WorldWideScience

Sample records for thick target experiments

  1. Monitoring production target thickness

    International Nuclear Information System (INIS)

    Oothoudt, M.A.

    1993-01-01

    Pion and muon production targets at the Clinton P. Anderson Meson Physics Facility consist of rotating graphite wheels. The previous target thickness monitoring Procedure scanned the target across a reduced intensity beam to determine beam center. The fractional loss in current across the centered target gave a measure of target thickness. This procedure, however, required interruption of beam delivery to experiments and frequently indicated a different fractional loss than at normal beam currents. The new monitoring Procedure compares integrated ups and downs toroid current monitor readings. The current monitors are read once per minute and the integral of readings are logged once per eight-hour shift. Changes in the upstream to downstream fractional difference provide a nonintrusive continuous measurement of target thickness under nominal operational conditions. Target scans are now done only when new targets are installed or when unexplained changes in the current monitor data are observed

  2. Uncertainties in thick-target PIXE analysis

    International Nuclear Information System (INIS)

    Campbell, J.L.; Cookson, J.A.; Paul, H.

    1983-01-01

    Thick-target PIXE analysis insolves uncertainties arising from the calculation of thick-target X-ray production in addition to the usual PIXE uncertainties. The calculation demands knowledge of ionization cross-sections, stopping powers and photon attenuation coefficients. Information on these is reviewed critically and a computational method is used to estimate the uncertainties transmitted from this data base into results of thick-target PIXE analyses with reference to particular specimen types using beams of 2-3 MeV protons. A detailed assessment of the accuracy of thick-target PIXE is presented. (orig.)

  3. Optimum target thickness for polarimeters

    International Nuclear Information System (INIS)

    Sitnik, I.M.

    2003-01-01

    Polarimeters with thick targets are a tool to measure the proton polarization. But the question about the optimum target thickness is still the subject of discussion. An attempt to calculate the most common parameters concerning this problem, in a few GeV region, is made

  4. Interactions of relativistic heavy ions in thick heavy element targets and some unresolved problems

    International Nuclear Information System (INIS)

    Brandt, R.; Ditlov, V.A.; Pozharova, E.A.; Smirnitskij, V.A.

    2005-01-01

    Interactions of relativistic heavy ions with total energies above 30 GeV in thick Cu and Pb targets (≥2 cm) have been studied with various techniques. Radiochemical irradiation experiments using thick Cu targets, both in a compact form or as diluted '2π-Cu targets' have been carried out with several relativistic heavy ions, such as 44 GeV 12 C (JINR, Dubna) and 72 GeV 40 Ar (LBL, Berkeley, USA). Neutron measuring experiments using thick targets irradiated with various relativistic heavy ions up to 44 GeV 12 C have been performed at JINR. In addition, the number of 'black prongs' in nuclear interactions (due to protons with energies less than 30 MeV and emitted from the target-like interaction partner at rest) produced with 72 GeV 22 Ne ions in nuclear emulsion plates has been measured in the first nuclear interaction of the primary 22 Ne ion and in the following second nuclear interaction of the secondary heavy (Z>1) ion. Some essential results have been obtained. 1) Spallation products produced by relativistic secondary fragments in interactions ([44 GeV 12 C or 72 GeV 40 Ar]+Cu) within thick copper yield less products close to the target and much more products far away from the target as compared to primary beam interactions. This applies also to secondary particles emitted into large angles (Θ>10deg). 2) The neutron production of 44 GeV 12 C within thick Cu and Pb targets is beyond the estimated yield as based on experiments with 12 GeV 12 C. These rather independent experimental results cannot be understood with well-accepted nuclear reaction models. They appear to present unresolved problems

  5. Preparation of tantalum targets of known thicknesses

    International Nuclear Information System (INIS)

    Alexander, J.R.; Wirth, H.L.

    1985-01-01

    A series of carbon-backed tantalum targets were produced in a heavy ion sputtering system with a Penning ion source. The target thicknesses were then measured using the alpha-ray energy loss method. The resulting tabulated measurements were reproducible and make possible the production of carbon-backed tantalum targets with pre-determined thicknesses ranging from 20 μg/cm 2 to 1 mg/cm 2 . (orig.)

  6. Manual for target thickness measurement by alpha particle irradiation

    International Nuclear Information System (INIS)

    Dias, J.F.; Martins, M.N.

    1990-04-01

    A system is described for thin-target thickness measurement through the alpha particle energy loss when them traverse the target. It is also described the program used in the analysis of the target thickness. (L.C.) [pt

  7. Practical methods of target preparation for use in nuclear experiments

    International Nuclear Information System (INIS)

    Sugai, Isao.

    1976-01-01

    This is the fifth report on the practical methods of target preparation for use in nuclear experiments following the previous one (INS-J-152, 1975). Electro-deposition is a very powerful technique well suited to the preparation of self-supporting targets of Ni, Cr, Zn, Rh, Cd, Sb and Pb metals over a wide range of thickness from 1 to 20 mg/cm 2 . The uniformities of the thicknesses of Cr, Zn, Rh, Cd and Pb targets were measured with α- and β-ray thickness gauges. The impurities in Cr target were checked by the measurement of elastically scattered protons, and by a optical spectrometer. (auth.)

  8. Monte Carlo modelling and comparison with experiment of the nuclide production in thick stony targets isotropically irradiated with 600 MeV protons

    International Nuclear Information System (INIS)

    Aylmer, D.; Herzog, G.F.; Kruse, T.H.; Cloth, P.; Filges, D.; Moniot, R.K.; Signer, P.; Wieler, R.; Tuniz, C.

    1987-05-01

    Depth profiles for the production of stable and radioactive nuclides have been measured for a large variety of target elements in three thick spherical stony targets with radii of 5, 15 and 26 cm isotropically irradiated with 600 MeV protons at the CERN synchrocyclotron. These irradiation experiments (CERN SC96) were intended to simulate the irradiation of meteoroids by galactic cosmic ray protons. In order to combine this experimental approach with a theoretical one the intra- and internuclear cascades were calculated using Monte Carlo techniques via the high energy transport code HET/KFA 1. Together with transport calculations for low energy neutrons by the MORSE-CG code the depth dependent spectra of primary and secondary protons and of secondary neutrons were derived. On the basis of these spectra and a set of evaluated experimental excitation functions for p-induced reactions and of theoretical ones for n-induced reactions, calculated by the code ALICE LIVERMORE 82, theoretical depth profiles for the production of stable and radioactive nuclides in the three thick targets were calculated. This report is a comprehensive survey on all those target/product combination for which both experimental and theoretical data are available. It provides the basis for a detailed discussion of the various production modes of residual nuclides and on the depth and size dependence of their production rates in thick stony targets, serving as a simulation of the galactic cosmic ray irradiation of meteoroids in space. On the other hand the comparison of the experimental and theoretical depth profiles validates the high energy transport calculations, making them a promissing tool for further model calculations of the interactions of cosmic rays with matter. (orig.)

  9. Role of laser contrast and foil thickness in target normal sheath acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Gizzi, L.A. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Altana, C. [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania (Italy); Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Brandi, F. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, P. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Cristoforetti, G. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan, Milan (Italy); INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Giove, D. [INFN-LASA, Via Fratelli Cervi 201, 20090 Segrate (Italy); Koester, P. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Labate, L. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Lanzalone, G. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Università degli Studi di Enna Kore, Via delle Olimpiadi, 94100 Enna (Italy); Londrillo, P. [INAF–Osservatorio astronomico Bologna (Italy); Mascali, D.; Muoio, A. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Palla, D. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, Università di Pisa (Italy); Schillaci, F. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Sinigardi, S. [Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); INFN, Sez. di Bologna, Via Irnerio 46, 40126 Bologna (Italy); and others

    2016-09-01

    In this paper we present an experimental investigation of laser driven light-ion acceleration using the ILIL laser at an intensity of 2×10{sup 19} W/cm{sup 2}. In the experiment we focused our attention on the identification of the role of target thickness and resistivity in the fast electron transport and in the acceleration process. Here we describe the experimental results concerning the effect of laser contrast in the laser–target interaction regime. We also show preliminary results on ion acceleration which provide information about the role of bulk target ions and surface ions and target dielectric properties in the acceleration process.

  10. Measurement of Li target thickness in the EVEDA Li Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Kanemura, Takuji, E-mail: kanemura.takuji@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan); Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan); Hoashi, Eiji; Yoshihashi, Sachiko; Horiike, Hiroshi [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Wakai, Eiichi [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2015-10-15

    Highlights: • The objective is to validate stability of the IFMIF liquid Li target flowing at 15 m/s. • Design requirement of target thickness fluctuation is ±1 mm. • Mean and maximum wave amplitude are 0.26 and 1.46 mm, respectively. • Average thickness can be well predicted with developed analytical model. • Li target was adequately stable and satisfied design requirement. - Abstract: A high-speed (nominal: 15 m/s, range: 10–16 m/s) liquid lithium wall jet is planned to serve as the target for two 40 MeV and 125 mA deuteron beams in the International Fusion Materials Irradiation Facility (IFMIF). The design requirement of target thickness stability is 25 ± 1 mm under a vacuum of 10{sup −3} Pa. This paper presents the results of the target thickness measurement conducted in the EVEDA Li Test Loop under a wide range of conditions including the IFMIF condition (target speed of 10, 15, and 20 m/s; vacuum pressure of 10{sup −3} Pa; and Li temperature of 250 °C). For measurement, we use a laser probe method that we developed in advance; this method generates statistical measurements method using a laser distance meter. The measurement results obtained under the IFMIF nominal condition (15 m/s, 10{sup −3} Pa, 250 °C) at the IFMIF beam center are as follows: average target thickness = 26.08 ± 0.09 mm (2σ), mean wave amplitude = 0.26 ± 0.01 mm (2σ), and maximum wave amplitude = 1.46 ± 0.25 mm (2σ). Of the total wave components, 99.7% are within the design requirement. The analytically predicted target thickness is in excellent agreement with the experimental data, resulting in successful characterization of the Li target thickness.

  11. Kinematics and simulation methods to determine the target thickness

    International Nuclear Information System (INIS)

    Rosales, P.; Aguilar, E.F.; Martinez Q, E.

    2001-01-01

    Making use of the kinematics and of the particles energy loss two methods for calculating the thickness of a target are described. Through a computer program and other of simulation in which parameters obtained experimentally are used. Several values for a 12 C target thickness were obtained. It is presented a comparison of the obtained values with each one of the used programs. (Author)

  12. The α-induced thick-target γ-ray yield from light elements

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R. K. [Queen`s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-10-01

    The α-induced thick-target γ-ray yield from light elements has been measured in the energy range 5.6 MeV ≤ Eα ≤ 10 MeV. The γ-ray yield for > 2.1 MeV from thick targets of beryllium, boron nitride, sodium fluoride, magnesium, aluminum and silicon were measured using the α-particle beam from the Lawrence Berkeley Laboratories 88 in. cyclotron. The elemental yields from this experiment were used to construct the α-induced direct production γ-ray spectrum from materials in the SNO detector, a large volume ultra-low background neutrino detector located in the Creighton mine near Sudbury, Canada. This background source was an order of magnitude lower than predicted by previous calculations. These measurements are in good agreement with theoretical calculations of this spectrum based on a statistical nuclear model of the reaction, with the gross high energy spectrum structure being reproduced to within a factor of two. Detailed comparison of experimental and theoretical excitation population distribution of several residual nuclei indicate the same level of agreement within experimental uncertainties.

  13. On the configuration of an active target for a fixed-target B experiment at SSC energies

    International Nuclear Information System (INIS)

    Dukes, E.C.

    1993-01-01

    The optimal configuration of target and silicon microvertex detector for fixed-target B experiments has yet to be determined. For fixed-target charm experiments the usual setup consists of a series of inert target foils - typically a few millimeters thick and separated by a few centimeters - immediately followed by a silicon microvertex detector. Because of the larger boost at the SSC, the efficacy of using active target foils - tightly packed silicon microstrip detectors - has been considered by at least one group: the SFT collaboration. It is hoped that with an active target the tracks of charged B's themselves can be measured, improving charged B reconstruction efficiencies. The author examines two issues concerning silicon active targets for fixed-target experiments at the SSC: (1) the effect on the acceptance of the requirement that the B decay vertices occur outside of the target foils, and (2) the ability of an active target to directly track charged B's

  14. Measurements of neutron spectra produced from a thick iron target bombarded with 1.5 GeV protons

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Takada, Hiroshi

    2001-01-01

    For validation of calculation codes which are employed in the design of accelerator facilities, spectra of neutrons produced from a thick iron target bombarded with 1.5-GeV protons were measured. The calculated results with NMTC/JAM were compared with the present experimental results. It is found the NMTC/JAM generally shows in good agreement with experiment. Furthermore, the calculation gives good agreement with the experiment for the energy region 20-80 MeV, whereas the NMTC/JAM gives 50% of the experimental data for the heavy nuclide target such as lead and tungsten target. (author)

  15. Radiographic detection of 100 A thickness variations in 1-μm-thick coatings applied to submillimeter-diameter laser fusion targets

    International Nuclear Information System (INIS)

    Stupin, D.M.

    1986-01-01

    We have developed x-ray radiography to measure thickness variations of coatings on laser fusion targets. Our technique is based on measuring the variation in x-ray transmission through the targets. The simplest targets are hollow glass microshells or microballoons 100 to 500 μm in diameter, that have several layers of metals or plastics, 1 to 100 μm thick. Our goal is to examine these opaque coatings for thickness variations as small as 1% or 0.1%, depending on the type of defect. Using contact radiography we have obtained the desired sensitivity for concentric and elliptical defects of 1%. This percentage corresponds to thickness variations as small as 100 A in a 1-μm-thick coating. For warts and dimples, the desired sensitivity is a function of the area of the defect, and we are developing a system to detect 0.1% thickness variations that cover an area 10 μm by 10 μm. We must use computer analysis of contact radiographs to measure 1% thickness variations in either concentricity or ellipticity. Because this analysis takes so long on our minicomputer, we preselect the radiographs by looking for defects at the 10% level on a video image analysis system

  16. Spallation neutron production on thick target at saturne

    International Nuclear Information System (INIS)

    David, J.C.; David, J.C.; Varignon, C.; Borne, F.; Boudard, A.; Brochard, F.; Crespin, S.; Duchazeaubeneix, J.C.; Durand, D.; Durand, J.M.; Frehaut, J.; Hannappe, F.; Lebrun, C.; Lecolley, J.F.; Ledoux, X.; Lefebvres, F.; Legrain, R.; Leray, S.; Louvel, M.; Martinez, E.; Menard, S.; Milleret, G.; Patin, Y.; Petitbon, E.; Plouin, F.; Schapira, J.P.; Stugge, L.; Terrien, Y.; Thun, J.; Volant, C.; Whittal, D.M.

    2003-01-01

    In view of the new spallation neutron source projects, we discuss the characteristics of the neutron spectra on thick targets measured at SATURNE. Some comparisons to spallation models, and especially INCL4/ABLA implemented in the LAHET code, are done. (orig.)

  17. Nanodiamond targets for accelerator X-ray experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lobko, A., E-mail: lobko@inp.bsu.by [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus); Golubeva, E. [Belarusian State University, 4 Nezavisimosti Prosp., Minsk 220030 (Belarus); Kuzhir, P.; Maksimenko, S. [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus); Ryazan State RadioEngineering University, 59/1 Gagarina Street, Ryazan 390005 (Russian Federation); Paddubskaya, A. [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus); Shenderova, O. [International Technology Center, 8100 Brownleigh Dr., S. 120, Raleigh, NC 27617 (United States); Uglov, V. [Belarusian State University, 4 Nezavisimosti Prosp., Minsk 220030 (Belarus); Valynets, N. [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus)

    2015-07-15

    Results of fabrication of a nanodiamond target for accelerator X-ray experiments are reported. Nanodiamond film with dimensions 5 × 7 mm and thickness of 500 nm has been made of the high pressure high temperature nanodiamonds using a filtration method. The average crystallite size of primary nanodiamond particles varies around 100 nm. Source nanodiamonds and fabricated nanodiamond film were characterized using Raman spectroscopy, electron microscopy, and X-ray diffractometry. Preliminary results show that targets made of nanodiamonds are perspective in generating crystal-assisted radiation by the relativistic charged particles, such as parametric X-rays, diffracted transition radiation, diffracted Bremsstrahlung, etc.

  18. Nanodiamond targets for accelerator X-ray experiments

    International Nuclear Information System (INIS)

    Lobko, A.; Golubeva, E.; Kuzhir, P.; Maksimenko, S.; Paddubskaya, A.; Shenderova, O.; Uglov, V.; Valynets, N.

    2015-01-01

    Results of fabrication of a nanodiamond target for accelerator X-ray experiments are reported. Nanodiamond film with dimensions 5 × 7 mm and thickness of 500 nm has been made of the high pressure high temperature nanodiamonds using a filtration method. The average crystallite size of primary nanodiamond particles varies around 100 nm. Source nanodiamonds and fabricated nanodiamond film were characterized using Raman spectroscopy, electron microscopy, and X-ray diffractometry. Preliminary results show that targets made of nanodiamonds are perspective in generating crystal-assisted radiation by the relativistic charged particles, such as parametric X-rays, diffracted transition radiation, diffracted Bremsstrahlung, etc

  19. Calculated /alpha/-induced thick target neutron yields and spectra, with comparison to measured data

    International Nuclear Information System (INIS)

    Wilson, W.B.; Bozoian, M.; Perry, R.T.

    1988-01-01

    One component of the neutron source associated with the decay of actinide nuclides in many environments is due to the interaction of decay /alpha/ particles in (/alpha/,n) reactions on low Z nuclides. Measurements of (/alpha/,n) thick target neutron yields and associated neutron spectra have been made for only a few combinations of /alpha/ energy and target nuclide or mixtures of actinide and target nuclides. Calculations of thick target neutron yields and spectra with the SOURCES code require /alpha/-energy-dependent cross sections for (/alpha/,n) reactions, as well as branching fractions leading to the energetically possible levels of the product nuclides. A library of these data has been accumulated for target nuclides of Z /le/ 15 using that available from measurements and from recent GNASH code calculations. SOURCES, assuming neutrons to be emitted isotopically in the center-of-mass system, uses libraries of /alpha/ stopping cross sections, (/alpha/,n) reaction cross reactions, product nuclide level branching fractions, and actinide decay /alpha/ spectra to calculate thick target (/alpha/,n) yields and neutron spectra for homogeneous combinations of nuclides. The code also calculates the thick target yield and angle intergrated neutron spectrum produced by /alpha/-particle beams on targets of homogeneous mixtures of nuclides. Illustrative calculated results are given and comparisons are made with measured thick target yields and spectra. 50 refs., 1 fig., 2 tabs

  20. Neutron yield from thick lead target by the action of high-energy electrons

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.; Sorokin, P.V.

    1978-01-01

    The results are presented of studying the complete neutron yield from a lead target bombarded by high-energy electrons. Neutrons were recorded by the method of radio-active indicators. The dependence of the neutron yield on the target thickness varying from 0.2 to 8 cm was obtained at the energies of electrons of 230 and 1200 MeV. The neutron yield for the given energies with the target of 6 cm in thickness is in the range of saturation and is 0.1 +-0.03 and 0.65+-0.22 (neutr./MeV.el.), respectively. The neutron angular distributions were measured for different thicknesses of targets at the 201, 230 and 1200 MeV electrons. Within the error limits the angular distributions are isotropic. The dependence of neutron yield on the electron energy was examined for a 3 cm thick target. In the energy range of 100-1200 MeV these values are related by a linear dependence with the proportionality coefficient C=3x10 -4 (neutr./MeV.el.)

  1. The effect of target thickness on x-ray production by FXR [Flash X-Ray Machine

    International Nuclear Information System (INIS)

    Back, N.L.

    1986-01-01

    The electron-photon transport code SANDYL has been used to calculate the x-ray flux for a simplified Flash X-Ray Machine (FXR) bullnose geometry. Four different thicknesses (24.5, 36.75, 49, and 61.25 mils) were used for the tantalum bremsstrahlung target in order to study the effect of target thickness on the FXR output. The calculations were performed for a parallel 17 MeV electron beam, and the resulting angular distributions were then used to compute the forward flux for the more realistic case of a converging beam. Over the range of thicknesses studied, the x-ray energy content per steradian on axis was essentially independent of target thickness. The main reason for this is that, while the total x-ray flux coming out of the target increases with increasing target thickness, the angular width of that flux also increases. The implications for target wheel design are discussed. 3 refs., 7 figs

  2. Measurements of neutron spectra produced from a thick tungsten target bombarded with 5 and 15 GeV protons

    CERN Document Server

    Meigo, S; Shigyo, N; Iga, K; Iwamoto, Y; Kitsuki, H; Ishibashi, K; Maehata, K; Arima, H; Nakamo, T; Numajiri, M

    2002-01-01

    For validation of calculation codes that are employed in the design of a pulse spallation neutron source and accelerator driven system, the spectrum of neutrons produced from a thick target plays an important role. However, appropriate experimental data were scarce for incident energies higher than 0.8 GeV. In this study, the spectrum from a thick tungsten target was measured. The experiment was carried out at the pi 2 beam line of the 12-GeV proton synchrotron at KEK. The tungsten target was bombarded by 0.5- and 1.5-GeV secondary protons. The spectrum of neutrons was measured by the time-of-flight technique using organic scintillators of NE213. The calculated result with NMTC/JAM and MCNP-4A is compared with the measured data. It is found that the NMTC/JAM generally gives a good agreement with experiment. The NMTC/JAM, however, gives 50% lower neutron flux in the energy region 20~80 MeV, which is consistent with the results in a previous comparison of a lead target. For the neutrons between 20 and 80 MeV, t...

  3. Measurements of neutron spectra produced from a thick tungsten target bombarded with 0.5- and 1.5-GeV protons

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Takada, Hiroshi

    2002-01-01

    For validation of calculation codes that are employed in the design of pulse spallation neutron source and accelerator driven system, spectrum of neutrons produced from a thick target plays an important role. However, appropriate experimental data were scarce for the incident energies higher than 0.8 GeV. In this study, the spectrum from a thick tungsten target was measured. The experiment was carried out at the π2 beam line of the 12-GeV proton synchrotron at KEK. The tungsten target was bombarded by the 0.5- and 1.5-GeV secondary protons. Spectrum of neutrons was measured by the time-of-flight technique using organic scintillators of NE213. The calculated result with NMTC/JAM and MCNP-4A is compared with the measured data. It is found that the NMTC/JAM generally gives a good agreement with experiment. The NMTC/JAM, however, gives 50% lower neutron flux in the energy region 20∼80 MeV, which is consistent with the results in previous comparison of lead target. For the neutrons between 20 and 80 MeV, the calculation using with the in-medium nucleon-nucleon cross sections reproduced the experiment fairly well. (author)

  4. Thick target spallation product yields from 800 MeV protons on tungsten

    International Nuclear Information System (INIS)

    Ullmann, J.L.; Staples, P.; Butler, G.

    1994-01-01

    A number of newly-conceived accelerator based technologies will employ medium-energy particles stopping in thick targets to produce large numbers of neutrons. It is important to quantify the residual radionuclides in the target because one must understand what nuclei and decay gammas are produced in order to design adequate shielding, to estimate ultimate waste disposal problems, and to predict possible effects of accidental dispersion during operation. Because stopping-length targets are considered, radionuclide production must be known as a function of energy. Moreover, secondary particle production, mostly neutrons, implies a need to be able to calculate particle transport. To test the overall ability to calculate radionuclide yields, a thick-target measurement was carried out and the results compared to detailed calculations. Although numerous measurements of thin-target spallation yields have been made, there have been only a few measurements on thick systems. The most complete study showed results for Pb and U systems. In this contribution, the authors report on measurements made for a stopping-length W target. Special efforts were made to measure short-lived isotopes, and reliable data on isotopes with two or three minute half-lives were obtained

  5. Thick target benchmark test for the code used in the design of high intensity proton accelerator project

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Harada, Masatoshi

    2003-01-01

    In the neutronics design for the JAERI and KEK Joint high intensity accelerator facilities, transport codes of NMTC/JAM, MCNPX and MARS are used. In order to confirm the predict ability for these code, it is important to compare with the experiment result. For the validation of the source term of neutron, the calculations are compared with the experimental spectrum of neutrons produced from thick target, which are carried out at LANL and KEK. As for validation of low energy incident case, the calculations are compared with experiment carried out at LANL, in which target of C, Al, Fe, and 238 U are irradiated with 256-MeV protons. By the comparison, it is found that both NMTC/JAM and MCNPX show good agreement with the experiment within by a factor of 2. MARS shows good agreement for C and Al target. MARS, however, gives rather underestimation for all targets in the neutron energy region higher than 30 MeV. For the validation high incident energy case, the codes are compared with the experiment carried out at KEK. In this experiment, W and Pb targets are bombarded with 0.5- and 1.5-GeV protons. Although slightly disagreement exists, NMTC/JAM, MCNPX and MARS are in good agreement with the experiment within by a factor of 2. (author)

  6. Nova target experiments

    International Nuclear Information System (INIS)

    Drake, R.P.

