WorldWideScience

Sample records for thickened continental crust

  1. Density Sorting During the Evolution of Continental Crust

    Science.gov (United States)

    Kelemen, P. B.; Behn, M. D.; Hacker, B. R.

    2015-12-01

    We consider two settings - in addition to "delamination" of arc lower crust - in which dense, mafic eclogites founder into the convecting mantle while buoyant, felsic lithologies accumulate at the base of evolving continental crust. Arc processes play a central role in generating continental crust, but it remains uncertain how basaltic arc crust is transformed to andesitic continental crust. Dense, SiO2-poor products of fractionation may founder from the base of arc crust by "delamination", but lower arc crust after delamination has significantly different trace elements compared to lower continental crust (LCC). In an alternative model, buoyant magmatic rocks generated at arcs are first subducted, mainly via subduction erosion. Upon heating, these buoyant lithologies ascend through the mantle wedge or along a subduction channel, and are "relaminated" at
the base of overlying crust (e.g., Hacker et al EPSL 11, AREPS 15). Average buoyant lavas and plutons
for the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs fall within the range of estimated LCC major and trace elements. Relamination is more efficient in generating continental crust than delamination. Himalayan cross-sections show Indian crust thrust beneath Tibetan crust, with no intervening mantle. There is a horizontal Moho at ca 80 km depth, extending from thickened Indian crust, across the region where Tibetan crust overlies Indian crust, into thickened Tibetan crust. About half the subducted Indian crust is present, whereas the other half is missing. Data (Vp/Vs; Miocene lavas formed by interaction of continental crust with mantle; xenolith thermometry) indicate 1000°C or more from ca 50 km depth to the Moho since the Miocene. We build on earlier studies (LePichon et al Tectonics 92, T'phys 97; Schulte-Pelkum et al Nature 05; Monsalve et al JGR 08) to advance the hypothesis that rapid growth of garnet occurs at 70-80 km and 1000°C within subducting Indian crust. Dense eclogites founder

  2. Deep Crustal Melting and the Survival of Continental Crust

    Science.gov (United States)

    Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.

    2017-12-01

    Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in Recognition of the importance of migmatite (gneiss) domes as archives of orogenic deep crust is applicable to determining the chemical and physical properties of continental crust, as well as mechanisms and timescales of crustal differentiation.

  3. From a collage of microplates to stable continental crust - an example from Precambrian Europe

    Science.gov (United States)

    Korja, Annakaisa

    2013-04-01

    Svecofennian orogen (2.0-1.7 Ga) comprises the oldest undispersed orogenic belt on Baltica and Eurasian plate. Svecofennian orogenic belt evolved from a series of short-lived terrane accretions around Baltica's Archean nucleus during the formation of the Precambrian Nuna supercontinent. Geological and geophysical datasets indicate W-SW growth of Baltica with NE-ward dipping subduction zones. The data suggest a long-lived retreating subduction system in the southwestern parts whereas in the northern and central parts the northeasterly transport of continental fragments or microplates towards the continental nucleus is also documented. The geotectonic environment resembles that of the early stages of the Alpine-Himalayan or Indonesian orogenic system, in which dispersed continental fragments, arcs and microplates have been attached to the Eurasian plate margin. Thus the Svecofennian orogeny can be viewed as proxy for the initial stages of an internal orogenic system. Svecofennian orogeny is a Paleoproterozoic analogue of an evolved orogenic system where terrane accretion is followed by lateral spreading or collapse induced by change in the plate architecture. The exposed parts are composed of granitoid intrusions as well as highly deformed supracrustal units. Supracrustal rocks have been metamorphosed in LP-HT conditions in either paleo-lower-upper crust or paleo-upper-middle crust. Large scale seismic reflection profiles (BABEL and FIRE) across Baltica image the crust as a collage of terranes suggesting that the bedrock has been formed and thickened in sequential accretions. The profiles also image three fold layering of the thickened crust (>55 km) to transect old terrane boundaries, suggesting that the over-thickened bedrock structures have been rearranged in post-collisional spreading and/or collapse processes. The middle crust displays typical large scale flow structures: herringbone and anticlinal ramps, rooted onto large scale listric surfaces also suggestive

  4. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation

    Science.gov (United States)

    Ingalls, Miquela; Rowley, David B.; Currie, Brian; Colman, Albert S.

    2016-11-01

    Continental crust is buoyant compared with its oceanic counterpart and resists subduction into the mantle. When two continents collide, the mass balance for the continental crust is therefore assumed to be maintained. Here we use estimates of pre-collisional crustal thickness and convergence history derived from plate kinematic models to calculate the crustal mass balance in the India-Asia collisional system. Using the current best estimates for the timing of the diachronous onset of collision between India and Eurasia, we find that about 50% of the pre-collisional continental crustal mass cannot be accounted for in the crustal reservoir preserved at Earth's surface today--represented by the mass preserved in the thickened crust that makes up the Himalaya, Tibet and much of adjacent Asia, as well as southeast Asian tectonic escape and exported eroded sediments. This implies large-scale subduction of continental crust during the collision, with a mass equivalent to about 15% of the total oceanic crustal subduction flux since 56 million years ago. We suggest that similar contamination of the mantle by direct input of radiogenic continental crustal materials during past continent-continent collisions is reflected in some ocean crust and ocean island basalt geochemistry. The subduction of continental crust may therefore contribute significantly to the evolution of mantle geochemistry.

  5. Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America

    Science.gov (United States)

    Patino Douce, Alberto E.; Humphreys, Eugene D.; Johnston, A. Dana

    1990-01-01

    This paper presents a thermal and petrologic model of anatexis and metamorphism in regions of crustal thickening exemplified by the Sevier hinterland in western North America, and uses the model to examine the geological and physical processes leading to crustally derived magmatism. The results of numerical experiments show that anatexis was an inevitable end-product of Barrovian metamorphism in the thickened crust of the late Mesozoic Sevier orogenic belt and that the advection of heat across the lithosphere, in the form of mantle-derived mafic magmas, was not required for melting of metasedimentary rocks. It is suggested that, in the Sevier belt, as in other intracontinental orogenic belts, anatexis occurred in the midcrust and not at the base of the crust.

  6. Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust

    Directory of Open Access Journals (Sweden)

    Ben D. Goscombe

    2013-07-01

    Full Text Available Convergent plate margins where large turbidite fans with slivers of oceanic basement are accreted to continents represent important sites of continental crustal growth and recycling. Crust accreted in these settings is dominated by an upper layer of recycled crustal and arc detritus (turbidites underlain by a layer of tectonically imbricated upper oceanic crust and/or thinned continental crust. When oceanic crust is converted to lower continental crust it represents a juvenile addition to the continental growth budget. This two-tiered accreted crust is often the same thickness as average continental crustal and is isostatically balanced near sea level. The Paleozoic Lachlan Orogen of eastern Australia is the archetypical example of a tubidite-dominated accretionary orogeny. The Neoproterozoic-Cambrian Damaran Orogen of SW Africa is similar to the Lachlan Orogen except that it was incorporated into Gondwana via a continent-continent collision. The Mesozoic Rangitatan Orogen of New Zealand illustrates the transition of convergent margin from a Lachlan-type to more typical accretionary wedge type orogen. The spatial and temporal variations in deformation, metamorphism, and magmatism across these orogens illustrate how large volumes of turbidite and their relict oceanic basement eventually become stable continental crust. The timing of deformation and metamorphism recorded in these rocks reflects the crustal thickening phase, whereas post-tectonic magmatism constrains the timing of chemical maturation and cratonization. Cratonization of continental crust is fostered because turbidites represent fertile sources for felsic magmatism. Recognition of similar orogens in the Proterozoic and Archean is important for the evaluation of crustal growth models, particularly for those based on detrital zircon age patterns, because crustal growth by accretion of upper oceanic crust or mafic underplating does not readily result in the addition of voluminous zircon

  7. Palaeomagnetism and the continental crust

    Energy Technology Data Exchange (ETDEWEB)

    Piper, J.D.A.

    1987-01-01

    This book is an introduction to palaeomagnetism offering treatment of theory and practice. It analyzes the palaeomagnetic record over the whole of geological time, from the Archaean to the Cenozoic, and goes on to examine the impact of past geometries and movements of the continental crust at each geological stage. Topics covered include theory of rock and mineral magnetism, field and laboratory methods, growth and consolidation of the continental crust in Archaean and Proterozoic times, Palaeozoic palaeomagnetism and the formation of Pangaea, the geomagnetic fields, continental movements, configurations and mantle convection.

  8. Effect of thicker oceanic crust in the Archaean on the growth of continental crust through time

    International Nuclear Information System (INIS)

    Wilks, M.E.

    1988-01-01

    Present crustal evolution models fail to account for the generation of the large volume of continental crust in the required time intervals. All Archaean plate tectonic models, whether invoking faster spreading rates, similar to today's spreading rates, or longer ridge lengths, essentially propose that continental crust has grown by island arc accretion due to the subduction of oceanic crust. The petrological differences that characterize the Archaean from later terrains result from the subduction of hotter oceanic crust into a hotter mantle. If the oceanic crust was appreciably thicker in the Archaean, as geothermal models would indicate, this thicker crust is surely going to have an effect on tectonic processes. A more valid approach is to compare the possible styles of convergence of thick oceanic crust with modern convergence zones. The best modern analog occurs where thick continental crust is colliding with thick continental crust. Oceanic crustal collision on the scale of the present-day Himalayan continental collision zone may have been a frequent occurrence in the Archaean, resulting in extensive partial melting of the hydrous underthrust oceanic crust to produce voluminous tonalite melts, leaving a depleted stabilized basic residuum. Present-day island arc accretion may not have been the dominant mechanism for the growth of the early Archaean crust

  9. The extent of continental crust beneath the Seychelles

    Science.gov (United States)

    Hammond, J. O. S.; Kendall, J.-M.; Collier, J. S.; Rümpker, G.

    2013-11-01

    The granitic islands of the Seychelles Plateau have long been recognised to overlie continental crust, isolated from Madagascar and India during the formation of the Indian Ocean. However, to date the extent of continental crust beneath the Seychelles region remains unknown. This is particularly true beneath the Mascarene Basin between the Seychelles Plateau and Madagascar and beneath the Amirante Arc. Constraining the size and shape of the Seychelles continental fragment is needed for accurate plate reconstructions of the breakup of Gondwana and has implications for the processes of continental breakup in general. Here we present new estimates of crustal thickness and VP/VS from H-κ stacking of receiver functions from a year long deployment of seismic stations across the Seychelles covering the topographic plateau, the Amirante Ridge and the northern Mascarene Basin. These results, combined with gravity modelling of historical ship track data, confirm that continental crust is present beneath the Seychelles Plateau. This is ˜30-33 km thick, but with a relatively high velocity lower crustal layer. This layer thins southwards from ˜10 km to ˜1 km over a distance of ˜50 km, which is consistent with the Seychelles being at the edge of the Deccan plume prior to its separation from India. In contrast, the majority of the Seychelles Islands away from the topographic plateau show no direct evidence for continental crust. The exception to this is the island of Desroche on the northern Amirante Ridge, where thicker low density crust, consistent with a block of continental material is present. We suggest that the northern Amirantes are likely continental in nature and that small fragments of continental material are a common feature of plume affected continental breakup.

  10. A relatively reduced Hadean continental crust

    Science.gov (United States)

    Yang, Xiaozhi; Gaillard, Fabrice; Scaillet, Bruno

    2014-05-01

    Among the physical and chemical parameters used to characterize the Earth, oxidation state, as reflected by its prevailing oxygen fugacity (fO2), is a particularly important one. It controls many physicochemical properties and geological processes of the Earth's different reservoirs, and affects the partitioning of elements between coexisting phases and the speciation of degassed volatiles in melts. In the past decades, numerous studies have been conducted to document the evolution of mantle and atmospheric oxidation state with time and in particular the possible transition from an early reduced state to the present oxidized conditions. So far, it has been established that the oxidation state of the uppermost mantle is within ±2 log units of the quartz-fayalite-magnetite (QFM) buffer, probably back to ~4.4 billion years ago (Ga) based on trace-elements studies of mantle-derived komatiites, kimberlites, basalts, volcanics and zircons, and that the O2 levels of atmosphere were initially low and rose markedly ~2.3 Ga known as the Great Oxidation Event (GOE), progressively reaching its present oxidation state of ~10 log units above QFM. In contrast, the secular evolution of oxidation state of the continental crust, an important boundary separating the underlying upper mantle from the surrounding atmosphere and buffering the exchanges and interactions between the Earth's interior and exterior, has rarely been addressed, although the presence of evolved crustal materials on the Earth can be traced back to ~4.4 Ga, e.g. by detrital zircons. Zircon is a common accessory mineral in nature, occurring in a wide variety of igneous, sedimentary and metamorphic rocks, and is almost ubiquitous in crustal rocks. The physical and chemical durability of zircons makes them widely used in geochemical studies in terms of trace-elements, isotopes, ages and melt/mineral inclusions; in particular, zircons are persistent under most crustal conditions and can survive many secondary

  11. Resolving the crustal composition paradox by 3.8 billion years of slab failure magmatism and collisional recycling of continental crust

    Science.gov (United States)

    Hildebrand, Robert S.; Whalen, Joseph B.; Bowring, Samuel A.

    2018-06-01

    In the standard paradigm, continental crust is formed mainly by arc magmatism, but because the compositions of magma rising from the mantle are basaltic and continental crust is estimated to contain about 60% SiO2 and much less MgO than basalt, the two do not match. To resolve this paradox, most researchers argue that large amounts of magmatic fractionation produce residual cumulates at the base of the crust, which because arcs are inferred to have magmatically thickened crust, form eclogites that ultimately founder and sink into the mantle. Not only are there problems with the contrasting bulk compositions, but the standard model also fails because prior to collision most modern arcs do not have thick crust, as documented by their eruption close to sea level, and in cases of ancient arc sequences, their intercalation with marine sedimentary rocks. Our study of Cretaceous batholiths in the North American Cordillera resolves the crustal composition paradox because we find that most are not arc-derived as commonly believed; but instead formed during the waning stages of collision and consequent slab failure. Because the batholiths typically have silica contents >60% and are derived directly from the mantle, we argue that they are the missing link in the formation of continental crust. Slab failure magmas worldwide are compositionally similar to tonalite-trondhjemite-granodiorite suites as old as 3.8 Ga, which points to their collective formation by slab failure and long-lived plate tectonics. Our model also provides (1) an alternative solution to interpret compiled detrital zircon arrays, because episodic peaks that coincide with periods of supercontinent amalgamation are easily interpreted to represent collisions with formation of new crust by slab failure; and (2) that models of early whole-earth differentiation are more reasonable than those invoking progressive growth of continental crust.

  12. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China

    Science.gov (United States)

    Zhao, Zi-Fu; Liu, Zhi-Bin; Chen, Qi

    2017-09-01

    Syn-collisional and postcollisional granitoids are common in collisional orogens, and they were primarily produced by partial melting of subducted continental crust. This is exemplified by Mesozoic granitoids from the Dabie-Sulu orogenic belt in east-central China. These granitoids were emplaced in small volumes in the Late Triassic (200-206 Ma) and the Late Jurassic (146-167 Ma) but massively in the Early Cretaceous (111-143 Ma). Nevertheless, all of them exhibit arc-like trace element distribution patterns and are enriched in Sr-Nd-Hf isotope compositions, indicating their origination from the ancient continental crust. They commonly contain relict zircons with Neoproterozoic and Triassic U-Pb ages, respectively, consistent with the protolith and metamorphic ages for ultrahigh-pressure (UHP) metaigneous rocks in the Dabie-Sulu orogenic belt. Some granitoids show low zircon δ18O values, and SIMS in-situ O isotope analysis reveals that the relict zircons with Neoproterozoic and Triassic U-Pb ages also commonly exhibit low δ18O values. Neoproterozoic U-Pb ages and low δ18O values are the two diagnostic features that distinguish the subducted South China Block from the obducted North China Block. Thus, the magma source of these Mesozoic granitoids has a genetic link to the subducted continental crust of the South China Block. On the other hand, these granitoids contain relict zircons with Paleoproterozoic and Archean U-Pb ages, which are present in both the South and North China Blocks. Taken together, the Mesozoic granitoids in the Dabie-Sulu orogenic belt and its hanging wall have their magma sources that are predominated by the continental crust of the South China Block with minor contributions from the continental crust of the North China Block. The Triassic continental collision between the South and North China Blocks brought the continental crust into the thickened orogen, where they underwent the three episodes of partial melting in the Late Triassic, Late

  13. Growth of the continental crust: a planetary-mantle perspective

    International Nuclear Information System (INIS)

    Warren, P.H.

    1988-01-01

    The lack of earth rocks older than about 3.8 Ga is frequently interpreted as evidence that the earth formed little or no subduction-resistant continental crust during the first 700 My of its history. Such models obviously imply that the pre-3.8 Ga earth was covered entirely or almost entirely by smoothly subducting oceanic crust. On the other hand, the thermal regime of the early earth probably tended to cause the oceanic crust at this time to be comparatively thin and comparatively mafic. The present earth is covered by about 50 percent oceanic crust, averaging about 7 km in thickness, and 41 percent continental crust, averaging roughly 40 km in thickness. Thus continentless-early-earth models would seem to imply a total mass of crust less than 1/3 that of the present day earth. Possible explanations are examined

  14. Growth of the continental crust: constraints from radiogenic isotope geochemistry

    International Nuclear Information System (INIS)

    Taylor, P.N.

    1988-01-01

    Most models for evolution of continental crust are expressed in the form of a diagram illustrating the cumulative crustal mass (normalized relative to the present crustal mass) as a function of time. Thus, geochronological data inevitably play a major role in either constructing or testing crustal growth models. For all models, determining the start-time for effective crustal accretion is of vital importance. To this end, the continuing search for, and reliable characterization of, the most ancient crustal rock-units remains a worthy enterprise. Another important role for geochronology and radiogenic isotope geochemistry is to assess the status of major geological events as period either of new crust generation or of reworking of earlier formed continental crust. For age characterization of major geological provinces, using the critieria outined, the mass (or volume) of crust surviving to the present day should be determinable as a function of crust formation age. More recent developments, however, appear to set severe limitations on recycling of crust, at least by the process of sediment subduction. In modeling crustal growth without recycling, valuable constaints on growth rate variations through time can be provided if variations in the average age of the continental crust can be monitored through geological history. The question of the average age of the exposed continental crust was addressed by determining Sm-Nd crustal residence model ages (T-CR) for fine-grained sediment loads of many of the world's major rivers

  15. Age and isotope evidence for the evolution of continental crust

    International Nuclear Information System (INIS)

    Moorbath, S.

    1978-01-01

    Irreversible chemical differentiation of the mantle's essentially infinite reservoir for at least the past 3800 Ma has produced new continental, sialic crust during several relatively short (ca. 100-300 Ma) episodes which were widely separated in time and may have been of global extent. During each episode (termed 'accretion-differentiation superevent'), juvenile sial underwent profound igneous, metamorphic and geochemical differentiation, resulting in thick (ca. 25-40 km), stable, compositionally gradational, largely indestructible, continental crust exhibiting close grouping of isotopic ages of rock formation, as well as mantle-type initial Sr and Pb isotopic ratios for all major constituents. Isotopic evidence suggests that within most accretion-differentiation superevents - and especially during the earlier ones - continental growth predominated over reworking of older sialic crust. Reworking of older sialic crust can occur in several types of geological environment and appears to have become more prevalent with the passage of geological time. It is usually clearly distinguishable from continental growth, by application of appropriate age and isotope data. (author)

  16. Formation of continental crust by intrusive magmatism

    Science.gov (United States)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.

    2017-09-01

    How were the continents formed in the Earth? No global numerical simulation of our planet ever managed to generate continental material self-consistently. In the present study, we show that the latest developments of the convection code StagYY enable to estimate how to produce the early continents, more than 3 billion years ago. In our models, melting of pyrolitic rocks generates a basaltic melt and leaves behind a depleted solid residue (a harzburgite). The melt generated in the mantle is transported to the surface. Only basaltic rocks melting again can generate continental crust. Should the basaltic melt always reach the open air and cool down? Should the melt be intruded warm in the pre-existing crust? The present study shows that both processes have to be considered to produce continents. Indeed, granitoids can only be created in a tight window of pressure-temperature. If all basalt is quickly cooled by surface volcanism, the lithosphere will be too cold. If all basalt is intruded warm below the crust then the lithosphere will be too warm. The key is to have both volcanism and plutonism (intrusive magmatism) to reach the optimal temperature and form massive volumes of continental material.

  17. Influence of mid-crustal rheology on the deformation behavior of continental crust in the continental subduction zone

    Science.gov (United States)

    Li, Fucheng; Sun, Zhen; Zhang, Jiangyang

    2018-06-01

    Although the presence of low-viscosity middle crustal layer in the continental crust has been detected by both geophysical and geochemical studies, its influence on the deformation behavior of continental crust during subduction remains poorly investigated. To illustrate the crustal deformation associated with layered crust during continental subduction, we conducted a suite of 2-D thermo-mechanical numerical studies with visco-brittle/plastic rheology based on finite-differences and marker-in-cell techniques. In the experiments, we established a three-layer crustal model with a quartz-rich middle crustal layer embedded between the upper and lower continental crust. Results show that the middle crustal layer determines the amount of the accreted upper crust, maximum subduction depth, and exhumation path of the subducted upper crust. By varying the initial effective viscosity and thickness of the middle crustal layer, the further effects can be summarized as: (1) a rheologically weaker and/or thicker middle crustal layer results in a larger percentage of the upper crust detaching from the underlying slab and accreting at the trench zone, thereby leading to more serious crustal deformation. The rest of the upper crust only subducts into the depths of high pressure (HP) conditions, causing the absence of ultra-high pressure (UHP) metamorphic rocks; (2) a rheologically stronger and/or thinner middle crustal layer favors the stable subduction of the continental crust, dragging the upper crust to a maximum depth of ∼100 km and forming UHP rocks; (3) the middle crustal layer flows in a ductile way and acts as an exhumation channel for the HP-UHP rocks in both situations. In addition, the higher convergence velocity decreases the amount of subducted upper crust. A detailed comparison of our modeling results with the Himalayan collisional belt are conducted. Our work suggests that the presence of low-viscosity middle crustal layer may be another possible mechanism for

  18. USArray Imaging of Continental Crust in the Conterminous United States

    Science.gov (United States)

    Ma, Xiaofei; Lowry, Anthony R.

    2017-12-01

    The thickness and bulk composition of continental crust provide important constraints on the evolution and dynamics of continents. Crustal mineralogy and thickness both may influence gravity anomalies, topographic elevation, and lithospheric strength, but prior to the inception of EarthScope's USArray, seismic measurements of crustal thickness and properties useful for inferring lithology are sparse. Here we improve upon a previously published methodology for joint inversion of Bouguer gravity anomalies and seismic receiver functions by using parameter space stacking of cross correlations of modeled synthetic and observed receiver functions instead of standard H-κ amplitude stacking. The new method is applied to estimation of thickness and bulk seismic velocity ratio, vP/vS, of continental crust in the conterminous United States using USArray and other broadband network data. Crustal thickness variations are reasonably consistent with those found in other studies and show interesting relationships to the history of North American continental formation. Seismic velocity ratios derived in this study are more robust than in other analyses and hint at large-scale variations in composition of continental crust. To interpret the results, we model the pressure-/temperature-dependent thermodynamics of mineral formation for various crustal chemistries, with and without volatile constituents. Our results suggest that hydration lowers bulk crustal vP/vS and density and releases heat in the shallow crust but absorbs heat in the lowermost crust (where plagioclase breaks down to pyroxene and garnet resulting in higher seismic velocity). Hence, vP/vS variations may provide a useful proxy for hydration state in the crust.

  19. Estimating the formation age distribution of continental crust by unmixing zircon ages

    Science.gov (United States)

    Korenaga, Jun

    2018-01-01

    Continental crust provides first-order control on Earth's surface environment, enabling the presence of stable dry landmasses surrounded by deep oceans. The evolution of continental crust is important for atmospheric evolution, because continental crust is an essential component of deep carbon cycle and is likely to have played a critical role in the oxygenation of the atmosphere. Geochemical information stored in the mineral zircon, known for its resilience to diagenesis and metamorphism, has been central to ongoing debates on the genesis and evolution of continental crust. However, correction for crustal reworking, which is the most critical step when estimating original formation ages, has been incorrectly formulated, undermining the significance of previous estimates. Here I suggest a simple yet promising approach for reworking correction using the global compilation of zircon data. The present-day distribution of crustal formation age estimated by the new "unmixing" method serves as the lower bound to the true crustal growth, and large deviations from growth models based on mantle depletion imply the important role of crustal recycling through the Earth history.

  20. The Athabasca Granulite Terrane and Evidence for Dynamic Behavior of Lower Continental Crust

    Science.gov (United States)

    Dumond, Gregory; Williams, Michael L.; Regan, Sean P.

    2018-05-01

    Deeply exhumed granulite terranes have long been considered nonrepresentative of lower continental crust largely because their bulk compositions do not match the lower crustal xenolith record. A paradigm shift in our understanding of deep crust has since occurred with new evidence for a more felsic and compositionally heterogeneous lower crust than previously recognized. The >20,000-km2 Athabasca granulite terrane locally provides a >700-Myr-old window into this type of lower crust, prior to being exhumed and uplifted to the surface between 1.9 and 1.7 Ga. We review over 20 years of research on this terrane with an emphasis on what these findings may tell us about the origin and behavior of lower continental crust, in general, in addition to placing constraints on the tectonic evolution of the western Canadian Shield between 2.6 and 1.7 Ga. The results reveal a dynamic lower continental crust that evolved compositionally and rheologically with time.

  1. The origin of continental crust: Outlines of a general theory

    Science.gov (United States)

    Lowman, P. D., Jr.

    1985-01-01

    The lower continental crust, formerly very poorly understood, has recently been investigated by various geological and geophysical techniques that are beginning to yield a generally agreed on though still vague model (Lowman, 1984). As typified by at least some exposed high grade terranes, such as the Scottish Scourian complex, the lower crust in areas not affected by Phanerozoic orogeny or crustal extension appears to consist of gently dipping granulite gneisses of intermediate bulk composition, formed from partly or largely supracrustal precursors. This model, to the degree that it is correct, has important implications for early crustal genesis and the origin of continental crust in general. Most important, it implies that except for areas of major overthrusting (which may of course be considerable) normal superposition relations prevail, and that since even the oldest exposed rocks are underlain by tens of kilometers of sial, true primordial crust may still survive in the lower crustal levels (of. Phinney, 1981).

  2. Self-Consistent Generation of Primordial Continental Crust in Global Mantle Convection Models

    Science.gov (United States)

    Jain, C.; Rozel, A.; Tackley, P. J.

    2017-12-01

    We present the generation of primordial continental crust (TTG rocks) using self-consistent and evolutionary thermochemical mantle convection models (Tackley, PEPI 2008). Numerical modelling commonly shows that mantle convection and continents have strong feedbacks on each other. However in most studies, continents are inserted a priori while basaltic (oceanic) crust is generated self-consistently in some models (Lourenco et al., EPSL 2016). Formation of primordial continental crust happened by fractional melting and crystallisation in episodes of relatively rapid growth from late Archean to late Proterozoic eras (3-1 Ga) (Hawkesworth & Kemp, Nature 2006) and it has also been linked to the onset of plate tectonics around 3 Ga. It takes several stages of differentiation to generate Tonalite-Trondhjemite-Granodiorite (TTG) rocks or proto-continents. First, the basaltic magma is extracted from the pyrolitic mantle which is both erupted at the surface and intruded at the base of the crust. Second, it goes through eclogitic transformation and then partially melts to form TTGs (Rudnick, Nature 1995; Herzberg & Rudnick, Lithos 2012). TTGs account for the majority of the Archean continental crust. Based on the melting conditions proposed by Moyen (Lithos 2011), the feasibility of generating TTG rocks in numerical simulations has already been demonstrated by Rozel et al. (Nature, 2017). Here, we have developed the code further by parameterising TTG formation. We vary the ratio of intrusive (plutonic) and extrusive (volcanic) magmatism (Crisp, Volcanol. Geotherm. 1984) to study the relative volumes of three petrological TTG compositions as reported from field data (Moyen, Lithos 2011). Furthermore, we systematically vary parameters such as friction coefficient, initial core temperature and composition-dependent viscosity to investigate the global tectonic regime of early Earth. Continental crust can also be destroyed by subduction or delamination. We will investigate

  3. On the dynamics and the geochemical mechanism of the evolution of the continental crust. 1

    International Nuclear Information System (INIS)

    Wetzel, K.

    1983-01-01

    An investigation of the isotopic composition of oxygen in the continental crust, in the oceans, in the oceanic crust and in the upper mantle shows the dynamics of plate tectonics and continental growthto be more or less constant during the last three or four aeons independent on the geochemical mechanism of continental growth. (author)

  4. Thickening the outer margins of the Tibetan Plateau: The role of crustal shortening

    Science.gov (United States)

    Lease, R. O.; Burbank, D. W.

    2012-12-01

    restorations that remove Cenozoic shortening suggest that the northeastern Tibetan crust was 45 ± 5 km thick prior to India-Asia continental collision. This pre-collision thickness estimate is equivalent to average continental crustal thicknesses both adjacent to the Tibetan plateau (44 ± 4 km) and globally (41 ± 6 km) and suggests that pure shear alone may account for Cenozoic crustal thickening in northeastern Tibet, obviating the need for lower crustal flow. Furthermore, a growing number of balanced cross sections across the margins of the Tibetan Plateau document Cenozoic shortening sufficient to generate modern crustal thicknesses: in northern Tibet [Yin et al., 2007; 2008a; 2008b], eastern Tibet [Hubbard et al., 2009; 2010], and northeastern Tibet [this work]. Collectively, these similar findings suggest that lower crustal flow is either unnecessary to account for Cenozoic crustal thickening beneath the outer margins of the Tibetan Plateau or, alternatively, has a more restricted role than originally proposed.

  5. Continental crust formation: Numerical modelling of chemical evolution and geological implications

    Science.gov (United States)

    Walzer, U.; Hendel, R.

    2017-05-01

    Oceanic plateaus develop by decompression melting of mantle plumes and have contributed to the growth of the continental crust throughout Earth's evolution. Occasional large-scale partial melting events of parts of the asthenosphere during the Archean produced large domains of precursor crustal material. The fractionation of arc-related crust during the Proterozoic and Phanerozoic contributed to the growth of continental crust. However, it remains unclear whether the continents or their precursors formed during episodic events or whether the gaps in zircon age records are a function of varying preservation potential. This study demonstrates that the formation of the continental crust was intrinsically tied to the thermoconvective evolution of the Earth's mantle. Our numerical solutions for the full set of physical balance equations of convection in a spherical shell mantle, combined with simplified equations of chemical continent-mantle differentiation, demonstrate that the actual rate of continental growth is not uniform through time. The kinetic energy of solid-state mantle creep (Ekin) slowly decreases with superposed episodic but not periodic maxima. In addition, laterally averaged surface heat flow (qob) behaves similarly but shows peaks that lag by 15-30 Ma compared with the Ekin peaks. Peak values of continental growth are delayed by 75-100 Ma relative to the qob maxima. The calculated present-day qob and total continental mass values agree well with observed values. Each episode of continental growth is separated from the next by an interval of quiescence that is not the result of variations in mantle creep velocity but instead reflects the fact that the peridotite solidus is not only a function of pressure but also of local water abundance. A period of differentiation results in a reduction in regional water concentrations, thereby increasing the temperature of the peridotite solidus and the regional viscosity of the mantle. By plausibly varying the

  6. The thermodynamic properties of the upper continental crust: Exergy, Gibbs free energy and enthalpy

    International Nuclear Information System (INIS)

    Valero, Alicia; Valero, Antonio; Vieillard, Philippe

    2012-01-01

    This paper shows a comprehensive database of the thermodynamic properties of the most abundant minerals of the upper continental crust. For those substances whose thermodynamic properties are not listed in the literature, their enthalpy and Gibbs free energy are calculated with 11 different estimation methods described in this study, with associated errors of up to 10% with respect to values published in the literature. Thanks to this procedure we have been able to make a first estimation of the enthalpy, Gibbs free energy and exergy of the bulk upper continental crust and of each of the nearly 300 most abundant minerals contained in it. Finally, the chemical exergy of the continental crust is compared to the exergy of the concentrated mineral resources. The numbers obtained indicate the huge chemical exergy wealth of the crust: 6 × 10 6 Gtoe. However, this study shows that approximately only 0.01% of that amount can be effectively used by man.

  7. The development of continental crust through geological time: the South African case

    International Nuclear Information System (INIS)

    Dia, A.; Allegre, C.J.; Erlank, A.J.

    1990-01-01

    Nd isotopic compositions and 147 Sm/ 144 Nd ratios were measured in fifty-eight South African shales and greywackes with depositional ages ranging from 0.2 to 3.3 b.y. Elements such as the rare earths, which are poorly soluble in water and not fractionated during exogeneous processes, preserve the signature of the original crustal source. The 147 Sm/ 144 Nd ratios appear to be approximately constant throughout the time interval sampled. We calculated Nd model ages of crustal differentiation. Knowing that the shales represent a true blend of different continental areas we consider these model ages representative of the mean ages of their primitive continental sources. Then, using the inverse technique developed by Allegre and Rousseau in 1984, we computed a growth curve for the continental crust in South Africa. Two periods of important crustal genesis (Archaean and around 1.5 b.y.) can be compared with the observed geology and with other continental crust growth curves obtained in previous studies in southern Africa and in Australia. The observation of large variations in the MgO content and Ni, Cr, U and Th concentrations between Archaean South African shales and post-Archaean samples compared to the constancy of the 147 Sm/ 144 Nd ratios leads us to propose that the Archaean crust was composed of both granite (70.5%) and a mafic component (29.5%) which could have been komatiite. The small dispersion of 147 Sm/ 144 Nd ratios suggests that erosion and sedimentation processes yielded homogeneous Archaean shales. The present-day continental crust is much more heterogeneous, because it has undergone several episodes of recycling. Thus recent shales are characterized by more variable 147 Sm/ 144 Nd ratios. (orig.)

  8. Intrusion of Magmatic Bodies Into the Continental Crust: 3-D Numerical Models

    Science.gov (United States)

    Gorczyk, Weronika; Vogt, Katharina

    2018-03-01

    Magma intrusion is a major material transfer process in the Earth's continental crust. Yet the mechanical behavior of the intruding magma and its host are a matter of debate. In this study we present a series of numerical thermomechanical simulations on magma emplacement in 3-D. Our results demonstrate the response of the continental crust to magma intrusion. We observe change in intrusion geometries between dikes, cone sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions, and injection time. The rheology and temperature of the host are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favors host rock displacement and plutons at the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. Here the passage of magmatic and hydrothermal fluids from the intrusion through the fracture pattern may result in the formation of ore deposits. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle crust. Intrusion of low-density magma may more over result in T-shaped intrusions in cross section with magma sheets at the surface.

  9. Deep observation and sampling of the earth's continental crust (DOSECC): Continental scientific drilling workshop

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Research summaries are presented of ongoing or proposed deep drilling programs to explore hydrothermal systems, buried astroblemes, continental crust, magma systems, mountain belt tectonics, subduction zones, and volcanoes. Separate abstracts have been prepared for individual papers. (ACR)

  10. Eocene deep crust at Ama Drime, Tibet

    DEFF Research Database (Denmark)

    Kellett, Dawn; Cottle, John; Smit, Matthijs Arjen

    2014-01-01

    Granulitized eclogite-facies rocks exposed in the Ama Drime Massif, south Tibet, were dated by Lu-Hf garnet geochronology. Garnet from the three samples analyzed yielded Lu-Hf ages of 37.5 ± 0.8 Ma, 36.0 ± 1.9 Ma, and 33.9 ± 0.8 Ma. Eclogitic garnet growth is estimated at ca. 38 Ma, the oldest age...... burial and exhumation of a cold subducted slab. The rocks instead resulted from crustal thickening during the early stages of continental collision, and resided in the lower-middle crust for >20 m.y. before they were exhumed and reheated. These new data provide solid evidence for the Indian crust having...

  11. Petrogenesis of Early Cretaceous dioritic dikes in the Shanyang-Zhashui area, South Qinling, central China: Evidence for partial melting of thickened lower continental crust

    Science.gov (United States)

    Chen, Lei; Yan, Zhen; Wang, Zongqi; Wang, Kunming

    2018-06-01

    The dioritic dikes distributed in the Shanyang-Zhashui area of the South Qinling region play an important role in understanding the deep magmatic processes and tectonic evolution during the orogenic process. The zircon Usbnd Pb ages of the dioritic dikes indicate that they were emplaced at ∼144 Ma and therefore postdate the dikes that formed in the intracontinental orogenic background after the continental collision between the North China Block (NCB) and the South China Block (SCB). The dioritic dikes have SiO2 contents of 56.86-64.93 wt%; K2O contents of 1.65-3.21 wt%; low MgO (1.50-2.66 wt%), Y (14.4-25.5 ppm) and heavy rare earth element (HREE) contents; low Mg# values (39.9-49); high Sr contents (528-4833 ppm); and high Sr/Y ratios (32.8-189). They exhibit highly fractionated REE and flat HREE patterns, strong enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, and U) and depletion in high field strength elements (HFSEs) (e.g., Nb), as well as positive Sr and negative Ti anomalies. Furthermore, these dioritic dikes exhibit (87Sr/86Sr)i ratios ranging from 0.7048 to 0.7083, εNd(t) values ranging from -3.3 to -1.4, and εHf(t) values ranging from -4.1 to 1.6. The geochemical patterns of the dioritic dikes indicate that they possess adakitic characteristics. Moreover, the low MgO contents, Mg# values, Ni contents, Th/Ce ratios, and Srsbnd Ndsbnd Hf isotopic features all indicate that these dioritic dikes were generated by the partial melting of thickened mafic lower crust. The high La/Yb and Sr/Y ratios, low Y and Yb contents, absence of significant Eu anomalies, flat HREE patterns, and low Nb/Ta ratios of these rocks suggest that the adakitic melts were derived from the melting of garnet-bearing amphibolite. The geochronologic, elemental and isotopic evidence suggests that the dioritic dikes may have formed in a locally extensional environment within an overall N-S compressional setting or during the transition from compressional to extensional

  12. Precambrrian continental crust evolution of southeastern Sao Paulo state-Brazil: based on isotopico evidences

    International Nuclear Information System (INIS)

    Tassinari, C.C.G.; Campos Neto, M.C.

    1988-01-01

    The focussed area comprises five major different tectonic terranes separated by faults, which are named Alto Rio Grande Belt, Socorro-Guaxupe Nappe, Sao Roque, Embu and Costeiro Domains. The geological and geochronological history of these terranes show that the metamorphic episodes of crust-forming occurred involving both mantle-derived magmas and reworking of continental material since 3.4 Ga until 600 Ma. The post-tectonic granitic activities occurred within 1000-500 Ma range and in general, the rocks are progressively younger from the Socorro-Guaxupe Nappe (1000-850 Ma) in the NW towards the Costeiro Domain (550 Ma) in the SE. The Sr and Pb isotopic evidences, together with geological and geophysical informations, suggest that the proportions of the rock-forming processes through the geological time are: Archean, 10%; Lower Proterozoic, 10%; Middle Proterozoic, 38%; Late Proterozaic, 42%. Although the Mid and Late Proterozoic time were a period of a large amount of rocks were formed, they were not a major crustforming period, because these rocks are mainly constituted by recycled continental crust material. In our view, at end of the Early Proterozoic time, at least 85% of continetal crust, in this area, has accreted and differentiate. During the Middle and Late Proterozoic the continental crust grew at small rate. (author) [pt

  13. Numerical simulations of thermo-compositional global convection with generation of proto-continental crust

    Science.gov (United States)

    Rozel, A. B.; Golabek, G.; Gerya, T.; Jain, C.; Tackley, P. J.

    2017-12-01

    We study the creation of primordial continental crust (TTG rocks) employing fully self-consistent numerical models of thermo-chemical convection on a global scale at the Archean. We use realistic rheological parameters [1] in 2D spherical annulus geometry using the convection code StagYY [2] for a one billion years period. Starting from a pyrolytic composition and an initially warm core, our simulations first generate mafic crust and depleted mantle in the upper mantle. The basaltic material can be both erupted (cold) and/or intruded (warm) at the base of the crust following a predefined partitioning. At all times, water concentration is considered fully saturated in the top 10 km of the domain, and it simply advected with the deforming material elsewhere. We track the pressure-temperature conditions of the newly formed hydrated basalt and check if it matches the conditions necessary for the formation of proto-continental crust [3]. We systematically test the influence of volcanism (eruption, also called "heat pipe") and plutonism (intrusive magmatism) on the time-dependent geotherm in the lithosphere. We show that the "heat-pipe" model (assuming 100% eruption) suggested to be the main heat loss mechanism during the Archean epoch [4] is not able to produce continental crust since it forms a too cold lithosphere. We also systematically test various friction coefficients and show that an intrusion fraction higher than 60% (in agreement with [5]) combined with a friction coefficient larger than 0.1 produces the expected amount of the three main petrological TTG compositions previously reported [3]. This result seems robust as the amount of TTG rocks formed vary over orders of magnitude. A large eruption over intrusion ratio can result in up to 100 times less TTG felsic crust production than a case where plutonism dominates. This study represents a major step towards the production of self-consistent convection models able to generate the continental crust of the Earth

  14. Growth of the lower continental crust via the relamination of arc magma

    Science.gov (United States)

    He, Yumei; Zheng, Tianyu; Ai, Yinshuang; Hou, Guangbing; Chen, Qi-Fu

    2018-01-01

    How does continental crust transition from basaltic mantle-derived magmas into an andesitic composition? The relamination hypothesis has been presented as an alternative dynamical mechanism to classical delamination theory to explain new crust generation and has been supported by petrological and geochemical studies as well as by thermomechanical numerical modeling. However, direct evidence of this process from detailed seismic velocity structures is lacking. Here, we imaged the three-dimensional (3D) velocity structures of the crust and uppermost mantle beneath the geologically stable Ordos terrane of the North China Craton (NCC). We identify a region of continental crust that exhibits extreme growth using teleseismic data and an imaging technique that models the Common Conversion Point (CCP) stacking profiles. Our results show an approximately 400 × 400 km2 wide growth zone that underlies the primitive crust at depths of 30-50 km and exhibits a gradual increase of velocity with depth. The upper layer of the growth zone has a shear wave velocity of 3.6-3.9 km/s (Vp = 6.2-6.8 km/s), indicating felsic material, and the lower layer has a shear wave velocity of 4.1-4.3 km/s (Vp = 7.2-7.5 km/s), which corresponds to mafic material. We suggest that this vertical evolution of the layered structure could be created by relamination and that the keel structure formed by relamination may be the root of the supernormal stability of the ancient Ordos terrane.

  15. Low-pressure evolution of arc magmas in thickened crust: The San Pedro-Linzor volcanic chain, Central Andes, Northern Chile

    Science.gov (United States)

    Godoy, Benigno; Wörner, Gerhard; Kojima, Shoji; Aguilera, Felipe; Simon, Klaus; Hartmann, Gerald

    2014-07-01

    Magmatism at Andean Central Volcanic Zone (CVZ), or Central Andes, is strongly influenced by differentiation and assimilation at high pressures that occurred at lower levels of the thick continental crust. This is typically shown by high light to heavy rare earth element ratios (LREE/HREE) of the erupted lavas at this volcanic zone. Increase of these ratios with time is interpreted as a change to magma evolution in the presence of garnet during evolution of Central Andes. Such geochemical signals could be introduced into the magmas be high-pressure fractionation with garnet on the liquidus and/or assimilation from crustal rocks with a garnet-bearing residue. However, lavas erupted at San Pedro-Linzor volcanic chain show no evidence of garnet fractionation in their trace element patterns. This volcanic chain is located in the active volcanic arc, between 22°00‧S and 22°30‧S, over a continental crust ˜70 km thick. Sampled lavas show Sr/Y and Sm/Yb ratios Chile. We relate our geochemical observations to shallow crustal evolution of primitive magmas involving a high degree of assimilation of upper continental crust. We emphasize that low pressure AFC- (Assimilation Fractional Crystallization) type evolution of the San Pedro-Linzor volcanic chain reflects storage, fractionation, and contamination of mantle-derived magmas at the upper felsic crust (<40 km depth). The ascent of mantle-derived magmas to mid-crustal levels is related with the extensional regime that has existed in this zone of arc-front offset since Late-Miocene age, and the relatively thin portion of mafic lower crust observed below the volcanic chain.

  16. Evaluating the influence of chemical weathering on the composition of the continental crust using lithium and its isotopes

    Science.gov (United States)

    Rudnick, R. L.; Liu, X.

    2011-12-01

    The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" of the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems document the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 8×10^9 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.

  17. Pliocene granodioritic knoll with continental crust affinities discovered in the intra-oceanic Izu-Bonin-Mariana Arc: Syntectonic granitic crust formation during back-arc rifting

    Science.gov (United States)

    Tani, Kenichiro; Dunkley, Daniel J.; Chang, Qing; Nichols, Alexander R. L.; Shukuno, Hiroshi; Hirahara, Yuka; Ishizuka, Osamu; Arima, Makoto; Tatsumi, Yoshiyuki

    2015-08-01

    A widely held hypothesis is that modern continental crust of an intermediate (i.e. andesitic) bulk composition forms at intra-oceanic arcs through subduction zone magmatism. However, there is a critical paradox in this hypothesis: to date, the dominant granitic rocks discovered in these arcs are tonalite, rocks that are significantly depleted in incompatible (i.e. magma-preferred) elements and do not geochemically and petrographically represent those of the continents. Here we describe the discovery of a submarine knoll, the Daisan-West Sumisu Knoll, situated in the rear-arc region of the intra-oceanic Izu-Bonin-Mariana Arc. Remotely-operated vehicle surveys reveal that this knoll is made up entirely of a 2.6 million year old porphyritic to equigranular granodiorite intrusion with a geochemical signature typical of continental crust. We present a model of granodiorite magma formation that involves partial remelting of enriched mafic rear-arc crust during the initial phase of back-arc rifting, which is supported by the preservation of relic cores inherited from initial rear-arc source rocks within magmatic zircon crystals. The strong extensional tectonic regime at the time of intrusion may have allowed the granodioritic magma to be emplaced at an extremely shallow level, with later erosion of sediment and volcanic covers exposing the internal plutonic body. These findings suggest that rear-arc regions could be the potential sites of continental crust formation in intra-oceanic convergent margins.

  18. Remnants of Eoarchean continental crust derived from a subducted proto-arc.

    Science.gov (United States)

    Ge, Rongfeng; Zhu, Wenbin; Wilde, Simon A; Wu, Hailin

    2018-02-01

    Eoarchean [3.6 to 4.0 billion years ago (Ga)] tonalite-trondhjemite-granodiorite (TTG) is the major component of Earth's oldest remnant continental crust, thereby holding the key to understanding how continental crust originated and when plate tectonics started in the early Earth. TTGs are mostly generated by partial melting of hydrated mafic rocks at different depths, but whether this requires subduction remains enigmatic. Recent studies show that most Archean TTGs formed at relatively low pressures (≤1.5 GPa) and do not require subduction. We report a suite of newly discovered Eoarchean tonalitic gneisses dated at ~3.7 Ga from the Tarim Craton, northwestern China. These rocks are probably the oldest high-pressure TTGs so far documented worldwide. Thermodynamic and trace element modeling demonstrates that the parent magma may have been generated by water-fluxed partial melting of moderately enriched arc-like basalts at 1.8 to 1.9 GPa and 800° to 830°C, indicating an apparent geothermal gradient (400° to 450°C GPa -1 ) typical for hot subduction zones. They also locally record geochemical evidence for magma interaction with a mantle wedge. Accordingly, we propose that these high-pressure TTGs were generated by partial melting of a subducted proto-arc during arc accretion. Our model implies that modern-style plate tectonics was operative, at least locally, at ~3.7 Ga and was responsible for generating some of the oldest continental nuclei.

  19. Structure and Geochemistry of the Continental-Oceanic Crust Boundary of the Red Sea and the Rifted Margin of Western Arabia

    Science.gov (United States)

    Dilek, Y.; Furnes, H.; Schoenberg, R.

    2009-12-01

    The continental-oceanic crust boundary and an incipient oceanic crust of the Red Sea opening are exposed within the Arabian plate along a narrow zone of the Tihama Asir coastal plain in SW Saudi Arabia. Dike swarms, layered gabbros, granophyres and basalts of the 22 Ma Tihama Asir (TA) continental margin ophiolite represent products of magmatic differentiation formed during the initial stages of rifting between the African and Arabian plates. Nearly 4-km-wide zone of NW-trending sheeted dikes are the first products of mafic magmatism associated with incipient oceanic crust formation following the initial continental breakup. Gabbro intrusions are composed of cpx-ol-gabbro, cpx-gabbro, and norite/troctolite, and are crosscut by fine-grained basaltic dikes. Granophyre bodies intrude the sheeted dike swarms and are locally intrusive into the gabbros. Regional Bouger gravity anomalies suggest that the Miocene mafic crust represented by the TA complex extends westward beneath the coastal plain sedimentary rocks and the main trough of the Red Sea. The TA complex marks an incipient Red Sea oceanic crust that was accreted to the NE side of the newly formed continental rift in the earliest stages of seafloor spreading. Its basaltic to trachyandesitic lavas and dikes straddle the subalkaline-mildly alkaline boundary. Incompatible trace element relationships (e.g. Zr-Ti, Zr-P) indicate two distinct populations. The REE concentrations show an overall enrichment compared to N-MORB; light REEs are enriched over the heavy ones ((La/Yb)n > 1), pointing to an E-MORB influence. Nd-isotope data show ɛNd values ranging from +4 to +8, supporting an E-MORB melt source. The relatively large variations in ɛNd values also suggest various degrees of involvement of continental crust during ascent and emplacement, or by mixing of another mantle source.

  20. What governs the enrichment of Pb in the continental crust? An answer from the Mexican Volcanic Belt

    Science.gov (United States)

    Goldstein, S. L.; Lagatta, A.; Langmuir, C. H.; Straub, S. M.; Martin-Del-Pozzo, A.

    2009-12-01

    One of Al Hofmann’s many important contributions to our understanding of geochemical cycling in the Earth is the observation that Pb behaves like the light rare earth elements Ce and Nd during melting to form oceanic basalts, but is enriched in the continental crust compared to the LREE by nearly an order of magnitude (Hofmann et al. 1986). This is unusual behavior, and has been called one of the Pb paradoxes, since in most cases, the ratios of elements are effectively the same in the continental crust and oceanic basalts if they show similar mantle melting behavior. One of several mechanisms suggested to mediate this special enrichment is hydrothermal circulation at ocean ridges, which preferentially transports Pb compared to the REE from the interior of the ocean crust to the surface. We confirm the importance of hydrothermal processes at the East Pacific to mediate Pb enrichment at the Trans-Mexican Volcanic Belt (TMVB, through comparison of Pb isotope and Ce/Pb ratios of TMVB lavas with sediments from DSDP Site 487 near the Middle America trench. The lavas of the Trans-Mexican Volcanic Belt include “high Nb” alkali basalts (HNAB), whose trace element patterns lack subduction signatures. The HNAB basalts and hydrothermally affected sediments from DSDP 487, form end-members that bound calcalkaline lavas from volcanoes Colima, Toluca, Popocatépetl, and Malinche in Ce/Pb versus Pb isotope space. The HNAB represent the high Ce/Pb and high Pb-isotope end-member. The hydrothermal sediments have Pb isotopes like Pacific MORB but Ce/Pb ratios typical of the arcs and the continental crust, and an order of magnitude lower than MORB. No analyzed calcalkaline lavas are have compositions outside of the bounds formed by the HNAB and the hydrothermal sediments. The Ce/Pb and Pb isotope ratios show that the calcalkaline lava compositions are inconsistent with contributions from HNAB and EPR MORB, rather the contributions are from HNAB upper mantle and subducted

  1. Noble gases preserve history of retentive continental crust in the Bravo Dome natural CO2 field, New Mexico

    Science.gov (United States)

    Sathaye, Kiran J.; Smye, Andrew J.; Jordan, Jacob S.; Hesse, Marc A.

    2016-06-01

    Budgets of 4He and 40Ar provide constraints on the chemical evolution of the solid Earth and atmosphere. Although continental crust accounts for the majority of 4He and 40Ar degassed from the Earth, degassing mechanisms are subject to scholarly debate. Here we provide a constraint on crustal degassing by comparing the noble gases accumulated in the Bravo Dome natural CO2 reservoir, New Mexico USA, with the radiogenic production in the underlying crust. A detailed geological model of the reservoir is used to provide absolute abundances and geostatistical uncertainty of 4He, 40Ar, 21Ne, 20Ne, 36Ar, and 84Kr. The present-day production rate of crustal radiogenic 4He and 40Ar, henceforth referred to as 4He* and 40Ar*, is estimated using the basement composition, surface and mantle heat flow, and seismic estimates of crustal density. After subtracting mantle and atmospheric contributions, the reservoir contains less than 0.02% of the radiogenic production in the underlying crust. This shows unequivocally that radiogenic noble gases are effectively retained in cratonic continental crust over millennial timescales. This also requires that approximately 1.5 Gt of mantle derived CO2 migrated through the crust without mobilizing the crustally accumulated gases. This observation suggests transport along a localized fracture network. Therefore, the retention of noble gases in stable crystalline continental crust allows shallow accumulations of radiogenic gases to record tectonic history. At Bravo Dome, the crustal 4He*/40Ar* ratio is one fifth of the expected crustal production ratio, recording the preferential release of 4He during the Ancestral Rocky Mountain orogeny, 300 Ma.

  2. Transformation of juvenile Izu-Bonin-Mariana oceanic arc into mature continental crust: An example from the Neogene Izu collision zone granitoid plutons, Central Japan

    Science.gov (United States)

    Saito, Satoshi; Tani, Kenichiro

    2017-04-01

    Granitic rocks (sensulato) are major constituents of upper continental crust. Recent reviews reveal that the average composition of Phanerozoic upper continental crust is granodioritic. Although oceanic arcs are regarded as a site producing continental crust material in an oceanic setting, intermediate to felsic igneous rocks occurring in modern oceanic arcs are dominantly tonalitic to trondhjemitic in composition and have lower incompatible element contents than the average upper continental crust. Therefore, juvenile oceanic arcs require additional processes in order to get transformed into mature continental crust enriched in incompatible elements. Neogene granitoid plutons are widely exposed in the Izu Collision Zone in central Japan, where the northern end of the Izu-Bonin-Mariana (IBM) arc (juvenile oceanic arc) has been colliding with the Honshu arc (mature island arc) since Middle Miocene. The plutons in this area are composed of various types of granitoids ranging from tonalite to trondhjemite, granodiorite, monzogranite and granite. Three main granitoid plutons are distributed in this area: Tanzawa plutonic complex, Kofu granitic complex, and Kaikomagatake granitoid pluton. Tanzawa plutonic complex is dominantly composed of tonalite and trondhjemite and characterized by low concentration of incompatible elements and shows geochemical similarity with modern juvenile oceanic arcs. In contrast, Kofu granitic complex and Kaikomagatake granitoid pluton consists mainly of granodiorite, monzogranite and granite and their incompatible element abundances are comparable to the average upper continental crust. Previous petrogenetic studies on these plutons suggested that (1) the Tanzawa plutonic complex formed by lower crustal anatexis of juvenile basaltic rocks occurring in the IBM arc, (2) the Kofu granitic complex formed by anatexis of 'hybrid lower crust' comprising of both basaltic rocks of the IBM arc and metasedimentary rocks of the Honshu arc, and (3) the

  3. Estimating susceptibility and magnetization within the Earth's continental crust: Petrophysical and Satellite approaches

    Science.gov (United States)

    Purucker, M. E.; McEnroe, S. A.

    2014-12-01

    Magnetic models (Xchaos) made from Champ and Orsted data are used to place constraints on the average magnetic susceptibility and its variability in the continental crust. Estimates of magnetic crustal thickness are made in a two-step process. The first step uses a recent seismic model (Crust1.0) to estimate the thickness of crystalline crust above the Moho, modified in the Andes and the Himalayas to account for the non-magnetic lower crust there. The second step calculates the magnetic field expected from such a layer of crystalline rock assuming the magnetization is solely induced in the earth's main field by rock of constant magnetic susceptibility, and modifies the starting crustal thickness to bring it into agreement with the Xchaos model. This global model removes spherical harmonic degrees less than 15 to account for the core field mask. We restrict our attention to the continental crust, in particular to Australia, western North America, and Scandinavia. Petrophysical and petrological data from Scandinavian rocks that have been deep in the crust help place limits on susceptibility values. Our simulations use two susceptibilities, 0.02 and 0.04 SI. The mean crystalline crustal thickness from the seismic model is 42 and 37 km in western North America and Australia, respectively, and the modification with the magnetic data makes little change to the mean crustal thickness, irrespective of whether the susceptibility is 0.02 or 0.04 SI. However, the modification with the magnetic data does make a significant difference to the standard deviation of the crustal thickness, increasing it by a factor of two in the case of a susceptibility of 0.04, and by a factor of four in the case of a susceptibility of 0.02. The changes to the standard deviation of the crustal thickness are also evident in the Scandinavian data, but the mean crystalline crustal thickness of 45 km is significantly larger than that found from either magnetic model (33 and 30 km). The differences

  4. Linking the tectonic evolution with fluid history in magma-poor rifted margins: tracking mantle- and continental crust-related fluids

    Science.gov (United States)

    Pinto, V. H. G.; Manatschal, G.; Karpoff, A. M.

    2014-12-01

    The thinning of the crust and the exhumation of subcontinental mantle is accompanied by a series of extensional detachment faults. Exhumation of mantle and crustal rocks is intimately related to percolation of fluids along detachment faults leading to changes in mineralogy and chemistry of the mantle, crustal and sedimentary rocks. Field observation, analytical methods, refraction/reflection and well-core data, allowed us to investigate the role of fluids in the Iberian margin and former Alpine Tethys distal margins and the Pyrenees rifted system. In the continental crust, fluid-rock interaction leads to saussuritization that produces Si and Ca enriched fluids found in forms of veins along the fault zone. In the zone of exhumed mantle, large amounts of water are absorbed in the first 5-6 km of serpentinized mantle, which has the counter-effect of depleting the mantle of elements (e.g., Si, Ca, Mg, Fe, Mn, Ni and Cr) forming mantle-related fluids. Using Cr-Ni-V and Fe-Mn as tracers, we show that in the distal margin, mantle-related fluids used detachment faults as pathways and interacted with the overlying crust, the sedimentary basin and the seawater, while further inward parts of the margin, continental crust-related fluids enriched in Si and Ca impregnated the fault zone and may have affected the sedimentary basin. The overall observations and results enable us to show when, where and how these interactions occurred during the formation of the rifted margin. In a first stage, continental crust-related fluids dominated the rifted systems. During the second stage, mantle-related fluids affected the overlying syn-tectonic sediments through direct migration along detachment faults at the future distal margin. In a third stage, these fluids reached the seafloor, "polluted" the seawater and were absorbed by post-tectonic sediments. We conclude that a significant amount of serpentinization occurred underneath the thinned continental crust, that the mantle-related fluids

  5. Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau

    Science.gov (United States)

    Chen, Shuo; Niu, Yaoling; Xue, Qiqi

    2018-05-01

    The abundant syn-collisional granitoids produced and preserved at the northern Tibetan Plateau margin provide a prime case for studying the felsic magmatism as well as continental crust growth in response to continental collision. Here we present the results from a systematic study of the syn-collisional granitoids and their mafic magmatic enclaves (MMEs) in the Laohushan (LHS) and Machangshan (MCS) plutons from the North Qilian Orogenic Belt (NQOB). Two types of MMEs from the LHS pluton exhibit identical crystallization age ( 430 Ma) and bulk-rock isotopic compositions to their host granitoids, indicating their genetic link. The phase equilibrium constraints and pressure estimates for amphiboles from the LHS pluton together with the whole rock data suggest that the two types of MMEs represent two evolution products of the same hydrous andesitic magmas. In combination with the data on NQOB syn-collisional granitoids elsewhere, we suggest that the syn-collisional granitoids in the NQOB are material evidence of melting of ocean crust and sediment. The remarkable compositional similarity between the LHS granitoids and the model bulk continental crust in terms of major elements, trace elements, and some key element ratios indicates that the syn-collisional magmatism in the NQOB contributes to net continental crust growth, and that the way of continental crust growth in the Phanerozoic through syn-collisional felsic magmatism (production and preservation) is a straightforward process without the need of petrologically and physically complex processes.

  6. Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism

    Science.gov (United States)

    Lee, C.-T.A.; Morton, D.M.; Kistler, R.W.; Baird, A.K.

    2007-01-01

    Mesozoic continental arcs in the North American Cordillera were examined here to establish a baseline model for Phanerozoic continent formation. We combine new trace-element data on lower crustal xenoliths from the Mesozoic Sierra Nevada Batholith with an extensive grid-based geochemical map of the Peninsular Ranges Batholith, the southern equivalent of the Sierras. Collectively, these observations give a three-dimensional view of the crust, which permits the petrogenesis and tectonics of Phanerozoic crust formation to be linked in space and time. Subduction of the Farallon plate beneath North America during the Triassic to early Cretaceous was characterized by trench retreat and slab rollback because old and cold oceanic lithosphere was being subducted. This generated an extensional subduction zone, which created fringing island arcs just off the Paleozoic continental margin. However, as the age of the Farallon plate at the time of subduction decreased, the extensional environment waned, allowing the fringing island arc to accrete onto the continental margin. With continued subduction, a continental arc was born and a progressively more compressional environment developed as the age of subducting slab continued to young. Refinement into a felsic crust occurred after accretion, that is, during the continental arc stage, wherein a thickened crustal and lithospheric column permitted a longer differentiation column. New basaltic arc magmas underplate and intrude the accreted terrane, suture, and former continental margin. Interaction of these basaltic magmas with pre-existing crust and lithospheric mantle created garnet pyroxenitic mafic cumulates by fractional crystallization at depth as well as gabbroic and garnet pyroxenitic restites at shallower levels by melting of pre-existing lower crust. The complementary felsic plutons formed by these deep-seated differentiation processes rose into the upper crust, stitching together the accreted terrane, suture and former

  7. Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle

    Science.gov (United States)

    Campbell, Ian H.

    2002-05-01

    The Nb/U and Th/U of the primitive mantle are 34 and 4.04 respectively, which compare with 9.7 and 3.96 for the continental crust. Extraction of continental crust from the mantle therefore has a profound influence on its Nb/U but little influence on its Th/U. Conversely, extraction of midocean ridge-type basalts lowers the Th/U of the mantle residue but has little influence on its Nb/U. As a consequence, variations in Th/U and Nb/U with Sm/Nd can be used to evaluate the relative importance of continental and basaltic crust extraction in the formation of the depleted (Sm/Nd enriched) mantle reservoir. This study evaluates Nb/U, Th/U, and Sm/Nd variations in suites of komatiites, picrites, and their associated basalts, of various ages, to determine whether basalt and/or continental crust have been extracted from their source region. Emphasis is placed on komatiites and picrites because they formed at high degrees of partial melting and are expected to have Nb/U, Th/U, and Sm/Nd that are essentially the same as the mantle that melted to produce them. The results show that all of the studied suites, with the exception of the Barberton, have had both continental crust and basaltic crust extracted from their mantle source region. The high Sm/Nd of the Gorgona and Munro komatiites require the elevated ratios seen in these suites to be due primarily to extraction of basaltic crust from their source regions, whereas basaltic and continental crust extraction are of subequal importance in the source regions of the Yilgarn and Belingwe komatiites. The Sm/Nd of modern midocean ridge basalts lies above the crustal extraction curve on a plot of Sm/Nd against Nb/U, which requires the upper mantle to have had both basaltic and continental crust extracted from it. It is suggested that the extraction of the basaltic reservoir from the mantle occurs at midocean ridges and that the basaltic crust, together with its complementary depleted mantle residue, is subducted to the core

  8. Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas

    International Nuclear Information System (INIS)

    Arndt, N.T.; Chauvel, C.; Jochum, K.P.; Gruau, G.; Hofmann, A.W.

    1988-01-01

    Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona

  9. Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas

    Science.gov (United States)

    Arndt, N. T.; Chauvel, C.; Jochum, K.-P.; Gruau, G.; Hofmann, A. W.

    1988-01-01

    Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona.

  10. Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas

    Science.gov (United States)

    Arndt, N. T.; Chauvel, C.; Jochum, K.-P.; Gruau, G.; Hofmann, A. W.

    Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona.

  11. Arc-continent collision and the formation of continental crust: A new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Amato, Jeffrey M.; Blusztajn, Jerzy; Schouten, Hans

    2009-01-01

    Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth's history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U-Pb zircon dating yields ages of 493 2 Ma from a primitive mafic intrusion, indicating intra-oceanic subduction in Tremadoc time, and 475 10 Ma from a light rare earth element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous Complex exceeds that of average Dalradian (Laurentian) continental material that would have been thrust under the colliding forearc and potentially recycled into arc magmatism. This implies that crystal fractionation, in addition to magmatic mixing and assimilation, was important to the formation of new crust in the Grampian-Taconic orogeny. Because similar super-enrichment of orogenic melts occurred elsewhere in the Caledonides in the British Isles and Newfoundland, the addition of new, highly enriched melt to this accreted arc terrane was apparently widespread spatially and temporally. Such super-enrichment of magmatism, especially if accompanied by loss of corresponding lower crustal residues, supports the theory that arc-continent collision plays an important role in altering bulk crustal composition toward typical values for ancient continental crust. ?? 2009 Geological Society of London.

