to counteract damages caused by early flooding. Management options which can help in crop establishment and improve crop growth under flooding might remove the constraints related to direct seeding. The investigation was carried out with two near isogenic lines Swarna and Swarna-Sub1. Swarna-Sub1 is tolerant to submergence whereas Swarna is susceptible. Seed priming was done with water and 2% Jamun (Syzygium cumini leaf extract, and it improved seedling establishment under flooding. Acceleration of growth occurred due to seed pretreatment, which resulted longer seedling and greater accumulation of biomass. Seed priming greatly hastened the activities of total amylase and alcohol dehydrogenase in Swarna-Sub1 than in Swarna. Swarna-Sub1 outperformed Swarna when the plants were cultivated under flooding. Weed biomass decreased significantly under flooding compared to non-flooding conditions. Seed priming had positive effects on yield and yield attributing parameters both under non-flooding and early flooding conditions.

  20. Flooding in the Context of the Barotse People of the Upper Zambezi ...

    African Journals Online (AJOL)

    Jenny

    Much of the historical and contemporary view of flooding is that it is a hazard .... thought of 'taming the flood' in different ways, as illustrated by Purseglove (1989). .... purposeful flooding of the water meadows in the United Kingdom, which can ...