    1985-11-01

    The Nova laser, at the Lawrence Livermore National Laboratory, provides unique opportunities for target experiments. It has unprecedented energy on target and significant flexibility. The paper presented by John Hunt described the capabilities and the status of Nova. This paper discusses plans for future experiments using Nova, and the present status of target experiments. We plan to perform high-quality physics experiments that exploit the unique capabilities of Nova. Because this is our goal, we are fielding an extensive array of well-characterized target diagnostics to measure the emissions from the target. The first section of this paper discusses the basic target diagnostics. We are also taking care to quantify the performance of the laser

  7. Characterization of a material by probability of linear scattering using effect of target thickness

    International Nuclear Information System (INIS)

    Nghiep, T.D.; Khai, N.T.; Cong, N.T.; Minh, D.T.N.

    2013-01-01

    We report on an experimental test with 662 keV gamma photons scattered from a set of samples from 6 C, 13 Al, 26 Fe, 29 Cu, 47 Ag, 82 Pb and stainless steel for determination of probability of linear scattering, which can be used for characterization of a material. The results show that for the given target and scattering angle, the effect of target thickness in gamma photons scattering relates to single and multiple scattering and that the scattered events exponentially increase with an increase in target thickness and saturation at some values of thickness. The experimental results correlate with the typical function of energy transfer model. (author)

  8. HIRFL–CSR internal cluster target

    International Nuclear Information System (INIS)

    Shao, Caojie; Lu, Rongchun; Cai, Xiaohong; Yu, Deyang; Ruan, Fangfang; Xue, Yingli; Zhang, Jianming; Torpokov, D.K.; Nikolenko, D.

    2013-01-01

    Highlights: • An internal cluster target was built and installed at HIRFL–CSR. • The target thickness for H 2 amounts up to 6.6 × 10 12 atoms/cm 2 . • The feasibility and stability of the internal cluster target were verified by on-line experiments. -- Abstract: Since HIRFL–CSR internal cluster target was built, it has played a key role in in-ring experiments at HIRFL–CSR. So far it have been operated with five gas species as targets for scattering experiments, i.e. hydrogen, nitrogen, argon, neon, and krypton. The obtained highest thickness for hydrogen target amounts up to 10 12 atoms/cm 2 , and those of other targets are larger than 10 13 atoms/cm 2 with the background pressure of 10 −11 mbar in CSR. The target thickness can be varied by regulating the nozzle temperature and pressure of the inlet gas. The first online internal target experiment dedicated to investigate radioactive electron capture (REC) process with Xe 54+ ions colliding with the nitrogen target demonstrated the stability and reliability of the internal target system. In addition, hydrogen and krypton were also tested online in recent experiments, which indicate the target system can meet experimental requirements for the thickness of target, pressure in scattering chamber, and long-term stability

  9. Experimental study on neutronics in bombardment of thick targets by high energy proton beams for accelerator-driven sub-critical system

    CERN Document Server

    Guo Shi Lun; Shi Yong Qian; Shen Qing Biao; Wan Jun Sheng; Brandt, R; Vater, P; Kulakov, B A; Krivopustov, M I; Sosnin, A N

    2002-01-01

    The experimental study on neutronics in the target region of accelerator-driven sub-critical system is carried out by using the high energy accelerator in Joint Institute for Nuclear Research, Dubna, Russia. The experiments with targets U(Pb), Pb and Hg bombarded by 0.533, 1.0, 3.7 and 7.4 GeV proton beams show that the neutron yield ratio of U(Pb) to Hg and Pb to Hg targets is (2.10 +- 0.10) and (1.76 +- 0.33), respectively. Hg target is disadvantageous to U(Pb) and Pb targets to get more neutrons. Neutron yield drops along 20 cm thick targets as the thickness penetrated by protons increases. The lower the energy of protons, the steeper the neutron yield drops. In order to get more uniform field of neutrons in the targets, the energy of protons from accelerators should not be lower than 1 GeV. The spectra of secondary neutrons produced by different energies of protons are similar, but the proportion of neutrons with higher energy gradually increases as the proton energy increases

  10. Assembler absolute forward thick-target bremsstrahlung spectra program

    International Nuclear Information System (INIS)

    Niculescu, V.I.R.; Baciu, G.; Ionescu-Bujor, M.

    1981-12-01

    The program is intended to compute the absolute forward thick-target bremsstrahlung spectrum for electrons in the energy range 1-24 MeV. The program takes into account the following phenomena: multiple scattering, energy loss and the attenuation of the emitted gamma rays. The computer program is written in Assembler having a higher degree of generality and is more performant than the FORTRAN version. (authors)

  11. Impact of Different CT Slice Thickness on Clinical Target Volume for 3D Conformal Radiation Therapy

    International Nuclear Information System (INIS)

    Prabhakar, Ramachandran; Ganesh, Tharmar; Rath, Goura K.; Julka, Pramod K.; Sridhar, Pappiah S.; Joshi, Rakesh C.; Thulkar, Sanjay

    2009-01-01

    The purpose of this study was to present the variation of clinical target volume (CTV) with different computed tomography (CT) slice thicknesses and the impact of CT slice thickness on 3-dimensional (3D) conformal radiotherapy treatment planning. Fifty patients with brain tumors were selected and CT scans with 2.5-, 5-, and 10-mm slice thicknesses were performed with non-ionic contrast enhancement. The patients were selected with tumor volume ranging from 2.54 cc to 222 cc. Three-dimensional treatment planning was performed for all three CT datasets. The target coverage and the isocenter shift between the treatment plans for different slice thickness were correlated with the tumor volume. An important observation from our study revealed that for volume 25 cc, the target underdosage was less than 6.7% for 5-mm slice thickness and 8% for 10-mm slice thickness. For 3D conformal radiotherapy treatment planning (3DCRT), a CT slice thickness of 2.5 mm is optimum for tumor volume 25 cc

  12. Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments

    Science.gov (United States)

    Kheswa, N. Y.; Papka, P.; Buthelezi, E. Z.; Lieder, R. M.; Neveling, R.; Newman, R. T.

    2010-02-01

    This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ( natCa), lithium-6 ( 6Li) and molybdenum-97 ( 97Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.

  13. Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kheswa, N.Y., E-mail: kheswa@tlabs.ac.z [iThemba Laboratory for Accelerator Based Science, P.O. Box 722, Somerset West 7129, Western Cape (South Africa); Papka, P.; Buthelezi, E.Z.; Lieder, R.M.; Neveling, R.; Newman, R.T. [iThemba Laboratory for Accelerator Based Science, P.O. Box 722, Somerset West 7129, Western Cape (South Africa)

    2010-02-11

    This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ({sup nat}Ca), lithium-6 ({sup 6}Li) and molybdenum-97 ({sup 97}Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.

  14. Observation of material, thickness, and bremsstrahlung x-ray intensity dependent effects in moderate and high Z targets in a gamma and x-ray LIDAR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Ayaz-Maierhafer, Birsen; Laubach, Mitchell A. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2015-06-01

    A high energy gamma and x-ray LIDAR system consisting of a fast pulse (~50 ps, FWHM) LINAC and a Cherenkov detection system was used to investigate response differences among materials, their thicknesses, and bremsstrahlung x-ray intensities. The energies and pulse width of electrons used to produce bremsstrahlung x-rays were set at 20 or 40 MeV and 50 ps FWHM duration, respectively. The Cherenkov detector was built with a fused silica glass optically coupled to a 51 mm fast timing photomultiplier tube, which has an intrinsic energy threshold of 340.7 keV for Compton backscattered gammas. Such a fast detection system yields a coincidence resolving time of 93 ps FWHM, which is equivalent to a depth resolving capability of about 3 cm FWHM. The thicknesses of iron and lead targets were varied from 1 in. to 7 in. with a step of 1 in., and the thicknesses of DU were varied from 1/3 in. to 1 in. with a step of 1/3 in. The experimental results show that iron targets tend to produce a factor of five less observed x-rays and gammas, with less energetic photoelectron frequency distributions, compared with DU and lead targets for the same beam intensity and target thicknesses. Additionally, the self-shielding effect causes the lead to yield more gammas than the DU considering the experimental observation point. For the setup used in this study, a charge per pulse in the range of 1–2.5 nC yields the best resolving capability between the DU and lead targets.

  15. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    Directory of Open Access Journals (Sweden)

    Saibabu Madas

    2018-03-01

    Full Text Available In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler’s mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K, whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  16. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    Science.gov (United States)

    Madas, Saibabu; Mishra, S. K.; Upadhyay Kahaly, Mousumi

    2018-03-01

    In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base) material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler's mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K), whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  17. Influence of target thickness on the release of radioactive atoms

    Energy Technology Data Exchange (ETDEWEB)

    Guillot, Julien, E-mail: guillotjulien@ipno.in2p3.fr [Institut de Physique Nucléaire CNRS/IN2P3 UMR 8608 – Université Paris Sud – Université Paris Saclay, F-91406 Orsay Cedex (France); Roussière, Brigitte [Institut de Physique Nucléaire CNRS/IN2P3 UMR 8608 – Université Paris Sud – Université Paris Saclay, F-91406 Orsay Cedex (France); Tusseau-Nenez, Sandrine [Physique de la Matière Condensée Ecole Polytechnique/CNRS UMR 7643 – Université Paris Saclay, F-91128 Palaiseau Cedex (France); Barré-Boscher, Nicole; Borg, Elie; Martin, Julien [Institut de Physique Nucléaire CNRS/IN2P3 UMR 8608 – Université Paris Sud – Université Paris Saclay, F-91406 Orsay Cedex (France)

    2017-03-01

    Nowadays, intense exotic beams are needed in order to study nuclei with very short half-life. To increase the release efficiency of the fission products, all the target characteristics involved must be improved (e.g. chemical composition, dimensions, physicochemical properties such as grain size, porosity, density…). In this article, we study the impact of the target thickness. Released fractions measured from graphite and uranium carbide pellets are presented as well as Monte-Carlo simulations of the Brownian motion.

  18. Production of direct drive cylindrical targets for inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Elliott, N.E.; Day, R.D.; Hatch, D.J.; Sandoval, D.L.; Gomez, V.M.; Pierce, T.H.; Elliott, J.E.; Manzanares, R.

    2002-01-01

    We have made targets with cylindrical geometry for Inertial Confinement Fusion (ICF) experiments. These targets are used in hydrodynamic experiments on the OMEGA laser at the University of Rochester. The cylindrical design allows the study of three dimensional hydrodynamic effects in a pseudo 2D mode, simplifying data gathering and analysis. Direct drive refers to the fact that the target is illuminated directly by approximately 50 laser beams and is imploded by the material pressure generated from ablation of the outside of the target. The production of cylindrical targets involves numerous steps. These steps are shared in common with many other types of ICF targets but no other single target type encompasses such a wide range of fabrication techniques. These targets consist of a large number of individual parts, all fabricated from commercially purchased raw material, requiring many machining, assembly, electroplating and chemical process steps. Virtually every manufacturing and assembly process we currently possess is involved in the production of these targets. The generic target consists of a plastic cylinder (ablator) that is roughly lmm in diameter by 2.25mm long. The wall of the cylinder is roughly 0.07mm thick. There is an aluminum cylinder 0.5mm wide and O.Olmm thick centered on the inside of the plastic cylinder and coaxial with the outside plastic cylinder. The outside of this aluminum band has surface finishes of differing random average roughness. The required average surface roughness is determined in advance by experimental design based on the amount of turbulent mix to be observed. The interior of the cylinder is filled with low density polystyrene foam that is made in house. To produce a finished target additional features are added to each target. X-ray backlighters are cantilevered off the target that allow time resolved x-ray images of the imploding target to be recorded during the experiment. The x-ray backlighters are driven by additional

  19. Ion acceleration by radiation pressure in thin and thick targets

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, Andrea, E-mail: macchi@df.unipi.i [CNR/INFM/polyLAB, Pisa (Italy); Dipartimento di Fisica ' Enrico Fermi' , Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Benedetti, Carlo, E-mail: Carlo.Benedetti@bo.infn.i [Dipartimento di Fisica, Universita di Bologna and INFN, Via Irnerio 46, I-40126 Bologna (Italy)

    2010-08-01

    Radiation Pressure Acceleration (RPA) by circularly polarized laser pulses is emerging as a promising way to obtain efficient acceleration of ions. We briefly review theoretical work on the topic, aiming at characterizing suitable experimental scenarios. We discuss the two reference cases of RPA, namely the thick target ('Hole Boring') and the (ultra)thin target ('Light Sail') regimes. The different scaling laws of the two regimes, the related experimental challenges and their suitability for foreseen applications are discussed.

  20. Investigations of effect of target thickness and detector collimation on 662 keV multiply backscattered gamma photons

    International Nuclear Information System (INIS)

    Sabharwal, Arvind D.; Sandhu, B.S.; Singh, Bhajan

    2009-01-01

    The present studies aimed to investigate the effects of detector collimation and target thickness on multiply backscattered gamma photons. The numbers of multiply backscattered events, having energy the same as in singly scattered distribution, are found to be increasing with target thickness, and saturate for a particular thickness known as saturation thickness. The saturation thickness is not altered by the variation in the collimator opening. The number and energy albedos, characterizing the reflection probability of a material, are also evaluated. Monte Carlo calculations support the present experimental work.

  1. Design, construction and performance evaluation of the target tissue thickness measurement system in intraoperative radiotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Mohammad Reza, E-mail: myazdani@aut.ac.ir [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Arabalibeik, Hossein, E-mail: arabalibeik@tums.ac.ir [Research Center for Biomedical Technology and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Akbari, Mohammad Esmaeil [Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2017-05-21

    Intraoperative electron radiation therapy (IOERT), which uses electron beams for irradiating the target directly during the surgery, has the advantage of delivering a homogeneous dose to a controlled layer of tissue. Since the dose falls off quickly below the target thickness, the underlying normal tissues are spared. In selecting the appropriate electron energy, the accuracy of the target tissue thickness measurement is critical. In contrast to other procedures applied in IOERT, the routine measurement method is considered to be completely traditional and approximate. In this work, a novel mechanism is proposed for measuring the target tissue thickness with an acceptable level of accuracy. An electronic system has been designed and manufactured with the capability of measuring the tissue thickness based on the recorded electron density under the target. The results indicated the possibility of thickness measurement with a maximum error of 2 mm for 91.35% of data. Aside from system limitation in estimating the thickness of 5 mm phantom, for 88.94% of data, maximum error is 1 mm.

  2. Thick-target method in the measurement of inner-shell ionization cross-sections by low-energy electron impact

    International Nuclear Information System (INIS)

    An, Z.; Wu, Y.; Liu, M.T.; Duan, Y.M.; Tang, C.H.

    2006-01-01

    In this paper, we have studied the thick-target method for the measurements of atomic inner-shell ionization cross-section or X-ray production cross-section by keV electron impact. We find that in the processes of electron impact on the thick targets, the ratios of the characteristic X-ray yields of photoelectric ionization by bremsstrahlung to the total characteristic X-ray yields are Z-dependent and shell-dependent, and the ratios also show the weak energy-dependence. In addition, in the lower incident energy region (i.e. U < 5-6), the contribution from the rediffusion effect and the secondary electrons can be negligible. In general, the thick-target method can be appropriately applied to the measurements of atomic inner-shell ionization cross-sections or X-ray production cross-sections by electron impact for low and medium Z elements in the lower incident electron energy (i.e. U < 5-6). The experimental accuracies by the thick-target method can reach to the level equivalent or superior to the accuracies of experimental data based on the thin-target method. This thick-target method has been applied to the measurement of K-shell ionization cross-sections of Ni element by electron impact in this paper

  3. Measurements of Neutron Spectra Produced from a Thick Iron Target Bombarded with 1.5-GeV Protons

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Shigyo, Nobuhiro; Iga, Kiminori; Iwamoto, Yosuke; Kitsuki, Hirohiko; Ishibashi, Kenji; Maehata, Keisuke; Arima, Hidehiko; Nakamoto, Tatsushi; Numajiri, Masaharu

    2005-01-01

    For validation of calculation codes that are employed in the design of accelerator facilities, spectra of neutrons produced from a thick iron target bombarded with 1.5-GeV protons were measured. The calculated results with NMTC/JAM were compared with the present experimental results. It is found that the NMTC/JAM generally shows good agreement with experiment. Furthermore, the calculation gives good agreement with the experiment for the energy region 20 to 80 MeV for iron, whereas the NMTC/JAM gives 50% of the experimental data for the heavy-nuclides such as lead and tungsten

  4. 12C fragmentation at 95 MeV per nucleon for hadron-therapy. Experimental study and simulation with thick PMMA targets

    International Nuclear Information System (INIS)

    Braunn, B.

    2010-11-01

    A study of the 12 C fragmentation at 95 MeV per nucleon on thick PMMA targets is presented on this document. This study is motivated by the development of a new technique for irradiation of malignant tumours: the carbon ion therapy. The purpose of this work is to compare experimental data against nuclear models used in GEANT4 tool-kit. The aim is to determine if the models are sufficiently predictive to the criteria of hadron-therapy. To achieve this goal, a first experiment was performed at GANIL with a 12 C beam at 95 MeV/u and thick PMMA targets. This experiment has achieved the production rates, angular and energy distributions of different fragments produced in nuclear collisions. Comparisons between experimental data and simulated results obtained using the binary intra-nuclear cascade (BIC) and quantum molecular dynamics model (QMD) available in GEANT4 have been performed. These comparisons show the inability of the tested models to reproduce carbon fragmentation at 95 MeV per nucleon with the accuracy required in hadron-therapy. (author)

  5. Automated computer analysis of x-ray radiographs greatly facilitates measurement of coating-thickness variations in laser-fusion targets

    International Nuclear Information System (INIS)

    Stupin, D.M.; Moore, K.R.; Thomas, G.D.; Whitman, R.L.

    1981-01-01

    An automated system was built to analyze x-ray radiographs of laser fusion targets which greatly facilitates the detection of coating thickness variations. Many laser fusion targets reqire opaque coatings 1 to 20 μm thick which have been deposited on small glass balloons 100 to 500 μm in diameter. These coatings must be uniformly thick to 1% for the targets to perform optimally. Our system is designed to detect variations as small as 100 A in 1-μm-thick coatings by converting the optical density variations of contact x-ray radiographs into coating thickness variations. Radiographic images are recorded in HRP emulsions and magnified by an optical microscope, imaged onto television camera, digitized and processed on a Data General S/230 computer with a code by Whitman. After an initial set-up by the operator, as many as 200 targets will be automatically characterized

  6. Preparation of barium and uranium targets on thick backings

    International Nuclear Information System (INIS)

    Sletten, G.

    1982-01-01

    Targets of 135 Ba and 235 U have been prepared by the technique of heavy ion sputtering. Rolled foils of 208 Pb and 197 Au were used to support 250-500 μg/cm 2 layers of barium. Uranium films have been prepared by sputtering UO 2 onto 1 mg/cm 2 titanium foils. Uranium deposit thicknesses of 300 to 1800 μg/cm 2 have been prepared. (orig.)

  7. Extended methods using thick-targets for nuclear reaction data of radioactive isotopes

    Science.gov (United States)

    Ebata, Shuichiro; Aikawa, Masayuki; Imai, Shotaro

    2017-09-01

    The nuclear transmutation is a technology to dispose of radioactive wastes. However, we do not have enough basic data for its developments, such as thick-target yields (TTY) and the interaction cross sections for radioactive material. We suggest two methods to estimate the TTY using inverse kinematics and to obtain the excitation function of the interaction cross sections which is named the thick-target transmission (T3) method. We deduce the energy-dependent conversion relation between the TTYs of the original system and its inverse kinematics, which can be replaced to a constant coefficient in the high energy region. Furthermore we show the usefulness of the T3 method to investigate the excitation function of the 12C + 27Al reaction in the simulation.

  8. Experimental results on 2-30 keV bremsstrahlung from thick and thin targets

    Energy Technology Data Exchange (ETDEWEB)

    Shanker, R. [Atomic Physics Laboratory, Physics Department, Banaras Hindu University, Varanasi 221005 (India)]. E-mail: rshanker@bhu.ac.in

    2006-10-15

    The recent experimental investigations on electron bremsstrahlung produced from impact of 2-30 keV electrons with thick solid and thin gaseous targets are reviewed. The theoretical models describing the energy and angular distributions of bremsstrahlung photons are discussed with their brief outlines and formulations to explain the experimental data. The results on thick target bremsstrahlung (TTB) spectra produced by keV electrons have suggested that there is a need to develop a comprehensive theory for accounting the solid state effects. It is further noted that the prediction of the modified KKD formula gives a reasonable agreement with the TTB data, whereas a semi-empirical formula gives a better fit to the data for thick targets. The available experimental data for dependence of double differential cross-sections of emitted photons on impact energy and their emission angles for gaseous atoms and molecules exhibit a good agreement with the theoretical calculations of Kissel et al., [1983. Shape functions for atomic-field bremsstrahlung from electrons of kinetic energy 1-500 keV on selected neutral atoms 1

  9. Technique for thick polymer coating of inertial-confinement-fusion targets

    International Nuclear Information System (INIS)

    Lee, M.C.; Feng, I.; Wang, T.G.; Kim, H.

    1983-01-01

    A novel technique has been developed to coat a thick layer (15--50 μm) of polymer materials on inertial-confinement-fusion (ICF) targets. In this technique, the target and the coating material are independently positioned and manipulated. The coating material is first dissolved in an appropriate solvent to form a polymer solution. The solution is then atomized, transported, and allowed to coalesce into a droplet in a stable acoustic levitating field. The ICF target mounted on a stalk is moved into the acoustic field by manipulating a three-dimensional (3-D) positioner to penetrate the surface membrane of the droplet and thus the target is immersed in the levitated coating solution. The 3-D coordinates of the target inside the droplet are obtained using two orthogonally placed television cameras. The target is positioned at the geometric center of the droplet and maintained at that location by continuously manipulating the 3-D device until the coating layer is dried. Tests of this technique using a polymer solution have been highly successful

  10. Thin-thick hydrogen target for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Gheller, J.-M.; Juster, F.-P.; Authelet, G. [CEA Saclay, Irfu/SACM, F-91191 Gif-Sur-Yvette cedex (France); Vinyar, I. [PELIN Limited Liability Company 27 A, Gzhatskaya Str, office 103 St. Petersbourg 195220 (Russian Federation); Relland, J. [CEA Saclay, Irfu/SIS, F-91191 Gif-Sur-Yvette cedex (France); Commeaux, C. [Institut de Physique Nucléaire, campus Universitaire-Bat 103, 91406 Orsay cedex (France)

    2014-01-29

    In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a width of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.

  11. Fast neutron distributions from Be and C thick targets bombarded with 80 and 160 MeV deuterons

    International Nuclear Information System (INIS)

    Pauwels, N.; Laurent, H.; Clapier, F.; Brandenburg, S.; Beijers, J. P .M.; Zegers, R. G. T.; Lebreton, H.; Saint-Laurent, M.G.; Mirea, M.