  12. Switching deformation mode and mechanisms during subduction of continental crust: a case study from Alpine Corsica

    Directory of Open Access Journals (Sweden)

    G. Molli

    2017-07-01

    Full Text Available The switching in deformation mode (from distributed to localized and mechanisms (viscous versus frictional represent a relevant issue in the frame of crustal deformation, being also connected with the concept of the brittle–ductile transition and seismogenesis. In a subduction environment, switching in deformation mode and mechanisms and scale of localization may be inferred along the subduction interface, in a transition zone between the highly coupled (seismogenic zone and decoupled deeper aseismic domain (stable slip. However, the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as fundamental in some cases for the localization of deformation and shear zone development, thus representing a case in which switching deformation mechanisms and scale and style of localization (deformation mode interact and relate to each other. This contribution analyses an example of a millimetre-scale shear zone localized by brittle precursor formed within a host granitic protomylonite. The studied structures, developed in ambient pressure–temperature (P–T conditions of low-grade blueschist facies (temperature T of ca. 300 °C and pressure P ≥ 0. 70 GPa during involvement of Corsican continental crust in the Alpine subduction. We used a multidisciplinary approach by combining detailed microstructural and petrographic analyses, crystallographic preferred orientation by electron backscatter diffraction (EBSD, and palaeopiezometric studies on a selected sample to support an evolutionary model and deformation path for subducted continental crust. We infer that the studied structures, possibly formed by transient instability associated with fluctuations of pore fluid pressure and episodic strain rate variations, may be considered as a small-scale example of fault behaviour associated with a cycle of interseismic creep and coseismic rupture or a new analogue for

  13. Detachments of the subducted Indian continental lithosphere based on 3D finite-frequency tomographic images

    Science.gov (United States)

    Liang, X.; Tian, X.; Wang, M.

    2017-12-01

    Indian plate collided with Eurasian plate at 60 Ma and there are about 3000 km crustal shortening since the continental-continental collision. At least one third of the total amount of crustal shortening between Indian and Eurasian plates could not be accounted by thickened Tibetan crust and surface erosion. It will need a combination of possible transfer of lower crust to the mantle by eclogitization and lateral extrusion. Based on the lithosphere-asthenosphere boundary images beneath the Tibetan plateau, there is also at least the same amount deficit for lithospheric mantle subducted into upper/lower mantle or lateral extrusion with the crust. We have to recover a detailed Indian continental lithosphere image beneath the plateau in order to explain this deficit of mass budget. Combining the new teleseismic body waves recorded by SANDWICH passive seismic array with waveforms from several previous temporary seismic arrays, we carried out finite-frequency tomographic inversions to image three-dimensional velocity structures beneath southern and central Tibetan plateau to examine the possible image of subducted Indian lithosphere in the Tibetan upper mantle. We have recovered a continuous high velocity body in upper mantle and piece-wised high velocity anomalies in the mantle transition zone. Based on their geometry and relative locations, we interpreted these high velocity anomalies as the subducted and detached Indian lithosphere at different episodes of the plateau evolution. Detachments of the subducted Indian lithosphere should have a crucial impact on the volcanism activities and uplift history of the plateau.

  14. Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: A Sr-Nd-Hf-O isotopic study from the Paleozoic Tongbai orogen, central China

    Science.gov (United States)

    Wang, Hao; Wu, Yuan-Bao; Yang, Jin-Hui; Qin, Zheng-Wei; Duan, Rui-Chun; Zhou, Lian; Yang, Sai-Hong

    2017-06-01

    Ascertaining the petrogenesis of granitoid rocks in subduction zones holds the key for understanding the processes of how continental crust is produced. The synchronous Taoyuan and Huanggang plutons occur in two different geological units of the Paleozoic Tongbai orogen of central China. They provide an optimal opportunity for a study to address the role of the crustal basement in generating voluminous granitoid magmatism in subduction zones. The Taoyuan and Huanggang plutons have identical U-Pb zircon crystallization ages of 440-444 Ma, which are temporally related to northward subduction of the Paleotethyan Ocean. The Taoyuan samples show high SiO2 (73.36-79.16%) and low Al2O3 (12.00-13.45%) contents, Mg numbers (20.6-38.2), and Sr/Y (2.04-10.1) and (La/Yb)N (2.34-7.32) ratios with negative Eu anomalies (Eu/Eu* = 0.33-0.93). They yielded positive εNd(t) (+ 3.0 to + 6.7) and εHf(t) (+ 11.8 to + 13.2) values, elevated initial Sr isotopic ratios (0.7040-0.7057) and relatively low zircon δ18O values of 4.62-5.39‰. These suggest that they were produced through partial melting of hydrothermally altered lower crust of the accreted Erlangping oceanic arc. In contrast, the Huanggang samples exhibit variable whole-rock geochemical and isotopic compositions with SiO2 contents of 57.01-64.42 wt.%, initial Sr isotopic ratios of 0.7065-0.7078, and εNd(t) values of - 5.7 to - 9.4. Additionally, they have high zircon δ18O values of 7.57-8.45‰ and strongly negative zircon εHf(t) values of - 14.4 to - 10.5. They were suggested to have been mainly derived from ancient continental crust of the Kuanping crustal unit with the addition of 20-40% juvenile, mantle-derived material. Accordingly, the granitoids in both oceanic and continental arcs are likely to be mainly derived from intracrustal melting of their crustal basement. It is revealed by the Huanggang pluton that little net continental crust growth occurs in continental arcs, and addition of new volume of continental

  15. Oceanic-type accretion may begin before complete continental break-up

    Science.gov (United States)

    Geoffroy, L.; Zalan, P. V.; Viana, A. R.

    2011-12-01

    Oceanic accretion is thought to be the process of oceanic crust (and lithosphere) edification through adiabatic melting of shallow convecting mantle at oceanic spreading ridges. It is usually considered as a post-breakup diagnostic process following continents rupturing. However, this is not always correct. The structure of volcanic passive margins (representing more than 50% of passive continental margins) outlines that the continental lithosphere is progressively changed into oceanic-type lithosphere during the stage of continental extension. This is clear at least, at crustal level. The continental crust is 'changed' from the earliest stages of extension into a typical -however thicker- oceanic crust with the typical oceanic magmatic layers (from top to bottom: lava flows/tuffs, sheeted dyke complexes, dominantly (sill-like) mafic intrusions in the lower crust). The Q-rich continental crust is highly extended and increases in volume (due to the magma) during the extensional process. At the continent-ocean transition there is, finally, no seismic difference between this highly transformed continental crust and the oceanic crust. Using a large range of data (including deep seismic reflection profiles), we discuss the mantle mechanisms that governs the process of mantle-assisted continental extension. We outline the large similarity between those mantle processes and those acting at purely-oceanic spreading axis and discuss the effects of the inherited continental lithosphere in the pattern of new mafic crust edification.

  16. Continental Delamination of the Romanian Eastern Carpathians: A Lower Crustal Origin of the Vrancea Seismogenic Zone?

    Science.gov (United States)

    Fillerup, M. A.; Knapp, J. H.; Knapp, C. C.

    2006-12-01

    Two lithosphere-scale, explosive-source seismic reflection profiles (DRACULA I and DACIA PLAN), inclusive of the hinterland and foreland of the Romanian Eastern Carpathians, provide new evidence for the geodynamic origin of the Vrancea Seismogenic Zone (VSZ) of Romania. These data, collected to evaluate existing subduction-related and delamination geodynamic models proposed to explain the intermediate depth seismicity associated with the Vrancea zone, show evidence of continental crust extending continuously above the VSZ from the Carpathian foreland well into the Transylvanian hinterland. Crustal thicknesses inferred from these data based on reflectivity show a 40-45 km crust below the Transylvanian basin abruptly shallowing to 32 km for ~120 km beneath the fold and thrust belt of the main Carpathian orogen and thickening again to 38-42 km crust in the foreland. This thinned crust outlines an apparent lower crustal sub-orogenic cavity that is overlain by a relatively subhorizontal reflective fabric absent of dipping reflectivity. The northwest dipping Vrancea seismogenic body, a 30x70x200 km volume of intermediate depth earthquakes, is located on the eastern flank of the apparently thin crust beneath the Carpathian orogen. Amplitude decay curves show penetration of seismic energy to a depth of ~60 km in the vicinity of the sub-orogenic cavity, implying this non- reflective zone is a geologic signature. Rotation of the VSZ about a hinge beneath the foreland basin at a depth of ~50 km restores to fill the lower-crustal cavity under the orogen, suggesting the VSZ represents a portion of brittle lower crust delaminated during continental lithospheric delamination which may have caused regional uplift of the Transylvanian basin. The lack of through-going, dipping crustal-scale boundaries along this composite lithospheric transect would appear to preclude subduction as an explanation for seismicity in the VSZ, consistent with abundant surface geologic data. These

  17. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China

    Science.gov (United States)

    Xu, Zheng; Zheng, Yong-Fei

    2017-09-01

    Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by

  18. Archean and proterozoic continental crust in South America: Main building events

    International Nuclear Information System (INIS)

    Fuck, R.A; Brito Neves, B.B; Pimentel, M.M

    2001-01-01

    Available geochronological data reveal that the first building blocks of the South American continental crust were set up in the early Paleoarchean, ca. 3.4-3.5 Ga ago, although the presence of components as old as 3.7 Ga is indicated by Nd TDM model ages. The oldest rocks so far recognized are exposed in northeast Brazil and Uruguay. In the Sao Jose do Campestre block, Rio Grande do Norte, 3.45 Ga old tonalite, migmatized and intruded by granitoids between 3.3 and 3.0 Ga, is part of the basement to the Borborema Province (Dantas et al. 1998). In Bahia 3.42 Ga old tonalitic grey gneisses of Sete Voltas, Boa Vista, and Mairi form the basement of the Gaviao block, within the core of the Sao Francisco Craton (Nutman and Cordani, 1993, Martin et al., 1997). The Paleoarchean TTG suites as well as greenstone remnants of unknown age were involved in crust accretion events between 3.1 and 3.3 Ga ago (Teixeira et al. 2000 and references therein), which are also recorded in Campo Belo and Uaua (Teixeira et al., 1998, Oliveira et al., 1999), as attested by TTG intrusions and the ca. 3.1 Ga Pium-hi greenstone belt of W Minas Gerais (Machado and Schrank 1989). Microcontinents then formed were involved in deformation, metamorphism, and migmatization around 2.8-3.0 Ga ago, probably during amalgamation events. Widespread granite-greenstone associations in the Quadrilatero Ferrifero and other areas represent new crust built during the very important Neoarchean Rio das Velhas cycle, ca. 2.7-2.8 Ga ago (Machado and Carneiro 1992, Machado et al. 1992). Layered mafic-ultramafic and granite intrusions ca. 2.5-2.7 Ga old are recorded all over the Sao Francisco Craton, including the high-grade terrain of southern Bahia, formed during the late Archean Jequie Cycle (Teixeira et al. 2000 and references therein). Similar intrusions are recorded in many basement areas within Neoproterozoic fold belts (au)

  19. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis

    Science.gov (United States)

    Stern, Robert J.; Johnson, Peter

    2010-07-01

    The Arabian Plate originated ˜ 25 Ma ago by rifting of NE Africa to form the Gulf of Aden and Red Sea. It is one of the smaller and younger of the Earth's lithospheric plates. The upper part of its crust consists of crystalline Precambrian basement, Phanerozoic sedimentary cover as much as 10 km thick, and Cenozoic flood basalt (harrat). The distribution of these rocks and variations in elevation across the Plate cause a pronounced geologic and topographic asymmetry, with extensive basement exposures (the Arabian Shield) and elevations of as much as 3000 m in the west, and a Phanerozoic succession (Arabian Platform) that thickens, and a surface that descends to sea level, eastward between the Shield and the northeastern margin of the Plate. This tilt in the Plate is partly the result of marginal uplift during rifting in the south and west, and loading during collision with, and subduction beneath, the Eurasian Plate in the northeast. But a variety of evidence suggests that the asymmetry also reflects a fundamental crustal and mantle heterogeneity in the Plate that dates from Neoproterozoic time when the crust formed. The bulk of the Plate's upper crystalline crust is Neoproterozoic in age (1000-540 Ma) reflecting, in the west, a 300-million year process of continental crustal growth between ˜ 850 and 550 Ma represented by amalgamated juvenile magmatic arcs, post-amalgamation sedimentary and volcanic basins, and granitoid intrusions that make up as much as 50% of the Shield's surface. Locally, Archean and Paleoproterozoic rocks are structurally intercalated with the juvenile Neoproterozoic rocks in the southern and eastern parts of the Shield. The geologic dataset for the age, composition, and origin of the upper crust of the Plate in the east is smaller than the database for the Shield, and conclusions made about the crust in the east are correspondingly less definitive. In the absence of exposures, furthermore, nothing is known by direct observation about the

  20. Detrital Zircon Geochronology of Sedimentary Rocks of the 3.6 - 3.2 Ga Barberton Greenstone Belt: No Evidence for Older Continental Crust

    Science.gov (United States)

    Drabon, N.; Lowe, D. R.; Byerly, G. R.; Harrington, J.

    2017-12-01

    The crustal setting of early Archean greenstone belts and whether they formed on or associated with blocks of older continental crust or in more oceanic settings remains a major issue in Archean geology. We report detrital zircon U-Pb age data from sandstones of the 3.26-3.20 Ga Fig Tree and Moodies Groups and from 3.47 to 3.23 Ga meteorite impact-related deposits in the 3.55-3.20 Ga Barberton greenstone belt (BGB), South Africa. The provenance signatures of these sediments are characterized by zircon age peaks at 3.54, 3.46, 3.40, 3.30, and 3.25 Ga. These clusters are coincident either with the ages of major episodes of felsic to intermediate igneous activity within and around the belt or with the ages of thin felsic tuffs reflecting distant volcanic activity. Only 15 of the reported 3410 grains (old zircons could represent felsic rocks in older, unexposed parts of the BGB sequence, but are too few to provide evidence for a continental source. This finding offers further evidence that the large, thick, high-standing, highly evolved blocks of continental crust with an andesitic bulk composition that characterize the Earth during younger geologic times were scarce in the early Archean.

  1. Thallium isotope composition of the upper continental crust and rivers - An investigation of the continental sources of dissolved marine thallium

    Science.gov (United States)

    Nielsen, S.G.; Rehkamper, M.; Porcelli, D.; Andersson, P.; Halliday, A.N.; Swarzenski, P.W.; Latkoczy, C.; Gunther, D.

    2005-01-01

    The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols. The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ??205Tl = -2.0 ?? 0.3 (??205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ??1.5 ??205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ?? 4 ng/kg and ??205Tl = -2.5 ?? 1.0, respectively. In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study. Copyright ?? 2005 Elsevier Ltd.

  2. The influence of tectonic inheritance on crustal extension style following failed subduction of continental crust: applications to metamorphic core complexes in Papua New Guinea

    Science.gov (United States)

    Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.

    2017-12-01

    The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We

  3. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    Science.gov (United States)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2018-01-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.

  4. Mobility of partially molten crust, heat and mass transfer, and the stabilization of continents

    Science.gov (United States)

    Teyssier, Christian; Whitney, Donna L.; Rey, Patrice F.

    2017-04-01

    The core of orogens typically consists of migmatite terrains and associated crustal-derived granite bodies (typically leucogranite) that represent former partially molten crust. Metamorphic investigations indicate that migmatites crystallize at low pressure (cordierite stability) but also contain inclusions of refractory material (mafic, aluminous) that preserve evidence of crystallization at high pressure (HP), including HP granulite and eclogite (1.0-1.5 GPa), and in some cases ultrahigh pressure (2.5-3.0 GPa) when the continental crust was subducted (i.e. Norwegian Caledonides). These observations indicate that the partially molten crust originates in the deep crust or at mantle depths, traverses the entire orogenic crust, and crystallizes at shallow depth, in some cases at the near-surface ( 2 km depth) based on low-T thermochronology. Metamorphic assemblages generally show that this nearly isothermal decompression is rapid based on disequilibrium textures (symplectites). Therefore, the mobility of partially molten crust results in one of the most significant heat and mass transfer mechanisms in orogens. Field relations also indicate that emplacement of partially molten crust is the youngest major event in orogeny, and tectonic activity essentially ceases after the partially molten crust is exhumed. This suggests that flow and emplacement of partially molten crust stabilize the orogenic crust and signal the end of orogeny. Numerical modeling (open source software Underworld; Moresi et al., 2007, PEPI 163) provides useful insight into the mechanisms of exhumation of partially molten crust. For example, extension of thickened crust with T-dependent viscosity shows that extension of the shallow crust initially drives the mobility of the lowest viscosity crust (T>700°C), which begins to flow in a channel toward the zone of extension. This convergent flow generates channel collision and the formation of a double-dome of foliation (two subdomes separated by a steep

  5. Report of the 8th International Symposium on the Observation of the Continental Crust Through Drilling; Dai 8 kai tairiku kagaku kussaku kokusai symposium ni sankashite

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K. [Super Deep Core Drilling Study Group, Japan, Tokyo (Japan)

    1996-11-29

    This report relates to the 8th International Symposium on the Observation of the Continental Crust Through Drilling, convened at Agency of Industrial Science and Technology, Tsukuba City, on February 26, 1996. The symposium was represented by approximately 200 people from the U.S., Canada, Britain, Germany, France, Russia, China, and some others, who discussed active faults, drilling and logging, transfer of fluids and heat in the crust, history of the earth and climate, ICDP (International Continental Scientific Drilling Program) and international cooperation under this program in the future, etc. In reference to ultradeep drilling in the world, drillings by Germany`s KTB (Kontinentales Tiefbohrprogramm)(9,101m deep) and Russia at Kola Peninsula (l2,261m) were reviewed. Concerning the efforts of U.S. Continental Scientific Drilling Program during the previous 11-year period, it was reported that it had cost a total of $84,000,000; that investigations had been made into volcanos and geotherm, fault tectonics, sedimentary basins, holes due to meteorites, and metal ore deposits; and that 61 holes (total length: 31,310m and maximum depth: 3,510m) had been drilled and investigated. 6 figs., 3 tabs.

  6. The continental lithosphere: a geochemical perspective

    International Nuclear Information System (INIS)

    Hawkesworth, C.J.; Person, G.; Turner, S.P.; Calsteren, P. Van; Gallagher, K.

    1993-01-01

    The lithosphere is the cool strong outler layer of the Earth that is effectively a boundary layer to the convecting interior. The evidence from mantle xenoliths and continental basalts is that the lower continental crust and uppermost mantle are different beneath Archaen and proterozoic areas. Mantle xenoliths from Archaen terrains, principally the Kaapvaal craton in southern Africa, are significantly depleted in Fe and other major elements which are concentrated in basalts. Nd and Os isotope data on inclusions in diamonds and peridoties respectively, indicate that such mantle is as old as the overlying Archaen crust. Since it appears to have been coupled to the overlying crust, and to have been isolated from the homogenising effects of convection for long periods of time, it is inferred to be within the continental lithosphere. The mantle lithosphere beneath Proterozoic and younger areas is less depleted in major elements, and so it is more fertile, less buoyant, and therefore thinner, than the Archaen mantle lithosphere. (author). 136 refs, 14 figs

  7. Evaluating Complex Magma Mixing via Polytopic Vector Analysis (PVA in the Papagayo Tuff, Northern Costa Rica: Processes that Form Continental Crust

    Directory of Open Access Journals (Sweden)

    Guillermo E. Alvarado

    2013-08-01

    Full Text Available Over the last forty years, research has revealed the importance of magma mixing as a trigger for volcanic eruptions, as well as its role in creating the diversity of magma compositions in arcs. Sensitive isotopic and microchemical techniques can reveal subtle evidence of magma mixing in igneous rocks, but more robust statistical techniques for bulk chemical data can help evaluate complex mixing relationships. Polytopic vector analysis (PVA is a multivariate technique that can be used to evaluate suites of samples that are produced by mixing of two or more magma batches. The Papagayo Tuff of the Miocene-Pleistocene Bagaces Formation in northern Costa Rica is associated with a segment of the Central American Volcanic Arc. While this segment of the arc is located on oceanic plateau, recent (<8 Ma ignimbrites bear the chemical signatures of upper continental crust, marking the transition from oceanic to continental crust. The Papagayo Tuff contains banded pumice fragments consistent with one or more episodes of mixing/mingling to produce a single volcanic deposit. The PVA solution for the sample set is consistent with observations from bulk chemistry, microchemistry and petrographic data from the rocks. However, without PVA, the unequivocal identification of the three end-member solution would not have been possible.

  8. Ages and Growth of the Continental Crust from Radiogenic Isotopes

    Science.gov (United States)

    Patchett, P. J.; Samson, S. D.

    2003-12-01

    The development and application of radiogenic isotopes to dating of geologic events, and to questions of growth, evolution, and recycling processes in the continental crust are mature areas of scientific inquiry. By this we understand that many of the approaches used to date rocks and constrain the evolution of the continents are well established, even routine, and that the scope of data available on age and evolution of continents is very large. This is not to say that new approaches have not been developed in recent years, or that new approaches and/or insights cannot be developed in the future. However, the science of continental crustal evolution is definitely a domain where many of the problems are well defined, the power of the techniques used to solve them are well known, and the limitations of field and laboratory databases, as well as the preserved geologic record, are understood.From the very early days of crustal evolution studies, it was innovations and improvements in laboratory techniques that drove the pace of discovery (e.g., Holmes, 1911; Nier, 1939). This remained true through all the increments in capability reviewed in this chapter, up to the present day. Thus, continental crustal evolution is an area of Earth science where a species of very laboratory-oriented investigator, the "radiogenic isotope geologist" or "geochronologist," has made major advances, even breakthroughs, in understanding. This is true in spite of the fact that many of the individuals of the species may have lacked field expertise, or even more than a primitive level of geologic background. Because design and building of instruments like radiation detectors or mass spectrometers requires a knowledge of physics, many of the early practitioners of rock dating were physicists, like Alfred Nier (cited above). Since the 1970s, essentially all mass spectrometers have been constructed by specialized commercial firms, and the level of physics expertise among isotope geologists has

  9. From Plate Tectonic to Continental Dynamics

    Science.gov (United States)

    Molnar, P. H.

    2017-12-01

    By the early 1970s, the basics of plate tectonics were known. Although much understanding remained to be gained, as a topic of research, plate tectonics no longer defined the forefront of earth science. Not only had it become a foundation on which to build, but also the methods used to reveal it became tools to take in new directions. For me as a seismologist studying earthquakes and active processes, the deformation of continents offered an obvious topic to pursue. Obviously examining the deformation of continents and ignoring the widespread geologic evidence of both ongoing and finite deformation of crust would be stupid. I was blessed with the opportunity to learn from and collaborate with two of the best, Paul Tapponnier and Clark Burchfiel. Continental deformation differed from plate tectonics both because deformation was widespread but more importantly because crust shortens (extends) horizontally and thickens (thins), processes that can be ignored where plate tectonics - the relative motion of rigid plates - occurs. Where a plate boundary passes into a continent, not only must the forces that move plates do work against friction or other dissipative processes, but where high terrain is created, they must also do work against gravity, to create gravitational potential energy in high terrain. Peter Bird and Kenneth Piper and Philip England and Dan McKenzie showed that a two-dimensional thin viscous sheet with vertically averaged properties enabled both sources of resistance to be included without introducing excessive complexity and to be scaled by one dimensionless number, what the latter pair called the Argand number. Increasingly over the past thirty years, emphasis has shifted toward the role played by the mantle lithosphere, because of both its likely strength and its negative buoyancy, which makes it gravitationally unstable. Despite progress since realizing that rigid plates (the essence of plate tectonics) provides a poor description of continental

  10. Sheared Layers in the Continental Crust: Nonlinear and Linearized inversion for Ps receiver functions

    Science.gov (United States)

    Park, J. J.

    2017-12-01

    Sheared Layers in the Continental Crust: Nonlinear and Linearized inversion for Ps receiver functions Jeffrey Park, Yale University The interpretation of seismic receiver functions (RFs) in terms of isotropic and anisotropic layered structure can be complex. The relationship between structure and body-wave scattering is nonlinear. The anisotropy can involve more parameters than the observations can readily constrain. Finally, reflectivity-predicted layer reverberations are often not prominent in data, so that nonlinear waveform inversion can search in vain to match ghost signals. Multiple-taper correlation (MTC) receiver functions have uncertainties in the frequency domain that follow Gaussian statistics [Park and Levin, 2016a], so grid-searches for the best-fitting collections of interfaces can be performed rapidly to minimize weighted misfit variance. Tests for layer-reverberations can be performed in the frequency domain without reflectivity calculations, allowing flexible modelling of weak, but nonzero, reverberations. Park and Levin [2016b] linearized the hybridization of P and S body waves in an anisotropic layer to predict first-order Ps conversion amplitudes at crust and mantle interfaces. In an anisotropic layer, the P wave acquires small SV and SH components. To ensure continuity of displacement and traction at the top and bottom boundaries of the layer, shear waves are generated. Assuming hexagonal symmetry with an arbitrary symmetry axis, theory confirms the empirical stacking trick of phase-shifting transverse RFs by 90 degrees in back-azimuth [Shiomi and Park, 2008; Schulte-Pelkum and Mahan, 2014] to enhance 2-lobed and 4-lobed harmonic variation. Ps scattering is generated by sharp interfaces, so that RFs resemble the first derivative of the model. MTC RFs in the frequency domain can be manipulated to obtain a first-order reconstruction of the layered anisotropy, under the above modeling constraints and neglecting reverberations. Examples from long

  11. Deep continental margin reflectors

    Science.gov (United States)

    Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.

    1985-01-01

    In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.

  12. Strain transformation between tectonic extrusion and crustal thickening in the growth of the Tibetan Plateau

    Science.gov (United States)

    Liu, M.; Li, Y.; Sun, Y.; Shen, X.

    2017-12-01

    The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.

  13. The roles of texture and microstructure for seismic properties and anisotropy of the continental crust

    Science.gov (United States)

    Almqvist, B. S. G.; Mainprice, D.

    2017-12-01

    New seismic methods provide images of the continental crust with improved resolution, carrying unique information on the structure and mass transfer regimes within the crust. At the intrinsic scale components contributing to these images are grains and the microfabric, which includes information on grain characteristics. At the extrinsic scale the presence of micro-cracks, fractures and layering are important in controlling seismic velocities. Although the wavelength of a seismic wave is orders of magnitude larger than the intrinsic scale the minerals and microstructures, the interpretations of seismic images are critically dependent on our understanding and quantification of these microscopic constituents. This contribution explores the role of texture and microstructure in governing seismic properties of rocks. We focus on prediction of seismic velocities based on calculations that take into account mineral composition and microfabric of rocks. Emphasis is placed on recent developments in modeling efforts and analytical techniques, which can consider microfabric parameters such as crystallographic preferred orientation (CPO), grain shape, layering and elastic interaction among grains. Static schemes that use Christoffel's equation, and active/dynamic wave propagation methods provide the general techniques to predict seismic velocities. Single crystal elastic constants are essential in predicting seismic properties. However, the database is incomplete considering the variation of crustal mineralogy and lack of data at elevated pressure and temperature conditions occurring in the middle and lower crust. Finally, the method used to measure CPO and microstructure data has an influence on model predictions. Neutron and X-ray goniometry techniques enable investigation of CPO for large sample volumes, but lack other microstructural information. In contrast, electron backscatter diffraction provides data on both CPO and microstructure, but for a relatively small sample

  14. Precambrian continental crustal evolution of Southeastern Sao Paulo state - Brazil: based on isotopic evidences

    International Nuclear Information System (INIS)

    Tassinari, C.C.G.

    1988-01-01

    The isotopic studies on granitic intrusions, orthogneissic rocks and migmatitic terranes in the Southeastern Sao Paulo are presented, indicating the age and the geochemical nature of the continental crust of this area. Approximately 300 Ar, Sr and Pb isotopic age determinations are included in this paper, categorized as to their reliability and significance. Looking for the continental crust growth related to the geological time, at the end of the lower Proterozoic, at least 85% of the continental crust has already accreted and differentiated. (C.G.C.)

  15. Field-based Constraints on Lower Crustal Flow From the World's Largest Exposure of Lower Continental Crust, Northern Saskatchewan, Canada

    Science.gov (United States)

    Dumond, G.; Gonclaves, P.; Williams, M. L.; Bowring, S. A.

    2005-12-01

    Predictions about the behavior and geometry of lower continental crust during orogenesis have included: it is rheologically weak; it flows under the influence of a tectonic or topographic load; and it is characterized by pervasive shallow fabrics produced by high-temperature deformation mechanisms. Arguably the world's largest exposure of lower continental crust that still preserves much of its deep crustal deformation history is the central portion of the Snowbird tectonic zone in the western Canadian Shield. Recent fieldwork along a ca. 100 km-long transect of this exposure is characterized by an early, penetrative shallow fabric. A 40 km-long segment of this transect, dominated by charnockite and granodiorite orthogneisses, is characterized by km-scale domains of shallow, granulite-grade gneissic foliation (S1) with a spectacular rodding lineation (L1) defined by: 1) discontinuous ribbons of recrystallized Pl + Qtz + Hb + Cpx + Opx, in addition to mm- to cm-scale core-and-mantle structure in Pl and Kfs, and 2) near-continuous, 10s of cm-long rods of compositional banding. Isoclinally-folded layering is locally preserved perpendicular to (L1). We interpret (L1) as a composite lineation with both intersection and extension components. Thermobarometric data, microstructural, and kinematic observations are compatible with high-grade (700-800°C) ductile, top-to-the-ESE flow during production of S1 at 1.0-1.1 GPa (30-40 km paleodepths in the Neoarchean. S1 is variably transposed into upright, open, shallowly-plunging F2 folds with sub-horizontal, NW-striking enveloping surfaces. The weakly folded S1 is locally overprinted by preserve Type 2 (mushroom-crescent) fold interference patterns resulting from superposition of upright F2 folds with sub-vertical NE-striking axial planes onto isoclinal, recumbent F1 folds. Metamorphic reactions that led to Grt-production during development of S1 were intrinsically syn-kinematic, with garnet growing in the Na-rich recrystallized

  16. Temporal Evolution of the Upper Continental Crust: Implications for the Mode of Crustal Growth and the Evolution of the Hydrosphere

    Science.gov (United States)

    Rudnick, R. L.; Gaschnig, R. M.; Li, S.; Tang, M.; Qiu, L.; Valley, J. W.; Zurkowski, C.; McDonough, W. F.

    2014-12-01

    The upper continental crust (UCC), the interface between the atmosphere and solid Earth, is the site of weathering that produces sedimentary rocks, influences ocean chemistry through runoff of soluble elements, and affects climate through CO2 draw-down. The UCC also contains more than 50% of the crust's highly incompatible element budget (including K, Th, and U). Therefore, understanding its composition and evolution provides insight into how continents have formed, evolved, and interacted with the hydrosphere. New major and trace element compositions of >100 glacial diamictites and >100 Archean shales, plus δ7Li and δ18O for a subset of these samples, combined with data from the literature, show that the average composition of the UCC has changed through time, reflecting both the rise of atmospheric oxygen and its attendant effects on weathering, as well as the mode of crust formation and differentiation. Some changes that occur as a step function near the Archean/Proterozoic boundary (increased Th/U, decreased Mo/Pr, V/Lu) reflect the rise of oxygen at the great oxidation event (GOE) and its influence on chemical weathering signatures in the UCC. Other changes are more gradual with time (e.g., higher Th/Sc and δ18O, lower Ni/Co, La/Nb, Eu/Eu* and transition metal abundances) and reflect an UCC that has transitioned from a more mafic to a more felsic bulk composition, and which experienced increased interaction with the hydrosphere with time. The gradual nature of these compositional changes likely reflects the waning heat production of the Earth, rather than an abrupt change in tectonics or style of crust formation. These more gradual changes in crust composition, which contrast with the abrupt changes associated with the GOE, suggest that a fundamental change in the nature of crust differentiation is unlikely to be responsible for the rise of atmospheric oxygen (cf. Keller and Schoene, 2012). Indeed, it appears that the opposite may be true: that the rise of

  17. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as ‘cratonization’, is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons.

  18. MODELING OF MOVING DEFORMABLE CONTINENTS BY ACTIVE TRACERS: CLOSING AND OPENING OF OCEANS, RECIRCULATION OF OCEANIC CRUST

    Directory of Open Access Journals (Sweden)

    A. V. Bobrov

    2018-01-01

    Full Text Available The evolution of the ‘mantle – moving deformable continents’ system has been studied by numerical experiments. The continents move self-consistently with the mantle flows of thermo-compositional convection. Our model (two-dimensional mantle convection, non-Newtonian rheology, the presence of deformable continents demonstrates the main features of global geodynamics: convergence and divergence of continents; appearance and disappearance of subduction zones; backrolling of subduction zones; restructuring of mantle flows; stretching, breakup and divergence of continents; opening and closing of oceans; oceanic crust recirculation in the mantle, and overriding of hot mantle plumes by continents. In our study, the continental crust is modeled by active markers which transfer additional viscosity and buoyancy, while the continental lithosphere is marked only by increased viscosity with neutral buoyancy. The oceanic crust, in its turn, is modeled by active markers that have only an additional buoyancy. The principal result of our modeling is a consistency between the numerical calculations and the bimodal dynamics of the real Earth: the oceanic crust, despite its positive buoyancy near the surface, submerges in subduction zones and sinks deep into the mantle. (Some part of the oceanic crust remains attached to the continental margins for a long time. In contrast to the oceanic crust, the continental crust does not sink in subduction zones. The continental lithosphere, despite its neutral buoyancy, also remains on the surface due to its viscosity and coupling with the continental crust. It should be noted that when a continent overrides a subduction zone, the subduction zone disappears, and the flows in the mantle are locally reorganized. The effect of basalt-eclogite transition in the oceanic crust on the mantle flow pattern and on the motion of continents has been studied. Our numerical experiments show that the inclusion of this effect in the

  19. Common Pb isotope mapping of UHP metamorphic zones in Dabie orogen, Central China: Implication for Pb isotopic structure of subducted continental crust

    Science.gov (United States)

    Shen, Ji; Wang, Ying; Li, Shu-Guang

    2014-10-01

    We report Pb isotopic compositions for feldspars separated from 57 orthogneisses and 2 paragneisses from three exhumed UHPM slices representing the North Dabie zone, the Central Dabie zone and the South Dabie zone of the Dabie orogen, central-east China. The feldspars from the gneisses were recrystallized during Triassic continental subduction and UHP metamorphism. Precursors of the orthogneisses are products of Neoproterozoic bimodal magmatic events, those in north Dabie zone emplaced into the lower crust and those in central and south Dabie zones into middle or upper crust, respectively. On a 207Pb/204Pb vs. 206Pb/204Pb diagram, almost all orthogneisses data lie to the left of the 0.23 Ga paleogeochron and plot along the model mantle evolution curve with the major portion of the data plotting below it. On a 208Pb/204Pb vs. 206Pb/204Pb diagram the most of data of north Dabie zone extend in elongate arrays along the lower crustal curve and others extend between the lower crustal curve to near the mantle evolution curve for the plumbotectonics model. This pattern demonstrates that the Pb isotopic evolution of the feldspars essentially ended at 0.23 Ga and the orthogneiss protoliths were principally dominated by reworking of ancient lower crust with some addition of juvenile mantle in the Neoproterozoic rifting tectonic zone. According to geological evolution history of the locally Dabie orogen, a four-stage Pb isotope evolution model including a long time evolution between 2.0 and 0.8 Ga with a lower crust type U/Pb ratio (μ = 5-6) suggests that magmatic emplacement levels of the protoliths of the orthogneisses in the Dabie orogen at 0.8 Ga also play an important role in the Pb evolution of the exhumed UHPM slices, corresponding to their respective Pb characters at ca. 0.8-0.23 Ga. For example, north Dabie zone requires low μ values (3.4-9.6), while central and south Dabie zones require high μ values (10.9-17.2). On the other hand, Pb isotopic mixing between

  20. Rb-Sr and Sm-Nd isotopic relations and ages of the Brasiliano granitic magmatism of the eastern region of the Dom Feliciano belt in the Rio Grande do Sul State, South region Brazil: evidences of the reworking of a paleoproterozoic continental crust, South region, Brazil

    International Nuclear Information System (INIS)

    Frantz, Jose Carlos; Koester, Edinei; Teixeira, Roberto Santos; Botelho, Nilson Francisquini; Pimentel, Marcio Martins; Potrel, Alan

    1999-01-01

    The granitoids belonging to the brasiliano cycle from the eastern region at the Dom Feliciano Belt in the Rio Grande do Sul state have had Rb-Sr data that indicated bodies which were intruded between 800 and 585 Ma. The T DM ages are suggesting the participation of an older source in their generation. This source could be represented by a long period enriched mantle, much than would be expected during the evolution of the magmatic arcs, or could be represented by the interaction between an older continental crust and mantle during a continental collision regime. The tectonic evolution of this area., the existence of a long period of time between the granitic intrusions associated to the tangential regime and to the transpressive regime and to the transpressive regime ones, the isotopic relations between Sr and nd and the very low negative values of ε N dt are suggesting a strong participation of an older continental crust. This older continental crust, may be constituted by gneissic protoliths of paleoproterozoic ages and generated during the evolution of the Transamazonic Cycle, has participated in the formation of the sources of the granitic magmatism of this part of the belt. The variations of the T DM ages and of the Nd ratios in the calc-alkaline granitoids are suggesting different proportions of mixture between and older continental crust and mantle or different homogenization grades in the magmas sources. For the peraluminous granites, that have be resulted from continental crustal melt, there are indications of different sources to the different bodies. (author)

  1. Thermal models pertaining to continental growth

    International Nuclear Information System (INIS)

    Morgan, P.; Ashwal, L.

    1988-01-01

    Thermal models are important to understanding continental growth as the genesis, stabilization, and possible recycling of continental crust are closely related to the tectonic processes of the earth which are driven primarily by heat. The thermal energy budget of the earth was slowly decreasing since core formation, and thus the energy driving the terrestrial tectonic engine was decreasing. This fundamental observation was used to develop a logic tree defining the options for continental growth throughout earth history

  2. Formation of continental crust in a temporally linked arc magma system from 5 to 30 km depth: ~ 90 Ma plutonism in the Cascades Crystalline Core composite arc section

    Science.gov (United States)

    Ratschbacher, B. C.; Miller, J. S.; Kent, A. J.; Miller, R. B.; Anderson, J. L.; Paterson, S. R.

    2015-12-01

    Continental crust has an andesitic bulk composition with a mafic lower crust and a granodioritic upper crust. The formation of stratified continental crust in general and the vertical extent of processes active in arc crustal columns leading to the differentiation of primitive, mantle-derived melts entering the lower crust are highly debated. To investigate where in the crustal column magma mixing, fractionation, assimilation and crystal growth occur and to what extent, we study the ~ 90 Ma magmatic flare-up event of the Cascades arc, a magma plumbing system from ~ 5 to 30 km depth. We focus on three intrusive complexes, emplaced at different depths during major regional shortening in an exceptionally thick crust (≥ 55 km1) but which are temporally related: the upper crustal Black Peak intrusion (1-3 kbar at 3.7 to 11 km; ~ 86.8 to 91.7 Ma2), the mid-crustal Mt. Stuart intrusion (3.5-4.0 kbar at 13 to 15 km; 90.8 and 96.3 Ma3) and the deep crustal Tenpeak intrusion (7 to 10 kbar at 25 to 37 km; 89.7 to 92.3 Ma4). These intrusive complexes are well characterized by geochronology showing that they have been constructed incrementally by multiple magma batches over their lifespans and thus allow the monitoring and comparison of geochemical parameters over time at different depths. We use a combination of whole rock major and trace element data and isotopes combined with detailed investigation of amphibole, which has been recognized to be important in the generation of calc-alkaline rocks in arcs to test the following hypotheses: (a) compositional bimodality is produced in the lower crust, whereas upper crustal levels are dominated by mixing to form intermediate compositions, or (b) differentiation occurs throughout the crustal column with different crystallizing phases and their compositions controlling the bulk chemistry. 1. Miller et al. 2009: GSA Special Paper 456, p. 125-149 2. Shea 2014: PhD thesis, Massachusetts Institute of Technology 3. Anderson et al. 2012

  3. The Taitao Granites: I-type granites formed by subduction of the Chile Ridge and its implication in growth of continental crusts

    Science.gov (United States)

    Anma, Ryo

    2016-04-01

    Late Miocene to Early Pliocene granite plutons are exposed at the tip of the Taitao peninsula, the westernmost promontory of the Chilean coast, together with a contemporaneous ophiolite with a Penrose-type stratigraphy. Namely, the Taitao granites and the Taitao ohiolite, respectively, are located at ~30 km southeast of the Chile triple junction, where a spreading center of the Chile ridge system is subducting underneath the South America plate. This unique tectonic setting provides an excellent opportunity to study the generation processes of granitic magmas at a ridge subduction environment, and the complex magmatic interactions between the subducting ridge, overlying crust and sediments, and mantle. This paper reviews previous studies on the Taitao ophiolite/granite complex and use geochemical data and U-Pb age distributions of zircons separated from igneous and sedimentary rocks from the area to discuss the mechanism that formed juvenile magma of calc-alkaline I-type granites during ridge subduction. Our model implies that the magmas of the Taitao granites formed mainly due to partial melting of hot oceanic crust adjacent to the subducting mid-oceanic ridge that has been under influence of deep crustal contamination and/or metasomatized sub-arc mantle through slab window. The partial melting took place under garnet-free-amphibolite conditions. The juvenile magmas then incorporated a different amount of subducted sediments to form the I-type granites with various compositions. The Taitao granites provide an ideal case study field that shows the processes to develop continental crusts out of oceanic crusts through ridge subduction.

  4. Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation.

    Science.gov (United States)

    Violay, M; Heap, M J; Acosta, M; Madonna, C

    2017-08-09

    Recently, projects have been proposed to engineer deep geothermal reservoirs in the ductile crust. To examine their feasibility, we performed high-temperature (up to 1000 °C), high-pressure (130 MPa) triaxial experiments on granite (initially-intact and shock-cooled samples) in which we measured the evolution of porosity during deformation. Mechanical data and post-mortem microstuctural characterisation (X-ray computed tomography and scanning electron microscopy) indicate that (1) the failure mode was brittle up to 900 °C (shear fracture formation) but ductile at 1000 °C (no strain localisation); (2) only deformation up to 800 °C was dilatant; (3) deformation at 900 °C was brittle but associated with net compaction due to an increase in the efficiency of crystal plastic processes; (4) ductile deformation at 1000 °C was compactant; (5) thermally-shocking the granite did not influence strength or failure mode. Our data show that, while brittle behaviour increases porosity, porosity loss is associated with both ductile behaviour and transitional behaviour as the failure mode evolves from brittle to ductile. Extrapolating our data to geological strain rates suggests that the brittle-ductile transition occurs at a temperature of 400 ± 100 °C, and is associated with the limit of fluid circulation in the deep continental crust.

  5. Rifting-to-drifting transition of the South China Sea: Moho reflection characteristics in continental-ocean transition zone

    Science.gov (United States)

    Wen, Y.; Li, C.

    2017-12-01

    Dispute remains on the process of continental rifting to subsequent seafloor spreading in the South China Sea (SCS). Several crust-scale multi-channel seismic reflection profiles acquired in the continent-ocean transition zone (COT) of the SCS provide a detailed overview of Moho and deep crustal reflectors and give key information on rifting-to-drifting transition of the area. Moho has strong but discontinuous seismic reflection in COT. These discontinuities are mainly located in the landward side of continent-ocean boundary (COB), and may own to upwelling of lower crustal materials during initial continental extension, leading to numerous volcanic edifices and volcanic ridges. The continental crust in COT shows discontinuous Moho reflections at 11-8.5 s in two-way travel time (twtt), and thins from 18-20.5 km under the uppermost slope to 6-7 km under the lower slope, assuming an average crustal velocity of 6.0 km/s. The oceanic crust has Moho reflections of moderate to high continuity mostly at 1.8-2.2 s twtt below the top of the igneous basement, which means that the crustal thickness excluding sediment layer in COT is 5.4-6.6 km. Subhorizontal Moho reflections are often abruptly interrupted by large seaward dipping normal faults in southern COT but are more continuous compared with the fluctuant and very discontinuous Moho reflections in northern COT. The thickness of thinned continental crust (4.2-4.8 km) is smaller than that of oceanic crust (5.4-6.0 km) near southern COB, indicating that the continental crust has experienced a long period of rifting before seafloor spreading started. The smaller width of northern COT (0-40 km) than in southern COT (0-60 km), and thinner continental crust in southern COT, all indicate that the continental margin rifting and extension was asymmetric. The COT width in the SCS is narrower than that found in other magma-poor continental margins, indicating a swift transition from the final stage of rifting to the inception of

  6. Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea

    Science.gov (United States)

    Gouiza, M.; Paton, D.

    2017-12-01

    Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.

  7. Structural evolution of preexisting oceanic crust through intraplate igneous activities in the Marcus-Wake seamount chain

    Science.gov (United States)

    Kaneda, Kentaro; Kodaira, Shuichi; Nishizawa, Azusa; Morishita, Taisei; Takahashi, Narumi

    2010-10-01

    Multichannel seismic reflection studies and seismic refraction surveys with ocean bottom seismographs in the Marcus-Wake seamount chain in the northwestern Pacific Ocean reveal P wave velocity structures of hot spot-origin seamounts and adjacent oceanic crust. Inside the seamounts are central high-velocity (>6.5 km/s) structures extending nearly to the top that may indicate intrusive cores. Thick sediment layers (up to 4 km) with P wave velocities of 4-5 km/s have accumulated on seafloor that predates seamount formation. Downward crustal thickening of up to 2 km was documented beneath a large seamount cluster, but thickening was not confirmed below a small seamount cluster. Volume ratios of an intrusive core to a seamount body are 15-20%, indicating that most of the supplied magma was consumed in forming the thick sedimentary and volcaniclastic layer constituting the seamount flanks. Underplating and downward crustal thickening may tend to occur when second or later intrusive cores are formed in a seamount. P wave velocities in the lowest crust and in the uppermost mantle below the seamount chain are 0.1-0.2 km/s higher and 0.3-0.5 km/s lower, respectively, than velocities below oceanic crust. We explain this difference as a result of sill-like intrusion of magma into the lower crust and uppermost mantle. Reflected waves observed at offsets >200 km are from mantle reflectors at depths of 30-45 km and 55-70 km. The shallower reflectors may indicate structures formed by intraplate igneous activities, and the deeper reflectors may correspond to the lithosphere-asthenosphere boundary.

  8. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    Science.gov (United States)

    von Huene, Roland E.; Scholl, D. W.

    1991-01-01

    At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is

  9. Using the magmatic record to constrain the growth of continental crust-The Eoarchean zircon Hf record of Greenland

    Science.gov (United States)

    Fisher, Christopher M.; Vervoort, Jeffrey D.

    2018-04-01

    Southern West Greenland contains some of the best-studied and best-preserved magmatic Eoarchean rocks on Earth, and these provide an excellent vantage point from which to view long-standing questions regarding the growth of the earliest continental crust. In order to address the questions surrounding early crustal growth and complementary mantle depletion, we present Laser Ablation Split Stream (LASS) analyses of the U-Pb and Hf isotope compositions of zircon from eleven samples of the least-altered meta-igneous rocks from the Itsaq (Amîtsoq) Gneisses of the Isukasia and Nuuk regions of southern West Greenland. This analytical technique allows a less ambiguous approach to determining the age and Hf isotope composition of complicated zircon. Results corroborate previous findings that Eoarchean zircon from the Itsaq Gneiss (∼3.85 Ga to ∼3.63 Ga) were derived from a broadly chondritic source. In contrast to the Sm-Nd whole rock isotope record for southern West Greenland, the zircon Lu-Hf isotope record provides no evidence for early mantle depletion, nor does it suggest the presence of crust older than ∼3.85 Ga in Greenland. Utilizing LASS U-Pb and Hf data from the Greenland zircons studied here, we demonstrate the importance of focusing on the magmatic (rather than detrital) zircon record to more confidently understand early crustal growth and mantle depletion. We compare the Greenland Hf isotope data with other Eoarchean magmatic complexes such as the Acasta Gneiss Complex, Nuvvuagittuq greenstone belt, and the gneissic complexes of southern Africa, and all lack zircons with suprachondritic Hf isotope compositions. In total, these data suggest only a very modest volume of crust was produced during (or survived from) the Hadean and earliest Eoarchean. There remains no record of planet-scale early Earth mantle depletion in the Hf isotope record prior to 3.8 Ga.

  10. Coupling of Oceanic and Continental Crust During Eocene Eclogite-Facies Metamorphism: Evidence From the Monte Rosa Nappe, Western Alps, Italy

    Science.gov (United States)

    Lapen, T. J.; Johnson, C. M.; Baumgartner, L. P.; Skora, S.; Mahlen, N. J.; Beard, B. L.

    2006-12-01

    Subduction of continental crust to HP-UHP metamorphic conditions requires overcoming density contrasts that are unfavorable to deep burial, whereas exhumation of these rocks can be reasonably explained through buoyancy-assisted transport in the subduction channel to more shallow depths. In the western Alps, both continental and oceanic lithosphere has been subducted to eclogite-facies metamorphic conditions. The burial and exhumation histories of these sections of lithosphere bear directly on the dynamics of subduction and the stacking of units within the subduction channel. We address the burial history of the continental crust with high precision U-Pb rutile and Lu-Hf garnet geochronology of the eclogite-facies Monte Rosa nappe (MR), western Alps, Italy. U-Pb rutile ages from quartz-carbonate-white mica-rutile veins that are hosted within eclogite and schist of the MR, Gressoney Valley, Italy, indicate that it was at eclogite-facies metamorphic conditions at 42.6 +/- 0.6 Ma. The sample area (Indren glacier, Furgg zone; Dal Piaz, 2001) consists of eclogite boudins that are surrounded by micaceous schist. Associated with the eclogite and schist are quartz-carbonate-white mica-rutile veins that formed in tension cracks in the eclogite and along the contact between eclogite and surrounding schist. Intrusion of the veins occurred at eclogite-facies metamorphic conditions (480-570°C, >1.3-1.4 GPa) based on textural relations, oxygen isotope thermometry, and geothermobarometry. Lu-Hf geochronology of garnet from a chloritoid-talc-garnet-phengite-quartz-calcite-pyrite - chalcopyrite bearing boudin within talc-chloritoid whiteschists of the MR, Val d'Ayas, Italy (Chopin and Monie, 1984; Pawlig, 2001) yields an age of 40.54 +/- 0.36 Ma. The talc-chloritoid whiteschists from the area record pressures and temperatures of 1.6-2.4 GPa and 500-530°C (Chopin and Monie, 1984; Le Bayon et al., 2006) indicating near UHP metamorphic conditions. Based on the age, P-T, and textural

  11. Evaluating the importance of metamorphism in the foundering of continental crust.

    Science.gov (United States)

    Chapman, Timothy; Clarke, Geoffrey L; Piazolo, Sandra; Daczko, Nathan R

    2017-10-12

    The metamorphic conditions and mechanisms required to induce foundering in deep arc crust are assessed using an example of representative lower crust in SW New Zealand. Composite plutons of Cretaceous monzodiorite and gabbro were emplaced at ~1.2 and 1.8 GPa are parts of the Western Fiordland Orthogneiss (WFO); examples of the plutons are tectonically juxtaposed along a structure that excised ~25 km of crust. The 1.8 GPa Breaksea Orthogneiss includes suitably dense minor components (e.g. eclogite) capable of foundering at peak conditions. As the eclogite facies boundary has a positive dP/dT, cooling from supra-solidus conditions (T > 950 ºC) at high-P should be accompanied by omphacite and garnet growth. However, a high monzodioritic proportion and inefficient metamorphism in the Breaksea Orthogneiss resulted in its positive buoyancy and preservation. Metamorphic inefficiency and compositional relationships in the 1.2 GPa Malaspina Pluton meant it was never likely to have developed densities sufficiently high to founder. These relationships suggest that the deep arc crust must have primarily involved significant igneous accumulation of garnet-clinopyroxene (in proportions >75%). Crustal dismemberment with or without the development of extensional shear zones is proposed to have induced foundering of excised cumulate material at P > 1.2 GPa.

  12. Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns

    Science.gov (United States)

    Wiemer, Daniel; Schrank, Christoph E.; Murphy, David T.; Wenham, Lana; Allen, Charlotte M.

    2018-05-01

    During the early Archaean, the Earth was too hot to sustain rigid lithospheric plates subject to Wilson Cycle-style plate tectonics. Yet by that time, up to 50% of the present-day continental crust was generated. Preserved continental fragments from the early Archaean have distinct granite-dome/greenstone-keel crust that is interpreted to be the result of a gravitationally unstable stratification of felsic proto-crust overlain by denser mafic volcanic rocks, subject to reorganization by Rayleigh-Taylor flow. Here we provide age constraints on the duration of gravitational overturn in the East Pilbara Terrane. Our U-Pb ages indicate the emplacement of 3,600-3,460-million-year-old granitoid rocks, and their uplift during an overturn event ceasing about 3,413 million years ago. Exhumation and erosion of this felsic proto-crust accompanied crustal reorganization. Petrology and thermodynamic modelling suggest that the early felsic magmas were derived from the base of thick ( 43 km) basaltic proto-crust. Combining our data with regional geochronological studies unveils characteristic growth cycles on the order of 100 million years. We propose that maturation of the early crust over three of these cycles was required before a stable, differentiated continent emerged with sufficient rigidity for plate-like behaviour.

  13. Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China

    Science.gov (United States)

    Bao, Zihe; Cai, Keda; Sun, Min; Xiao, Wenjiao; Wan, Bo; Wang, Yannan; Wang, Xiangsong; Xia, Xiaoping

    2018-03-01

    The Tianshan belt of the southwestern Central Asian Orogenic Belt was generated by Paleozoic multi-stage subduction and final closure of several extinct oceans, including the South Tianshan Ocean between the Kazakhstan-Yili and Tarim blocks. However, the subduction initiation and polarity of the South Tianshan Ocean remain issues of highly debated. This study presents new zircon U-Pb ages, geochemical compositions and Sr-Nd isotopes, as well as zircon Hf isotopic data of the Latest Devonian to Early Carboniferous granitic rocks in the Wusun Mountain of the Yili Paleozoic convergent margin, which, together with the spatial-temporal distributions of regional magmatic rocks, are applied to elucidate their petrogenesis and tectonic linkage to the northward subduction initiation of the South Tianshan Ocean. Our zircon U-Pb dating results reveal that these granites were emplaced at the time interval of 362.0 ± 1.2-360.3 ± 1.9 Ma, suggesting a marked partial melting event of the continental crust in the Latest Devonian to Early Carboniferous. These granites, based on their mineral compositions and textures, can be categorized as monzogranites and K-feldspar granites. Geochemically, both monzogranites and K-feldspar granites have characters of I-type granites with high K2O contents (4.64-4.83 wt.%), and the K-feldspar granites are highly fractionated I-type granites, while the monzogranites have features of unfractionated I-type granites. Whole-rock Sr-Nd isotopic modeling results suggest that ca. 20-40% mantle-derived magmas may be involved in magma mixing with continental crust partial melts to generate the parental magmas of the granites. The mantle-derived basaltic magmas was inferred not only to be a major component of magma mixture but also as an important heat source to fuse the continental crust in an extensional setting, which is evidenced by the high zircon saturation temperatures (713-727 °C and 760-782 °C) of the studied granites. The Latest Devonian to

  14. Continental rupture and the creation of new crust in the Salton Trough rift, Southern California and northern Mexico: Results from the Salton Seismic Imaging Project

    Science.gov (United States)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Kell, Annie; Driscoll, Neal W.; Kent, Graham M.; Harding, Alistair J.; Rymer, Michael J.; González-Fernández, Antonio; Lázaro-Mancilla, Octavio

    2016-10-01

    A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17-18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from 3 to 8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched preexisting crust or higher-grade metamorphosed sediment. The lower crust below 12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12-18 km depth as it does to the south, and a weak reflection suggests Moho at 28 km depth. Structure in adjacent Mexico has slower midcrustal velocity, and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism.

  15. Continental rupture and the creation of new crust in the Salton Trough rift, southern California and northern Mexico: Results from the Salton Seismic Imaging Project

    Science.gov (United States)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Kell, Annie; Driscoll, Neal W.; Kent, Graham M.; Rymer, Michael J.; Gonzalez-Fernandez, Antonio; Aburto-Oropeza, Octavio

    2016-01-01

    A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17-18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from ~3 to ~8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched pre-existing crust or higher grade metamorphosed sediment. The lower crust below ~12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper-mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12-18 depth as it does to the south, and a weak reflection suggests Moho at ~28 km depth. Structure in adjacent Mexico has slower mid-crustal velocity and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism.

  16. Fractal behavior in continental crustal heat production

    Science.gov (United States)

    Vedanti, N.; Srivastava, R. P.; Pandey, O. P.; Dimri, V. P.

    2011-02-01

    The distribution of crustal heat production, which is the most important component in the elucidation of continental thermal structure, still remains a theoretical assumption. In general the heat production values must decrease with depth, but the form of decrease of heat production in the crust is not well understood. The commonly used heat production models are: "block model", in which heat production is constant from the surface to a given depth and the "exponential model", in which heat production diminishes as an exponential function of depth. The exponential model is more widely used wherein sources of the errors are heterogeneity of rock and long wavelength changes due to changes in lithology and tectonic elements, and as such exponential distribution does not work satisfactorily for the entire crust. In the present study, we analyze for the first time, deep crustal heat production data of six global areas namely Dharwar craton (India), Kaapvaal craton (South Africa), Baltic shield (Kola, Russia), Hidaka metamorphic belt (Japan), Nissho pluton (Japan) and Continental Deep Drilling site (KTB, Germany). The power spectrum of all the studied data sets exhibits power law behaviour. This would mean slower decay of heat production with depth, which conforms to the known geologic composition of the crust. Minimum value of the scaling exponent has been found for the KTB borehole, which is apparently related to higher heat production of gneisses, however for other study areas, scaling exponent is almost similar. We also found that the lower values of scaling exponents are related to higher heat production in the crust as is the case in KTB. Present finding has a direct relevance in computation of temperature-depth profiles in continental regions.

  17. Seismic velocity structure of the crust in NW Namibia: Impact of rifting and mantle plume activity

    Science.gov (United States)

    Bauer, K.; Heit, B.; Muksin, U.; Yuan, X.

    2017-12-01

    The continental crust in northwestern Namibiamainly was formed during to the Neoproterozoic assembly of Gondwana. The collision of old African and South American cratonic coressuch as the Congo, Kalahari and Rio de la Plata cratons led tothe development of the Pan-African Damara orogen. The fold systemconsists of an intracratonic branch in northern central Namibia (named Damara Belt), and two coast-parallel branches, the Kaoko Belt in northern Namibia and the Gariep Belt in the border region between Namibia and theRepublic of South Africa. During the Early Cretaceous opening of the South Atlantic ocean, the crust in NW Namibia was prominently affected by the Tristan da Cunha mantle plume, as evidenced by the emplacement of the Etendeka continental flood basalts.A local earthquake tomography was carried out in NW Namibia to investigateif and to what degree the deeper continental crust was modified by the magmaticactivity during rifting and the impingement of the Tristan da Cunhamantle plume. We analyzed data from 28 onshore stations of the temporaryWALPASS seismic network. Stations were covering the continental marginaround the landfall of the Walvis Ridge, parts of the Kaoko Belt and Damara Belt,and marginally the southwestern edges of the Congo craton.First arrivals of P and S waves were identified and travel times werepicked manually. 1D inversion was carried out with VELEST to derivestarting models and the initial seismicity distribution, and SIMUL2000was used for the subsequent 3D tomographic inversion. The resultingseismicity distribution mainly follows the structures of the Pan-Africanorogenic belts. The majority of events was localized in the upper crust,but additional seismicity was also found in the deeper crust.An anomaly of increased P velocities is revealed in the deep crust under the Etendekaflood basalt province. Increased P velocities can be explained by mafic and ultra-maficmaterial which intruded in the lower crust. The anomaly appears to be rather

  18. Moho and magmatic underplating in continental lithosphere

    DEFF Research Database (Denmark)

    Thybo, Hans; Artemieva, Irina M.

    2013-01-01

    interacts with the surrounding crustal rocks which leads to smearing of geophysical signals from the underplated material. In terms of processes, there is no direct discriminator between the traditional concept of underplated material and lower crustal magmatic intrusions in the form of batholiths and sill......Underplating was originally proposed as the process of magma ponding at the base of the crust and was inferred from petrologic considerations. This process not only may add high density material to the deep crust, but also may contribute low density material to the upper parts of the crust by magma...... fractionation during cooling and solidification in the lower crust. Separation of the low density material from the high-density residue may be a main process of formation of continental crust with its characteristic low average density, also during the early evolution of the Earth. Despite the assumed...

  19. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes

    Science.gov (United States)

    Rudnick, R. L.; Liu, X. M.

    2012-04-01

    The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" that is the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems point to the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 1×10^10 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.

  20. COMPLEX GEOLOGICAL–GEOPHYSICAL 3D MODEL OF THE CRUST IN THE SOUTHEASTERN FENNOSCANDIAN SHIELD: NATURE OF DENSITY LAYERING OF THE CRUST AND THE CRUST–MANTLE BOUNDARY

    Directory of Open Access Journals (Sweden)

    V. N. Glaznev

    2015-01-01

    Full Text Available The complex geophysical 3D model of the Earth's crust and the upper mantle is created for the Archaean Karelian Craton and the Late Palaeoproterozoic accretionary Svecofennian Orogen of the southeastern Fennoscandian Shield with the use of methods of complex inversion of geophysical data based on stochastic description of interrelations of physical properties of the medium (density, P-wave velocity, and heat generation. To develop the model, we use results of deep seismic studies, gravity and surficial heat flow data on the studied region. Numerical solutions of 3D problems are obtained in the spherical setting with an allowance for the Earth's surface topography. The geophysical model is correlated with the regional geological data on the surface and results of seismic CMP studies along 4B, FIRE-1 and FIRE-3-3A profiles. Based on results of complex geophysical simulation and geological interpretation of the 3D model, the following conclusions are drawn. (1 The nearly horizontal density layering of the continental crust is superimposed on the previously formed geological structure; rock differentiation by density is decreasing with depth; the density layering is controlled by the recent and near-recent state of the crust, but can be disturbed by the latest deformations. (2 Temperature variations at the Moho are partially determined by local variations of heat generation in the mantle, which, in turn, are related to local features of its origin and transformation. (3 The concept of the lower continental crust being a reflectivity zone and the concept of the lower continental crust being a layer of high density and velocity are not equivalent: the lower crust is the deepest, high-density element of near-horizontal layering, whereas the seismic image of the reflectivity zone is primarily related to transformation of the crust as a result of magmatic under- and intraplating under conditions of extension and mantle-plume activity. (4 At certain

  1. The crustal structure and tectonic development of the continental margin of the Amundsen Sea Embayment, West Antarctica: implications from geophysical data

    Science.gov (United States)

    Kalberg, Thomas; Gohl, Karsten

    2014-07-01

    The Amundsen Sea Embayment of West Antarctica represents a key component in the tectonic history of Antarctic-New Zealand continental breakup. The region played a major role in the plate-kinematic development of the southern Pacific from the inferred collision of the Hikurangi Plateau with the Gondwana subduction margin at approximately 110-100 Ma to the evolution of the West Antarctic Rift System. However, little is known about the crustal architecture and the tectonic processes creating the embayment. During two `RV Polarstern' expeditions in 2006 and 2010 a large geophysical data set was collected consisting of seismic-refraction and reflection data, ship-borne gravity and helicopter-borne magnetic measurements. Two P-wave velocity-depth models based on forward traveltime modelling of nine ocean bottom hydrophone recordings provide an insight into the lithospheric structure beneath the Amundsen Sea Embayment. Seismic-reflection data image the sedimentary architecture and the top-of-basement. The seismic data provide constraints for 2-D gravity modelling, which supports and complements P-wave modelling. Our final model shows 10-14-km-thick stretched continental crust at the continental rise that thickens to as much as 28 km beneath the inner shelf. The homogenous crustal architecture of the continental rise, including horst and graben structures are interpreted as indicating that wide-mode rifting affected the entire region. We observe a high-velocity layer of variable thickness beneath the margin and related it, contrary to other `normal volcanic type margins', to a proposed magma flow along the base of the crust from beneath eastern Marie Byrd Land-West Antarctica to the Marie Byrd Seamount province. Furthermore, we discuss the possibility of upper mantle serpentinization by seawater penetration at the Marie Byrd Seamount province. Hints of seaward-dipping reflectors indicate some degree of volcanism in the area after break-up. A set of gravity anomaly data

  2. Fractal behavior in continental crustal heat production

    Directory of Open Access Journals (Sweden)

    N. Vedanti

    2011-02-01

    Full Text Available The distribution of crustal heat production, which is the most important component in the elucidation of continental thermal structure, still remains a theoretical assumption. In general the heat production values must decrease with depth, but the form of decrease of heat production in the crust is not well understood. The commonly used heat production models are: "block model", in which heat production is constant from the surface to a given depth and the "exponential model", in which heat production diminishes as an exponential function of depth. The exponential model is more widely used wherein sources of the errors are heterogeneity of rock and long wavelength changes due to changes in lithology and tectonic elements, and as such exponential distribution does not work satisfactorily for the entire crust. In the present study, we analyze for the first time, deep crustal heat production data of six global areas namely Dharwar craton (India, Kaapvaal craton (South Africa, Baltic shield (Kola, Russia, Hidaka metamorphic belt (Japan, Nissho pluton (Japan and Continental Deep Drilling site (KTB, Germany. The power spectrum of all the studied data sets exhibits power law behaviour. This would mean slower decay of heat production with depth, which conforms to the known geologic composition of the crust. Minimum value of the scaling exponent has been found for the KTB borehole, which is apparently related to higher heat production of gneisses, however for other study areas, scaling exponent is almost similar. We also found that the lower values of scaling exponents are related to higher heat production in the crust as is the case in KTB. Present finding has a direct relevance in computation of temperature-depth profiles in continental regions.