    2001-01-01

    Production of fast neutron studies have come to the fore in the past few years because of the great interest for the possible applications of induced fission to produce neutron rich ion beams. In this context, the main objective of the SPIRAL II (Systeme de Production d'Ions Radioactifs Acceleres en Ligne) and PARRNe (Production d'Atomes Radioactifs Riches en Neutrons) R and D projects is the investigation of the feasibility and of the optimum parameters for a neutron rich isotope source. Special attention is dedicated to the energy and angular distributions of the neutrons obtained through deuteron break--up in different types of converters and different incident energies. Analysis and modelling of such behaviors, together with the study of the yields of neutron induced fission, can be used to optimize the productivity of the fissioning target its geometry and designing it accordingly. The present report continues our previous studies realised for 17, 20, 28 and 200 MeV deuteron energies and it is focused on deuteron incident energies of 80 and 160 MeV. In the experiment, the double differential cross section for neutron production induced by 80 and 160 MeV deuterons impinging on thick C and Be targets, in which the incident deuterons were complete stopped, have been measured. The energy of the neutrons was determined from the time--of--flight (TOF) measurement. To obtain an energy resolution of about 4% for the fastest, forward--emitted neutrons, which have approximately beam velocity, the length of the flightpath for the detectors at angles up to 30 angle was chosen to be 6 m. At backward angles, where the neutron energies are lower, a shorter flightpath was chosen. A schematic drawing of the setup is shown. A 100 mm thick Be target and a 70 mm thick C target were used. Results are exemplified with the angular and energy distributions of neutron obtained for Be target at 80 MeV. (authors)

  12. Photo-neutron yields from thin and thick targets irradiated by 2.0 GeV electrons

    International Nuclear Information System (INIS)

    Hee-Seock, Lee; Syuichi, Ban; Toshiya, Sanami; Kazutoshi, Takahashi; Tatsuhiko, Sato; Kazuo, Shin

    2005-01-01

    The photo-neutron yields from thin and thick targets irradiated by high energy electrons were studied. The photo-neutron spectra at 90 deg C relative to the incident 2.0 GeV electrons were measured by the pulsed beam time-of-flight technique using the Pilot-U plastic scintillator and the NE213 liquid scintillator with 2 inches in length and 2 inches in diameter. Targets, from low-Z element (carbon) to high-Z element (bismuth) and with thin (0.5 Xo) and thick (10 Xo) thickness, were used in this study. The differential photo-neutron yields between 2 MeV (mainly 8 MeV) and 400 MeV were obtained. The systematics was studied to make empirical yield terms for shielding application. Recently, the study of the angular distributed yields was conducted at two other observing angles, 48 deg C and 140 deg C. The photo-neutron yields between 8 MeV and 250 MeV were obtained for thick targets. The experimental data were compared with results calculated using the EGS4+PICA3 or the MCNPX 2.5d code. (authors)

  13. Target experiments with high-power proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Baumung, K; Bluhm, H; Hoppe, P; Rusch, D; Singer, J; Stoltz, O [Forschungszentrum Karlsruhe (Germany); Kanel, G I; Razorenov, S V; Utkin, A V [Russian Academy of Sciences, Chernogolovka (Russian Federation). Inst. of Chemical Physics

    1997-12-31

    At the Karlsruhe Light Ion Facility KALE a pulsed high-power proton beam (50 ns, 0.15 TW/cm{sup 2}, 8 mm fwhm focus diameter, 1.7 MeV peak proton energy) is used to generate short, intense pressure pulses or to ablatively accelerate targets 10-100 {mu}m thick to velocities > 10 km/s. The velocity history of the rear target surface is recorded by line-imaging laser Doppler velocimetry with high spatial ({>=} 10 {mu}m) and temporal ({>=} 200 ps) resolution, and provides information on proton beam parameters, and on the state of the matter at high energy densities and intense loading. Utilizing the bell-shaped power density profile the authors demonstrated a new straightforward method for measuring the shock pressure that leads to material melting in the rarefaction wave. For the first time, the dynamic tensile strength was measured across a crystal grain boundary, and using targets with a 1D periodic structure, the growth rate of a Rayleigh Taylor instability could be measured for the first time in direct drive experiments with an ion beam. (author). 8 figs., 15 refs.

  14. Amended Results for Hard X-Ray Emission by Non-thermal Thick Target Recombination in Solar Flares

    Science.gov (United States)

    Reep, J. W.; Brown, J. C.

    2016-06-01

    Brown & Mallik and the corresponding corrigendum Brown et al. presented expressions for non-thermal recombination (NTR) in the collisionally thin- and thick-target regimes, claiming that the process could account for a substantial part of the hard X-ray continuum in solar flares usually attributed entirely to thermal and non-thermal bremsstrahlung (NTB). However, we have found the thick-target expression to become unphysical for low cut-offs in the injected electron energy spectrum. We trace this to an error in the derivation, derive a corrected version that is real-valued and continuous for all photon energies and cut-offs, and show that, for thick targets, Brown et al. overestimated NTR emission at small photon energies. The regime of small cut-offs and large spectral indices involve large (reducing) correction factors but in some other thick-target parameter regimes NTR/NTB can still be of the order of unity. We comment on the importance of these results to flare and microflare modeling and spectral fitting. An empirical fit to our results shows that the peak NTR contribution comprises over half of the hard X-ray signal if δ ≳ 6{≤ft(\\tfrac{{E}0c}{4{keV}}\\right)}0.4.

  15. Optimization of accelerator target and detector for portal imaging using Monte Carlo simulation and experiment

    International Nuclear Information System (INIS)

    Flampouri, S.; Evans, P.M.; Partridge, M.; Nahum, A.E.; Verhaegen, A.E.; Spezi, E.

    2002-01-01

    Megavoltage portal images suffer from poor quality compared to those produced with kilovoltage x-rays. Several authors have shown that the image quality can be improved by modifying the linear accelerator to generate more low-energy photons. This work addresses the problem of using Monte Carlo simulation and experiment to optimize the beam and detector combination to maximize image quality for a given patient thickness. A simple model of the whole imaging chain was developed for investigation of the effect of the target parameters on the quality of the image. The optimum targets (6 mm thick aluminium and 1.6 mm copper) were installed in an Elekta SL25 accelerator. The first beam will be referred to as Al6 and the second as Cu1.6. A tissue-equivalent contrast phantom was imaged with the 6 MV standard photon beam and the experimental beams with standard radiotherapy and mammography film/screen systems. The arrangement with a thin Al target/mammography system improved the contrast from 1.4 cm bone in 5 cm water to 19% compared with 2% for the standard arrangement of a thick, high-Z target/radiotherapy verification system. The linac/phantom/detector system was simulated with the BEAM/EGS4 Monte Carlo code. Contrast calculated from the predicted images was in good agreement with the experiment (to within 2.5%). The use of MC techniques to predict images accurately, taking into account the whole imaging system, is a powerful new method for portal imaging system design optimization. (author)

  16. Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, D.; Cavness, B.; Williams, S. [Department of Physics, Angelo State University, San Angelo, Texas 76909 (United States)

    2011-11-15

    Experimental results are presented comparing the intensities of the bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on a thick Ag target, measured at forward angles in the range of 0 degree sign to 55 degree sign . When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E{sub 0}. The results of our experiments suggest that, as k/E{sub 0}{yields} 0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. A comparison to the theory of Kissel et al.[At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E{sub 0}{approx_equal} 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program penelope.

  17. Validation of MC models of spallation reactions in thin and thick targets in the GeV range

    International Nuclear Information System (INIS)

    Goldenbaum, F.; Filges, D.; Neef, R.D.; Nuenighoff, K.; Paul, N.; Schaal, H.; Sterzenbach, G.; Tietze, A.; Wohlmuther, M.; Galin, J.; Letourneau, A.; Lott, B.; Peghaire, A.; Pienkowski, L.

    2001-01-01

    In the framework of new projects of intense spallation neutron sources an extensive experimental and theoretical effort is devoted to the precise prediction and optimization of the targets and shielding in terms of reaction cross sections, hadronic interaction lengths and usable neutrons produced in proton induced spallation reactions. Strong constraints on Monte-Carlo high energy transport codes are put by a measurement campaign of the NESSI (neutron scintillator and silicon detector) collaboration. While the predictive power of inter- and intra-nuclear cascade models coupled to evaporation codes and transport systems is excellent as far as neutron production in thick targets is concerned, there are considerable discrepancies not only between experiments and models, but also among the different codes themselves when regarding charged particle production in thin targets. In the current contribution a representative validation will be executed and possible deficiencies within the codes are elaborated. (orig.)

  18. Neutron energy spectrum from 120 GeV protons on a thick copper target

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; /Kyushu U.; Sanami, Toshiya; /KEK, Tsukuba; Kajimoto, Tsuyoshi; /Kyushu U.; Iwamoto, Yosuke; /JAEA, Ibaraki; Hagiwara, Masayuki; Saito, Kiwamu; /KEK, Tsukuba; Ishibashi, Kenji; /Kyushu U.; Nakashima, Hiroshi; Sakamoto, Yukio; /JAEA, Ibaraki; Lee, Hee-Seock; /Pohang Accelerator Lab.; Ramberg, Erik; /Fermilab

    2010-08-01

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, protoninduced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30{sup o} and 5 m 90{sup o} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multiparticle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  19. Characterization of a multi-keV x-ray source produced by nanosecond laser irradiation of a solid target: The influence of laser focus spot and target thickness

    International Nuclear Information System (INIS)

    Hu Guangyue; Zheng Jian; Shen Baifei; Lei Anle; Xu Zhizhan; Liu Shenye; Zhang Jiyan; Yang Jiamin; Ding Yongkun; Hu Xin; Huang Yixiang; Du Huabing; Yi Rongqing

    2008-01-01

    The influence of focus spot and target thickness on multi-keV x-ray sources generated by 2 ns duration laser heated solid targets are investigated on the Shenguang II laser facility. In the case of thick-foil targets, the experimental data and theoretical analysis show that the emission volume of the x-ray sources is sensitive to the laser focus spot and proportional to the 3 power of the focus spot size. The steady x-ray flux is proportional to the 5/3 power of the focus spot size of the given laser beam in our experimental condition. In the case of thin-foil targets, experimental data show that there is an optimal foil thickness corresponding to the given laser parameters. With the given laser beam, the optimal thin-foil thickness is proportional to the -2/3 power of the focus spot size, and the optimal x-ray energy of thin foil is independent of focus spot size

  20. Measurement of the thickness of a target deposited in a substrate

    International Nuclear Information System (INIS)

    Martinez Q, E.; Aguilera, E.F.

    1990-12-01

    Being based on the Elastic scattering and in the Energy losses that suffer a projectile to the interacting with the matter, a method that allows to determine the thickness of a target deposited in a more heavy substrate is presented. The obtained results are consistent with that waited and the derived errors of the method are small. The used technique allows to reduce in considerable form the systematic errors coming from the calibration of the equipment. It is considered that this method is applicable in an interval of thickness quite wide and for many materials since it is only necessary to choose the projectile type and the energy of the same one appropriately. (Author)

  1. (p,γ) reaction on thick target as a spectroscopic tool

    International Nuclear Information System (INIS)

    Paradellis, T.

    1985-01-01

    When thick even-even targets around mass A-60 are bombarded with low energy protons the (p,γ) reaction excite a large number of resonances in the compound nucleus with a strong initial alignment. The statistical gamma decay of these states to the low lying discrete levels of the compound nucleus introduces some attenuation of the initial alignment. It is shown experimentally that the resulting alignment of the low discrete states is strong enough to permit usefull spectroscopic study of these states, since the resulting attenuation do not depend on the target or the bombarding energy being function of the spin of the level. This type of spectroscopy can be extended also to measure life-time of levels through Doppler-shift

  2. Heavy-ion targets

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.

    1985-01-01

    This chapter examines the characteristics of targets required in heavy-ion accelerator physics experiments. The effects of target parameters on heavy-ion experimental results are reviewed. The target fabrication and characterization techniques used to minimize experimental problems during heavy-ion bombardment are described. Topics considered include target thickness and uniformity, target lifetime, target purity, substrate materials, Doppler shift effects, metal preparations, and target preparation methods

  3. Experimental observation of energy dependence of saturation thickness of multiply scattered gamma photons

    International Nuclear Information System (INIS)

    Singh, Manpreet; Singh, Gurvinderjit; Singh, Bhajan; Sandhu, B.S.

    2008-01-01

    The gamma photons continue to soften in energy as the number of scatterings increases in the target having finite dimensions both in depth and lateral dimensions. The number of multiply scattered photons increases with an increase in target thickness, and saturates at a particular value of the target thickness known as saturation thickness (depth). The present measurements are carried out to study the energy dependence of saturation thickness of multiply scattered gamma photons from targets of various thicknesses. The scattered photons are detected by a properly shielded NaI(Tl) gamma ray detector placed at 90 deg. to the incident beam. We observe that the saturation thickness increases with increasing incident gamma photon energy. Monte Carlo calculations based upon the package developed by Bauer and Pattison [Compton scattering experiments at the HMI (1981), HMI-B 364, pp. 1-106] support the present experimental results

  4. Development of surface perturbation target and thin silicon foil target used to research Rayleigh-Taylor instability in inertial confinement fusion experiment

    International Nuclear Information System (INIS)

    Zhou Bin; Sun Qi; Huang Yaodong; Shen Jun; Wu Guangming; Wang Jue

    2004-01-01

    The developments of the surface perturbation target and the thin silicon foil target used to research Rayleigh-Taylor instability in the resolved experiments of Inertial Confinement Fusion (ICF) are carried out. Based on the laser interference process combined with the figure-transfer process, the surface perturbation target with sine modulated perturbation is gotten, the wavelength is in the range of 20-100 μm and the amplitude is several micrometers. The thin silicon foil within the thickness about 3-4 μm is prepared by semiconductor process together with heavy-doped self-stop etching. Combined with ion beam etching, the check or the stripe patterns are transferred to the surface of thin silicon foils, and then the silicon grating foil is obtained

  5. Benchmark calculations on residue production within the EURISOL DS project; Part II: thick targets

    CERN Document Server

    David, J.-C; Boudard, A; Doré, D; Leray, S; Rapp, B; Ridikas, D; Thiollière, N

    Benchmark calculations on residue production using MCNPX 2.5.0. Calculations were compared to mass-distribution data for 5 different elements measured at ISOLDE, and to specific activities of 28 radionuclides in different places along the thick target measured in Dubna.

  6. Energy straggling determination for charged particles in thick targets

    International Nuclear Information System (INIS)

    Lopez M, J.

    1980-01-01

    Energy straggling is reported for deuterons in carbon and protons in silicon, and the data obtained is compared with predictions of Bohr and Bethe. The experimental method used is based on a reaction resonance widening, observed at backward angles in the thick targets. The incident energy determines the depth at which the resonant scattering occurs and the energy straggling can be measured from the backscattering spectra. The data obtained for the energy straggling of deuterons are approximately two times bigger than those predicted by Bohr's theory; nevertheless, the values found for the energy straggling of protons in silicon are in agreement with the values predicted by the aforesaid theory. This disagreement was explained by the fact that carbon targets used were amorphous and porous, in contrast with those of cristal silicon, (it is an experimental fact that porous materials are expected to give higher stragglings than non-porous ones). Thus, the method reviewed in this work is valid, but the porosity effects should be taken into account in comparing results among materials with different densities. (author)

  7. Normalization for triple-target microarray experiments

    Directory of Open Access Journals (Sweden)

    Magniette Frederic

    2008-04-01

    Full Text Available Abstract Background Most microarray studies are made using labelling with one or two dyes which allows the hybridization of one or two samples on the same slide. In such experiments, the most frequently used dyes are Cy3 and Cy5. Recent improvements in the technology (dye-labelling, scanner and, image analysis allow hybridization up to four samples simultaneously. The two additional dyes are Alexa488 and Alexa494. The triple-target or four-target technology is very promising, since it allows more flexibility in the design of experiments, an increase in the statistical power when comparing gene expressions induced by different conditions and a scaled down number of slides. However, there have been few methods proposed for statistical analysis of such data. Moreover the lowess correction of the global dye effect is available for only two-color experiments, and even if its application can be derived, it does not allow simultaneous correction of the raw data. Results We propose a two-step normalization procedure for triple-target experiments. First the dye bleeding is evaluated and corrected if necessary. Then the signal in each channel is normalized using a generalized lowess procedure to correct a global dye bias. The normalization procedure is validated using triple-self experiments and by comparing the results of triple-target and two-color experiments. Although the focus is on triple-target microarrays, the proposed method can be used to normalize p differently labelled targets co-hybridized on a same array, for any value of p greater than 2. Conclusion The proposed normalization procedure is effective: the technical biases are reduced, the number of false positives is under control in the analysis of differentially expressed genes, and the triple-target experiments are more powerful than the corresponding two-color experiments. There is room for improving the microarray experiments by simultaneously hybridizing more than two samples.

  8. On the efficiency calibration of Si(Li) detector in the low-energy region using thick-target bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    An, Z. E-mail: anzhu@scu.edu.cn; Liu, M.T

    2002-10-01

    In this paper, the efficiency calibration of a Si(Li) detector in the low-energy region down to 0.58 keV has been performed using thick-carbon-target bremsstrahlung by 19 keV electron impact. The shape of the efficiency calibration curve was determined from the thick-carbon-target bremsstrahlung spectrum, and the absolute value for the efficiency calibration was obtained from the use of {sup 241}Am radioactive standard source. The modified Wentzel's formula for thick-target bremsstrahlung was employed and it was also compared with the most recently developed theoretical model based upon the doubly differential cross-sections for bremsstrahlung of Kissel, Quarles and Pratt. In the present calculation of theoretical bremsstrahlung, the self-absorption correction and the convolution of detector's response function with the bremsstrahlung spectrum have simultaneously been taken into account. The accuracy for the efficiency calibration in the low-energy region with the method described here was estimated to be about 6%. Moreover, the self-absorption correction calculation based upon the prescription of Wolters et al. has also been presented as an analytical factor with the accuracy of {approx}1%.

  9. Persistence of exponential bed thickness distributions in the stratigraphic record: Experiments and theory

    Science.gov (United States)

    Straub, K. M.; Ganti, V. K.; Paola, C.; Foufoula-Georgiou, E.

    2010-12-01

    Stratigraphy preserved in alluvial basins houses the most complete record of information necessary to reconstruct past environmental conditions. Indeed, the character of the sedimentary record is inextricably related to the surface processes that formed it. In this presentation we explore how the signals of surface processes are recorded in stratigraphy through the use of physical and numerical experiments. We focus on linking surface processes to stratigraphy in 1D by quantifying the probability distributions of processes that govern the evolution of depositional systems to the probability distribution of preserved bed thicknesses. In this study we define a bed as a package of sediment bounded above and below by erosional surfaces. In a companion presentation we document heavy-tailed statistics of erosion and deposition from high-resolution temporal elevation data recorded during a controlled physical experiment. However, the heavy tails in the magnitudes of erosional and depositional events are not preserved in the experimental stratigraphy. Similar to many bed thickness distributions reported in field studies we find that an exponential distribution adequately describes the thicknesses of beds preserved in our experiment. We explore the generation of exponential bed thickness distributions from heavy-tailed surface statistics using 1D numerical models. These models indicate that when the full distribution of elevation fluctuations (both erosional and depositional events) is symmetrical, the resulting distribution of bed thicknesses is exponential in form. Finally, we illustrate that a predictable relationship exists between the coefficient of variation of surface elevation fluctuations and the scale-parameter of the resulting exponential distribution of bed thicknesses.

  10. Preparation of thin nuclear targets

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1979-03-01

    Thin film backings, sources and targets are needed for many applications in low energy nuclear physics and nuclear chemistry experiments. A survey of techniques used in the preparation of nuclear targets is first briefly discussed. These are classified as chemical, mechanical and physical preparations. Vacuum evaporation, being the most generally used technique, is discussed in detail. It is highly desirable to monitor the film thickness and control the deposition rate during evaporation and to measure the final target thickness after deposition has concluded. The relative merits of various thickness measuring techniques are described. Stages in the fabrication and mounting of self-supporting foils are described in detail, with emphasis given to the preparation of thin self-supporting carbon foils used as target backings and stripper foils. Various target backings, and the merits of the more generally used release agents are described in detail. The preparations of more difficult elemental targets are discussed, and a comprehensive list of the common targets is presented

  11. The CERN polarized atomic hydrogen beam target project

    International Nuclear Information System (INIS)

    Kubischta, W.; Dick, L.

    1990-01-01

    The UA6-experiment at the CERN p bar p Colider is at present using an unpolarized hydrogen cluster target with a thickness up to 5.10 14 atoms/cm 2 . It is planned to replace this target by a polarized atomic hydrogen beam target with a thickness up to about 10 13 atoms/cm 2 . This paper discusses basic requirements and results of atom optical calculations

  12. Fibers as solid, internal targets for storage rings

    International Nuclear Information System (INIS)

    Przewoski, B.v.

    1994-01-01

    It has been demonstrated that fibers or micro ribbons provide the possibility to expose solid targets to a stored ion beam. Compared to gas targets or micro particle targets fiber targets require a relatively small technical effort, since differential pumping systems are not necessary to maintain the ring vacuum. Since stationary fibers are often too thick to allow for long enough lifetimes of the stored beam to be useful for experiments, a methods has been developed to move the fiber periodically through the beam. That way, the time averaged target thickness is small compared to the thickness the same fiber would have, if it were stationary in the path of the beam. In addition, the time averaged thickness can be adjusted if the amplitude of the fiber motion is increased or decreased to obtain a thinner or thicker target respectively. Measurements that compare the lifetime of the stored beam in the presence of a fiber target with the lifetime of a stored beam in the presence of a gas target show that a fiber target of a certain time averaged target thickness is equivalent to a homogeneous target of the same thickness. The data are in good agreement with Monte Carlo calculations

  13. Cylindrical target Li-beam-driven hohlraum experiments

    International Nuclear Information System (INIS)

    Derzon, M.S.; Aubert, J.; Chandler, G.A.

    1998-06-01

    The authors performed a series of experiments on the Particle Beam Fusion Accelerator II (PBFA II) in May, 1994, and obtained a brightness temperature of 61 ± 2 eV for an ion-beam heated hohlraum. The hohlraum was a 4-mm-diameter, right-circular cylinder with a 1.5-mm-thick gold wall, a low-density CH foam fill, and a 1.5- or 3-mm-diameter diagnostic aperture in the top. The nominal parameters of the radially-incident PBFA II Li ion beam were 9 MeV peak energy (∼10 MeV at the gas cell) at the target at a peak power of 2.5 ± 0.3 TW/cm 2 and a 15 ns pulse width. Azimuthal variations in intensity of a factor of 3, with respect to the mean, were observed. Nonuniformities in thermal x-ray emission across the area of the diagnostic hole were also observed. Time-dependent hole-closure velocities were measured: the time-averaged velocity of ∼2 cm/micros is in good agreement with sound speed estimates. Unfolded x-ray spectra and brightness temperatures as a function of time are reported and compared to simulations. Hole closure corrections are discussed with comparisons between XRD and bolometer measurements. Temperature scaling with power on target is also presented

  14. Targets for the APEX experiment at ATLAS

    International Nuclear Information System (INIS)

    Greene, J.P.; Thomas, G.E.; Leonard, R.H.

    1994-01-01

    Targets of lead, tantalum, thorium and uranium have been produced for experiments with the APEX (Argonne Positron Experiment) apparatus at ATLAS (Argonne Tandem Linac Accelerator System). APEX is a device built at Argonne National Laboratory to investigate the anomalous positrons observed in collisions of very heavy ion beams on heavy targets. Both fixed and rotating targets have been used. The rotating target system involves a 4-quadrant wheel rotating at speeds up to 700 rpm with the position encoded into the data stream. In addition to the hundreds of targets produced for the heavy-ion reactions studied, a wide variety of targets were employed for beam diagnostics, detector calibration and target wheel development. The experiment used very heavy ion beams ( 238 U, 206 Pb and 208 Pb) from ATLAS and targets of 206 Pb, 208 Pb, 232 Th and 238 U produced in the laboratory

  15. Precise measurements of the thick target neutron yields of the 7Li(p,n) reaction

    International Nuclear Information System (INIS)

    Matysiak, W.; Prestwich, W.V.; Byun, S.H.