  3. Terrane-Scale Metastability in Subducted Himalayan Continental Crust as Revealed by Integrated Petrological and Geodynamic Modeling

    Science.gov (United States)

    Palin, R. M.; Reuber, G. S.; White, R. W.; Kaus, B. J. P.; Weller, O. M.

    2017-12-01

    The Tso Morari massif, northwest India, is one of only two regions in the Himalayan Range that exposes subduction-related ultrahigh-pressure (UHP) metamorphic rocks. The tectonic evolution of the massif is strongly debated, however, as reported pressure estimates for peak metamorphism range between 2.4 GPa and 4.8 GPa. Such ambiguity hinders effective lithospheric-scale modeling of the early stages of the orogen's evolution. We present the results of integrated petrological and geodynamic modeling (Palin et al., 2017, EPSL) that provide new quantitative constraints on the prograde-to-peak pressure-temperature-time (P-T-t) path, and predict the parageneses that felsic and mafic components of the massif crust should have formed under equilibrium conditions. Our model shows that peak P-T conditions of 2.6-2.8 GPa and 600-620 °C, representative of subduction to 90-100 km depth (assuming lithostatic pressure), were reached just 3 Myr after the onset of collision. These P-T-t constraints correlate well with those reported for similar UHP eclogite in the along-strike Kaghan Valley, Pakistan, suggesting that the northwest Himalaya contains dismembered remnants of a 400-km long UHP terrane comparable in size to the Western Gneiss Region, Norway, and the Dabie-Sulu belt, China. The extremely high pressures (up to 4.8 GPa) for peak metamorphism reported by some workers are likely to be unreliable due to thermobarometry having been performed on minerals that did not represent equilibrium assemblages. Furthermore, key high-P minerals predicted to form in subducted Tso Morari continental crust (e.g. jadeite, Mg-rich garnet) are absent from natural samples in the region, reflecting the widespread metastable preservation of lower-pressure protolith assemblages during subduction and exhumation. This result questions the reliability of geodynamic simulations of orogenesis that are commonly predicated on equilibrium metamorphism operating continuously throughout tectonic cycles.

  4. PEG and Thickeners: A Critical Interaction Between Polyethylene Glycol Laxative and Starch-Based Thickeners.

    Science.gov (United States)

    Carlisle, Brian J; Craft, Garrett; Harmon, Julie P; Ilkevitch, Alina; Nicoghosian, Jenik; Sheyner, Inna; Stewart, Jonathan T

    2016-09-01

    Clinicians commonly encounter dysphagia and constipation in a skilled nursing population. Increasing the viscosity of liquids, usually with a starch- or xanthan gum-based thickener, serves as a key intervention for patients with dysphagia. We report a newly identified and potentially dangerous interaction between polyethylene glycol 3350 laxative (PEG) and starch-thickened liquids. A patient requiring nectar-thickened liquids became constipated, and medical staff prescribed PEG for constipation. His nurse observed that the thickened apple juice immediately thinned to near-water consistency when PEG was added. She obtained the same results with thickened water and coffee. We quantified this phenomenon by isothermal rotational rheology. Results confirmed a precipitous loss of thickening when PEG was added to starch-based thickeners but not with xanthan gum-based thickeners. Clinicians and front-line staff should be aware of this potentially critical interaction between PEG- and starch-based thickeners. Although confirmatory studies are needed, our preliminary data suggest that PEG may be compatible with xanthan gum-- based thickeners. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.

  5. Continental Arcs as Both Carbon Source and Sink in Regulating Long Term Climate

    Science.gov (United States)

    Jiang, H.; Lee, C. T.

    2017-12-01

    The long-term variability of atmospheric pCO2 is determined by the balance between the rate of geologic inputs of CO­­2 (e.g., magmatic/metamorphic degassing, carbonate weathering) and the rate of carbonate precipitation driven by silicate weathering. The Late Cretaceous-Early Cenozoic was characterized by elevated atmospheric pCO2 and greenhouse climate, likely due to increased magmatic flux from mid-ocean ridges and, in particular, continental arcs. However, it has been suggested that continental arc magmatism is accompanied by rapid uplift and erosion due to magmatic/tectonic thickening of the crust, thus continental arcs likely enhance the chemical weathering flux, in turn increasing the carbon sink. To assess the contribution of continental arcs to global carbon inputs and sinks, we conducted a case study in the Cretaceous Peninsular Ranges batholith (PRB) and associated forearc basin in southern California, USA, representing one segment of the Cretaceous Cordillera arc-forearc system. Arc magmatism occurred between 170-85 Ma, peaking at 100 Ma, but erosion of the arc continues into the early Eocene, with forearc sediments representing this protracted arc unroofing. During magmatism, we estimate the CO2 degassing flux from the PRB was at least 5-25*105 mol·km-2·yr-1. By calculating the depletion of Ca and Mg in the forearc sediments relative to their arc protoliths, we estimate the silicate weathering/carbonate precipitation flux to be 106 mol·km-2·yr-1 during Late Cretaceous magmatism, decreasing to 105 mol·km-2·yr-1 by the Early Eocene. We show that during active continental arc magmatism, the CO2 degassing flux is comparable to CO2 consumption driven by silicate weathering in the arc. However, after magmatism ends, a regional imbalance arises in which the arc no longer contributes to CO2 inputs but continued silicate weathering of the arc drives carbonate precipitation such that the arc indirectly becomes CO2 sink. We propose that the development of

  6. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth

    Science.gov (United States)

    Chowdhury, Priyadarshi; Gerya, Taras; Chakraborty, Sumit

    2017-09-01

    The rock record and geochemical evidence indicate that continental recycling has been occurring since the early history of the Earth. The stabilization of felsic continents in place of Earth's early mafic crust about 3.0 to 2.0 billion years ago, perhaps due to the initiation of plate tectonics, implies widespread destruction of mafic crust during this time interval. However, the physical mechanisms of such intense recycling on a hotter, (late) Archaean and presumably plate-tectonic Earth remain largely unknown. Here we use thermomechanical modelling to show that extensive recycling via lower crustal peeling-off (delamination but not eclogitic dripping) during continent-continent convergence was near ubiquitous during the late Archaean to early Proterozoic. We propose that such destruction of the early mafic crust, together with felsic magmatism, may have caused both the emergence of silicic continents and their subsequent isostatic rise, possibly above the sea level. Such changes in the continental character have been proposed to influence the Great Oxidation Event and, therefore, peeling-off plate tectonics could be the geodynamic trigger for this event. A transition to the slab break-off controlled syn-orogenic recycling occurred as the Earth aged and cooled, leading to reduced recycling and enhanced preservation of the continental crust of present-day composition.

  7. Metamorphic core complex formation by density inversion and lower-crust extrusion.

    Science.gov (United States)

    Martinez, F; Goodliffe, A M; Taylor, B

    2001-06-21

    Metamorphic core complexes are domal uplifts of metamorphic and plutonic rocks bounded by shear zones that separate them from unmetamorphosed cover rocks. Interpretations of how these features form are varied and controversial, and include models involving extension on low-angle normal faults, plutonic intrusions and flexural rotation of initially high-angle normal faults. The D'Entrecasteaux islands of Papua New Guinea are actively forming metamorphic core complexes located within a continental rift that laterally evolves to sea-floor spreading. The continental rifting is recent (since approximately 6 Myr ago), seismogenic and occurring at a rapid rate ( approximately 25 mm yr-1). Here we present evidence-based on isostatic modelling, geological data and heat-flow measurements-that the D'Entrecasteaux core complexes accommodate extension through the vertical extrusion of ductile lower-crust material, driven by a crustal density inversion. Although buoyant extrusion is accentuated in this region by the geological structure present-which consists of dense ophiolite overlaying less-dense continental crust-this mechanism may be generally applicable to regions where thermal expansion lowers crustal density with depth.

  8. Uranium-series growth history of a Quaternary phosphatic crust from the Peruvian continental margin

    International Nuclear Information System (INIS)

    Kim, Kee Hyun; Burnett, W.C.

    1986-01-01

    A 20-mm-thick oriented phosphatic crust recovered together with its overlying (14 cm) and underlying (4 cm) associated sediment from the Peruvian sea floor has been analyzed in detail for uranium-series radionuclides in an attempt to determine its rate and direction of growth. Growth curves based upon 226 Ra and 230 Th ages show that this crust grew upward toward the sediment-water interface. Calculated growth rates in the range of 12-13 mm ka -1 are slightly higher but comparable to values previously reported. Crystallographical analyses of this phosphatic crust show a trend of decreasing unit-cell dimension a with sample age. The upward growth of a buried crust toward the sediment-water interface is consistent with results from recent pore-water studies of fluoride and phosphate in Peru shelf sediments. (orig.)

  9. Crustal structure variations along the NW-African continental margin: a comparison of new and existing models from wide angle and reflection seismic data

    Science.gov (United States)

    Biari, Y.; Klingelhoefer, F.; Sahabi, M.; Aslanian, D.; Philippe, S.; Louden, K. E.; Berglar, K.; Moulin, M.; Mehdi, K.; Graindorge, D.; Evain, M.; Benabellouahed, M.; Reichert, C. J.

    2014-12-01

    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from three study regions along the margin located in the North Moroccan salt basin, on the central continental margin offshore Safi and in the south, offshore Dakhla. In each of the study areas several combined wide-angle and reflection seismic profiles perpendicular and parallel to the margin have been acquired and forward modelled using comparable methods. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. In the North Moroccan Basin continental crust thins from originally 36 km to about 8 km in a 150 km wide zone. The basin itself is underlain by highly thinned continental crust. Offshore safi thinning of the continental crust is confined to a 130 km wide zone with no neighboring sedimentary basin underlain by continental crust. In both areas the zone of crustal thinning is characterised by the presence of large blocks and abundant salt diapirs. In the south crustal thinning is more rapid in a zone of 90 km and asymmetric with the upper crust thinning more closely to the continent than the lower crust, probably due to depth-dependent stretching and the presence of the precambrian Reguibat Ridge on land. Oceanic crust is characterised by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganisation. Volcanic activity seems to be confined to the region next to the Canary Islands, and is thus not related to the initial opening of the oceanic, which was related to no

  10. Molybdenum Cycling During Crust Formation and Destruction

    Science.gov (United States)

    Greaney, A. T.; Rudnick, R. L.

    2016-12-01

    Molybdenum geochemistry has become an important tool for tracking the redox state of the early atmosphere and oceans as well as the emergence and sustainability of Mo-cofactored enzymes. However, in order for Mo to be enriched in the oceans, it must first be weathered out of the crust. Sulfides that weather in the presence of atmospheric O2have historically been deemed the predominant crustal source of Mo. Here, we test this assumption by determining the mineralogical hosts of Mo in Archean, Proterozoic, and Phanerozoic upper crustal rocks, using LA-ICP-MS. We also investigate Mo behavior during igneous differentiation and continental crust formation. We find that molybdenite, MoS2, is a weatherable sulfide source of Mo, but common igneous sulfides are not because their Mo concentrations are too low. However, molybdenite is uncommon in the upper continental crust. By contrast, volcanic glass is much more abundant and is a significant weatherable source of Mo that readily breaks down to release oxidized, soluble Mo whether or not atmospheric O2is present. Other common crustal mineral hosts of Mo are Ti-bearing phases like titanite, ilmenite, magnetite, and rutile that are resistant to weathering. Significant Mo depletion (relative to Ce and Pr) is observed in nearly every granitic rock analyzed in our study, but is not observed in OIB or MORB (Jenner and O'Neill, 2012). There are two possible reasons for this: 1) Mo is removed from cooling plutons during fluid expulsion, or 2) Mo is fractionated during igneous differentiation. The first scenario is a likely explanation given the solubility of oxidized Mo. However, correlations between Mo/Ce and Nb/La in several plutonic suites suggest a fractionating phase like rutile may sequester Mo in the lower crust. Additionally, a correlation between Mo/Ce and inferred tectonic setting (enrichments observed in rift-related plutons) suggest an overall tectonic influence on the availability of Mo in the upper crust.

  11. Crust-mantle contribution to Andean magmatism

    International Nuclear Information System (INIS)

    Ruiz, J; Hildreth, W; Chesley, J

    2001-01-01

    There has long been great interest in quantifying the contributions of the continental crust to continental arc magmas, such as those of the Andes using osmium isotopes (Alves et al., 1999; Borg et al., 2000; Brandon et al., 1996; McInnes et al., 1999). In general, Andean volcanic rocks of all compositions show relatively low Sr-isotope ratios and positive to mildly negative epsilon Nd values. Nonetheless, in the Southern Volcanic Zone of central Chile, basalt-andesite-dacite volcanoes along the Quaternary volcanic front were shown (by Hildreth and Moorbath, 1988) to have latitudinally systematic chemical variations, as well as a monotonic increase in 87Sr/Sr86 from ca. 0.7035 to 0.7055 and a decrease in epsilon Nd values from ca. +3 to -1. The isotopic variations correlate with basement elevation of the volcanic edifices and with Bouguer gravity anomalies, both of which are thought to reflect along-arc variations in thickness and average age of the underlying crust. Volcanoes with the most evolved isotopic signatures were fed through the thickest crust. Correlation of chemical and isotopic variations with crustal thickness was interpreted to be caused by Melting (of deep-crustal host rocks), Assimilation, Storage, and Homogenization (MASH) of mantle-derived magmas in long-lived lower-crustal reservoirs beneath each center prior to eruption. We have now determined Os-isotope ratios for a sample suite from these volcanoes (33-36 S lat.), representing a range of crustal thickness from ca. 60-35 km. The samples range in MgO from ca. 8-4% and in SiO2 from 51-57%. The most evolved eruptive products occur above the thickest crust and have 87Sr/86Sr ratios of 0.7054 and epsilon Nd values of -1.5. The 187Os/188Os ratios correlate with the other isotopic systems and with crustal thickness. Volcanoes on the thinnest crust have 187Os/188Os ratios of 0.18-0.21. Those on the thickest crust have 187Os/188Os ratios as high as 0.64. All the Os values are much too radiogenic to

  12. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-06-01

    A model of Earth's continental coverage and mantle water budget is discussed along with its thermal evolution. The model links a thermal evolution model based on parameterized mantle convection with a model of a generic subduction zone that includes the oceanic crust and a sedimentary layer as carriers of water. Part of the subducted water is used to produce continental crust while the remainder is subducted into the mantle. The total length of the subduction zones is calculated from the total surface area of continental crust assuming randomly distributed continents. The mantle viscosity is dependent of temperature and the water concentration. Sediments are generated by continental crust erosion, and water outgassing at mid-oceanic ridges closes the water cycle. We discuss the strongly coupled, non-linear model using a phase plane defined by the continental coverage and mantle water concentration. Fixed points are found in the phase plane at which the rates of change of both variables are zero. These fixed points evolve with time, but in many cases, three fixed points emerge of which two are stable and an intermediate point is unstable with respect to continental coverage. With initial conditions from a Monte-Carlo scheme we calculate evolution paths in the phase plane and find a large spread of final states that all have a mostly balanced water budget. The present day observed 40% continental surface coverage is found near the unstable fixed point. Our evolution model suggests that Earth's continental coverage formed early and has been stable for at least 1.5 Gyr. The effect of mantle water regassing (and mantle viscosity depending on water concentration) is found to lower the present day mantle temperature by about 120 K, but the present day mantle viscosity is affected little. The water cycle thus complements the well-known thermostat effect of viscosity and mantle temperature. Our results further suggest that the biosphere could impact the feedback cycles by

  13. Rheological characteristics of cold thickened beverages containing xanthan gum-based food thickeners used for dysphagia diets.

    Science.gov (United States)

    Cho, Hyun M; Yoo, Byoungseung

    2015-01-01

    Cold beverages are commonly thickened with commercial gum-based food thickeners for consumption by patients with dysphagia. In this study, the rheological properties of a thickened water and five thickened beverages (orange juice, apple juice, grape juice, whole milk, and a sport drink) that were prepared with four commercial instant xanthan gum-based thickeners (coded A-D) were investigated at a 3% thickener concentration. All thickened samples showed high shear-thinning behavior with yield stress at the serving temperature of 8°C. The magnitudes of apparent viscosity (ηa,50), consistency index (K), storage modulus (G'), and loss modulus (G'') of the thickened beverages, except for water, with food thickener A were significantly higher compared with other thickeners (B, C, and D) (Pbeverages were observed at 1-hour storage, and at longer times their K values, except for milk, remained approximately constant. Rheological parameters demonstrated statistically significant differences in flow and dynamic behaviors between the cold thickened beverages prepared with the xanthan gum-based food thickeners (Pfood thickener, and storage time. In particular, appropriately selecting a commercial food thickener for preparing thickened beverages seems to be of importance for managing dysphagia. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  14. Oceanographer transform fault structure compared to that of surrounding oceanic crust: Results from seismic refraction data analysis

    Science.gov (United States)

    Ambos, E. L.; Hussong, D. M.

    1986-02-01

    A high quality seismic refraction data set was collected near the intersection of the tranform portion of the Oceanographer Fracture Zone (OFZ) with the adjacent northern limb of the Mid-Atlantic Ridge spreading center (MAR). One seismic line was shot down the axis of the transform valley. Another was shot parallel to the spreading center, crossing from normal oceanic crust into the transform valley, and out again. This latter line was recorded by four Ocean Bottom Seismometers (OBSs) spaced along its length, providing complete reversed coverage over the crucial transform valley zone. Findings indicate that whereas the crust of the transform valley is only slightly thinner (4.5 km) compared to normal oceanic crust (5-8 km), the structure is different. Velocities in the range of 6.9 to 7.7. km/sec, which are characteristics of seismic layer 3B, are absent, although a substantial thickness (approximately 3 km) of 6.1-6.8 km/sec material does appear to be present. The upper crust, some 2 km in thickness, is characterized by a high velocity gradient (1.5 sec -1) in which veloxity increases from 2.7 km/sec at the seafloor to 5.8 km/sec at the base of the section. A centrally-located deep of the transform valley has thinner crust (1-2 km), whereas the crust gradually thickens past the transform valley-spreading center intersection. Analysis of the seismic line crossing sub-perpendicular to the transform valley demonstrates abrupt thinning of the upper crustal section, and thickening of the lower crust outside of the trasform valley. In addition, high-velocity material seems to occur under the valley flanks, particularly the southern flanking ridge. This ridge, which is on the side of the transform opposite to the intersection of spreading ridge and transform, may be an expression of uplifted, partially serpentinized upper mantle rocks.

  15. Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening

    Science.gov (United States)

    Agius, Matthew R.; Lebedev, Sergei

    2017-09-01

    Of the two debated, end-member models for the late-Cenozoic thickening of Tibetan crust, one invokes 'channel flow' (rapid viscous flow of the mid-lower crust, driven by topography-induced pressure gradients and transporting crustal rocks eastward) and the other 'pure shear' (faulting and folding in the upper crust, with viscous shortening in the mid-lower crust). Deep-crustal deformation implied by each model is different and would produce different anisotropic rock fabric. Observations of seismic anisotropy can thus offer a discriminant. We use broad-band phase-velocity curves-each a robust average of tens to hundreds of measurements-to determine azimuthal anisotropy in the entire lithosphere-asthenosphere depth range and constrain its amplitude. Inversions of the differential dispersion from path pairs, region-average inversions and phase-velocity tomography yield mutually consistent results, defining two highly anisotropic layers with different fast-propagation directions within each: the middle crust and the asthenosphere. In the asthenosphere beneath central and eastern Tibet, anisotropy is 2-4 per cent and has an NNE-SSW fast-propagation azimuth, indicating flow probably driven by the NNE-ward, shallow-angle subduction of India. The distribution and complexity of published shear wave splitting measurements can be accounted for by the different anisotropy in the mid-lower crust and asthenosphere. The estimated splitting times that would be accumulated in the crust alone are 0.25-0.8 s; in the upper mantle-0.5-1.2 s, depending on location. In the middle crust (20-45 km depth) beneath southern and central Tibet, azimuthal anisotropy is 3-5 and 4-6 per cent, respectively, and its E-W fast-propagation directions are parallel to the current extension at the surface. The rate of the extension is relatively low, however, whereas the large radial anisotropy observed in the middle crust requires strong alignment of mica crystals, implying large finite strain and

  16. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    Science.gov (United States)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as 'cratonization', is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons. The majority of magmatic zircons from the main magmatic cycles have Hf isotopic compositions that are generally more evolved than CHUR, forming vertical arrays that extend to moderately radiogenic compositions. Complimentary O isotope data, also show a significant variation in composition. However, combined, these data define not only the source components from which the magmas were derived, but also a range of physio-chemical processes that operated during magma transport and emplacement. These data also identify a previously unknown crustal reservoir in the Capricorn Orogen.

  17. New Insight Into the Crustal Structure of the Continental Margin offshore NW Sabah/Borneo

    Science.gov (United States)

    Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.

    2002-12-01

    The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. The focus of investigations was on the deep water areas. The margin looks like a typical accretionary margin and was presumably formed during the subduction of a proto South China Sea. Presently, no horizontal movements between the two plates are being observed. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere which is characterised by a pattern of rotated fault blocks and half grabens and a carbonate platform of Early Oligocene to Early Miocene age. We found evidence that the continental crust also underlies the Sabah Trough and the adjacent continental slope, a fact that raises many questions about the tectonic history and development of this margin. The tectonic pattern of the Dangerous Grounds' extended continental crust can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anomalies. Based on the new data we propose the following scenario for the development of the NW Sabah continental margin: Seafloor spreading in the present South China Sea started at about 30 Ma in the Late Oligocene. The spreading process separated the Dangerous Grounds area from the SE Asian continent and ceased in late Early Miocene when the oceanic crust of the proto South China Sea was fully subducted in eastward direction along the Borneo-Palawan Trough. During Lower and/or Middle Miocene, Borneo rotated counterclockwise and was

  18. Potentially exploitable supercritical geothermal resources in the ductile crust

    Science.gov (United States)

    Watanabe, Noriaki; Numakura, Tatsuya; Sakaguchi, Kiyotoshi; Saishu, Hanae; Okamoto, Atsushi; Ingebritsen, Steven E.; Tsuchiya, Noriyoshi

    2017-01-01

    The hypothesis that the brittle–ductile transition (BDT) drastically reduces permeability implies that potentially exploitable geothermal resources (permeability >10−16 m2) consisting of supercritical water could occur only in rocks with unusually high transition temperatures such as basalt. However, tensile fracturing is possible even in ductile rocks, and some permeability–depth relations proposed for the continental crust show no drastic permeability reduction at the BDT. Here we present experimental results suggesting that the BDT is not the first-order control on rock permeability, and that potentially exploitable resources may occur in rocks with much lower BDT temperatures, such as the granitic rocks that comprise the bulk of the continental crust. We find that permeability behaviour for fractured granite samples at 350–500 °C under effective confining stress is characterized by a transition from a weakly stress-dependent and reversible behaviour to a strongly stress-dependent and irreversible behaviour at a specific, temperature-dependent effective confining stress level. This transition is induced by onset of plastic normal deformation of the fracture surface (elastic–plastic transition) and, importantly, causes no ‘jump’ in the permeability. Empirical equations for this permeability behaviour suggest that potentially exploitable resources exceeding 450 °C may form at depths of 2–6 km even in the nominally ductile crust.

  19. Orogenic inheritance and continental breakup: Wilson Cycle-control on rift and passive margin evolution

    Science.gov (United States)

    Schiffer, C.; Petersen, K. D.

    2016-12-01

    Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often

  20. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth

    International Nuclear Information System (INIS)

    Armstrong, R.L.

    1981-01-01

    The proposition that continental crust is recycled into the mantle and that the Earth is in a near-steady state with essentially constant volumes of oceans and crust through geological time is defended. Constancy of continental freeboard and uniformity of thickness of stable continental crust with age are the only two quantitative measures of crustal volume through time and these imply negligible crustal growth since 2.9 Ga B.P. Planetary analogies, Pb isotopes, atmospheric evolution, and palaeomagnetism also argue for early terrestrial differentiation. Rates of crustal growth and recycling are sufficient to reach a near-steady state over the first 1 Ga of Earth history, before widespread cratonization. Pb, Sr and Nd isotopic compositions of igneous rocks from the mantle are explainable in terms of a near-steady-state model. The recycling process can be observed on the Earth today. The observed escape of primordial 3 He from the mantle is not evidence for continuing continental differentiation or against early differentiation of the Earth. Even if nearly complete equilibrium chemical differentiation occurred at 4.6 Ga B.P., some 3 He would remain dissolved in the interior and would escape as recycling continued. (U.K.)

  1. Meeting the Continental Crust: the Hidden Olivine Trauma in Subduction Settings

    Science.gov (United States)

    Salas Reyes, P.; Ruprecht, P.; Rabbia, O. M.; Hernandez, L.

    2017-12-01

    In a conventional framework, olivine zonation represents concentric growth from an evolving liquid. Alternatively, it has been suggested (e.g. Welsch et al. 2014) that olivine develop dendritic textures and compositional discontinuities due to rapid growth and boundary layer effects, respectively, where any complex zoning is quickly erased through diffusive re-equilibration in the high temperature magmatic environment. In particular, olivine crystals from large volcanic centers in convergent margins rarely preserve such dendritic textures and complex zoning due prolonged magma residence. Small volume, mafic monogenetic vents may bypass such crustal re-equilibration and potentially record the otherwise elusive early olivine growth history. We selected tephra deposits from Los Hornitos, in the Andean arc of Central Chile (35.5˚S), that represents primitive magmas ( 15 wt.% MgO) and contain magnesian olivines (Fo>88) hosting quenched melt inclusions. We obtained detailed quantitative EPMA zoning profiles and measured volatile contents (H, C, S, Cl) in the co-existing melt inclusions. Furthermore, we analyzed mineral morphologies connecting compositional zoning with growth textures. We find that 40% of the olivine crystals retain dendritic shapes while the others are polyhedral with trapped melt inclusions and cavities. The polyhedral crystals are normally zoned (Fo92 to Fo88; Ni 4000 ppm to 1000 ppm), however an oscillatory zonation depicted by concentric -coupled Fo and Ni- enriched layers exist and therefore even those crystals still preserve also a more complete growth history. The related melt inclusions yield values of up to 6000 ppm of S. Such zonation may imply sudden growth during elevated degrees of undercooling (-ΔT > 60°C) as the magmas transit from the hot mantle to the cooler conditions in the crust. Moreover, the preservation of such Fo and Ni zonation requires limited time between crystal growth and eruption. The elevated S content in melt inclusions

  2. 3D Numerical Examination of Continental Mantle Lithosphere Response to Lower Crust Eclogitization and Nearby Slab Subduction

    Science.gov (United States)

    Janbakhsh, P.; Pysklywec, R.

    2017-12-01

    2D numerical modeling techniques have made great contribution to understanding geodynamic processes involved in crustal and lithospheric scale deformations for the past 20 years. The aim of this presentation is to expand the scope covered by previous researchers to 3 dimensions to address out-of-plane intrusion and extrusion of mantle material in and out of model space, and toroidal mantle wedge flows. In addition, 3D velocity boundary conditions can create more realistic models to replicate real case scenarios. 3D numerical experiments that will be presented are designed to investigate the density and viscosity effects of lower crustal eclogitization on the decoupling process of continental mantle lithosphere from the crust and its delamination. In addition, these models examine near-field effects of a subducting ocean lithosphere and a lithospheric scale fault zone on the evolution of the processes. The model solutions and predictions will also be compared against the Anatolian geology where subduction of Aegean and Arabian slabs, and the northern boundary with the North Anatolian Fault Zone are considered as two main contributing factors to anomalous crustal uplift, missing mantle lithosphere, and anomalous surface heat flux.

  3. Assessing the Nature of Crust in the Central Red Sea Using Potential Fields and Seismic Reflection Data

    Science.gov (United States)

    Shi, W.; Mitchell, N. C.; Kalnins, L. M.; A Y, I.

    2017-12-01

    The Red Sea is considered an important example of a rifted continental shield proceeding to a seafloor spreading stage of development, and the transition of crustal types there from stretched continental to oceanic should mark the onset of significant mantle melting. However, whether the crust in the central Red Sea is continental or oceanic has been controversial. To contribute to this debate, we assessed the geometry of the basement from potential fields and seismic reflection data. Prior interpretations of basement in deep seismic reflection profiles were first verified using Werner deconvolution of marine magnetic data. The seismic depths were then used to reconstruct basement depth corrected for evaporite and other sediment loading. We found that the basement deepening with distance is similar to that of oceanic crust near mantle plumes such as the Reykjanes Ridge. In both cases, the data show a 35-80 km wide axial plateau followed by a steep 0.4-1.7 km deepening over 30-50 km distance. It has also been suggested that the variability of free-air anomalies observed in lines parallel to the axis is due to crossing oceanic short-offset fracture zones. We assessed this idea by inverting the gravity anomalies for basement relief. Using densities appropriate for oceanic crust and a modified slab formula, we found values for root-mean square (RMS) relief that are comparable to those of weakly sedimented regions of the Mid-Atlantic Ridge. Forward calculations using 2D modelling revealed that the errors in RMS basement relief caused by the slab approximation are 30%, leaving true RMS basement relief still within the range of values for oceanic crust. While these observations by themselves do not rule out an extremely extended continental crust interpretation, combined with previous analysis of refraction velocities, which are oceanic-like, they are supportive of an oceanic crustal interpretation. Additionally, the RMS values and the cross-axis basement relief both

  4. Crustal structure variations along the NW-African continental margin: A comparison of new and existing models from wide-angle and reflection seismic data

    Science.gov (United States)

    Klingelhoefer, Frauke; Biari, Youssef; Sahabi, Mohamed; Aslanian, Daniel; Schnabel, Michael; Matias, Luis; Benabdellouahed, Massinissa; Funck, Thomas; Gutscher, Marc-André; Reichert, Christian; Austin, James A.

    2016-04-01

    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from four study regions along the margin located in the south offshore DAKHLA, on the central continental margin offshore Safi, in the northern Moroccan salt basin, and in the Gulf of Cadiz. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. Crustal thinning takes place over a region of 150 km in the north and only 70 km in the south. The North Moroccan Basin is underlain by highly thinned continental crust of only 6-8 km thickness. The ocean-continent transition zone shows a variable width between 40 and 70 km and is characterized by seismic velocities in between those of typical oceanic and thinned continental crust. The neighbouring oceanic crust is characterized by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganization. Volcanic activity seems to be mostly confined to the region next to the Canary Islands, and is thus not related to the initial opening of the ocean, which was associated to only weak volcanism. Comparison with the conjugate margin off Nova Scotia shows comparable continental crustal structures, but 2-3 km thinner oceanic crust on the American side than on the African margin.

  5. Moho vs crust-mantle boundary: Evolution of an idea

    Science.gov (United States)

    O'Reilly, Suzanne Y.; Griffin, W. L.

    2013-12-01

    The concept that the Mohorovicic Discontinuity (Moho) does not necessarily coincide with the base of the continental crust as defined by rock-type compositions was introduced in the early 1980s. This had an important impact on understanding the nature of the crust-mantle boundary using information from seismology and from deep-seated samples brought to the surface as xenoliths in magmas, or as tectonic terranes. The use of empirically-constrained P-T estimates to plot the locus of temperature vs depth for xenoliths defined a variety of geotherms depending on tectonic environment. The xenolith geotherms provided a framework for constructing lithological sections through the deep lithosphere, and revealed that the crust-mantle boundary in off-craton regions commonly is transitional over a depth range of about 5-20 km. Early seismic-reflection data showed common layering near the Moho, correlating with the petrological observation of multiple episodes of basaltic intrusion around the crust-mantle boundary. Developments in seismology, petrophysics and experimental petrology have refined interpretation of lithospheric domains. The expansion of in situ geochronology (especially zircon U-Pb ages and Hf-isotopes; Os isotopes of mantle sulfides) has defined tectonic events that affected whole crust-mantle sections, and revealed that the crust-mantle boundary can change in depth through time. However, the nature of the crust-mantle boundary in cratonic regions remains enigmatic, mainly due to lack of key xenoliths or exposed sections. The observation that the Moho may lie significantly deeper than the crust-mantle boundary has important implications for modeling the volume of the crust. Mapping the crust using seismic techniques alone, without consideration of the petrological problems, may lead to an overestimation of crustal thickness by 15-30%. This will propagate to large uncertainties in the calculation of elemental mass balances relevant to crust-formation processes

  6. Sensory and rheological characteristics of thickened liquids differing concentrations of a xanthan gum-based thickener.

    Science.gov (United States)

    Kim, Hyeri; Hwang, Han-Im; Song, Ki-Won; Lee, Jeehyun

    2017-12-01

    The objectives of this study were to develop and compare sensory characteristics of beverages and soups thickened with different concentrations of a xanthan gum-based thickener, and to examine, using rheological measurement, whether the viscosity of the thickened liquids conformed to the recommendations of the National Dysphagia Diet (NDD) Task Force. Beverages tested included water, apple juice, orange juice, soymilk, and Yakult. The thickening agent was added to samples at concentrations of 1, 2, or 3%. Addition of the thickening agent had a significant effect on the appearance, texture, and starchy flavor, which were evaluated by descriptive sensory evaluation. The reference standards of viscosity used in sensory descriptive analysis could be useful to practitioners who have to make dysphagia diets and need to learn to make them properly. In rheological measurement, viscosity of thickened liquids in stationary state would be perceived as higher compared to that while swallowing, because of the shear thinning property. This could lead to noncompliance of the medical advice or malnutrition. It is necessary to determine optimal proportion of xanthan gum-based thickener or uncover alternatives, which have shear thinning properties lower than those of xanthan gum, for the acceptance of dysphagia patients. There was no pudding-like viscosity as classified by NDD, when prepared following instructions. Future studies should include higher concentrations of thickener to find out the concentration of the thickener resulting in pudding-like viscosity as recommended by NDD. When a manufacturer modifies or develops a xanthan gum-based thickener, findings from this study can be utilized to understand sensory and rheological characteristics of thickened liquid. For practitioners who have to make dysphagia diets, the reference standards of viscosity used in sensory descriptive analysis could be helpful for deciding the viscosity level of thickened liquids based only on visual

  7. The subduction erosion and mantle source region contamination model of Andean arc magmatism: Isotopic evidence from igneous rocks of central Chile

    International Nuclear Information System (INIS)

    Stern, Charles R

    2001-01-01

    of subduction of the Juan Fernandez Ridge and an increase in the amount of crustal components incorporated in the Andean igneous rocks of central Chile. Ridge subduction resulted in both decreasing subduction angle and crustal thickening below the High Andes, but it is clear that the isotopic changes in Andean magmas occurred prior to the eastward migration of the volcanic front, and do not correlate with the migration of the arc to over the region of thick crust below the High Andes. At 34 o S, for example, the crust did not thicken greatly below the Miocene/Pliocene arc prior to its eastward migration to its current location along the continental drainage divide. When the volcanic front at this latitude did migrate east, in the Pliocene, to over the thicker crust below the High Andes, no isotopic change occurred in the magmas (au)

  8. Unusually thickened crust beneath the Emeishan large igneous province detected by virtual deep seismic sounding

    Science.gov (United States)

    Liu, Zhen; Tian, Xiaobo; Chen, Yun; Xu, Tao; Bai, Zhiming; Liang, Xiaofeng; Iqbal, Javed; Xu, Yigang

    2017-11-01

    The Emeishan Large Igneous Province (ELIP) in southwest China represents the erosional remnant of a vast basalt field emplaced during the Permian Period. Spanning 0.25 million km2, the ELIP occupies a relatively small area relative to other Large Igneous Provinces (LIPs) such as the Siberian Traps and Ontong Java Plateau. The original volume of an ancient LIP can be constrained from estimates of its intrusive component. We used virtual deep seismic sounding (VDSS) to detect the boundary between the crust and the upper mantle (Moho) beneath the ELIP. A strong set of reflections from depths of 60-70 km indicate an unusually thick crust having a P-wave velocity of 7.0-7.4 km/s located beneath the inner zone of the ELIP. A high-velocity lower crustal body (HVLCB) of this thickness may have been formed by ponding magmas derived from the Emeishan mantle plume and associated fractionated materials. Combined images of crustal structure allow re-estimation of Emeishan magmatic volume. With a total estimated volume of 1.76-3.2 × 106 km3, the ELIP appears to have been a typical sized plume-generated LIP relative to other global examples.

  9. Origin and significance of high-grade phosphorite in a sediment core from the continental slope off Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Rao, Ch.M.; Thamban, M.; Natarajan, R.; Rao, B.R.

    A phosphorite crust was found at 380-390 cm depth interval of a sediment core collected from the topographic high occurring on the continental slope off Goa. This crust is fragile and grey to light brown in colour. Carbonate fluorapatite...

  10. A Geochemical View on the Interplay Between Earth's Mantle and Crust

    Science.gov (United States)

    Chauvel, C.

    2017-12-01

    Over most of Earth history, oceanic and continental crust was created and destroyed. The formation of both types of crust involves the crystallization and differentiation of magmas producing by mantle melting. Their destruction proceeds by mechanical erosion and weathering above sea level, chemical alteration on the seafloor, and bulk recycling in subduction zones. All these processes enrich of some chemical element and deplete others but each process has its own effect on chemical elements. While the flux of material from mantle to crust is well understood, the return flux is much more complex. In contrast to mantle processes, erosion, weathering, chemical alteration and sedimentary processes strongly decouple elements such as the rare earths and high-field strength elements due to their different solubilities in surface fluids and mineralogical sorting during transport. Soluble elements such as strontium or uranium are quantitatively transported to the ocean by rivers and decoupled from less soluble elements. Over geological time, such decoupling significantly influences the extent to which chemical elements remain at the Earth's surface or find their way back to the mantle through subduction zones. For example, elements like Hf or Nd are retained in heavy minerals on continents whereas U and Sr are transported to the oceans and then in subduction zones to the mantle. The consequence is that different radiogenic isotopic systems give disparate age estimates for the continental crust; e.g, Hf ages could be too old. In subduction zones, chemical elements are also decoupled, due to contrasting behavior during dehydration or melting in subducting slabs. The material sent back into the mantle is generally enriched in non-soluble elements while most fluid-mobile elements return to the crust. This, in turn, affects the relationship between the Rb-Sr, Sm-Nd, Lu-Hf and U-Th-Pb isotopic systems and creates correlations unlike those based on magmatic processes. By

  11. Petrologic Constraints on Iceland's Lower Crust

    Science.gov (United States)

    Kelley, D. F.; Leftwich, T. E.; Barton, M.

    2005-05-01

    Iceland is an area of relatively thick ocean crust that straddles the spreading MAR. Iceland was created by seafloor spreading originating about 55 Ma above abnormally hot mantle. The high temperatures resulted in greater melt volumes that enhanced crustal thickening. Geophysical investigations provide fundamental insight on crustal features, but results are contradictory. Early seismic, magneto-telluric, and resistivity studies predicted thin crust with partial melt regions at depths of 10-15 km beneath the neovolcanic zones. Reinterpretations based on recent seismic studies suggest thicker and cooler crust. These studies have shown magma lenses at shallow depths beneath volcanic centers, but cannot confirm their presence in the lower crust. Knowledge of the depth of magma chambers is critical to constrain the geothermal gradients in Icelandic crust and to resolve discrepancies in interpretation of geophysical data. Analyses of glasses in Icelandic lavas erupted from 11 volcanic centers throughout the rift zones have been compiled. The pressures of equilibration of these liquids with ol, high-Ca pyx, and plag were estimated qualitatively from projections into the pseudoternary system Ol-Di-Qtz. The results (ca. 0.6 GPa) indicate crystallization in magma chambers located at about 20 km depth. Equilibrium pressures also have been calculated quantitatively. These results (0.6±0.2 GPa) indicate magma chambers at 19.8±6.5 km depth beneath the volcanic centers. Magma chamber at these depths are located in the lower crust inferring that it must be relatively warm. Geothermal gradients have been calculated using the depths of the sourcing magma chambers and any shallow seismically detected magma chambers at each location. An average crustal composition has been calculated from the compiled geochemical data and was used to calculate density variations and seismic velocities along the geotherms. The distribution of sample locations in this study provides sufficient data

  12. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey -

    Science.gov (United States)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.

    2009-12-01

    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  13. Fluid-driven metamorphism of the continental crust governed by nanoscale fluid flow

    NARCIS (Netherlands)

    Plümper, O.; Botan, Alexandru; Los, Catharina; Liu, Yang; Malthe-Sorenssen, Anders; Jamtveit, Bjørn

    2017-01-01

    The transport of fluids through the Earth’s crust controls the redistribution of elements to form mineral and hydrocarbon deposits, the release and sequestration of greenhouse gases, and facilitates metamorphic reactions that influence lithospheric rheology. In permeable systems with a

  14. Sediment underthrusting within a continental magmatic arc: Coast Mountains batholith, British Columbia

    Science.gov (United States)

    Pearson, David M.; MacLeod, Douglas R.; Ducea, Mihai N.; Gehrels, George E.; Jonathan Patchett, P.

    2017-10-01

    Though continental magmatic arcs are factories for new continental crust, a significant proportion of continental arc magmas are recycled from supracrustal material. To evaluate the relative contributions of retroarc underthrusting and trench side partial sediment subduction for introducing supracrustal rocks to the middle and lower crust of continental magmatic arcs, we present results from the deeply exposed country rocks of the Coast Mountains batholith of western British Columbia. Prior work demonstrates that these rocks underwent widespread partial melting that contributed to the Coast Mountains batholith. We utilize U-Pb zircon geochronology, Sm-Nd thermochronology, and field-based studies to document the protoliths and early burial history of amphibolite and granulite-facies metasedimentary rocks in the Central Gneiss Complex. U-Pb detrital zircon data from the structurally highest sample localities yielded 190 Ma unimodal age peaks and suggest that retroarc rocks of the Stikine terrane constitute a substantial portion of the Central Gneiss Complex. These supracrustal rocks underwent thrust-related burial and metamorphism at >25 km depths prior to 80 Ma. These rocks may also be underlain at the deepest exposed structural levels by Upper Cretaceous metasedimentary rocks, which may have been emplaced as a result of trench side underplating or intraarc burial. These results further our understanding of the mechanisms of material transport within the continental lithosphere along Cordilleran subduction margins.

  15. Opening of the Central Atlantic Ocean: Implications for Geometric Rifting and Asymmetric Initial Seafloor Spreading after Continental Breakup

    Science.gov (United States)

    Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Funck, T.; Benabdellouahed, M.; Schnabel, M.; Reichert, C. J.; Gutscher, M. A.; Bronner, A.; Austin, J. A., Jr.

    2017-12-01

    The structure of conjugate passive margins provides information about rifting styles, the initial phases of the opening of an ocean and the formation of its associated sedimentary basins. The study of the deep structure of conjugate passive continental margins combined with precise plate kinematic reconstructions can provide constraints on the mechanisms of rifting and formation of initial oceanic crust. In this study the Central Atlantic conjugate margins are compared, based on compilation of wide-angle seismic profiles from the NW-Africa Nova Scotian and US passive margins. Plate cinematic reconstructions were used to place the profiles in the position at opening and at the M25 magnetic anomaly. The patterns of volcanism, crustal thickness, geometry, and seismic velocities in the transition zone. suggest symmetric rifting followed by asymmetric oceanic crustal accretion. Conjugate profiles in the southern Central Atlantic image differences in the continental crustal thickness. While profiles on the eastern US margin are characterized by thick layers of magmatic underplating, no such underplate was imaged along the NW-African continental margin. It has been proposed that these volcanic products form part of the CAMP (Central Atlantic Magmatic Province). In the north, two wide-angle seismic profiles acquired in exactly conjugate positions show that the crustal geometry of the unthinned continental crust and the necking zone are nearly symmetric. A region including seismic velocities too high to be explained by either continental or oceanic crust is imaged along the Nova Scotia margin off Eastern Canada, corresponding on the African side to an oceanic crust with slightly elevated velocities. These might result from asymmetric spreading creating seafloor by faulting the existing lithosphere on the Canadian side and the emplacement of magmatic oceanic crust including pockets of serpentinite on the Moroccan margin. A slightly elevated crustal thickness along the

  16. Double subduction of continental lithosphere, a key to form wide plateau

    Science.gov (United States)

    Replumaz, Anne; Funiciello, Francesca; Reitano, Riccardo; Faccenna, Claudio; Balon, Marie

    2016-04-01

    The mechanisms involved in the creation of the high and wide topography, like the Tibetan Plateau, are still controversial. In particular, the behaviour of the indian and asian lower continental lithosphere during the collision is a matter of debate, either thickening, densifying and delaminating, or keeping its rigidity and subducting. But since several decades seismicity, seismic profiles and global tomography highlight the lithospheric structure of the Tibetan Plateau, and make the hypotheses sustaining the models more precise. In particular, in the western syntaxis, it is now clear that the indian lithosphere subducts northward beneath the Hindu Kush down to the transition zone, while the asian one subducts southward beneath Pamir (e.g. Negredo et al., 2007; Kufner et al., 2015). Such double subduction of continental lithospheres with opposite vergence has also been inferred in the early collision time. Cenozoic volcanic rocks between 50 and 30 Ma in the Qiangtang block have been interpreted as related to an asian subduction beneath Qiangtang at that time (De Celles et al., 2011; Guillot and Replumaz, 2013). We present here analogue experiments silicone/honey to explore the subduction of continental lithosphere, using a piston as analogue of far field forces. We explore the parameters that control the subductions dynamics of the 2 continental lithospheres and the thickening of the plates at the surface, and compare with the Tibetan Plateau evolution. We show that a continental lithosphere is able to subduct in a collision context, even lighter than the mantle, if the plate is rigid enough. In that case the horizontal force due to the collision context, modelled by the piston push transmitted by the indenter, is the driving force, not the slab pull which is negative. It is not a subduction driving by the weight of the slab, but a subduction induced by the collision, that we could call "collisional subduction".

  17. Oxygen isotope geochemistry of the lassen volcanic center, California: Resolving crustal and mantle contributions to continental Arc magmatism

    Science.gov (United States)

    Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C.

    2008-01-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates (mainly plagioclase) from basaltic andesitic to rhyolitic composition volcanic rocks erupted from the Lassen Volcanic Center (LVC), northern California. Plagioclase separates from nearly all rocks have ??18O values (6.1-8.4%) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the arc front and back-arc regions of the southernmost Cascades during the late Cenozoic. Most LVC magmas must therefore contain high 18O crustal material. In this regard, the ??18O values of the volcanic rocks show strong spatial patterns, particularly for young rhyodacitic rocks that best represent unmodified partial melts of the continental crust. Rhyodacitic magmas erupted from vents located within 3.5 km of the inferred center of the LVC have consistently lower ??18 O values (average 6.3% ?? 0.1%) at given SiO2 contents relative to rocks erupted from distal vents (>7.0 km; average 7.1% ?? 0.1%). Further, magmas erupted from vents situated at transitional distances have intermediate values and span a larger range (average 6.8% ?? 0.2%). Basaltic andesitic to andesitic composition rocks show similar spatial variations, although as a group the ??18O values of these rocks are more variable and extend to higher values than the rhyodacitic rocks. These features are interpreted to reflect assimilation of heterogeneous lower continental crust by mafic magmas, followed by mixing or mingling with silicic magmas formed by partial melting of initially high 18O continental crust (??? 9.0%) increasingly hybridized by lower ??18O (???6.0%) mantle-derived basaltic magmas toward the center of the system. Mixing calculations using estimated endmember source ??18O values imply that LVC magmas contain on a molar oxygen basis approximately 42 to 4% isotopically heavy continental crust, with proportions declining in a broadly regular fashion toward the

  18. The Mafic Lower Crust of Neoproterozoic age beneath Western Arabia: Implications for Understanding African Lower Crust

    Science.gov (United States)

    Stern, R. J.; Mooney, W. D.

    2011-12-01

    We review evidence that the lower crust of Arabia - and by implication, that beneath much of Africa was formed at the same time as the upper crust, rather than being a product of Cenozoic magmatic underplating. Arabia is a recent orphan of Africa, separated by opening of the Red Sea ~20 Ma, so our understanding of its lower crust provides insights into that of Africa. Arabian Shield (exposed in W. Arabia) is mostly Neoproterozoic (880-540 Ma) reflecting a 300-million year process of continental crustal growth due to amalgamated juvenile magmatic arcs welded together by granitoid intrusions that make up as much as 50% of the Shield's surface. Seismic refraction studies of SW Arabia (Mooney et al., 1985) reveal two layers, each ~20 km thick, separated by a well-defined Conrad discontinuity. The upper crust has average Vp ~6.3 km/sec whereas the lower crust has average Vp ~7.0 km/sec, corresponding to a granitic upper crust and gabbroic lower crust. Neogene (<30 ma) lava fields in Arabia (harrats) extend over 2500 km, from Yemen to Syria. Many of these lavas contain xenoliths, providing a remarkable glimpse of the lower-crustal and upper-mantle lithosphere beneath W. Arabia. Lower crustal xenoliths brought up in 8 harrats in Saudi Arabia, Jordan, and Syria are mostly 2-pyroxene granulites of igneous (gabbroic, anorthositic, and dioritic) origin. They contain plagioclase, orthopyroxene, and clinopyroxene, and a few contain garnet and rare amphibole and yield mineral-equilibrium temperatures of 700-900°C. Pyroxene-rich and plagioclase-rich suites have mean Al2O3 contents of 13% and 19%, respectively: otherwise the two groups have similar elemental compositions, with ~50% SiO2 and ~1% TiO2, with low K2O (<0.5%) and Na2O (1-3%). Both groups show tholeiitic affinities, unrelated to their alkali basalt hosts. Mean pyroxene-rich and plagioclase-rich suites show distinct mean MgO contents (11% vs. 7%), Mg# (67 vs. 55), and contents of compatible elements Ni (169 vs. 66 ppm

  19. Thickened infant formula: What to know

    NARCIS (Netherlands)

    Salvatore, Silvia; Savino, Francesco; Singendonk, Maartje; Tabbers, Merit; Benninga, Marc A.; Staiano, Annamaria; Vandenplas, Yvan

    2018-01-01

    This study aimed to provide an overview of the characteristics of thickened formulas to aid health care providers manage infants with regurgitations. The indications, properties, and efficacy of different thickening agents and thickened formulas on regurgitation and gastroesophageal reflux in

  20. Central Atlantic Break-up: A competition between CAMP Hotspot and thinning rate.

    Science.gov (United States)

    Sapin, F.; Maurin, T.

    2017-12-01

    The break-up of the Central Atlantic is known to have ended at about 190Myrs while the CAMP (Central Atlantic Magmatic Province) was still active. Several seismic lines, acquired recently in the deep offshore Senegal and Mauritanian domain, provide detailed images of continent-ocean transition and the oceanic crust architecture. Their interpretation is the opportunity to describe the progressive interaction between the hot spot activity, the architecture and timing of break up and the oceanic crust production. In the North, seismic data and gravity/magnetic inversions suggest an extremely thinned continental crust with possible mantle exhumation. In the South, the continental crust is thick and the transition to oceanic crust is sharp. In addition, three oceanic crust facies were described along the margin in an extremely slow spreading ridge setting ( 0.8cm/yr during the first 20Myrs): facies (1) with a poorly imaged Moho and a strongly faulted thin oceanic crust or exhumed mantle; facies (2) with an extensively faulted 6km thick oceanic crust; facies (3) with abnormally thick (9km) oceanic crust marked by SDR-type reflections. They are diachronous from North to South and the two first one disappear southwards and (facies 3) being younger toward the North. Only a single very thick oceanic crust (12-14km) remains in front of the Guinea Plateau. We concluded that, in the South, the break-up had been forced through a thick or thickened continental crust due to the remnant activity of the CAMP Hotspot. In the North, the magmatic pulse arrived far after the break-up during the spreading and the thinning of the continental crust could lead to hyper extension. This evolution emphasizes that the architecture, and thus processes leading to the break-up can vary a lot considering the influence of thermal vertical forces (mantle dynamics/hotspot/magmatism) and mechanical horizontal forces (plate movement/faulting/spreading), both of them being necessary for a rift to succeed.

  1. The effects of thick sediment upon continental breakup: seismic imaging and thermal modeling of the Salton Trough, southern California

    Science.gov (United States)

    Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.; Driscoll, N. W.; Kell, A. M.; Kent, G. M.; Harding, A. J.; Gonzalez-Fernandez, A.; Lázaro-Mancilla, O.

    2015-12-01

    Continental rifting ultimately creates a deep accommodation space for sediment. When a major river flows into a late-stage rift, thick deltaic sediment can change the thermal regime and alter the mechanisms of extension and continental breakup. The Salton Trough, the northernmost rift segment of the Gulf of California plate boundary, has experienced the same extension as the rest of the Gulf, but is filled to sea level by sediment from the Colorado River. Unlike the southern Gulf, seafloor spreading has not initiated. Instead, seismicity, high heat flow, and minor volcanoes attest to ongoing rifting of thin, transitional crust. Recently acquired controlled-source seismic refraction and wide-angle reflection data in the Salton Trough provide constraints upon crustal architecture and active rift processes. The crust in the central Salton Trough is only 17-18 km thick, with a strongly layered but relatively one-dimensional structure for ~100 km in the direction of plate motion. The upper crust includes 2-4 km of Colorado River sediment. Crystalline rock below the sediment is interpreted to be similar sediment metamorphosed by the high heat flow and geothermal activity. Meta-sediment extends to at least 9 km depth. A 4-5 km thick layer in the middle crust is either additional meta-sediment or stretched pre-existing continental crust. The lowermost 4-5 km of the crust is rift-related mafic magmatic intrusion or underplating from partial melting in the hot upper mantle. North American lithosphere in the Salton Trough has been almost or completely rifted apart. The gap has been filled by ~100 km of new transitional crust created by magmatism from below and sedimentation from above. These processes create strong lithologic, thermal, and rheologic layering. While heat flow in the rift is very high, rapid sedimentation cools the upper crust as compared to a linear geotherm. Brittle extension occurs within new meta-sedimentary rock. The lower crust, in comparison, is

  2. Modes of continental extension in a crustal wedge

    KAUST Repository

    Wu, Guangliang

    2015-07-01

    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  3. Modes of continental extension in a crustal wedge

    KAUST Repository

    Wu, Guangliang; Lavier, Luc L.; Choi, Eunseo

    2015-01-01

    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  4. Continental Subduction: Mass Fluxes and Interactions with the Wider Earth System

    Science.gov (United States)

    Cuthbert, S. J.

    2011-12-01

    Substantial parts of ultra-high pressure (UHP) terrains probably represent subducted passive continental margins (PCM). This contribution reviews and synthesises research on processes operating in such systems and their implication for the wider Earth system. PCM sediments are large repositories of volatiles including hydrates, nitrogen species, carbonates and hydrocarbons. Sediments and upper/ mid-crustal basement are rich in incompatible elements and are fertile for melting. Lower crust may be more mafic and refractory. Juvenile rift-related mafic rocks also have the potential to generate substantial volumes of granitoid melts, especially if they have been hydrated. Exposed UHP terrains demonstrate the return of continental crust from mantle depths, show evidence for substantial fluxes of aqueous fluid, anatexis and, in entrained orogenic peridotites, metasomatism of mantle rocks by crust- derived C-O-H fluids. However, substantial bodies of continental material may never return to the surface as coherent masses of rock, but remain sequestered in the mantle where they melt or become entrained in the deeper mantle circulation. Hence during subduction, PCM's become partitioned by a range of mechanisms. Mechanical partitioning strips away weaker sediment and middle/upper crust, which circulate back up the subduction channel, while denser, stronger transitional pro-crust and lower crust may "stall" near the base of the lithosphere or be irreversibly subducted to join the global mantle circulation. Under certain conditions sediment and upper crustal basement may reach depths for UHPM. Further partitioning takes place by anatexis, which either aids stripping and exhumation of the more melt-prone rock-masses through mechanical softening, or separates melt from residuum so that melt escapes and is accreted to the upper plate leading to "undercrusting", late-orogenic magmatism and further refinement of the crust. Melt that traverses sections of mantle will interact with

  5. Subduction and exhumation of a continental margin in the Scandinavian Caledonides: Insights from ultrahigh pressure metamorphism, late orogenic basins and 3D numerical modelling

    Science.gov (United States)

    Cuthbert, Simon

    2017-04-01

    The Scandinavian Caledonides (SC) represents a plate collision zone of Himalayan style and scale. Three fundamental characteristics of this orogen are: (1) early foreland-directed, tectonic transport and stacking of nappes; (2) late, wholesale reversal of tectonic transport; (3) ultrahigh pressure metamorphism of felsic crust derived from the underthrusting plate at several levels in the orogenic wedge and below the main thrust surface, indicating subduction of continental crust into the mantle. The significance of this for crustal evolution is the profound remodeling of continental crust, direct geochemical interaction of such crust and the mantle and the opening of accommodation space trapping large volumes of clastic detritus within the orogen. The orogenic wedge of the SC was derived from the upper crust of the Baltica continental margin (a hyper-extended passive margin), plus terranes derived from an assemblage of outboard arcs and intra-oceanic basins and, at the highest structural level, elements of the Laurentian margin. Nappe emplacement was driven by Scandian ( 430Ma) collision of Baltica with Laurentia, but emerging Middle Ordovician ages for diamond-facies metamorphism for the most outboard (or rifted) elements of Baltica suggest prior collision with an arc or microcontinent. Nappes derived from Baltica continental crust were subducted, in some cases to depths sufficient to form diamond. These then detached from the upper part of the down-going plate along major thrust faults, at which time they ceased to descend and possibly rose along the subduction channel. Subduction of the remaining continental margin continued below these nappes, possibly driven by slab-pull of the previously subducted Iapetus oceanic lithosphere and metamorphic densification of subducted felsic continental margin. 3D numerical modelling based upon a Caledonide-like plate scenario shows that if a continental corner or promontory enters the subduction zone, the continental margin

  6. Sensory characteristics of liquids thickened with commercial thickeners to levels specified in the International Dysphagia Diet Standardization Initiative (IDDSI) framework.

    Science.gov (United States)

    Ong, Jane Jun-Xin; Steele, Catriona M; Duizer, Lisa M

    2018-06-01

    Sensory characteristics are important for the acceptance of thickened liquids, but those of liquids thickened to the new standards put forth by the International Dysphagia Diet Standardization Initiative (IDDSI) are unknown. This research sought to identify and rate the perception of important sensory properties of liquids thickened to levels specified in the IDDSI framework. Samples were made with water, with and without added barium sulfate, and were thickened with a cornstarch or xanthan gum based thickener. Samples were characterized using projective mapping/ultra-flash profiling to identify important sample attributes, and then with trained descriptive analysis panels to characterize those attributes in non-barium and barium thickened liquids. Three main groups of attributes were observed. Taste and flavor attributes decreased in intensity with increasing thickener. Thickener specific attributes included graininess and chalkiness for the cornstarch thickened samples, and slipperiness for the xanthan gum samples. Within the same type of thickener, ratings of thickness-related attributes (perceived viscosity, adhesiveness, manipulation, and swallowing) at different IDDSI levels were significantly different from each other. However, in non-barium samples, cornstarch samples were perceived as thicker than xanthan gum samples even though they had similar apparent viscosities at 50 s -1 . On the other hand, the two thickeners had similar perceived thickness in the barium samples even though the apparent viscosities of cornstarch samples were higher than those of the xanthan gum samples. In conclusion, IDDSI levels can be distinguished based on sensory properties, but these properties may be affected by the type of thickener and medium being thickened.

  7. The Origin of Silicic Arc Crust - Insights from the Northern Pacific Volcanic Arcs through Space and Time

    Science.gov (United States)

    Straub, S. M.; Kelemen, P. B.

    2016-12-01

    The remarkable compositional similarities of andesitic crust at modern convergent margins and the continental crust has long evoked the hypothesis of similar origins. Key to understanding either genesis is understanding the mode of silica enrichment. Silicic crust cannot be directly extracted from the upper mantle. Hence, in modern arcs, numerous studies - observant of the pervasive and irrefutable evidence of melt mixing - proposed that arc andesites formed by mixing of mantle-derived basaltic melts and fusible silicic material from the overlying crust. Mass balance requires the amount of silicic crust in such hybrid andesites to be on the order to tens of percent, implying that their composition to be perceptibly influenced by the various crustal basements. In order to test this hypothesis, major and trace element compositions of mafic and silicic arc magmas with arc-typical low Ce/PbMexico) were combined with Pb isotope ratios. Pb isotope ratios are considered highly sensitive to crustal contamination, and hence should reflect the variable composition of the oceanic and continental basement on which these arcs are constructed. In particular, in thick-crust continental arcs where the basement is isotopically different from the mantle and crustal assimilation thought to be most prevalent, silicic magmas must be expected to be distinct from those of the associated mafic melts. However, in a given arc, the Pb isotope ratios are constant with increasing melt silica regardless of the nature of the basement. This observation argues against a melt origin of silicic melts from the crustal basement and suggest them to be controlled by the same slab flux as their co-eval mafic counterparts. This inference is validated by the spatial and temporal pattern of arc Pb isotope ratios along the Northern Pacific margins and throughout the 50 million years of Cenozoic evolution of the Izu Bonin Mariana arc/trench system that are can be related to with systematic, `real

  8. Magnetotelluric imaging of anisotropic crust near Fort McMurray, Alberta: implications for engineered geothermal system development

    Czech Academy of Sciences Publication Activity Database

    Liddell, M.; Unsworth, M.; Pek, Josef

    2016-01-01

    Roč. 205, č. 3 (2016), s. 1365-1381 ISSN 0956-540X Institutional support: RVO:67985530 Keywords : electrical anisotropy * composition of the continental crust * magnetotellurics * North America Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.414, year: 2016

  9. Along Arc Structural Variation in the Izu-Bonin Arc and its Implications for Crustal Evolution Processes

    Science.gov (United States)

    Kodaira, S.; Sato, T.; Takahashi, N.; Ito, A.; Kaneda, Y.

    2005-12-01

    A continental-type middle crust having Vp = 6.1 - 6.3 km/s has been imaged at several oceanic island arcs (e.g. northern Izu, Mariana, Tonga, Kyushu-Palau ridge) since Suyehiro et al. (1996) has found a felsic middle crust in the northern Izu arc. A high velocity lower crust (Vp > 7.3 km/s) underlying the felsic middle crust has been also underlined as a characteristic structure in the northern Izu arc. A bulk composition of the crust in the Izu arc may indicate more mafic than that of a typical continental crust due to a large volume of the high velocity lower crust. Since a crust becomes more mature toward the north along the Izu-Bonin arc, investigating structural variation along the volcanic front has been believed to provide a fundamental knowledge for a crustal evolution process. In 2004 and 2005, Japan Agency for Marine-Earth Science and Technology has conducted two along arc wide-angle seismic surveys from the Sagami-bay to the Kita-Iwo jima, a total profile length of about 1000 km. Although data from the Bonin-part of the profile which were acquired this year has not been processed yet, a result from the Izu-part, from the Sagami-bay to Tori shima, shows significant structural variations along the volcanic front. The crustal thickness are varied with a wavelength of several tens of km, i.e., thickened up to 25-30 km around the volcanoes (the Miyake jama, Hachijo jima, Aoga sima, Sumisu jima), while thinned down to 20 km between them. The fine seismic velocity image obtained by refraction tomography as well as a wide-angle reflection migration shows that the variation of the crustal block having 6.0 - 6.7 km/s, which is a typical continental crustal velocity, is mainly responsible for the observed variation of the crustal thickness. The thickness of the high velocity lower crust is not significantly varied along the arc. Therefore, an average crustal seismic velocity (varied 6.6 to 7.0 km/s) represents a higher velocity that that of a typical continental

  10. Crustal volumes of the continents and of oceanic and continental submarine plateaus

    Science.gov (United States)

    Schubert, G.; Sandwell, D.

    1989-01-01

    Using global topographic data and the assumption of Airy isostasy, it is estimated that the crustal volume of the continents is 7182 X 10 to the 6th cu km. The crustal volumes of the oceanic and continental submarine plateaus are calculated at 369 X 10 to the 6th cu km and 242 X 10 to the 6th cu km, respectively. The total continental crustal volume is found to be 7581 X 10 to the 6th cu km, 3.2 percent of which is comprised of continental submarine plateaus on the seafloor. An upper bound on the contintental crust addition rate by the accretion of oceanic plateaus is set at 3.7 cu km/yr. Subduction of continental submarine plateaus with the oceanic lithosphere on a 100 Myr time scale yields an upper bound to the continental crustal subtraction rate of 2.4 cu km/yr.

  11. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution

    Science.gov (United States)

    Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong

    2015-12-01

    The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by

  12. The strontium isotopic composition of seawater, and seawater-oceanic crust interaction

    International Nuclear Information System (INIS)

    Spooner, E.T.C.

    1976-01-01

    The 87 Sr/ 86 Sr ratio of seawater strontium (0.7091) is less than the 87 Sr/ 86 Sr ratio of dissolved strontium delivered to the oceans by continental run-off (approximately 0.716). Isotope exchange with strontium isotopically lighter oceanic crust during hydrothermal convection within spreading oceanic ridges can explain this observation. In quantitative terms, the current 87 Sr/ 86 Sr ratio of seawater (0.7091) may be maintained by balancing the continental run-off flux of strontium (0.59 x 10 12 g/yr) against a hydrothermal recirculation flux of 3.6 x 10 12 g/yr, during which the 87 Sr/ 86 Sr ratio of seawater drops by 0.0011. A concomitant mean increase in the 87 Sr/ 86 Sr ratio of the upper 4.5 km of oceanic crust of 0.0010 (0.7029-0.7039) should be produced. This required 87 Sr enrichment has been observed in hydrothermally metamorphosed ophiolitic rocks from the Troodos Massif, Cyprus. The post-Upper Cretaceous increase in the strontium isotopic composition of seawater (approximately 0.7075-0.7091) covaries smoothly with inferred increase in land area. This suggests that during this period the main factor which has caused variability in the 87 Sr/ 86 Sr ratio of seawater strontium could have been variation in the magnitude of the continental run-off flux caused by variation in land area. Variations in land area may themselves have been partly a consequence of variations in global mean sea-floor spreading rate. (Auth.)

  13. Echocardiography: pericardial thickening and constrictive pericarditis.

    Science.gov (United States)

    Schnittger, I; Bowden, R E; Abrams, J; Popp, R L

    1978-09-01

    A total of 167 patients with pericardial thickening noted on M node echocardiography were studied retrospectively. After the echocardiogram, 72 patients underwent cardiac surgery, cardiac catheterization or autopsy for various heart diseases; 96 patients had none of these procedures. In 49 patients the pericardium was directly visualized at surgery or autopsy; 76 percent of these had pericardial thickening or adhesions. In another 8 percent, pericardial adhesions were absent, but no comment had been made about the appearance of the pericardium itself. In the remaining 16 percent, no comment had been made about the pericardium or percardial space. Cardiac catheterization in 64 patients revealed 24 with hemodynamic findings of constrictive pericarditis or effusive constrictive disease. Seven echocardiographic patterns consistent with pericardial adhesions or pericardial thickening are described and related when possible to the subsequent findings at heart surgery or autopsy. The clinical diagnoses of 167 patients with pericardial thickening are presented. The hemodynamic diagnosis of constrictive pericardial disease was associated with the echocardiographic finding of pericardial thickening, but there were no consistent echocardiographic patterns of pericardial thickening diagnostic of constriction. However, certain other echocardiographic abnormalities of left ventricular posterior wall motion and interventricular septal motion and a high E-Fo slope were suggestive of constriction.

  14. Crustal Stretching Style and Lower Crust Flow of the South China Sea Northern Margin

    Science.gov (United States)

    Bai, Y.; Dong, D.; Runlin, D.

    2017-12-01

    There is a controversy about crustal stretching style of the South China Sea (SCS) northern margin mainly due to considerable uncertainty of stretching factor estimation, for example, as much as 40% of upper crust extension (Walsh et al., 1991) would be lost by seismic profiles due to poor resolution. To discover and understand crustal stretching style and lower crustal flow on the whole, we map the Moho and Conrad geometries based on gravity inversion constrained by deep seismic profiles, then according to the assumption of upper and lower crust initial thickness, upper and lower crust stretching factors are estimated. According to the comparison between upper and lower crust stretching factors, the SCS northern margin could be segmented into three parts, (1) sediment basins where upper crust is stretched more than lower crust, (2) COT regions where lower crust is stretched more than upper crust, (3) other regions where the two layers have similar stretching factors. Stretching factor map shows that lower crust flow happened in both of COT and sediment basin regions where upper crust decouples with lower crust due to high temperature. Pressure contrast by sediment loading in basins and erosion in sediment-source regions will lead to lower crust flow away from sediment sink to source. Decoupled and fractured upper crust is stretched further by sediment loading and the following compensation would result in relatively thick lower crust than upper crust. In COT regions with thin sediment coverage, low-viscosity lower crust is easier to thin in extensional environment, also the lower crust tends to flow away induced by magma upwelling. Therefore, continental crust on the margin is not stretching in a constant way but varies with the tectonic setting changes. This work is supported by National Natural Science Foundation of China (Grant No. 41506055, 41476042) and Fundamental Research Funds for the Central Universities China (No.17CX02003A).

  15. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    Science.gov (United States)

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  16. Making Earth's earliest continental crust - an analogue from voluminous Neogene silicic volcanism in NE-Iceland

    Science.gov (United States)

    Berg, Sylvia E.; Troll, Valentin R.; Burchardt, Steffi; Riishuus, Morten S.; Deegan, Frances M.; Harris, Chris; Whitehouse, Martin J.; Gústafsson, Ludvik E.

    2014-05-01

    Borgarfjörður Eystri in NE-Iceland represents the second-most voluminous exposure of silicic eruptive rocks in Iceland and is a superb example of bimodal volcanism (Bunsen-Daly gap), which represents a long-standing controversy that touches on the problem of crustal growth in early Earth. The silicic rocks in NE-Iceland approach 25 % of the exposed rock mass in the region (Gústafsson et al., 1989), thus they significantly exceed the usual ≤ 12 % in Iceland as a whole (e.g. Walker, 1966; Jonasson, 2007). The origin, significance, and duration of the voluminous (> 300 km3) and dominantly explosive silicic activity in Borgarfjörður Eystri is not yet constrained (c.f. Gústafsson, 1992), leaving us unclear as to what causes silicic volcanism in otherwise basaltic provinces. Here we report SIMS zircon U-Pb ages and δ18O values from the region, which record the commencement of silicic igneous activity with rhyolite lavas at 13.5 to 12.8 Ma, closely followed by large caldera-forming ignimbrite eruptions from the Breiðavik and Dyrfjöll central volcanoes (12.4 Ma). Silicic activity ended abruptly with dacite lava at 12.1 Ma, defining a ≤ 1 Myr long window of silicic volcanism. Magma δ18O values estimated from zircon range from 3.1 to 5.5 (± 0.3; n = 170) and indicate up to 45 % assimilation of a low-δ18O component (e.g. typically δ18O = 0 ‰, Bindeman et al., 2012). A Neogene rift relocation (Martin et al., 2011) or the birth of an off-rift zone to the east of the mature rift associated with a thermal/chemical pulse in the Iceland plume (Óskarsson & Riishuus, 2013), likely brought mantle-derived magma into contact with fertile hydrothermally-altered basaltic crust. The resulting interaction triggered large-scale crustal melting and generated mixed-origin silicic melts. Such rapid formation of silicic magmas from sustained basaltic volcanism may serve as an analogue for generating continental crust in a subduction-free early Earth (e.g. ≥ 3 Ga, Kamber et

  17. Multichannel thickener of flotation tailings

    Energy Technology Data Exchange (ETDEWEB)

    Kondratenko, A F; Shuliko, A N; Zinchenko, A F

    1983-04-01

    A multichannel thickener of flotation tailings developed by Ukrniiugleobogashchenie is described. Tailings with solid content ranging from 40 to 60 g/l are mixed with flocculation reagents (quantity ratio from 60 to 70 g/l) in a turbulent mixer: waste water with tailings fed to the mixer is divided into three streams, flocculation reagents are batched in stages with each water stream. After turbulent mixing, water, tailings and reagent are fed to the settling chamber. Settling chamber (dimensions 2.4 x 1.5 x 1.0 m) is divided into a number of channels by settling surfaces of 0.35 m/sup 2/ each, inclined at an angle of 55 degrees. Distance between the surfaces is 50 mm. The thickener has a total settling surface of 18.7 m/sup 2/. Water with tailings flows upwards, cleaned water is removed by a separating system and settled tailings move downward and accumulate in the compacting chamber (dimensions 1.5 x 1.5 x 0.9 m). From the compacting chamber thickened slurry with solid content from 90 to 150 g/l is removed by a hydraulic system. During performance testing in some plants preparing coal difficult to wash, thickening efficiency amounted to 100%. The results of performance testing are shown in two tables. Factors which influence thickener productivity are evaluated. (In Russian)

  18. Extent and impact of Cretaceous magmatism on the formation and evolution of Jurassic oceanic crust in the western Pacific

    Science.gov (United States)

    Feng, H.; Lizarralde, D.; Tominaga, M.; Hart, L.; Tivey, M.; Swift, S. A.

    2015-12-01

    Multi-channel seismic (MCS) images and wide-angle sonobuoy data acquired during a 2011 cruise on the R/V Thomas G. Thompson (TN272) show widespread emplacement of igneous sills and broadly thickened oceanic Layer 2 through hundreds of kilometers of oceanic crust in one of the oldest ocean basins in the western Pacific, a region known as the Jurassic Quiet Zone (JQZ). Oceanic crust from the JQZ has grown through at least two main magmatic phases: It was formed by mid-ocean ridge processes in the Jurassic (at ~170 Ma), and then it was added to by a substantial Cretaceous magmatic event (at ~75-125 Ma). The scale of Cretaceous magmatism is exemplified by massive seafloor features such as the Ontong Java Plateau, Mid-Pacific Mountains, Marshall-Gilbert Islands, Marcus-Wake Seamount Chain, and numerous guyots, seamounts, and volcaniclastic flows observed throughout the region. We use seismic data to image heavily intruded and modified oceanic crust along an 800-km-long transect through the JQZ in order to examine how processes of secondary crustal growth - including magmatic emplacement, transport, and distribution - are expressed in the structure of modified oceanic crust. We also model gravity anomalies to constrain crustal thickness and depth to the Moho. Our observations suggest that western Pacific crust was modified via the following modes of emplacement: (a) extrusive seafloor flows that may or may not have grown into seamounts, (b) seamounts formed through intrusive diking that pushed older sediments aside during their formation, and (c) igneous sills that intruded sediments at varying depths. Emplacement modes (a) and (b) tend to imply a focused, pipe-like mechanism for melt transport through the lithosphere. Such a mechanism does not explain the observed broadly distributed intrusive emplacement of mode (c) however, which may entail successive sill emplacement between igneous basement and sediments thickening oceanic Layer 2 along ~400 km of our seismic line

  19. Role of deep-Earth water cycling in the growth and evolution of continental crust: Constraints from Cretaceous magmatism in southeast China

    Science.gov (United States)

    Li, Zhen; Wang, Xuan-Ce; Wilde, Simon A.; Liu, Liang; Li, Wu-Xian; Yang, Xuemei

    2018-03-01

    The late Mesozoic igneous province in southeast China provides an excellent opportunity to understand the processes that controlled the growth and evolution of Phanerozoic continental crust. Here we report petrological, whole-rock geochemical and isotopic data, and in situ zircon U-Pb-Lu-Hf isotopic data from granitoids and associated gabbros in the Pingtan and Tong'an complexes, southeast China. Through combining the new results with published datasets in southeast China, we show that the Early Cretaceous magmatic rocks are dominated by juvenile Nd-Hf isotopic compositions, whereas the Late Cretaceous ones display less radiogenic Nd-Hf isotope signatures. Furthermore, Nd-Hf isotope systematics are coupled with decreasing abundance of hydrous minerals and an increase of zircon saturation temperatures. Compiled zircon Hf-O data indicates that the 117-116 Ma granites have zircon δ18O values ranging from mantle values (close to 5.3‰) to as low as 3.9‰, but with dominantly positive initial epsilon Hf (εHf(t)) values. Zircon grains from 105 to 98 Ma rocks have δ18O values plotting within the mantle-like range (6.5‰ - 4.5‰), but mainly with negative εHf(t) values. Zircon grains from ca. 87 Ma rocks have positive εHf(t) values (+ 9.8 to + 0.7) and a large range of δ18O values (6.3‰ - 3.5‰). The variations in Hf-Nd-O isotopic compositions are correlated with decreasing abundance of magma water contents, presenting a case that water-fluxed melting generated large-scale granitic magmatism. Deep-Earth water cycling provides an alternative or additional mechanism to supply volatiles (e.g., H2O) for hydrous basaltic underplating, continental crustal melting, and magmatic differentiation.

  20. Interdisciplinary approach to exploit the tectonic memory in the continental crust of collisional belts.

    Science.gov (United States)

    Gosso, G.; Marotta, A. M.; Rebay, G.; Regorda, A.; Roda, M.; Spalla, M. I.; Zanoni, D.; Zucali, M.

    2015-12-01

    Collisional belts result by thoroughly competing thermo-mechanical disaggregation and coupling within both continental and oceanic lithospheric slices, during construction of tectono-metamorphic architectures. In multiply reworked metamorphics, tectonic units may be contoured nowadays on the base of coherent thermo-baric and structural time-sequences rather than simply relying on lithologic affinities. Sequences of equilibrium assemblages and related fabric imprints are an approach that appears as a more reliable procedure, that enables to define tectonic units as the volume of crustal slices that underwent corresponding variations during the dynamics of an active margin and takes into account a history of physical imprints. The dimensions of these tectonic units may have varied over time and must be reconstructed combining the tracers of structural and metamorphic changes of basement rocks, since such kind of tectono-metamorphic units (TMUs) is a realistic configuration of the discrete portions of orogenic crust that experienced a coherent sequence of metamorphic and textural variations. Their translational trajectories, and bulk shape changes during deformation, cannot simply be derived from the analysis of the geometries and kinematics of tectonic units, but are to be obtained by adding the reconstruction of quantitative P-T-d-t paths making full use of fossil mineral equilibria. The joint TMU field-and-laboratory definition is an investigation procedure that bears a distinct thermo-tectonic connotation, that, through modelling, offers the opportunity to test the physical compatibilities of plate-scale interconnected variables, such as density, viscosity, and heat transfer, with respect to what current interpretative geologic histories may imply. Comparison between predictions from numerical modelling and natural data obtained by this analytical approach can help to solve ambiguities on geodynamic significance of structural and thermal signatures, also as a

  1. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    Science.gov (United States)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the

  2. Detachment folding of partially molten crust in accretionary orogens: A new magma-enhanced vertical mass and heat transfer mechanism

    Czech Academy of Sciences Publication Activity Database

    Lehmann, J.; Schulmann, K.; Lexa, O.; Závada, Prokop; Štípská, P.; Hasalová, Pavlína; Belyanin, G.; Corsini, M.

    2017-01-01

    Roč. 9, č. 6 (2017), s. 889-909 ISSN 1941-8264 Institutional support: RVO:67985530 Keywords : continental crust * shear-zone * gneiss domes Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.662, year: 2016

  3. Three-Dimensional Numerical Modeling of Crustal Growth at Active Continental Margins

    Science.gov (United States)

    Zhu, G.; Gerya, T.; Tackley, P. J.

    2011-12-01

    Active margins are important sites of new continental crust formation by magmatic processes related to the subduction of oceanic plates. We investigate these phenomena using a three-dimensional coupled petrological-geochemical-thermomechanical numerical model, which combines a finite-difference flow solver with a non-diffusive marker-in-cell technique for advection (I3ELVIS code, Gerya and Yuen, PEPI,2007). The model includes mantle flow associated with the subducting plate, water release from the slab, fluid propagation that triggers partial melting at the slab surface, melt extraction and the resulting volcanic crustal growth at the surface. The model also accounts for variations in physical properties (mainly density and viscosity) of both fluids and rocks as a function of local conditions in temperature, pressure, deformation, nature of the rocks, and chemical exchanges. Our results show different patterns of crustal growth and surface topography, which are comparable to nature, during subduction at active continental margins. Often, two trench-parallel lines of magmatic activity, which reflect two maxima of melt production atop the slab, are formed on the surface. The melt extraction rate controls the patterns of new crust at different ages. Moving free water reflects the path of fluids, and the velocity of free water shows the trend of two parallel lines of magmatic activity. The formation of new crust in particular time intervals is distributed in finger-like shapes, corresponding to finger-like and ridge-like cold plumes developed atop the subducting slabs (Zhu et al., G-cubed,2009; PEPI,2011). Most of the new crust is basaltic, formed from peridotitic mantle. Granitic crust extracted from melted sediment and upper crust forms in a line closer to the trench, and its distribution reflects the finger-like cold plumes. Dacitic crust extracted from the melted lower crust forms in a line farther away from the trench, and its distribution is anticorrelated with

  4. Partial delamination of continental mantle lithosphere, uplift-related crust mantle decoupling, volcanism and basin formation: a new model for the Pliocene Quaternary evolution of the southern East-Carpathians, Romania

    Science.gov (United States)

    Chalot-Prat, F.; Girbacea, R.

    2000-11-01

    A geodynamic model is proposed for the Mid-Miocene to Quaternary evolution of the southern East-Carpathians in order to explain the relationships between shallow and deep geological phenomena that occurred synchronously during late-collision tectonics. In this area, an active volcanic zone cross-cuts since 2 My the suture between the overriding Tisza-Dacia and subducting European continental plates. Mafic calc-alkaline and alkaline magmas (south Harghita and Persani volcanoes) erupted contemporaneously. These magmas were supplied by partial melting of the mantle lithosphere of the subducting, and not of the overriding, plate. In an effort to decipher this geodynamically a-typical setting of magma generation, the spatial and temporal distribution of shallow and deep phenomena was successively examined in order to establish the degree of their interdependence. Our model indicates that intra-mantle delamination of the subducting European plate is the principal cause of a succession of events. It caused upwelling of the hot asthenosphere below a thinned continental lithosphere of the Carpathians, inducing the uplift of the lithosphere and its internal decoupling at the Moho level by isostatic and mostly thermal effects. During this uplift, the crust deformed flexurally whilst the mantle deformed in a ductile way. This triggered decompressional partial melting of the uppermost mantle lithosphere. Flexural deformation of the crust induced its fracturing, allowing for the rapid ascent of magmas to the surface, as well as reactivation of an older detachment horizon at the base of the Carpathian nappe stack above which the Brasov, Ciuc and Gheorghieni hinterland basins formed by extension and gravity spreading. The rapid subsidence of the Focsani foreland basin is controlled by the load exerted on the lithosphere by the delaminated mantle slab that is still attached to it. In this model, crust-mantle decoupling, magma genesis and volcanism, local near-surface hinterland

  5. Magnetic anomalies across the transitional crust of the passive conjugate margins of the North Atlantic: Iberian Abyssal Plain/Northern Newfoundland Basin

    Science.gov (United States)

    Srivastava, S.; Sibuet, J.; Manatschal, G.

    2005-12-01

    The magma starved Iberia Abyssal Plain (IAP) margin off Iberia is probably one of the most studied non-volcanic continental margin in the world. Numerous multi-channel seismic cruises, detailed refraction surveys, and ODP drilling (Legs 149 and 173) have been carried out across it. Yet serious disagreement exists about the nature and mode of emplacement of the transitional crust which lies between true continental and true oceanic crusts in this region. One group regards this crust to be excessively thinned continental crust through which mantle was exhumed while the other group regards it to be oceanic crust, a mixture of basalt and mantle material, formed during ultraslow seafloor spreading. However, neither the drilling, which was carried out only on the basement highs and recovered serpentinized peridotites together with some gabbroic material, nor the detailed refraction measurements have been of much help in solving this dispute because the velocity values in this region neither correspond to true volcanic materials nor to true continental rocks. Similarly the magnetic anomalies in this region have been also interpreted differently by the two groups. One group negates the existence of any seafloor spreading type anomalies over the transition zone. On the other hand, examination of surface and deep-tow magnetic data from conjugate sections of the margins across this part of the North Atlantic shows a good correlation between them. The prime reason for such differences in the interpretation of magnetic data lies in the low amplitude of the surface magnetic anomalies forming the M sequence anomalies in this region compared to those of similar age present in the Central Atlantic. We demonstrate here that the symmetrical magnetic anomalies identified within the transitional zones between Iberia and North America, and across passive margins in general where separation between plates has been very slow, are caused by the serpentinization of the exhumed mantle rocks

  6. Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis

    Science.gov (United States)

    Ahmed, Abdulhakim; Tiberi, Christel; Leroy, Sylvie; Stuart, Graham W.; Keir, Derek; Sholan, Jamal; Khanbari, Khaled; Al-Ganad, Ismael; Basuyau, Clémence

    2013-06-01

    We analyse P-wave receiver functions across the western Gulf of Aden and southern Red Sea continental margins in Western Yemen to constrain crustal thickness, internal crustal structure and the bulk seismic velocity characteristics in order to address the role of magmatism, faulting and mechanical crustal thinning during continental breakup. We analyse teleseismic data from 21 stations forming the temporary Young Conjugate Margins Laboratory (YOCMAL) network together with GFZ and Yemeni permanent stations. Analysis of computed receiver functions shows that (1) the thickness of unextended crust on the Yemen plateau is ˜35 km; (2) this thins to ˜22 km in coastal areas and reaches less than 14 km on the Red Sea coast, where presence of a high-velocity lower crust is evident. The average Vp/Vs ratio for the western Yemen Plateau is 1.79, increasing to ˜1.92 near the Red Sea coast and decreasing to 1.68 for those stations located on or near the granitic rocks. Thinning of the crust, and by inference extension, occurs over a ˜130-km-wide transition zone from the Red Sea and Gulf of Aden coasts to the edges of the Yemen plateau. Thinning of continental crust is particularly localized in a <30-km-wide zone near the coastline, spatially co-incident with addition of magmatic underplate to the lower crust, above which on the surface we observe the presence of seaward dipping reflectors (SDRs) and thickened Oligo-Miocene syn-rift basaltic flows. Our results strongly suggest the presence of high-velocity mafic intrusions in the lower crust, which are likely either synrift magmatic intrusion into continental lower crust or alternatively depleted upper mantle underplated to the base of the crust during the eruption of the SDRs. Our results also point towards a regional breakup history in which the onset of rifting was synchronous along the western Gulf of Aden and southern Red Sea volcanic margins followed by a second phase of extension along the Red Sea margin.

  7. Atlantic continental margin of the United States

    Science.gov (United States)

    Grow, John A.; Sheridan, Robert E.; Palmer, A.R.

    1982-01-01

    The objective of this Decade of North American Geology (D-NAG) volume will be to focus on the Mesozoic and Cenozoic evolution of the U.S. Atlantic continental margin, including the onshore coastal plain, related onshore Triassic-Jurassic rift grabens, and the offshore basins and platforms. Following multiple compressional tectonic episodes between Africa and North America during the Paleozoic Era that formed the Appalachian Mountains, the Mesozoic and Cenozoic Eras were dominated by tensional tectonic processes that separated Africa and North America. Extensional rifting during Triassic and Early Jurassic times resulted in numerous tensional grabens both onshore and offshore, which filled with nonmarine continental red beds, lacustrine deposits, and volcanic flows and debris. The final stage of this breakup between Africa and North America occurred beneath the present outer continental shelf and continental slope during Early or Middle Jurassic time when sea-floor spreading began to form new oceanic crust and lithosophere between the two continents as they drifted apart. Postrift subsidence of the marginal basins continued in response to cooling of the lithosphere and sedimentary loading.Geophysical surveys and oil-exploration drilling along the U.S. Atlantic continental margin during the past 5 years are beginning to answer many questions concerning its deep structure and stratigraphy and how it evolved during the rifting and early sea-floor-spreading stages of the separation of this region from Africa. Earlier geophysical studies of the U.S. continental margin used marine refraction and submarine gravity measurements. Single-channel seismic-reflection, marine magnetic, aeromagnetic, and continuous gravity measurements became available during the 1960s.

  8. Cyclic formation and stabilization of Archean lithosphere by accretionary orogenesis: Constraints from TTG and potassic granitoids, North China Craton

    Science.gov (United States)

    Wang, Wei; Cawood, Peter A.; Liu, Shuwen; Guo, Rongrong; Bai, Xiang; Wang, Kang

    2017-09-01

    Accretionary orogens are major sites of modern continental growth, yet their role in the development of Archean continental crust remains enigmatic. Diverse granitoid suites from tonalite-trondhjemite-granodiorite (TTG) to potassic granitoids appeared during late Archean, representing a period of major continental formation and stabilization. In this study, whole-rock geochemical and zircon U-Pb and Lu-Hf isotopic data are reported for Neoarchean granitoid gneisses from the Northern Liaoning Terrane, northeastern North China Craton (NCC). Older granitoid gneisses ( 2592-2537 Ma) define three magmatic zones migrating from southeast to northwest, each showing a common magmatic evolution from high-pressure TTGs to medium-/low-pressure TTGs and potassic granitoids. They have depleted zircon ƐHf(t) of +0.5 to +8.7. Younger 2529-2503 Ma potassic granitoids and TTGs occur throughout the terrane, which are marked by variable zircon ƐHf(t) of -4.7 to +8.1, and are coeval with regional high-grade metamorphism. Petrogenetic modeling and changing Sr/Y and (La/Yb)N of the granitoids suggest that the crust experienced episodic thickening and thinning and became progressively evolved through development of potassic granitoids and sedimentary successions. The metavolcanic basement to the granitoids display tholeiitic to calc-alkaline affinities, together with the top-to-the-northwest thrusting and associated volcanogenic massive sulfide-type Cu-Zn deposits, suggesting cyclic crustal formation of Northern Liaoning within an accretionary orogen with a SE-dipping subduction polarity. Cyclic crustal thickening and thinning is related to tectonic switching from advancing to retreating relations between the downgoing and overriding plate. After 2530 Ma, this accretionary system accreted to the ancient continental nucleus of NCC (Anshan-Benxi Terrane), signifying final lithosphere stabilization.

  9. The Influence of Edaphic and Orographic Factors on Algal Diversity in Biological Soil Crusts on Bare Spots in the Polar and Subpolar Urals

    Science.gov (United States)

    Patova, E. N.; Novakovskaya, I. V.; Deneva, S. V.

    2018-03-01

    The influence of edaphic and orographic factors on the formation of algal diversity in biological soil crusts was studied in mountain tundras of the Polar and Subpolar Urals. Bare spots developed in the soils on different parent materials and overgrown to different extents were investigated. Overall, 221 algal species from six divisions were identified. Among them, eighty-eight taxa were new for the region studied. The Stigonema minutum, S. ocellatum, Nostoc commune, Gloeocapsopsis magma, Scytonema hofmannii, Leptolyngbya foveolarum, Pseudococcomyxa simplex, Sporotetras polydermatica species and species of the Cylindrocystis, Elliptochloris, Fischerella, Leptosira, Leptolyngbya, Myrmecia, Mesotaenium, Phormidium, Schizothrix genera were permanent components of biological soil crusts. The basis of the algal cenoses in soil crusts was composed of cosmopolitan cyanoprokaryotes, multicellular green algae with thickened covers and abundant mucus. The share of nitrogen fixers was high. The physicochemical properties of primary soils forming under the crusts of spots are described. The more important factors affecting the species composition of algae in the crusts are the elevation gradient, temperature, soil moisture, and the contents of Ca, Mg, mobile phosphorus, and total nitrogen.

  10. [Residual pleural thickening in tuberculous pleuritis. Associated factors

    Science.gov (United States)

    Ruiz, E; Alegre, J; Alemán, C; Vizcaya, S; Armadans, L; Segura, R M; Andreu, J; Iglesias, D; Fernández de Sevilla, T

    2000-10-01

    To study the factors related to the development of residual pleural thickening in pleural tuberculosis. We studied 39 patients with tuberculous pleural effusion. A chest X-ray was taken of each patient at the end of treatment. The patients' medical histories, pleural fluid findings and diagnostic chest films were evaluated. Residual pleural thickening was defined as thickening that was visibly greater than 2 mm in the lower side portion of the chest film. Residual pleural thickening developed in 26% of patients and was found mainly in men (RR = 3.86). In no patients with Löwenstein-Jensen cultures positive for Mycobacterium tuberculosis did pleural complications develop. Residual pleural thickening is a common complication of tuberculous pleural effusion. Residual pleural thickening in tuberculous pleurisy occurs more often in men and older patients, and in cases in which pleural liquid culture is negative for M. tuberculosis.

  11. Interrelation between rifting, faulting, sedimentation, and mantle serpentinization during continental margin formation

    Science.gov (United States)

    Rupke, L.; Schmid, D. W.; Perez-Gussinye, M.; Hartz, E. H.

    2013-12-01

    We explore the conditions under which mantle serpentinization may take place during continental rifting with 2D thermotectonostratigraphic basin models. The basic concept follows the idea that the entire extending continental crust has to be brittle for crustal scale faulting and mantle serpentinization to occur. The new model tracks the rheological evolution of the continental crust and allows for kinetically controlled mantle serpentinization processes. The isostatic and latent heat effects of the reaction are fully coupled to the structural and thermal solutions. A systematic parameter study shows that a critical stretching factor exists for which complete crustal embrittlement and serpentinization occurs. Sedimentation shifts this critical stretching factor to higher values as both deeper burial and the low thermal conductivity of sediments lead to higher crustal temperatures. Serpentinization reactions are therefore only likely in settings with low sedimentation rates and high stretching factors. In addition, we find that the rate of sediment supply has first order controls on the rheology of the lower crust, which may control the overall margin geometry. We further test these concepts in ideas in a case study for the Norwegian margin. In particular, we evaluate whether the inner lower crustal bodies (LCB) imaged beneath the More and Voring margin could be serpentinized mantle. For this purpose we reconstruct multiple 2D transects through a 3D data set. This reconstruction of the Norwegian margin shows that serpentinization reactions are indeed possible and likely during the Jurassic rift phase. Predicted present-day thicknesses and locations of partially serpentinized mantle rocks fit well to information on LCBs from seismic and gravity data. We conclude that some of the inner LCBs beneath the Norwegian margin may, in fact, be partially serpentinized mantle.

  12. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  13. Study of shear thickening behavior in colloidal suspensions

    Directory of Open Access Journals (Sweden)

    N Maleki Jirsaraee

    2015-01-01

    Full Text Available We studied the shear thickening behavior of the nano silica suspension (silica nanoparticles 12 nm in size suspended in ethylene glycol under steady shear. The critical shear rate for transition into shear thickening phase was determined at different concentrations and temperatures. The effect of temperature and concentration was studied on the shear thickening behavior. In silica suspension, it was observed that all the samples had a transition into shear thickening phase and also by increasing the temperature, critical shear rate increased and viscosity decreased. Our observations showed that movement in silica suspension was Brownian and temperature could cause a delay in transition into shear thickening phase. Yet, we observed that increasing the concentration would decrease critical shear rate and increase viscosity. Increasing temperature increased Brownian forces and increasing concentration increased hydrodynamic forces, confirming the contrast between these two forces for transition into shear thickening phase for the suspensions containing nano particles

  14. Seismic Investigations of the Crust and Upper Mantle Structure in Antarctica and Madagascar

    Science.gov (United States)

    Ramirez, Cristo

    In the three studies that form this dissertation, seismic data from Antarctica and Madagascar have been analyzed to obtain new insights into crustal structure and mantle flow. Until recently, there have been little seismic data available from these areas for interrogating Earth structure and processes. In Antarctica, I analyzed datasets from temporary deployments of broadband seismic stations in both East and West Antarctica. In Madagascar, I analyzed data from a temporary network of broadband stations, along with data from three permanent stations. The seismic data have been processed and modeled using a wide range of techniques to characterize crust and mantle structure. Crustal structure in the East Antarctic Craton resembles Precambrian terrains around the world in its thickness and shear wave velocities. The West Antarctic Rift System has thinner crust, consistent with crustal thickness beneath other Cretaceous rifts. The Transantarctic Mountains show thickening of the crust from the costal regions towards the interior of the mountain range, and high velocities in the lower crust at several locations, possibly resulting from the Ferrar magmatic event. Ross Island and Marie Byrd Land Dome have elevated crustal Vp/Vs ratios, suggesting the presence of partial melt and/or volcaniclastic material within the crust. The pattern of seismic anisotropy in Madagascar is complex and cannot arise solely due to mantle flow from the African superplume, as previously proposed. To explain the complex pattern of anisotropy, a combination of mechanisms needs to be invoked, including mantle flow from the African superplume, mantle flow from the Comoros hotspot, small scale upwelling in the mantle induced by lithospheric delamination, and fossil anisotropy in the lithospheric mantle along Precambrian shear zones.

  15. Effect of Time and Temperature on Thickened Infant Formula.

    Science.gov (United States)

    Gosa, Memorie M; Dodrill, Pamela

    2017-04-01

    Unlike adult populations, who primarily depend on liquids for hydration alone, infants rely on liquids to provide them with hydration and nutrition. Speech-language pathologists working within pediatric medical settings often identify dysphagia in patients and subsequently recommend thickened liquids to reduce aspiration risk. Caregivers frequently report difficulty attempting to prepare infant formula to the prescribed thickness. This study was designed to determine (1) the relationship between consistencies in modified barium swallow studies and thickened infant formulas and (2) the effects of time and temperature on the resulting thickness of infant formula. Prepackaged barium consistencies and 1 standard infant formula that was thickened with rice cereal and with 2 commercially available thickening agents were studied. Thickness was determined via a line spread test after various time and temperature conditions were met. There were significant differences between the thickened formula and barium test consistencies. Formula thickened with rice cereal separated over time into thin liquid and solid residue. Formula thickened with a starch-based thickening agent was thicker than the desired consistency immediately after mixing, and it continued to thicken over time. The data from this project suggest that nectar-thick and honey-thick infant formulas undergo significant changes in flow rates within 30 minutes of preparation or if refrigerated and then reheated after 3 hours. Additional empirical evidence is warranted to determine the most reliable methods and safest products for thickening infant formula when necessary for effective dysphagia management.

  16. COMPOSITIONAL AND THERMAL DIFFERENCES BETWEEN LITHOSPHERIC AND ASTHENOSPHERIC MANTLE AND THEIR INFLUENCE ON CONTINENTAL DELAMINATION

    Directory of Open Access Journals (Sweden)

    A. I. Kiselev

    2015-01-01

    Full Text Available The lower part of lithosphere in collisional orogens may delaminate due to density inversion between the asthenosphere and the cold thickened lithospheric mantle. Generally, standard delamination models have neglected density changes within the crust and the lithospheric mantle, which occur due to phase transitions and compositional variations upon changes of P-T parameters. Our attention is focused on effects of phase and density changes that may be very important and even dominant when compared with the effect of a simple change of the thermal mantle structure. The paper presents the results of numerical modeling for eclogitization of basalts of the lower crust as well as phase composition changes and density of underlying peridotite resulted from tectonic thickening of the lithosphere and its foundering into the asthenosphere. As the thickness of the lower crust increases, the mafic granulite (basalt passes into eclogite, and density inversion occurs at the accepted crust-mantle boundary (P=20 kbar because the newly formed eclogite is heavier than the underlying peridotite by 6 % (abyssal peridotite, according to [Boyd, 1989]. The density difference is a potential energy for delamination of the eclogitic portion of the crust. According to the model, P=70 kbar and T=1300 °C correspond to conditions at the lower boundary of the lithosphere. Assuming the temperature adiabatic distribution within the asthenosphere, its value at the given parameters ranges from 1350 °C to 1400 °C. Density inversion at dry conditions occurs with the identical lithospheric and asthenospheric compositions at the expense of the temperature difference at 100 °C with the density difference of only 0.0022 %. Differences of two other asthenospheric compositions (primitive mantle, and lherzolite KH as compared to the lithosphere (abyssal peridotite are not compensated for by a higher temperature. The asthenospheric density is higher than that of the lithospheric base

  17. Continental rift architecture and patterns of magma migration: a dynamic analysis based on centrifuge models.

    NARCIS (Netherlands)

    Corti, G.; Bonini, M.; Sokoutis, D.; Innocenti, F.; Manetti, P.; Cloetingh, S.A.P.L.; Mulugeta, G.

    2004-01-01

    Small-scale centrifuge models were used to investigate the role of continental rift structure in controlling patterns of magma migration and emplacement. Experiments considered the reactivation of weakness zones in the lower crust and the presence of magma at Moho depths. Results suggest that

  18. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles

    Science.gov (United States)

    Ruiz, M.; Díaz, J.; Pedreira, D.; Gallart, J.; Pulgar, J. A.

    2017-10-01

    The structure and geodynamics of the southern margin of the Bay of Biscay have been investigated from a set of 11 multichannel seismic reflection profiles, recorded also at wide angle offsets in an onshore-offshore network of 24 OBS/OBH and 46 land sites. This contribution focuses on the analysis of the wide-angle reflection/refraction data along representative profiles. The results document strong lateral variations of the crustal structure along the margin and provide an extensive test of the crustal models previously proposed for the northern part of the Iberian Peninsula. Offshore, the crust has a typical continental structure in the eastern tip of the bay, which disappears smoothly towards the NW to reach crustal thickness close to 10 km at the edge of the studied area ( 45°N, 6°W). The analysis of the velocity-depth profiles, altogether with additional information provided by the multichannel seismic data and magnetic surveys, led to the conclusion that the crust in this part of the bay should be interpreted as transitional from continental to oceanic. Typical oceanic crust has not been imaged in the investigated area. Onshore, the new results are in good agreement with previous results and document the indentation of the Bay of Biscay crust into the Iberian crust, forcing its subduction to the North. The interpreted profiles show that the extent of the southward indentation is not uniform, with an Alpine root less developed in the central and western sector of the Basque-Cantabrian Basin. N-S to NE-SW transfer structures seem to control those variations in the indentation degree.

  19. Using crustal thickness, subsidence and P-T-t history on the Iberia-Newfoundland & Alpine Tethys margins to constrain lithosphere deformation modes during continental breakup

    Science.gov (United States)

    Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.

    2013-12-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere

  20. Devonian granitoids and their hosted mafic enclaves in the Gorny Altai terrane, northwestern Central Asian Orogenic Belt: crust-mantle interaction in a continental arc setting

    Science.gov (United States)

    Chen, Ming; Sun, Min

    2016-04-01

    Granitoids are a major component in the upper continental crust and hold key information on how did the continental crust grow and differentiate. This study focuses on the Yaloman intrusive complex from the Gorny Altai terrane, northwestern Central Asian Orogenic Belt (CAOB). The association of granitoids and mafic enclaves can provide important clues on the source nature, petrogenetic processes and geodynamic setting of the Yaloman intrusive complex, which in turn will shed light on the crustal evolution in the northwestern CAOB. Zircon U-Pb dating shows that the granitoids, including quartz diorites and granodiorites, were emplaced in ca. 389-387 Ma. The moderate Na2O + K2O contents and low A/CNK values indicate that these rocks belong to the sub-alkaline series with metaluminous to weakly peraluminous compositions. The granitoids yield two-stage zircon Hf model ages of ca. 0.79-1.07 Ga and whole-rock Nd model ages of ca. 0.90-0.99 Ga, respectively, implying that they were mainly sourced from Neoproterozoic juvenile crustal materials. The mafic enclaves show an almost identical crystallization age of ca. 389 Ma. The identification of coarse-grained xenocrysts and acicular apatites, together with the fine-grained texture, makes us infer that these enclaves are likely to represent magmatic globules commingled with the host magmas. The low SiO2 and high MgO contents of the mafic enclaves further suggest that substantial mantle-derived mafic melts were probably involved in their formation. Importantly, the SiO2 contents of the granitoids and mafic enclaves are well correlated with other major elements and most of the trace elements. Also a broadly negative correlation exists between the SiO2 contents and whole-rock epsilon Nd (390 Ma) values of the granitoids. Given the observation of reversely zoned plagioclases within the granitoids and the common occurrence of igneous mafic enclaves, we propose that magma mixing probably played an important role in the formation

  1. Recycling of the Archaean continental crust: the case study of the Gavião, State of Bahia, NE Brazil

    Science.gov (United States)

    Pinto, M. Santos; Peucat, J. J.; Martin, H.; Sabaté, P.

    1998-09-01

    The Gavião block, located to the west of the São Francisco Craton (State of Bahia, NE Brazil), is the oldest crustal block so far recognised in South America—3.42 Ga. In its southern part, the Gavião block has been divided into three domains on the basis of 207Pb/ 206Pb dating on single zircons and monazites combined with Sr and Nd isotopic data and major and trace element geochemical modelling. These are: (1) an Archaean juvenile domain which consists of grey gneisses (Bernada massif) which evidence mantle extraction around 3.3 Ga; (2) an Archaean domain (3.24-3.16 Ga) either recycled, or juvenile with crustal contamination, consisting of trondhjemitic grey gneisses (Aracatu massif) and K-rich calc-alkaline granitic gneisses (Mariana and Serra do Eixo massifs); (3) a Paleoproterozoic recycled domain consisting mainly of the Umburanas granites, which yielded inherited zircons ages ranging from 3.1 to 2.8 Ga, whereas the monazite age is ca 2.0 Ga. The Aracatu and Mariana massifs are cut by granites at ca 2.0 Ga the same age of the Serra da Franga massif. The Gavião block is a type example of Archaean continental crust (3.2 Ga) that has been recycled through partial melting events mainly in Paleoproterozoic times during the Transamazonian orogeny (2.0-2.1 Ga). Brasiliano cooling ages are recorded by the Rb-Sr system of biotite-whole rock pairs ca 500 Ma.

  2. The contribution of the Precambrian continental lithosphere to global H2 production.

    Science.gov (United States)

    Lollar, Barbara Sherwood; Onstott, T C; Lacrampe-Couloume, G; Ballentine, C J

    2014-12-18

    Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water-rock interactions in the Earth's subsurface and at deep ocean vents. Current estimates of global H2 production from the marine lithosphere by water-rock reactions (hydration) are in the range of 10(11) moles per year. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres and have suggested a link between dissolved H2 and the radiolytic dissociation of water. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 10(11) moles per year). Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36-2.27 × 10(11) moles per year is comparable to estimates from marine systems.

  3. Anatexis, hybridization and the modification of ancient crust: Mesozoic plutonism in the Old Woman Mountains area, California

    Science.gov (United States)

    Miller, C.F.; Wooden, J.L.

    1994-01-01

    A compositionally expanded array of granitic (s.l.) magmas intruded the > 2 Ga crust of the Old Woman Mountains area between 160 and 70 Ma. These magmas were emplaced near the eastern (inland) edge of the Jurassic/Cretaceous arcs of western North America, in an area where magma flux, especially during the Jurassic, was considerably lower than to the west. The Jurassic intrusives and over half of the Cretaceous intrusives are predominantly metaluminous and variable in composition; a major Cretaceous suite comprises only peraluminous monzogranite. Only the Jurassic intrusions show clear evidence for the presence of mafic liquids. All units, including the most mafic rocks, reveal isotopic evidence for a significant crustal component. However, none of the Mesozoic intrusives matches in isotopic composition either average pre-intrusion crust or any major unit of the exposed crust. Elemental inconsistencies also preclude closed system derivation from exposed crust. Emplacement of these magmas, which doubled the volume of the mid- to upper crust, did not dramatically change its elemental composition. It did, however, affect its Nd and especially Sr isotopic composition and modify some of the distinctive aspects of the elemental chemistry. We propose that Jurassic magmatism was open-system, with a major influx of mantle-derived mafic magma interacting strongly with the ancient crust. Mesozoic crustal thickening may have led to closed-system crustal melting by the Late Cretaceous, but the deep crust had been profoundly modified by earlier Mesozoic hybridization so that crustal melts did not simply reflect the original crustal composition. The clear evidence for a crustal component in magmas of the Old Woman Mountains area may not indicate any fundamental differences from the processes at work elsewhere in this or other magmatic arcs where the role of pre-existing crust is less certain. Rather, a compositionally distinctive, very old crust may simply have yielded a more

  4. Non-traumatic Thickening of the Anterior Cruciate Ligament

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyun Jun; Park, Jin Gyoon; Song, Sang Gook [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2009-08-15

    To describe the magnetic resonance (MR) imaging findings of non-traumatic thickening of the anterior cruciate ligament (ACL) and to evaluate the associated lesions. Between January 2003 and August 2005, 44 knees of 44 patients who had thickened ACLs on MR images and had no history of knee trauma were analyzed retrospectively. The normal thickness of the ACL was measured on axial T2-weighted images of 40 healthy adult knees. The MR imaging findings of the thickened ACLs and associated lesions were analyzed. In 40 cases of healthy knees, the thickness of the proximal ACL was 3-6 mm. In 44 cases of non-traumatic thickening of the ACL, the thickness of the proximal ACL was 8-14 mm. There was an increased signal intensity and ill-defined border in all cases of thickened ACLs, linear low-signal intensity fibers parallel to the long axis of the thickened ACL (celery stalk appearance) in 24 cases, and entrapment in 10 cases. With respect to associated lesions, there was osteoarthritis in 40 cases, meniscal tears in 42 cases, and degeneration of the posterior cruciate ligament in 7 cases. Non-traumatic thickening of the ACL was associated with osteoarthritis and meniscal tears in almost all cases and showed increased signal intensity and ill-defined borders simulating acute ligamentous tears

  5. Continental crustal formation and recycling: Evidence from oceanic basalts

    Science.gov (United States)

    Saunders, A. D.; Tarney, J.; Norry, M. J.

    1988-01-01

    Despite the wealth of geochemical data for subduction-related magma types, and the clear importance of such magmas in the creation of continental crust, there is still no concensus about the relative magnitudes of crustal creation versus crustal destruction (i.e., recycling of crust into the mantle). The role of subducted sediment in the formation of the arc magmas is now well documented; but what proportion of sediment is taken into the deeper mantle? Integrated isotopic and trace element studies of magmas erupted far from presently active subduction zones, in particular basaltic rocks erupted in the ocean basins, are providing important information about the role of crustal recycling. By identifying potential chemical tracers, it is impossible to monitor the effects of crustal recycling, and produce models predicting the mass of material recycled into the mantle throughout long periods of geological time.

  6. Development of continental lithospheric mantle as reflected in the chemistry of the Mesozoic Appalachian Tholeiites, U.S.A

    International Nuclear Information System (INIS)

    Pegram, W.J.

    1990-01-01

    Geochemical analyses of dikes, sills, and volcanic rocks of the Meoszoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial ε Nd = +3.8 to -5.7; initial 87 Sr/ 86 Sr = 0.7044-0.7072; 206 Pb/ 204 Pb = 17.49-19.14; 207 Pb/ 204 Pb = 15.55-15.65; 208 Pb/ 204 Pb = 37.24-39.11. In Pb-Pb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary Pb-Pb isochron age of ≅ 1000 Ma (μ 1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd = 0.226-0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19-75) that are significantly greater than those of MORB, and low TiO 2 (0.39-0.69%)]. Geochemical and geological considerations were strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. (orig./WB)

  7. The earthquakes of stable continental regions. Volume 2: Appendices A to E. Final report

    International Nuclear Information System (INIS)

    Johnston, A.C.; Kanter, L.R.; Coppersmith, K.J.; Cornell, C.A.

    1994-12-01

    The objectives of the study were to develop a comprehensive database of earthquakes in stable continental regions (SCRs) and to statistically examine use of the database for the assessment of large earthquake potential. We identified nine major and several minor SCRs worldwide and compiled a database of geologic characteristics of tectonic domains within each SCR. We examined all available earthquake data from SCRs, from historical accounts of events with no instrumental ground-motion data to present-day instrumentally recorded events. In all, 1,385 events were analyzed. Using moment magnitude 4.5 as the lower bound threshold for inclusion in the database, 870 were assigned to an SCR, 124 were found to be transitional to an SCR, and 391 were examined, but rejected. We then performed a seismotectonic analysis to determine what distinguishes seismic activity in SCRs from other types of crust, such as active plate margins or active continental regions. General observations are: (1) SCRs comprise nearly two-thirds of all continental crust of which 25% is considered to be extended (i.e., rifted); (2) the majority of seismic energy release and the largest earthquakes in SCRs have occurred in extended crust; and (3) active plate margins release seismic energy at a rate per unit area approximately 7,000 times the average for non-extended SCRs. Finally, results of a statistical examination of distributions of historical maximum earthquakes between different crustal domain types indicated that additional information is needed in order to adequately constrain estimates of maximum earthquakes for any given region. Thus, a Bayesian approach was developed in which statistical constraints from the database were used to develop a prior distribution, which may then be combined with source-specific information to constrain maximum magnitude assessments for use in probabilistic seismic hazard analyses

  8. Trace element characteristics of mafic and ultramafic meta-igneous rocks from the 3.5 Ga. Warrawoona group: evidence for plume-lithosphere interaction beneath Archaean continental crust

    International Nuclear Information System (INIS)

    Bolhar, R.; Hergt, J.; Woodhead, J.

    1999-01-01

    compositionally similar volcanic greenstones in the Superior Province (Canada). However, this concept is problematic for two reasons: (1) Modern oceanic crust is typically associated with overlying terrigenous/ pelagic sediments, both of which are introduced into the mantle via subduction. Mixing with mantle and subsequent partial melting invariably produces compositions with HFSE depletion and LREE enrichment at low to moderate degrees of melting. (2) Mixing of subduction-modified lithosphere into the mantle followed by melting should be detectable in volcanic rocks with strong depletions in elements such as Nb and Ti, but increased abundances in the LILE and LREE (La/Sm pm >> 1). Compositionally, the Warrawoona meta-igneous rocks resemble compositions found in modern oceanic plateaus (e.g. Broken Ridge) which incorporated variable amounts of continental lithospheric mantle (CLM). Variability in trace element ratios (e.g. Nb/Ta, Ce/Pb, and Nb/U) may reflect source heterogeneity or the coexistence of tectonically accreted oceanic fragments with differing petrogenetic histories. However, well-defined co-variations in major and trace elements of samples from all three major stratigraphic units point to a common magmatic origin. In an attempt to link Archaean rocks to present day analogues, we conclude that the spatial association of ultramafic and mafic volcanics and crustally contaminated high-Mg, Fe rocks most resembles melting of a plume head with incorporation of CLM-components and volcanic outpouring within a (rifted?) continental environment. Support for the existence of pre-existing continental crust comes from published studies which report on xenocrystic zircons in basalts, underlying granitoids and sediments of pre-Warrawoona age and mafic inclusions within granitoid bodies. Temporal decreases in La/Sm pm and Nb/Th pm ratios, along with unfractionated HREE may be interpreted as adiabatic upwelling of plume material and a decreasing influence of the lithospheric component

  9. High-resolution and Deep Crustal Imaging Across The North Sicily Continental Margin (southern Tyrrhenian Sea)

    Science.gov (United States)

    Agate, M.; Bertotti, G.; Catalano, R.; Pepe, F.; Sulli, A.

    Three multichannel seismic reflection profiles across the North Sicily continental mar- gin have been reprocessed and interpreted. Data consist of an unpublished high pene- tration seismic profile (deep crust Italian CROP Project) and a high-resolution seismic line. These lines run in the NNE-SSW direction, from the Sicilian continental shelf to the Tyrrhenian abyssal plain (Marsili area), and are tied by a third, high penetration seismic line MS104 crossing the Sisifo High. The North Sicily continental margin represents the inner sector of the Sicilian-Maghrebian chain that is collapsed as con- sequence of extensional tectonics. The chain is formed by a tectonic wedge (12-15 km thick. It includes basinal Meso-Cenozoic carbonate units overthrusting carbonate platform rock units (Catalano et al., 2000). Presently, main culmination (e.g. Monte Solunto) and a number of tectonic depressions (e.g. Cefalù basin), filled by >1000 m thick Plio-Pleistocene sedimentary wedge, are observed along the investigated tran- sect. Seismic attributes and reflector pattern depicts a complex crustal structure. Be- tween the coast and the M. Solunto high, a transparent to diffractive band (assigned to the upper crust) is recognised above low frequency reflective layers (occurring be- tween 9 and 11 s/TWT) that dips towards the North. Their bottom can be correlated to the seismological (African?) Moho discontinuity which is (26 km deep in the Sicilian shelf (Scarascia et al., 1994). Beneath the Monte Solunto ridge, strongly deformed re- flectors occurring between 8 to 9.5 s/TWT (European lower crust?) overly the African (?) lower crust. The resulting geometry suggests underplating of the African crust respect to the European crust (?). The already deformed crustal edifice is dissected by a number of N-dipping normal faults that open extensional basins and are associ- ated with crustal thinning. The Plio-Pleistocene fill of the Cefalù basin can be subdi- vided into three subunits by

  10. 3-D Numerical Modelling of Oblique Continental Collisions with ASPECT

    Science.gov (United States)

    Karatun, L.; Pysklywec, R.

    2017-12-01

    Among the fundamental types of tectonic plate boundaries, continent-continent collision is least well understood. Deformation of the upper and middle crustal layers can be inferred from surface structures and geophysical imaging, but the fate of lower crustal rocks and mantle lithosphere is not well resolved. Previous research suggests that shortening of mantle lithosphere generally may be occurring by either: 1) a distributed thickening with a formation of a Raleigh-Tailor (RT) type instability (possibly accompanied with lithospheric folding); or 2) plate-like subduction, which can be one- or two-sided, with or without delamination and slab break-off; a combination of both could be taking place too. 3-D features of the orogens such as along-trench material transfer, bounding subduction zones can influence the evolution of the collision zone significantly. The current study was inspired by South Island of New Zealand - a young collision system where a block of continental crust is being shortened by the relative Australian-Pacific plate motion. The collision segment of the plate boundary is relatively small ( 800 km), and is bounded by oppositely verging subduction zones to the North and South. Here, we present results of 3-D forward numerical modelling of continental collision to investigate some of these processes. To conduct the simulations, we used ASPECT - a highly parallel community-developed code based on the Finite Element method. Model setup for three different sets of models featured 2-D vertical across strike, 3-D with periodic front and back walls, and 3-D with open front and back walls, with velocities prescribed on the left and right faces. We explored the importance of values of convergent velocity, strike-slip velocity and their ratio, which defines the resulting velocity direction relative to the plate boundary (obliquity). We found that higher strike-slip motion promotes strain localization, weakens the lithosphere close to the plate boundary and

  11. Anomalous heat flow belt along the continental margin of Brazil

    Science.gov (United States)

    Hamza, Valiya M.; Vieira, Fabio P.; Silva, Raquel T. A.

    2018-01-01

    A comprehensive analysis of thermal gradient and heat flow data was carried out for sedimentary basins situated in the continental margin of Brazil (CMB). The results point to the existence of a narrow belt within CMB, where temperature gradients are higher than 30 °C/km and the heat flow is in excess of 70 mW/m2. This anomalous geothermal belt is confined between zones of relatively low to normal heat flow in the adjacent continental and oceanic regions. The width of the belt is somewhat variable, but most of it falls within the range of 100-300 km. The spatial extent is relatively large in the southern (in the basins of Pelotas, Santos and Campos) and northern (in the basins of Potiguar and Ceará) parts, when compared with those in the central parts (in the basins of South Bahia, Sergipe and Alagoas). The characteristics of heat flow anomalies appear to be compatible with those produced by thermal sources at depths in the lower crust. Hence, magma emplacement at the transition zone between lower crust and upper mantle is considered the likely mechanism producing such anomalies. Seismicity within the belt is relatively weak, with focal depths less than 10 km for most of the events. Such observations imply that "tectonic bonding" between continental and oceanic segments, at the transition zone of CMB, is relatively weak. Hence, it is proposed that passive margins like CMB be considered as constituting a type of plate boundary that is aseismic at sub-crustal levels, but allows for escape of significant amounts of earth's internal heat at shallow depths.

  12. The development and application of high-capacity thickening techniques

    International Nuclear Information System (INIS)

    Ji Zhenwan; Song Yuejie

    1995-01-01

    On the basis of sedimentation theory and comparison between the high-capacity and conventional thickening techniques, the authors analyse the ways to increase capacity and to improve technological parameters of thickeners, describes the construction features, development, application, automatic control and test installations of high-capacity thickeners at home and abroad

  13. Circum-Pacific accretion of oceanic terranes to continental blocks: accretion of the Early Permian Dun Mountain ophiolite to the E Gondwana continental margin, South Island, New Zealand

    Science.gov (United States)

    Robertson, Alastair

    2016-04-01

    Accretionary orogens, in part, grow as a result of the accretion of oceanic terranes to pre-existing continental blocks, as in the circum-Pacific and central Asian regions. However, the accretionary processes involved remain poorly understood. Here, we consider settings in which oceanic crust formed in a supra-subduction zone setting and later accreted to continental terranes (some, themselves of accretionary origin). Good examples include some Late Cretaceous ophiolites in SE Turkey, the Jurassic Coast Range ophiolite, W USA and the Early Permian Dun Mountain ophiolite of South Island, New Zealand. In the last two cases, the ophiolites are depositionally overlain by coarse clastic sedimentary rocks (e.g. Permian Upukerora Formation of South Island, NZ) that then pass upwards into very thick continental margin fore-arc basin sequences (Great Valley sequence, California; Matai sequence, South Island, NZ). Field observations, together with petrographical and geochemical studies in South Island, NZ, summarised here, provide evidence of terrane accretion processes. In a proposed tectonic model, the Early Permian Dun Mountain ophiolite was created by supra-subduction zone spreading above a W-dipping subduction zone (comparable to the present-day Izu-Bonin arc and fore arc, W Pacific). The SSZ oceanic crust in the New Zealand example is inferred to have included an intra-oceanic magmatic arc, which is no longer exposed (other than within a melange unit in Southland), but which is documented by petrographic and geochemical evidence. An additional subduction zone is likely to have dipped westwards beneath the E Gondwana margin during the Permian. As a result, relatively buoyant Early Permian supra-subduction zone oceanic crust was able to dock with the E Gondwana continental margin, terminating intra-oceanic subduction (although the exact timing is debatable). The amalgamation ('soft collision') was accompanied by crustal extension of the newly accreted oceanic slab, and

  14. Sedimentation on continental margins: An integrated program for innovative studies during the 1990s

    Science.gov (United States)

    Nittrourer, Charles A.; Coleman, James M.; Rouge, Baton; Flood, Roger D.; Ginsburg, Robert N.; Gorsline, Donn S.; Hine, Albert C.; Sternberg, Richard W.; Swift, Donald J. P.; Wright, L. Donelson

    Continental margins are of great scientific interest, and they represent the focus of human interaction with the ocean. Their deep structure forms the transition from continental to oceanic crust, and their surface expression extends from coastal environments of estuaries and shorelines across the continental shelf and slope to either the base of a continental rise or a marginal trough. Modern continental margins represent natural laboratories for investigation of complex relationships between physical, chemical, and biological phenomena, which are sensitive to environmental conditions both on the land and in the ocean. The history of these conditions is preserved within the sedimentary deposits of continental margins. The deposits form repositories for much of the particulate material transported off the world's land masses and produced from dissolved components in the world ocean. Past deposits of continental margins have been uplifted to form many mountain ranges and sedimentary terrains of the world, which record details of Earth history and contain valuable natural resources, such as petroleum and natural gas. Modern deposits of continental margins record the more recent events that have influenced Earth and also contain natural resources (for instance, minerals, sand, and gravel), as well as anthropogenic pollutants (for example, heavy metals and pesticides). The fates of many materials beneficial and deleterious to humans are dependent on the pathways followed by sedimentary particles on continental margins.

  15. The structure of the crust and uppermost mantle beneath Madagascar

    Science.gov (United States)

    Andriampenomanana, Fenitra; Nyblade, Andrew A.; Wysession, Michael E.; Durrheim, Raymond J.; Tilmann, Frederik; Julià, Jordi; Pratt, Martin J.; Rambolamanana, Gérard; Aleqabi, Ghassan; Shore, Patrick J.; Rakotondraibe, Tsiriandrimanana

    2017-09-01

    The lithosphere of Madagascar was initially amalgamated during the Pan-African events in the Neoproterozoic. It has subsequently been reshaped by extensional processes associated with the separation from Africa and India in the Jurassic and Cretaceous, respectively, and been subjected to several magmatic events in the late Cretaceous and the Cenozoic. In this study, the crust and uppermost mantle have been investigated to gain insights into the present-day structure and tectonic evolution of Madagascar. We analysed receiver functions, computed from data recorded on 37 broad-band seismic stations, using the H-κ stacking method and a joint inversion with Rayleigh-wave phase-velocity measurements. The thickness of the Malagasy crust ranges between 18 and 46 km. It is generally thick beneath the spine of mountains in the centre part (up to 46 km thick) and decreases in thickness towards the edges of the island. The shallowest Moho is found beneath the western sedimentary basins (18 km thick), which formed during both the Permo-Triassic Karro rifting in Gondwana and the Jurassic rifting of Madagascar from eastern Africa. The crust below the sedimentary basin thickens towards the north and east, reflecting the progressive development of the basins. In contrast, in the east there was no major rifting episode. Instead, the slight thinning of the crust along the east coast (31-36 km thick) may have been caused by crustal uplift and erosion when Madagascar moved over the Marion hotspot and India broke away from it. The parameters describing the crustal structure of Archean and Proterozoic terranes, including average thickness (40 km versus 35 km), Poisson's ratio (0.25 versus 0.26), average shear-wave velocity (both 3.7 km s-1), and thickness of mafic lower crust (7 km versus 4 km), show weak evidence of secular variation. The uppermost mantle beneath Madagascar is generally characterized by shear-wave velocities typical of stable lithosphere (∼4.5 km s-1). However

  16. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust

    Science.gov (United States)

    Ushikubo, Takayuki; Kita, Noriko T.; Cavosie, Aaron J.; Wilde, Simon A.; Rudnick, Roberta L.; Valley, John W.

    2008-08-01

    In situ Li analyses of 4348 to 3362 Ma detrital zircons from the Jack Hills, Western Australia by SIMS reveal that the Li abundances (typically 10 to 60 ppm) are commonly over 10,000 times higher than in zircons crystallized from mantle-derived magmas and in mantle-derived zircon megacrysts (typically Jack Hills zircons also have fractionated lithium isotope ratios ( δ7Li = - 19 to + 13‰) about five times more variable than those recorded in primitive ocean floor basalts (2 to 8‰), but similar to continental crust and its weathering products. Values of δ7Li below - 10‰ are found in zircons that formed as early as 4300 Ma. The high Li compositions indicate that primitive magmas were not the source of Jack Hills zircons and the fractionated values of δ7Li suggest that highly weathered regolith was sampled by these early Archean magmas. These new Li data provide evidence that the parent magmas of ancient zircons from Jack Hills incorporated materials from the surface of the Earth that interacted at low temperature with liquid water. These data support the hypothesis that continental-type crust and oceans existed by 4300 Ma, within 250 million years of the formation of Earth and the low values of δ7Li suggest that weathering was extensive in the early Archean.

  17. Thick deltaic sedimentation and detachment faulting delay the onset of continental rupture in the Northern Gulf of California: Analysis of seismic reflection profiles

    Science.gov (United States)

    Martin, A.; González-Escobar, M.; Fletcher, J. M.; Pacheco, M.; Oskin, M. E.; Dorsey, R. J.

    2013-12-01

    The transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfín basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos (PEMEX) demonstrates that ~1000% extension is accommodated on a series of NNE-striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 seconds (TWTT) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low angle normal faults engendered by a thick sedimentary lid.

  18. A Detailed Gamma-ray Survey for Estimating the Radiogenic Power of Sardinian Variscan Crust

    International Nuclear Information System (INIS)

    Xhixha, M.; Baldoncini, M.; Bezzon, G.P.; Buso, G.P.; Carmignani, L.; Casini, L.; Callegari, I.; Colonna, T.; Cuccuru, S.; Guastaldi, E.; Fiorentini, G.; Mantovani, F.; Massa, G.; Mou, L.; Oggiano, G.; Puccini, A.; Rossi Alvarez, C.; Strati, V.; Xhixha, G.; Zanon, A.

    2014-01-01

    The N-E Sardinia batholith is part of the European Variscan belt which is generally considered an example for hot collisional orogens. After a period of crustal thickening characterized by lower gradients, during Late Carboniferous and Early Permian times, higher geothermal gradients were diffusively established. The sources which contributed to the thermal budget of late Variscan high-temperature events are still debated. One of the hypothesis(1) considers an extra contribution by radioactive heating of felsic crust tectonically emplaced at the bottom of a Palaeozoic orogenic root. It is apparent that a detailed characterization of heat-producing elements (K, U and Th) of Sardinian Variscan crust are needed by the Earth Science community. This study focus on this goal reporting the results of an extensive survey on the base of gamma-ray measurements performed in the laboratory and in situ. The K, U and Th abundances obtained for the main lithotypes of Sardinia batholiths will be used as input for modeling the geodynamic and thermal evolution of the South Variscan Belt

  19. 3D numerical simulations of multiphase continental rifting

    Science.gov (United States)

    Naliboff, J.; Glerum, A.; Brune, S.