    2011-01-01

    Thick target neutron yield of the 7 Li(p,n) 7 Be reaction was measured in the proton energy range from 1.95 to 2.3 MeV by determining induced activity of the 7 Be. A HPGe detector was used to detect the 478 keV gamma-rays emitted through 7 Be decay. A series of irradiations with nominal proton energies of 1.95, 2.0, 2.1, 2.2, and 2.3 MeV were carried out. In an independent experiment, raw neutron spectra were collected by a 3 He ion chamber for the same series of proton energies. From the raw neutron spectra, it was noted, that the effective proton energies were lower than the nominal by 50-58 keV. After corrections for the proton energy offsets were applied, the measured neutron yields matched the analytically calculated yields within 20%. Long term stability of neutron yield was tested at two nominal proton energies, 2.1 and 1.95 MeV over an experimental period of one year. The results show that the yield at 2.1 MeV was stable within rmse variation coefficient of 4.7% and remained consistent even when the lithium target was replaced, whereas at 1.95 MeV, the maximum fluctuations reached a factor of 10.

  16. Flakeboard thickness swelling. Part I, Stress relaxation in a flakeboard mat

    Science.gov (United States)

    R. L. Geimer; J. H. Kwon; J. Bolton

    1998-01-01

    The steam injection schedule best suited for dimensionally stabilizing a flake mat is one in which steam treatment is initiated before the press is closed and is continued at least until the mat attains target thickness. Experiments showed that resinless mats treated with 20 sec of steam at 600 kPa had maximum thickness swelling of 205% compared to 350% for resinless...

  17. Recent Developments in Fabrication of Direct Drive Cylinder Targets for Hydrodynamics Experiments at the OMEGA Laser

    International Nuclear Information System (INIS)

    Nobile, A.; Balkey, M.M.; Bartos, J.J.; Batha, S.H.; Day, R.D.; Elliott, J.E.; Elliott, N.E.; Gomez, V.M.; Hatch, D.J.; Lanier, N.E.; Fincke, J.R.; Manzanares, R.; Pierce, T.H.; Sandoval, D.L.; Schmidt, D.W.; Steckle, W.P.

    2004-01-01

    Experimental campaigns are being conducted at the 60 beam OMEGA laser at the University of Rochester's Laboratory for Laser Energetics to acquire data to validate hydrodynamic models in the high energy-density regime. This paper describes targets that have been developed and constructed for these experimental campaigns. Targets are 860 μm inner diameter by 2.2 mm length cylinders with 70 μm thick polymer ablator. On the ablator inner surface and located halfway along the axis of the cylinder is a 500 μm wide Al marker band. Band thicknesses in the range 8-16 microns are used. CH foam with densities in the range 30-90 mg/cc fills the inside of the cylinder. While these targets have been fabricated for years, several new improvements and features have recently been developed. Improvements include the use of epoxy instead of polystyrene for the ablator, and the use of electrodeposited Al for the marker band. A critical feature of the target is the surface feature that is placed on the marker band. Experiments are aimed at understanding the hydrodynamic behavior of imploding cylinders as a function of this surface feature. Recent development work has focused on production of engineered surface features on the target marker band. Using a fast tool servo on a diamond turning lathe, a wide range of specified surface features have been produced. This paper will address improvements to the cylinder targets as well as current development efforts

  18. AGS Spallation Target Experiment (ASTE) Collaboration

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1999-01-01

    An experiment on mercury spallation target with high energy proton beam, called as the AGS Spallation Target Experiment (ASTE) Collaboration, has been performed at Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL) in USA, in cooperation among the laboratories in Japan, Europe and USA. The experimental setup, scope and preliminary results are presented in the paper. (author)

  19. Bibliography of published papers on neutron and photon emission from thick or thin target bombarded by charged particles

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Furuta, Yutaka; Sato, Kazuo; Kawachi, Kiyomitsu; Hirayama, Hideo.

    1981-09-01

    Papers describing about secondary particles, especially neutrons and photons, produced by a thick or thin target are surveyed. The survey covers twelve kinds of journals mainly from 1965 to 1980, and brief descriptions are listed about type of accelerator, projectile and target used, measurements and calculations, and quantities obtained. (author)

  20. Performance of the cluster-jet target for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Hergemoeller, Ann-Katrin; Bonaventura, Daniel; Grieser, Silke; Hetz, Benjamin; Koehler, Esperanza; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, 48149 Muenster (Germany)

    2016-07-01

    The success of storage ring experiments strongly depends on the choice of the target. For this purpose, a very appropriate internal target for such an experiment is a cluster-jet target, which will be the first operated target at the PANDA experiment at FAIR. In this kind of target the cluster beam itself is formed due to the expansion of pre-cooled gases within a Laval nozzle and is prepared afterwards via two orifices, the skimmer and the collimator. The target prototype, operating successfully for years at the University of Muenster, provides routinely target thicknesses of more than 2 x 10{sup 15} (atoms)/(cm{sup 2}) in a distance of 2.1 m behind the nozzle. Based on the results of the performance of the cluster target prototype the final cluster-jet target source was designed and set into operation in Muenster as well. Besides the monitoring of the cluster beam itself and the thickness with two different monitoring systems at this target, investigations on the cluster mass via Mie scattering will be performed. In this presentation an overview of the cluster target design, its performance and the Mie scattering method are presented and discussed.

  1. Scale-up of high specific activity {sup 186g}Re production using graphite-encased thick {sup 186}W targets and demonstration of an efficient target recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric [Washington Univ., Seattle, WA (United States). Dept. of Radiation Oncology; and others

    2017-07-01

    Production of high specific activity {sup 186g}Re is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity {sup 186g}Re can be obtained by cyclotron irradiation of enriched {sup 186}W via the {sup 186}W(d,2n){sup 186g}Re reaction, but most irradiations were conducted at low beam currents and for short durations. In this investigation, enriched {sup 186}W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched {sup 186}W metal encased between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick {sup 186}W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the {sup 186}W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. To demonstrate scaled-up production, a graphite-encased {sup 186}W target made from recycled {sup 186}W was irradiated for ∝2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of {sup 186g}Re, decay-corrected to the end of bombardment. ICP-MS analysis of the

  2. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    International Nuclear Information System (INIS)

    Alba, R; Cosentino, G; Zoppo, A Del; Pietro, A Di; Figuera, P; Finocchiaro, P; Maiolino, C; Santonocito, D; Schillaci, M; Barbagallo, M; Colonna, N; Boccaccio, P; Esposito, J; Celentano, A; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Kostyukov, A

    2013-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  3. Neutron energy spectra produced by α-bombardment of light elements in thick targets

    International Nuclear Information System (INIS)

    Jacobs, G.J.H.

    1982-01-01

    The aim of the work, presented in this thesis, is to determine energy spectra of neutrons produced by α-particle bombardment of thick targets containing light elements. These spectra are required for nuclear waste management. The set-up of the neutron spectrometer is described, and its calibration discussed. Absolute efficiencies were determined at various neutron energies, using monoenergetic neutrons produced with the Van de Graaff accelerator in pulsed mode. The additional calibration of the neutron spectrometer as proton-recoil spectrometer was carried out primarily for future applications in measurements where no pulsed neutron source is available or the neutron flux density is too low. The basis for an accurate uncertainty analysis is made by the determination of the covariance matrix for the uncertainties in the efficiencies. The determination of the neutron energy spectra from time-of-flight and from proton-recoil measurements is described. A comparison of the results obtained from the two different types of measurements is made. The experimentally determined spectra were compared with spectra calculated from stopping powers and theoretically determined cross sections. These cross sections were calculated from optical model parameters and level parameters using the Hauser-Feshbach formalism. Measurements were carried out on thick targets of silicon, aluminium, magnesium, carbon, boron nitride, calcium fluoride, aluminium oxide, silicon oxide and uranium oxide at four different α-particle energies. (Auth.)

  4. Cross section of α-induced reactions on iridium isotopes obtained from thick target yield measurement for the astrophysical γ process

    Directory of Open Access Journals (Sweden)

    T. Szücs

    2018-01-01

    Full Text Available The stellar reaction rates of radiative α-capture reactions on heavy isotopes are of crucial importance for the γ process network calculations. These rates are usually derived from statistical model calculations, which need to be validated, but the experimental database is very scarce. This paper presents the results of α-induced reaction cross section measurements on iridium isotopes carried out at first close to the astrophysically relevant energy region. Thick target yields of 191Ir(α,γ195Au, 191Ir(α,n194Au, 193Ir(α,n196mAu, 193Ir(α,n196Au reactions have been measured with the activation technique between Eα=13.4 MeV and 17 MeV. For the first time the thick target yield was determined with X-ray counting. This led to a previously unprecedented sensitivity. From the measured thick target yields, reaction cross sections are derived and compared with statistical model calculations. The recently suggested energy-dependent modification of the α+nucleus optical potential gives a good description of the experimental data.

  5. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA

  6. Optimum design of beam window's diameter and thickness of Hyper target system

    International Nuclear Information System (INIS)

    Cho, C. H.; Tak, N. I.; Song, T. Y.; Park, W. S.

    2002-01-01

    HYPER is designed to transmute long-lived TRU and fission products such as Tc-99 and I-129. Pb-Bi is used as the coolant and spallation target material at the same time. HYPER is expected to need about 20mA proton beam to sustain a 1000MW th power level. The cylindrical beam tube and spherical window is adopted as the basic window shape of HYPER. The window diameter and the window thickness are varied to find the maximum allowable current based on the design criteria : Pb-Bi temperature < 500 .deg. C, window temperature < 600 .deg. C, Pb-Bi velocity < 2m/s and window stress < 160MPa. The LAHET code is used to simulate heat generation. CFX is also used for the thermal-hydraulics calculation. Based on our design criteria, the maximum allowable current is calculated to be about 9.2mA, which is smaller than the required current. Therefore, an upgrade of the target system design is required

  7. Measurements of L shell X-ray yields of thick Ag target by 6–29 keV electron impact

    International Nuclear Information System (INIS)

    Zhao, J.L.; Tian, L.X.; Li, X.L.; An, Z.; Zhu, J.J.; Liu, M.T.

    2015-01-01

    In this paper, the L shell X-ray yields for a thick Ag target have been measured at incident electron energies of 6–29 keV. The experimental values are compared with the Monte Carlo simulation results that are obtained by using the PENELOPE code, in which the inner-shell ionization cross sections by electron impact calculated in the theoretical frame of distorted wave Born approximation are used. The experimental and simulation values are in agreement with ∼10% difference. Meanwhile, the L shell X-ray production cross sections are also obtained based on the measured L shell X-ray yields for a thick Ag target in this paper, and are compared with other experimental Ag L shell X-ray production cross section data by electron and positron impact measured previously and some theoretical models. Some factors that could affect these comparisons are also discussed in this paper. - Highlights: • We measured L shell X-ray yields of thick Ag target by 6–29 keV electrons. • Our measured X-ray yields are in good agreement with the MC results with ∼10%. • L shell production cross sections are obtained based on the measured X-ray yields. • L shell production cross sections obtained are in good agreement with theories

  8. A high-power target experiment

    CERN Document Server

    Kirk, H G; Ludewig, H; Palmer, Robert; Samulyak, V; Simos, N; Tsang, Thomas; Bradshaw, T W; Drumm, Paul V; Edgecock, T R; Ivanyushenkov, Yury; Bennett, Roger; Efthymiopoulos, Ilias; Fabich, Adrian; Haseroth, H; Haug, F; Lettry, Jacques; Hayato, Y; Yoshimura, Koji; Gabriel, Tony A; Graves, Van; Spampinato, P; Haines, John; McDonald, Kirk T

    2005-01-01

    We describe an experiment designed as a proof-of-principle test for a target system capable of converting a 4 MW proton beam into a high-intensity muon beam suitable for incorporation into either a neutrino factory complex or a muon collider. The target system is based on exposing a free mercury jet to an intense proton beam in the presence of a high strength solenoidal field.

  9. Polarized internal targets for electronuclear experiments

    International Nuclear Information System (INIS)

    van den Brand, J.F.J.

    1993-01-01

    Polarized internal gas targets represent a unique opportunity for the measurement of spin observables in electro-nuclear physics. Two measurements will be discussed. First, spin observables have been measured in elastic and quasi-free scattering of 45, 200, 300, and 415 MeV polarized protons from a polarized 3 He internal gas target at the Indiana University Cyclotron Facility Cooler Ring. The data obtained constitute the first measurement of spin correlation parameters using a storage ring with polarized beam and polarized internal gas target. Second, a quasi-free (e,e'p) experiment using tensor polarized deuterium will be discussed. Here, the goal is the measurement of the S- and D-state parts of the proton spectral function by scattering 700 MeV electrons from an atomic beam source. Large acceptance detectors have been used in both experiments. The internal-target technique has broad applicability in nuclear and particle physics

  10. Novel uses of a wide beam saddle field ion source for producing targets used in nuclear physics experiments at the Argonne National Laboratory ATLAS facility

    International Nuclear Information System (INIS)

    Greene, J.P.; Thomas, G.E.

    1996-01-01

    The wide beam ion sputter source has several unique characteristics which make it very useful for producing, reducing the thickness or cleaning the surface of targets needed for nuclear physics experiments. A discussion of these techniques as well as the sputter source characteristics will be given. Sputter yields obtained utilizing the source are presented for a variety of materials common to nuclear target production

  11. Preliminary performance and ICF target experiments with Nova

    International Nuclear Information System (INIS)

    Drake, R.P.

    1985-11-01

    In December 1984, the Nova facility fired all ten laser arms, converted the output 1.05 micron energy to 0.35 micron light, and focused the 0.35 micron light through a 4 mm pinhole in the ten-beam target chamber. Since that time, a two-beam target chamber has been added, the performance of the laser evaluated, and preparation has been made for target experiments. This paper summarizes the performance of Nova and describes progress and plans for target experiments

  12. Precise measurements of the thick target neutron yields of the {sup 7}Li(p,n) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Matysiak, W., E-mail: matysiw@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ont., L8S 4K1 (Canada); Prestwich, W.V.; Byun, S.H. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ont., L8S 4K1 (Canada)

    2011-07-01

    Thick target neutron yield of the {sup 7}Li(p,n){sup 7}Be reaction was measured in the proton energy range from 1.95 to 2.3 MeV by determining induced activity of the {sup 7}Be. A HPGe detector was used to detect the 478 keV gamma-rays emitted through {sup 7}Be decay. A series of irradiations with nominal proton energies of 1.95, 2.0, 2.1, 2.2, and 2.3 MeV were carried out. In an independent experiment, raw neutron spectra were collected by a {sup 3}He ion chamber for the same series of proton energies. From the raw neutron spectra, it was noted, that the effective proton energies were lower than the nominal by 50-58 keV. After corrections for the proton energy offsets were applied, the measured neutron yields matched the analytically calculated yields within 20%. Long term stability of neutron yield was tested at two nominal proton energies, 2.1 and 1.95 MeV over an experimental period of one year. The results show that the yield at 2.1 MeV was stable within rmse variation coefficient of 4.7% and remained consistent even when the lithium target was replaced, whereas at 1.95 MeV, the maximum fluctuations reached a factor of 10.

  13. Setup and commissioning of a cryogenic system for the production of targets to be used in experiments with high energy lasers and heavy ion beams; Aufbau und Inbetriebnahme einer Kryoanlage zur Targeterzeugung fuer Experimente mit Hochenergielasern und Schwerionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Jurij Alexander

    2010-02-10

    Part of this work was the development of a cryogenic system to produce solid state targets out of nitrogen and rare gases but also hydrogen and deuterium. For target optimization a portable cryogenic test and development chamber has been set up, which can be used offline at different experimental places. Cryogenic targets with different geometries have been produced. Targets with a high aspect ratio having a thickness of only a few micrometers and transverse sizes of millimeters are of special interest for the envisioned investigations. Such targets permit the generation of laser plasmas with a high degree of homogeneity, thus enabling the measurement of the ion energy loss under well defined conditions. Nevertheless, high aspect ratio targets are technologically demanding. Thus, in view of energy loss experiments a simpler geometry has also been considered. Therefore, cryogenic nitrogen targets with cm sizes have been produced and irradiated by the nhelix high energy laser system. The free electron density of the generated plasma has been measured in the range up to 10{sup 20} cm{sup -3}. The measured electron temperature was about 200 eV. The experimental results have been compared to computer simulations and analyzed. It turned out that simulation and experiment are in good agreement, but the free electron density was too low and inhomogeneous for reliable energy loss experiments. Therefore, further deuterium targets with a high aspect ratio but varying geometries have been produced. These targets have been probed by the UNILAC ion beam and it has been shown that the ion beam can penetrate through them. The targets have also been simultaneously irradiated by the high energy laser systems nhelix and Phelix. The free electron density inside the deuterium plasma has been measured and compared with computer simulations. As in the case of nitrogen plasmas a good agreement has been observed. A new measurement technique has been developed to characterize the target

  14. On the feasibility to perform integral transmission experiments in the GELINA target hall at IRMM

    Science.gov (United States)

    Leconte, Pierre; Jean, Cyrille De Saint; Geslot, Benoit; Plompen, Arjan; Belloni, Francesca; Nyman, Markus

    2017-09-01

    Shielding experiments are relevant to validate elastic and inelastic scattering cross sections in the fast energy range. In this paper, we are focusing on the possibility to use the pulsed white neutron time-of-flight facility GELINA to perform this kind of measurement. Several issues need to be addressed: neutron source intensity, room return effect, distance of the materials to be irradiated from the source, and the sensitivity of various reaction rate distributions through the material to different input cross sections. MCNP6 and TRIPOLI4 calculations of the outgoing neutron spectrum are compared, based on electron/positron/gamma/neutron simulations. A first guess of an integral transmission experiment through a 238U slab is considered. It shows that a 10 cm thickness of uranium is sufficient to reach a high sensitivity to the 238U inelastic scattering cross section in the [2-5 MeV] energy range, with small contributions from elastic and fission cross sections. This experiment would contribute to reduce the uncertainty on this nuclear data, which has a significant impact on the power distribution in large commercial reactors. Other materials that would be relevant for the ASTRID 4th generation prototype reactor are also tested, showing that a sufficient sensitivity to nuclear data would be obtained by using a 50 to 100cm thick slab of side 60x60cm. This study concludes on the feasibility and interest of such experiments in the target hall of the GELINA facility.

  15. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    Science.gov (United States)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  16. Simulation study of neutron production in thick beryllium targets by 35 MeV and 50.5 MeV proton beams

    Science.gov (United States)

    Shin, Jae Won; Park, Tae-Sun

    2017-09-01

    A data-driven nuclear model dedicated to an accurate description of neutron productions in beryllium targets bombarded by proton beams is developed as a custom development that can be used as an add-on to GEANT4 code. The developed model, G4Data(Endf7.1), takes as inputs the total and differential cross section data of ENDF/B-VII.1 for not only the charge-exchange 9Be(p,n)9B reaction which produces discrete neutrons but also the nuclear reactions relevant for the production of continuum neutrons such as 9Be(p,pn)8Be and 9Be(p,n α) 5Li . In our benchmarking simulations for two experiments with 35 MeV and 50.5 MeV proton beams impinged on 1.16 and 1.05 cm thick beryllium targets, respectively, we find that the G4Data(Endf7.1) model can reproduce both the total amounts and the spectral shapes of the measured neutron yield data in a satisfactory manner, while all the considered hadronic models of GEANT4 cannot.

  17. A Plutonium Ceramic Target for MASHA

    International Nuclear Information System (INIS)

    Wilk, P A; Shaughnessy, D A; Moody, K J; Kenneally, J M; Wild, J F; Stoyer, M A; Patin, J B; Lougheed, R W; Ebbinghaus, B B; Landingham, R L; Oganessian, Y T; Yeremin, A V; Dmitriev, S N

    2004-01-01

    We are currently developing a plutonium ceramic target for the MASHA mass separator. The MASHA separator will use a thick plutonium ceramic target capable of tolerating temperatures up to 2000 C. Promising candidates for the target include oxides and carbides, although more research into their thermodynamic properties will be required. Reaction products will diffuse out of the target into an ion source, where they will then be transported through the separator to a position-sensitive focal-plane detector array. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments where the chemical properties of the heaviest elements are studied

  18. Measurement of resonances in 12 C + 4 He through inverse kinematics with thick targets

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Lizcano, D.; Martinez Q, E.; Fernandez, M.C.; Murillo, G.; Goldberg, V.; Skorodumov, B.B.; Rogachev, G.

    2003-01-01

    The excitation function of elastic scattering for the system 12 C + 4 He to energy from 0.5 to 3.5 MeV in the center of mass system (c.m.) was measured. We use a gassy thick target and the technique of inverse kinematics which allows to make measurements at 180 degrees in c.m. Using the R matrix theory those was deduced parameters of the resonances and the results were compared with measurements reported in the literature made with other techniques. (Author)

  19. Neutron energy spectra from the thick target 9Be(d,n)10B reaction

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1976-12-01

    The energy spectrum of neutrons emitted when deuterons impinge on a thick beryllium target has been measured using an NE213 scintillation detector and the time-of-flight technique. Spectra were measured at angles of 0, 30, 45, 60, 90, 120 and 150 0 for deuteron energies of 1.4, 1.8, 2.3 and 2.8 MeV. Tables are presented of these angle-dependent energy spectra, the angle-integrated energy dependent yeidls, and the total neutron yield as a function of deuteron energy. (author)

  20. Complete fabrication of target experimental chamber and implement initial target diagnostics to be used for the first target experiments in NDCX-1

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Bieniosek, F.M.; Dickinson, M.R.; Henestroza, E.; Katayanagi, T.; Jung, J.Y.; Lee, C.W.; Leitner, M.; Ni, P.; Roy, P.; Seidl, P.; Waldron, W.; Welch, D.

    2008-01-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has completed the fabrication of a new experimental target chamber facility for future Warm Dense Matter (WDM) experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. This achievement provides to the HIFS-VNL unique and state-of-the-art experimental capabilities in preparation for the planned target heating experiments using intense heavy ion beams

  1. On the preparation of self-supporting zinc target foils of separated isotopes

    International Nuclear Information System (INIS)

    Sugai, Isao.

    1975-01-01

    This is the second report on the practical method of preparation of targets for nuclear experiments following the previous one (INS-TL-121 (in Japanese)). In this report, a method is described for the preparation of self-supporting zinc foils from ZnO. The thicknesses of target foils and their uniformity were measured with an α-ray thickness gauge. (auth.)

  2. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population

    OpenAIRE

    Porat, Shai; Goukasian, Naira; Hwang, Kristy S.; Zanto, Theodore; Do, Triet; Pierce, Jonathan; Joshi, Shantanu; Woo, Ellen; Apostolova, Liana G.

    2016-01-01

    Introduction: We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI). Methods: 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clin...

  3. The PRESPEC liquid-hydrogen target for in-beam gamma spectroscopy of exotic nuclei at GSI

    International Nuclear Information System (INIS)

    Louchart, C.; Gheller, J.M.; Chesny, Ph.; Authelet, G.; Rousse, J.Y.; Obertelli, A.; Boutachkov, P.; Pietri, S.; Ameil, F.; Audirac, L.; Corsi, A.; Dombradi, Z.; Gerl, J.; Gillibert, A.; Korten, W.; Mailleret, C.; Merchan, E.; Nociforo, C.; Pietralla, N.; Ralet, D.