    2017-12-01

    Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and

  20. Color doppler sonography in thickened gallbladder wall

    International Nuclear Information System (INIS)

    Han, Sang Suk; Choi, Seok Jin; Seo, Chang Hae; Eun, Choong Ki

    1996-01-01

    The thickening of the gallbladder wall is a valuable finding for the diagnosis of cholecystitis, but may be seen in non-cholecystic disease as well as in acute or chronic cholecystitis. The purpose of this study is to determine the value of color Doppler sonography in differentiating the causes of thickened gallbladder wall. Ninety eight patients with thickened gallbladder wall(more than 3mm) which was not due to gallbladder cancer were prospectively evaluated with color Doppler sonography. Sixty-six cases, confirmed by pathologic reports and clinical records, were analyzed for correlation between thickened gallbladder wall and color flow signal according to the underlying causes. Of the 66 patients, 28 cases were cholecystitis and 38 cases had non-cholecystic causes such as liver cirrhosis, ascites, hepatitis, pancreatitis, renal failure, and hypoalbuminemia. Of the 28 patients with cholecystitis(12 acute, 16 chronic), 23(82%) had color Doppler flow signals in the thickened gallbladder wall. Of the 38 patients with non-cholecystic causes, eight(21%) had color Doppler flow signals. There was a statistically significant difference of color Doppler flow signals between the cholecystitis and non-cholecystic groups(p=0.0001). No significant difference of color Doppler flow signals was found between cases of acute and chronic cholecystitis. Of the 23 patients with color Doppler flow signals in 28 cases of cholecystitis, 18(78.3%) showed a linear pattern and five(21.7%) showed a spotty pattern. Of the eight patients with color Doppler flow signals in the 38 non-cholecystic cases, four(50%) showed a linear pattern and four(50%) showed a spotty pattern. In cholecystitis, a linear color Doppler flow signal pattern is a much more frequent finding than a spotty pattern. Color Doppler sonography is a useful and adequate method for determining whether a thickened gallbladder wall is the result of cholecystitis or has non-cholecystic causes

  1. Formulation of lubricating grease using Beeswax thickener

    Science.gov (United States)

    Suhaila, N.; Japar, A.; Aizudin, M.; Aziz, A.; Najib Razali, Mohd

    2018-04-01

    The issues on environmental pollution has brought the industries to seek the alternative green solutions for lubricating grease formulation. The significant challenges in producing modified grease are in which considering the chosen thickener as one of the environmental friendly material. The main purposes of the current research were to formulate lubricant grease using different types of base oils and to study the effect of thickener on the formulated lubricant grease. Used oil and motor oil were used as the base oils for the grease preparation. Beeswax and Damar were used as thickener and additive. The grease is tested based on its consistency, stability and oil bleeding. The prepared greases achieved grease consistency of grade 2 and 3 except for grease with unfiltered used oil. Grease formulated with used oil and synthetic oil tend to harden and loss its lubricating ability under high temperature compared to motor oil’ grease. Grease modification using environmental friendly thickener were successfully formulated but it is considered as a low temperature grease as the beeswax have low melting point of 62°C-65°C.

  2. Geochemistry and geochronology Rb-Sr, K-Ar and 40Ar/39Ar of the Pan-African granitic complexes of the Tamanrasset area (Algeria): relationships with the associated Sn-W mineralizations and tectonic evolution of Central Hoggar

    International Nuclear Information System (INIS)

    Bertrand, J.M.; Zimmermann, J.L.; Dautel, D.; Boullier, A.M.; Bouabsa, L.; Farrar, E.; Archibald, D.A.; Moulahoum, O.

    1992-01-01

    New field mapping, petrographic and mineralogic, geochemical and geochronological data allow us to distinguish two successive magmatic suites with contrasting geochemistry: (1) granites with subalkaline affinity between 615 Ma (Anfeg) and 576 Ma (Tifferkit); (2) peraluminous magmatism and Li-F specialized leucogranites with associated Sn-W mineralization between 539 and 525 Ma. Such a magmatic evolution is interpreted as resulting from thickening of the continental crust during the Pan-African collision. Earliest magmas show mantle contribution and were formed close to the crust-mantle boundary where synchronous crustal stacking developed in amphibolite facies conditions. Latest peraluminous magmatism of crustal derivation and albite-topaz leucogranites appear to be controlled by localized extensional structures, 80 Ma after the main tectono-metamorphic event

  3. Thickened cortical bones in congenital neutropenia

    International Nuclear Information System (INIS)

    Boechat, M.I.; Gormley, L.S.; O'Laughlin, B.J.

    1987-01-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described. (orig.)

  4. Thickened cortical bones in congenital neutropenia

    Energy Technology Data Exchange (ETDEWEB)

    Boechat, M.I.; Gormley, L.S.; O' Laughlin, B.J.

    1987-02-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described.

  5. The lithosphere-asthenosphere system in the Calabrian Arc and surrounding seas

    Energy Technology Data Exchange (ETDEWEB)

    Panza, G F [Department of Earth Sciences, University of Trieste, Trieste (Italy); [Abdus Salam International Centre for Theoretical Physics, SAND Group, Trieste (Italy)]. E-mail: panza@dst.univ.trieste.it; Pontevivo, A [Department of Earth Sciences, University of Trieste, Trieste (Italy)

    2002-10-01

    Through the non-linear inversion of Surface-Wave Tomography data, using as a priori constraints seismic data from literature, it has been possible to define a fairly detailed structural model of the lithosphere-asthenosphere system (thickness, S-wave and P-wave velocities of the crust and of the upper mantle layers) in the Calabrian Arc region (Southern Tyrrhenian Sea, Calabria and the Northern-Western part of the Ionian Sea). The main features identified by our study are: (1) a very shallow (less then 10 km deep) crust-mantle transition in the Southern Tyrrhenian Sea and very low S-wave velocities just below a very thin lid in correspondence of the submarine volcanic bodies in the study area; (2) a shallow and very low S-wave velocity layer in the mantle in the areas of Aeolian islands, of Vesuvius, Ischia and Phlegraean Fields, representing their shallow-mantle magma source; (3) a thickened continental crust and lithospheric doubling in Calabria; (4) a crust about 25 km thick and a mantle velocity profile versus depth consistent with the presence of a continental rifled, now thermally relaxed, lithosphere in the investigated part of the Ionian Sea; (5) the subduction of the Ionian lithosphere towards NW below the Tyrrhenian Basin; (6) the subduction of the Adriatic lithosphere underneath the Vesuvius and Phlegraean Fields. (author)

  6. Evidence of synsedimentary microbial activity and iron deposition in ferruginous crusts of the Late Cenomanian Utrillas Formation (Iberian Basin, central Spain)

    Science.gov (United States)

    García-Hidalgo, José F.; Elorza, Javier; Gil-Gil, Javier; Herrero, José M.; Segura, Manuel

    2018-02-01

    Ferruginous sandstones and crusts are prominent sedimentary features throughout the continental (braided)-coastal siliciclastic (estuarine-tidal) wedges of the Late Cenomanian Utrillas Formation in the Iberian Basin. Crust types recognized are: Ferruginous sandy crusts (Fsc) with oxides-oxyhydroxides (hematite and goethite) concentrated on sandstone tops presenting a fibro-radial internal structure reminding organic structures that penetrate different mineral phases, suggesting the existence of bacterial activity in crust development; Ferruginous muddy crusts (Fmc) consisting of wavy, laminated, microbial mats, being composed mainly of hematite. On the other hand, a more dispersed and broader mineralization included as Ferruginous sandstones with iron oxides and oxyhydroxides (hematite and goethite) representing a limited cement phase on these sediments. The presence of microbial remains, ferruginous minerals, Microbially-induced sedimentary structures, microbial laminites and vertebrate tracks preserved due to the presence of biofilms suggest firstly a direct evidence of syn-depositional microbial activity in these sediments; and, secondly, that iron accumulation and ferruginous crusts development occurred immediately after deposition of the host, still soft sediments. Ferruginous crusts cap sedimentary cycles and they represent the gradual development of hard substrate conditions, and the development of a discontinuity surface at the top of the parasequence sets, related to very low sedimentary rates; the overlying sediments record subsequent flooding of underlying shallower environments; crusts are, consequently, interpreted as boundaries for these higher-order cycles in the Iberian Basin.

  7. Preferential rifting of continents - A source of displaced terranes

    Science.gov (United States)

    Vink, G. E.; Morgan, W. J.; Zhao, W.-L.

    1984-01-01

    Lithospheric rifting, while prevalent in the continents, rarely occurs in oceanic regions. To explain this preferential rifting of continents, the total strength of different lithospheres is compared by integrating the limits of lithospheric stress with depth. Comparisons of total strength indicate that continental lithosphere is weaker than oceanic lithosphere by about a factor of three. Also, a thickened crust can halve the total strength of normal continental lithosphere. Because the weakest area acts as a stress guide, any rifting close to an ocean-continent boundary would prefer a continental pathway. This results in the formation of small continental fragments or microplates that, once accreted back to a continent during subduction, are seen as displaced terranes. In addition, the large crustal thicknesses associated with suture zones would make such areas likely locations for future rifting episodes. This results in the tendency of new oceans to open along the suture where a former ocean had closed.

  8. In-situ detection of microbial life in the deep biosphere in igneous ocean crust

    Directory of Open Access Journals (Sweden)

    Everett Cosio Salas

    2015-11-01

    Full Text Available The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in-situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  9. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.

    Science.gov (United States)

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  10. The diagnostic significance of thickening of extrapleural fat

    International Nuclear Information System (INIS)

    Zhao Weifeng; Pan Jixu; Liu Fugeng

    1999-01-01

    Objective: To determine the role of thickening of extrapleural fat (EPF) in the diagnosis of pleural and/or para-pleural lung disease. Methods: 166 patients with pleural and/or para-pleural lung disease were studied by CT. Any EPF demonstrated would be near the diseased area, its thickness, and CT number were measured and compared with the CT number of the subcutaneous fat. The anterior thoracic wall of 50 normal subjects were also observed for the normal EPF appearances. Results: In normal group 28(56%) cases showed EPF, its thickness being 1-2 mm. In patient group 106(63.9%) cases showed EPF, among these 88 cases showed the thickness of EPF>2 mm. The mean thickness of the thickened EPF was 5.6 mm. Its mean CT number was -90.3 HU. Higher than that of the subcutaneous fat, the latter's mean CT number was -116.8HU. In this group, the causative disease included radiation lung injury, empyema, chronic lung tuberculosis, thickened and calcified pleura, calcified tuberculoma and lung injury, empyema, chronic lung tuberculosis, thickened and calcified pleura, calcified tuberculoma and lung fibrosis. In the remaining 18 cases, the thickness of EPF was less than 2 mm. No EPF was demonstrated in the other 60 patients. In the latter group the disease included carcinomatous effusion, pleural transudates, peripheral lung caner, thickened pleura, pleural metastasis, tuberculous pleural effusion, acute pneumonia and pleural fibroma. Conclusions: The thickening of EPF was mostly seen in chronic inflammatory and tuberculous diseases. This sign was helpful in differential diagnosis of pleural and/or parapleural lung disease

  11. Osmium isotope and highly siderophile element systematics of the lunar crust

    Science.gov (United States)

    Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.

    2010-01-01

    Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat

  12. Testing Predictions of Continental Insulation using Oceanic Crustal Thicknesses

    Science.gov (United States)

    Hoggard, Mark; Shorttle, Oliver; White, Nicky

    2016-04-01

    The thermal blanketing effect of continental crust has been predicted to lead to elevated temperatures within the upper mantle beneath supercontinents. Initial break-up is associated with increased magmatism and the generation of flood basalts. Continued rifting and sea-floor spreading lead to a steady reduction of this thermal anomaly. Recently, evidence in support of this behaviour has come from the major element geochemistry of mid-ocean ridge basalts, which suggest excess rifting temperatures of ˜ 150 °C that decay over ˜ 100 Ma. We have collated a global inventory of ˜ 1000 seismic reflection profiles and ˜ 500 wide-angle refraction experiments from the oceanic realm. Data are predominantly located along passive margins, but there are also multiple surveys in the centres of the major oceanic basins. Oceanic crustal thickness has been mapped, taking care to avoid areas of secondary magmatic thickening near seamounts or later thinning such as across transform faults. These crustal thicknesses are a proxy for mantle potential temperature at the time of melt formation beneath a mid-ocean ridge system, allowing us to quantify the amplitude and duration of thermal anomalies generated beneath supercontinents. The Jurassic break-up of the Central Atlantic and the Cretaceous rifting that formed the South Atlantic Ocean are both associated with excess temperatures of ˜ 50 °C that have e-folding times of ˜ 50 Ma. In addition to this background trend, excess temperatures reach > 150 °C around the region of the Rio Grande Rise, associated with the present-day Tristan hotspot. The e-folding time of this more local event is ˜ 10 Ma, which mirrors results obtained for the North Atlantic Ocean south of Iceland. In contrast, crustal thicknesses from the Pacific Ocean reveal approximately constant potential temperature through time. This observation is in agreement with predictions, as the western Pacific was formed by rifting of an oceanic plate. In summary

  13. Non-aqueous slurries used as thickeners

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, J C

    1982-04-07

    A non-aqueous slurry is described that is suitable for use as a thickener or viscosifier in oil or gas drilling, fracturing, flow diversion completion or workover fluids. The slurry comprises a water-soluble cellulose ether polymer, a water-insoluble liquid hydrocarbon, a non-ionic surfactant having an HLB of from 7 to 14, and an organo modified clay. There also is described a process for thickening or viscosifying a drilling, fracturing, flow diversion, completion or workover fluid. The use of the slurry prevents bumping during addition to aqueous fluids. (27 claims)

  14. Making mushy magma chambers in the lower continental crust: Cold storage and compositional bimodality

    Science.gov (United States)

    Jackson, Matthew; Blundy, Jon; Sparks, Steve

    2017-04-01

    Increasing geological and geophysical evidence suggests that crustal magma reservoirs are normally low melt fraction 'mushes' rather than high melt fraction 'magma chambers'. Yet high melt fractions must form within these mush reservoirs to explain the observed flow and eruption of low crystallinity magmas. In many models, crystallinity is linked directly to temperature, with higher temperature corresponding to lower crystallinity (higher melt fraction). However, increasing temperature yields less evolved (silicic) melt composition for a given starting material. If mobile, low crystallinity magmas require high temperature, it is difficult to explain how they can have evolved composition. Here we use numerical modelling to show that reactive melt flow in a porous and permeable mush reservoir formed by the intrusion of numerous basaltic sills into the lower continental crust produces magma in high melt fraction (> 0.5) layers akin to conventional magma chambers. These magma-chamber-like layers contain evolved (silicic) melt compositions and form at low (close to solidus) temperatures near the top of the mush reservoir. Evolved magma is therefore kept in 'cold storage' at low temperature, but also at low crystallinity so the magma is mobile and can leave the mush reservoir. Buoyancy-driven reactive flow and accumulation of melt in the mush reservoir controls the temperature and composition of magma that can leave the reservoir. The modelling also shows that processes in lower crustal mush reservoirs produce mobile magmas that contain melt of either silicic or mafic composition. Intermediate melt compositions are present but are not within mobile magmas. Silicic melt compositions are found at high melt fraction within the magma-chamber like layers near the top of the mush reservoir. Mafic melt compositions are found at high melt fraction within the cooling sills. Melt elsewhere in the reservoir has intermediate composition, but remains trapped in the reservoir because

  15. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    Science.gov (United States)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  16. Characterization of oils sands thickened tailings

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J.D.; Jeeravipoolvarn, S.; Donahue, R.; Ozum, B. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    This presentation discussed the characterization of oils sands thickened tailings. The problem statement was defined as the fact that many laboratory procedures to characterize fine tailings do not take into account the extraction process, and instead use standardized laboratory tests. The purpose of this presentation was to demonstrate how different extraction processes affect the fine tailings geotechnical properties and water chemistry. Properties that were characterized included particle size analysis from hydrometer-sieve tests; per cent clay from methylene blue tests; per cent clay from mineralogy tests; Atterberg limits; water chemistry; and morphology by scanning electron microscopy. The presentation discussed the origin of fines (silt and clay) in tailings; where fine particles come from; tailings materials; mineralogy of tailings; the hydrometer-sieve test on fine tailings and thickened tailings; and the methylene blue test. It was concluded that the great majority of clay minerals in the tailings come from the clay-shale discontinuous seams and layers. For thickened tailings, the dispersed and non-dispersed hydrometer tests show considerable difference in the amount of clay size material. tabs., figs.

  17. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  18. Evolution of supercritical fluid in deeply subducted continental crust: a case study of composite granite-quartz veins in the Sulu belt, China

    Science.gov (United States)

    Wang, S.; Wang, L.; Brown, M.

    2016-12-01

    crystallized as the composite veins. Thus, these vein systems provide information critical to understanding the evolution of supercritical fluid during exhumation and the partitioning of elements between hydrous granite and aqueous fluid. These data inform our understanding of crust-mantle interactions in continental subduction zones.

  19. Characterising the continental crust factory: new insights into the roots of an island arc from Hf isotopes in rutile (Kohistan complex, Pakistan)

    Science.gov (United States)

    Ewing, Tanya; Müntener, Othmar; Schaltegger, Urs

    2017-04-01

    Island arcs are one of the primary sites of generation of new continental crust. As such, a question of fundamental importance to models of continental growth is to what extent island arc magmas are strictly juvenile melts derived directly from the mantle, versus potentially incorporating a significant recycled continental component, for example from subducted sediment. The Kohistan complex (northeastern Pakistan) preserves a remarkably complete ˜50 km thick cross-section through an exhumed Jurassic-Cretaceous island arc. It affords a rare opportunity to study the evolution of island arc magmatism from subduction initiation, through intra-oceanic subduction, to arc-continent collision. In this study, we investigate the ultramafic-mafic Jijal Complex, which preserves part of the plutonic roots of the Kohistan complex formed over ˜20 Ma of intra-oceanic subduction. The Jijal Complex is volumetrically dominated by ultramafic rocks and garnet-bearing gabbros whose petrogenesis is controversial. Garnet formation has variously been attributed a prograde metamorphic origin1, a magmatic origin recording crystallisation at high pressures2,3, or a restitic origin following partial melting4. We have characterised the source of the Jijal Complex using in situ LA-MC-ICPMS determination of the Hf isotope composition of rutile from garnet gabbros, which are zircon-free. This work exploits the superior sensitivity of the Neptune Plus, coupled with an improved analytical protocol, to improve precision of this novel technique and permit in situ analysis of rutile with only ˜10-30 ppm Hf. Rutile occurs included in early-formed minerals such as clinopyroxene and garnet, indicating crystallisation at high pressures and temperatures. Rutile from all samples, collected across ˜3 km of former crustal depth, has indistinguishable Hf isotope compositions close to depleted mantle values. Integrating the new Hf isotope data for rutile with previously published whole rock Nd-Sr isotope

  20. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime

    Science.gov (United States)

    Li, Yu; Xu, Wen-Liang; Tang, Jie; Pei, Fu-Ping; Wang, Feng; Sun, Chen-Yang

    2018-04-01

    This study presents new zircon U-Pb-Hf and whole-rock geochemical data for intrusive rocks in the Xing'an Massif of NE China, with the aim of furthering our understanding of the evolution and spatial influence of the Mongol-Okhotsk tectonic regime. Zircon U-Pb dating indicates that five stages of Mesozoic magmatism are recorded in the Xing'an Massif, namely during the Middle Triassic ( 237 Ma), the Late Triassic ( 225 Ma), the Early Jurassic ( 178 Ma), the Middle Jurassic ( 168 Ma), and the late Early Cretaceous ( 130 Ma). The Middle Triassic-Early Jurassic intrusive rocks in the Xing'an Massif are dominantly granodiorites, monzogranites, and syenogranites that formed from magma generated by partial melting of newly accreted continental crust. Geochemistry of the Middle Triassic-Early Jurassic granitoid suites of the Xing'an Massif indicates their formation at an active continental margin setting, related to the southwards subduction of the Mongol-Okhotsk oceanic plate. The Middle Jurassic monzogranites in the Xing'an Massif are geochemically similar to adakites and have εHf(t) values (+3.8 to +5.8) and Hf two-stage model ages (TDM2; 979-850 Ma) that are indicative of derivation from magma generated by partial melting of thickened juvenile lower crust. The Middle Jurassic monzogranites formed in a compressional setting related to the closure of the Mongol-Okhotsk Ocean. The late Early Cretaceous intrusive rocks in the Xing'an Massif are dominated by A-type granitoids that are associated with bimodal volcanic rocks, suggesting their formation in an extensional environment related to either (i) delamination of a previously thickened region of the crust, associated with the Mongol-Okhotsk tectonic regime; (ii) the subduction of the Paleo-Pacific Plate; or (iii) the combined influence of these two tectonic regimes.

  1. Studies of food thickeners in Nigeria for contamination by ...

    African Journals Online (AJOL)

    Jane

    2011-08-10

    Aug 10, 2011 ... Food thickeners or thickening agents are used in food to absorb the fluid of the ... used in beverages, gravies, sauces and stews. The use of food ... Furthermore, it has also not been possible to develop effective management.

  2. A Thermal Evolution Model of the Earth Including the Biosphere, Continental Growth and Mantle Hydration

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2014-12-01

    By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the

  3. Crust and upper mantle structure in the Caribbean region by group velocity tomography and regionalization

    International Nuclear Information System (INIS)

    O'Leary, Gonzalez; Alvarez, L.; Chimera, G.; Panza, G.F.

    2004-04-01

    An overview of the crust and upper mantle structure of the Central America and Caribbean region is presented as a result of the processing of more than 200 seismograms recorded by digital broadband stations from SSSN and GSN seismic networks. By FTAN analysis of the fundamental mode of the Rayleigh waves, group velocity dispersion curves are obtained in the period range from 10 s to 40 s; the error of these measurements varies from 0.06 and 0.10 km/s. From the dispersion curves, seven tomographic maps at different periods and with average spatial resolution of 500 km are obtained. Using the logical combinatorial classification techniques, eight main groups of dispersion curves are determined from the tomographic maps and eleven main regions, each one characterized by one kind of dispersion curves, are identified. The average dispersion curves obtained for each region are extended to 150 s by adding data from the tomographic study of and inverted using a non-linear procedure. As a result of the inversion process, a set of models of the S-wave velocity vs. depth in the crust and upper mantle are found. In six regions, we identify a typically oceanic crust and upper mantle structure, while in the other two the models are consistent with the presence of a continental structure. Two regions, located over the major geological zones of the accretionary crust of the Caribbean region, are characterized by a peculiar crust and upper mantle structure, indicating the presence of lithospheric roots reaching, at least, about 200 km of depth. (author)

  4. A reconnaissance view of tungsten reservoirs in some crustal and mantle rocks: Implications for interpreting W isotopic compositions and crust-mantle W cycling

    Science.gov (United States)

    Liu, Jingao; Pearson, D. Graham; Chacko, Thomas; Luo, Yan

    2018-02-01

    their significance for crust-mantle HFSE and siderophile element budgets - to be tested in future studies. The significant concentration of W, as well as Nb and Ta hosted in rutile and titanite has interesting implications for the budget of W during crust-mantle recycling. Crust-mantle recycling models invoking the recycling of rutile-bearing eclogites to satisfy the mantle Nb/Ta ratio carry the penalty that the very high W/U and W/Th ratios of these rocks results in a concomitant large deviation from the primitive mantle-like ratios estimated for bulk continental crust. Similarly, data from the single amphibolite sample investigated in this study are inconsistent with models implicating the partial melting of amphibolite-bearing subducted slabs as a major process for formation of continental crust in the Earth's early history. Either the current widely accepted estimates for bulk continental crust W/U and W/Th ratios are in error, or partial melting or other processes lowers the W/U or W/Th of melt residues during their return to the mantle. The present small dataset cannot properly evaluate this, requiring further investigation. Finally, the lithospheric mantle has the potential to store substantial amounts of W, for example via infiltration by W-rich melts/fluids, and thus may act as a source for W mineralization in the crust.

  5. Impacts of continental arcs on global carbon cycling and climate

    Science.gov (United States)

    Lee, C. T.; Jiang, H.; Carter, L.; Dasgupta, R.; Cao, W.; Lackey, J. S.; Lenardic, A.; Barnes, J.; McKenzie, R.

    2017-12-01

    On myr timescales, climatic variability is tied to variations in atmospheric CO2, which in turn is driven by geologic sources of CO2 and modulated by the efficiency of chemical weathering and carbonate precipitation (sinks). Long-term variability in CO2 has largely been attributed to changes in mid-ocean ridge inputs or the efficiency of global weathering. For example, the Cretaceous greenhouse is thought to be related to enhanced oceanic crust production, while the late Cenozoic icehouse is attributed to enhanced chemical weathering associated with the Himalayan orogeny. Here, we show that continental arcs may play a more important role in controlling climate, both in terms of sources and sinks. Continental arcs differ from island arcs and mid-ocean ridges in that the continental plate through which arc magmas pass may contain large amounts of sedimentary carbonate, accumulated over the history of the continent. Interaction of arc magmas with crustal carbonates via assimilation, reaction or heating can significantly add to the mantle-sourced CO2 flux. Detrital zircons and global mapping of basement rocks shows that the length of continental arcs in the Cretaceous was more than twice that in the mid-Cenozoic; maps also show many of these arcs intersected crustal carbonates. The increased length of continental arc magmatism coincided with increased oceanic spreading rates, placing convergent margins into compression, which favors continental arcs. Around 50 Ma, however, nearly all the continental arcs in Eurasia and North America terminated as India collided with Eurasia and the western Pacific rolled back, initiating the Marianas-Tonga-Kermadec intra-oceanic subduction complex and possibly leading to a decrease in global CO2 production. Meanwhile, extinct continental arcs continued to erode, resulting in regionally enhanced chemical weathering unsupported by magmatic fluxes of CO2. Continental arcs, during their magmatic lifetimes, are thus a source of CO2, driving

  6. CENOZOIC CONTINENTAL RIFTING SYMPOSIUM DEDICATED TO THE MEMORY OF ACADEMICIAN N.A. LOGATCHEV, IRKUTSK, RUSSIA, JUNE 7–11, 2010

    Directory of Open Access Journals (Sweden)

    Eugene V. Sklyarov

    2010-01-01

    Full Text Available The information on the «Cenozoic Continental Rifting» Symposium dedicated to the memory of Academician N.A. Logachev is presented. It was held on June 7–11, 2010 at the Institute of the Earth’s Crust, Irkutsk. The scope of conference is presented.

  7. Serpentinization and carbonation of pristine continental ultramafic rocks and applications to the oceanic crust; H2O-CO2 alteration of dunites and re-distribution of Ni-Cu-PGE in sulphide deposits

    Science.gov (United States)

    Grant, Thomas; McEnroe, Suzanne; Eske Sørensen, Bjørn; Larsen, Rune; Pastore, Zeudia; Rune Grannes, Kim; Nikolaisen, Even

    2017-04-01

    Here, we document carbonation and serpentinization within a suite of ultramafic rocks from a continental setting. These ultramafic rocks vary from pristine dunites to varying degrees of serpentinization which locally penetrates the ultramafic complex. Hence, it allows us to observe a number of delicate serpentinization and carbonation reactions, otherwise lost during more extensive alteration or tectonic events. We use a multi-disciplinary approach using petrographic, EPMA, thermodynamic modelling and geophysical data to reveal how the initial stages of serpentization and carbonation in dunites affects the distribution of economic to sub-economic deposits of Ni-Cu and PGE. The data can then be applied to oceanic crust. The samples are dunites and poikilitic wehrlites from the Reinfjord Ultramafic complex, Seiland Igneous Province Northern Norway. The complex formed through crystallization of picritic melts in the lower continental crust. The dunites contain small amounts of interstitial clinopyroxene, sulphides and spinel, with local enrichments in Ni, Cu and PGE. Late magmatic CO2-H2O-S fluids reacted with the dunite forming clots of amphibole + dolomite + sulphides + enstatite, reaction rims of enstatite + dolomite, and inclusions trails of dolomite + enstatite + magnetite + CO2 fluid. Thermodynamic modelling reveals that these textures formed at pressures of >12 kbar and temperatures 850-950 °C, which would be consistent with the late magmatic history of the Reinfjord complex. The clots and reactions have local association with enrichments in gold-rich PGMs. A second stage of alteration involved H2O-dominated fluids. These formed predominantly lizardite serpentinization, as is often concentrated within highly localized fracture zones. Thermodynamic modelling shows that these formed serpentinization interacted with the earlier formed carbonate bearing assemblages leading to the formation of serpentinite, native copper and symplectites of brucite + calcite. The

  8. The Measurement of Thickened Liquids Used for the Management of Dysphagia

    Science.gov (United States)

    Nicholson, T. M.; Torley, P. J.; Cichero, J. A. Y.

    2008-07-01

    Dysphagia is a condition where a person has difficulty in swallowing. This can lead to reduced dietary intake, dehydration and malnutrition and also aspiration of material into the lungs and asphyxiation. Using thickened fluids slow the act of swallowing and by doing so enhance safe swallowing. A common method of thickening drinks is to use a powdered thickener, but this can lead to problems in ensuring that the consistency of the degree of thickening appropriate to an individual is maintained by those making up the fiuids. There is also no assurance that the thickness of thickened liquids is consistent across commercial manufacturers. In this field viscosity is typically measured using a Line Spread Test, with the resulting viscosities being described by such terms as nectar- honey- or pudding-thick. This test is prone to many variations in operating conditions and so cannot provide accurate reproducible data. In this paper we have used conventional rheology (dynamic oscillatory using a couette cell) to provide quantitative measurement of the development in thickness of various beverages as a function of time. It was found fruit juices typically required less thickener and milk more to achieve the same thickness, but that the degree of thickening varied non-linearly with addition level.

  9. Biological Soil Crust Web Site

    Science.gov (United States)

    www.soilcrust.org Crust 101 Advanced Gallery References CCERS site Links Biological Soil Crusts Textbook Corrections Level of Development Index Biological soil crusts are the community of organisms , mosses, liverworts and lichens. A Field Guide to Biological Soil Crusts of Western U.S. Drylands: Common

  10. Significance of appendiceal thickening in association with typhlitis in pediatric oncology patients

    International Nuclear Information System (INIS)

    McCarville, M.B.; Thompson, J.; Adelman, C.S.; Lee, M.O.; Li, C.; Alsammarae, D.; Rao, B.N.; May, M.V.; Jones, S.C.; Sandlund, J.T.

    2004-01-01

    Background: The management of pediatric oncology patients with imaging evidence of appendiceal thickening is complex because they are generally poor surgical candidates and often have confounding clinical findings. Objective: We sought to determine the significance of appendiceal thickening in pediatric oncology patients who also had typhlitis. Specifically, we evaluated the impact of this finding on the duration of typhlitis, its clinical management, and outcome. Materials and methods: From a previous review of the management of typhlitis in 90 children with cancer at our institution, we identified 4 with imaging evidence of appendiceal thickening. We compared colonic wall measurements, duration of typhlitis symptoms, management, and outcome of patients with appendiceal thickening and typhlitis to patients with typhlitis alone. Results: There was no significant difference in duration of typhlitis symptoms between patients with typhlitis only (15.6 ± 1.2 days) and those with typhlitis and appendiceal thickening (14.5 ± 5.8 days; P = 0.9). Two patients with appendiceal thickening required surgical treatment for ischemic bowel, and two were treated medically. Only one patient in the typhlitis without appendiceal thickening group required surgical intervention. There were no deaths in children with appendiceal thickening; two patients died of complications of typhlitis alone. (orig.)

  11. Geodynamic control of the chemical composition of Tertiary continental arc magmas of Ecuador?

    International Nuclear Information System (INIS)

    Chiaradia, M.; Fontbote, L

    2001-01-01

    Whereas an abundant literature has been produced on the Tertiary magmatism of the Central Andes, no comparable studies exist for the Tertiary continental magmatism of the Northern Andes in general and of Ecuador in particular. In this contribution we present the first extensive data on lead and strontium isotopes of Paleocene to Pliocene magmatic rocks of Ecuador together with their major, trace and rare earth element geochemistry. The main interest of carrying out a geochemical and isotopic investigation on the magmatism of Ecuador is that, different from the Central Andes, Ecuador consists of several accreted terranes both of continental and oceanic affinity. The fragmented nature of the recently assembled crust of Ecuador, composed of lithologies such as Paleozoic schists, Triassic anatexites, and Jurassic metabasalts, could have variably affected the chemistry of the Ecuadorian magmas (au)

  12. Rheometry-PIV of shear-thickening wormlike micelles.

    Science.gov (United States)

    Marín-Santibañez, Benjamín M; Pérez-Gonzalez, José; de Vargas, Lourdes; Rodríguez-Gonzalez, Francisco; Huelsz, Guadalupe

    2006-04-25

    The shear-thickening behavior of an equimolar semidilute aqueous solution of 40 mM/L cetylpyridinium chloride and sodium salicylate was studied in this work by using a combined method of rheometry and particle image velocimetry (PIV). Experiments were conducted at 27.5 degrees C with Couette, vane-bob, and capillary rheometers in order to explore a wide shear stress range as well as the effect of boundary conditions and time of flow on the creation and destruction of shear-induced structures (SIS). The use of the combined method of capillary rheometry with PIV allowed the detection of fast spatial and temporal variations in the flow kinematics, which are related to the shear-thickening behavior and the dynamics of the SIS but are not distinguished by pure rheometrical measurements. A rich-in-details flow curve was found for this solution, which includes five different regimes. Namely, at very low shear rates a Newtonian behavior was found, followed by a shear thinning one in the second regime. In the third, shear banding was observed, which served as a precursor of the SIS and shear-thickening. The fourth and fifth regimes in the flow curve were separated by a spurtlike behavior, and they clearly evidenced the existence of shear-thickening accompanied by stick-slip oscillations at the wall of the rheometer, which subsequently produced variations in the shear rate under shear stress controlled flow. Such a stick-slip phenomenon prevailed up to the highest shear stresses used in this work and was reflected in asymmetric velocity profiles with spatial and temporal variations linked to the dynamics of creation and breakage of the SIS. The presence of apparent slip at the wall of the rheometer provides an energy release mechanism which leads to breakage of the SIS, followed by their further reformation during the stick part of the cycles. In addition, PIV measurements allowed the detection of apparent slip at the wall, as well as mechanical failures in the bulk of the

  13. Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions

    Science.gov (United States)

    Tokam, Alain-Pierre K.; Tabod, Charles T.; Nyblade, Andrew A.; Julià, Jordi; Wiens, Douglas A.; Pasyanos, Michael E.

    2010-11-01

    The Cameroon Volcanic Line (CVL) consists of a linear chain of Tertiary to Recent, generally alkaline, volcanoes that do not exhibit an age progression. Here we study crustal structure beneath the CVL and adjacent regions in Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broad-band seismic stations deployed between 2005 January and 2007 February. We find that (1) crustal thickness (35-39km) and velocity structure is similar beneath the CVL and the Pan African Oubanguides Belt to the south of the CVL, (2) crust is thicker (43-48km) under the northern margin of the Congo Craton and is characterized by shear wave velocities >=4.0kms-1 in its lower part and (3) crust is thinner (26-31km) under the Garoua rift and the coastal plain. In addition, a fast velocity layer (Vs of 3.6-3.8kms-1) in the upper crust is found beneath many of the seismic stations. Crustal structure beneath the CVL and the Oubanguides Belt is very similar to Pan African crustal structure in the Mozambique Belt, and therefore it appears not to have been modified significantly by the magmatic activity associated with the CVL. The crust beneath the coastal plain was probably thinned during the opening of the southern Atlantic Ocean, while the crust beneath the Garoua rift was likely thinned during the formation of the Benue Trough in the early Cretaceous. We suggest that the thickened crust and the thick mafic lower crustal layer beneath the northern margin of the Congo Craton may be relict features from a continent-continent collision along this margin during the formation of Gondwana.

  14. Computer-aided detection of bladder wall thickening in CT urography (CTU)

    Science.gov (United States)

    Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon Z.; Gordon, Marshall N.; Samala, Ravi K.

    2018-02-01

    We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). Bladder wall thickening is a manifestation of bladder cancer and its detection is more challenging than the detection of bladder masses. We first segmented the inner and outer bladder walls using our method that combined deep-learning convolutional neural network with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensity-projection-based method. The non-contrast region was smoothed and gray level threshold was applied to the contrast and non-contrast regions separately to extract the bladder wall and potential lesions. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify regions of wall thickening candidates. Volume-based features of the wall thickening candidates were analyzed with linear discriminant analysis (LDA) to differentiate bladder wall thickenings from false positives. A data set of 112 patients, 87 with wall thickening and 25 with normal bladders, was collected retrospectively with IRB approval, and split into independent training and test sets. Of the 57 training cases, 44 had bladder wall thickening and 13 were normal. Of the 55 test cases, 43 had wall thickening and 12 were normal. The LDA classifier was trained with the training set and evaluated with the test set. FROC analysis showed that the system achieved sensitivities of 93.2% and 88.4% for the training and test sets, respectively, at 0.5 FPs/case.

  15. New Insight Into The Crustal Structure of The Continental Margin Off NW Sabah/borneo

    Science.gov (United States)

    Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.

    The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere. We found evidence that the continental crust also underlies the continental slope land- ward of the Trough, a fact that raises many questions about the tectonic history and development of this margin. The characteristic pattern of rotated fault blocks and half grabens and the carbon- ates which are observed all over the Dangerous Grounds can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anoma- lies. We suspect that the volcanic activity coincided with the collision of Borneo and the Dangerous Grounds in middle or late Miocene time. The emplacement of an al- lochtonous terrane on top of the extended continental lithosphere could be explained by overthrusting as a result of the collision or it could be related to gravity sliding following a broad uplift of NW Borneo at the same time.

  16. Convergent tectonics and coastal upwelling: a history of the Peru continental margin ( Pacific).

    Science.gov (United States)

    von Huene, Roland E.; Suess, E.; Emeis, K.C.

    1987-01-01

    Late in 1986, scientists on the ODP drillship JOIDES Resolution confirmed that the upper slope of the Peruvian margin consists of continental crust whereas the lower slope comprises an accretionary complex. An intricate history of horizontal and vertical movements can be detected, and the locations of ancient centers of upwelling appear to have varied, partly due to tectonic movements of the margin. In this review of Leg 112, the 3 scientific leaders on this cruise discuss their results. -from Journal Editor

  17. CHIC - Coupling Habitability, Interior and Crust

    Science.gov (United States)

    Noack, Lena; Labbe, Francois; Boiveau, Thomas; Rivoldini, Attilio; Van Hoolst, Tim

    2014-05-01

    We present a new code developed for simulating convection in terrestrial planets and icy moons. The code CHIC is written in Fortran and employs the finite volume method and finite difference method for solving energy, mass and momentum equations in either silicate or icy mantles. The code uses either Cartesian (2D and 3D box) or spherical coordinates (2D cylinder or annulus). It furthermore contains a 1D parametrised model to obtain temperature profiles in specific regions, for example in the iron core or in the silicate mantle (solving only the energy equation). The 2D/3D convection model uses the same input parameters as the 1D model, which allows for comparison of the different models and adaptation of the 1D model, if needed. The code has already been benchmarked for the following aspects: - viscosity-dependent rheology (Blankenbach et al., 1989) - pseudo-plastic deformation (Tosi et al., in preparation phase) - subduction mechanism and plastic deformation (Quinquis et al., in preparation phase) New features that are currently developed and benchmarked include: - compressibility (following King et al., 2009 and Leng and Zhong, 2008) - different melt modules (Plesa et al., in preparation phase) - freezing of an inner core (comparison with GAIA code, Huettig and Stemmer, 2008) - build-up of oceanic and continental crust (Noack et al., in preparation phase) The code represents a useful tool to couple the interior with the surface of a planet (e.g. via build-up and erosion of crust) and it's atmosphere (via outgassing on the one hand and subduction of hydrated crust and carbonates back into the mantle). It will be applied to investigate several factors that might influence the habitability of a terrestrial planet, and will also be used to simulate icy bodies with high-pressure ice phases. References: Blankenbach et al. (1989). A benchmark comparison for mantle convection codes. GJI 98, 23-38. Huettig and Stemmer (2008). Finite volume discretization for dynamic

  18. Initiation of continental accretion: metamorphic conditions

    Science.gov (United States)

    Clement, Conand; Frederic, Mouthereau; Gianreto, Manatschal; Adbeltif, Lahfid

    2017-04-01

    The physical processes involved at the beginning of the continental collision are largely unknown because they are transient and therefore hardly identifiable from the rock record. Despite the importance of key parameters for understanding mountain building processes, especially the formation of deep mountain roots and their impacts on earthquakes nucleation, rock/fluid transfers and oil/gas resources in the continental crust, observations from the earliest collision stages remain fragmentary. Here, we focus on the example of Taiwan, a young and active mountain belt where the transition from oceanic subduction, accretion of the first continental margin to mature collision can be followed in space and time. We present preliminary results and provide key questions regarding the reconstruction of time-pressure-temperature paths of rocks & fluids to allow discriminating between rift-related thermal/rheological inheritance and burial/heating phases during convergence. Previous studies have focused on peak temperatures analyzed by Raman Spectrometry of Carbonaceous Matter from the deeper structural layers exposed in the Central Range of Taiwan. In the pre-rift sediments, these studies reported a positive gradient from West to Est, and values from geothermal gradients (up to 60°C/km) known in the region, and higher temperature closer to the pre-rift units. Cross sections and maps with high resolution peak temperatures are in process as well as pressure estimations to determine how the sediments were metamorphosed. In addition to this work, we report a few inherited temperatures in the 390-570 °C range, indicating recycling of organic matter from metasediments that recorded HT events, likely originated from higher grade metamorphic units of mainland China, which have been eroded and deposited in the post-rift sediments.

  19. DaMaSCUS-CRUST: Dark Matter Simulation Code for Underground Scatterings - Crust Edition

    Science.gov (United States)

    Emken, Timon; Kouvaris, Chris

    2018-03-01

    DaMaSCUS-CRUST determines the critical cross-section for strongly interacting DM for various direct detection experiments systematically and precisely using Monte Carlo simulations of DM trajectories inside the Earth's crust, atmosphere, or any kind of shielding. Above a critical dark matter-nucleus scattering cross section, any terrestrial direct detection experiment loses sensitivity to dark matter, since the Earth crust, atmosphere, and potential shielding layers start to block off the dark matter particles. This critical cross section is commonly determined by describing the average energy loss of the dark matter particles analytically. However, this treatment overestimates the stopping power of the Earth crust; therefore, the obtained bounds should be considered as conservative. DaMaSCUS-CRUST is a modified version of DaMaSCUS (ascl:1706.003) that accounts for shielding effects and returns a precise exclusion band.

  20. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent

    Science.gov (United States)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2017-01-01

    Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.

  1. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    Science.gov (United States)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-04-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  2. The receptor-like kinase AtVRLK1 regulates secondary cell wall thickening.

    Science.gov (United States)

    Huang, Cheng; Zhang, Rui; Gui, Jinshan; Zhong, Yu; Li, Laigeng

    2018-04-20

    During the growth and development of land plants, some specialized cells, such as tracheary elements, undergo secondary cell wall thickening. Secondary cell walls contain additional lignin, compared with primary cell walls, thus providing mechanical strength and potentially improving defenses against pathogens. However, the molecular mechanisms that initiate wall thickening are unknown. In this study, we identified an Arabidopsis thaliana leucine-rich repeat receptor-like kinase, encoded by AtVRLK1 (Vascular-Related RLK 1), that is specifically expressed in cells undergoing secondary cell wall thickening. Suppression of AtVRLK1expression resulted in a range of phenotypes that included retarded early elongation of the inflorescence stem, shorter fibers, slower root growth, and shorter flower filaments. In contrast, upregulation of AtVRLK1 led to longer fiber cells, reduced secondary cell wall thickening in fiber and vessel cells, and defects in anther dehiscence. Molecular and cellular analyses showed that downregulation of AtVRLK1 promoted secondary cell wall thickening and upregulation of AtVRLK1 enhanced cell elongation and inhibited secondary cell wall thickening. We propose that AtVRLK1 functions as a signaling component in coordinating cell elongation and cell wall thickening during growth and development. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  3. Lead isotope evolution across the Neoproterozoic boundary between craton and juvenile crust, Bayuda Desert, Sudan

    Science.gov (United States)

    Evuk, David; Lucassen, Friedrich; Franz, Gerhard

    2017-11-01

    Metaigneous mafic and ultramafic rocks from the juvenile Neoproterozoic Arabian Nubian Shield (ANS) and the Proterozoic, reworked Saharan Metacraton (SMC) have been analysed for major- and trace elements and Sr, Nd, and Pb isotopes. Most of the rocks are amphibolites metamorphosed at amphibolite facies conditions, some with relicts of a granulite facies stage. The other rocks are metapyroxenites, metagabbros, and some ultramafic rocks. Trace element compositions of the metabasaltic (dominantly tholeiitic) rocks resemble the patterns of island arcs and primitive lavas from continental arcs. Variable Sr and Nd isotope ratios indicate depleted mantle dominance for most of the samples. 207Pb/204Pb signatures distinguish between the influence of high 207Pb/204Pb old SMC crust and depleted mantle signatures of the juvenile ANS crust. The Pb isotope signatures for most metabasaltic rocks, metapyroxenites and metagabbros from SMC indicate an autochthonous formation. The interpretation of the new data together with published evidence from mafic xenoliths on SMC and ophiolite from ANS allows an extrapolation of mantle evolution in time. There are two lines of evolution in the regional mantle, one, which incorporates potential upper crust material during Neoproterozoic, and a second one with a depleted mantle signature since pre-Neoproterozoic that still is present in the Red Sea and Gulf of Aden spreading centres.

  4. Simulation of shear thickening in attractive colloidal suspensions.

    Science.gov (United States)

    Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F

    2017-03-01

    The influence of attractive forces between particles under conditions of large particle volume fraction, ϕ, is addressed using numerical simulations which account for hydrodynamic, Brownian, conservative and frictional contact forces. The focus is on conditions for which a significant increase in the apparent viscosity at small shear rates, and possibly the development of a yield stress, is observed. The high shear rate behavior for Brownian suspensions has been shown in recent work [R. Mari, R. Seto, J. F. Morris and M. M. Denn PNAS, 2015, 112, 15326-15330] to be captured by the inclusion of pairwise forces of two forms, one a contact frictional interaction and the second a repulsive force often found in stabilized colloidal dispersions. Under such conditions, shear thickening is observed when shear stress is comparable to the sum of the Brownian stress, kT/a 3 , and a characteristic stress based on the combination of interparticle force, i.e. σ ∼ F 0 /a 2 with kT the thermal energy, F 0 the repulsive force scale and a the particle radius. At sufficiently large ϕ, this shear thickening can be very abrupt. Here it is shown that when attractive interactions are present with the noted forces, the shear thickening is obscured, as the viscosity shear thins with increasing shear rate, eventually descending from an infinite value (yield stress conditions) to a plateau at large stress; this plateau is at the same level as the large-shear rate viscosity found in the shear thickened state without attractive forces. It is shown that this behavior is consistent with prior observations in shear thickening suspensions modified to be attractive through depletion flocculation [V. Gopalakrishnan and C. F. Zukoski J. Rheol., 2004, 48, 1321-1344]. The contributions of the contact, attractive, and hydrodynamics forces to the bulk stress are presented, as are the contact networks found at different attractive strengths.

  5. Continental breakup by oblique extension: the Gulf of California

    Science.gov (United States)

    van Wijk, J.; Axen, G. J.

    2017-12-01

    We address two aspects of oblique extension: 1) the evolution of pull-apart basins, and how/when they may evolve into seafloor spreading segments; and 2) the formation of microcontinents. The Gulf of California formed by oblique extension. Breakup resulted in oceanic crust generation in the southern and central parts, while in the northern Gulf/Salton Trough a thick layer of (meta-)sediments overlies thinned continental crust. We propose a simple mechanism to explain this N-S variation. We assume that oblique rifting of the proto-Gulf province resulted in pull-apart basins, and use numerical models to show that such pull-apart basins do not develop into seafloor spreading segments when their length-to-width ratios are small, as is the case in the northern Gulf. In the central and southern Gulf the length-to-width ratios were larger, promoting continent rupture. The mechanisms behind this fate of pull-apart basins will be discussed in the presentation. In the southern Gulf, potential field models show that the Tamayo Bank in the southern Gulf is likely a microcontinent, separated from the main continent by the Tamayo trough. The thickness of the ocean crust in the Tamayo trough is anomalously small, suggesting that initial seafloor spreading was magma-starved and unsuccessful, causing the location of rifting and seafloor spreading to jump. As a consequence a sliver of continent broke off, forming the microcontinent. We suggest that worldwide this may be a common process for microcontinent formation.

  6. Sensory texture analysis of thickened liquids during ingestion.

    Science.gov (United States)

    Chambers, Edgar; Jenkins, Alicia; Mertz Garcia, Jane

    2017-12-01

    Practitioners support the use of thickened liquids for many patients with disordered swallowing. Although physical measures have highlighted differences among products there are questions about the ability of the measures to fully explain the sensory texture effects during swallowing of thickened liquids. This study used a trained sensory panel to describe the textural aspects of liquids during ingestion and swallowing. The lexicon was able to characterize differences in beverages, thickeners, and thickness levels with the most important attribute being viscosity, which loaded heavily in the almost one-dimensional space that resulted from the sensory analysis of these beverages. Other effects, such as slipperiness provided some minimal additional information on the products. Trained sensory panelists were shown to be useful in the measurement of differences in thickened liquid products prescribed for patients with dysphagia. They were able to differentiate products based on perceived differences related to flow speed, viscosity, and other parameters suggesting their use in further studies of swallowing behavior and for development of products for disordered swallowing should be considered. Understanding how these variables might relate to clinical decision making about product selection or modification to best meet the nutritional needs of a person with disordered swallowing could be helpful. This is especially true given the difficulties in measuring texture instrumentally in these products. © 2017 Wiley Periodicals, Inc.

  7. Viscosity of Dysphagia-Oriented Cold-Thickened Beverages: Effect of Setting Time at Refrigeration Temperature

    Science.gov (United States)

    Kim, Sung-Gun; Yoo, Byoungseung

    2015-01-01

    Background: Although extensive literature is available on the viscosity of thickened beverages with food thickeners, no attempt has been made to study the effect of setting time on the viscosity of pudding-like cold-thickened beverages with xanthan gum (XG)-based thickeners by using a rheometer. In particular, it is of considerable practical…

  8. Breast disease with skin thickening: differential diagnosis with mammography and ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Rok; Kim, Hak Hee; Cha, Eun Suk; Park, Hye Seong; Kim, Ki Tae; Shinn, Kyung Sub [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    1999-02-01

    Diffuse skin thickening of the breast is produced by lymphedema usually secondary to obstruction of the axillary lymphatics. On physical examination, the affected breast is, due to increased fluid content, larger, heavier, and of higher overall density. Mammography reveals an increased coarse reticular pattern. Thickening of the skin can have many causes. It may be a result of tumor invasion or a tumor in the dermal lymphatics ; or because of lymphatic congestion through obstruction of lymphatic drainage within the breast, in the axilla, or centrally in the mediastinum. Further causes may be congestive heart failure, benign inflammation, primary skin processes such as psoriasis, or systemic diseases which involve the skin. Mammographic appearance is known to be nonspecific. Ultrasound can demonstrate skin thickening directly, but despite some reports suggesting that the cause of skin thickening can be inferred from the results of ultrasound, this is not usually of practical importance. The purpose of this study is to review the causes of skin thickening of the breast and to use mammography and US to differentiate the causes.

  9. A Comparison of the Viscosities of Thickened Liquids for Pediatric Dysphagia.

    Science.gov (United States)

    Wijesinghe, Ranjith; Clifton, Mekale; Tarlton, Morgan; Heinsohn, Erica; Ewing, Mary

    It has been reported that Speech Language Pathologists in different facilities across the nation use a variety of thickening agents and recipes as therapeutic measures for infants and children diagnosed with dysphagia. Limited research has been completed in this area. Viscosity was tested to determine the thickness of each thickening agent mixed with infant formula. The values were then compared to the National Dysphagia Diet liquid levels to determine which thickening agent resulted in the desired viscosity levels. The thickeners were mixed with common infant formulas and soy formulas to determine if the type of formula impacted the viscosity. The main goal was to determine if the assumed thickness level (viscosity) of prescribed thickened liquids was actually being met. This topic is of high concern because of its impact on the safety and well-being of clients with dysphagia. A viscometer was used to collect the viscosity levels. Commercially available formulas selected for this study. The final results of our investigation will be presented during the APS meeting. This work is supported by a Ball State University Immersive Learning Grant.

  10. Shear thickening behavior of nanoparticle suspensions with carbon nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Xiaofei; Yu, Kejing, E-mail: yukejing@gmail.com; Cao, Haijian; Qian, Kun [Ministry of Education, Jiangnan University, Key Laboratory of Eco-textiles (China)

    2013-07-15

    Suspensions comprised of silica nanoparticle (average diameter: 650 nm) and carbon nanofillers dispersed in polyethylene glycol were prepared and investigated. Rheological measurement demonstrated that the mixed suspensions showed a non-Newtonian flow profile, and the shear thickening effect was enhanced by the addition of carbon nanotubes (CNTs) (main range of diameter: 10-20 nm; length: 5-15 {mu}m; purity: >97 wt%) and graphene nanoplatelets (GNs) (average diameter: >50 nm; average length: 20 {mu}m; purity: >92 wt%). It suggested that better the aggregation effect of dispersed particles was, the more significant the shear thickening effect achieved. The results also revealed that the formation of large nanomaterials clusters could be suitable to explain the phenomena. Furthermore, the trend of shear thickening behavior of the silica suspension with CNTs was more striking than that of GNs. The physical reactions between those multi-dispersed phases had been described by the schematic illustrations in papers. Otherwise, a model was built to explain these behaviors, which could be attributed to the unique structures and inherent properties of these two different nanofillers. And the morphologies of the shear thickening fluid which were examined by transmission electron microscopy confirmed this mechanism.

  11. Seismic imaging of lithospheric discontinuities and continental evolution

    Science.gov (United States)

    Bostock, M. G.

    1999-09-01

    Discontinuities in physical properties within the continental lithosphere reflect a range of processes that have contributed to craton stabilization and evolution. A survey of recent seismological studies concerning lithospheric discontinuities is made in an attempt to document their essential characteristics. Results from long-period seismology are inconsistent with the presence of continuous, laterally invariant, isotropic boundaries within the upper mantle at the global scale. At regional scales, two well-defined interfaces termed H (˜60 km depth) and L (˜200 km depth) of continental affinity are identified, with the latter boundary generally exhibiting an anisotropic character. Long-range refraction profiles are frequently characterized by subcontinental mantle that exhibits a complex stratification within the top 200 km. The shallow layering of this package can behave as an imperfect waveguide giving rise to the so-called teleseismic Pn phase, while the L-discontinuity may define its lower base as the culmination of a low velocity zone. High-resolution, seismic reflection profiling provides sufficient detail in a number of cases to document the merging of mantle interfaces into lower continental crust below former collisional sutures and magmatic arcs, thus unambiguously identifying some lithospheric discontinuities with thrust faults and subducted oceanic lithosphere. Collectively, these and other seismic observations point to a continental lithosphere whose internal structure is dominated by a laterally variable, subhorizontal layering. This stratigraphy appears to be more pronounced at shallower lithospheric levels, includes dense, anisotropic layers of order 10 km in thickness, and exhibits horizontal correlation lengths comparable to the lateral dimensions of overlying crustal blocks. A model of craton evolution which relies on shallow subduction as a principal agent of craton stabilization is shown to be broadly compatible with these characteristics.

  12. Synthesis and Evaluation of CO2 Thickeners Designed with Molecular Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Robert Enick; Erick Beckman; J. Karl Johnson

    2009-08-31

    The objective of this research was to use molecular modeling techniques, coupled with our prior experimental results, to design, synthesize and evaluate inexpensive, non-fluorous carbon dioxide thickening agents. The first type of thickener that was considered was associating polymers. Typically, these thickeners are copolymers that contain a highly CO{sub 2}-philic monomer, and a small concentration of a CO{sub 2}-phobic associating monomer. Yale University was solely responsible for the synthesis of a second type of thickener; small, hydrogen bonding compounds. These molecules have a core that contains one or more hydrogen-bonding groups, such as urea or amide groups. Non-fluorous, CO{sub 2}-philic functional groups were attached to the hydrogen bonding core of the compound to impart CO{sub 2} stability and macromolecular stability to the linear 'stack' of these compounds. The third type of compound initially considered for this investigation was CO{sub 2}-soluble surfactants. These surfactants contain conventional ionic head groups and composed of CO{sub 2}-philic oligomers (short polymers) or small compounds (sugar acetates) previously identified by our research team. Mobility reduction could occur as these surfactant solutions contacted reservoir brine and formed mobility control foams in-situ. The vast majority of the work conducted in this study was devoted to the copolymeric thickeners and the small hydrogen-bonding thickeners; these thickeners were intended to dissolve completely in CO{sub 2} and increase the fluid viscosity. A small but important amount of work was done establishing the groundwork for CO{sub 2}-soluble surfactants that reduced mobility by generating foams in-situ as the CO{sub 2}+surfactant solution mixed with in-situ brine.

  13. On causal links between flood basalts and continental breakup

    Science.gov (United States)

    Courtillot, V.; Jaupart, C.; Manighetti, I.; Tapponnier, P.; Besse, J.

    1999-03-01

    Temporal coincidence between continental flood basalts and breakup has been noted for almost three decades. Eight major continental flood basalts have been produced over the last 300 Ma. The most recent, the Ethiopian traps, erupted in about 1 Myr at 30 Ma. Rifting in the Red Sea and Gulf of Aden, and possibly East African rift started at about the same time. A second trap-like episode occurred around 2 Ma and formation of true oceanic crust is due in the next few Myr. We find similar relationships for the 60 Ma Greenland traps and opening of the North Atlantic, 65 Ma Deccan traps and opening of the NW Indian Ocean, 132 Ma Parana traps and South Atlantic, 184 Ma Karoo traps and SW Indian Ocean, and 200 Ma Central Atlantic Margin flood basalts and opening of the Central Atlantic Ocean. The 250 Ma Siberian and 258 Ma Emeishan traps seem to correlate with major, if aborted, phases of rifting. Rifting asymmetry, apparent triple junctions and rift propagation (towards the flood basalt area) are common features that may, together with the relative timings of flood basalt, seaward dipping reflector and oceanic crust production, depend on a number of plume- and lithosphere- related factors. We propose a mixed scenario of `active/passive' rifting to account for these observations. In all cases, an active component (a plume and resulting flood basalt) is a pre-requisite for the breakup of a major oceanic basin. But rifting must be allowed by plate-boundary forces and is influenced by pre-existing heterogeneities in lithospheric structure. The best example is the Atlantic Ocean, whose large-scale geometry with three large basins was imposed by the impact points of three mantle plumes.

  14. Zircon evidence for incorporation of terrigenous sediments into the magma source of continental basalts.

    Science.gov (United States)

    Xu, Zheng; Zheng, Yong-Fei; Zhao, Zi-Fu

    2018-01-09

    Crustal components may be incorporated into continental basalts by either shallow contamination or deep mixing. While the former proceeds at crustal depths with common preservation of refractory minerals, the latter occurs at mantle depths with rare survival of relict minerals. Discrimination between the two mechanisms has great bearing to subcontinental mantle geochemistry. Here we report the occurrence of relict zircons in Cenozoic continental basalts from eastern China. A combined study of zircon U-Pb ages and geochemistry indicates that detrital zircons were carried by terrigenous sediments into a subcontinental subduction zone, where the zircon were transferred by fluids into the magma sources of continental basalts. The basalts were sampled from three petrotectonic units with distinct differences in their magmatic and metamorphic ages, making the crustal contamination discernible. The terrigenous sediments were carried by the subducting oceanic crust into the asthenospheric mantle, producing both soluble and insoluble materials at the slab-mantle interface. These materials were served as metasomatic agents to react with the overlying mantle wedge peridotite, generating a kind of ultramafic metasomatites that contain the relict zircons. Therefore, the occurrence of relict zircons in continental basalts indicates that this refractory mineral can survive extreme temperature-pressure conditions in the asthenospheric mantle.

  15. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    OpenAIRE

    A. Goswami; P. L. Olson; L. A. Hinnov; A. Gnanadesikan

    2015-01-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in th...

  16. Texture Adaption in Dysphagia: Acceptability Differences Between Thickened and Naturally Thick Beverages.

    Science.gov (United States)

    Gerschke, Marco; Seehafer, Peggy

    The aim of the study was to investigate differences in the acceptability between thickened and naturally viscous beverages. This was an exploratory, cross-sectional study. One hundred twenty-eight healthy volunteers rated overall liking/disliking of a selection of each of three thickened drinks and three beverages of natural viscosity pre- and postconsumption. Mean ratings were subjected to statistical analysis done with t tests. Although all naturally thick beverages evoked good expectations, there were significant differences in expected acceptance of thickened fluids concerning the kind of beverage. Postconsumption of naturally thick beverages were rated significantly better than thickened. The findings suggest an alternative offer of naturally thick drinks and waiver of thickening water when viscosity adaption is needed. The sufficient and safe oral fluid intake in dysphagia requires compliance to dietetic recommendations. Naturally thick beverages can contribute to increase the appeal of texture-modified diet.

  17. The role of mechanical heterogeneities during continental breakup: a 3D lithospheric-scale modelling approach

    Science.gov (United States)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2015-04-01

    How and why do continents break? More than two decades of analogue and 2D plane-strain numerical experiments have shown that despite the origin of the forces driving extension, the geometry of continental rifts falls into three categories - or modes: narrow rift, wide rift, or core complex. The mode of extension itself is strongly influenced by the rheology (and rheological behaviour) of the modelled layered system. In every model, an initial thermal or mechanical heterogeneity, such as a weak seed or a notch, is imposed to help localise the deformation and avoid uniform stretching of the lithosphere by pure shear. While it is widely accepted that structural inheritance is a key parameter for controlling rift localisation - as implied by the Wilson Cycle - modelling the effect of lithospheric heterogeneities on the long-term tectonic evolution of an extending plate in full 3D remains challenging. Recent progress in finite-element methods applied to computational tectonics along with the improved accessibility to high performance computers, now enable to switch from plane strain thermo-mechanical experiments to full 3D high-resolution experiments. Here we investigate the role of mechanical heterogeneities on rift opening, linkage and propagation during extension of a layered lithospheric systems with pTatin3d, a geodynamics modeling package utilising the material-point-method for tracking material composition, combined with a multigrid finite-element method to solve heterogeneous, incompressible visco-plastic Stokes problems. The initial model setup consists in a box of 1200 km horizontally by 250 km deep. It includes a 35 km layer of continental crust, underlaid by 85 km of sub-continental lithospheric mantle, and an asthenospheric mantle. Crust and mantle have visco-plastic rheologies with a pressure dependent yielding, which includes strain weakening, and a temperature, stress, strain-rate-dependent viscosity based on wet quartzite rheology for the crust, and wet

  18. Distinguishing benign from malignant gallbladder wall thickening using FDG-PET

    International Nuclear Information System (INIS)

    Oe, Ai; Kawabe, Joji; Torii, Kenji

    2006-01-01

    Because thickening of the gallbladder wall is observed not only in patients with gallbladder cancer but also in those with benign diseases such as chronic cholecystitis and gallbladder adenomyosis, it is difficult to distinguish between benign and malignant gallbladder wall thickening by conventional techniques of diagnostic imaging such as computed tomography (CT), magnetic resonance imaging (MRI), and abdominal ultrasonography (US). In the present study, we attempted to distinguish between benign and malignant gallbladder wall thickening by means of fluorine-18-fluorodeoxyglucose (FDG)-Positron emission tomography (PET). FDG-PET was performed in 12 patients with gallbladder wall thickening detected by CT or US, to determine whether it was benign or malignant. Emission scans were taken, beginning 45 minutes after intravenous administration of FDG, and standardized uptake value (SUV) was calculated as an indicator of glucose metabolism. Of the 12 patients, 4 showed positive uptake of FDG in the gallbladder wall. Of these 4 patients, 3 had gallbladder cancer. The remaining one, who had chronic cholecystitis, had false-positive findings. The other 8 patients had negative uptake of FDG in the gallbladder wall. Two of these 8 underwent surgical resection, which yielded a diagnosis of chronic cholecystitis. The other 6 patients exhibited no sign of gallbladder malignancy and have been followed without active treatment. FDG-PET appears able to distinguish between benign and malignant gallbladder wall thickening. (author)

  19. Mid-ocean ridges produced thicker crust in the Jurassic than in Recent times

    Science.gov (United States)

    Van Avendonk, H. J.; Harding, J.; Davis, J. K.; Lawver, L. A.

    2016-12-01

    We present a compilation of published marine seismic refraction data to show that oceanic crust was 1.7 km thicker on average in the mid-Jurassic (170 Ma) than along the present-day mid-ocean ridge system. Plate reconstructions in a fixed hotspot framework show that the thickness of oceanic crust does not correlate with proximity to mantle hotspots, so it is likely that mid-plate volcanism is not the cause of this global trend. We propose that more melt was extracted from the upper mantle beneath mid-ocean ridges in the Jurassic than in recent times. Numerical studies show that temperature increase of 1 degree C in the mantle can lead to approximately 50-70 m thicker crust, so the upper mantle may have cooled 15-20 degrees C/100 Myr since 170 Ma. This average temperature decrease is larger than the secular cooling rate of the Earth's mantle, which is roughly 10 degrees C/100 Myr since the Archean. Apparently, the present-day configuration and dynamics of continental and oceanic plates removes heat more efficiently from the Earth's mantle than in its earlier history. The increase of ocean crustal thickness with plate age is also stronger in the Indian and Atlantic oceans than in the Pacific Ocean basin. This confirms that thermal insulation by the supercontinent Pangaea raised the temperature of the underlying asthenospheric mantle, which in turn led to more magmatic output at the Jurassic mid-ocean ridges of the Indian and Atlantic oceans.