    2014-01-01

    We report on a new liquid hydrogen and deuterium target dedicated to in-beam γ spectroscopy experiments in inverse kinematics at relativistic incident energies at GSI/FAIR. Target thicknesses from 10 to 80 mm can be achieved for an effective diameter of 60 mm. The target-cell and entrance window are maded of 200μm thick Mylar. The design has the advantage of being free of absorbing material at forward angles and 90°, allowing the detection of photons in a wide angular range. A commissioning experiment with a 54 Cr beam at 130 MeV/nucleon has been performed at GSI, using the Rare Isotopes INvestigation at GSI (RISING) detectors. The target has been shown to behave as expected and is ready for experiments at fragmentation Radioactive-Ion Beam Facilities. -- Highlights: • We report on a new liquid hydrogen target for gamma spectroscopy experiments at FAIR. • A commissioning experiment has been performed at GSI, using the RISING detectors. • The target behaves as expected and is ready for experiments

  4. Feasibility study of 2D thick-slice MR digital subtraction angiography

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Takeuchi, Miho; Higashimura, Kyouji; Komuro, Hiroyuki

    2000-01-01

    Conditions required to perform contrast MR digital subtraction angiography using a two-dimensional thick-slice high-speed gradient echo were investigated. The conditions in the phantom experiment included: slice profile, flip angle, imaging matrix, fat suppression, duration of IR pulse and frequency selectivity, flip angle of IR pulse and inversion time. Based on the results of the experiment, 2D thick-slice MRDSA was performed in volunteers. Under TR/TE=5.3-9/1.3-1.8 ms conditions, the requirements were a slice thick enough to include the target region, a flip angle of 10 degrees, and a phase matrix of 96 or more. Fat suppression was required for adipose-tissue-rich regions, such as the abdomen. The optimal conditions for applying the IR preparation pulse of the IR prepped fast gradient recalled echo as spectrally selective inversion recovery appeared to be: duration of IR pulse =20 ms, flip angle =100 degrees, and inversion time =40 ms. The authors concluded that it was feasible to perform 2D thick-slice MRDSA with time resolution within 1 second. (K.H.)

  5. ICF target technology at the Russian Federal Nuclear Center

    International Nuclear Information System (INIS)

    Veselov, A.V.; Drozhin, V.S.; Druzhinin, A.A.; Izgorodin, V.M.; Iiyushechkin, B.N.; Kirillov, G.A.; Komleva, G.V.; Korochkin, A.M.; Medvedev, E.F.; Nikolaev, G.P.; Pikulin, I.V.; Pinegin, A.V.; Punin, V.T.; Romaev, V.N.; Sumatokhin, V.L.; Tarasova, N.N.; Tachaev, G.V.; Cherkesova, I.N.

    1995-01-01

    The main effort of the ICF target fabrication group is support of the experiments performed on the 'ISKRA-4' and 'ISKRA-5' laser systems. The main types of targets used in these experiments are direct drive, inverted corona, and indirect drive. For production of direct drive targets, manufacturing techniques have been developed for both hollow glass and polystyrene microspheres. Hollow glass microspheres are fabricated by free-fall of liquid glass drops or dry gel in a 4 meter vertical kiln. These methods allow us to manufacture glass microspheres with diameters from 50 μm to 1 mm, wall thicknesses from 0.5 to 10 μm, and aspect ratios (radius/ wall) from 20 to 500. The microspheres have a thickness inhomogeneity less than 5% and non-sphericity less than 1%. Polystyrene microspheres are fabricated from polystyrene particles with a blowing agent in a similar vertical kiln. Polystyrene microspheres are fabricated with diameter up to 800 μm and wall thicknesses from 1 to 10 μm. 15 refs., 8 figs

  6. A Feasibility Experiment of a W-powder Target

    CERN Multimedia

    Charitonidis, N; Carreta, O; Densham, C; Davenne, T; Fabich, A; Loveridge, P; Rivkin, L

    2014-01-01

    The development of high‐power targets remains a key R&D activity for future facilities presently under study like the Neutrino Factory, Muon Collider or upgraded high‐ power super beams for long‐baseline neutrino experiments.  The choice of materials to sustain the beam power ranging up to MW levels is not trivial. Granular solid targets have been proposed and are being studied as a candidate for such high‐power target systems. In the recently commissioned HiRadMat facility at CERN, a feasibility  experiment of a tungsten powder target was performed. The experiment was designed to explore for first time the impact of a high‐power proton beam on a static W-powder target in a thimble configuration. The diagnostics of the experiment were based on remote high speed photography as well as on laser‐doppler vibration measurements of the target containers. Results from the experimental findings are presented ...

  7. a Plutonium Ceramic Target for Masha

    Science.gov (United States)

    Wilk, P. A.; Shaughnessy, D. A.; Moody, K. J.; Kenneally, J. M.; Wild, J. F.; Stoyer, M. A.; Patin, J. B.; Lougheed, R. W.; Ebbinghaus, B. B.; Landingham, R. L.; Oganessian, Yu. Ts.; Yeremin, A. V.; Dmitriev, S. N.

    2005-09-01

    We are currently developing a plutonium ceramic target for the MASHA mass separator. The MASHA separator will use a thick plutonium ceramic target capable of tolerating temperatures up to 2000 °C. Promising candidates for the target include oxides and carbides, although more research into their thermodynamic properties will be required. Reaction products will diffuse out of the target into an ion source, where they will then be transported through the separator to a position-sensitive focal-plane detector array. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments where the chemical properties of the heaviest elements are studied.

  8. Beauty and charm production in fixed target experiments

    International Nuclear Information System (INIS)

    Kidonakis, Nikolaos; Vogt, Ramona

    2004-01-01

    We present calculations of NNLO threshold corrections for beauty and charm production in π - p and pp interactions at fixed-target experiments. Recent calculations for heavy quark hadroproduction have included next-to-next-to-leading-order (NNLO) soft-gluon corrections [1] to the double differential cross section from threshold resummation techniques [2]. These corrections are important for near-threshold beauty and charm production at fixed-target experiments, including HERA-B and some of the current and future heavy ion experiments

  9. PLANS FOR WARM DENSE MATTER EXPERIMENTS AND IFE TARGET EXPERIMENTS ON NDCX-II

    International Nuclear Information System (INIS)

    Waldron, W.L.; Barnard, J.J.; Bieniosek, F.M.; Friedman, A.; Henestroza, E.; Leitner, M.; Logan, B.G.; Ni, P.A.; Roy, P.K.; Seidl, P.A.; Sharp, W.M.

    2008-01-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is currently developing design concepts for NDCX-II, the second phase of the Neutralized Drift Compression Experiment, which will use ion beams to explore Warm Dense Matter (WDM) and Inertial Fusion Energy (IFE) target hydrodynamics. The ion induction accelerator will consist of a new short pulse injector and induction cells from the decommissioned Advanced Test Accelerator (ATA) at Lawrence Livermore National Laboratory (LLNL). To fit within an existing building and to meet the energy and temporal requirements of various target experiments, an aggressive beam compression and acceleration schedule is planned. WDM physics and ion-driven direct drive hydrodynamics will initially be explored with 30 nC of lithium ions in experiments involving ion deposition, ablation, acceleration and stability of planar targets. Other ion sources which may deliver higher charge per bunch will be explored. A test stand has been built at Lawrence Berkeley National Laboratory (LBNL) to test refurbished ATA induction cells and pulsed power hardware for voltage holding and ability to produce various compression and acceleration waveforms. Another test stand is being used to develop and characterize lithium-doped aluminosilicate ion sources. The first experiments will include heating metallic targets to 10,000 K and hydrodynamics studies with cryogenic hydrogen targets

  10. Bremsstrahlung spectra from thick-target electron beams with noncollisional energy losses

    International Nuclear Information System (INIS)

    Brown, J.C.; MacKinnon, A.L.

    1985-01-01

    We consider what can be learned from the bremsstrahlung radiation of fast electrons in a thick target, generalized to include electron energy losses additional to collisions. We show that the observed photon spectrum can, in principle, be inverted to yield an integral functional of the electron spectrum and the effective energy loss rate. In the light of this result, there seems no reason to suppose, in the absence of a priori information to the contrary, that the photon spectrum is symptomatic more of the fast electron distribution than of the energy loss processes. In cases where the electron injection spectrum is known on independent observational or theoretical grounds, it is possible to infer an effective, ''phenomenological'' energy loss function. In the more general case, however, fullest possible modeling of the physical situation and comparison of the resulting spectrum with observations is all that can be attempted

  11. Thick-target Pixe analysis of chromium, copper and arsenic impregnated lumber

    International Nuclear Information System (INIS)

    Saarela, K-E.; Harju, L.; Lill, J-O.; Rajander, J.; Lindroos, A.; Heselius, S-J.

    1999-01-01

    Chromium, copper and arsenic (CCA) have for decades been used for wood preservation. Of these elements especially arsenic is very toxic. As CCA impregnated wood is still today used for many construction purposes, a monitoring of these metal ions is of great environmental importance. Thick-target PIXE is a powerful method for the determination of trace metals in wood. The TTPIXE method enabled study of variations of the elemental concentrations in lumber treated with CCA impregnation solution. Distribution patterns were obtained for both naturally occurring elements and elements introduced in the treatment process. During the impregnation process a desorption of e.g. alkali metal ions takes place from the wood. The sensitivity of the method is improved by dry ashing of the samples prior to PIXE analysis. The TTPIXE method was calibrated and validated using international certified reference materials (CRM) based on wood material

  12. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population.

    Science.gov (United States)

    Porat, Shai; Goukasian, Naira; Hwang, Kristy S; Zanto, Theodore; Do, Triet; Pierce, Jonathan; Joshi, Shantanu; Woo, Ellen; Apostolova, Liana G

    2016-01-01

    We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI). 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clinical and neuropsychological evaluations. An advanced 3D cortical mapping technique was then applied to calculate cortical thickness. Despite having a trend-level significantly thinner cortex, dancers performed better in cognitive tasks involving learning and memory, such as the California Verbal Learning Test-II (CVLT-II) short delay free recall (p = 0.004), the CVLT-II long delay free recall (p = 0.003), and the CVLT-II learning over trials 1-5 (p = 0.001). Together, these results suggest that dance may result in an enhancement of cognitive reserve in aging, which may help avert or delay MCI.

  13. Comparison on the production of radionuclides in 1.4 GeV proton irradiated LBE targets of different thickness

    CERN Document Server

    Maiti, Moumita; Mendonça, Tania M; Stora, Thierry; Lahiri, Susanta

    2014-01-01

    This is the first report on the inventory of radionuclides produced in 1.4 GeV proton induced reaction on Lead-Bismuth Eutectic (LBE) targets. LBE targets of 6 mm diameter and 1 to 8 mm lengths were irradiated with 1.4 GeV protons. The radionuclides ranging from Be-7 (53.12 days) to Po-207 (5.8 h) were identified in the samples with the help of time resolved gamma-ray spectroscopy. However, there is no signature of formation of At radioisotopes, which can be produced by the interaction of secondary particles, typical for thick targets.

  14. Comparisons of the simulation results using different codes for ADS spallation target

    International Nuclear Information System (INIS)

    Yu Hongwei; Fan Sheng; Shen Qingbiao; Zhao Zhixiang; Wan Junsheng

    2002-01-01

    The calculations to the standard thick target were made by using different codes. The simulation of the thick Pb target with length of 60 cm, diameter of 20 cm bombarded with 800, 1000, 1500 and 2000 MeV energetic proton beam was carried out. The yields and the spectra of emitted neutron were studied. The spallation target was simulated by SNSP, SHIELD, DCM/CEM (Dubna Cascade Model /Cascade Evaporation Mode) and LAHET codes. The Simulation Results were compared with experiments. The comparisons show good agreement between the experiments and the SNSP simulated leakage neutron yield. The SHIELD simulated leakage neutron spectra are in good agreement with the LAHET and the DCM/CEM simulated leakage neutron spectra

  15. Thermal experiments in the ADS target model

    International Nuclear Information System (INIS)

    Efanov, A.D.; Orlov, Yu.I.; Sorokin, A.P.; Ivanov, E.F.; Bogoslovskaya, G.P.; Li, N.

    2002-01-01

    Experiments on the development of the target heat model project and method of investigation into heat exchange in target were conducted with the aim of analysis of thermomechanical and strength characteristics of device; experimental data on the temperature distribution in coolant and membrane were obtained. Obtained data demonstrate that the temperature heterogeneity of membrane and coolant are connected with the temperature distribution variability near the membrane. Peculiarities of the experiment are noted: maximal temperature of oscillations at high point of the membrane, and power bearing temperature oscillations in the range 0 - 1 Hz [ru

  16. The atomic nucleus as a target

    International Nuclear Information System (INIS)

    Strugalski, Z.; Pawlak, T.

    1981-01-01

    The purpose of this article is to characterize the atomic nucleus used as a target in hadron-nucleus collision experiments. The atomic nucleus can be treated as a lens-shaped ''slab'' of nuclear matter. Such ''slab'' should be characterized by the nuclear matter layer thickness at any impact parameter, by its average thickness, and by its maximal thickness. Parameters characterizing atomic nuclei as targets are given for the elements: 6 12 C, 7 14 N, 8 16 O, 9 19 F, 10 20 Ne, 13 27 Al, 14 28 Si, 16 32 S, 18 40 Ar, 24 52 Cr, 26 54 Fe, 27 59 Co, 29 64 Cu, 30 65 Zn, 32 73 Ge, 35 80 Br, 47 100 Ag, 53 127 I, 54 131 Xe, 73 181 Ta, 74 184 W, 79 197 Au, 82 207 Pb, 92 -- 238 U [ru

  17. Design choices and issues in fixed-target B experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1993-01-01

    The main priority of any experiment on B physics in the years to come will be an endeavour to observe CP violation in the B sector. Such measurements imply the following requirements of the experiment. Trigger: a muon trigger will be sensitive to J/ψ reactions and muon tags; an electron trigger will double the number of lepton events; in order to include kaon tags and self-tagging reactions, the experiment must not rely entirely on lepton triggers. Secondary Vertex triggers and hadron p T triggers should be included in order to have the maximum flexibility. Detector: vertex detector; particle identification; good momentum resolution; electromagnetic and hadronic calorimeters; muon detector. In addition the following issues have to be addressed: Collider or fixed-target mode? If fixed target, extracted beam or internal target? If internal target, gas jet or wire target? If a gas jet, hydrogen or a heavy gas? Beam pipe design. Silicon microvertex design and radiation damage. K s 0 decay path. Particle identification. Momentum resolution. Order of detectors. No single method stands out as the open-quotes obvious one.close quotes An extracted beam yields better vertex resolution and an internal target easier triggering. A flexible and diverse triggering scheme is of prime importance in order to be sensitive to as many reactions as possible, the experiment should not be limited to lepton triggers only. Proposed experiments (P867, HERA B) at existing machines will be invaluable for testing new devices and strategies for the LHC and SSC experiments

  18. Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory

    Science.gov (United States)

    Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.

    2015-01-01

    An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.

  19. Design and fabrication of a CH/Al dual-layer perturbation target for hydrodynamic instability experiments in ICF

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Xie, Zhiyong [Shanghai Institute of Laser Plasma, Shanghai 201800 (China); Du, Ai [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Ye, Junjian [Shanghai Institute of Laser Plasma, Shanghai 201800 (China); Zhang, Zhihua; Shen, Jun [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Bin, E-mail: zhoubin863@tongji.edu.cn [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-04-15

    Highlights: • Sinusoidal perturbed Al foil was prepared by single-point diamond turning. • Perturbed Al foil was measured by surface profiler and white light interferometer. • Perturbed Al foil and CH layer adhered with each other via a hot-press process. • Parameters and cross-section of the CH–Al perturbation target was characterized. - Abstract: A polystyrene (CH)/aluminum (Al) dual-layer perturbation target for hydrodynamic instability experiments in inertial confinement fusion (ICF) was designed and fabricated. The target was composed of a perturbed 40 μm Al foil and a CH layer. The detailed fabrication method consisted of four steps. The 40 μm Al foil was first prepared by roll and polish process; the perturbation patterns were then introduced on the surface of the Al foil by the single-point diamond turning (SPDT) technology; the CH layer was prepared via a simple method which called spin-coating process; finally, the CH layer was directly coated on the perturbation surface of Al foil by a hot-press process to avoid the use of a sticker and to eliminate the gaps between the CH layer and the Al foil. The parameters of the target, such as the perturbation wavelength (T) and perturbation amplitude (A), were characterized by a QC-5000 tool microscope, an alpha-step 500 surface profiler and a NT1100 white light interferometer. The results showed that T and A of the target were about 52 μm and 7.34 μm, respectively. Thickness of the Al foil (H1), thickness of the CH layer (H2), and cross-section of the dual-layer target were characterized by a QC-5000 tool microscope and a scanning electron microscope (SEM). H1 and H2 were about 40 μm and 15 μm, respectively, the cross-sectional photographs of the target showed that the CH layer and the Al foil adhered perfectly with each other.

  20. Optimization of a liquid hydrogen/deuterium target with extremely thin foil windows

    International Nuclear Information System (INIS)

    Nake, C.J.

    1993-09-01

    For external experiments at COSY a target of liquid hydrogen or deuterium has been developed, which is very small in order to take advantage of the excellent beam quality of COSY. Targets with thicknesses down to only mm's have been built and operate without bubbles. In order to make the effects of reactions in the windows much smaller than the target reactions, windows with a thickness of about 1.5 μm have been achieved. A novel system which stabilizes the pressure difference between the inside and the outside of the target cell to a small constant value under all target conditions is used. (orig.)

  1. The OPERA experiment Target Tracker

    CERN Document Server

    Adam, T; Borer, K.; Campagne, Jean-Eric; Con-Sen, N.; de La Taille, C.; Dick, N.; Dracos, M.; Gaudiot, G.; Goeltzenlichter, T.; Gornushkin, Y.; Grapton, J.-N.; Guyonnet, J.-L.; Hess, M.; Igersheim, R.; Janicsko Csathy, J.; Jollet, C.; Juget, F.; Kocher, H.; Krasnoperov, A.; Krumstein, Z.; Martin-Chassard, G.; Moser, U.; Nozdrin, A.; Olchevski, A.; Porokhovoi, S.; Raux, L.; Sadovski, A.; Schuler, J.; Schutz, H.-U.; Schwab, C.; Smolnikov, A.; Van Beek, G.; Vilain, P.; Walchli, T.; Wilquet, G.; Wurtz, J.

    2007-01-01

    The main task of the Target Tracker detector of the long baseline neutrino oscillation OPERA experiment is to locate in which of the target elementary constituents, the lead/emulsion bricks, the neutrino interactions have occurred and also to give calorimetric information about each event. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multi-anode photomultiplier tubes. All the elements used in the construction of this detector and its main characteristics are described.

  2. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population

    Directory of Open Access Journals (Sweden)

    Shai Porat

    2016-10-01

    Full Text Available Introduction: We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI. Methods: 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clinical and neuropsychological evaluations. An advanced 3D cortical mapping technique was then applied to calculate cortical thickness. Results: Despite having a trend-level significantly thinner cortex, dancers performed better in cognitive tasks involving learning and memory, such as the California Verbal Learning Test-II (CVLT-II short delay free recall (p = 0.004, the CVLT-II long delay free recall (p = 0.003, and the CVLT-II learning over trials 1-5 (p = 0.001. Discussion: Together, these results suggest that dance may result in an enhancement of cognitive reserve in aging, which may help avert or delay MCI.

  3. Neutron yield of thick {sup 12}C and {sup 13}C targets with 20 and 30 MeV deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Lhersonneau, G.; Fadil, M. [GANIL, Caen (France); Malkiewicz, T. [CSC - IT Center for Science Ltd., Espoo (Finland); Gorelov, D.; Sorri, J.; Trzaska, W.H. [University of Jyvaskyla, Department of Physics, Jyvaskyla (Finland); Jones, P.; Ngcobo, P.Z. [iThemba Laboratory for Accelerator Based Science, Western Cape (South Africa)

    2016-12-15

    The neutron yield of thick targets of carbon, natural and enriched in {sup 13}C, bombarded by deuterons of 20 and 30 MeV has been measured by the activation method. The gain with respect to a {sup 12}C target is the same as with protons beams. The yield ratio is about 1.2 only and hardly can justify the use of a {sup 13}C target with deuteron beams. The data, apart from being of interest for the design of facilities where secondary neutron beams are used, provide a test case for calculations where both beam and target have a weakly bound neutron. The MCNPx code version 2.6.0, despite failing to reproduce some details of the experimental distributions, describes their global properties fairly well, especially the relative yields of the {sup 12}C and {sup 13}C targets. (orig.)

  4. Tracking considerations for fixed target B experiments at SSC and LHC

    International Nuclear Information System (INIS)

    McManus, A.P.; Conetti, S.; Corti, G.; Cox, B.; Dukes, E.C.; Lawry, T.; Nelson, K.; Tzamouranis, I.

    1993-01-01

    Fixed target beauty (B) experiments proposed at the SSC or LHC come in two basic types. Extracted beam experiments use a bent crystal of silicon or some other method to extract a beam of protons parasitically from the circulating beam as the collider experiments are taking data. The two chief extracted beam experiments are the LHB collaboration at the LHC and the SFT collaboration at the SSC. The second type of fixed target experiment places the detector around the circulating beam using a gas jet or thin wire(s) as a target. The (GAJET) experiment proposed at CERN for LHC and the Hera-B experiment at DESY are of this type

  5. Measurement of thick target neutron yield from the reaction (p+181 Ta) with projectiles in the range of 6-20 MeV

    Science.gov (United States)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P.; Sharma, S. C.; Joshi, D. S.; Bandyopadhyay, T.

    2018-02-01

    181Ta is a commonly used backing material for many targets in nuclear reaction studies. When the target thickness is less than the range of bombarded projectiles, the interaction via Ta(p,n) reactions in the backing can be a significant source of background. In this study, the neutron spectral yields from the reaction of protons of different energies (between 6 to 20 MeV) with a thick Ta target were determined using CR-39 detectors. The results from this study can be used as a correction factor in such situations. The parameters of registered tracks in CR-39 were analysed using an in-house image analysing program autoTRAK_n and then to derive the associated dose values. The spectral yields obtained experimentally were compared with those obtained from the theoretical calculations. The neutron yield was found to increase with increase in projectile energy mainly due to the opening of reaction channels from (p, n) to (p, 3n).

  6. Hadron and photon experiments at fixed-target accelerators

    International Nuclear Information System (INIS)

    Diddens, A.N.; Diebold, R.; Gaillard, J.M.; Galaktionov, Yu.V.; Gerstein, S.S.; Pilcheer, J.; Sosnowski, R.

    1979-01-01

    Possible hadron and photon experiments at 20 TeV stationary-target proton accelerator have been considered in order to see typical limitations and possibilities of the experiments in this new energy domain

  7. Event Display for the Fixed Target Experiment BM@N

    Directory of Open Access Journals (Sweden)

    Gertsenberger Konstantin

    2016-01-01

    Full Text Available One of the main problems to be solved in modern high energy physics experiments on particle collisions with a fixed target is the visual representation of the events during the experiment run. The article briefly describes the structure of the BM@N facility at the Nuclotron being under construction at the Joint Institute for Nuclear Research with the aim to study properties of the baryonic matter in collisions of ions with fixed target at energies up to 4 GeV/nucleon (for Au79+. Aspects concerning the visualization of data and detector details at the modern experiments and possibilities of practical applications are discussed. We present event display system intended to visualize the detector geometries and events of particle collisions with the fixed target, its options and features as well as integration with BMNRoot software. The examples of graphical representation of simulated and reconstructed points and particle tracks with BM@N geometry are given for central collisions of Au79+ ions with gold target and deuterons with carbon target.

  8. Internal targets for LEAR

    International Nuclear Information System (INIS)

    Kilian, K.; Gspann, J.; Mohl, D.; Poth, H.

    1984-01-01

    This chapter considers the use of thin internal targets in conjunction with phase-space cooling at the Low-Energy Antiproton Ring (LEAR). Topics considered include the merits of internal target operation; the most efficient use of antiprotons and of proton synchrotron (PS) protons, highest center-of-mass (c.m.) energy resolution; highest angular resolution and access to extreme angles; the transparent environment for all reaction products; a windowless source and pure targets; highest luminosity and count rates; access to lowest energies with increasing resolution; internal target thickness and vacuum requirements; required cooling performance; and modes of operation. It is demonstrated that an internal target in conjunction with phase-space cooling has the potential of better performance in terms of the economic use of antiprotons and consequently of PS protons; energy resolution; angular resolution; maximum reaction rate capability (statistical precision); efficient parasitic operation; transparency of the target for reaction products; access to low energies; and the ease of polarized target experiments. It is concluded that all p - experiments which need high statistics and high p - flux, such as studies of rare channels or broad, weak resonance structures, would profit from internal targets

  9. Charge state and incident energy dependence of K X-ray emission as a function of target thickness for 50-165 MeV Cu ions incident on 11-250 μg/cm2 Cu

    International Nuclear Information System (INIS)

    Momoi, T.; Shima, K.; Umetani, K.; Moriyama, M.; Ishihara, T.; Mikumo, T.

    1986-01-01

    Thin self-supporting Cu targets in 11-250 μg/cm 2 thickness were bombarded with 50-165 MeV Cu sup(qi + ) ions (7 + )+Cu. From the observed K X-ray yields, K-shell vacancy production cross sections averaged over the target thickness t of projectile sigmasub(KV) and target sigmasup(*)sub(KV) were separately derived taking into account the fluorescence yield that can be estimated from the Ksub(α) X-ray energy shift. When the values of sigmasub(KV) and sigmasup(*)sub(KV) are extrapolated to zero foil thickness, the K shell vacancy formed in the collision has been found to be equally shared between projectile and target in a single collision. With the increase of penetration depth, however, the values of sigmasup(*)sub(KV) are greater than those of sigmasub(KV) presumably due to electron transfer of a target K electron to the projectile K vacancy. The evolution process of projectile excited states as a function of target thickness and the resulting variation of projectile and target K X-ray emissions are discussed. (orig.)

  10. A simple thick target for production of 89Zr using an 11MeV cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Krohn, Kenneth A.; O' Hara, Matthew J.

    2017-04-01

    The growing interest but limited availability of 89Zr for PET led us to test targets for the 89(p,n) reaction. The goal was an easily constructed target for an 11 MeV Siements cyclotron. Yttrium foils were tested at different thicknesses, angles and currents. A 90 degree foil tolerated 41 microAmp without damage and produced ~800 MBq/hr, >20 mCi, an amount adequate for radiochemistry research and human doses in a widely available accelerator. This method should translate to higher energy cyclotrons.

  11. Integral measurements of neutron production in spallation targets

    International Nuclear Information System (INIS)

    Frehaut, J.; Deneuville, D.; Ledoux, X.; Lochard, J.P.; Longuet, J.L.; Petibon, E.; Alrick, K.; Bownan, D.; Cverna, F.; King, N.S.P.; Morgan, G.L.; Greene, G.; Hanson, A.; Snead, L.; Thompson, R.; Ward, T.

    1998-01-01

    Measurements of neutron production for thick iron, tungsten and lead targets of different diameter prototypic for spallation systems have been made at SATURNE in an incident proton energy range from 400 MeV to 2 GeV. TIERCE code system calculations are in good agreement with experiment for iron and large diameter tungsten and lead targets. They overestimate the measured neutron production for tungsten and lead targets for diameter ≤20 cm. (author)

  12. Hydrodynamic aspects of selenium X-ray laser targets

    Energy Technology Data Exchange (ETDEWEB)

    Charatis, G; Busch, G E; Shepard, C L; Campbell, P M; Rosen, M D

    1986-10-01

    Recent experiments at KMS have been performed to investigate parameter variations of target component thickness, laser pulse duration and intensity, and one-sided vs two-sided irradiation in order to optimize the performance of the Livermore exploding foil selenium x-ray laser experiments. Preliminary experiments with selenium double foil targets were also conducted as a means of prolonging the duration and enlarging the spatial extent of the lasing conditions. Four-frame holographic interferometry was used in determining the time-dependence of density profiles obtained by Abel inversion of the interferometric fringe field and comparisons were made to LASNEX code calculations.

  13. Report of the Fixed-Target Proton-Accelerator Group

    International Nuclear Information System (INIS)

    Abe, K.; Bunce, G.; Fisk, G.

    1982-01-01

    The fixed target proton accelerator group divided itself into two roughly equal parts. One sub-group concentrated on a high intensity (10 14 protons/sec) moderate energy (30 GeV) machine while the other worked on a moderate intensity (5 x 10 11 protons/sec) very high energy (20 TeV) machine. For experiments where the total available energy is adequate, the fixed target option added to a anti p p 20 TeV collider ring has several attractive features: (1) high luminosity afforded by intense beams striking thick solid targets; (2) secondary beams of hadrons, photons, and leptons; and (3) the versatility of a fixed target facility, where many experiments can be performed independently. The proposed experiments considered by the subgroup, including neutrino, photon, hadron, and very short lived particle beams were based both on scaled up versions of similar experiments proposed for Tevatron II at Fermilab and on the 400 GeV fixed target programs at Fermilab and CERN

  14. Local re-acceleration and a modified thick target model of solar flare electrons

    Science.gov (United States)

    Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.

    2009-12-01

    Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as

  15. Proton targets for the PHOENICS experiment

    International Nuclear Information System (INIS)

    Kraemer, D.

    1988-10-01

    In the first part of the thesis the construction and test operation of a hydrogen target for the PHOENICS experiment at the Bonn 3.5 GeV accelerator ELSA is described. First of all it shall serve as target for calibration measurements of the counter arrangement. The cooling time of the hydrogen liquefier until the complete filling of the target cell was determined to 4 h 30 m. Via a magnet valve the clearance of the cell into a storage container is possible. In the second part of the thesis measurements on the polarization properties of the target material ammonia are presented. The maximal nucleon polarization in the dilution operation of the cryostat at about 250 mK was determined to 77 -3 +2 % for positive and to 72 -3 +2 % for negative polarization direction and is by this comparable with the values reached for butanol. The required build-up time is with 2.1 h by a factor about two larger than for butanol targets. A determination of Landes g factor of the NH 3 radicals present in the target yielded the value of g = 2.0037. By variation of the magnet field a microwave absorption signal could be taken up which can be identified by the ESR line of the ammonia radical. The half width resulted to 60 ± 5 Gauss. Experiments on the magnet-field dependence of the relaxation time at 1 K and 250 mK showed that in the field-range from 0.4 to 2.5 Tesla the relaxation time varied at 1 K from 16 sec to 14 min and at 250 mK from 2.7 h to 40.3 h. A ratio-formation yielded a crude estimation of the relaxation time to be expected at 50 mK and 0.4 T in the order of magnitude of 2 months. (orig./HSI) [de

  16. Target selection biases from recent experience transfer across effectors.

    Science.gov (United States)

    Moher, Jeff; Song, Joo-Hyun

    2016-02-01

    Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions.

  17. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project

    Science.gov (United States)

    Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.

    2009-09-01

    The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.

  18. Repetitive laser fusion experiment and operation using a target injection system

    International Nuclear Information System (INIS)

    Nishimura, Yasuhiko; Komeda, Osamu; Mori, Yoshitaka

    2017-01-01

    Since 2008, a collaborative research project on laser fusion development based on a high-speed ignition method using repetitive laser has been carried out with several collaborative research institutes. This paper reports the current state of operation of high repetition laser fusion experiments, such as target introduction and control based on a target injection system that allows free falling under 1 Hz, using a high repetition laser driver that has been under research and development, as well as the measurement of targets that freely fall. The HAMA laser driver that enabled high repetition fusion experiments is a titanium sapphire laser using a diode-pumped solid-state laser KURE-I of green light output as a driver pump light source. In order to carry out high repetition laser fusion experiments, the target injection device allows free falling of deuterated polystyrene solid sphere targets of 1 mm in diameter under 1 Hz. The authors integrated the developed laser and injection system, and succeeded first in the world in making the nuclear fusion reaction continuously by hitting the target to be injected with laser, which is essential technology for future laser nuclear fusion reactor. In order to realize repetition laser fusion experiments, stable laser, target synchronization control, and target position measurement technologies are indispensable. (A.O.)

  19. Calculational estimations of neutron yield from ADS target

    International Nuclear Information System (INIS)

    Degtyarev, I.I.; Liashenko, O.A.; Yazynin, I.A.; Belyakov-Bodin, V.I.; Blokhin, A.I.

    2002-01-01

    Results of computational studies of high power spallation thick ADS (Accelerator-Driven System) targets with 0.8-1.2 GeV proton beams are given. Comparisons of experiments and calculations of double differential and integral n/p yield are also described. (author)

  20. Characterization of nuclear physics targets using Rutherford backscattering and particle induced X-ray emission

    International Nuclear Information System (INIS)

    Rubehn, T.; Wozniak, G.J.; Phair, L.; Moretto, L.G.; Yu, K.M.

    1997-01-01

    Rutherford backscattering and particle induced X-ray emission have been utilized to precisely characterize targets used in nuclear fission experiments. The method allows for a fast and non-destructive determination of target thickness, homogeneity and element composition. (orig.)

  1. Measurement of angular distributions of K x-ray intensity of Ti and Cu thick targets following impact of 10–25 keV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhupendra; Kumar, Sunil; Prajapati, Suman; Singh, Bhartendu K. [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Llovet, Xavier [Scientific and Technological Centers, Universitat de Barcelona, Lluís Solé i Sabarís 1-3, 08028 Barcelona (Spain); Shanker, R., E-mail: shankerorama@gmail.com [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India)

    2017-04-15

    Highlights: • New results on the angular distributions of relative intensities of K-X-rays lines of Ti and Cu thick targets under electron bombardment are reported. • An increase of relative intensity of Kα and Kβ X-ray lines has been found to be about 60–70% in the detection range θ = 105{sup 0}–165{sup 0}. • There is a slight impact energy dependence of Cu Kα X-ray line. • A reasonable agreement between experimental and PENELOPE MC Calculations are obtained. - Abstract: We present new results on angular distributions of the relative intensity of K{sub α} and K{sub β} x-ray lines of thick targets of Ti (Z = 22) and Cu (Z = 29) pure elements following impact of 10–25 keV electrons. The angular measurements of the K x-radiations were accomplished by rotating the target surface with respect to the electron beam direction. The x-rays emerging from the target surface in reflection mode were detected by an energy dispersive Si P-I-N photodiode detector. The resulting variation of the relative intensity of the characteristic lines as a function of angle of detection and impact energy has been found to be anisotropic and it is considered to arise due to change in path lengths at a given incidence angle α for the photons generated by direct as well as by indirect K shell ionization processes. The measured angular variations of relative intensity of K{sub α} and K{sub β} x-ray lines of both targets are found to increase by about 60–70% in going from θ = 105{sup 0} to 165{sup 0} at a given impact energy; however there is a slight indication of impact energy dependence of Cu K{sub α} x-ray line as also noted by the earlier workers. We compare the experimental results with those obtained by Monte Carlo simulations using PENELOPE calculations; the agreement between experiment and theory is found to be satisfactory within uncertainties involved in the measurements and the theoretical results.

  2. Particle production and targeting experience at the Brookhaven AGS

    International Nuclear Information System (INIS)

    Lazarus, D.M.

    1986-01-01

    Experience in production of secondary pions (neutrinos), kaons and antiprotons by 28.5 GeV/c protons incident on various target materials is given. The problems associated with various target materials with respect to target heating, physical degradation and in some cases, disintegration, are discussed. The effect of target length and production angle on secondary beam flux and optical quality will be illustrated by some incomplete but nonetheless informative data

  3. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment

    DEFF Research Database (Denmark)

    Farinotti, Daniel; Brinkerhoff, Douglas J.; Clarke, Garry K. C.

    2017-01-01

    Knowledge of the ice thickness distribution of glaciers and ice caps is an important prerequisite for many glaciological and hydrological investigations. A wealth of approaches has recently been presented for inferring ice thickness from characteristics of the surface. With the Ice Thickness Models...

  4. Thick film nickel plating - the alternative. Long-term experiences; Dickschichtvernickelung - die Alternative. Langzeiterfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Senff-Wollenberg, Ralf [Baumgarte Boiler Systems GmbH, Bielefeld (Germany). Technik; Ansey, Johann-Wilhelm [Baumgarte Boiler Systems GmbH, Bielefeld (Germany). Forschung und Entwicklung; Reinmoeller, Frank [Baumgarte Boiler Systems GmbH, Bielefeld (Germany)

    2013-03-01

    The ecologic and energetic demands on modern plants fort he thermal utilization of waste materials increase continuously. Beside low costs of investment, enhanced efficiencies, an enhanced availability, long journey times as well as low costs of operation and maintenance are important factors for the investment decision. The primary and secondary measures for the shrinkage of corrosion are decisive for achieving the factors for the decision of investment and maintenance. The authors of the contribution under consideration report on long-term experiences on the thick film nickel plating. Especially, the process of galvanic nickel plating, the fields of application as well as the operational experiences are described.

  5. A windowless frozen hydrogen target system

    International Nuclear Information System (INIS)

    Knowles, P.E.; Beer, G.A.; Beveridge, J.L.

    1995-06-01

    A cryogenic target system has been constructed in which gaseous mixtures of all three hydrogen isotopes have been frozen onto a thin, 65 mm diameter gold foil. The foil is cooled to 3 K while inside a 70 K radiation shield, all of which is mounted in a vacuum system maintained at 10 -9 torr. Stable multi-layer hydrogen targets of known uniformity and thickness have been maintained for required measurement times of up to several days. To date, hundreds of targets have been successfully used in muon-catalyzed fusion experiments at TRIUMF. (author). 12 refs., 6 figs

  6. Aerosol optical thickness retrieval over land and water using Global Ozone Monitoring Experiment (GOME) data

    NARCIS (Netherlands)

    Kusmierczyk-Michulec, J.; Leeuw, G. de

    2005-01-01

    An algorithm for the retrieval of the aerosol optical thickness over land and over water from Global Ozone Monitoring Experiment (GOME) data is presented. The cloud fraction in the GOME pixels is determined using the Fast Retrieval Scheme for Clouds From the Oxygen A Band (FRESCO) algorithm. Surface

  7. Electron beam facility for divertor target experiments

    International Nuclear Information System (INIS)

    Anisimov, A.; Gagen-Torn, V.; Giniyatulin, R.N.

    1994-01-01

    To test different concepts of divertor targets and bumpers an electron beam facility was assembled in Efremov Institute. It consists of a vacuum chamber (3m 3 ), vacuum pump, electron beam gun, manipulator to place and remove the samples, water loop and liquid metal loop. The following diagnostics of mock-ups is stipulated: (1) temperature distribution on the mock-up working surface (scanning pyrometer and infra-red imager); (2) temperature distribution over mocked-up thickness in 3 typical cross-sections (thermo-couples); (3) cracking dynamics during thermal cycling (acoustic-emission method), (4) defects in the mock-up before and after tests (ultra-sonic diagnostics, electron and optical microscopes). Carbon-based and beryllium mock-ups are made for experimental feasibility study of water and liquid-metal-cooled divertor/bumper concepts

  8. A cylindrical multiwire high-pressure gas proportional chamber surrounding a gaseous $_{2} target with a mylar separation foil $6 \\mu m thick

    CERN Document Server

    Gastaldi, Ugo; Averdung, H; Bailey, J; Beer, G A; Dreher, B; Erdman, K L; Klempt, E; Merle, K; Neubecker, K; Sabev, C; Schwenk, H; Wendling, R D; White, B L; Wodrich, R

    1978-01-01

    The characteristics and performances of a cylindrical multiwire proportional chamber built and used at CERN in experiment S142 for the study of the pp atom spectroscopy are presented. The chamber surrounds a high-pressure gaseous H/sub 2/ target, from which it is separated by a very thin window (6 mu m mylar foil). The active volume (90 cm long; 2 cm thick, internal diameter=30 cm) is divided into 36 equal and independent cells each covering 10 degrees in azimuth. At 4 abs. atm the detection efficiency for X-rays is higher than 20% in the whole energy range 1.5-15 keV. Typical resolutions are 35% fwhm for the 3 ke V Ar fluorescence line and 25% fwhm for the 5.5 keV /sup 54/Mn line. Working pressures from 0.5 to 16 abs. atm have been used. (8 refs).

  9. Thickness evaluation using a new relationship between film density and penetrated thickness in radiography

    International Nuclear Information System (INIS)

    Lee, Sung Sik; Kim, Young H.

    2005-01-01

    In order to improve the accuracies in the thickness evaluation using radiography, a new relationship between film density and penetrated thickness has been proposed, and experimental verification of the proposed relationship was carried out by using the X- and γ-ray radiographs of two carbon steel step wedges. A new parameter, the logarithmic gradient of film density, was defined in order to express the characteristics of the radiographic film for wider range of film density. A new relationship between the film density and the penetrated thickness were formulated using the logarithmic gradient of the film density. In experiment, the logarithmic gradient of the film density was independent on both the exposure and the film density and measured for the radiographic film used in the present work from the slope of the fitting lines for the same penetrated thickness. Experimental results verifies the accuracy of the proposed relationship between film density and the penetrated thickness for the range of film density from 1.0 to 3.5. The thickness can be more accurately determined by using the proposed relationship and the parameters determined by experiment. It is also found that the γ-ray having simple energy spectrum is more appropriate radiation source for the evaluation of the thickness from the film density of the radiograph

  10. Comparison of Monte Carlo simulations with proton experiment for a thick Au absorber

    International Nuclear Information System (INIS)

    Yevseyeva, Olga; Assis, Joaquim T. de; Diaz, Katherin S.; Hormaza, Joel M.; Lopes, Ricardo T.

    2009-01-01

    Proton therapy applications deal with relatively thick targets like the human head or the trunk. Therefore, relatively small differences in the total proton stopping power given, for example, by the different models provided by GEANT4, could lead to significant disagreement in the final proton energy spectra when integrated along lengthy proton trajectories. This work presents a comparison of proton energy spectra for 49.1 MeV protons passing through a couple of Au absorbers with different thicknesses obtained by GEANT4.8.2 simulations using ICRU49, Ziegler1985 and Ziegler2000 models. The comparison was made with the experimental data of Tschalaer, with TRIM/SRIM2008 and MCNPX2.4.0 simulations, and the Payne analytical solution for the transport equation in the Fokker-Plank approximation. It is shown that the simulations reproduce the experimental spectra with some detectable contradictions. It should be noted that all the spectra lay at the proton energies significantly above 2 MeV, i.e. in the so-called 'Bethe-Bloch region'. Therefore the observed disagreements in GEANT4 results, simulated with different models, are somewhat unexpected. Further studies for a better understanding and to obtain definitive conclusions are necessary. (author)

  11. Review of calorimetry in Fermilab fixed-target experiments

    International Nuclear Information System (INIS)

    Crisler, M.B.

    1995-04-01

    The fixed-target program at Fermilab comprises as many as thirteen simultaneous experiments in ten separate beamlines using beams of primary protons, pions, kaons, electrons, neutrinos, and muons. The fixed target beamlines were last in operation in the latter half of 1991, shutting down in 1992. The next fixed target run is scheduled for early 1996. This article describes some of the wide variety of calorimetric devices that were in use in the past run or to be used in the coming run. Special attention is devoted to the new devices currently under construction

  12. Testing light dark matter coannihilation with fixed-target experiments

    Energy Technology Data Exchange (ETDEWEB)

    Izaguirre, Eder; Kahn, Yonatan; Krnjaic, Gordan; Moschella, Matthew

    2017-09-01

    In this paper, we introduce a novel program of fixed-target searches for thermal-origin Dark Matter (DM), which couples inelastically to the Standard Model. Since the DM only interacts by transitioning to a heavier state, freeze-out proceeds via coannihilation and the unstable heavier state is depleted at later times. For sufficiently large mass splittings, direct detection is kinematically forbidden and indirect detection is impossible, so this scenario can only be tested with accelerators. Here we propose new searches at proton and electron beam fixed-target experiments to probe sub-GeV coannihilation, exploiting the distinctive signals of up- and down-scattering as well as decay of the excited state inside the detector volume. We focus on a representative model in which DM is a pseudo-Dirac fermion coupled to a hidden gauge field (dark photon), which kinetically mixes with the visible photon. We define theoretical targets in this framework and determine the existing bounds by reanalyzing results from previous experiments. We find that LSND, E137, and BaBar data already place strong constraints on the parameter space consistent with a thermal freeze-out origin, and that future searches at Belle II and MiniBooNE, as well as recently-proposed fixed-target experiments such as LDMX and BDX, can cover nearly all remaining gaps. We also briefly comment on the discovery potential for proposed beam dump and neutrino experiments which operate at much higher beam energies.

  13. Measured and calculated neutron yields for 100 MeV protons on thick targets of Pb and Li

    International Nuclear Information System (INIS)

    Jones, R.T.; Lone, M.A.; Okazaki, A.

    1983-01-01

    The neutron yield per proton from thick targets of lead and lithium irradiated with 100 MeV protons has been measured and calculated. The water bath method was used to measure the neutron production, and a Faraday cup for the beam current determination. Measured yields are 0.343 +- 0.021 for lead and 0.123 +- 0.007 for lithium. Corresponding yields calculated with the nucleon-meson transport code NMTC are 0.363 +- 0.002 and 0.160 +- 0.001. Measured and calculated thermal neutron distributions in the water bath are also compared

  14. Prospects of polarized fixed target Drell-Yan experiments

    International Nuclear Information System (INIS)

    Liu, M X; Jiang, X; Crabb, D G; Chen, J P; Bai, M

    2011-01-01

    It has been proposed that the Siverse transverse single spin asymmetry in Drell-Yan production in transversely polarized p+p collisions would have an opposite sign compared to what has been observed in the polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) experiments. Experimental confirmation or disproval of this prediction would provide a novel fundamental test of QCD and shed new light on our theoretical understanding of the transverse spin physics phenomena. We discuss the prospects and physics sensitivities of polarized fixed target Drell-Yan experiments that could utilize the existing proton and other hadron beams at Fermilab, and polarized proton beams at RHIC with a polarized solid proton and/or neutron target option. We show that if realized, the new experiments would provide critical measurements of not only the sign change (or not) of Sivers functions, but also the information of quark and antiquark's Sivers distributions over a wide kinematic range.

  15. Targets with thin ferromagnetic layers for transient field experiments

    International Nuclear Information System (INIS)

    Gallant, J.L.; Dmytrenko, P.

    1982-01-01

    Multilayer targets containing a central layer sufficiently thin so that all recoil nuclei can traverse it and subsequently stop in a suitable cubic environment have been prepared. Such targets are required in experiments making use of a magnetic field acting on an ion moving through a ferromagnetic material. The preparation and annealing of the ferromagnetic foils (iron and gadolinium) and the fabrication of the multilayer targets are described. (orig.)

  16. Copper-coated laser-fusion targets using molecular-beam levitation

    International Nuclear Information System (INIS)

    Rocke, M.J.

    1981-01-01

    A series of diagnostic experiments at the Shiva laser fusion facility required targets of glass microspheres coated with 1.5 to 3.0 μm of copper. Previous batch coating efforts using vibration techniques gave poor results due to microsphere sticking and vacuum welding. Molecular Beam Levitation (MBL) represented a noncontact method to produce a sputtered copper coating on a single glassmicrosphere. The coating specifications that were achieved resulted in a copper layer up to 3 μm thick with the allowance of a maximum variation of 10 nm in surface finish and thickness. These techniques developed with the MBL may be applied to sputter coat many soft metals for fusion target applications

  17. Commissioning experiment of the polarized internal gas target with deuterium at ANKE/COSY

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Boxing [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Collaboration: ANKE-Collaboration

    2012-07-01

    In order to conduct the production experiments with polarized deuterium target and (un)polarized proton beam at ANKE/COSY, a commissioning experiment of the polarized internal target with deuterium is imperative. The commissioning experiment includes the measurements of both the vector (Q{sub y}) and tensor (Q{sub yy}) polarization of the deuterium gas target through the nuclear reactions with large and well known analyzing powers, which can be detected in ANKE. The dependence of the polarizations along the storage cell is also determined. The poster presents the physics case for the experiments with deuterium polarized internal target and the apparatus needed for the commissioning experiment, as well as the procedure of extraction for spin observables.

  18. Spallation neutron experiment at SATURNE

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    The double differential cross sections for (p,xn) reactions and the spectra of neutrons produced from the thick target have been measured at SATURNE in SACLAY from 1994 to 1997. The status of the experiment and the preliminary experimental results are presented. (author)

  19. Application of Industrial XRF Coating Thickness Analyzer for Phosphate Coating Thickness on Steel

    Directory of Open Access Journals (Sweden)

    Aleksandr Sokolov

    2018-03-01

    Full Text Available The results of industrial application of an online X-ray fluorescence coating thickness analyzer for measuring the thickness of phosphate coatings on moving steel strips are considered in the article. The target range of coating thickness to be measured is from tens to hundreds of mg/m2 in a measurement time of 10 s. The measurement accuracy observed during long-duration factory acceptance test was 10–15%. The coating thickness analyzer consists of two XRF gauges, mounted above and below the steel strip and capable of moving across the moving strip system for their suspension and relocation and electronic control unit. Fully automated software was developed to automatically and continuously (24/7 control both gauges, scanning both sides of the steel strip, and develop and test methods for measuring new coatings. It allows performing offline storage and retrieval of the measurement results, remotely controlling the analyzer components and measurement modes from a control room. The developed XRF coating thickness analyzer can also be used for real-time measurement of other types of coatings, both metallic and non-metallic.