  20. Ocean-Continent Transition Structure of the Pelotas Magma-Rich Continental Margin, South Atlantic

    Science.gov (United States)

    Harkin, Caroline; Kusznir, Nick; Roberts, Alan; Manatschal, Gianreto; McDermott, Ken

    2017-04-01

    Rifted continental margins in the southern South Atlantic are magma-rich showing well developed volcanic extrusives known as seaward dipping reflectors (SDRs). Here we examine the magma-rich continental rifted margin of the Pelotas Basin, offshore Brazil. Deep seismic reflection data displays a large package of seaward dipping reflectors with an approximate width of 200 km and a varying thickness of 10 km to 17 km that have previously been interpreted as volcanic SDRs. We examine these SDRs to explore if they are composed predominantly of basaltic or sedimentary-volcaniclastic material. We also study the thickness of the crustal basement beneath the SDRs. Additionally we investigate if these SDRs are underlain by thin 'hyper-extended' continental crust or if they have been deposited on new magmatic basement. The answers to these questions are important in understanding the structure and formation processes of magma-rich continental margins. We use gravity inversion to investigate SDR composition by varying the proportion of basalt to sediments-volcaniclastics (basalt fraction) which determines the SDR densities in the gravity inversion. By matching the Moho depth and two-way travel time from gravity inversion and deep seismic reflection data, we determine the lateral variation in basalt fraction of the SDRs. Our analysis suggests: 1) There is an overall pattern of SDR basalt fraction and bulk density decreasing oceanward. This could be due to increasing sediment content oceanward or it could result from the change in basalt flows to hyaloclastites as water depth increases. 2) The SDR package can be split into two distinct sub packages based on the basalt fraction results, where the proximal side of each package has a higher basalt fraction and density. 3) The inner SDR package contains reflectors that bear a resemblance to the SDRs described by Hinz (1981) corresponding to syn-tectonic volcanic eruptions into an extensional basin, while the outer SDR package has

  1. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing.

    Science.gov (United States)

    Audet, Pascal; Bostock, Michael G; Christensen, Nikolas I; Peacock, Simon M

    2009-01-01

    Water and hydrous minerals play a key part in geodynamic processes at subduction zones by weakening the plate boundary, aiding slip and permitting subduction-and indeed plate tectonics-to occur. The seismological signature of water within the forearc mantle wedge is evident in anomalies with low seismic shear velocity marking serpentinization. However, seismological observations bearing on the presence of water within the subducting plate itself are less well documented. Here we use converted teleseismic waves to obtain observations of anomalously high Poisson's ratios within the subducted oceanic crust from the Cascadia continental margin to its intersection with forearc mantle. On the basis of pressure, temperature and compositional considerations, the elevated Poisson's ratios indicate that water is pervasively present in fluid form at pore pressures near lithostatic values. Combined with observations of a strong negative velocity contrast at the top of the oceanic crust, our results imply that the megathrust is a low-permeability boundary. The transition from a low- to high-permeability plate interface downdip into the mantle wedge is explained by hydrofracturing of the seal by volume changes across the interface caused by the onset of crustal eclogitization and mantle serpentinization. These results may have important implications for our understanding of seismogenesis, subduction zone structure and the mechanism of episodic tremor and slip.

  2. Characterization of Carbonate Crust from Deep-sea Methane Seeps on the Northern US Atlantic Margin.

    Science.gov (United States)

    Gabitov, R. I.; Borrelli, C.; Buettner, J.; Testa, M.; Garner, B.; Weremeichik, J.; Thomas, J. B.; Wahidi, M.; Thirumalai, R. V. K. G.; Kirkland, B. L.; Skarke, A. D.

    2017-12-01

    Authigenic carbonate minerals widely occur at the seafloor as carbonate crusts and are often directly linked to microbial activity, about which promotion of carbonate crystal growth and geochemistry are not entirely understood. To evaluate a potential metabolic contribution, studies were conducted on carbonate crust collected from a methane seep and on precipitation experiments which produced inorganic aragonite crystallized at high pressure. Among the samples collected during a NSF sponsored cruise to the North Atlantic Continental Margin of the United States (off of New England) in July-August 2016, we analyzed one carbonate crust sample (AD4835 BB-4522) collected at 39.805860; -69.592593 and at a depth of 1419.6 m. In this crust sample, two textural types of aragonite were identified: 1) groundmass consisting of fine grey crystals (100 µm, 24.9 wt%), feldspar (5.6 wt%), and dolomite (3.6 wt%), and trace amount of troilite were identified using XRD, SEM, and optical microscopy. The sample was cut into slabs parallel to crust growth assuming the crust grew in a downward direction. Concentrations of Na, Mg, Al, Si, S, K, Ca, Mn, Fe, Sr, Zr, Ba, and U were measured in the direction parallel to growth of the crust using LA-ICP-MS. Proportions of Si, Al, (Na+K), Mg, S, and Fe in the groundmass suggest the occurrence of sub-micron inclusions of alkali feldspar, and potentially pyroxene, Fe oxide, and Fe sulfide, which were impossible to avoid with the instrument's spatial resolution. The occurrence of micro non-carbonate inclusions causes high elemental concentrations compared to the values expected for aragonite crystallized from seawater. White aragonite acicular crystals were free of silicate and sulfide inclusions, and therefore, yielded lower concentrations of all measured elements except Sr compared to the groundmass. Analyzed Mg and Sr are consistent with published data for deep-sea corals. Also, Sr is similar to experimental data on inorganic aragonite. Mg

  3. Permafrost warming and vegetation changes in continental Antarctica

    International Nuclear Information System (INIS)

    Guglielmin, Mauro; Dalle Fratte, Michele; Cannone, Nicoletta

    2014-01-01

    Continental Antarctica represents the last pristine environment on Earth and is one of the most suitable contexts to analyze the relations between climate, active layer and vegetation. In 2000 we started long-term monitoring of the climate, permafrost, active layer and vegetation in Victoria Land, continental Antarctica. Our data confirm the stability of mean annual and summer air temperature, of snow cover, and an increasing trend of summer incoming short wave radiation. The active layer thickness is increasing at a rate of 0.3 cm y −1 . The active layer is characterized by large annual and spatial differences. The latter are due to scarce vegetation, a patchy and very thin organic layer and large spatial differences in snow accumulation. The active layer thickening, probably due to the increase of incoming short wave radiation, produced a general decrease of the ground water content due to the better drainage of the ground. The resultant drying may be responsible for the decline of mosses in xeric sites, while it provided better conditions for mosses in hydric sites, following the species-specific water requirements. An increase of lichen vegetation was observed where the climate drying occurred. This evidence emphasizes that the Antarctic continent is experiencing changes that are in total contrast to the changes reported from maritime Antarctica. (paper)

  4. [Effect of food thickener on disintegration and dissolution of magnesium oxide tablets].

    Science.gov (United States)

    Tomita, Takashi; Goto, Hidekazu; Yoshimura, Yuya; Tsubouchi, Yoshiko; Nakanishi, Rie; Kojima, Chikako; Yoneshima, Mihoko; Yoshida, Tadashi; Tanaka, Katsuya; Sumiya, Kenji; Kohda, Yukinao

    2015-01-01

    It has been reported that magnesium oxide tablets are excreted in a non-disintegrated state in the stool of patients when the tablets are administered after being immersed in a food thickener. Therefore we examined whether immersion in a food thickener affects the pharmacological effect in patients taking magnesium oxide tablets, and whether immersion affects its disintegration and solubility. The mean dosage (1705 mg/d) was higher for patients who took tablets after immersion in a food thickener than for those who took non-immersed tablets (1380 mg/d). The disintegration time and dissolution rate of the immersed tablets were lower than those of non-immersed tablets in vitro. Furthermore, components that constitute the food thickener and differences in composition concentrations differentially affect the disintegration and solubility of magnesium oxide tablets. This suggests that commercially available food thickeners are likely to be associated with changes in the degradation of magnesium oxide tablets, and they therefore should be carefully used in certain clinical situations.

  5. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  6. A new tectono-magmatic model for the Lofoten/Vesterålen Margin at the outer limit of the Iceland Plume influence

    Science.gov (United States)

    Breivik, Asbjørn Johan; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst R.; Murai, Yoshio

    2017-10-01

    The Early Eocene continental breakup was magma-rich and formed part of the North Atlantic Igneous Province. Extrusive and intrusive magmatism was abundant on the continental side, and a thick oceanic crust was produced up to a few m.y. after breakup. However, the extensive magmatism at the Vøring Plateau off mid-Norway died down rapidly northeastwards towards the Lofoten/Vesterålen Margin. In 2003 an Ocean Bottom Seismometer profile was collected from mainland Norway, across Lofoten, and into the deep ocean. Forward/inverse velocity modeling by raytracing reveals a continental margin transitional between magma-rich and magma-poor rifting. For the first time a distinct lower-crustal body typical for volcanic margins has been identified at this outer margin segment, up to 3.5 km thick and ∼50 km wide. On the other hand, expected extrusive magmatism could not be clearly identified here. Strong reflections earlier interpreted as the top of extensive lavas may at least partly represent high-velocity sediments derived from the shelf, and/or fault surfaces. Early post-breakup oceanic crust is moderately thickened (∼8 km), but is reduced to 6 km after 1 m.y. The adjacent continental crystalline crust is extended down to a minimum of 4.5 km thickness. Early plate spreading rates derived from the Norway Basin and the northern Vøring Plateau were used to calculate synthetic magnetic seafloor anomalies, and compared to our ship magnetic profile. It appears that continental breakup took place at ∼53.1 Ma, ∼1 m.y. later than on the Vøring Plateau, consistent with late strong crustal extension. The low interaction between extension and magmatism indicates that mantle plume material was not present at the Lofoten Margin during initial rifting, and that the observed excess magmatism was created by late lateral transport from a nearby pool of plume material into the lithospheric rift zone at breakup time.

  7. Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust

    Science.gov (United States)

    Yang, Xin-Yue

    Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone

  8. GRAVITY ANOMALIES OF THE CRUST AND UPPER MANTLE FOR CENTRAL AND SOUTH ASIA

    Directory of Open Access Journals (Sweden)

    V. N. Senachin

    2016-01-01

    Baranov’s digital model of the crust, AsCrust [Baranov, 2010].The study area includes the Alpine-Himalayan folded belt, the triple junction of rift zones in North Africa, and the marginal seas of Southeast Asia, which are framed by deep troughs with associated volcanic belts. Its relief ranges from the highest mountains in Himalayas to deepest troughs in Indonesia. In this region, the collision of the Indian and Asian plates causes thrusting at the Asian plate margin which results in thickening of the continental crust [Oreshin et al., 2011]. This process may be accompanied by the separation of the crustal layer of the Indian lithospheric plate from its mantle ‘cushion’, i.e. delamination, the mechanism of which is not fully understood [Jiménez-Munt et al., 2008; Krystopowicz, Currie, 2013; Ueda et al., 2012] (Fig. 1.AsCrust, the digital model of the Earth's crust: depth to Moho map. A large volume of new data on reflection, refraction and surface waves from earthquakes and explosions was analyzed and integrated into the AsCrust model (1×1° grid. Ten digital maps were constructed: Moho depth, the upper, middle and lower crustal layers, as well as Vp velocities and densities in these layers [Baranov, 2010]. In our study, we calculated gravitational anomalies from the values of thicknesses and density of crustal layers at each point of the grid. The density in the layers was calculated from longitudinal wave velocities using the formula described in [Brocher, 2005] (Fig. 2.The algorithm for gravity anomaly calculations. Modeling the gravity of large regional objects needs to take into account the curvature of the Earth's surface. Algorithms for calculating the gravity field from bodies bounded by spherical surfaces are proposed in [e.g. Kosygin et al., 1996; Starostenko et al., 1986; Strakhov et al., 1989; Jones et al., 2010; Li et al., 2011; Schmidt et al., 2007]. In this study, we used an algorithm based on equations for direct calculations of the gravity effect

  9. The helium flux from the continents and ubiquity of low-3He/4He recycled crust and lithosphere

    Science.gov (United States)

    Day, James M. D.; Barry, Peter H.; Hilton, David R.; Burgess, Ray; Pearson, D. Graham; Taylor, Lawrence A.

    2015-03-01

    low-3He/4He values of these reservoirs and their distinctive compositions make them probable end-members to explain the compositions of some low-3He/4He OIB, and provide an explanation for the low-3He/4He measured in most HIMU lavas. Continental lithospheric mantle and recycled oceanic crust protoliths are not reservoirs for high-3He/4He and so alternative, volumetrically significant, He-rich reservoirs, such as less-degassed (lower?) mantle, are required to explain high-3He/4He signatures measured in some intraplate lavas. Recycling of oceanic crust represents a fundamental process for the generation of radiogenic noble gases in the mantle, and can therefore be used effectively as tracers for volatile recycling.

  10. Gallbladder wall thickening: MR imaging and pathologic correlation with emphasis on layered pattern

    International Nuclear Information System (INIS)

    Jung, S.E.; Lee, J.M.; Hahn, S.T.; Lee, K.; Rha, S.E.; Choi, B.G.; Kim, E.K.

    2005-01-01

    The aim of this study was to correlate MR findings of gallbladder wall thickening with pathologic findings on the basis of the layered pattern and to evaluate the diagnostic value of MR imaging in gallbladder disease. We retrospectively evaluated the source images of HASTE sequences for MR cholangiography in 144 patients with gallbladder wall thickening. The layered pattern of thickened wall was classified into four patterns. Type 1 shows two layers with a thin hypointense inner layer and thick hyperintense outer layer. Type 2 has two layers of ill-defined margin. Type 3 shows multiple hyperintense cystic spaces in the wall. Type 4 shows diffuse nodular thickening without layering. MR findings of a layered pattern of thickened gallbladder were well correlated with histopathology. Chronic cholecystitis matched to type 1, acute cholecystitis corresponded to type 2, adenomyomatosis showed type 3, and the gallbladder carcinomas showed type 4. All four layered patterns were associated with PPV of 73% or greater, sensitivity of 92% or greater and specificity of 95% or greater. Our results indicate that MR findings of gallbladder wall thickening are characteristic in each entity and correlate well with pathologic findings. The classification of the layered pattern may be valuable for interpreting thickened gallbladder wall. (orig.)

  11. Process for the preparation of a thickened explosive slurry

    Energy Technology Data Exchange (ETDEWEB)

    1972-10-25

    A process is described for the preparation of a thickened explosive slurry, substantially aqueous. The composition consists essentially of a suspension of an inorganic oxygen salt for furnishing oxygen in a fluid matrix. This fluid matrix consists of a lower aliphatic glycol (ethylene, diethylene, propylene, dipropylene) thickened with one of the polysaccharides (glucose, mannose, galactose) or mixtures of them. The composition should have a density below 1.8 g per cu cm. (5 claims)

  12. Roughness-dependent tribology effects on discontinuous shear thickening.

    Science.gov (United States)

    Hsu, Chiao-Peng; Ramakrishna, Shivaprakash N; Zanini, Michele; Spencer, Nicholas D; Isa, Lucio

    2018-05-15

    Surface roughness affects many properties of colloids, from depletion and capillary interactions to their dispersibility and use as emulsion stabilizers. It also impacts particle-particle frictional contacts, which have recently emerged as being responsible for the discontinuous shear thickening (DST) of dense suspensions. Tribological properties of these contacts have been rarely experimentally accessed, especially for nonspherical particles. Here, we systematically tackle the effect of nanoscale surface roughness by producing a library of all-silica, raspberry-like colloids and linking their rheology to their tribology. Rougher surfaces lead to a significant anticipation of DST onset, in terms of both shear rate and solid loading. Strikingly, they also eliminate continuous thickening. DST is here due to the interlocking of asperities, which we have identified as "stick-slip" frictional contacts by measuring the sliding of the same particles via lateral force microscopy (LFM). Direct measurements of particle-particle friction therefore highlight the value of an engineering-tribology approach to tuning the thickening of suspensions. Copyright © 2018 the Author(s). Published by PNAS.

  13. Crustal seismicity and the earthquake catalog maximum moment magnitudes (Mcmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere

    Science.gov (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-01-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  14. Crustal seismicity and the earthquake catalog maximum moment magnitude (Mcmax) in stable continental regions (SCRs): Correlation with the seismic velocity of the lithosphere

    Science.gov (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-12-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  15. Corium crust strength measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: lomperski@anl.gov; Farmer, M.T. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: farmer@anl.gov

    2009-11-15

    Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO{sub 2}, ZrO{sub 2}, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.

  16. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes

    Science.gov (United States)

    Ding, Weiwei; Sun, Zhen; Dadd, Kelsie; Fang, Yinxia; Li, Jiabiao

    2018-04-01

    Internal structures in mature oceanic crust can elucidate understanding of the processes and mechanism of crustal accretion. In this study, we present two multi-channel seismic (MCS) transects across the northern flank of the South China Sea basin to reveal the internal structures related to Cenozoic tectono-magmatic processes during seafloor spreading. Bright reflectors within the oceanic crust, including the Moho, upper crustal reflectors, and lower crustal reflectors, are clearly imaged in these two transects. The Moho reflection displays varied character in continuity, shape and amplitude from the continental slope area to the abyssal basin, and becomes absent in the central part of the basin where abundant seamounts and seamount chains formed after the cessation of seafloor spreading. Dipping reflectors are distinct in most parts of the MCS data but generally confined to the lower crust above the Moho reflection. These lower crustal reflectors merge downward into the Moho without offsetting it, probably arising from shear zones between the crust and mantle characterized by interstitial melt, although we cannot exclude other possibilities such as brittle faulting or magmatic layering in the local area. A notable feature of these lower crustal reflector events is their opposite inclinations. We suggest the two groups of conjugate lower crustal reflector events observed between magnetic anomalies C11 and C8 were associated with two unusual accretionary processes arising from plate reorganizations with southward ridge jumps.

  17. Deep structure of the Mid-Norwegian continental margin (the Vøring and Møre basins) according to 3-D density and magnetic modelling

    Science.gov (United States)

    Maystrenko, Yuriy Petrovich; Gernigon, Laurent; Nasuti, Aziz; Olesen, Odleiv

    2018-03-01

    A lithosphere-scale 3-D density/magnetic structural model of the Møre and Vøring segments of the Mid-Norwegian continental margin and the adjacent areas of the Norwegian mainland has been constructed by using both published, publically available data sets and confidential data, validated by the 3-D density and magnetic modelling. The obtained Moho topography clearly correlates with the major tectonic units of the study area where a deep Moho corresponds to the base of the Precambrian continental crust and the shallower one is located in close proximity to the younger oceanic lithospheric domain. The 3-D density modelling agrees with previous studies which indicate the presence of a high-density/high-velocity lower-crustal layer beneath the Mid-Norwegian continental margin. The broad Jan Mayen Corridor gravity low is partially related to the decreasing density of the sedimentary layers within the Jan Mayen Corridor and also has to be considered in relation to a possible low-density composition- and/or temperature-related zone in the lithospheric mantle. According to the results of the 3-D magnetic modelling, the absence of a strong magnetic anomaly over the Utgard High indicates that the uplifted crystalline rocks are not so magnetic there, supporting a suggestion that the entire crystalline crust has a low magnetization beneath the greater part of the Vøring Basin and the northern part of the Møre Basin. On the contrary, the crystalline crust is much more magnetic beneath the Trøndelag Platform, the southern part of the Møre Basin and within the mainland, reaching a culmination at the Frøya High where the most intensive magnetic anomaly is observed within the study area.

  18. EFFECT OF THICKENERS ON THE TEXTURE OF STIRRED YOGURT

    Directory of Open Access Journals (Sweden)

    D. GONÇALVEZ

    2009-03-01

    Full Text Available

    The effect of the addition of gelatin and starch on the rheological properties of sweetened plain stirred yogurt was studied by manufacturing six samples: two with gelatin (3000 and 6000 ppm, three with starch (1000, 5000, 10000 ppm and a sample without thickener (control. Rheological characterization of the samples was performed using a coaxial cylinder Haake VT500 viscometer. Yield stress ( and hysteresis were also determined. Syneresis (% was measured by centrifugation at 1100 rpm for 10 minutes. Sensory characterization was performed with a panel of trained sensory assessors, who evaluated the following texture attributes: viscosity, ropiness, creaminess and mouthfeel. All samples showed thixotropic and pseudoplastic behaviour. Since the upward curve did not fit a unique model, it was divided in two regions. The first one fitted Herschel-Bulkley’s model. The addition of gelatine decreased flow behaviour index (n, whereas yield stress significantly increased with the addition of both thickeners. Gelatine was more efficient in reducing syneresis than starch. The addition of thickeners significantly increased all the studied sensory texture attributes. Non-oral and oral parameters were highly correlated witch each other and witch rheological parameters. KEYWORDS: Yogurt; texture; thickeners.

  19. Fatigue properties for the fracture strength of columnar accessory minerals embedded within metamorphic tectonites: implications for stress magnitude in continental crust at the depth of the brittle-plastic transition zone

    Science.gov (United States)

    Kimura, N.; Iwashita, N.; Masuda, T.

    2009-04-01

    1. Introduction Previous studies have compiled yield-strength profiles of continental lithosphere based on the results of laboratory measurements and numerical calculations; however, yield-strength values remain poorly constrained, especially at depths below the brittle-plastic transition zone. Recent studies by the authors have refined the microboudin technique for estimating palaeostress magnitude in the deep crust (> 10 km depth). This technique has the potential to provide important information on stress levels in the deep continental crust, an environment to which available in situ stress measurements and palaeopiezometric methods cannot be applied. In applying the microboudinage technique, obtaining an estimate of the palaeostress magnitude requires knowledge of the fracture strength of columnar accessory minerals (e.g., tourmaline, amphibole, and epidote) that are subjected to brittle fracturing during plastic deformation of the surrounding matrix minerals. The absolute magnitude of fracture strength is known to show a marked reduction in the case of fatigue fracture. Fatigue fracture falls into two categories: static fatigue and cyclic fatigue. In the field of experimental rock deformation, stress corrosion by water molecules (static fatigue) is commonly invoked as the mechanism of fatigue fracture; however, evidence of both static and cyclic fatigue has been reported from studies of natural geological samples. The present study focused on the fatigue properties of columnar accessory minerals at high temperatures, with the aim of improving the accuracy of estimates of natural palaeostress magnitude at depth in the crust. 2. Constant stress-rate test A constant stress-rate test was performed to determine the influence of static fatigue on the strength of columnar accessory minerals. The test was conducted under three-point bending with a span distance of 10 mm. Temperature conditions and the crosshead speed were set in the ranges of ambient to 600°C, and 0

  20. A Comparison of Continental Extension Estimates Across the Margins of the Woodlark Basin, Papua New Guinea

    Science.gov (United States)

    Nazlim, B.; Goodliffe, A. M.

    2016-12-01

    Previous studies have shown that depth dependent extension is commonly observed across rifted margins. This has resulted in a discrepancy between the estimates of extension made through whole lithosphere/crust vs fault heave calculations (for example northwest Australia, South China Sea, Galicia). In the Woodlark Basin, the amount of extension estimated from observed subsidence and brittle extension also do not match. Taking into account sub-seismic resolution and poly-phase faulting reduces this mismatch. In the Woodlark Basin continental extension can also be estimated by extending Euler pole kinematics from the oceanic domain. Previous studies show that this predicts almost double the extension calculated from subsidence and brittle extension. Extension in the Woodlark Basin began at 8.4 Ma and transitioned to sea-floor spreading in the east at 6 Ma. The basin is an ideal place to study the extension discrepancy because of its young age and thin sediments. Seismic reflection easily images basement and fault structures. High resolution bathymetry permits tracing of major faults on the seafloor. A previous study focused on the extension discrepancy at the rifting to spreading transition. This study will focus on the discrepancy further east where seafloor spreading began just after 2 Ma and opening rates are faster. Data used in this study include bathymetry, magnetics, gravity, and low-fold 2-D seismic reflection data. Using the available data, extension estimates have been calculated through brittle extension and subsidence. Euler pole derived extension rates from previous studies were used for comparison. Results indicate that Euler pole kinematics predict far more extension than estimates calculated through subsidence and brittle extension. This provides important insights into processes in the low crust and supports earlier hypotheses that the mantle lithosphere and upper crust may be moving at different rates prior to continental breakup.

  1. Processes accompanying of mantle plume emplacement into continental lithosphere: Evidence from NW Arabian plate, Western Syria

    Science.gov (United States)

    Sharkov, E. V.

    2015-12-01

    Lower crustal xenoliths occurred in the Middle Cretaceous lamprophyre diatremes in Jabel Ansaria (Western Syria) (Sharkov et al., 1992). They are represented mainly garnet granulites and eclogite-like rocks, which underwent by deformations and retrograde metamorphism, and younger fresh pegmatoid garnet-kaersutite-clinopyroxene (Al-Ti augite) rocks; mantle peridotites are absent in these populations. According to mineralogical geothermobarometers, forming of garnet-granulite suite rocks occurred under pressure 13.5-15.4 kbar (depths 45-54 kn) and temperature 965-1115oC. At the same time, among populations of mantle xenoliths in the Late Cenozoic platobasalts of the region, quite the contrary, lower crustal xenoliths are absent, however, predominated spinel lherzolites (fragments of upper cooled rim of a plume head), derived from the close depths (30-40 km: Sharkov, Bogatikov, 2015). From this follows that ancient continental crust was existed here even in the Middle Cretaceous, but in the Late Cenozoic was removed by extended mantle plume head; at that upper sialic crust was not involved in geomechanic processes, because Precambrian metamorphic rocks survived as a basement for Cambrian to Cenozoic sedimentary cover of Arabian platform. In other words, though cardinal rebuilding of deep-seated structure of the region occurred in the Late Cenozoic but it did not affect on the upper shell of the ancient lithosphere. Because composition of mantle xenolithis in basalts is practically similar worldwide, we suggest that deep-seated processes are analogous also. As emplacement of the mantle plume heads accompanied by powerful basaltic magmatism, very likely that range of lower (mafic) continental crust existence is very convenient for extension of plume heads and their adiabatic melting. If such level, because of whatever reasons, was not reached, melting was limited but appeared excess of volatile matters which led to forming of lamprophyre or even kimberlite.

  2. The life of phi: the development of phi thickenings in roots of the orchids of the genus Miltoniopsis.

    Science.gov (United States)

    Idris, Nurul A; Collings, David A

    2015-02-01

    Phi thickenings, bands of secondary wall thickenings that reinforce the primary wall of root cortical cells in a wide range of species, are described for the first time in the epiphytic orchid Miltoniopsis. As with phi thickenings found in other plants, the phi thickenings in Miltoniopsis contain highly aligned cellulose running along the lengths of the thickenings, and are lignified but not suberized. Using a combination of histological and immunocytochemical techniques, thickening development can be categorized into three different stages. Microtubules align lengthwise along the thickening during early and intermediate stages of development, and callose is deposited within the thickening in a pattern similar to the microtubules. These developing thickenings also label with the fluorescently tagged lectin wheat germ agglutinin (WGA). These associations with microtubules and callose, and the WGA labeling, all disappear when the phi thickenings are mature. This pattern of callose and WGA deposition show changes in the thickened cell wall composition and may shed light on the function of phi thickenings in plant roots, a role for which has yet to be established.

  3. Pumping evaluations with paste tailings thickened close to the surface disposal area

    OpenAIRE

    Wennberg, Thord; Sellgren, Anders

    2007-01-01

    An elevated location of a paste thickener on a ridge close to the disposal area is considered at a Swedish iron ore mine. About 0.7 Mtonnes of thickened tailings are planned to be layered as paste in the vicinity of the thickener over several years with pipeline lengths of up to 900 m after about 20 years. In order to clarify the pipeline pumping characteristics of the tailings product for volumetric solids concentration from 40 to 50%, experiments in loop systems with pipeline inner diameter...

  4. Crust and uppermost-mantle structure of Greenland and the Northwest Atlantic from Rayleigh wave group velocity tomography

    Science.gov (United States)

    Darbyshire, Fiona A.; Dahl-Jensen, Trine; Larsen, Tine B.; Voss, Peter H.; Joyal, Guillaume

    2018-03-01

    The Greenland landmass preserves ˜4 billion years of tectonic history, but much of the continent is inaccessible to geological study due to the extensive inland ice cap. We map out, for the first time, the 3-D crustal structure of Greenland and the NW Atlantic ocean, using Rayleigh wave anisotropic group velocity tomography, in the period range 10-80 s, from regional earthquakes and the ongoing GLATIS/GLISN seismograph networks. 1-D inversion gives a pseudo-3-D model of shear wave velocity structure to depths of ˜100 km with a horizontal resolution of ˜200 km. Crustal thickness across mainland Greenland ranges from ˜25 km to over 50 km, and the velocity structure shows considerable heterogeneity. The large sedimentary basins on the continental shelf are clearly visible as low velocities in the upper ˜5-15 km. Within the upper continental basement, velocities are systematically lower in northern Greenland than in the south, and exhibit a broadly NW-SE trend. The thinning of the crust at the continental margins is also clearly imaged. Upper-mantle velocities show a clear distinction between typical fast cratonic lithosphere (Vs ≥4.6 km s-1) beneath Greenland and its NE margin and anomalously slow oceanic mantle (Vs ˜4.3-4.4 km s-1) beneath the NW Atlantic. We do not observe any sign of pervasive lithospheric modification across Greenland in the regions associated with the presumed Iceland hotspot track, though the average crustal velocity in this region is higher than that of areas to the north and south. Crustal anisotropy beneath Greenland is strong and complex, likely reflecting numerous episodes of tectonic deformation. Beneath the North Atlantic and Baffin Bay, the dominant anisotropy directions are perpendicular to the active and extinct spreading centres. Anisotropy in the subcontinental lithosphere is weaker than that of the crust, but still significant, consistent with cratonic lithosphere worldwide.

  5. Ductile extension of syn-magmatic lower crusts, with application to volcanic passive margins: the Ivrea Zone (Southern Alps, Italy)

    Science.gov (United States)

    Bidault, Marie; Geoffroy, Laurent; Arbaret, Laurent; Aubourg, Charles

    2017-04-01

    Deep seismic reflection profiles of present-day volcanic passive margins often show a 2-layered lower crust, from top to bottom: an apparently ductile 12 km-thick middle-lower layer (LC1) of strong folded reflectors and a 4 km-thick supra-Moho layer (LC2) of horizontal and parallel reflectors. Those layers appear to be structurally disconnected and to develop at the early stages of margins evolution. A magmatic origin has been suggested by several studies to explain those strong reflectors, favoring mafic sills intrusion hypothesis. Overlying mafic and acidic extrusives (Seaward Dipping Reflectors sequences) are bounded by continentward-dipping detachment faults rooting in, and co-structurated with, the ductile part of the lower crust (LC1). Consequently the syn-rift to post-rift evolution of volcanic passive margins (and passive margins in general) largely depends on the nature and the properties of the lower crust, yet poorly understood. We propose to investigate the properties and rheology of a magma-injected extensional lower crust with a field analogue, the Ivrea Zone (Southern Alps, Italy). The Ivrea Zone displays a complete back-thrusted section of a Variscan continental lower crust that first underwent gravitational collapse, and then lithospheric extension. This Late Paleozoic extension was apparently associated with the continuous intrusion of a large volume of mafic to acid magma. Both the magma timing and volume, and the structure of the Ivrea lower crust suggest that this section represents an adequate analogue of a syn-magmatic in-extension mafic rift zone which aborted at the end of the Permian. Notably, we may recognize the 2 layers LC1 and LC2. From a number of tectonic observations, we reconstitute the whole tectonic history of the area, focusing on the strain field evolution with time, in connection with mafic magma injection. We compare those results with available data from extensional mafic lower crusts at rifts and margins.

  6. Towards an integrated magmatic, structural and metamorphic model for the 1.1-0.9 Ga Sveconorwegian orogeny

    Science.gov (United States)

    Slagstad, Trond; Roberts, Nick M. W.; Røhr, Torkil S.; Marker, Mogens K.

    2013-04-01

    Orogeny involves magmatic, metamorphic, deformational and erosional processes that are caused by or lead to crustal thickening and the development of high topography. In general, these processes operate along the margins of continental plates, either as a result of subduction of oceanic crust (accretionary) or collision between two or more continental plates (collisional). Many of these processes are common to accretionary and collisional orogeny, and do not uniquely discriminate between the two. With only a fragmented geological record, unravelling the style of orogenesis in ancient orogens may, therefore, be far from straightforward. Adding to the complexity, modern continental margins, e.g., the southern Asian margin, display significant variation in orogenic style along strike, rendering along-strike comparisons and correlations unreliable. The late Mesoproterozoic Sveconorwegian province in SW Baltica is traditionally interpreted as the eastward continuation of the Grenville province in Canada, resulting from collision with Amazonia and forming a central part in the assembly of the Rodinia supercontinent. We recently proposed that the Sveconorwegian segment of this orogen formed as a result of accretionary processes rather than collision. This hypothesis was based mainly on considerations of the Sveconorwegian magmatic evolution. Here, we show how the metamorphic/structural record supports (or at least may be integrated in) our model as well. The key elements in our accretionary model are: 1) formation of the Sirdal Magmatic Belt (SMB) between 1070 and 1020 Ma, most likely representing a continental arc batholith. Coeval deformation and high-grade metamorphism farther east in the orogen could represent deformation in the retroarc. 2) cessation of SMB magmatism at 1020 Ma followed by UHT conditions at 1010-1005 Ma, with temperatures in excess of 1000°C at 7.5 kbar. Subduction of a spreading ridge at ca. 1020 Ma would result in an end to arc magmatism and

  7. 3D cardiac wall thickening assessment for acute myocardial infarction

    Science.gov (United States)

    Khalid, A.; Chan, B. T.; Lim, E.; Liew, Y. M.

    2017-06-01

    Acute myocardial infarction (AMI) is the most severe form of coronary artery disease leading to localized myocardial injury and therefore irregularities in the cardiac wall contractility. Studies have found very limited differences in global indices (such as ejection fraction, myocardial mass and volume) between healthy subjects and AMI patients, and therefore suggested regional assessment. Regional index, specifically cardiac wall thickness (WT) and thickening is closely related to cardiac function and could reveal regional abnormality due to AMI. In this study, we developed a 3D wall thickening assessment method to identify regional wall contractility dysfunction due to localized myocardial injury from infarction. Wall thickness and thickening were assessed from 3D personalized cardiac models reconstructed from cine MRI images by fitting inscribed sphere between endocardial and epicardial wall. The thickening analysis was performed in 5 patients and 3 healthy subjects and the results were compared against the gold standard 2D late-gadolinium-enhanced (LGE) images for infarct localization. The notable finding of this study is the highly accurate estimation and visual representation of the infarct size and location in 3D. This study provides clinicians with an intuitive way to visually and qualitatively assess regional cardiac wall dysfunction due to infarction in AMI patients.

  8. Geothermal modelling of faulted metamorphic crystalline crust: a new model of the Continental Deep Drilling Site KTB (Germany)

    Science.gov (United States)

    Szalaiová, Eva; Rabbel, Wolfgang; Marquart, Gabriele; Vogt, Christian

    2015-11-01

    The area of the 9.1-km-deep Continental Deep Drillhole (KTB) in Germany is used as a case study for a geothermal reservoir situated in folded and faulted metamorphic crystalline crust. The presented approach is based on the analysis of 3-D seismic reflection data combined with borehole data and hydrothermal numerical modelling. The KTB location exemplarily contains all elements that make seismic prospecting in crystalline environment often more difficult than in sedimentary units, basically complicated tectonics and fracturing and low-coherent strata. In a first step major rock units including two known nearly parallel fault zones are identified down to a depth of 12 km. These units form the basis of a gridded 3-D numerical model for investigating temperature and fluid flow. Conductive and advective heat transport takes place mainly in a metamorphic block composed of gneisses and metabasites that show considerable differences in thermal conductivity and heat production. Therefore, in a second step, the structure of this unit is investigated by seismic waveform modelling. The third step of interpretation consists of applying wavenumber filtering and log-Gabor-filtering for locating fractures. Since fracture networks are the major fluid pathways in the crystalline, we associate the fracture density distribution with distributions of relative porosity and permeability that can be calibrated by logging data and forward modelling of the temperature field. The resulting permeability distribution shows values between 10-16 and 10-19 m2 and does not correlate with particular rock units. Once thermohydraulic rock properties are attributed to the numerical model, the differential equations for heat and fluid transport in porous media are solved numerically based on a finite difference approach. The hydraulic potential caused by topography and a heat flux of 54 mW m-2 were applied as boundary conditions at the top and bottom of the model. Fluid flow is generally slow and

  9. Effect of Human Saliva on the Consistency of Thickened Drinks for Individuals with Dysphagia

    Science.gov (United States)

    Vallons, Katleen J. R.; Helmens, Harold J.; Oudhuis, A. A. C. M.

    2015-01-01

    Background: Thickening of foods and fluids is commonly used in the management of dysphagia to reduce the risk of aspiration. The use of starch-based thickeners is established. However, the use of gums in thickeners is gaining interest as they are resistant to salivary amylase, which may promote safer swallowing. Aims: To compare the effect of…

  10. Considering bioactivity in modelling continental growth and the Earth's evolution

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2013-09-01

    The complexity of planetary evolution increases with the number of interacting reservoirs. On Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. Through plate tectonics, the surface biosphere can impact deep subduction zone processes and the interior of the Earth. Subducted sediments are particularly important, because they influence the Earth's interior in several ways, and in turn are strongly influenced by the Earth's biosphere. In our model, we use the assumption that a thick sedimentary layer of low permeability on top of the subducting oceanic crust, caused by a biologically enhanced weathering rate, can suppress shallow dewatering. This in turn leads to greater vailability of water in the source region of andesitic partial melt, resulting in an enhanced rate of continental production and regassing rate into the mantle. Our model includes (i) mantle convection, (ii) continental erosion and production, and (iii) mantle water degassing at mid-ocean ridges and regassing at subduction zones. The mantle viscosity of our model depends on (i) the mantle water concentration and (ii) the mantle temperature, whose time dependency is given by radioactive decay of isotopes in the Earth's mantle. Boundary layer theory yields the speed of convection and the water outgassing rate of the Earth's mantle. Our results indicate that present day values of continental surface area and water content of the Earth's mantle represent an attractor in a phase plane spanned by both parameters. We show that the biologic enhancement of the continental erosion rate is important for the system to reach this fixed point. An abiotic Earth tends to reach an alternative stable fixed point with a smaller

  11. The gravity field of the Red Sea and East Africa

    Science.gov (United States)

    Makris, Jannis; Henke, Christian H.; Egloff, Frank; Akamaluk, Thomas

    1991-11-01

    Reevaluation of all gravity data from the Red Sea, the Gulf of Aden and East Africa permitted the compilation of a new Bouguer anomaly map. The intensity of the gravity field and its regional pattern correlate closely with the topographic features of the region. The maximum Bouguer values (> + 100 mGal) are located over the median troughs of the Red Sea and Gulf of Aden. Dense juvenile oceanic crust in these rifts and intruding magmas in stretched continental areas produce excess mass responsible for the anomaly highs. In the Red Sea the orientation of the gravity highs is NW-SE in the south, turning to NE-SW in the north, almost parallel to the Aqaba-Dead Sea strike. This pattern reveals that the present basin axis is not identical with that which formed the Tertiary coastal margins and the pre-Red Sea zones of crustal weakness. In the Gulf of Aden, new oceanic crust along the Tadjura Trench and its eastward extension is also expressed in the Bouguer anomaly map by gravity highs and a sharp bending of the isolines. A maximum of approx. +150 mGal is located over the central section of the Sheba Ridge. Bouguer gravity values over the East African and Yemen Plateaus are of the order of -180 to -240 mGal, indicating significant crustal thickening. On the Somali Plateau, the Marda Fault also has a strong gravity signature that can be traced towards Somalia. By constraining crustal thickness and structure with seismic data and density values from the velocity distribution by means of the Nafe-Drake and Birch relationships, we computed density models for the crust and upper mantle. The crustal thickness is of the order of 40 km beneath the plateaus and only 5 to 6 km at the oceanized parts in the central and southern portions of the Red Sea median trough. The flanks of the southern Red Sea and the corresponding Arabian side are underlain by 12 to 16 km thick stretched continental type crust. Oceanization offshore Sudan and Egypt is asymmetrical. The continental crust

  12. Tribological characteristic enhancement effects by polymer thickened oil in lubricated sliding contacts

    Science.gov (United States)

    Pratomo, Ariawan Wahyu; Muchammad, Tauviqirrahman, Mohammad; Jamari, Bayuseno, Athanasius P.

    2016-04-01

    Polymer thickened oils are the most preferred materials for modern lubrication applications due to their high shear. The present paper explores a lubrication mechanism in sliding contact lubricated with polymer thickened oil considering cavitation. Investigations are carried out by using a numerical method based on commercial CFD (computational fluid dynamic) software ANSYS for fluid flow phenomenon (Fluent) to assess the tribological characteristic (i.e. hydrodynamic pressure distribution) of lubricated sliding contact. The Zwart-Gerber-Belamri model for cavitation is adopted in this simulation to predict the extent of the full film region. The polymer thickened oil is characterized as non-Newtonian power-law fluid. The simulation results show that the cavitation lead lower pressure profile compared to that without cavitation. In addition, it is concluded that the characteristic of the lubrication performance with polymer thickened oil is strongly dependent on the Power-law index of lubricant.

  13. Study of low-velocity impact response of sandwich panels with shear-thickening gel cores

    Science.gov (United States)

    Wang, Yunpeng; Gong, Xinglong; Xuan, Shouhu

    2018-06-01

    The low-velocity impact response of sandwich panels with shear-thickening gel cores was studied. The impact tests indicated that the sandwich panels with shear-thickening gel cores showed excellent properties of energy dissipation and stress distribution. In comparison to the similar sandwich panels with chloroprene rubber cores and ethylene-propylene-diene monomer cores, the shear-thickening gel cores led to the obviously smaller contact forces and the larger energy absorptions. Numerical modelling with finite element analysis was used to investigate the stress distribution of the sandwich panels with shear-thickening gel cores and the results agreed well with the experimental results. Because of the unique mechanical property of the shear-thickening gel, the concentrated stress on the front facesheets were distributed to larger areas on the back facesheets and the peak stresses were reduced greatly.

  14. Autocrine role of vascular IL-15 in intimal thickening

    International Nuclear Information System (INIS)

    Cercek, Miha; Matsumoto, Michiaki; Li, Hongyan; Chyu, K.-Y.; Peter, Ashok; Shah, Prediman K.; Dimayuga, Paul C.

    2006-01-01

    Interleukin 15 (IL-15) is a pro-inflammatory cytokine that modulates T cell recruitment and activation, independent of antigen. It has been detected in human atherosclerotic plaques and atherosclerotic plaques of apoE-/- mice. IL-15 regulates fractalkine (FKN)-CX3CR1 chemokine signaling which is involved in atherogenesis and promotes SMC proliferation. We investigated the role of IL-15 in intimal thickening after arterial injury. Treatment of serum-stimulated SMC with IL-15 in vitro attenuated proliferation and suppressed CX3CR1 and FKN mRNA expression. The role of endogenous IL-15 in vivo was investigated in injured carotid arteries of mice. Periadventitial arterial injury resulted in increased IL-15 expression in the media and neointima, paralleled by increased IL-15 receptor α expression. Blockade of endogenous IL-15 increased intimal thickening. FKN and CX3CR1 expression increased after injury and were further augmented after IL-15 blockade. These data suggest that endogenous IL-15 attenuated intimal thickening after arterial injury. The potential mechanism of action is suppression of CX3CR1 signaling

  15. A comparative ultrastructural study of pit membranes with plasmodesmata associated thickenings in four angiosperm species.

    Science.gov (United States)

    Rabaey, David; Lens, Frederic; Huysmans, Suzy; Smets, Erik; Jansen, Steven

    2008-11-01

    Recent micromorphological observations of angiosperm pit membranes have extended the number and range of taxa with pseudo-tori in tracheary elements. This study investigates at ultrastructural level (TEM) the development of pseudo-tori in the unrelated Malus yunnanensis, Ligustrum vulgare, Pittosporum tenuifolium, and Vaccinium myrtillus in order to determine whether these plasmodesmata associated thickenings have a similar developmental pattern across flowering plants. At early ontogenetic stages, the formation of a primary thickening was observed, resulting from swelling of the pit membrane in fibre-tracheids and vessel elements. Since plasmodesmata appear to be frequently, but not always, associated with these primary pit membrane thickenings, it remains unclear which ultrastructural characteristics control the formation of pseudo-tori. At a very late stage during xylem differentiation, a secondary thickening is deposited on the primary pit membrane thickening. Plasmodesmata are always associated with pseudo-tori at these final developmental stages. After autolysis, the secondary thickening becomes electron-dense and persistent, while the primary thickening turns transparent and partially or entirely dissolves. The developmental patterns observed in the species studied are similar and agree with former ontogenetic studies in Rosaceae, suggesting that pseudo-tori might be homologous features across angiosperms.

  16. Thallium isotope variations in an ore-bearing continental igneous setting: Collahuasi Formation, northern Chile

    Science.gov (United States)

    Baker, R. G. A.; Rehkämper, M.; Ihlenfeld, C.; Oates, C. J.; Coggon, R.

    2010-08-01

    Thallium is a highly incompatible element and a large fraction of the bulk silicate Earth Tl budget is, therefore, expected to reside in the continental crust. Nonetheless, the Tl isotope systematics of continental rocks are essentially unexplored at present. Here, we present new Tl isotope composition and concentration data for a suite of 36 intrusive and extrusive igneous rocks from the vicinity of porphyry Cu deposits in the Collahuasi Formation of the Central Andes in northern Chile. The igneous lithologies of the rocks are variably affected by the hydrothermal alteration that accompanied the formation of the Cu deposits. The samples display Tl concentrations that vary by more than an order of magnitude, from 0.1 to 3.2 μg/g, whilst ɛ 205Tl ranges between -5.1 and +0.1 (ɛ 205Tl is the deviation of the 205Tl/ 203Tl isotope ratio of a sample from a standard in parts per 10 4). These variations are primarily thought to be a consequence of hydrothermal alteration processes, including metasomatic transport of Tl, and formation/breakdown of Tl-bearing minerals, which are associated with small but significant Tl isotope effects. The Tl abundances show excellent correlations with both K and Rb concentrations but no co-variation with Cu. This demonstrates that Tl displays only limited chalcophile affinity in the continental crust of the Collahuasi Formation, but behaves as a lithophile element with a distribution that is primarily governed by partitioning of Tl + into K +-bearing phases. Collahuasi samples with propylitic alteration features, which are derived from the marginal parts of the hydrothermal systems, have, on average, slightly lighter Tl isotope compositions than rocks from the more central sericitic and argillic alteration zones. This small but statistically significant difference most likely reflects preferential retention of isotopically heavy Tl in alteration phases, such as white micas and clays, which formed during sericitic and argillic alteration.

  17. Late Cretaceous and Cenozoic exhumation history of the Malay Peninsula

    Science.gov (United States)

    François, Thomas; Daanen, Twan; Matenco, Liviu; Willingshofer, Ernst; van der Wal, Jorien

    2015-04-01

    The evolution of Peninsular Malaysia up to the collisional period in the Triassic is well described but the evolution since the collision between Indochina and the Sukhothai Arc in Triassic times is less well described in the literature. The processes affecting Peninsular Malaysia during the Jurassic up to current day times have to explain the emplacement multiple intrusions (the Stong Complex, and the Kemahang granite), the Jurassic/Cretaceous onland basins, the Cenozoic offshore basins, and the asymmetric extension, which caused the exhumation of Taku Schists dome. The orogenic period in Permo-Triassic times, which also formed the Bentong-Raub suture zone, resulted in thickening of the continental crust of current day Peninsular Malaysia due to the collision of the Indochina continental block and the Sukhothai Arc, and is related to the subduction of oceanic crust once present between these continental blocks. The Jurassic/Cretaceous is a period of extension, resulting in the onland Jurassic/Cretaceous basins, synchronous melting of the crust, resulting in the emplacement Stong Complex and the Kemahang granite and thinning of the continental crust on the scale of the Peninsular, followed by uplift of the Peninsular. Different models can explain these observations: continental root removal, oceanic slab detachment, or slab delamination. These models all describe the melting of the lower crust due to asthenospheric upwelling, resulting in uplift and subsequent extension either due to mantle convective movements or gravitational instabilities related to uplift. The Cenozoic period is dominated by extension and rapid exhumation in the area as documented by low temperature thermocrological ages The extension in this period is most likely related to the subduction, which resumed at 45 Ma, of the Australian plate beneath the Eurasian plate after it terminated in Cretaceous times due to the collision of an Australian microcontinental fragment with the Sunda margin in the

  18. Using mineral thermal diffusivities measured with Laser-Flash Analysis to redefine the continental geotherm

    Science.gov (United States)

    Branlund, J. M.; Hofmeister, A.; Merriman, J. D.; Nabelek, P. I.; Whittington, A. G.

    2010-12-01

    We've created a new model for the average continental geotherm by incorporating accurate thermal conductivity values into Fourier's law. Previous geotherm models used thermal conductivities (k) with systematic errors: (1) Pores and microcracks in polycrystalline samples provide artificially low k compared to buried rocks, (2) conventional measurement techniques involve contact losses between thermocouples and samples, especially at high temperature, and/or (3) many techniques inadequately remove ballistic radiative transfer, which does not represent true heat transfer in the earth. To provide k values appropriate for Earth’s interior, we measured thermal diffusivity and its temperature derivatives using laser-flash analysis (LFA) for common rock-forming minerals. To avoid problems of pores and microcracks artificially lowering measured k values, we mathematically mixed mineral data to create synthetic rocks representative of the upper and lower crust and mantle, and checked our values against measurements of rocks least contaminated. Compared to previous models using k of rocks measured with non-LFA methods, our mixture models give higher k of crustal rocks at room temperature, but lower values at higher temperatures. Calculating a geotherm with these revised thermal conductivity values gives a lower temperature throughout the lower crust and mantle lithosphere. Altering the composition of the crust will change the geotherm; crust with more quartz, olivine and/or pyroxene has higher k and a lower geothermal gradient. Adding calcic plagioclase lowers k and steepens the geotherm. The new constraints on k allow us to set bounds on the steady-state geotherm based on ranges of possible mineralogy, chemistry, and radiogenic contents.

  19. A Novel Model for the Entire Settling-Thickening Process in a Secondary Settling Tank.

    Science.gov (United States)

    He, Zhijiang; Zhang, Yuankai; Wang, Hongchen; Qi, Lu; Yin, Xunfei; Zhang, Xiaojun; Wen, Yang

    2016-12-01

      Sludge settling and thickening occur simultaneously in secondary settling tanks (SSTs). The ability to accurately calculate the settling and thickening capacity of activated sludge was of great importance. Despite extensive studies on the development of settling velocity models for use with SSTs, these models have not been applied due to the difficulty in calibrating the related parameters. Additionally, there have been some studies of the thickening behavior of the activated sludge in SSTs. In this study, a novel settling and thickening model for activated sludge was developed, and the model was validated using experimental data (R2 = 0.830 to 0.963, p settling and thickening behavior of the activated sludge in an SST. The application of these models requires only one critical parameter, namely, the stirred sludge volume index SSVI3.5, which is readily available in a water resource recovery facility.

  20. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    Science.gov (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  1. Geologic implications of topographic, gravity, and aeromagnetic data in the northern Yukon-Koyukuk province and its borderlands, Alaska

    Science.gov (United States)

    Cady, J.W.

    1989-01-01

    The northern Yukon-Koyukuk province is characterized by low elevation and high Bouguer gravity and aeromagnetic anomalies in contrast to the adjacent Brooks Range and Ruby geanticline. Using newly compiled digital topographic, gravity, and aeromagnetic maps, the province is divided into three geophysical domains. The Koyukuk domain, which is nearly equivalent to the Koyukuk lithotectonic terrane, is a horseshoe-shaped area, open to the south, of low topography, high gravity, and high-amplitude magnetic anomalies caused by an intraoceanic magmatic arc. The Angayucham and Kanuti domains are geophysical subdivisions of the Angayucham lithotectonic terrane that occur along the northern and southeastern margins of the Yukon-Koyukuk province, where oceanic rocks have been thrust over continental rocks of the Brooks Range and Ruby geanticline. The modeling supports, but does not prove, the hypothesis that the crust of the Kobuk-Koyukuk basin is 32-35 km thick, consisting of a tectonically thickened section of Cretaceous volcanic and sedimentary rocks and older oceanic crust. -from Author

  2. Novel CO{sub 2}-thickeners for improved mobility control

    Energy Technology Data Exchange (ETDEWEB)

    Enick, Dr. Robert M.; Beckman, Dr. Eric J.; Hamilton, Dr. Andrew

    2000-02-02

    The objective of this study was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO{sub 2}. Previously, fluoroacrylate homopolymers and fluorinated telechelic ionomers were shown to increase the viscosity of carbon dioxide by a factor of 3--4 at concentrations of 2--3 at concentrations of 4--5 wt%. This report details the findings for several new types of carbon dioxide thickening candidates. Hydrocarbon-fluorocarbon random copolymers, sulfonated hydrocarbon-fluorocarbon random copolymers, semifluorinated trialkyltin fluorides and small hydrogen-bounding compounds were evaluated.

  3. Finite element simulation of earthquake cycle dynamics for continental listric fault system

    Science.gov (United States)

    Wei, T.; Shen, Z. K.

    2017-12-01

    We simulate stress/strain evolution through earthquake cycles for a continental listric fault system using the finite element method. A 2-D lithosphere model is developed, with the upper crust composed of plasto-elastic materials and the lower crust/upper mantle composed of visco-elastic materials respectively. The media is sliced by a listric fault, which is soled into the visco-elastic lower crust at its downdip end. The system is driven laterally by constant tectonic loading. Slip on fault is controlled by rate-state friction. We start with a simple static/dynamic friction law, and drive the system through multiple earthquake cycles. Our preliminary results show that: (a) periodicity of the earthquake cycles is strongly modulated by the static/dynamic friction, with longer period correlated with higher static friction and lower dynamic friction; (b) periodicity of earthquake is a function of fault depth, with less frequent events of greater magnitudes occurring at shallower depth; and (c) rupture on fault cannot release all the tectonic stress in the system, residual stress is accumulated in the hanging wall block at shallow depth close to the fault, which has to be released either by conjugate faulting or inelastic folding. We are in a process of exploring different rheologic structure and friction laws and examining their effects on earthquake behavior and deformation pattern. The results will be applied to specific earthquakes and fault zones such as the 2008 great Wenchuan earthquake on the Longmen Shan fault system.

  4. Nature of the crust in the Laxmi Basin (14°-20°N), western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Rao, D.G.; Sar, D.

    for determining the crust below the shelf, Laxmi Basin and Western Basin. 3. Crustal structure ? associated gravity and magnetic anomalies In the present study we have integrated the new datasets with published geophysical data: Conrad 1707 profiles (Naini..., 1980), SK- 12, 22, 50, 64 and 79 profiles (Bhattacharya et al., 1994a; Chaubey et al., 2002) and twelve long-range sonobuoy refraction stations (Naini and Talwani, 1983) (Figure 1) for carrying out integrated interpretation of the data. 3.1 Previous...

  5. Oxygen isotopes in garnet and accessory minerals to constrain fluids in subducted crust

    Science.gov (United States)

    Rubatto, Daniela; Gauthiez-Putallaz, Laure; Regis, Daniele; Rosa Scicchitano, Maria; Vho, Alice; Williams, Morgan

    2017-04-01

    Fluids are considered a fundamental agent for chemical exchanges between different rock types in the subduction system. Constraints on the sources and pathways of subduction fluids thus provide crucial information to reconstruct subduction processes. Garnet and U-Pb accessory minerals constitute some of the most robust and ubiquitous minerals in subducted crust and can preserve multiple growth zones that track the metamorphic evolution of the sample they are hosted in. Microbeam investigation of the chemical (major and trace elements) and isotopic composition (oxygen and U-Pb) of garnet and accessory minerals is used to track significant fluid-rock interaction at different stages of the subduction system. This approach requires consideration of the diffusivity of oxygen isotopes particularly in garnet, which has been investigated experimentally. The nature of the protolith and ocean floor alteration is preserved in relict accessory phases within eclogites that have been fully modified at HP conditions (e.g. Monviso and Dora Maira units in the Western Alps). Minerals in the lawsonite-blueschists of the Tavsanli zone in Turkey record pervasive fluid exchange between mafic and sedimentary blocks at the early stage of subduction. High pressure shear zones and lithological boundaries show evidence of intense fluid metasomatism at depth along discontinuities in Monviso and Corsica. In the UHP oceanic crust of the Zermatt-Saas Zone, garnet oxygen isotopes and tourmaline boron isotopes indicate multistage fluid infiltration during prograde metamorphism. Localized exchanges of aqueous fluids are also observed in the subducted continental crust of the Sesia-Lanzo Zone. In most cases analyses of distinct mineral zones enable identification of multiple pulses of fluids during the rock evolution.

  6. Plutonic rocks in the Mineoka-Setogawa ophiolitic mélange, central Japan: Fragments of middle to lower crust of the Izu-Bonin-Mariana Arc?

    Science.gov (United States)

    Ichiyama, Yuji; Ito, Hisatoshi; Hokanishi, Natsumi; Tamura, Akihiro; Arai, Shoji

    2017-06-01

    A Paleogene accretionary complex, the Mineoka-Setogawa Belt, is distributed around the Izu Collision Zone, central Japan. Plutonic rocks of gabbro, diorite and tonalite compositions are included as fragments and dykes in an ophiolitic mélange in this belt. Zircon U-Pb dating of the plutonic rocks indicates that they were formed at ca. 35 Ma simultaneously. These ages are consistent with Eocene-Oligocene tholeiite and calc-alkaline arc magmatism in the Izu-Bonin-Mariana (IBM) Arc and exclude several previous models for the origin of the Mineoka-Setogawa ophiolitic rocks. The geochemical characteristics of these plutonic rocks are similar to those of the Eocene-Oligocene IBM tholeiite and calc-alkaline volcanic rocks as well as to the accreted middle crust of the IBM Arc, the Tanzawa Plutonic Complex. Moreover, their lithology is consistent with those of the middle and lower crust of the IBM Arc estimated from the seismic velocity structure. These lines of evidence strongly indicate that the plutonic rocks in the Mineoka-Setogawa ophiolitic mélange are fragments of the middle to lower crust of the IBM Arc. Additionally, the presence of the Mineoka-Setogawa intermediate to felsic plutonic rocks supports the hypothesis that intermediate magma can form continental crust in intra-oceanic arcs.

  7. Seismic investigation on the Littoral Faults Zone in the northern continental margin of South China Sea

    Science.gov (United States)

    Sun, J.; Xu, H.; Xia, S.; Cao, J.; Wan, K.

    2017-12-01

    The continental margin of the northern South China Sea (SCS) had experienced continuous evolution from an active continental margin in the late Mesozoic to a passive continental margin in the Cenozoic. The 1200km-long Littoral Faults Zone (LFZ) off the mainland South China was suggested to represent one of the sub-plate boundaries and play a key role during the evolution. Besides, four devastating earthquakes with magnitude over 7 and another 11 destructive events with M>6 were documented to have occurred along the LFZ. However, its approximity to the shoreline, the shallow water depth, and the heavy fishing activities make it hard to conduct a marine seismic investigation. As a result, understandings about the LFZ before 2000 were relatively poor and mostly descriptive. After two experiments of joint onshore-offshore wide-angle seismic surveys in the 1st decade of this century, several cruses aiming to unveil the deep structure of the LFZ were performed in the past few years, with five joint onshore-offshore wide-angle seismic survey profiles completed. Each of these profiles is perpendicular to the shoreline, with four to five seismometers of campaign mode deployed on the landside and over ten Ocean Bottom Seismometers (OBSs) spacing at 20km deployed on the seaside. Meanwhile, multi-channel seismic (MCS) data along these profiles were obtained simultaneously. Based on these data, velocity models from both forward modeling and inversion were obtained. According to these models, the LFZ was imaged to be a low-velocity fractured zone dipping to the SSE-SE at a high-angle and cutting through the thinned continental crust at some locations. Width of the fractured zone varies from 6km to more than 10km from site to site. With these results, it is suggested that the LFZ accommodates the stresses from both the east side, where the Eurasia/Philippine Sea plate converging and mountain building is ongoing, and the west side, where a strike-slip between the Indochina

  8. Large-scale variation in lithospheric structure along and across the Kenya rift

    Science.gov (United States)

    Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.

    1991-01-01

    The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.

  9. Continents as lithological icebergs: The importance of buoyant lithospheric roots

    Science.gov (United States)

    Abbott, D.H.; Drury, R.; Mooney, W.D.

    1997-01-01

    An understanding of the formation of new continental crust provides an important guide to locating the oldest terrestrial rocks and minerals. We evaluated the crustal thicknesses of the thinnest stable continental crust and of an unsubductable oceanic plateau and used the resulting data to estimate the amount of mantle melting which produces permanent continental crust. The lithospheric mantle is sufficiently depleted to produce permanent buoyancy (i.e., the crust is unsubductable) at crustal thicknesses greater than 25-27 km. These unsubductable oceanic plateaus and hotspot island chains are important sources of new continental crust. The newest continental crust (e.g., the Ontong Java plateau) has a basaltic composition, not a granitic one. The observed structure and geochemistry of continents are the result of convergent margin magmatism and metamorphism which modify the nascent basaltic crust into a lowermost basaltic layer overlain by a more silicic upper crust. The definition of a continent should imply only that the lithosphere is unsubductable over ??? 0.25 Ga time periods. Therefore, the search for the oldest crustal rocks should include rocks from lower to mid-crustal levels.

  10. Rheological characterization of modified foodstuffs with food grade thickening agents

    Science.gov (United States)

    Reyes-Ocampo, I.; Aguayo-Vallejo, JP; Ascanio, G.; Córdova-Aguilar, MS

    2017-01-01

    This work describes a rheological characterization in terms of shear and extensional properties of whole milk, modified with food grade thickening agents (xanthan and carboxymethyl cellulose) with the purpose of being utilized in dysphagia treatment. Shear viscosity of the thickened fluids (2% wt. of xanthan and CMC) were measured in a stress-controlled rheometer and for extensional viscosity, a custom-built orifice flowmeter was used, with elongation rates from 20 to 3000 s-1. Such elongation-rate values represent the entire swallowing process, including the pharyngeal and esophageal phases. The steady-state shear and extensional flow curves were compared with the flow curve of a pudding consistency BaSO4 suspension (α=05), typically used as a reference fluid for the specialized commercial dysphagia products. The modified fluids presented non-Newtonian behavior in both, shear and extensional flows, and the comparison with the reference fluid show that the thickened milk prepared here, can be safely used for consumption by patients with severe dysphagia.

  11. Shear-thickening behavior of Fe-ZSM5 zeolite slurry and its removal with alumina/boehmites

    Science.gov (United States)

    Liu, Xiao-guang; Li, Yan; Xue, Wen-dong; Sun, Jia-lin; Tang, Qian

    2018-06-01

    A cryogenic scanning electron microscopy (cryo-SEM) technique was used to explore the shear-thickening behavior of Fe-ZSM5 zeolite pastes and to discover its underlying mechanism. Bare Fe-ZSM5 zeolite samples were found to contain agglomerations, which may break the flow of the pastes and cause shear-thickening behaviors. However, the shear-thickening behaviors can be eliminated by the addition of halloysite and various boehmites because of improved particle packing. Furthermore, compared with pure Fe-ZSM5 zeolite samples and its composite samples with halloysite, the samples with boehmite (Pural SB or Disperal) additions exhibited network structures in their cryo-SEM images; these structures could facilitate the storage and release of flow water, smooth paste flow, and avoid shear-thickening. By contrast, another boehmite (Versal 250) formed agglomerations rather than network structures after being added to the Fe-ZSM5 zeolite paste and resulted in shear-thickening behavior. Consequently, the results suggest that these network structures play key roles in eliminating the shear-thickening behavior.

  12. Intermediate crust (IC); its construction at continent edges, distinctive epeirogenic behaviour and identification as sedimentary basins within continents: new light on pre-oceanic plate motions

    Science.gov (United States)

    Osmaston, Miles F.

    2014-05-01

    Introduction. The plate tectonics paradigm currently posits that the Earth has only two kinds of crust - continental and oceanic - and that the former may be stretched to form sedimentary basins or the latter may be modified by arc or collision until it looks continental. But global analysis of the dynamics of actual plate motions for the past 150 Ma indicates [1 - 3] that continental tectospheres must be immensely thicker and rheologically stiffer than previously thought; almost certainly too thick to be stretched with the forces available. In the extreme case of cratons, these tectospheric keels evidently extend to 600 km or more [2, 3]. This thick-plate behaviour is attributable, not to cooling but to a petrological 'stiffening' effect, associated with a loss of water-weakening of the mineral crystals, which also applies to the hitherto supposedly mobile LVZ below MORs [4, 5]. The corresponding thick-plate version of the mid-ocean ridge (MOR) process [6 - 8], replacing the divergent mantle flow model, has a deep, narrow wall-accreting axial crack which not only provides the seismic anisotropy beneath the flanks but also brings two outstanding additional benefits:- (i) why, at medium to fast spreading rates, MOR axes become straight and orthogonally segmented [6], (ii) not being driven by body forces, it can achieve the sudden jumps of axis, spreading-rate and direction widely present in the ocean-floor record. Furthermore, as we will illustrate, the crack walls push themselves apart at depth by a thermodynamic mechanism, so the plates are not being pulled apart. So the presence of this process at a continental edge would not imply the application of extensional force to the margin. Intermediate Crust (IC). In seeking to resolve the paradox that superficially extensional structures are often seen at margins we will first consider how this MOR process would be affected by the heavy concurrent sedimentation to be expected when splitting a mature continent. I reason

  13. Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones

    Science.gov (United States)

    Kirby, S.H.