  20. X-ray emission from National Ignition Facility indirect drive targets

    International Nuclear Information System (INIS)

    Anderson, A.T.; Managan, R.A.; Tobin, M.T.; Peterson, P.F.

    1996-01-01

    We have performed a series of 1-D numerical simulations of the x-ray emission from National Ignition Facility (NIF) targets. Results are presented in terms of total x-ray energy, pulse length, and spectrum. Scaling of x-ray emissions is presented for variations in both target yield and hohlraum thickness. Experiments conducted on the Nova facility provide some validation of the computational tools and methods

  1. Super liquid density target designs

    International Nuclear Information System (INIS)

    Pan, Y.L.; Bailey, D.S.

    1976-01-01

    The success of laser fusion depends on obtaining near isentropic compression of fuel to very high densities and igniting this fuel. To date, the results of laser fusion experiments have been based mainly on the exploding pusher implosion of fusion capsules consisting of thin glass microballoons (wall thickness of less than 1 micron) filled with low density DT gas (initial density of a few mg/cc). Maximum DT densities of a few tenths of g/cc and temperatures of a few keV have been achieved in these experiments. We will discuss the results of LASNEX target design calculations for targets which: (a) can compress fuel to much higher densities using the capabilities of existing Nd-glass systems at LLL; (b) allow experimental measurement of the peak fuel density achieved

  2. Annotated references on shielding experiment and calculation of high energy particles

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1990-12-01

    The literature on shielding experiment and calculation of high energy particles above 20 MeV has been surveyed. The survey covers thirteen journals, from 1965 up to 1989. For each paper, applicable information is listed on type and energy of the projectile, the accelerator used, composition and thickness of the target and shielding materials, shielding geometry, the experimental and calculational methods, and the quantities obtained. The references on shielding experiment and on shielding calculation are accessed through two indices which list the projectile-target and shielding material combination, shielding geometry and the projectile energy range. The literature on neutron, photon and hadron production from thick target bombarded by charged particles has been surveyed mainly from 1984 as a complement of the previous work. (author)

  3. Fast neutron forward distributions from C, Be and U thick targets bombarded by deuterons

    International Nuclear Information System (INIS)

    Menard, S.; Clapier, F.; Pauwels, N.; Proust, J.; Donzaud, C.; Guillemaud-Mueller, D.; Lhenry, I.; Mueller, A.C.; Scarpaci, J.A.; Sorlin, O.; Mirea, M.

    1999-01-01

    In principle, to produce neutron rich radioactive beams with sufficient intensities, a source of isotopes far from the valley of β--stability can be obtained through the fission of 238 U induced by fast neutrons. A very promising way to assess the feasibility of these very intense neutron beams is to break an intense 2 H beam in a dedicated converter. The main objective of SPIRAL and PARRNe R - D projects is the investigation of the optimum parameters for a neutron rich isotope source in accordance with the scheme presented above. In such conditions, the charge particle energy loss can prevent the destruction of the fission target. In the frame of these project, a special attention is dedicated to the energetic and angular distributions of the neutrons emerging from a set of converters at a series of 2 H incident energies. Deuteron beams at energies less than 30 MeV are particularly interesting because it is expected that, after the decay in the 238 U target, the neutron rich radioactive fission products are cold enough, thus avoiding the evaporation of a too large number of neutrons. For such purposes, one needs experimental angular distributions at given energies for different types of converters and to elaborate a theoretical tool in order to estimate accurately the characteristics of the secondary neutron beam. In this paper, the experimental results were obtained with 17, 20 and 28 MeV deuteron energies on Be, C and U converters using the time of flight method. These data are compared to results given by a model valid at higher energy in order to obtain pertinent simulations in a large range of incident energies. Many theoretical tools were developed to characterize the properties of the neutron beams emerging from thick targets. In this contribution the Serber's model, considered with its improvements which account for the Coulomb deflection and the mean straggling of the beam in the material, is compared to experimental data in order to verify the validity

  4. Measurement of the thickness of a target deposited in a substrate; Medicion del grosor de un blanco depositado en un substrato

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Q, E.; Aguilera, E.F

    1990-12-15

    Being based on the Elastic scattering and in the Energy losses that suffer a projectile to the interacting with the matter, a method that allows to determine the thickness of a target deposited in a more heavy substrate is presented. The obtained results are consistent with that waited and the derived errors of the method are small. The used technique allows to reduce in considerable form the systematic errors coming from the calibration of the equipment. It is considered that this method is applicable in an interval of thickness quite wide and for many materials since it is only necessary to choose the projectile type and the energy of the same one appropriately. (Author)

  5. Laser-accelerated proton conversion efficiency thickness scaling

    International Nuclear Information System (INIS)

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-01-01

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10 19 W/cm 2 Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 μm, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 μm, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH 3 on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  6. Comparison of (alpha, n) thick-target neutron yields and spectra from ORIGEN-S and SOURCES

    International Nuclear Information System (INIS)

    Brown, T.H.; Wilson, W.B.; Perry, R.T.; Charlton, W.S.

    1998-01-01

    Both ORIGEN-S and SOURCES generate thick-target neutron yields and energy spectra from (α,n) reactions in homogeneous materials. SOURCES calculates yield and spectra for any material containing α-emitting and (α,n) target elements by simulating reaction physics, using α-emission energy spectra, elemental stopping cross sections, (α,n) cross sections for target nuclei, and branching fractions to produce-nuclide energy levels. This methodology results in accurate yield and spectra. ORIGEN-S has two options for calculating yields and spectra. The UO 2 option (default) estimates yields and spectra assuming the input α-emitters to be infinitely dilute in UO 2 . The borosilicate-glass option estimates yields from the total input material composition and generates spectra purportedly representative of spectra generated by 238 Pu, 241 Am, 242 Cm, and 244 Cm infinitely dilute in borosilicate glass, even if none of these four α-emitters are present in the input material composition. Because yields from the borosilicate-glass option in ORIGEN-S are based on entire input material composition and are reasonably accurate, the same is often assumed to be true for spectra. The input/output functionality of the borosilicate-glass option, along with ambiguity in ORIGEN-S documentation, gives the incorrect impression that spectra representative of input compositions are generated. This impression is reinforced by wide usage of the SCALE code system and its ORIGEN-S module and their sponsorship by the US Nuclear Regulatory Commission

  7. Evaluation of cross sections of 56Fe up to 3 GeV and integral benchmark calculation for thick target yield

    International Nuclear Information System (INIS)

    Yoshizawa, Nobuaki; Meigo, Shin-ichiro

    2001-01-01

    The neutron and proton cross sections of 56 Fe were evaluated up to 3 GeV. JENDL High Energy File of 56 Fe were developed for use in transport calculation. For neutrons, the high-energy data are merged with JENDL3.3-file. Integral benchmark calculations for thick target neutron yields (TTY) for 113 MeV and 256 MeV proton bombardment of Fe targets were performed using the evaluated libraries. Calculated TTY neutron spectra were compared with experimental data. For 113 MeV, calculated TTY at 7.5 degree underestimated in the emitted neutron energy range above 10 MeV. For 256 MeV, calculated TTY well agree with experimental data except below 10 MeV. (author)

  8. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    International Nuclear Information System (INIS)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc

    2008-01-01

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the ''low energy

  9. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    Energy Technology Data Exchange (ETDEWEB)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc [Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); National Research Council Canada, Institute for National Measurement Standards, 1200 Montreal Road, Building M-36, Ottawa, Ontario K1A 0R6 (Canada); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya and Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Diagonal 647, 08028 Barcelona (Spain); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, 08028 Barcelona (Spain)

    2008-10-15

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the &apos

  10. Conception of a target diffusible Pt. 3

    International Nuclear Information System (INIS)

    Peters, J.M.

    1980-01-01

    A new manufacturing self-replenishing target has been tested for the regeneration of deuteride titanium (γ) phase followed by the study of its behaviour under deuteron beam in the production of neutrons by the D(d,n) 3 He reaction. An interpretation of the self-replenishing mechanism is attempted here, based on diffusion and flow rate measurements through the target (Pd-Ag) (70%-30%), 0.5 mm of thickness, - Ti layer (522 μg cm -2 ). A general formula is proposed to describe the flow rate variations during the regeneration experiences. (author)

  11. Beta ray backscattering studies for thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M; Sharma, K K [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1979-01-01

    Back-scattering of beta rays from /sup 204/Tl (Esub(..beta..)max = 740 keV) and /sup 90/Sr-/sup 90/Y (Esub(..beta..)max =550 and 2250 keV) has been studied in an improved reflection geometry, using annular sources, from a number of elemental targets with Z values ranging from 13 to 82. Source to target and target to detector geometry factors are 0.0225 and 0.0282 respectively. Values of saturation back scattering thickness obtained in the two cases are 72 +- 10 and 190 +- 40 mg/cm/sup 2/ respectively. It is observed that the intensity of back scattered radiation varies linearly with thickness upto a value of 12 +- 2 mg/cm/sup 2/ in /sup 204/Tl and 17 +- 3 mg/cm/sup 2/ in /sup 90/Sr-/sup 90/Y.

  12. GE781: a Monte Carlo package for fixed target experiments

    Science.gov (United States)

    Davidenko, G.; Funk, M. A.; Kim, V.; Kuropatkin, N.; Kurshetsov, V.; Molchanov, V.; Rud, S.; Stutte, L.; Verebryusov, V.; Zukanovich Funchal, R.

    The Monte Carlo package for the fixed target experiment B781 at Fermilab, a third generation charmed baryon experiment, is described. This package is based on GEANT 3.21, ADAMO database and DAFT input/output routines.

  13. On numerical heat transfer characteristic study of flat surface subjected to variation in geometric thickness

    Science.gov (United States)

    Umair, Siddique Mohammed; Kolawale, Abhijeet Rangnath; Bhise, Ganesh Anurath; Gulhane, Nitin Parashram

    Thermal management in the looming world of electronic packaging system is the most prior and conspicuous issue as far as the working efficiency of the system is concerned. The cooling in such systems can be achieved by impinging air jet over the heat sink as jet impingement cooling is one of the cooling technologies which are widely studied now. Here the modulation in impinging and geometric parameters results in the establishment of the characteristic cooling rate over the target surface. The characteristic cooling curve actually resembles non-uniformity in cooling rate. This non-uniformity favors the area average heat dissipation rate. In order to study the non-uniformity in cooling characteristic, the present study takes an initiative in plotting the local Nusselt number magnitude against the non-dimensional radial distance of the different thickness of target surfaces. For this, the steady temperature distribution over the target surface under the impingement of air jet is being determined numerically. The work is completely inclined towards the determination of critical value of geometric thickness below which the non-uniformity in the Nusselt profile starts. This is done by numerically examining different target surfaces under constant Reynolds number and nozzle-target spacing. The occurrences of non-uniformity in Nusselt profile contributes to over a 42% enhancement in area average Nusselt magnitude. The critical value of characteristic thickness (t/d) reported in the present investigation approximate to 0.05. Below this value, the impingement of air jet generates a discrete pressure zones over the target surface in the form of pressure spots. As a result of this, the air flowing in contact with the target surface experiences a damping potential, in due of which it gets more time and contact with the surface to dissipate heat.

  14. Investigation of mechanisms of production of argon, krypton and xenon isotopes formed in heavy targets by protons with an energy ranging from 0.15 to 24 GeV

    International Nuclear Information System (INIS)

    Sauvageon, Henri

    1981-01-01

    As experimental results of the investigation of interactions between high-energy protons and nucleus generally lead to the distinction between four types of reaction mechanisms (spallation, fission, fragmentation and isotope production), this research thesis reports the study of this mechanisms by using the so-called 'thick target - thick collector' experiment and by studying the production of various isotopes of rare gases (argon, krypton, xenon). These isotopes are produced by using platinum, gold, bismuth and thorium targets bombarded by protons with an energy ranging from 0.15 to 24 GeV. The author presents the experimental methods (target preparation and irradiation, rare gas analysis system), reports the analysis of thick target - thick-collector experiments (vector-based representation, path determination, path-curve energy, corrections of experimental data, excitation energy of the intermediate nucleus), presents the experimental results, and discusses their interpretation (two-stage model of high energy nuclear reactions, isotopes produced by spallation and by fission, isotopes produced by deep spallation, representations of mechanisms of fragmentation and deep spallation)

  15. Proton and neutron polarized targets for nucleon-nucleon experiments at SATURNE II

    International Nuclear Information System (INIS)

    Ball, J.; Combet, M.; Sans, J.L.; Benda, B.; Chaumette, P.; Deregel, J.; Durand, G.; Dzyubak, A.P.; Gaudron, C.; Lehar, F.; Janout, Z.; Khachaturov, B.A.

    1996-01-01

    A SATURNE polarized target has been used for nucleon-nucleon elastic scattering and transmission experiments for 15 years. The polarized proton target is a 70 cm 3 cartridge loaded with Pentanol-2. For polarized neutron target, two cartridges loaded with 6 LiD and 6 LiH are set in the refrigerator and can be quickly inserted in the beam. First experiments using 6 Li products in quasielastic pp or pn analyzing power measurements are compared with the same observables measured in a free nucleon-nucleon scattering using polarized proton targets. Angular distribution as a function of a kinematically conjugate angle and coplanarity in nucleon-nucleon scattering is shown for different targets. (author)

  16. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    International Nuclear Information System (INIS)

    Gupta, C.K.; Rohilla, Aman; Abhilash, S.R.; Kabiraj, D.; Singh, R.P.; Mehta, D.; Chamoli, S.K.

    2014-01-01

    A thin isotopic 94 Zr target of thickness 520μg/cm 2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm 2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94 Zr from peeling off, a very thin layer of gold has been evaporated on a 94 Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94 Zr target material was utilized for the fabrication of 94 Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC

  17. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    Science.gov (United States)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  18. Realization of a liquid hydrogen target

    International Nuclear Information System (INIS)

    Libin, J.F.; Gangnant, F.

    1997-01-01

    Experiments by the SPEG facility at GANIL need liquid hydrogen targets of some cm 3 . To achieve such targets, temperatures lower than 20 K must be obtained while their thin windows must withstand to pressures higher than 1000 m bars at these temperatures. Havar windows of 4.4 μm thickness met these requirements. A RW5 type Leybold cryo-generator was used as well as a system of ohmic heaters allowing regaining the initial state in a time equivalent with time elapsed for cooling. The working regime was chosen to be constant volume - variable pressure. The various components of this equipment (cryogenic head, buffer volume, hydrogen reservoir and vacuum pump) were coupled through 'aeroquip' allowing by dismantling and changes to keep the hydrogen isolated from the ambient atmosphere. The tests confirmed the accuracy of estimations done for the buffer volume and pressure. The only uncertainty is related to the window deformations. The time of cooling and reheating of target is around one hour. This allows during an experiment to aerate the chamber as the target was accessible to any necessary intervention

  19. Liquid hydrogen and deuterium targets

    International Nuclear Information System (INIS)

    Bougon, M.; Marquet, M.; Prugne, P.

    1961-01-01

    A description is given of 1) Atmospheric pressure target: liquid hydrogen, 400 mm thickness; thermal insulation: styrofoam; the hydrogen vapors are used to improve the target cooling; Mylar windows. 2) Vacuum target: 12 liter content: hydrogen or deuterium; liquid thickness 400 mm; thermal insulation is afforded by a vacuum vessel and a liquid nitrogen shield. Recovery and liquefaction of deuterium vapors are managed in the vacuum vessel which holds the target. The target emptying system is designed for operating in a few minutes. (author) [fr

  20. Development of a coating technique for inertial confinement fusion plastic targets

    International Nuclear Information System (INIS)

    Kubo, U.; Tsubakihara, H.

    1986-01-01

    Deuterated polystyrene as a target material offers several advantages over other polymers because of the following: (1) it is chemically and physically stable at ordinary conditions, (2) it can be easily formed into spherical shells, and (3) it has a very high fraction of D 2 /H 2 (above approx.99%). As in our previous studies, the fabrication method was basically a utilization of the emulsion technique. This method is well suited to mass-producing the polymer targets without microprocessing techniques. We have developed a fabrication method for single shell targets and an extension of this technique also enables us to fabricate double shell targets. This new method is faster and less labor intensive than previous techniques. The development of ICF experiments requires multilayer structure targets; we have developed, moreover, a new fabrication technique called the multicoating method. The polymer coating can be fabricated by the application of an emulsion technique. On the other hand, with metal coating, a nonelectroplating method was used, and nickel was employed as the coating metal. The thickness of the polymer coating layer can be controlled with the rotational speed of a stirrer in the emulsion. In the case of nickel coating, it is achieved by controlling the plating bath temperature and immersion time during the plating process. The experiment resulted in the development of a new technique for the fabrication of multilayer targets and low density, thick polymer-layer-coated targets

  1. Automated Production of High Rep Rate Foam Targets

    Science.gov (United States)

    Hall, F.; Spindloe, C.; Haddock, D.; Tolley, M.; Nazarov, W.

    2016-04-01

    Manufacturing low density targets in the numbers needed for high rep rate experiments is highly challenging. This report summarises advances from manual production to semiautomated and the improvements that follow both in terms of production time and target uniformity. The production process is described and shown to be improved by the integration of an xyz robot with dispensing capabilities. Results are obtained from manual and semiautomated production runs and compared. The variance in the foam thickness is reduced significantly which should decrease experimental variation due to target parameters and could allow for whole batches to be characterised by the measurement of a few samples. The work applies to both foil backed and free standing foam targets.

  2. First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target

    Science.gov (United States)

    Kraft, Stephan D.; Obst, Lieselotte; Metzkes-Ng, Josefine; Schlenvoigt, Hans-Peter; Zeil, Karl; Michaux, Sylvain; Chatain, Denis; Perin, Jean-Paul; Chen, Sophia N.; Fuchs, Julien; Gauthier, Maxence; Cowan, Thomas E.; Schramm, Ulrich

    2018-04-01

    We show efficient laser driven proton acceleration up to 14 MeV from a 62 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈350 fs at an energy of 8 J per pulse are directed onto the target. The results are compared to proton spectra from metal and plastic foils with different thicknesses and show a similarly good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.

  3. Time Structure of Particle Production in the Merit High-Power Target Experiment

    CERN Document Server

    Efthymiopoulos, I; Palm, M; Lettry, J; Haug, F; Pereira, H; Pernegger, H; Steerenberg, R; Grudiev, A; Kirk, H G; Park, H; Tsang, T; Mokhov, N; Striganov, S; Carroll, A J; Graves, V B; Spampinato, P T; McDonald, K T; Bennett, J R J; Caretta, O; Loveridge, P

    2010-01-01

    The MERIT experiment is a proof-of-principle test of a target system for high power proton beam to be used as front-end for a neutrino factory complex or amuon collider. The experiment took data in autumn 2007 with the fast extracted beam from the CERN Proton Synchrotron (PS) to a maximum intensity of about 30 × 1012 protons per pulse. We report results from the portion of the MERIT experiment in which separated beam pulses were delivered to a free mercury jet target with time intervals between pulses varying from 2 to 700 μs. The analysis is based on the responses of particle detectors placed along side and downstream of the target.

  4. Stagnation morphology in Magnetized Liner Inertial Fusion experiments

    Science.gov (United States)

    Gomez, M. R.; Harding, E. C.; Ampleford, D. J.; Jennings, C. A.; Awe, T. J.; Chandler, G. A.; Glinsky, M. E.; Hahn, K. D.; Hansen, S. B.; Jones, B.; Knapp, P. F.; Martin, M. R.; Peterson, K. J.; Rochau, G. A.; Ruiz, C. L.; Schmit, P. F.; Sinars, D. B.; Slutz, S. A.; Weis, M. R.; Yu, E. P.

    2017-10-01

    In Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z facility, an axial current of 15-20 MA is driven through a thick metal cylinder containing axially-magnetized, laser-heated deuterium fuel. The cylinder implodes, further heating the fuel and amplifying the axial B-field. Instabilities, such as magneto-Rayleigh-Taylor, develop on the exterior of the liner and may feed through to the inner surface during the implosion. Monochromatic x-ray emission at stagnation shows the stagnation column is quasi-helical with axial variations in intensity. Recent experiments demonstrated that the stagnation emission structure changed with modifications to the target wall thickness. Additionally, applying a thick dielectric coating to the exterior of the target modified the stagnation column. A new version of the x-ray self-emission diagnostic has been developed to investigate stagnation with higher resolution. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  5. The cryogenic target for the G0 experiment at Jefferson lab

    International Nuclear Information System (INIS)

    Covrig, S.D.; Beise, E.J.; Carr, R.; Gustafsson, K.K.; Hannelius, L.; Herda, M.-C.; Jones, C.E.; Liu, J.; McKeown, R.D.; Neveling, R.; Rauf, A.W.; Smith, G.

    2005-01-01

    A cryogenic horizontal single loop target has been designed, built, tested and operated for the G 0 experiment in Hall C at Jefferson Lab. The target cell is 20cm long, the loop volume is 6.5l and the target operates with the cryogenic pump fully immersed in the fluid. The target has been designed to operate at 30Hz rotational pump speed with either liquid hydrogen or liquid deuterium. The high-power heat exchanger is able to remove 1000W of heat from the liquid hydrogen, while the nominal electron beam with current of 40μA and energy of 3GeV deposits about 320W of heat into the liquid. The increase in the systematic uncertainty due to the liquid hydrogen target is negligible on the scale of a parity violation experiment. The global normalized yield reduction for 40μA beam is about 1.5% and the target density fluctuations contribute less than 238ppm (parts per million) to the total asymmetry width, typically about 1200ppm, in a Q 2 bin

  6. Omega experiments and preparation for moderate-gain direct-drive experiments on Nif

    International Nuclear Information System (INIS)

    Mr Crory, R.L.; Bahr, R.E.; Boehly, T.R.

    2000-01-01

    Direct-drive laser-fusion ignition experiments rely on detailed understanding and control of irradiation uniformity, Rayleigh-Taylor instability, and target fabrication. LLE is investigating various theoretical aspects of a direct-drive NIF ignition target based on an 'all-DT' design: a spherical target of ∼ 3.5 mm diameter, 1 to 2 μm if CH wall thickness, and a ∼ 350 μm DT-ice layer near the triple point of DT (μ19K). OMEGA experiments are designed to address the critical issues related to direct-drive laser fusion and to provide the necessary data to validate the predictive capability of LLE computer codes. The future cryogenic targets used on OMEGA are hydrodynamically equivalent to those planned for the NIF. The current experimental studies on OMEGA address all of the essential components of direct-drive laser fusion: irradiation uniformity and laser imprinting, Rayleigh-Taylor growth and saturation, compressed core performance and shell-fuel mixing, laser-plasma interactions and their effect on target performance, and cryogenic target fabrication and handling. (authors)

  7. The primary target for the hypernuclear experiment at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Martinez Rojo, Marta; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Iazzi, Felice [INFN, Torino (Italy); Politecnico di Torino (Italy); Pochodzalla, Josef [Helmholtz-Institut Mainz (Germany); Institut fuer Kernphysik, JGU Mainz (Germany); Rausch, Nicolas [Institut fuer Kernphysik, JGU Mainz (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    A key aspect of the PANDA experiment at the future FAIR facility is the production and spectroscopy of ΛΛ hypernuclei. The double hypernuclei are produced in a two-stage target system consisting of a primary in-beam filament to produce low momentum Ξ{sup -} hyperons which are stopped and converted into two Λ hyperons in a secondary external target. A system of piezo motors will be used to steer the primary target in two dimensions. This allows to achieve a constant luminosity by adjusting the position and provides the replacement of eventually broken target wires. The poster shows the mechanical integration of this system within the vacuum chamber attached to the beampipe. Its motion is controlled using the EPICS framework as planned for PANDA. In addition the results of radiation tests with foreseen target wires are presented.

  8. Detection of fission fragments using thick samples in contact with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Lima, D.A. de; Martins, J.B.; Tavares, O.A.P.

    1987-01-01

    Whenever use is made of thick samples in contact with solid state nuclear track detectors for determining fission yields, one of the fundamental problems is the evaluation of the effective number of target nuclei which contributes to the fraction of the number of fission events that will be recorded. The evaluation of the effective number of target nuclei which contributes to recorded events is based on the effective thickness of the sample. A method for evaluating effective thickness of thick samples for binary fission modes, is presented. A cross section equation which takes into account all the necessary corrections due to fragment attenuation effects by a thick target for calculation induced fission yields, was obtained. (Author) [pt

  9. Thermal experiments in the model of ADS target

    International Nuclear Information System (INIS)

    Alexander, Efanov; Yuri, Orlov; Alexander, Sorokin; Eugeni, Ivanov; Galina, Bogoslovskaia; Ning, Li

    2002-01-01

    The paper presents thermal experiments performed in the SSC RF IPPE on the ADS window target model. Brief description of the model, specific features of structure, measurement system and some methodological approaches are presented. Eutectic lead-bismuth alloy is modeled here by eutectic sodium-potassium alloy. The following characteristics of the target model were measured directly and estimated by processing: coolant flow rate, model power, absolute temperature of the coolant with a distance from the membrane of the target, absolute temperature of the membrane surface, mean square value and pulsating component of coolant temperature, as well as membrane temperature. Measurements have shown a great pulsations of temperature existing at the membrane surface that must be taken into account in analysis of strength of real target system. Experimental temperature fields (present work) and velocity fields measured earlier make up a complete database for verification of 2D and 3D thermohydraulic codes. (author)

  10. Measurements of spallation neutrons from a thick lead target bombarded with 0.5 and 1.5 GeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro; Takada, Hiroshi; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-03-01

    Double differential neutron spectra from a thick lead target bombarded with 0.5 and 1.5 GeV protons have been measured with the time-of-flight technique. In order to obtain the neutron spectra without the effect of the flight time fluctuation by neutron scattering in the target, an unfolding technique has also been employed in the low energy region below 3 MeV. The measured data have been compared with the calculated results of NMTC/JAERI-MCNP-4A code system. It has been found that the code system gives about 50 % lower neutron yield than the experimental ones in the energy region between 20 and 80 MeV for both incident energies. The disagreements, however, have been improved well by taking account of the inmedium nucleon-nucleon scattering cross sections in the NMTC/JAERI code. (author)

  11. Preparation of uranium electrodeposited target in aqueous system

    International Nuclear Information System (INIS)

    Chen Qiping; Li Yougen; Zhong Wenbin

    2006-03-01

    The main factors affecting uranium electrodeposition were tested and discussed. In the primary experiment about preparation of uranium isotopic target by electrodeposition, a stainless steel disk has been chosen as the target material, the electrolytic bath is comprised of UO 2 (NO 3 ) 2 and (NH 4 ) 2 C 2 O 4 , which has been adjusted to a pH of 2-3. Composition of the lost electrolytic bath was analysed by spectrophotometer. The thickness of resulting film is about 8-10 mg/cm 2 , the target having a thin, continuous, uniform layer of uranium, and its electrodeposited rate is more than 80%. (authors)

  12. Measurement of proton induced thick target γ-ray yields on B, N, Na, Al and Si from 2.5 to 4.1 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, M., E-mail: chiari@fi.infn.it [INFN-Florence and Department of Physics and Astronomy, University of Florence, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Ferraccioli, G.; Melon, B.; Nannini, A.; Perego, A.; Salvestrini, L. [INFN-Florence and Department of Physics and Astronomy, University of Florence, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Lagoyannis, A.; Preketes-Sigalas, K. [Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, NCSR “Demokritos”, 153.10 Aghia Paraskevi, Athens (Greece)

    2016-01-01

    Thick target yields for proton induced γ-ray emission (PIGE) on low-Z nuclei, namely B, N, Na, Al and Si, were measured for proton energies from 2.5 to 4.1 MeV and emission angles of 0°, 45° and 90°, at the 3 MV Tandetron laboratory of INFN-LABEC in Florence. The studied reactions were: {sup 10}B(p,α′γ){sup 7}Be (E{sub γ} = 429 keV), {sup 10}B(p,p′γ){sup 10}B (E{sub γ} = 718 keV) and {sup 11}B(p,p′γ){sup 11}B (E{sub γ} = 2125 keV) for boron; {sup 14}N(p,p′γ){sup 14}N (E{sub γ} = 2313 keV) for nitrogen; {sup 23}Na(p,p′γ){sup 23}Na (E{sub γ} = 441 and 1636 keV) and {sup 23}Na(p,α′γ){sup 20}Ne (E{sub γ} = 1634 keV) for sodium; {sup 27}Al(p,p′γ){sup 27}Al (E{sub γ} = 844 and 1014 keV) and {sup 27}Al(p,α′γ){sup 24}Mg (E{sub γ} = 1369 keV) for aluminum; {sup 28}Si(p,p′γ){sup 28}Si (E{sub γ} = 1779 keV) and {sup 29}Si(p,p′γ){sup 29}Si (E{sub γ} = 1273 keV) for silicon. The PIGE thick target yields have been measured with an overall uncertainty typically better than 10%. The use of the measured thick target yield to benchmark and validate experimental cross sections available in the literature is demonstrated.

  13. Angular measurement of the energy distribution of neutrons from the thick target 7Li(p,n)7Be source

    International Nuclear Information System (INIS)

    Rose, A.

    1981-11-01

    The energy spectrum of neutrons emitted from a thick lithium target bombarded by protons has been measured as a function of neutron angle of emission. The measurements were done at proton energies up to 2.8 MeV and at 30 deg. intervals in the range 0 to 120 deg. using proportional detectors with gas fillings of hydrogen and methane. A review is given of papers published on the 7 Li(p,n) 7 Be reactions at 0 deg.; where applicable, comparisons are made with the present results

  14. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Institut, Spallation Neutron Source Division, Villigen-PSI (Switzerland); Salvatores, M. [CEA Cadarache, Direction des Reacteurs Nucleaires, Saint-Paul-lez-Durance Cedex (France); Heusener, G. [Forschungszentrum Karlsruhe, Projekt Nukleare Sicherheitsforschung, Karlsruhe (Germany)

    2001-03-01

    MEGAPIE (Megawatt Pilot Target Experiment) is an initiative launched by Commissariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) in collaboration with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world-wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source (SINQ) for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories. (author)

  15. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    International Nuclear Information System (INIS)

    Bauer, G.S.; Salvatores, M.; Heusener, G.

    2001-01-01

    MEGAPIE (Megawatt Pilot Target Experiment) is an initiative launched by Commissariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) in collaboration with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world-wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source (SINQ) for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories. (author)

  16. Target bombardment by ion beams generated in the Focus experiment

    International Nuclear Information System (INIS)

    Bernard, Alain; Coudeville, Alain; Garconnet, J.-P.; Jolas, A.; Mascureau, J. de; Nazet, Christian.

    1976-01-01

    In a Mather-Focus experiment, it was shown that 80% of the neutron emitted were generated through bombardment. The apparatus was operated with various targets at a distance of 13mm from the anode. In the low pressure regime, a deuteron beam of high energy was produced. Its emission duration was measured using a CD 2 target [fr

  17. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    International Nuclear Information System (INIS)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described

  18. Cortical thickness in children receiving intensive therapy for idiopathic apraxia of speech.

    Science.gov (United States)

    Kadis, Darren S; Goshulak, Debra; Namasivayam, Aravind; Pukonen, Margit; Kroll, Robert; De Nil, Luc F; Pang, Elizabeth W; Lerch, Jason P

    2014-03-01

    Children with idiopathic apraxia experience difficulties planning the movements necessary for intelligible speech. There is increasing evidence that targeted early interventions, such as Prompts for Restructuring Oral Muscular Phonetic Targets (PROMPT), can be effective in treating these disorders. In this study, we investigate possible cortical thickness correlates of idiopathic apraxia of speech in childhood, and changes associated with participation in an 8-week block of PROMPT therapy. We found that children with idiopathic apraxia (n = 11), aged 3-6 years, had significantly thicker left supramarginal gyri than a group of typically-developing age-matched controls (n = 11), t(20) = 2.84, p ≤ 0.05. Over the course of therapy, the children with apraxia (n = 9) experienced significant thinning of the left posterior superior temporal gyrus (canonical Wernicke's area), t(8) = 2.42, p ≤ 0.05. This is the first study to demonstrate experience-dependent structural plasticity in children receiving therapy for speech sound disorders.

  19. New Fixed-Target Experiments to Search for Dark Gauge Forces

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, James D.; Essig, Rouven; Schuster, Philip; /SLAC; Toro, Natalia; /Stanford U., ITP

    2010-06-11

    Fixed-target experiments are ideally suited for discovering new MeV-GeV mass U(1) gauge bosons through their kinetic mixing with the photon. In this paper, we identify the production and decay properties of new light gauge bosons that dictate fixed-target search strategies. We summarize existing limits and suggest five new experimental approaches that we anticipate can cover most of the natural parameter space, using currently operating GeV-energy beams and well-established detection methods. Such experiments are particularly timely in light of recent terrestrial and astrophysical anomalies (PAMELA, FERMI, DAMA/LIBRA, etc.) consistent with dark matter charged under a new gauge force.

  20. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    International Nuclear Information System (INIS)

    Chipps, K.A.; Greife, U.; Bardayan, D.W.; Blackmon, J.C.; Kontos, A.; Linhardt, L.E.; Matos, M.; Pain, S.D.; Pittman, S.T.; Sachs, A.; Schatz, H.; Schmitt, K.T.; Smith, M.S.; Thompson, P.

    2014-01-01

    New radioactive ion beam (RIB) facilities will push further away from stability and enable the next generation of nuclear physics experiments. Of great importance to the future of RIB physics are scattering, transfer, and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure. Targets must also accommodate the use of large area silicon detector arrays, high-efficiency gamma arrays, and heavy ion detector systems to efficiently measure the reaction products. To address these issues, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration has designed, built, and characterized a supersonic gas jet target, capable of providing gas areal densities on par with commonly used solid targets within a region of a few millimeters diameter. Densities of over 5×10 18 atoms/cm 2 of helium have been achieved, making the JENSA gas jet target the most dense helium jet achieved so far

  1. A liquid He-3 target system for use at intermediate energies

    International Nuclear Information System (INIS)

    Hassell, D.K.; Abegg, R.; Murdoch, B.T.; van Oers, W.J.H.; Soukup, J.

    1981-04-01

    A liquid 3 He target system with remote instrumentation and handling capabilities has been developed for experiments using the 180-525 MeV TRIUMF cyclotron. Helium-3 gas is liquefied by means of a 4 He cryostat into a cylindrical target cell (4.4 cm diameter, 1.6 cm thick) and maintained during operation at approximately 1.6 K. This provides an areal target density of approximately 2.7 x 10 22 He-3 nuclei/cm 2 (128 mg/cm 2 ), suitable for intermediate energy proton scattering. (author)

  2. All-optical atom trap as a target for MOTRIMS-like collision experiments

    Science.gov (United States)

    Sharma, S.; Acharya, B. P.; De Silva, A. H. N. C.; Parris, N. W.; Ramsey, B. J.; Romans, K. L.; Dorn, A.; de Jesus, V. L. B.; Fischer, D.

    2018-04-01

    Momentum-resolved scattering experiments with laser-cooled atomic targets have been performed since almost two decades with magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) setups. Compared to experiments with gas-jet targets, MOTRIMS features significantly lower target temperatures allowing for an excellent recoil ion momentum resolution. However, the coincident and momentum-resolved detection of electrons was long rendered impossible due to incompatible magnetic field requirements. Here we report on an experimental approach which is based on an all-optical 6Li atom trap that—in contrast to magneto-optical traps—does not require magnetic field gradients in the trapping region. Atom temperatures of about 2 mK and number densities up to 109 cm-3 make this trap ideally suited for momentum-resolved electron-ion coincidence experiments. The overall configuration of the trap is very similar to conventional magneto-optical traps. It mainly requires small modifications of laser beam geometries and polarization which makes it easily implementable in other existing MOTRIMS experiments.

  3. Fabrication of {sup 94}Zr thin target for recoil distance doppler shift method of lifetime measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C.K.; Rohilla, Aman [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Abhilash, S.R.; Kabiraj, D.; Singh, R.P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mehta, D. [Department of Physics, Panjab University, Chandigarh 160014 (India); Chamoli, S.K., E-mail: skchamoli@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-11-11

    A thin isotopic {sup 94}Zr target of thickness 520μg/cm{sup 2} has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm{sup 2} thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of {sup 94}Zr from peeling off, a very thin layer of gold has been evaporated on a {sup 94}Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched {sup 94}Zr target material was utilized for the fabrication of {sup 94}Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  4. Mercury erosion experiments for spallation target system

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2003-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct the spallation neutron source at the Tokai Research Establishment, JAERI, under the High-Intensity Proton Accelerator Project (J-PARC). A mercury circulation system has been designed so as to supply mercury to the target stably under the rated flow rate of 41 m 3 /hr. Then, it was necessary to confirm a mercury pump performance from the viewpoint of making the mercury circulation system feasible, and more, to investigate erosion rate under the mercury flow as well as an amount of mercury remained on the surface after drain from the viewpoints of mechanical strength relating to the lifetime and remote handling of mercury components. The mercury pump performance was tested under the mercury flow conditions by using an experimental gear pump, which had almost the same structure as a practical mercury pump to be expected in the mercury circulation system, and the erosion rates in a mercury pipeline as well as the amount of mercury remained on the surface were also investigated. The discharged flow rates of the experimental gear pump increased linearly with the rotation speed, so that the gear pump would work as the flow meter. Erosion rates obtained under the mercury velocity less than 1.6 m/s was found to be so small that decrease of pipeline wall thickness would be 390 μm after 30-year operation under the rated mercury velocity of 0.7 m/s. For the amount of remaining mercury on the pipeline, remaining rates of weight and volume were estimated at 50.7 g/m 2 and 3.74 Hg-cm 3 /m 2 , respectively. Applying these remaining rates of weight and volume to the mercury target, the remaining mercury was estimated at about 106.5 g and 7.9 cm 3 . Radioactivity of this remaining mercury volume was found to be three-order lower than that of the target casing. (author)

  5. Fuel retention properties of thin-wall glass target in low temperature

    International Nuclear Information System (INIS)

    Gao Dangzhong; Huang Yong; Tang Yongjian; Wen Shuhuai

    2001-01-01

    In room temperature the fuel gas storage half-life of the thin-wall (wall-thickness less than 1μm) glass microsphere is only a few days, it is difficult to be used for ICF. To efficiently prolong the half-life of such type targets, and meet the need of ICF experiments, the special device for storing the targets was developed. All the targets are immerged in liquid-nitrogen (LN 2 ), after being sealed in vacuum. During this period the change of Si 1.74 keV X-ray counts were measured a few times with the low energy X-ray multi-channel analyzer. The results of experiment indicate that, in the environment of -196 degree C, the fuel storage half-life of target has been successfully extended to 100-300 d from 3-10 d. However, the surface roughness of target was not obviously changed

  6. Systematic analysis of neutron yields from thick targets bombarded by heavy ions and protons with moving source model

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takashi; Kurosawa, Tadahiro; Nakamura, Takashi E-mail: nakamura@cyric.tohoku.ac.jp

    2002-03-21

    A simple phenomenological analysis using the moving source model has been performed on the neutron energy spectra produced by bombarding thick targets with high energy heavy ions which have been systematically measured at the Heavy-Ion Medical Accelerator (HIMAC) facility (located in Chiba, Japan) of the National Institute of Radiological Sciences (NIRS). For the bombardment of both heavy ions and protons in the energy region of 100-500 MeV per nucleon, the moving source model incorporating the knock-on process could be generally successful in reproducing the measured neutron spectra within a factor of two margin of accuracy. This phenomenological analytical equation is expressed having several parameters as functions of atomic number Z{sub p}, mass number A{sub p}, energy per nucleon E{sub p} for projectile, and atomic number Z{sub T}, mass number A{sub T} for target. By inputting these basic data for projectile and target into this equation we can easily estimate the secondary neutron energy spectra at an emission angle of 0-90 deg. for bombardment with heavy ions and protons in the aforementioned energy region. This method will be quite useful to estimate the neutron source term in the neutron shielding design of high energy proton and heavy ion accelerators.

  7. Target designs for energetics experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Meezan, N B; Glenzer, S H; Suter, L J

    2008-01-01

    The goal of the first hohlraum energetics experiments on the National Ignition Facility (NIF) [G. H. Miller et al, Optical Eng. 43, 2841 (2004)] is to select the hohlraum design for the first ignition experiments. Sub-scale hohlraums heated by 96 of the 192 laser beams on the NIF are used to emulate the laser-plasma interaction behavior of ignition hohlraums. These 'plasma emulator' targets are 70% scale versions of the 1.05 MJ, 300 eV ignition hohlraum and have the same energy-density as the full-scale ignition designs. Radiation-hydrodynamics simulations show that the sub-scale target is a good emulator of plasma conditions inside the ignition hohlraum, reproducing density n e within 10% and temperature T e within 15% along a laser beam path. Linear backscatter gain analysis shows the backscatter risk to be comparable to that of the ignition target. A successful energetics campaign will allow the National Ignition Campaign to focus its efforts on optimizing ignition hohlraums with efficient laser coupling

  8. Performance of a Liner-on-Target Injector for Staged Z-Pinch Experiments

    Science.gov (United States)

    Conti, F.; Valenzuela, J. C.; Narkis, J.; Krasheninnikov, I.; Beg, F.; Wessel, F. J.; Ruskov, E.; Rahman, H. U.; McGee, E.

    2016-10-01

    We present the design and characterization of a compact liner-on-target injector, used in the Staged Z-pinch experiments conducted on the UNR-NTF Zebra Facility. Previous experiments and analysis indicate that high-Z gas liners produce a uniform and efficient implosion on a low-Z target plasma. The liner gas shell is produced by an annular solenoid valve and a converging-diverging nozzle designed to achieve a collimated, supersonic, Mach-5 flow. The on-axis target is produced by a coaxial plasma gun, where a high voltage pulse is applied to ionize neutral gas and accelerate the plasma by the J-> × B-> force. Measurements of the liner and target dynamics, resolved by interferometry in space and time, fast imaging, and collection of the emitted light, are presented. The results are compared to the predictions from Computational Fluid Dynamics and MHD simulations that model the injector. Optimization of the design parameters, for upcoming Staged Z-pinch experiments, will be discussed. Advanced Research Projects Agency - Energy, DE-AR0000569.

  9. Experiment of ambient temperature distribution in ICF driver's target building

    International Nuclear Information System (INIS)

    Zhou Yi; He Jie; Yang Shujuan; Zhang Junwei; Zhou Hai; Feng Bin; Xie Na; Lin Donghui

    2009-01-01

    An experiment is designed to explore the ambient temperature distribution in an ICF driver's target building, Multi-channel PC-2WS temperature monitoring recorders and PTWD-2A precision temperature sensors are used to measure temperatures on the three vertical cross-sections in the building, and the collected data have been handled by MATLAB. The experiment and analysis show that the design of the heating ventilation and air conditioning (HVAC) system can maintain the temperature stability throughout the building. However, because of the impact of heat in the target chamber, larger local environmental temperature gradients appear near the marshalling yard, the staff region on the middle floor, and equipments on the lower floor which needs to be controlled. (authors)

  10. Preparation of uranium electrodeposited target in aqueous system

    Energy Technology Data Exchange (ETDEWEB)

    Qiping, Chen; Yougen, Li; Wenbin, Zhong [China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2006-03-15

    The main factors affecting uranium electrodeposition were tested and discussed. In the primary experiment about preparation of uranium isotopic target by electrodeposition, a stainless steel disk has been chosen as the target material, the electrolytic bath is comprised of UO{sub 2}(NO{sub 3}){sub 2} and (NH{sub 4}){sub 2}C{sub 2}O{sub 4}, which has been adjusted to a pH of 2-3. Composition of the lost electrolytic bath was analysed by spectrophotometer. The thickness of resulting film is about 8-10 mg/cm{sup 2}, the target having a thin, continuous, uniform layer of uranium, and its electrodeposited rate is more than 80%. (authors)

  11. Ion acceleration from relativistic laser nano-target

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Daniel

    2012-01-06

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the {mu}m range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, {lambda}=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C{sup 6+} energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH{sub 2} targets. Experimental data is presented, where the conversion efficiency into carbon C{sup 6+} (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil

  12. Measurements of inner-shell characteristic X-ray yields of thick W, Mo and Zr targets by low-energy electron impact and comparison with Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, X.L.; Zhao, J.L.; Tian, L.X.; An, Z.; Zhu, J.J.; Liu, M.T.

    2014-01-01

    Highlights: •We measured characteristic X-ray yields of thick W, Mo, Zr by 5–29 keV electrons. •Our measured data are in general in good agreement with the MC results with ∼10%. •Error of 10% of characteristic X-ray yields will produce errors of 2–7% for BIXS. -- Abstract: Inner-shell characteristic X-ray yields are one of the important ingredients in the β-ray induced X-ray spectrometry (BIXS) technique which can be used to perform tritium content and depth distribution analyses in plasma facing materials (PLMs) and other tritium-containing materials, such as W, Mo, Zr. In this paper, the measurements of K, L, M-shell X-ray yields Y(E) of pure thick W (Z = 74), Mo (Z = 42) and Zr (Z = 40) element targets produced by electron impact in the energy range of 5–29 keV are presented. The experimental data for Y(E) are compared with the corresponding predictions from Monte Carlo (MC) calculations using the general purpose MC code PENELOPE. In general, a good agreement is obtained between the experiment and the MC calculations for the variation of Y(E) with the impact energy both in shape and in magnitude with ∼10%. The effect of uncertainty of inner-shell characteristic X-ray yields on the BIXS technique is also discussed

  13. Recent heavy flavor physics results from fixed target experiments

    International Nuclear Information System (INIS)

    Spiegel, L.

    1991-11-01

    Recent results from fixed target experiments in the field of heavy quark flavors, as published or otherwise disseminated in the last year, are reviewed. Emphasis is placed on distilling the main conclusions from these results. 35 refs., 5 figs., 4 tabs

  14. Recent heavy flavor physics results from fixed target experiments

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, L.

    1991-11-01

    Recent results from fixed target experiments in the field of heavy quark flavors, as published or otherwise disseminated in the last year, are reviewed. Emphasis is placed on distilling the main conclusions from these results. 35 refs., 5 figs., 4 tabs.

  15. A Test of Thick-Target Nonuniform Ionization as an Explanation for Breaks in Solar Flare Hard X-Ray Spectra

    Science.gov (United States)

    Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard

    2010-01-01

    Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.

  16. Laser-driven polarized H/D sources and targets

    International Nuclear Information System (INIS)

    Clasie, B.; Crawford, C.; Dutta, D.; Gao, H.; Seely, J.; Xu, W.

    2005-01-01

    Traditionally, Atomic Beam Sources are used to produce targets of nuclear polarized hydrogen (H) or deuterium (D) for experiments using storage rings. Laser-Driven Sources (LDSs) offer a factor of 20-30 gain in the target thickness (however, with lower polarization) and may produce a higher overall figure of merit. The LDS is based on the technique of spin-exchange optical pumping where alkali vapor is polarized by absorbing circularly polarized laser photons. The H or D atoms are nuclear-polarized through spin-exchange collisions with the polarized alkali vapor and through subsequent hyperfine interactions during frequent H-H or D-D collisions

  17. Contributed Review: The novel gas puff targets for laser-matter interaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wachulak, Przemyslaw W., E-mail: wachulak@gmail.com [Institute of Optoelectronics, Military University of Technology, Ul. Gen. S. Kaliskiego 2, 00-908 Warsaw (Poland)

    2016-09-15

    Various types of targetry are used nowadays in laser matter interaction experiments. Such targets are characterized using different methods capable of acquiring information about the targets such as density, spatial distribution, and temporal behavior. In this mini-review paper, a particular type of target will be