    1985-01-01

    Emphasized in this paper are the deformation processes and rheologies of rocks at high temperatures and high effective pressures, conditions that are presumably appropriate to the lower crust and upper mantle in continental collision zones. Much recent progress has been made in understanding the flexure of the oceanic lithosphere using rock-mechanics-based yield criteria for the inelastic deformations at the top and base. At mid-plate depths, stresses are likely to be supported elastically because bending strains and elastic stresses are low. The collisional tectonic regime, however, is far more complex because very large permanent strains are sustained at mid-plate depths and this requires us to include the broad transition between brittle and ductile flow. Moreover, important changes in the ductile flow mechanisms occur at the intermediate temperatures found at mid-plate depths. Two specific contributions of laboratory rock rheology research are considered in this paper. First, the high-temperature steady-state flow mechanisms and rheology of mafic and ultramafic rocks are reviewed with special emphasis on olivine and crystalline rocks. Rock strength decreases very markedly with increases in temperature and it is the onset of flow by high temperature ductile mechanisms that defines the base of the lithosphere. The thickness of the continental lithosphere can therefore be defined by the depth to a particular isotherm Tc above which (at geologic strain rates) the high-temperature ductile strength falls below some arbitrary strength isobar (e.g., 100 MPa). For olivine Tc is about 700??-800??C but for other crustal silicates, Tc may be as low as 400??-600??C, suggesting that substantial decoupling may take place within thick continental crust and that strength may increase with depth at the Moho, as suggested by a number of workers on independent grounds. Put another way, the Moho is a rheological discontinuity. A second class of laboratory observations pertains to

  14. Initiation of Extension in South China Continental Margin during the Active-Passive Margin Transition: Thermochronological and Kinematic Constraints

    Science.gov (United States)

    Zuo, X.; Chan, L. S.

    2015-12-01

    The South China continental margin is characterized by a widespread magmatic belt, prominent NE-striking faults and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from active to passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. Our zircon fission-track data in this region show two episodes of exhumation: The first episode, occurring during 170-120Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115-70Ma, including the Yunkai Terrane and the Nanling Range. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the fact that exhumation of the granite-dominant Nanling Range occurred earlier than that of the gneiss-dominant Yunkai Terrane. In addition to the difference in rock types, the heat from Jurassic-Early Cretaceous magmatism in Nanling may have softened the upper crust, causing the area to exhume more readily than Yunkai. Numerical modeling results also indicate that (1) high lithospheric geothermal gradient, high slab dip angle and low convergence velocity favor the reversal of crustal stress state from compression to extension in the upper continental plate; (2) late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension imply that the Late Cretaceous-early Paleogene red-bed basins in South China could have formed during the late stage of the subduction, accounting for the occurrence of volcanic events in some sedimentary basins. We propose that the rifting started as early as Late Cretaceous, probably before the cessation of subduction process.

  15. Western Continental Margin of India - Re-look using potential field data

    Science.gov (United States)

    Rajaram, M.; S P, A.

    2008-05-01

    The Western Continental Margin of India (WCMI) evolved as a result of rifting between India and Madagascar that took place during mid Cretaceous (~88Ma).The WCMI is equally important in terms of natural resources as well as research point of view. The major tectonic elements in the western offshore includes the Laxmi and Chagos- Laccadive ridge dividing the WCMI and the adjoining Arabian sea into two basins, Pratap Ridge, Alleppey platform etc. Different theories have been proposed for the evolution of each of these tectonic elements. In the current paper we look at geopotential data on the west coast of India and the western off-shore. The data sets utilized include Satellite derived High Resolution Free Air Gravity data over the off-shore, Bouguer data onland, Champ Satellite Magnetic data, published Marine Magnetic data collected by ONGC, NIO, ground magnetic data over west cost collected by IIG and available aeromagnetic data. From the free air gravity anomaly the structural details of the western offshore can be delineated. The Euler depths of FAG depict deep solutions associated with Pratap Ridge, Comorin Ridge, the west coast fault and the Laxmi Ridge. These may be associated with continental margin and continental fragments. From the aeromagnetic and marine magnetic data it is evident that the West Coast Fault is dissected at several places. The shallow circular feature associated with Bombay High is evident both on the FAG and the analytic signal derived from satellite Magnetic data. The crustal magnetic thickness from MF5 lithospheric model of the Champ appears to suggest that the continental crust extends up to the Chagos- Laccadive ridge. Based on the analysis of these geopotential data sets the various theories for the evolution of the WCMI will be evaluated and these results will be presented.

  16. Petrogenesis of the Yaochong granite and Mo deposit, Western Dabie orogen, eastern-central China: Constraints from zircon U-Pb and molybdenite Re-Os ages, whole-rock geochemistry and Sr-Nd-Pb-Hf isotopes

    Science.gov (United States)

    Chen, Wei; Xu, Zhaowen; Qiu, Wenhong; Li, Chao; Yu, Yang; Wang, Hao; Su, Yang

    2015-05-01

    The Dabie orogen is among the most famous continent-continent collisional orogenic belts in the world, and is characterized by intensive post-collisional extension, magmatism and Mo mineralization. However, the genetic links between the mineralization and the geodynamic evolution of the orogen remain unresolved. In this paper, the Yaochong Mo deposit and its associated granitic stocks were investigated to elucidate this issue. Our new zircon U-Pb ages yielded an Early Cretaceous age (133.3 ± 1.3 Ma) for the Yaochong granite, and our molybdenite Re-Os dating gave a similar age (135 ± 1 Ma) for the Mo deposit. The Yaochong stock is characterized by high silica and alkali but low Mg, Fe and Ca. It is enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs: Rb, K, Th and U), but strongly depleted in heavy REEs, and high field strength elements (HFSEs: Nb, Ta, Ti and Y). The Yaochong granite has initial 87Sr/86Sr ratios of 0.7087-0.7096, and Pb isotopic ratios of (206Pb/204Pb)i = 16.599-16.704, (207Pb/204Pb)i = 15.170-15.618 and (208Pb/204Pb)i = 36.376-38.248. The granite has εNd(t) of -18.0 to -16.3 and εHf(t) values of -26.5 to -20.0. All these data indicate that the Yaochong granite is a high-K calc-alkaline fractionated I-type granite, and may have originated from partial melting of the thickened Yangtze continental crust. The Mo ores also show low radiogenic Pb isotopes similar to the Yaochong stock. Medium Re content in molybdenite (21.8-74.8 ppm) also suggests that the ore-forming materials were derived from the thickened lower crust with possibly minor mixing with the mantle. Similar to the Eastern Dabie orogen, the thickened crust beneath the Western Dabie orogen may also have experienced tectonic collapse, which may have exerted fundamental geodynamic controls on the two-stage Mo mineralization in the region.

  17. Crustal Deformation In the Northwestern Margin of the South China Sea: Results From Wide-angle Seismic Modeling

    Science.gov (United States)

    Huang, H.; Klingelhoefer, F.

    2017-12-01

    The South China Sea (SCS) has undergone episodic spreading during the Cenozoic Era. The long-term extension has shaped the continental margins of the SCS, leading to a progressive breakup of the lithosphere. Separated blocks and rift troughs, as controlled by tectonic stretching, contains key information about the deforming mechanism of the crust. In this work, we present a P-wave velocity model of a wide-angle seismic profile OBS2013-1 which passes through the NW margin of the SCS. Modeling of 25 ocean bottom seismometers (OBS) data revealed a detailed crustal structure and shallow complexities along the profile (Figure 1). The crust thins symmetrically across the Xisha Trough, from more than 20 km on flanks to 10 km in the central valley where the sediments thickens over 5 km; A volcano is situated on top of the centre basement high where the Moho drops slightly. At the distal margin around the Zhongsha Trough, the upper crust was detached and accordingly made the middle crust exhumed in a narrow area ( 20 km wide). Meanwhile, materials from the lower crust rises asymmetrically, increasing the crustal velocity by 0.3 km/s and may also giving rise to volcanisms along the hanging side. A 40 km wide hyper-stretched crust (with thickness of 5 km) was identified next to the Zhongsha Trough and covered by overflowing magma and post-rift sediments on the top. These observations argue for a depth-related and asymmetrically extension of the crust, including (1) detachment fault controls the deformation of the upper crust, leading to exhumation of the middle crust and asymmetrically rising of the lower crust, (2) The region adjacent to the exhumation region and with highly thinned crust can be considered as extinct OCT due to magma-starved supplying.

  18. Influence of substrate rocks on Fe-Mn crust composition

    Science.gov (United States)

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  19. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago.

    Science.gov (United States)

    Næraa, T; Scherstén, A; Rosing, M T; Kemp, A I S; Hoffmann, J E; Kokfelt, T F; Whitehouse, M J

    2012-05-30

    Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate

  20. A simple empirical model for the clarification-thickening process in wastewater treatment plants.

    Science.gov (United States)

    Zhang, Y K; Wang, H C; Qi, L; Liu, G H; He, Z J; Fan, H T

    2015-01-01

    In wastewater treatment plants (WWTPs), activated sludge is thickened in secondary settling tanks and recycled into the biological reactor to maintain enough biomass for wastewater treatment. Accurately estimating the activated sludge concentration in the lower portion of the secondary clarifiers is of great importance for evaluating and controlling the sludge recycled ratio, ensuring smooth and efficient operation of the WWTP. By dividing the overall activated sludge-thickening curve into a hindered zone and a compression zone, an empirical model describing activated sludge thickening in the compression zone was obtained by empirical regression. This empirical model was developed through experiments conducted using sludge from five WWTPs, and validated by the measured data from a sixth WWTP, which fit the model well (R² = 0.98, p settling was also developed. Finally, the effects of denitrification and addition of a polymer were also analysed because of their effect on sludge thickening, which can be useful for WWTP operation, e.g., improving wastewater treatment or the proper use of the polymer.

  1. Continental tectonics and continental kinetics

    International Nuclear Information System (INIS)

    Allegre, C.J.; Jaupart, C.; Paris-7 Univ., 75

    1985-01-01

    We present a model of continental growth which combines the results of geochemical studies and tectonic ideas about the evolution of continents through geological time. The process of continental growth is mainly controlled by surface phenomena. Continental material is extracted from the mantle along subduction zones at the periphery of oceans, and is destroyed in collision zones where it is remobilized and made available for subduction. We derive an equation for S, the portion of the Earth's surface occupied by continents, which reads as follows: dS/dt=a . √(1-S)-b . S. Coefficients a and b depend on the geometry of plates, on their number and on their velocities. We assume that they decrease exponentially with time with the same time-scale α. This model satisfies both geochemical and tectonic constraints, and allows the integration of several current observations in a single framework. (orig.)

  2. Commercial helium reserves, continental rifting and volcanism

    Science.gov (United States)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  3. A Comparative Study Between Modified Starch and Xanthan Gum Thickeners in Post-Stroke Oropharyngeal Dysphagia.

    Science.gov (United States)

    Vilardell, N; Rofes, L; Arreola, V; Speyer, R; Clavé, P

    2016-04-01

    Thickeners are used in post-stroke oropharyngeal dysphagia (OD) as a compensatory therapeutic strategy against aspirations. To compare the therapeutic effects of modified starch (MS) and xanthan gum (XG) thickeners on swallow safety and efficacy in chronic post-stroke OD patients using clinical and videofluoroscopic (VFS) assessment. Patients were studied by clinical assessment (volume-viscosity swallow test, V-VST) and VFS using 3 volumes (5, 10, 20 mL) and 3 viscosities (liquid, nectar and spoon thick), comparing MS and XG. We studied 122 patients (46MS, 76XG). (A) V-VST showed that both thickeners similarly improved safety of swallow. Prevalence of safe swallowing significantly increased with enhanced viscosity (P < 0.001 vs liquid), MS: 47.83 % at liquid, 84.93 % at nectar and 92.96 % at spoon thick; XG: 55.31 % at liquid, 77.78 % at nectar and 97.84 % at spoon thick. Patients on MS reported higher prevalence of pharyngeal residue at spoon-thick viscosities. (B) VFS: increasing bolus viscosity with either thickener increased prevalence of safe swallows (P < 0.001 vs liquid), MS: 30.25 % liquid, 61.07 % nectar and 92.64 % spoon thick; XG: 29.12 % liquid, 71.30 % nectar and 89.91 % spoon thick. Penetration-aspiration scale score was significantly reduced with increased viscosity with both thickeners. MS increased oral and pharyngeal residues at nectar and spoon-thick viscosities but XG did not. Timing of airway protection mechanisms and bolus velocity were not affected by either thickener. Increasing bolus viscosity with MS and XG thickeners strongly and similarly improved safety of swallow in chronic post-stroke OD by a compensatory mechanism; in contrast only MS thickeners increased oropharyngeal residue.

  4. Multiple crust reworking in the French Armorican Variscan belt: implication for the genesis of uranium-fertile leucogranites

    Science.gov (United States)

    Ballouard, C.; Poujol, M.; Zeh, A.

    2018-03-01

    Muscovite peraluminous granites (MPGs) form by partial melting of the continental crust and can be related to metalliferous deposits such as tin, tungsten, and uranium (U). Metal enrichment in MPGs commonly results from fractional crystallization, but the metal contents of the source play a major role for their fertility. Between ca. 320 and 300 Ma (Late Carboniferous), the French Armorican Variscan belt was intruded by numerous U-fertile MPGs that contain inherited zircon grains with a wide range of ages from Archean-to-Carboniferous. U-Pb and Hf isotopic data of zircon grains from Brioverian-to-Carboniferous sediments, Cambrian-to-Early Carboniferous granitoids, and Late Carboniferous MPGs indicate that the crust of the Armorican Massif is made up by detritus mainly derived from the West African craton (3500-1600 Ma; T DM = 3.8-2.3 Ga), Grenvillian belt (1200-900 Ma; T DM = 2.7-1.2 Ga), and Avalonian-Cadomian belt (800-550 Ma; T DM = 2.5-0.8 Ga) and that the crust was affected by magmatic events at 510-470 Ma (T DM = 1.6-0.6 Ga), 410-330 Ma (T DM = 1.6-1 Ga), and 320-300 Ma. Furthermore, they reveal that the Late Carboniferous MPGs were mainly formed by partial melting of Brioverian sediments with Cambro-Ordovician and Devonian-Carboniferous granitoids, which are all genetically linked with each other and characterized by Th/U < 4. The new data suggest that the U-fertile MPGs result from multiple reworking of U-rich Brioverian sediments, deposited ca. 550 Ma ago on the northern margin of Gondwana, and partially molten during several Paleozoic events, causing a successive increase in U content in the middle-upper crust.

  5. Computer simulations of shear thickening of concentrated dispersions

    NARCIS (Netherlands)

    Boersma, W.H.; Laven, J.; Stein, H.N.

    1995-01-01

    Stokesian dynamics computer simulations were performed on monolayers of equally sized spheres. The influence of repulsive and attractive forces on the rheological behavior and on the microstructure were studied. Under specific conditions shear thickening could be observed in the simulations, usually

  6. Platinum stable isotopes in ferromanganese crust and nodules

    Science.gov (United States)

    Corcoran, Loretta; Seward, Terry; Handler, Monica R.

    2015-04-01

    Hydrogenetic ferromanganese (Fe-Mn) crust and nodules are slow-growing chemical sediments that form by direct precipitation from seawater, resulting in a record of changing seawater chemistry. These sediments are the primary sink for platinum in the modern oxic marine environment, hosting well-documented enrichments over other platinum-group elements (PGEs): the Pt anomaly [1]. Platinum is a non-bio-essential, highly siderophile, transition metal with six stable isotopes (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt) with several oxidation states (Pt0, Pt2+ and Pt4+). Platinum is generally considered to exist in the hydrosphere as Pt2+ although its behaviour in the marine environment is poorly constrained, and Pt4+may also be present. Variations in ocean redox state, together with changes in source fluxes to the oceans, may therefore lead to small variations (Leaching experiments conducted on platinum rich terrestrial materials underwent platinum stable isotopic measurement as an analogue for the Pt isotopic fractionation associated with continental weathering. [1] Hodge, V.F. et al. (1985) Earth and Planetary Science Letters, 72, 158-162. [2] Creech, J. et al. (2013) Journal of Analytical Atomic Spectrometry, 28. 853-865.

  7. Eclogite-facies metamorphism in impure marble from north Qaidam orogenic belt: Geodynamic implications for early Paleozoic continental-arc collision

    Science.gov (United States)

    Chen, Xin; Xu, Rongke; Schertl, Hans-Peter; Zheng, Youye

    2018-06-01

    In the North Qaidam ultrahigh-pressure (UHP) metamorphic belt, impure marble and interbedded eclogite represent a particular sedimentary provenance and tectonic setting, which have important implications for a controversial problem - the dynamic evolution of early Paleozoic subduction-collision complexes. In this contribution, detailed field work, mineral chemistry, and whole-rock geochemistry are presented for impure marble to provide the first direct evidence for the recycling of carbonate sediments under ultrahigh-pressures during subduction and collision in the Yuka terrane, in the North Qaidam UHP metamorphic belt. According to conventional geothermobarometry, pre-peak subduction to 0.8-1.3 GPa/485-569 °C was followed by peak UHP metamorphism at 2.5-3.3 GPa/567-754 °C and cooling to amphibolite facies conditions at 0.6-0.7 GPa/571-589 °C. U-Pb dating of zircons from impure marble reveals a large group with ages ranging from 441 to 458 Ma (peak at 450 Ma), a smaller group ranging from 770 to 1000 Ma (peak at 780 Ma), and minor >1.8 Ga zircon aged ca. 430 Ma UHP metamorphism. The youngest detrital zircons suggest a maximum depositional age of ca. 442 Ma and a burial rate of ca. 1.0-1.1 cm/yr when combined with P-T conditions and UHP metamorphic age. The REE and trace element patterns of impure marble with positive Sr and U anomalies, negative high field strength elements (Nb, Ta, Zr, Hf, and Ti), and Ce anomalies imply that the marble had a marine limestone precursor. Impure marble intercalated with micaschist and eclogite was similar to limestone and siltstone protoliths deposited in continental fore-arc or arc setting with basic volcanic activity. Therefore, the Yuka terrane most likely evolved in a continental island arc setting during the Paleozoic. These data suggest that metasediments were derived from a mixture of Proterozoic continental crust and juvenile early Paleozoic oceanic and/or island arc crust. In addition, their protoliths were likely

  8. Building the Pamir-Tibet Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Pamir: 3. Thermobarometry and petrochronology of deep Asian crust

    Science.gov (United States)

    Hacker, Bradley R.; Ratschbacher, Lothar; Rutte, Daniel; Stearns, Michael A.; Malz, Nicole; Stübner, Konstanze; Kylander-Clark, Andrew R. C.; Pfänder, Jörg A.; Everson, Alexa

    2017-09-01

    Large domes of crystalline, middle to deep crustal rocks of Asian provenance make the Pamir a unique part of the India-Asia collision. Combined major-element and trace element thermobarometry, pseudosections, garnet-zoning deconstruction, and geochronology are used to assess the burial and exhumation history of five of these domes. All domes were buried and heated sufficiently to initiate garnet growth at depths of 15-20 km at 37-27 Ma. The Central Pamir was then heated at 10-20°C/Myr and buried at 1-2 km/Myr to 600-675°C at depths of 25-35 km by 22-19 Ma. The Shakhdara Dome in the South Pamir was heated at 20°C/Myr and buried at 2-8 km/Myr to reach 750-800°C at depths of ≥50 km by 20 Ma. All domes were exhumed at >3 km/Myr to 5-10 km depths and 300°C by 17-15 Ma. The pressures, temperatures, burial rates, and heating rates are typical of continental collision. Decompression during exhumation outpaced cooling, compatible with tectonic unroofing along mapped large-scale, normal-sense shear zones, and with advection of near-solidus or suprasolidus temperatures into the upper crust, triggering exhumation-related magmatism. The Shakhdara Dome was exhumed from greater depth than the Central Pamir domes perhaps due to its position farther in the hinterland of the Paleogene retrowedge and to higher heat input following Indian slab breakoff. The large-scale thickening and coincident 20 Ma switch to extension throughout a huge area encompassing the Pamir and Karakorum strengthens the idea that the evolution of orogenic plateaux is governed by catastrophic plate-scale events.

  9. Transdomes sampling of lower and middle crust

    Science.gov (United States)

    Teyssier, C. P.; Whitney, D. L.; Roger, F.; Rey, P. F.

    2015-12-01

    Migmatite transdomes are formed by lateral and upward flow of partially molten crust in transtension zones (pull-apart structures). In order to understand the flow leading to this type of domes, 3D numerical models were set-up to simulate the general case of an extensional domain located between two strike-slip faults (pull-apart or dilational bridge). Results show that upper crust extension induces flow of the deep, low-viscosity crust, with rapid upward movement of transdome material when extension becomes localized. At this point a rolling hinge detachment allows rapid removal of upper crust. The internal structure of transdomes includes a subvertical high strain zone located beneath the zone of localized upper crust extension; this shear zone separates two elongate subdomes of foliation that show refolded/sheath folds. Lineation tends to be oriented dominantly subhorizontal when the amount of strike-slip motion is greater than the amount of upward flow of dome rocks. Models also predict nearly isothermal decompression of transdome material and rapid transfer of ~50 km deep rocks to the near surface. These model results are compared to the structural and metamorphic history of several transdomes, and in particular the Variscan Montagne Noire dome (French Massif Central) that consists of two domes separated by a complex high strain zone. The Montagne Noire dome contains ~315 Ma eclogite bodies (U-Pb zircon age) that record 1.4 GPa peak pressure. The eclogite bodies are wrapped in highly sheared migmatite that yield 314-310 Ma monazite ages interpreted as the metamorphism and deformation age. Based on these relations we conclude that the Montagne Noire transdome developed a channel of partially molten crust that likely entrained eclogite bodies from the deep crust (~50 km) before ascending to the near-surface. One implication of this work is that the flowing crust was deeply seated in the orogen although it remained a poor recorder of peak pressure of metamorphism

  10. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    Energy Technology Data Exchange (ETDEWEB)

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E

    2010-02-18

    The Cameroon Volcanic Line (CVL) is a major geologic feature that cuts across Cameroon from the south west to the north east. It is a unique volcanic lineament which has both an oceanic and a continental sector and consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. The oceanic sector includes the islands of Bioko (formerly Fernando Po) and Sao Tome and Principe while the continental sector includes the Etinde, Cameroon, Manengouba, Bamboutos, Oku and Mandara mountains, as well as the Adamawa and Biu Plateaus. In addition to the CVL, three other major tectonic features characterize the region: the Benue Trough located northwest of the CVL, the Central African Shear Zone (CASZ), trending N70 degrees E, roughly parallel to the CVL, and the Congo Craton in southern Cameroon. The origin of the CVL is still the subject of considerable debate, with both plume and non-plume models invoked by many authors (e.g., Deruelle et al., 2007; Ngako et al, 2006; Ritsema and Allen, 2003; Burke, 2001; Ebinger and Sleep, 1998; Lee et al, 1994; Dorbath et al., 1986; Fairhead and Binks, 1991; King and Ritsema, 2000; Reusch et al., 2010). Crustal structure beneath Cameroon has been investigated previously using active (Stuart et al, 1985) and passive (Dorbath et al., 1986; Tabod, 1991; Tabod et al, 1992; Plomerova et al, 1993) source seismic data, revealing a crust about 33 km thick at the south-western end of the continental portion of the CVL (Tabod, 1991) and the Adamawa Plateau, and thinner crust (23 km thick) beneath the Garoua Rift in the north (Stuart et al, 1985) (Figure 1). Estimates of crustal thickness obtained using gravity data show similar variations between the Garoua rift, Adamawa Plateau, and southern part of the CVL (Poudjom et al., 1995; Nnange et al., 2000). In this study, we investigate further crustal structure beneath the CVL and the adjacent regions in

  11. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  12. Biological Soil Crusts: Webs of Life in the Desert

    Science.gov (United States)

    Belnap, Jayne

    2001-01-01

    Although the soil surface may look like dirt to you, it is full of living organisms that are a vital part of desert ecosystems. This veneer of life is called a biological soil crust. These crusts are found throughout the world, from hot deserts to polar regions. Crusts generally cover all soil spaces not occupied by green plants. In many areas, they comprise over 70% of the living ground cover and are key in reducing erosion, increasing water retention, and increasing soil fertility. In most dry regions, these crusts are dominated by cyanobacteria (previously called blue-green algae), which are one of the oldest known life forms. Communities of soil crusts also include lichens, mosses, microfungi, bacteria, and green algae. These living organisms and their by-products create a continuous crust on the soil surface. The general color, surface appearance, and amount of coverage of these crusts vary depending on climate and disturbance patterns. Immature crusts are generally flat and the color of the soil, which makes them difficult to distinguish from bare ground. Mature crusts, in contrast, are usually bumpy and dark-colored due to the presence of lichens, mosses, and high densities of cyanobacteria and other organisms.

  13. Phosphatization Associated Features of Ferromanganese Crusts at Lemkein Seamount, Marshall Islands

    Science.gov (United States)

    Choi, J.; Lee, I.; Park, B. K.; Kim, J.

    2014-12-01

    Old layers of ferromanganese crusts, especially in the Pacific Ocean, have been affected by phosphatization. Ferromanganese crusts on Lemkein seamount in Marshall Islands also are phosphatized (3.3 to 4.2 wt % of P concentration). Furthermore, they have characteristic features that are different from other ferromanganese crusts. These features occur near the phosphorite, which were thought to fill the pore spaces of ferromanganese crusts. Inside the features, ferromanganese crusts are botryoidally precipitated from the round-boundary. The features of the phosphatized lower crusts of Lemkein seamount are observed using microscope and SEM. Elemental compositions of the selected samples were analyzed by SEM-EDS. Based on the observation and analysis of samples, three characteristic structures are identified: (1) phosphate-filled circles, (2) tongue-shaped framboidal crust, and (3) massive framboidal crust. The phosphate-filled circles are mostly composed of phosphorite, and they include trace fossils such as foraminifera. Phosphatized ferromanganese crusts exist at the boundary of this structure. The tongue-shaped crust is connected with the lips downward, and ferromanganese crusts inside the tongue show distinct growth rim. The massive framboidal crust is located below the tongue. Ferromanganese crusts in the massive framboidal crust are enveloped by phosphate, and some of the crusts are phosphatized. Around the structures, Mn oxide phase is concentrated as a shape of corona on BSE image. All of the structures are in the phosphatized crusts that show columnar growth of ferromanganese crusts and have sub-parallel lamination. These observation and chemical analysis of the ferromanganese crusts can provide a clue of diagenetic processes during the formation of ferromanganese crusts.

  14. RHEOLOGICAL CHARACTERIZATION OF COFFEEFLAVORED YOGURT WITH DIFFERENT TYPES OF THICKENER

    Directory of Open Access Journals (Sweden)

    Thiago Rocha dos Santos MATHIAS

    2011-12-01

    Full Text Available Yogurt is a functional food that has great demand due to the consumer’s search for a healthier diet. In order to expand the consumer market of this product, many flavors are available, satisfying the most varied preferences. Besides the taste attribute, consistency and viscosity of yogurt are some of the main factors involved in product quality and acceptance. Therefore, this work is a study of the influence of concentration of thickener in coffee-flavored yogurt. The thickener agent used was gelatin. The rheological behavior (flow and viscosity curves of yogurts with and without addition of gelatin was compared with commercial yogurt, which contains another type of thickener (locust bean gum in its formulation. The flow and viscosity curves were obtained from rotational rheometer Thermo Haake Mars, with a range of shear rate from 0.02 to 100 s-1 (rising curve and 100 to 0.02 s-1 (descendent curve at a total time of 20 minutes. Hysteresis was determined as the area between the curves and adjusted to the models of Bingham, Casson, Herschel-Bulkley and Ostwald-de-Waele. Were also carried out tests of thixotropy, by measuring the viscosity as a function of time at a constant rate of 100 s-1 for 10 minutes. These curves were adjusted by the Weltman model. All samples showed pseudoplastic and thixotropic behavior. The Herschel-Bulkley model was the best fit to the three samples tested. The Weltman’s model well described the thixotropy tests, except for the sample of commercial yogurt. The use of gelatin as a thickener showed protective character, reducing the structural break of the gel.

  15. The crust and upper mantle of central East Greenland - implications for continental accretion and rift evolution

    Science.gov (United States)

    Schiffer, Christian; Balling, Niels; Ebbing, Jörg; Holm Jacobsen, Bo; Bom Nielsen, Søren

    2016-04-01

    The geological evolution of the North Atlantic Realm during the past 450 Myr, which has shaped the present-day topographic, crustal and upper mantle features, was dominated by the Caledonian orogeny and the formation of the North Atlantic and associated igneous activity. The distinct high altitude-low relief landscapes that accompany the North Atlantic rifted passive margins are the focus of a discussion of whether they are remnant and modified Caledonian features or, alternatively, recently uplifted peneplains. Teleseismic receiver function analysis of 11 broadband seismometers in the Central Fjord Region in East Greenland indicates the presence of a fossil subduction complex, including a slab of eclogitised mafic crust and an overlying wedge of hydrated mantle peridotite. This model is generally consistent with gravity and topography. It is shown that the entire structure including crustal thickness variations and sub-Moho heterogeneity gives a superior gravity and isostatic topographic fit compared to a model with a homogeneous lithospheric layer (1). The high topography of >1000 m in the western part of the area is supported by the c. 40 km thick crust. The eastern part requires buoyancy from the low velocity/low density mantle wedge. The geometry, velocities and densities are consistent with structures associated with a fossil subduction zone. The spatial relations with Caledonian structures suggest a Caledonian origin. The results indicate that topography is isostatically compensated by density variations within the lithosphere and that significant present-day dynamic topography seems not to be required. Further, this structure is suggested to be geophysically very similar to the Flannan reflector imaged north of Scotland, and that these are the remnants of the same fossil subduction zone, broken apart and separated during the formation of the North Atlantic in the early Cenozoic (2). 1) Schiffer, C., Jacobsen, B.H., Balling, N., Ebbing, J. and Nielsen, S

  16. [Analysis of thickening polysaccharides by the improved diethyldithioacetal derivatization method].

    Science.gov (United States)

    Akiyama, Takumi; Yamazaki, Takeshi; Tanamoto, Kenichi

    2011-01-01

    The identification test for thickening polysaccharides containing neutral saccharides and uronic acids was investigated by GC analysis of constituent monosaccharides. The reported method, in which monosaccharides were converted to diethyldithioacetal derivatives with ethanethiol followed by trimethylsilylation, was improved in terms of operability and reproducibility of GC/MS analysis. The suitability of the improved diethyldithioacetal derivatization method was determined for seven thickening polysaccharides, i.e., carob bean gum, guar gum, karaya gum, gum arabic, gum ghatti, tragacanth gum and peach gum. The samples were acid-hydrolyzed to form monosaccharides. The hydrolysates were derivatized and analyzed with GC/FID. Each sugar derivative was detected as a single peak and was well separated from others on the chromatograms. The amounts of constituent monosaccharides in thickening polysaccharides were successfully estimated. Seven polysaccharides were distinguished from each other on the basis of constituent monosaccharides. Further examination of the time period of hydrolysis of polysaccharides using peach gum showed that the optimal times were not the same for all monosaccharides. A longer time was needed to hydrolyze glucuronic acid than neutral saccharides. The findings suggest that hydrolysis time may sometimes affect the analytical results on composition of constituent monosaccharides in polysaccharides.

  17. Microstructural changes in thickened corpus callosum in children: contribution of magnetic resonance diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Merlini, Laura; Anooshiravani, Mehrak; Kanavaki, Aikaterini; Hanquinet, Sylviane [University of Geneva Children' s Hospital, Pediatric Radiology Unit, Geneva (Switzerland)

    2015-06-15

    Thickened corpus callosum is a rare finding and its pathophysiology is not well known. An anomalous supracallosal bundle has been depicted by fiber tracking in some cases but no diffusion tensor imaging metrics of thickened corpus callosum have been reported. To use diffusion tensor imaging (DTI) in cases of thickened corpus callosum to help in understanding its clinical significance. During a 7-year period five children (ages 6 months to 15 years) with thickened corpus callosum were studied. We determined DTI metrics of fractional anisotropy (FA), mean diffusivity, and axial (λ1) and radial (λ2, λ3) diffusivity and performed 3-D fiber tracking reconstruction of the thickened corpus callosum. We compared our results with data from the literature and 24 age-matched controls. Brain abnormalities were seen in all cases. All children had at least three measurements of corpus callosum thickness above the 97th percentile according to age. In all children 3-D fiber tracking showed an anomalous supracallosal bundle and statistically significant decrease in FA (P = 0.003) and λ1 (P = 0.001) of the corpus callosum compared with controls, but no significant difference in mean diffusivity and radial diffusivity. Thickened corpus callosum was associated with abnormal bundles, suggesting underlying axonal guidance abnormality. DTI metrics suggested abnormal fiber compactness and density, which may be associated with alterations in cognition. (orig.)

  18. U-Pb thermochronology of rutile from Alpine Corsica: constraints on the thermal evolution of the European margin during Jurassic continental breakup

    Science.gov (United States)

    Ewing, T. A.; Beltrando, M.; Müntener, O.

    2017-12-01

    U-Pb thermochronology of rutile can provide valuable temporal constraints on the exhumation history of the lower crust, given its moderate closure temperature and the occurrence of rutile in appropriate lithologies. We present an example from Alpine Corsica, in which we investigate the thermal evolution of the distal European margin during Jurassic continental rifting that culminated in the opening of the Alpine Tethys ocean. The Belli Piani unit of the Santa Lucia nappe (Corsica) experienced minimal Alpine overprint and bears a striking resemblance to the renowned Ivrea Zone lower crustal section (Italy). At its base, a 2-4 km thick gabbroic complex contains slivers of granulite facies metapelites that represent Permian lower crust. Zr-in-rutile temperatures and U-Pb ages were determined for rutile from three metapelitic slivers from throughout the Mafic Complex. High Zr-in-rutile temperatures of 850-950 °C corroborate textural evidence for rutile formation during Permian granulite facies metamorphism. Lower Zr-in-rutile temperatures of 750-800 °C in a few grains are partly associated with elongate strings of rutile within quartz ribbons, which record recrystallisation of some rutile during high-temperature shearing. Zr thermometry documents that both crystallisation and re-crystallisation of rutile occurred above the closure temperature of Pb in rutile, such that the U-Pb system can be expected to record cooling ages uncomplicated by re-crystallisation. Our new high-precision single-spot LA-ICPMS U-Pb dates are highly consistent between and within samples. The three samples gave ages from 160 ± 1 Ma to 161 ± 2 Ma, with no other age populations detected. The new data indicate that the Santa Lucia lower crust last cooled through 550-650 °C at 160 Ma, coeval with the first formation of oceanic crust in the Tethys. The new data are compared to previous depth profiling rutile U-Pb data for the Belli Piani unit1, and exploited to cast light on the tectonothermal

  19. A New Thickener for CO2 Anhydrous Fracturing Fluid

    Directory of Open Access Journals (Sweden)

    Zhang Jian

    2015-01-01

    Full Text Available CO2 dry fracturing technology is well-known for its advantages. Little water is used in this technology, which is able to ease the pressure of consumption on water resources. Many abroad theoretical researches, laboratory experiments and field tests have been taken to explore the yield mechanism, the adaptability and the technology of pure liquid CO2 fracturing. These achievements have been applied to a variety of reservoirs transformation and improven the effectiveness of stimulation treatment in a degree. The researches and studies in the domestic didn’t get popular until recent years. Thus, this article firstly introduces the main development and application about pure CO2 anhydrous fracturing technology, and sums up the effect and evaluation of its fluid through application examples both in the domestic and abroad. However, although this technology has many excellent qualities, but systematic studies indicate that its proppant-carrying capacity is less competitive because of the low viscosity of pure CO2 liquid and other reasons. In a consequence, it is necessary to develop an appropriate thickener for CO2 anhydrous fracturing fluid to improve its carrying capacity. Then this article describes some studies of previous scholars about CO2 thickener. Then we put forward our own research ideas and transform it into actual experiments. Thanks to the valid performances of these tests, we successfully develop a thickener X and cosolvent B.

  20. Analysis of abnormally thickened endometrial patterns on transvaginal sonography

    International Nuclear Information System (INIS)

    Lee, Myung Sook; Cho, Hyeun Cha

    1999-01-01

    To determine whether the transvaginal sonographic appearance of the thickened endometrium can help to predict the underlying endometrial pathologic process. The sonogram reports of fall 41 pre- and 21 postmenopausal women who underwent transvaginal sonogram were retrospectively analyzed. The women undergoing estrogen replacement therapy, tamoxifen therapy or having abnormal cervical cytology were excluded from this study. The analysis of sonographic and histologic results was performed in all patients. Three distinct sonographic patterns were encountered. Type I consisted of heterogeneous endometrial thickening with internal hypoechoic areas (normal [n=4], polyp [n=1] and cancer [n=4] in premenopausal women and cancer [n=4] in postmenopausal women). Type II consisted of echogenic endometrial thickening with or without tiny cysts (normal[n=5], and hyperplasia [n=7] in premenopausal women and normal [n=4], polyp [n=2], and hyperplasia [n=1] in postmenopausal women). Type III consisted of localized well defined endoluminal lesion (normal [n=1], polyp [n=14], hyperplasia [n=1], cancer [n=1], and submucosal mass [n=3] in premenopausal women and normal [n=4], polyp [n=2],submucosal mass [n=3], and hematoma [n=1] in postmenopausal women). The measurement of the endometrial thickness combined with analysis of sonographic echo patterns may be helpful in prediction and differentiation of endometrial disease in pre- and postmenopausal women. Also it can contribute to avoiding unnecessary D and C.

  1. Production and properties of a thickener with ability of suspending sand

    Energy Technology Data Exchange (ETDEWEB)

    Qin, B.; Wang, D.; Li, Z.; Chen, J. [China University of Mining and Technology, Xuzhou (China). School of Mineral and Safety Engineering

    2006-06-15

    To overcome the shortcomings of pouring sands, a thickener with the ability to suspend sands was developed. It is mixed with sands to form densified slurry, and can insure the sands against deposition, jamming pipelines and dehydration. The chemical structure of the thickener is introduced in this paper and the production process is studied. The main processes include immersion, decomposition, dilution and addition of additives. In order to produce a thickener with high viscosity to suspend sands, key factors must be controlled in each process: the immersion time is 2 h; the mass fraction of formaldehyde is 0.01% and mass of NaCO{sub 3} accounts for 15% of dry material; the water temperature is 65{sup o}C in summer and 72{sup o}C in winter and the decomposition time is 2 h in the reaction; the densified decomposition solution should be diluted to 1% mass fraction; the additives of calcium ions and pH indicators must be added to the diluted liquid; the mass fraction of CaCl{sub 2} is 0.048% and the pH value of the solution is 7.5. The thickener is a gel with three-dimensional network structure, a liquid with non-Newtonian behaviour and the characteristics of pseudo-plastic material, a solution with little resistance and the ability to revive its oral primary viscosity. It has been successfully applied in Shendong Mines and has great value and wide-spread prospective use. 10 refs., 6 figs.

  2. Magmatic intrusions in the lunar crust

    Science.gov (United States)

    Michaut, C.; Thorey, C.

    2015-10-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  3. Permeability of crust is key to crispness retention

    NARCIS (Netherlands)

    Hirte, A.; Hamer, R.J.; Meinders, M.B.J.; Primo-Martin, C.

    2010-01-01

    Bread loses crispness rapidly after baking because water originating from the wet crumb accumulates in the dry crust. This water accumulation might be increased by the dense and low permeable character of the bread crust. Our objective was to investigate the influence of permeability of the crust on

  4. Late Carboniferous to Early Permian magmatic pulses in the Uliastai continental margin linked to slab rollback: Implications for evolution of the Central Asian Orogenic Belt

    Science.gov (United States)

    Chai, Hui; Wang, Qingfei; Tao, Jixiong; Santosh, M.; Ma, Tengfei; Zhao, Rui

    2018-05-01

    The Paleo Asian Ocean underwent a protracted closure history during Late Paleozoic. Here we investigate the magmatic evolution during this process based on a detailed study in the Baiyinwula region along the Uliastai continental margin. The major rock types in this area are Late Carboniferous-Early Permian volcanic sequences and coeval intrusions. We identified four stages of magmatic evolution based on the diverse assemblages and their precise isotopic ages. The first stage is represented by andesites with a zircon 206Pb/238U age of ca. 326 ± 12 Ma. These rocks are metaluminous to weakly peraluminous, high-K calc-alkaline, and possess high Na2O/K2O ratios in the range of 1.23 to 2.45. They also display enrichment of large ion lithophile elements (LILE) and depletion of high field strength elements (HFSE), with markedly positive zircon εHf (t) varying from 8.1 to 15.6.The geochemical features of these andesites are similar to those of typical arc volcanic rocks. The second stage includes granodiorites emplaced at 318.6 + 1.8 Ma. The rocks are high-K calc-alkaline with A/CNK values ranging from 0.95 to 1.06, and show enrichment in LILE and depletion in HFSE. They show geochemical affinities to adakites, with high Sr and low Y and Yb contents, indicating magma derivation from thickened lower crust. Zircon grains from these rocks display positive initial εHf (t) values ranging from 11.1 to 14.6 with corresponding two-stage Hf model ages (TDM2) of 394-622 Ma. The third stage consists of syenogranite together with a volcanic suite ranging in composition from rhyolite todacite, which formed during 303.4 ± 1.2 to 285.1 ± 2.2 Ma. They possess elevated silica and alkali contents, high FeOt/MgO and Ga/Al ratios, low Al2O3, MgO and CaO contents, and high Rb, Y, Nb, Ce, Zr, Y, and Ga contents, strong negative Ba, Sr and Eu anomalies, showing I- to A-type granitic affinities. Zircons in these rocks show elevated Hf isotopic compositions (εHf (t) = 9.9 to 14.6) with TDM2

  5. Modelling the Impact of Life on Continental Growth - Mechanisms and Results

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2013-12-01

    The complexity of planetary evolution increases with the number of interacting reservoirs. On Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. Through plate tectonics, the surface biosphere can impact deep subduction zone processes and the interior of the Earth. Subducted sediments are particularly important, because they influence the Earth's interior in several ways, and in turn are strongly influenced by the Earth's biosphere. In our model, we use the assumption that a thick sedimentary layer of low permeability on top of the subducting oceanic crust, caused by a biologically enhanced weathering rate, can suppress shallow dewatering. This in turn leads to greater availability of water in the source region of andesitic partial melt, resulting in an enhanced rate of continental production and regassing rate into the mantle. Our model includes (i) mantle convection, (ii) continental erosion and production, and (iii) mantle water degassing at mid-ocean ridges and regassing at subduction zones. The mantle viscosity of our model depends on (i) the mantle water concentration and (ii) the mantle temperature, whose time dependency is given by radioactive decay of isotopes in the Earth's mantle. Boundary layer theory yields the speed of convection and the water outgassing rate of the Earth's mantle. Our results indicate that present day values of continental surface area and water content of the Earth's mantle represent an attractor in a phase plane spanned by both parameters. We show that the biologic enhancement of the continental erosion rate is important for the system to reach this fixed point. An abiotic Earth tends to reach an alternative stable fixed point with a smaller

  6. A mathematical model for batch and continuous thickening of flocculent suspensions in vessels with varying section

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, R.; Damasceno, J.J.R.; Karlesen, K.H.

    2001-10-01

    The phenomenological theory of continuous thickening of flocculated suspensions in an ideal cylindrical thickener is extended to vessels having varying cross-section, including divergent or convergent conical vessels. The purpose of this contribution is to draw attention to the corresponding mathematical model, whose key ingredient is a strongly degenerate parabolic partial differential equation. For ideal (non-flocculated) suspensions, which do not form co compressible sediments, the mathematical model reduces to the kinematic approach by Anestis, who developed a method of construction of exact solution by the method of characteristics. The difficulty lies in the fact that characteristics and iso-concentration lines, unlike the conventional Kynch model for cylindrical vessels, do not coincide, and one has to resort to numerical methods to simulate the thickening process. A numerical algorithm is presented and employed for simulations of continuous thickening. Implications of the mathematical model are also demonstrated by steady-state calculations, which lead to new possibilities in thickener design. (author)

  7. Deep structure of the continental margin and basin off Greater Kabylia, Algeria - New insights from wide-angle seismic data modeling and multichannel seismic interpretation

    Science.gov (United States)

    Aïdi, Chafik; Beslier, Marie-Odile; Yelles-Chaouche, Abdel Karim; Klingelhoefer, Frauke; Bracene, Rabah; Galve, Audrey; Bounif, Abdallah; Schenini, Laure; Hamai, Lamine; Schnurle, Philippe; Djellit, Hamou; Sage, Françoise; Charvis, Philippe; Déverchère, Jacques

    2018-03-01

    During the Algerian-French SPIRAL survey aimed at investigating the deep structure of the Algerian margin and basin, two coincident wide-angle and reflection seismic profiles were acquired in central Algeria, offshore Greater Kabylia, together with gravimetric, bathymetric and magnetic data. This 260 km-long offshore-onshore profile spans the Balearic basin, the central Algerian margin and the Greater Kabylia block up to the southward limit of the internal zones onshore. Results are obtained from modeling and interpretation of the combined data sets. The Algerian basin offshore Greater Kabylia is floored by a thin oceanic crust ( 4 km) with P-wave velocities ranging between 5.2 and 6.8 km/s. In the northern Hannibal High region, the atypical 3-layer crustal structure is interpreted as volcanic products stacked over a thin crust similar to that bordering the margin and related to Miocene post-accretion volcanism. These results support a two-step back-arc opening of the west-Algerian basin, comprising oceanic crust accretion during the first southward stage, and a magmatic and probably tectonic reworking of this young oceanic basement during the second, westward, opening phase. The structure of the central Algerian margin is that of a narrow ( 70 km), magma-poor rifted margin, with a wider zone of distal thinned continental crust than on the other margin segments. There is no evidence for mantle exhumation in the sharp ocean-continent transition, but transcurrent movements during the second opening phase may have changed its initial geometry. The Plio-Quaternary inversion of the margin related to ongoing convergence between Africa and Eurasia is expressed by a blind thrust system under the margin rising toward the surface at the slope toe, and by an isostatic disequilibrium resulting from opposite flexures of two plates decoupled at the continental slope. This disequilibrium is likely responsible for the peculiar asymmetrical shape of the crustal neck that may thus

  8. Detection, modeling and matching of pleural thickenings from CT data towards an early diagnosis of malignant pleural mesothelioma

    Science.gov (United States)

    Chaisaowong, Kraisorn; Kraus, Thomas

    2014-03-01

    Pleural thickenings can be caused by asbestos exposure and may evolve into malignant pleural mesothelioma. While an early diagnosis plays the key role to an early treatment, and therefore helping to reduce morbidity, the growth rate of a pleural thickening can be in turn essential evidence to an early diagnosis of the pleural mesothelioma. The detection of pleural thickenings is today done by a visual inspection of CT data, which is time-consuming and underlies the physician's subjective judgment. Computer-assisted diagnosis systems to automatically assess pleural mesothelioma have been reported worldwide. But in this paper, an image analysis pipeline to automatically detect pleural thickenings and measure their volume is described. We first delineate automatically the pleural contour in the CT images. An adaptive surface-base smoothing technique is then applied to the pleural contours to identify all potential thickenings. A following tissue-specific topology-oriented detection based on a probabilistic Hounsfield Unit model of pleural plaques specify then the genuine pleural thickenings among them. The assessment of the detected pleural thickenings is based on the volumetry of the 3D model, created by mesh construction algorithm followed by Laplace-Beltrami eigenfunction expansion surface smoothing technique. Finally, the spatiotemporal matching of pleural thickenings from consecutive CT data is carried out based on the semi-automatic lung registration towards the assessment of its growth rate. With these methods, a new computer-assisted diagnosis system is presented in order to assure a precise and reproducible assessment of pleural thickenings towards the diagnosis of the pleural mesothelioma in its early stage.

  9. Feed thickener for infants up to six months of age with gastro-oesophageal reflux.

    Science.gov (United States)

    Kwok, T'ng Chang; Ojha, Shalini; Dorling, Jon

    2017-12-05

    Gastro-oesophageal reflux (GOR) is common in infants, and feed thickeners are often used to manage it in infants as they are simple to use and perceived to be harmless. However, conflicting evidence exists to support the use of feed thickeners. To evaluate the use of feed thickeners in infants up to six months of age with GOR in terms of reduction in a) signs and symptoms of GOR, b) reflux episodes on pH probe monitoring or intraluminal impedance or a combination of both, or c) histological evidence of oesophagitis. We used the standard search strategy of the Cochrane Neonatal Review Group to search the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 2), MEDLINE via PubMed (1966 to 22 November 2016), Embase (1980 to 22 November 2016), and CINAHL (1982 to 22 November 2016). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials. We included randomised controlled trials if they examined the effects of feed thickeners as compared to unthickened feeds (no treatment or placebo) in treating GOR in term infants up to six months of age or six months of corrected gestational age for those born preterm. Two review authors independently identified eligible studies from the literature search. Two review authors independently performed data extraction and quality assessments of the eligible studies. Differences in opinion were resolved by discussion with a third review author, and consensus was reached among all three review authors. We used the GRADE approach to assess the quality of the evidence. Eight trials recruiting a total of 637 infants met the inclusion criteria for the systematic review. The infants included in the review were mainly formula-fed term infants. The trials were of variable methodological quality. Formula-fed term infants with GOR on feed thickeners had nearly two fewer episodes of regurgitation per day (mean difference -1.97 episodes per day

  10. Aeromagnetic and gravity investigations of the Coastal Area and Continental Shelf of Liberia, West Africa, and their relation to continental drift

    Science.gov (United States)

    Behrendt, John C.; Wotorson, Cletus S.

    1970-01-01

    anomalies exist over two Cretaceous basins in the coastal area; a negative Bouguer anomaly exists over one of the basins southwest of Monrovia, as shown by a marine traverse, suggesting that Cretaceous or younger sedimentary rocks fill these basins also. A 50 to 60 mgal positive Bouguer anomaly area exists along the coast from Sierra Leone to Ivory Coast. This anomaly correlates with mafic granulites in the Monrovia region, where the gradient is too steep to be entirely due to crustal thickening at the continental margin and may be related to tectonic activity associated with the basins. The only major break in this positive anomaly above basement rocks along the entire coast of Liberia is over granite gneiss adjacent to (and presumably underlying) the only onshore basins on the Liberian coast. Three seismic reflection profiles support the interpretation of a substantial section of sedimentary rock offshore. A suggested sequence of events indicates tectonic activity in the periods about 2700, about 2000, and about 550 m.y. B.P.; uplift and exposure of deep crustal rocks; deposition of Paleozoic sediments; intrusion of diabase dikes in inland zones; intrusion of 176 to 192 m.y.-old dikes and sills accompanying separation of Africa and South and North America; block faulting along coast and continental shelf, and active sea-floor spreading; filling of basins in Cretaceous and Tertiary(?) time; basaltic extrusion on spreading sea floor and sedimentation on continental shelf and slope.

  11. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Discontinuous Shear Thickening and Dilatancy: Frictional Effects in Viscous Suspensions

    Science.gov (United States)

    Morris, Jeffrey

    2015-03-01

    Shear thickening in concentrated suspensions has been well-known for quite a long time, yet a firm consensus on the basis for very abrupt or ``discontinuous'' shear thickening (DST) seen in suspensions of large solid fraction, ϕ, has not been reached. This work addresses the DST phenomenon, and proposes a simulation method based in the Stokesian Dynamics algorithm to explore the role of various forces between the particles, including hydrodynamic, conservative potential, and frictional interactions. This work shows that allowance for friction between spherical particles suspended in a viscous liquid causes a significant reduction in the jamming solid fraction of the mixture, ϕmax, taken as the maximum fraction at which the suspension will flow. A consequence of this is a shifting of the singularity in the effective viscosity, η, to smaller ϕmax, and the frictional suspension has a larger viscosity than does the frictionless suspension of the same solid fraction, as is clear from the standard empirical modeling of η (ϕ) =(1 - ϕ /ϕmax) - α , α ~ 2 . When a counterbalancing repulsive force between the particles, representative for example of charge-induced repulsion, is incorporated in the dynamics, the mixture undergoes a transition from frictionless to frictional interactions, and from low to high effective viscosity, at a critical shear rate. Comparison with experimental data shows remarkable agreement in the features of DST captured by the method. The basic algorithm and results of both rate-controlled and stress-controlled simulations will be presented. Like the shear stress, the magnitude of the normal stress exerted by the suspended particles also increases abruptly at the critical shear rate, consistent with the long-standing notion that dilatancy and shear-thickening are synonymous. We will show that considering all shear thickening materials as dilatant is a misconception, but demonstrate the validity of the connection of dilatancy with DST in

  13. Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Patel, Bipen D; Coxson, Harvey O; Pillai, Sreekumar G

    2008-01-01

    RATIONALE: It is unclear whether airway wall thickening and emphysema make independent contributions to airflow limitation in chronic obstructive pulmonary disease (COPD) and whether these phenotypes cluster within families. OBJECTIVES: To determine whether airway wall thickening and emphysema (1...... to airflow obstruction in COPD. These phenotypes show independent aggregation within families of individuals with COPD, suggesting that different genetic factors influence these disease processes....... the severity of airway wall thickening and emphysema. MEASUREMENTS AND MAIN RESULTS: A total of 3,096 individuals were recruited to the study, of whom 1,159 (519 probands and 640 siblings) had technically adequate high-resolution computed tomography scans without significant non-COPD-related thoracic disease...

  14. Water-bearing explosives thickened with a partially hydrolyzed acrylamide polymer

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, W.M.

    1971-11-23

    Thickened water-bearing explosives are provided which do not segregate and are water-resistant over a wide range of viscosities. Preferred compositions have a unique combination of pourability and fluidity coupled with resistance to water and segregation which makes them particularly suitable in small diameter holes and in holes partially filled with water. Accordingly, water-bearing explosive compositions also are provided which consist of inorganic oxidizing salt, fuel, and water, which improvement consists of thickening the compositions with the combination of polyacrylamide and cross-linked galactomannan. The weight ratio of the polyacrylamide to galactomanan is from about ratio 0.1:1 to 10:1, and preferably 1:1 to 5:1. (1 claim)

  15. Formation and Thermal Infrared Spectroscopy of Halite Crusts

    Science.gov (United States)

    Baldridge, A. M.; Christensen, P. R.

    2003-12-01

    Efflorescent salt crusts form as groundwater evaporates from capillary updraw of brine through sediment. Salts precipitate at the surface, coating and cementing the upper few layers of sediment. If enough brine is present to completely saturate and pond on top of the surface, halite will precipitate at the surface of the brine and settle out as layers of crystalline salt on top of the sediment. In playa environments, salts such as sulfates, carbonates and halides, and forms such crusts. In remote sensing studies of such surfaces, it is important to understand how the presence of salt crusts affects the spectral features of the surrounding sediment. This is especially true when the crusts form from a non-absorbing salt such as halite. Halite has been observed to exhibit unusual spectral properties in the thermal infrared. Specifically, granular mixtures of minerals with halite produced spectra in which the spectral features inverted form reflectivity, shifted to shorter wavelengths and the spectral contrast increased near absorption bands. However, in crusted surfaces, in which the halite cements, coats or overlays the mineral grains, the presence of halite has a different affect on the spectra. This work will examine the precipitation of halite and the formation of salt crusts for several sediment and brine mixtures. Laboratory measurements of thermal emission spectra for the crusts will be compared to previous studies for particulate mixtures of halite with minerals and well as to natural surface crusts. Detailed knowledge of such surfaces will allow for their discrimination and identification in terrestrial playa settings as well as in paleo-environments on Mars.

  16. Asbestos-related diffuse pleural thickening.

    Science.gov (United States)

    Fujimoto, Nobukazu; Kato, Katsuya; Usami, Ikuji; Sakai, Fumikazu; Tokuyama, Takeshi; Hayashi, Seiji; Miyamoto, Kenji; Kishimoto, Takumi

    2014-01-01

    The clinical features of asbestos-related diffuse pleural thickening (DPT) remain unclear. To clarify the association between radiological findings of DPT and respiratory function. Medical data from patients with asbestos-related DPT were collected, including their history of occupational or neighborhood asbestos exposure, initial symptoms, modified Medical Research Council dyspnea grade, smoking history, radiological findings, and respiratory function test results. There were 106 DPT patients between 2005 and 2010 [i.e. 103 men (97.2%) and 3 women (2.8%)]. The median age at diagnosis was 69 years (range 46-88). Patient occupations related to asbestos exposure included: asbestos product manufacturing (n = 17); the shipbuilding industry (n = 14); the construction industry (n = 13); heat insulation work (n = 12); plumbing, asbestos spraying, and electrical work (n = 7 each), and transportation and demolition work (n = 4 each). The median duration of asbestos exposure was 25 years (range 2-54), and the median latency period before the onset of DPT was 46 years (range 25-66). Involvement of the costophrenic angle (CPA) was also negatively correlated with the percent vital capacity (%VC; r = -0.448, p < 0.01). Pleural thickness and the craniocaudal and horizontal extension of pleural thickening, as determined by chest computed tomography (CT), were also negatively correlated with %VC (r = -0.226, p < 0.05; r = -0.409, p < 0.01, and r = -0.408, p < 0.01, respectively). DPT develops after a long latency period following occupational asbestos exposure and causes marked respiratory dysfunction. The extension of DPT should be evaluated by chest CT, and chest X-ray would be important for the evaluation of the involvement of the CPA.

  17. The rheological properties of shear thickening fluid reinforced with SiC nanowires

    Directory of Open Access Journals (Sweden)

    Jianhao Ge

    Full Text Available The rheological properties of shear thickening fluid (STF reinforced with SiC nanowires were investigated in this paper. Pure STF consists of 56 vol% silica nano-particles and polyethylene glycol 400 (PEG 400 solvent was fabricated; and a specific amount of SiC nanowires were dispersed into this pure STF, and then the volume fraction of PEG400 was adjusted to maintain the volume fraction of solid phase in the STF at a constant of 56%. The results showed there was almost 30% increase in the initial and shear thickening viscosity of the STF reinforced with SiC nanowires compared to the pure STF. Combining with the hydrodynamic cluster theory, the effect of the mechanism of SiC nanowire on the viscosity of STF was discussed, and based on the experimental results, an analytical model of viscosity was used to describe the rheological properties of STF, which agreed with the experimental results. Keywords: Shear thickening fluid (STF, Nanowire, Rheology, Viscosity, Analytical model

  18. Black manganese-rich crusts on a Gothic cathedral

    Science.gov (United States)

    Macholdt, Dorothea S.; Herrmann, Siegfried; Jochum, Klaus Peter; Kilcoyne, A. L. David; Laubscher, Thomas; Pfisterer, Jonas H. K.; Pöhlker, Christopher; Schwager, Beate; Weber, Bettina; Weigand, Markus; Domke, Katrin F.; Andreae, Meinrat O.

    2017-12-01

    Black manganese-rich crusts are found worldwide on the façades of historical buildings. In this study, they were studied exemplarily on the façade of the Freiburger Münster (Freiburg Minster), Germany, and measured in-situ by portable X-ray fluorescence (XRF). The XRF was calibrated to allow the conversion from apparent mass fractions to Mn surface density (Mn mass per area), to compensate for the fact that portable XRF mass fraction measurements from thin layers violate the assumption of a homogeneous measurement volume. Additionally, 200-nm femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS) measurements, scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS), Raman spectroscopy, and imaging by light microscopy were conducted to obtain further insight into the crust material, such as potential biogenic contributions, element distributions, trace element compositions, and organic functional groups. While black crusts of various types are present at many places on the minster's facade, crusts rich in Mn (with a Mn surface density >150 μg cm-2) are restricted to a maximum height of about 7 m. The only exceptions are those developed on the Renaissance-Vorhalle (Renaissance Portico) at a height of about 8 m. This part of the façade had been cleaned and treated with a silicon resin as recently as 2003. These crusts thus accumulated over a period of only 12 years. Yet, they are exceptionally Mn-rich with a surface density of 1200 μg cm-2, and therefore require an accumulation rate of about 100 μg cm-2 Mn per year. Trace element analyses support the theory that vehicle emissions are responsible for most of the Mn supply. Lead, barium, and zinc correlate with manganese, indicating that tire material, brake pads, and resuspended road dust are likely to be the element sources. Microscopic investigations show no organisms on or in the Mn-rich crusts. In contrast, Mn-free black

  19. Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing.

    Science.gov (United States)

    Aribisala, Benjamin Segun; Royle, Natalie A; Valdés Hernández, Maria C; Murray, Catherine; Penke, Lars; Gow, Alan; Maniega, Susana Muñoz; Starr, John M; Bastin, Mark; Deary, Ian; Wardlaw, Joanna

    2014-09-01

    intracranial volume (ICV) is commonly used as a marker of premorbid brain size in neuroimaging studies as it is thought to remain fixed throughout adulthood. However, inner skull table thickening would encroach on ICV and could mask actual brain atrophy. we investigated the effect that thickening might have on the associations between brain atrophy and cognition. the sample comprised 57 non-demented older adults who underwent structural brain MRI at mean age 72.7 ± 0.7 years and were assessed on cognitive ability at mean age 11 and 73 years. Principal component analysis was used to derive factors of general cognitive ability (g), information processing speed and memory from the recorded cognitive ability data. The total brain tissue volume and ICV with (estimated original ICV) and without (current ICV) adjusting for the effects of inner table skull thickening were measured. General linear modelling was used to test for associations. all cognitive ability variables were significantly (P skull thickening (g: η(2) = 0.177, speed: η(2) = 0.264 and memory: η(2) = 0.132). After accounting for skull thickening, only speed was significantly associated with percentage total brain volume in ICV (η(2) = 0.085, P = 0.034), not g or memory. not accounting for skull thickening when computing ICV can distort the association between brain atrophy and cognitive ability in old age. Larger samples are required to determine the true effect. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust

    Science.gov (United States)

    Ratajeski, K.; Sisson, T.W.; Glazner, A.F.

    2005-01-01

    Partial melting of mafic intrusions recently emplaced into the lower crust can produce voluminous silicic magmas with isotopic ratios similar to their mafic sources. Low-temperature (825 and 850??C) partial melts synthesized at 700 MPa in biotite-hornblende gabbros from the central Sierra Nevada batholith (Sisson et al. in Contrib Mineral Petrol 148:635-661, 2005) have major-element and modeled trace-element (REE, Rb, Ba, Sr, Th, U) compositions matching those of the Cretaceous El Capitan Granite, a prominent granite and silicic granodiorite pluton in the central part of the Sierra Nevada batholith (Yosemite, CA, USA) locally mingled with coeval, isotopically similar quartz diorite through gabbro intrusions (Ratajeski et al. in Geol Soc Am Bull 113:1486-1502, 2001). These results are evidence that the El Capitan Granite, and perhaps similar intrusions in the Sierra Nevada batholith with lithospheric-mantle-like isotopic values, were extracted from LILE-enriched, hydrous (hornblende-bearing) gabbroic rocks in the Sierran lower crust. Granitic partial melts derived by this process may also be silicic end members for mixing events leading to large-volume intermediate composition Sierran plutons such as the Cretaceous Lamarck Granodiorite. Voluminous gabbroic residues of partial melting may be lost to the mantle by their conversion to garnet-pyroxene assemblages during batholithic magmatic crustal thickening. ?? Springer-Verlag 2005.

  1. Precambrian U-Pb zircon ages in eclogites and garnet pyroxenites from South Brittany (France): an old oceanic crust in the West European Hercynian belt?

    Science.gov (United States)

    Peucat, J. J.; Vidal, Ph.; Godard, G.; Postaire, B.

    1982-08-01

    U-Pb zircon ages have been determined for two eclogites from the Vendée and for two garnet pyroxenites from the Baie d'Audierne. In an episodic Pb loss model, the two discordia would give upper intercept ages around 1300-1250 Ma and lower intercepts ages of 436-384 Ma. Two interpretations are proposed: (1) The 1250-1300 Ma ages may reflect an unspecified upper mantle event or process; the Paleozoic ages correspond to the tectonic emplacement of an eclogitic mantle fragment into the continental crust. (2) The protolith may have been extracted from the upper mantle 1250-1300 Ma ago and stored in a crustal environment until it was metamorphosed under high-pressure conditions around 400 Ma ago. This latter model is favoured by available geologic and isotopic data. Consequently, we propose that a 1300 Ma old oceanic crust was tectonicly incorporated into a sialic basement during the Proterozoic. This mixture was subsequently subducted during the Paleozoic.

  2. Mechanism of crustal extension in the Laxmi Basin, Arabian Sea

    Directory of Open Access Journals (Sweden)

    Anju Pandey

    2015-11-01

    Full Text Available Continental rifting and magmatism has been extensively studied worldwide as it is believed that continental rifting, break up of continents and associated magmatism lead to genesis of new oceanic crust. However, various regions of the world show that these processes may lead to genesis of other types of crust than the oceanic crust. Laxmi Basin in the western continental margin of the India is one such region with an enigmatic crust. Due to its extreme strategic significance for the palaeogeographic reconstruction of continents during Cretaceous continental breakup of India, this basin has attracted various workers for more than two decades. However, still the issue of nature of crust in the basin remains controversial. In this contribution, in order to identify nature of crust, mechanism of continental extension in the Laxmi Basin has been studied for the first time through newly acquired seismic data from the basin. Here, we propose a plausible mechanism of crustal extension in the Laxmi Basin which eventually constrains the nature of crust of the Laxmi Basin. We have demonstrated that the crust in the Laxmi Basin can be categorised in two zones of stretched and transitional crust. In the stretched zone several fault bounded horst and graben structures are identified which preserve syn- and post-rift sediments along with different periods of hiatus in sedimentations as unconformities. These faults are identified as listric faults in the upper crust which sole out in the detachment faults. Detachment faults decouples the upper brittle and lower ductile crust. The transitional crust is identified as heavily intruded by sills and basaltic volcanic which were emplaced due to melting of subcontinental mantle (SCM after hyper-stretching of crust and serpentinisation of the SCM. Panikkar Ridge is proposed to be one such basaltic volcanic body derived from melting of lower part of the SCM.

  3. Characteristics and management options of crusting soils in a ...

    African Journals Online (AJOL)

    ... to control the crusting. The relationship between crust thickness and soil physical and chemical properties and management practices were assessed using stepwise regression analysis. Soil crusting was largely related to soil aggregation, infiltration, fine sand fraction, cotton monocropping and crop residue incorporation.

  4. Ferromanganese crusts as indicators for paleoceanographic events in the NE Atlantic

    Science.gov (United States)

    Koschinsky, A.; Halbach, P.; Hein, J. R.; Mangini, A.

    Hydrogenetic ferromanganese crusts reflect the chemical conditions of the seawater from which they formed. Fine-scale geochemical analysis of crust layers in combination with age determinations can therefore be used to investigate paleoceanographic changes which are recorded in geochemical gradients in the crusts. At Tropic seamount (off northwest Africa), uniform crust growth influenced by terrigenous input from the African continent occurred during approximately the past 12Ma. Phosphatization of these crusts is minor. In contrast, crusts from Lion seamount, located between Madeira and the Portuguese coast, display a much more variable growth history. A pronounced increase in Ni, Cu, and Zn is observed in some intervals of the crusts, which probably reflects increased surface productivity. A thick older phosphatized generation occurs in many samples. Hydrographic profiles indicate that Mediterranean outflow water (MOW) may play an important role in the composition of these crusts. 10Be dating of one sample confirms that the interruption of the MOW during the Messinian salinity crisis (6.2-5Ma ago) resulted in changes in element composition. Sr-isotope dating of the apatite phase of the old crust generation has been carried out to obtain a minimum age for the older generation of Atlantic crusts and to determine whether crust phosphatization in the Atlantic can be related to phosphatization episodes recorded in Pacific crusts. The preliminary data show that the old phosphatized crust generation might be as old as approximately 30-40Ma.

  5. Numerical model of the transition from continental rifting to oceanization: the case study of the Ligure-Piemontese ocean.

    Science.gov (United States)

    Roda, M.; Marotta, A. M.; Conte, K.; Spalla, M. I.

    2015-12-01

    The transition from continental rifting to oceanization has been investigated by mean of a 2D thermo-mechanical numerical model in which the formation of oceanic crust by mantle serpentinization, due to the hydration of the uprising peridotite, as been implemented. Model predictions have been compared with natural data related to the Permian-Triassic thinning affecting the continental lithosphere of the Alpine domain, in order to identify which portions of the present Alpine-Apennine system, preserving the imprints of Permian-Triassic high temperature (HT) metamorphism, is compatible, in terms of lithostratigraphy and tectono-metamorphic evolution, with a lithospheric extension preceding the opening of the Ligure-Piemontese oceanic basin. At this purpose age, petrological and structural data from the Alpine and Apennine ophiolite complexes are compared with model predictions from the oceanization stage. Our comparative analysis supports the thesis that the lithospheric extension preceding the opening of the Alpine Tethys did not start on a stable continental lithosphere, but developed by recycling part of the old Variscan collisional suture. The HT Permian-Triassic metamorphic re-equilibration overprints an inherited tectonic and metamorphic setting consequent to the Variscan subduction and collision, making the Alps a key case history to explore mechanisms responsible for the re-activation of orogenic scars.

  6. Magnetic field effects on the crust structure of neutron stars

    Science.gov (United States)

    Franzon, B.; Negreiros, R.; Schramm, S.

    2017-12-01

    We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.

  7. Discrimination between pleural thickening and minimal pleural effusion using color Doppler chest ultrasonography

    OpenAIRE

    Hasan, Ali A.; Makhlouf, Hoda A.; Mohamed, Alaa R.M.

    2013-01-01

    Background: The discrimination of pleural thickening from minimal pleural effusion may be difficult as both lesions appear as anechoic on grayscale ultrasound, hence, free of “echoes” does not confirm the presence of pleural fluid. Aim of this study: To evaluate the value of color Doppler ultrasound in differentiating minimal pleural effusion that could be aspirated from pleural thickening and to compare it with grayscale ultrasound. Patients and methods: This analytic cross-sectional s...

  8. Variability in Rock Thermal Properties in the Late Archean Crust of the Kapuskasing Structural Zone and Implications for its Thermal Structure and Metamorphic History.

    Science.gov (United States)

    Merriman, J. D.; Whittington, A. G.; Hofmeister, A. M.

    2017-12-01

    The thermal properties of rocks such as internal heat production and thermal diffusivity (α) play a key role in determining the thermal structure of the lithosphere, and consequently, the rates and styles of metamorphism within the crust. Over the last decade, measurements of α using the method laser flash analysis have shown the ability of a rock to conduct heat can vary by as much as a factor of 5 between common rock types, and decrease by up to a factor of 10 for the same rock between 25-1000°C. Here we present a preliminary model for the variability in rock throughout the crust based on measurements of the α of a suite of 100 samples from late Archean crust exposed in and around the Kapuskasing Structural Zone in Ontario, Canada. Preliminary results suggest that α is controlled primarily by mineralogy, and can vary not only between different rock types as described above, but also within the same rock by a factor of 1.5 (or more). Thermal diffusivity results were combined with heat producing element concentrations measured with ICP-MS to create a thermal model of the Kapuskasing Structural Zone prior its uplift and exposure. To provide additional constraints for P-T conditions within the pre-uplift KSZ crust, a combination of trace-element and pseudosection thermobarometry was used to estimate metamorphic temperatures during an extended period of crustal stability at the end of the Archean. Preliminary results were compared to finite-difference numerical models of the steady-state geothermal gradient using heat production back-calculated to 2.6 Ga. Results suggest a minimum thickness of the continental lithosphere during the late Archean of at least 150 km. To test the response of the crust to the effects of large thermal events such as pluton emplacement, we also performed time-dependent models of the thermal structure of the pre-uplift KSZ crust. These models suggest that heat from thermal events in the upper and middle crust result in a more insulating

  9. The potential roles of biological soil crusts in dryland hydrologic cycles

    Science.gov (United States)

    Belnap, J.

    2006-01-01

    Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in and regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike

  10. Crust formation and its effect on the molten pool coolability

    Energy Technology Data Exchange (ETDEWEB)

    Park, R.J.; Lee, S.J.; Sim, S.K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-09-01

    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  11. The Continental Margin of East Asia: a collage of multiple plates formed by convergence and extension from multiple directions

    Science.gov (United States)

    Mao, J.; Wang, T.; Ludington, S.; Qiu, Z.; Li, Z.

    2017-12-01

    East Asia is one of the most complex regions in the world. Its margin was divided into 4 parts: Northeast Asia, North China, South China and Southeast Asia. During the Phanerozoic, continental plates of East Asia have interacted successively with a) the Paleo Tethyan Ocean, b) the Tethyan and Paleo Pacific Oceans and c) the Pacific and Indian. In the Early Mesozoic, the Indosinian orogeny is characterized by the convergence and extension within multiple continental plates, whereas the Late Mesozoic Yanshanian orogeny is characterized by both convergence and compression due to oceanic subduction and by widespread extension. We propose this combination as "East Asia Continental Margin type." Except in Northeast Asia, where Jurassic and Cretaeous accretionary complexes are common, most magmatic rocks are the result of reworking of ancient margins of small continental plates; and oceanic island arc basalts and continental margin arc andesites are largely absent. Because South China is adjacent to the western margin of the Pacific Plate, some effects of its westward subduction must be unavoidable, but juvenile arc-related crust has not been identified. The East Asian Continental Margin is characterized by magmatic rocks that are the result of post-convergent tectonics, which differs markedly from the active continental margins of both South and North America. In summary, the chief characteristics of the East Asian Continental Margin are: 1) In Mesozoic, the periphery of multiple blocks experienced magmatism caused by lithospheric delamination and thinning in response to extension punctuated by shorter periods of convergence. 2) The main mechanism of magma generation was the partial melting of crustal rocks, due to underplating by upwelling mafic magma associated with the collapse of orogenic belts and both extension and compression between small continental blocks. 3) During orogeny, mostly high Sr/Y arc-related granitoids formed, whereas during post-orogenic times, A

  12. Thickening agent for flood water in secondary recovery of oil and for other aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Roth, H H

    1966-04-14

    Alkenyl-aromatic polymer sulfonates are good thickeners for some aqueous solutions, but addition of salts to such solutions reduces the desirable viscosity. High-molecular, water-soluble alkenyl-aromatic polymers which carry sulfonic acid or sulfonate groups substituted at the aromatic nuclei yield thickened solutions (e.g., for waterflooding) which are not influenced by the presence of water-soluble salts. Such polymers are derivatives of polyvinyltoluene, alone or in combination with about 5% acrylonitrile. It was also found that such thickening agents are less adsorbed on the rock matrix in a waterflood formation. (1 claim)

  13. Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites

    International Nuclear Information System (INIS)

    Hassan, Tarig A.; Rangari, Vijay K.; Jeelani, Shaik

    2010-01-01

    Shear thickening is a non-Newtonian fluid behavior defined as the increase of viscosity with the increase in the applied shear rate. The shear thickening fluid (STF) is a combination of hard metal oxide particles suspended in a liquid polymer. This mixture of flowable and hard components at a particular composition, results in a material with remarkable properties. In this manuscript the shear thickening fluid (STF) was prepared by ultrasound irradiation of silica nanoparticles dispersed in liquid polyethylene glycol polymer. The as-prepared STFs have been tested for their rheological and thermal properties. Kevlar and Nylon fabrics were soaked in STF/ethanol solution to make STF/fabric composite. Knife threats and quasistatic penetration tests were performed on the neat fabrics and STF/fabric composite targets for both engineered spike and knife on areal density basis. The results showed that STF impregnated fabrics have better penetration resistance as compared to neat fabrics without affecting the fabric flexibility. This indicates that the addition of STF to the fabric have enhanced the fabric performance and can be used in liquid body armor applications.

  14. Unexpected Rheological Behavior of Hydrophobic Associative Shellac-based Oligomeric Food Thickener.

    Science.gov (United States)

    Gao, Jianan; Li, Kun; Xu, Juan; Zhang, Wen-Wen; Ma, Jinju; Liu, Lanxiang; Sun, Yanlin; Zhang, Hong; Li, Kai

    2018-06-07

    The sodium shellac constituting of "surfactant" monomer, which is sensitive to shear stress, exhibits shear-thickening behavior at low concentration (5 wt%), and reacts with H+ to retain the transient high viscosity under shear, is introduced in this study. The appearance of the sodium shellac with different concentrations in aqueous mode also could be described. The steady-shear flow test proved that under high shear rate, sodium shellac suspension could change from Newtonian fluid to continuous shear thickening of non-Newtonian fluid. Dynamic oscillation test suggested that the sodium shellac solution at low concentration (0.1 and 1 wt%) under low shear rate represented classic viscous fluid behavior (G´´G´), and the solution at high concentration (5, 10 and 15 wt%) represented the classic the elastic gel behavior (G´´G´). Moreover, high shear rate caused a cross-linking point between G´´and G´ curve; at the low concentration, this could be the gel point and at high concentration, it could be attributed to the broken of gel. All of these transforming points were relating to the interaction between the sodium clusters. This interaction should be the hydrophobic association between the particles. In order to prove phenomenon, classic hydrophilic polymer PEO was employed as the disrupting factor to the hydrophobic association. As expected, the shear-thickening behavior vanished after mixing with PEO, which verified our assumption. On the other hand, the high viscosity of the suspension under shear could be retained by reaction with H+ to solidify the transient hydroclusters under shear, meanwhile, sodium shellac had great potential as the functional shear-thickener which could modify the rheological property of the polymer with carboxyl groups, e.g. pectin, alginate or polyacrylic acid. Thus, this natural and green thicker has great potential in food, medical gel, green adhesive, or cosmetic products.

  15. Crust formation in drying colloidal suspensions

    KAUST Repository

    Style, R. W.

    2010-06-30

    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.

  16. Major boundaries in the continental mantle lithosphere detected by seismic anisotropy and their role in accumulation of metals in the crust

    Czech Academy of Sciences Publication Activity Database

    Babuška, Vladislav; Plomerová, Jaroslava

    2003-01-01

    Roč. 8, 1/4 (2003), s. 79-83 ISSN 0163-3171 R&D Projects: GA ČR GV205/98/K004; GA ČR GA205/01/1154 Institutional research plan: CEZ:AV0Z3012916 Keywords : seismic anisotropy * continental mantle lithosphere * seismic waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  17. Crestal Sinus Augmentation in the Presence of Severe Sinus Mucosal Thickening: A Report of 3 Cases.

    Science.gov (United States)

    Fang, Yiqin; An, Xueyin; Jeong, Seung-Mi; Choi, Byung-Ho

    2018-06-01

    In the presence of severe sinus mucosal thickening, the ostium can be blocked when the sinus membrane is lifted, causing drainage disturbances and sinusitis. Here, we present 3 cases in which maxillary sinus floor elevation was performed using a crestal approach in the presence of severe sinus mucosal thickening (>10 mm). The effects of maxillary sinus floor elevation using the crestal approach technique on sinus mucosal thickening and bone formation in the sinus were evaluated using cone beam computed tomography. None of the patients exhibited an increase in sinus membrane thickness. No complications were encountered during the follow-up periods, and bone formation was observed around the implants at the sinus floor. All implants were functioning successfully. Maxillary sinus floor elevation using the crestal approach technique in the presence of severe sinus mucosal thickening allows for minimally invasive sinus grafting and simultaneous implant placement and does not increase sinus membrane thickness.

  18. Automatic airway-artery analysis on lung CT to quantify airway wall thickening and bronchiectasis

    DEFF Research Database (Denmark)

    Perez-Rovira, Adria; Kuo, Wieying; Petersen, Jens

    2016-01-01

    Purpose: Bronchiectasis and airway wall thickening are commonly assessed in computed tomography (CT) by comparing the airway size with the size of the accompanying artery. Thus, in order to automate the quantification of bronchiectasis and wall thickening following a similar principle......, and pairs airway branches with the accompanying artery, then quantifies airway wall thickening and bronchiectasis by measuring the wall-artery ratio (WAR) and lumen and outer wall airway-artery ratio (AAR). Measurements that do not use the artery size for normalization are also extracted, including wall...... area percentage (WAP), wall thickness ratio (WTR), and airway diameters. Results: The method was thoroughly evaluated using 8000 manual annotations of airway-artery pairs from 24 full-inspiration pediatric CT scans (12 diseased and 12 controls). Limits of agreement between the automatically...

  19. Subclinical leaflet thickening and stent frame geometry in self-expanding transcatheter heart valves

    DEFF Research Database (Denmark)

    Fuchs, Andreas; De Backer, Ole; Brooks, Matthew

    2017-01-01

    AIMS: This study aimed to assess the potential relationship between subclinical leaflet thickening and stent frame geometry in patients who underwent aortic valve replacement with a self-expanding transcatheter heart valve (THV). METHODS AND RESULTS: Seventy-five patients with a self-expanding THV....... CONCLUSIONS: Regional THV stent frame underexpansion is associated with an increased risk of leaflet thickening. Post-dilatation of self-expanding THV as well as a supra-annular valve position seem to reduce the occurrence of this phenomenon....

  20. Age and composition of the UHP garnet peridotites in the Dabie orogenic belt (central China) record complex crust-mantle interaction in continental margin

    Science.gov (United States)

    Zhao, Y.; Zheng, J.; Wang, B.

    2017-12-01

    The Dabie-Sulu UHP belt was created by the collision between the North and South China cratons in Middle Triassic time (240-225 Ma). There are lots of garnet-bearing ultramafic body occurs as a lens in the belt. Age and composition of the Maowu garnet peridotites in the Dabie orogenic belt are reported. The garnet harzburgites are main moderately refractory (Mg#Ol=92) and minor fertile (Mg#Ol=88) with high Ni (2344-2603 ppm) and low Al2O3 (0.35-0.54 wt.%), CaO (0.76-2.19 wt.%) and TiO2 (˜0.01 wt.%). Zircons in the harzburgites mainly document metamorphism at 230 ± 2 Ma, 275 ± 5 Ma, 357 ± 4 Ma, and complex minor populations of ages including: 1.8 Ga, 1.3 Ga, and Neoproterozic-early Paleozoic ages (901-420 Ma). The early Meszosic and late Paleozoic zircons have similar trace-element patterns and ranges in ɛHf(t) (+0.6 to +3.4), Th/U ratio (0.2-0.7) and Hf depleted-mantle model ages (TDM ) mainly cluster in the interval 1.2-0.9 Ga. In contrast, the Paleo-Mesoproterozoic zircons have negative ɛHf(t) (-24.9 to -2.7) and oldest Hf TDM = 3.4Ga. Zircons of Neoproterozic-early Paleozoic have a wide range of Hf depleted-mantle model ages (2.4-0.7Ga) and ɛHf(t) (-15.3 to +9.5). Above of the all, we suggest that the Maowu garnet harzburgites are interpreted as a fragment of the metasomatized ancient lithospheric mantle beneath the southern margin of the North China Craton. They experienced the Proterozoic thermal event (1.9-1.8Ga), which is coeval with the assembly of the supercontinent Columbia. And then 1.3Ga mantle metasomatism with asthenospheric materials resulted in the final breakup of the Columbia supercontinent. Neoproterozic-early Paleozoic (901-420 Ma), deep parts of the south margin of the craton were metasomatized during the assembly and breakup of the Rodinia supercontinent. Then, the southern margin of the craton occurred oceanic crust subduction ( 357 Ma), subsequent continental deep subduction and final continent-continent collision in Triassic.

  1. Distinctly different parental magmas for plutons and lavas in the central Aleutian arc

    Science.gov (United States)

    Cai, Y.; Rioux, M. E.; Kelemen, P. B.; Goldstein, S. L.; Bolge, L.; Kylander-Clark, A. R.

    2014-12-01

    While it is generally agreed that continental crust is generated by arc magmatism, average arc lavas are basaltic while the bulk continental crust is andesitic, and this has led to many models for secondary reprocessing of the arc crust in order to form continental crust. We report new data on calc-alkaline plutons in the central Aleutians showing that they have distinctly different sources compared to Holocene tholeiitic lavas. Therefore the lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks from the central Aleutian arc show higher SiO2 at a given Mg#, higher ɛNd- and ɛHf-values, and lower Pb isotope ratios than Holocene volcanic rocks from the same region. Instead, the plutonic rocks resemble volcanics from the western Aleutians isotopically, and have chemical compositions similar to bulk continental crust. These data could reflect temporal variation of Aleutian magma source compositions, from Eocene-Miocene "isotopically depleted" and predominantly calc-alkaline to Holocene "isotopically enriched" and predominantly tholeiitic. Alternatively, they may reflect different transport and emplacement processes for the magmas that form plutons and lavas: calc-alkaline magmas with higher Si content and high viscosity may preferentially form plutons, perhaps after extensive mid-crustal degassing of initially high water contents. The latter case implies that the upper and middle arc crust is more like the calc-alkaline bulk composition of the continental crust than the lavas alone. Crustal reprocessing mechanisms that preserve upper and middle arc crust, while removing lower arc crust, can account for the genesis and evolution of continental crust. Since gabbroic lower arc crust extends from ca 20-40 km depth, and is density stable over most of this depth range, "delamination" of dense lithologies [1] may not be sufficient to accomplish this. Alternatively

  2. Investigation of the Crust of the Pannonian Basin, Hungary Using Low-Altitude CHAMP Horizontal Gradient Magnetic Anomalies

    Science.gov (United States)

    Taylor, Patrick T.; Kis, Karoly I.; Puszta, Sandor; Wittmann, Geza; Kim, Hyung Rae; Toronyi, B.

    2011-01-01

    The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. It is some 600 by 500 km in area and centered on Hungary. This area was chosen since it has one of the thinnest continental crusts in Europe and is the region of complex tectonic structures. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The SWARM constellation, scheduled to be launched next year, will have two lower altitude satellites flying abreast, with a separation of between ca. 150 to 200 km. to record the horizontal magnetic gradient. Since the CHAMP satellite has been in orbit for eight years and has obtained an extensive range of data, both vertically and horizontally there is a large enough data base to compute the horizontal magnetic gradients over the Pannonian Basin region using these many CHAMP orbits. We recomputed a satellite magnetic anomaly map, using the spherical-cap method of Haines (1985), the technique of Alsdorf et al. (1994) and from spherical harmonic coefficients of MF6 (Maus et aI., 2008) employing the latest and lowest altitude CHAMP data. We then computed the horizontal magnetic anomaly gradients (Kis and Puszta, 2006) in order to determine how these component data will improve our interpretation and to preview what the SW ARM mission will reveal with reference to the horizontal gradient anomalies. The gradient amplitude of an 1000 km northeast-southwest profile through our horizontal component anomaly map varied from 0 to 0.025 nT/km with twin positive anomalies (0.025 and 0.023 nT/km) separated by a sharp anomaly negative at o nT/km. Horizontal gradient indicate major magnetization boundaries in the crust (Dole and Jordan, 1978 and Cordell and Grauch, 1985). Our gradient anomaly was modeled with a twodimensional body and the anomaly, of some 200 km, correlates with a 200 km area of crustal thinning in the southwestern Pannonian Basin.

  3. A Model of Continental Growth and Mantle Degassing Comparing Biotic and Abiotic Worlds

    Science.gov (United States)

    Höning, D.; Hansen-Goos, H.; Spohn, T.

    2012-12-01

    While examples for interaction of the biosphere with the atmosphere can be easily cited (e.g., production and consumption of O2), interaction between the biosphere and the solid planet and its interior is much less established. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. We present an interaction model that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The mantle viscosity in this model depends on the water concentration in the mantle. We use boundary layer theory of mantle convection to parameterize the mantle convection flow rate and assume that the plate speed equals the mantle flow rate. The biosphere enters the calculation through the assumption that the continental erosion rate is enhanced by a factor of several through bioactivity and through an assumed reduction of the kinetic barrier to diagenetic and metamorphic reactions (e.g., Kim et al. 2004) in the sedimentary basins in subduction zones that would lead to increased water storage capacities. We further include a stochastic model of continent-to-continent interactions that limits the effective total length of subduction zones. We use present day parameters of the Earth and explore a phase plane spanned by the percentage of surface coverage of the Earth by continents and the total water content of the mantle. We vary the ratio of the erosion rate in a postulated abiotic Earth to the present Earth, as well as the activation barrier to diagenetic and metamorphic reactions that affect the water storage capacity of the subducting crust. We find stable and unstable fixed points in

  4. Continental Divide Trail

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This shapefile was created to show the proximity of the Continental Divide to the Continental Divide National Scenic Trail in New Mexico. This work was done as part...

  5. Inexpensive CO2 Thickening Agents for Improved Mobility Control of CO2 Floods

    Energy Technology Data Exchange (ETDEWEB)

    Robert Enick; Eric Beckman; Andrew Hamilton

    2005-08-31

    The objective of this research was the design, synthesis and evaluation of inexpensive, non-fluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to design a CO{sub 2}-thickener based on these CO{sub 2}-philic polymers. Two types of thickeners were considered. The first was a copolymer in which the CO{sub 2}-philic monomer was combined with a small proportion of CO{sub 2}-phobic associating groups that could cause viscosity-enhancing intermolecular interactions to occur. The second was a small hydrogen-bonding compound with urea groups in the core to promote intermolecular interactions that would cause the molecules to 'stack' in solution while the arms were composed of the CO{sub 2}-philic oligomers. Although we were not able to develop a viable thickener that exhibited high enough CO{sub 2} solubility at EOR MMP conditions to induce a viscosity increase, we made significant progress in our understanding of CO{sub 2}-soluble compounds that can be used in subsequent studies to design CO{sub 2}-soluble thickeners or CO{sub 2}-soluble surfactant-based foaming agents. These findings are detailed in this final report. In summary, we assessed many polymers and verified that the most CO{sub 2}-soluble oxygenated hydrocarbon polymer is poly(vinyl acetate), PVAc. This is primarily due to the presence of both ether and carbonyl oxygens associated with acetate-rich compounds. In addition to polymers, we also made small acetate-rich molecules that were also capable of associating in solution via the inclusion of hydrogen-bonding groups in hopes of forming viscosity-enhancing macromolecules. Despite the presence of multiple acetate groups in these compounds, which can impart incredible CO{sub 2}-solubility to many

  6. New constraints on the age and style of continental breakup in the South Atlantic from magnetic anomaly data

    Science.gov (United States)

    Collier, Jenny S.; McDermott, Carl; Warner, George; Gyori, Noemi; Schnabel, Michael; McDermott, Ken; Horn, Brian W.

    2017-11-01

    We present new constraints on the opening of the South Atlantic Ocean from a joint interpretation of marine magnetic anomaly grids and forward modelling of conjugate profiles. We use 45,000 km of recently collected commercial ship track data combined with 561,000 km of publically available data. The new data cover the critical ocean-continental transition zones and allow us to identify and downgrade some poorly navigated older ship tracks relied upon in earlier compilations. Within the final grids the mean cross-over error is 14 nT computed from 8,227 ship track intersections. The forward modelling used uniformly magnetised bodies whose shapes were constrained from coincident deep-seismic reflection data. We find the oldest magnetic anomalies to date from M10r (134.2 Ma, late Valanginian) north of the Falkland-Agulhas Fracture Zone and M3 (129.3 Ma, Barremian) south of the Rio Grande Fracture Zone. Hence, assuming the GPTS used is correct, continental breakup was contemporaneous with the Parana and Etendeka continental flood basalts. Many of the landward linear anomalies overlap seismically mapped Seaward Dipping Reflectors (SDRs). We interpret this to mean that a significant portion of the SDRs overlay crust formed by subaerial seafloor spreading. Here crustal accretion is envisaged to be similar to that at mid-ocean ridges, but sheet lava flows (that later form the SDRs) rather than pillow basalts form the extrusive component. Segmentation of the linear anomalies generated implies that this stage of continental breakup is organised and parallels the seafloor spreading centre that follows. Our results call into question the common assumption that at volcanic continental margins the first linear magnetic anomalies represent the start of conventional (submarine) oceanic crustal generation.

  7. Joint Inversion Of Local And Teleseismic Data For The Crust And Mantle Structure Of The Chinese Capital Region

    Science.gov (United States)

    Huang, J.; Zhao, D.

    2004-12-01

    The Chinese Capital (Beijing) region is located in the intersection of the Yanshan and Taihangshan uplifts in North China. It is one of the regions with the strongest continental earthquakes in the world such as the 1976 Tangshan earthquake (M 7.8) which killed 240,000 people. Hence the determination of the crust and mantle structure of this region is very important for understanding the regional tectonics and for the reduction of earthquake hazards. Since October 2001 a new digital seismic network with 107 stations has been installed in this region, which is the most advanced and densest regional digital seismic network in mainland China. In this study we used 48750 P-wave arrival times from 2973 local events and 12249 travel time residuals from 234 teleseismic events recorded by this new digital seismic network. We adopted the local and teleseismic joint inversion approach by Zhao et al. [1994] and obtained a high-resolution three-dimensional (3-D) P-wave velocity model of the crust and mantle down to a depth of 1000 km. The resolution is 50 km in the horizontal direction, and in depth it is 4-17 km in the crust and 30-50 km in the mantle. The complex morphology of the Conrad and Moho discontinuities was taken into account in the tomographic inversions. Our 3-D velocity model provides new insights into the geological structure and tectonics of this region. The velocity images of the upper crust reflect well the surface geological, topographic and lithological features. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocity belts oriented in NE-SW direction. The trend of velocity anomalies is the same as that of major faults and tectonics. Paleozoic strata and Pre-Cambrian basement rocks outcrop widely in the Taihangshan and Yanshan uplift areas, which exhibit strong and broad high-velocity(high-V) anomalies in our tomographic images, while the Quaternary intermountain basins show up as small low-velocity(low-V) anomalies

  8. Kinetics of the crust thickness development of bread during baking.

    Science.gov (United States)

    Soleimani Pour-Damanab, Alireza; Jafary, A; Rafiee, Sh

    2014-11-01

    The development of crust thickness of bread during baking is an important aspect of bread quality and shelf-life. Computer vision system was used for measuring the crust thickness via colorimetric properties of bread surface during baking process. Crust thickness had a negative and positive relationship with Lightness (L (*) ) and total color change (E (*) ) of bread surface, respectively. A linear negative trend was found between crust thickness and moisture ratio of bread samples. A simple mathematical model was proposed to predict the development of crust thickness of bread during baking, where the crust thickness was depended on moisture ratio that was described by the Page moisture losing model. The independent variables of the model were baking conditions, i.e. oven temperature and air velocity, and baking time. Consequently, the proposed model had well prediction ability, as the mean absolute estimation error of the model was 7.93 %.

  9. Pelvis dilatation and mucosal thickening of transplanted kidney: comparative study of resistive index and ultrasonographic finding

    International Nuclear Information System (INIS)

    Kim, Myung Joon; Yoo, Hyung Sik; Lee, Jong Tae; Kim, Yu Seun; Park, Ki Il

    1992-01-01

    Diagnostic ability of duplex Doppler ultrasonography relying on resistive index is limited when clinical symptoms and signs of rejection are subtle or renal dysfunction is caused by other conditions such as urinary tract infection. To investigate the significance in the changes of renal pelvis, a combined analysis of resistive index and ultrasonographic findings in cases of renal pelvis dilatation and mucosal thickening was undertaken. A mean resistive index was calculated from Doppler measurements of the main, segmental and interlobar arteries. The cause of mucosal thickening was retrospectively analysed using the clinical and laboratory findings. Twenty three cases of renal pelvis dilatation and 17 cases of mucosal thickening were found in a total of 159 renal transplantation cases. In 14 of the 23 cases with renal pelvis dilatation, renal function was normal and their mean resistive index was 0.64 ± 0.04. Pelvis and ureter dilatation caused by ureteral stenosis or compression was demonstrated in 6 cases and their mean resistive index (0.72 ± 0.05) was increased. Mucosal thickening of renal pelvis was found in 7 of 32 cases with acute injection and in 2 of 13 cases with chronic rejection, but their mean resistive index was not different from that of the cases without pelvic mucosal changes. Three cases of acute rejection associated with urinary tract infection and 2 cases of chronic rejection in whom resistive indices were indeterminate, but mucosal thickening of the renal pelvis was prominent at ultrasonography. In renal transplant patients having indeterminate resistive index and mucosal thickening of the renal pelvis, ultrasonographic features must be correlated with the clinical and laboratory findings for an accurate diagnosis and treatment of renal dysfunction

  10. Clay minerals trap hydrogen in the Earth's crust: Evidence from the Cigar Lake uranium deposit, Athabasca

    Science.gov (United States)

    Truche, Laurent; Joubert, Gilles; Dargent, Maxime; Martz, Pierre; Cathelineau, Michel; Rigaudier, Thomas; Quirt, David

    2018-07-01

    Hydrogen (H2)-rich fluids are observed in a wide variety of geologic settings including gas seeps in serpentinized ultramafic rocks, sub-seafloor hydrothermal vents, fracture networks in crystalline rocks from continental and oceanic crust, and volcanic gases. Natural hydrogen sources can sustain deep microbial ecosystems, induce abiotic hydrocarbons synthesis and trigger the formation of prebiotic organic compounds. However, due to its extreme mobility and small size, hydrogen is not easily trapped in the crust. If not rapidly consumed by redox reactions mediated by bacteria or suitable mineral catalysts it diffuses through the rocks and migrates toward the surface. Therefore, H2 is not supposed to accumulate in the crust. We challenge this view by demonstrating that significant amount of H2 may be adsorbed by clay minerals and remain trapped beneath the surface. Here, we report for the first time H2 content in clay-rich rocks, mainly composed of illite, chlorite, and kaolinite from the Cigar Lake uranium ore deposit (northern Saskatchewan, Canada). Thermal desorption measurements reveal that H2 is enriched up to 500 ppm (i.e. 0.25 mol kg-1 of rock) in these water-saturated rocks having a very low total organic content (reported elsewhere for pure clay minerals or shales. Sudoite (Al-Mg di-trioctahedral chlorite) is probably the main mineral responsible for H2 adsorption in the present case. The presence of multiple binding sites in interlinked nanopores between crystal layers of illite-chlorite particles offers the ideal conditions for hydrogen sorption. We demonstrate that 4 to 17% of H2 produced by water radiolysis over the 1.4-Ga-lifetime of the Cigar Lake uranium ore deposit has been trapped in the surrounding clay alteration haloes. As a result, sorption processes on layered silicates must not be overlooked as they may exert an important control on the fate and mobility of H2 in the crust. Furthermore, the high capacity of clay minerals to sorb molecular

  11. [Effect of Food Thickeners on the Disintegration, Dissolution, and Drug Activity of Rapid Oral-disintegrating Tablets].

    Science.gov (United States)

    Tomita, Takashi; Kohda, Yukinao; Kudo, Kenzo

    2018-01-01

     For patients with dysphagia in medical facilities and nursing homes, food thickeners are routinely used to aid the ingestion of medicines such as tablets. However, some types of thickeners affect the disintegration and dissolution of tablets, such as rapidly-disintegrating magnesium oxide tablets and donepezil hydrochloride orally disintegrating tablets. Additionally, delayed disintegration and dissolution of tablets affect a drug's efficacy. As an example, with Voglibose orally disintegrating tablets, marked differences are observed in changes in glucose levels during glucose tolerance testing. When using food thickeners to aid tablet ingestion, it is therefore necessary to select a product that has little effect on drug disintegration, dissolution, and activity.

  12. Numerical modeling of continental lithospheric weak zone over plume

    Science.gov (United States)

    Perepechko, Y. V.; Sorokin, K. E.

    2011-12-01

    The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of

  13. An Andean tectonic cycle: From crustal thickening to extension in a thin crust (34°–37°SL

    Directory of Open Access Journals (Sweden)

    Victor A. Ramos

    2014-05-01

    Full Text Available Several orogenic cycles of mountain building and subsequent collapse associated with periods of shallowing and steepening of subduction zones have been recognized in recent years in the Andes. Most of them are characterized by widespread crustal delamination expressed by large calderas and rhyolitic flare-up produced by the injection of hot asthenosphere in the subduction wedge. These processes are related to the increase of the subduction angle during trench roll-back. The Payenia paleoflat-slab, in the southern Central Andes of Argentina and Chile (34°–37°S recorded a complete cycle from crustal thickening and mountain uplift to extensional collapse and normal faulting, which are related to changes in the subduction geometry. The early stages are associated with magmatic expansion and migration, subsequent deformation and broken foreland. New ages and geochemical data show the middle to late Miocene expansion and migration of arc volcanism towards the foreland region was associated with important deformation in the Andean foothills. However, the main difference of this orogenic cycle with the previously described cycles is that the steepening of the oceanic subducted slab is linked to basaltic flooding of large areas in the retroarc under an extensional setting. Crustal delamination is concentrated only in a narrow central belt along the cordilleran axis. The striking differences between the two types of cycles are interpreted to be related to the crustal thickness when steepening the subducting slab. The crustal thickness of the Altiplano is over 60–80 km, whereas Payenia is less than 42 km in the axial part, and near 30 km in the retroarc foothills. The final extensional regime associated with the slab steepening favors the basaltic flooding of more than 8400 km3 in an area larger than 40,000 km2, through 800 central vents and large fissures. These characteristics are unique in the entire present-day Andes.

  14. Shear Thickening Fluid (STF) – Enhanced Textiles for Impact Energy Dissipation

    Data.gov (United States)

    National Aeronautics and Space Administration — The rheological behavior of some liquids can lead to the creation of materials with very unique properties. Shear thickening fluids (STFs), also known as dilatants,...

  15. Crustal characteristic variation in the central Yamato Basin, Japan Sea back-arc basin, deduced from seismic survey results

    Science.gov (United States)

    Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi

    2018-02-01

    The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.

  16. Influence of thickening of the inner skull table on intracranial volume measurement in older people.

    Science.gov (United States)

    Royle, N A; Hernández, M C Valdés; Maniega, S Muñoz; Arabisala, B S; Bastin, M E; Deary, I J; Wardlaw, J M

    2013-07-01

    It is generally assumed that intracranial volume (ICV) remains constant after peaking in early adulthood. Thus ICV is used as a 'proxy' for original brain size when trying to estimate brain atrophy in older people in neuroimaging studies. However, physiological changes in the skull, such as thickening of the frontal inner table, are relatively common in older age and will reduce ICV. The potential influence that inner table skull thickening may have on ICV measurement in old age has yet to be investigated. We selected 60 (31 males, 29 females) representative older adults aged 71.1-74.3years from a community-dwelling ageing cohort, the Lothian Birth Cohort 1936. A semi-automatically derived current ICV measurement obtained from high resolution T1-weighted volume scans was compared to the estimated original ICV by excluding inner skull table thickening using expert manual image processing. Inner table skull thickening reduced ICV from an estimated original 1480.0ml to a current 1409.1ml, a median decrease of 7.3% (Z=-6.334; pestimated original ICV is required for research into brain ageing. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Glomerular parietal epithelial cell activation induces collagen secretion and thickening of Bowman's capsule in diabetes.

    Science.gov (United States)

    Holderied, Alexander; Romoli, Simone; Eberhard, Jonathan; Konrad, Lukas A; Devarapu, Satish K; Marschner, Julian A; Müller, Susanna; Anders, Hans-Joachim

    2015-03-01

    The metabolic and hemodynamic alterations in diabetes activate podocytes to increase extracellular matrix (ECM) production, leading to thickening of the glomerular basement membrane (GBM). We hypothesized that diabetes would activate parietal epithelial cells (PECs) in a similar manner and cause thickening of Bowman's capsules. Periodic acid Schiff staining of human kidney biopsies of 30 patients with diabetic nephropathy (DN) revealed a significantly thicker Bowman's capsule as compared with 20 non-diabetic controls. The average thickness was 4.55±0.21 μm in the group of patients with DN compared with 2.92±0.21 μm in the group of non-diabetic controls (PBowman's capsule showed strong association with CD44-positive PECs. In summary, metabolic alterations in diabetes activate PECs to increase the expression and secretion of Bowman's capsule proteins. This process may contribute to the thickening of the Bowman's capsule, similar to the thickening of the GBM that is driven by activated podocytes. These data may also imply that activated PECs contribute to ECM production once they migrate to the glomerular tuft, a process resulting in glomerular scaring, for example, in diabetic glomerulosclerosis.

  18. [Effects of soil crusts on surface hydrology in the semiarid Loess hilly area].

    Science.gov (United States)

    Wei, Wei; Wen, Zhi; Chen, Li-Ding; Chen, Jin; Wu, Dong-Ping

    2012-11-01

    Soil crusts are distributed extensively in the Chinese Loess Plateau and play key roles in surface hydrological processes. In this study, a typical loess hilly region in Anjiagou catchment, Dingxi city, Gansu province was selected as the study region, and soil crusts in the catchment were investigated. Then, the hydrological effect of soil crusts was studied by using multi-sampling and hydrological monitoring experiments. Several key results were shown as follows. Firstly, compared with bared soil without crust cover, soil crusts can greatly reduce the bulk density, improve the porosity of soil, and raise the holding capacity of soil moisture which ranges from 1.4 to 1.9 times of that of bared soil. Secondly, the role of soil crust on rainfall interception was very significant. Moss crust was found to be strongest on rainfall interception, followed by synantectic crusts and lichen crusts. Bared soil without covering crusts was poorest in resisting rainfall splash. Thirdly, hydrological simulation experiments indicate that soil crusts play a certain positive role in promoting the water infiltration capacity, and the mean infiltration rate of the crusted soil was 2 times higher than that of the no-crust covered soils. While the accumulated infiltrated water amounts was also far higher than that of the bared soil.

  19. Basement tectonics and flexural subsidence along western continental margin of India

    Directory of Open Access Journals (Sweden)

    D.K. Pandey

    2017-09-01

    Full Text Available The Paleocene-recent post-rift subsidence history recorded in the Mumbai Offshore Basin off western continental margin of India is examined. Results obtained through 2-D flexural backstripping modelling of new seismic data reveal considerable thermo-tectonic subsidence over last ca. 56 Myr. Reverse post-rift subsidence modelling with variable β stretching factor predicts residual topography of ca. 2000 m to the west of Shelf Margin Basin and fails to restore late Paleocene horizon and the underlying igneous basement to the sea level. This potentially implies that: (1 either the igneous basement formed during the late Cretaceous was emplaced under open marine environs; or (2 a laterally varying cumulative subsidence occurred within Mumbai Offshore Basin (MOB during ca. 68 to ca. 56 Ma. Pre-depositional topographic variations at ca. 56 Ma across the basin could be attributed to the extensional processes such as varied lower crustal underplating along Western Continental Margin of India (WCMI. Investigations about basement tectonics after unroofing of sediments since late Paleocene from this region support a transitional and heavily stretched nature of crust with high to very high β factors. Computations of past sediment accumulation rates show that the basin sedimentation peaked during late Miocene concurrently with uplift of Himalayan–Tibetan Plateau and intensification of Indian monsoon system. Results from basin subsidence modelling presented here may have significant implications for further studies attempting to explore tectono–climatic interactions in Asia.

  20. The Effects of Rapid Sedimentation upon Continental Breakup: Kinematic and Thermal Modeling of the Salton Trough, Southern California, Based upon Recent Seismic Images

    Science.gov (United States)

    Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.

    2016-12-01

    globally, such as the Gulf of Mexico. This type of passive margin consists of mostly new crust created by magmatism and metamorphism of sediment. Along such margins, metamorphosed sediment could be misinterpreted as stretched pre-existing continental crust.

  1. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems

    International Nuclear Information System (INIS)

    Goldstein, S.L.; Cambridge Univ.; O'Nions, R.K.; Hamilton, P.J.

    1984-01-01

    143 Nd/ 144 Nd ratios, and Sm and Nd abundances, are reported for particulates from major and minor rivers of the Earth, continental sediments, and aeolian dusts collected over the Atlantic, Pacific, and Indian Oceans. Overall, Sm/Nd ratios and Nd isotopic compositions in contemporary continental erosion products vary within the small ranges of 147 Sm/ 144 Nd=0.115 +- 0.01 and 143 Nd/ 144 Nd=0.51204 +- 0.0002 (epsilonsub(Nd)=-11.4 +- 4). The average period of residence in the continental crust is estimated to be 1.70 +- 0.35 Ga. These results combined with data from the literature have implications for the age, history, and composition of the sedimentary mass and the continental crust: (1) The average 'crustal residence age' of the whole sedimentary mass is about 1.9 Ga. (2) The range of Nd isotope compositions in the continent derived particulate input to the oceans is the same as Atlantic sediments and seawater, but lower than those of the Pacific, demonstrating the importance of Pacific volcanism to Pacific Nd chemistry. (3) The average ratio of Sm/Nd is about 0.19 in the upper continental crust, and has remained so since the early Archean. This precludes the likelihood of major mafic to felsic or felsic to mafic trends in the overall composition of the upper continental crust through Earth history. (4) Sediments appear to be formed primarily by erosion of continental crust having similar Sm/Nd ratios, rather than by mixing of mafic and felsic compositions. (5) The average ratio of 143 Nd/ 144 Nd approx.= 0.5117 (epsilonsub(Nd) approx.= -17) in the upper continental crust, assuming its mean age is about 2 Ga. (6) The uniformity of the Sm-Nd isotopic systematics in river and aeolian particulates primarily reflects efficient recycling of old sediment by sedimentary processes on a short time scale compared to the amount of time the material has resided in the crust. (orig.)

  2. Reproducibility of an automatic quantitation of regional myocardial wall motion and systolic thickening on gated Tc-99m-MIBI myocardial SPECT

    International Nuclear Information System (INIS)

    Paeng, Jin Chul; Lee, Dong Soo; Cheon, Gi Jeong; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul

    2000-01-01

    The aim of this study is to investigate the reproducibility of the quantitative assessment of segmental wall motion and systolic thickening provided by an automatic quantitation algorithm. Tc-99m-MIBI gated myocardial SPECT with dipyridamole stress was performed in 31 patients with known or suspected coronary artery disease (4 with single, 6 with two, 11 with triple vessel disease; ejection fraction 51±14%) twice consecutively in the same position. Myocardium was divided into 20 segments. Segmental wall motion and systolic thickening were calculated and expressed in mm and % increase respectively, using AutoQUANT TM software. The reproducibility of this quantitative measurement of wall motion and thickening was tested. Correlations between repeated measurements on consecutive gated SPECT were excellent for wall motion (r=0.95) and systolic thickening (r=0.88). On Bland-Altman analysis, two standard deviation was 2 mm for repeated measurement of segmental wall motion, and 20% for that of systolic thickening. The weighted kappa values of repeated measurements were 0.807 for wall motion and 0.708 for systolic thickening. Sex, perfusion, or segmental location had no influence on reproducibility. Segmental wall motion and systolic thickening quantified using AutoQUANT TM software on gated myocardial SPECT offers good reproducibility and is significantly different when the change is more than 2 mm for wall motion and more than 20% for systolic thickening

  3. Extension of thickened and hot lithospheres: Inferences from laboratory modeling

    NARCIS (Netherlands)

    Tirel, C.; Brun, J.P.; Sokoutis, D.

    2006-01-01

    The extension of a previously thickened lithosphere is studied through a series of analogue experiments. The models deformed in free and boundary-controlled gravity spreading conditions that simulate the development of wide rift-type and core complex-type structures. In models, the development of

  4. Descemet Membrane Thickening as a Sign for the Diagnosis of Corneal Graft Rejection: An Ex Vivo Study.

    Science.gov (United States)

    VanDenBerg, Ryan; Diakonis, Vasilios F; Bozung, Alison; Gameiro, Gustavo Rosa; Fischer, Oliver; El Dakkak, Ahmed; Ulloa-Padilla, Jan Paul; Anagnostopoulos, Apostolos; Dubovy, Sander; Abou Shousha, Mohamed

    2017-12-01

    To disclose, using an ex vivo study, the histopathological mechanism behind in vivo thickening of the endothelium/Descemet membrane complex (En/DM) observed in rejected corneal grafts (RCGs). Descemet membrane (DM), endothelium, and retrocorneal membranes make up the total En/DM thickness. These layers are not differentiable by high-definition optical coherence tomography; therefore, the source of thickening is unclear from an in vivo perspective. A retrospective ex vivo study (from September 2015 to December 2015) was conducted to measure the thicknesses of DM, endothelium, and retrocorneal membrane in 54 corneal specimens (31 RCGs and 23 controls) using light microscopy. Controls were globes with posterior melanoma without corneal involvement. There were 54 corneas examined ex vivo with mean age 58.1 ± 12.2 in controls and 51.7 ± 27.9 years in RCGs. The ex vivo study uncovered the histopathological mechanism of En/DM thickening to be secondary to significant thickening (P < 0.001) of DM (6.5 ± 2.4 μm) in RCGs compared with controls (3.9 ± 1.5 μm). Our ex vivo study shows that DM is responsible for thickening of the En/DM in RCGs observed in vivo by high-definition optical coherence tomography and not the endothelium or retrocorneal membrane.

  5. Research on evolutionary laws of Sr, Nd, Pb isotopes of uranium metallization and volcanic rocks in south china

    International Nuclear Information System (INIS)

    Ying Junlong

    1998-01-01

    According to research on evolutionary tracer of Sr, Nd, Pb isotopes, the author proposes that isotopic evolution of Mesozoic volcanics in south China is controlled by regionally metamorphic rocks of ancient land basement, early reformed derivates and recycled continental crust. Isotopic composition of uranium metallization shows the characteristics of crust sources, and Yanshanian accretion of continental margin caused the crust movement such as magmatic activity in lower crust within continent, extension-down-faulting, etc., promoting the migration, enrichment and ore formation of uranium

  6. Snow and Ice Crust Changes over Northern Eurasia since 1966

    Science.gov (United States)

    Bulygina, O.; Groisman, P. Y.; Razuvaev, V.; Radionov, V.

    2009-12-01

    When temperature of snow cover reaches zero Celsius first time since its establishment, snowmelt starts. In many parts of the world this process can be lengthy. The initial amount of heat that “arrives” to the snowpack might be insufficient for complete snowmelt, during the colder nights re-freeze of the melted snow may occur (thus creating the ice crust layers), and a new cold front (or the departure of the warm front that initiated melt) can decrease temperatures below the freezing point again and stop the snowmelt completely. It well can be that first such snowmelt occurs in winter (thaw day) and for several months thereafter snowpack stays on the ground. However, even the first such melt initiates a process of snow metamorphosis on its surface changing snow albedo and generating snow crust as well as on its bottom generating ice crust. Once emerged, the crusts will not disappear until the complete snowmelt. Furthermore, these crusts have numerous pathways of impact on the wild birds and animals in the Arctic environment as well as on domesticated reindeers. In extreme cases, the crusts may kill some wild species and prevent reindeers’ migration and feeding. Ongoing warming in high latitudes created situations when in the western half of Eurasian continent days with thaw became more frequent. Keeping in mind potential detrimental impacts of winter thaws and associated with them snow/ice crust development, it is worthwhile to study directly what are the major features of snow and ice crust over Eurasia and what is their dynamics. For the purpose of this study, we employed the national snow survey data set archived at the Russian Institute for Hydrometeorological Information. The dataset has routine snow surveys run throughout the cold season each decade (during the intense snowmelt, each 5 days) at all meteorological stations of the former USSR, thereafter, in Russia since 1966. Prior to 1966 snow surveys are also available but the methodology of

  7. Cyanobacterial crust induction using two non-previously tested cyanobacterial inoculants: crusting capability and role of EPSs

    Science.gov (United States)

    Mugnai, Gianmarco; Rossi, Federico; De Philippis, Roberto

    2017-04-01

    The use of cyanobacteria as soil improvers and bio-conditioners (a technique often referred to as algalization) has been studied for decades. Several studies proved that cyanobacteria are feasible eco-friendly candidates to trigger soil fertilization and enrichment from agricultural to arid and hyper-arid systems. This approach can be successful to achieve stabilization and rehabilitation of degraded environments. Much of the effectiveness of algalization is due to the productivity and the characteristics of extracellular polysaccharides (EPSs) which, among their features, embed soil particles and promote the development of a first stable organo-mineral layer (cyanobacterial crusts). In natural settings, cyanobacterial crust induction represents a first step of a succession that may lead to the formation of mature biological soil crusts (Lan et al., 2014). The aim of this research was to investigate the crusting capabilities, and the characteristics of excreted EPSs by two newly tested non-heterocystous cyanobacterial inoculants, in microcosm experiments carried out using oligothrophic sand collected from sand dunes in Negev Desert, Israel. The cyanobacteria tested were Schizothrix AMPL1601, originally isolated from biocrusts collected in Hobq Desert, Inner Mongolia (China) and Leptolyngbia ohadii, originally isolated from biocrusts collected in Negev Desert, Israel. Inoculated microcosms were maintained at 30 °C in a growth chamber under continuous illumination and minimal water availability. Under such stressing conditions, and for a three-months incubation time, the growth and the colonization of the strains in the microcosms were monitored. At the same time, EPSs production and their chemical and macromolecular characteristics were determined by applying a methodology optimized for the purpose. Notably, EPSs were analyzed in two operationally-defined fractions, one more dispersed in the crust matrix (loosely bound EPSs, LB-EPSs) and one more condensed and

  8. Effects of crust and cracks on simulated catchment discharge and soil loss

    NARCIS (Netherlands)

    Stolte, J.; Ritsema, C.J.; Roo, de A.P.J.

    1997-01-01

    Sealing, crusting and cracking of crusts of the soil surface has been observed in many parts of the world in areas with sandy, silty and loamy soils. Sealing and crust formation occurs under the influence of rain storm and drying weather. With prolonged drying, surface crusts might crack, leading to

  9. Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications

    Science.gov (United States)

    Liao, Wei-Zhi; Lin, Andrew T.; Liu, Char-Shine; Oung, Jung-Nan; Wang, Yunshuen

    2014-10-01

    Temperature measurements carried out on 9 hydrocarbon exploration boreholes together with Bottom Simulating Reflectors (BSRs) from reflection seismic images are used in this study to derive geothermal gradients and heat flows in the northern margin of the South China Sea near Taiwan. The method of Horner plot is applied to obtain true formation temperatures from measured borehole temperatures, which are disturbed by drilling processes. Sub-seafloor depths of BSRs are used to calculate sub-bottom temperatures using theoretical pressure/temperature phase boundary that marks the base of gas hydrate stability zone. Our results show that the geothermal gradients and heat flows in the study area range from 28 to 128 °C/km and 40 to 159 mW/m2, respectively. There is a marked difference in geothermal gradients and heat flow beneath the shelf and slope regions. It is cooler beneath the shelf with an average geothermal gradient of 34.5 °C/km, and 62.7 mW/m2 heat flow. The continental slope shows a higher average geothermal gradient of 56.4 °C/km, and 70.9 mW/m2 heat flow. Lower heat flow on the shelf is most likely caused by thicker sediments that have accumulated there compared to the sediment thickness beneath the slope. In addition, the continental crust is highly extended beneath the continental slope, yielding higher heat flow in this region. A half graben exists beneath the continental slope with a north-dipping graben-bounding fault. A high heat-flow anomaly coincides at the location of this graben-bounding fault at the Jiulong Ridge, indicating vigorous vertical fluid convection which may take place along this fault.

  10. EUNAseis

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans

    2013-01-01

    ; (4) The thickness ratio between upper-middle (Vp b 6.8 km/s) and lower (Vp N 6.8 km/s) crystalline crust is indicative of crustal origin: oceanic, transitional, platform, or extended crust; (5) Continental rifting generally thins the upper-middle crust significantly without changing Vp. Lower crust...... experiences less thinning, also without changing Vp, suggesting a complex interplay of magmatic underplating, gabbro-eclogite phase transition and delamination; (6) Crustal structure of the Barents Sea shelf differs from rifted continental crust; and (7) Most of the North Atlantic Ocean north of 55°N has...

  11. PRE-RIFT COMPRESSIONAL STRUCTURES AS A CONTROL ON PASSIVE MARGIN FORMATION

    DEFF Research Database (Denmark)

    Schiffer, Christian; Petersen, Kenni Dinesen

    Passive margins are commonly separated into volcanic and non-volcanic modes, each with a distinct formation mechanism and structure. Both form the transition from continental to oceanic crust. Large amounts of geophysical data at passive margins show that the tapering continental crust is often u...

  12. Chronology of early lunar crust

    International Nuclear Information System (INIS)

    Dasch, E.J.; Nyquist, L.E.; Ryder, G.

    1988-01-01

    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed

  13. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng; Shin, Hosung; Santamarina, Carlos

    2015-01-01

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  14. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng

    2015-12-14

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  15. Isotope and trace element models of crustal evolution

    International Nuclear Information System (INIS)

    O'Nions, R.K.; Hamilton, P.J.

    1981-01-01

    Some of the isotopic constraints on the development of continental crust from about 3.8 Ga ago are reviewed. Particularly it is noted that Archaean granitic (sensu lato) rocks have initial 143 Nd/ 144 Nd ratios close to predicted values for the bulk Earth at the time before emplacement, whereas those Phanerozoic granites investigated so far diverge considerably from the bulk Earth and betray the existence of later continental crust in their provenance. Geochemical evidence for recycling of some continent-derived elements into the mantle is examined and the important distinction between selected element recycling and bulk return of continental material is emphasized. Various transport models that have been proposed to model the development of continental crust are examined and some of their differences and similarities, particularly with respect to implications for continental recycling, are highlighted. (author)

  16. On the conditions of magma mixing and its bearing on andesite production in the crust.

    Science.gov (United States)

    Laumonier, Mickael; Scaillet, Bruno; Pichavant, Michel; Champallier, Rémi; Andujar, Joan; Arbaret, Laurent

    2014-12-15

    Mixing between magmas is thought to affect a variety of processes, from the growth of continental crust to the triggering of volcanic eruptions, but its thermophysical viability remains unclear. Here, by using high-pressure mixing experiments and thermal calculations, we show that hybridization during single-intrusive events requires injection of high proportions of the replenishing magma during short periods, producing magmas with 55-58 wt% SiO2 when the mafic end-member is basaltic. High strain rates and gas-rich conditions may produce more felsic hybrids. The incremental growth of crustal reservoirs limits the production of hybrids to the waning stage of pluton assembly and to small portions of it. Large-scale mixing appears to be more efficient at lower crustal conditions, but requires higher proportions of mafic melt, producing more mafic hybrids than in shallow reservoirs. Altogether, our results show that hybrid arc magmas correspond to periods of enhanced magma production at depth.

  17. Normal-Faulting in Madagascar: Another Round of Continental Rifting?

    Science.gov (United States)

    Wysession, M. E.; Pratt, M. J.; Tsiriandrimanana, R.; Andriampenomanana Ny Ony, F. S. T.; Nyblade, A.; Durrheim, R. J.; Tilmann, F. J.; Rumpker, G.; Rambolamanana, G.; Aleqabi, G. I.; Shore, P.

    2017-12-01

    Analyses of seismicity and seismic structure within Madagascar suggest the current occurrence of crustal extension, which may be related to continental rifting associated with a diffuse boundary between the Somalia and Lwandle tectonic plates. Madagascar has participated in two major rifting events as part of the break-up of Gondwana: the break-away of Greater India (Madagascar, India, the Seychelles) away from mainland Africa during the Jurassic and the break-away of India from Madagascar during the Cretaceous. Seismic activity and the structures obtained from it, using data from the 2-year (2011-2013) MACOMO project, suggest that this break-up may not be finished, and that continental rifts may be developing again. There are fairly high levels of intraplate seismicity within Madagascar: over 800 events located during the 22 months of the deployment. For comparison, a 2-year deployment of seismometers within the upper Midwest of the U.S. yielded just 12 intraplate earthquakes. While the Madagascar seismicity occurs across the island, it is strongly concentrated in the central region, where Cenozoic volcanism has occurred through the Holocene, and earthquakes align along N-S-trending lineations associated with N-S-trending pull-apart graben structures. The thickness of the crust is still >40 km in this region, but it is underlain by a large low-velocity structure within the lithosphere and asthenosphere that is observed in our studies of surface-wave, body-wave, and Pn-phase tomography. Normal faulting is not observed everywhere on the island, however; seismicity in the north is largely strike-slip, and seismicity in the south appears to be largely reverse faulting. Several studies have suggested that the diffuse boundary between the Somalia and Lwandle plates runs roughly E-W across Madagascar. Extensional faulting seems to predominate only within central Madagascar, likely associated with the current volcanic activity, which also appears to be associated with the

  18. How to make a craton

    Science.gov (United States)

    Lee, C.; Chin, E. J.; Erdman, M.; Gaschnig, R. M.; Lederer, G. W.; Savage, P. S.; Zhong, S.; Zincone, S.

    2013-12-01

    , respectively, cratons should be weak. This dilemma can be reconciled by considering the thermal and magmatic evolution of juvenile crust formed in the Archean. Thickening of juvenile crust increases total heat production within the upper part of the nascent lithosphere. With higher heat production in the past, such thickening causes the crust to heat up on timescales of 100 Myr, resulting in a post-orogenic thermal pulse that generates a wave of crustal anatexis and downward heating of the lithospheric mantle, driving off residual water and increasing the kinetics of grain growth, both of which strengthen the lithosphere. Crustal melting will also advectively concentrate radiogenics towards the surface with no observable change in surface heat flow. This upward migration of radiogenics will be followed by cooling of the lower crust and lithospheric mantle, causing further strengthening. With secular cooling of the ambient convecting mantle over much longer timescales, cratons emerge in elevation, leading to erosion of the radiogenically enriched upper crust and leaving behind a continental block with the low surface heat flow characteristic of cratons today. In summary, cratons form by tectonic thickening of cold building blocks, followed by a thermal pulse that further dehydrates and anneals the cratonic mantle. The last step requires sufficient radiogenics to operate, which may explain why cratons formed early in Earth's history.

  19. Disentangling the role of hydrodynamic and frictional forces in a shear-thickening suspension

    Science.gov (United States)

    Cohen, Itai

    2015-03-01

    Who among us has not spent countless hours squeezing, rubbing, and smushing gooey substances like, tooth paste, silly putty, corn starch, and even bodily fluids between our fingers? If we could magnify our view and look deep within the substances we are handling what structures would we find? How, do these structures lead to the fascinating mechanical properties that we experience on the scale of our fingers. In this talk I will address the phenomenon of shear thickening in which the viscosity of a suspension increases with increasing shear rate. I will describe recent measurements we have made using a newly developed confocal rheoscope that, for the first time, experimentally visualize the hydrodynamically induced particle clusters. Such clusters have been implicated in continuous shear thickening. It remains controversial as to whether thickening in such suspensions also arises from frictional interactions between particles. The distinct contributions of frictional and hydrodynamic forces are typically difficult to measure independently using conventional techniques. Here, I will describe our approach for using both bulk rheometry techniques and our confocal rheoscope to disentangle their contributions to the total stress response.

  20. U-Pb thermochronology of the lower crust: producing a long-term record of craton thermal evolution

    Science.gov (United States)

    Blackburn, T.; Bowring, S. A.; Mahan, K. H.; Perron, T.; Schoene, B.; Dudas, F. O.

    2010-12-01

    The EarthScope initiative is focused on providing an enhanced view of the North American lithosphere and the present day stress field of the North American continent. Of key interest is the interaction between convecting asthenosphere and the conducting lithospheric mantle that underlie the continents, especially the cold ‘keels’ that underlie Archean domains. Cratonic regions are in general characterized by minimal erosion and or sediment accumulation. The Integration of seismic tomography, and mantle xenolith studies reveal a keel of seismically fast and relatively buoyant and viscous mantle; physical properties that are intimately linked with the long-term stability and topographic expression of the region. Missing from this model of the continental lithosphere is the 4th dimension--time--and along with it our understanding of the long-term evolution of these stable continental interiors. Here we present a thermal record from the North American craton using U-Pb thermochronology of lower crustal xenoliths. The use of temperature sensitive dates on lower crustal samples can produce a unique time-temperature record for a well-insulated and slowly cooling lithosphere. The base of the crust is insulated enough to remain unperturbed by any plausible changes to surface topography, yet unlike the subadjacent lithospheric mantle, contains accessory phases amenable to U-Pb dating (rutile, apatite, titanite). With near steady state temperatures in the lower crust between 400-600 °C, U-Pb thermochronometers with similar average closure temperatures for Pb are perfectly suited to record the long-term cooling of the lithosphere. Xenoliths from multiple depths, and across the craton yield time-temperature paths produced from U-Pb thermochronometers that record extremely slow cooling (<0.25 °C/Ma) over time scales of billions of years. Combining these data with numerical thermal modeling allow constraints to be placed on the dominant heat transfer mechanisms operating

  1. Journal Article: Localized Pleural Thickening: Smoking and Exposure to Libby Vermiculite

    Science.gov (United States)

    There is limited research on the combined effects of smoking and asbestos exposure on risk of localized pleural thickening (LPT). This analysis uses data from the Marysville cohort of workers occupationally exposed to Libby amphibole asbestos (LAA). Workers were interviewed to ...

  2. The cation-controlled and hydrogen bond-mediated shear-thickening behaviour of a tree-fern isolated polysaccharide.

    Science.gov (United States)

    Wee, May S M; Matia-Merino, Lara; Goh, Kelvin K T

    2015-10-05

    The shear-thickening rheological behaviour (between 5 and 20s(-1)) of a 5% (w/w) viscoelastic gum extracted from the fronds of the native New Zealand black tree fern or mamaku in Māori was further explored by manipulating the salt content. The freeze-dried mamaku gum contained a high mineral content and sugars which upon removal via dialysis, resulted in the loss of shear thickening. However, this loss was reversible by the addition of salts to the dialysed dispersion. The mechanism of shear-thickening behaviour was therefore hypothesised to be due to shear-induced transition of intra- to intermolecular hydrogen bonding, promoted by the screening effect of cations. Mono-, di- and trivalent salts, i.e. Na(+), K(+), N(CH3)4(+), Ca(2+), Mg(2+), Al(3+) and La(3+) at concentrations between 0.001 and 1.0M were tested to support the hypothesis as well as to demonstrate the sensitivity of the biopolymer to cation valency and concentrations. The cation valency and concentration were crucial factors in determining: (i) zero-shear viscosity, (ii) critical shear rate, γ˙c (or shear rate at the onset of shear-thickening) and (iii) the extent of shear-thickening of the solution. For mono- and divalent cations these parameters were similar at equivalent ionic strengths and fairly independent of the cation type. Trivalent cations (La(3+)) however caused precipitation of the gum in the concentration range of 0.005-0.05 M but clear dispersions were obtained above 0.05 M. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. INEXPENSIVE CO{sub 2} THICKENING AGENTS FOR IMPROVED MOBILITY CONTROL OF CO{sub 2} FLOODS

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Enick; Eric J. Beckman; Andrew Hamilton

    2004-10-01

    The objective of this research was the design, synthesis and evaluation of inexpensive, nonfluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly C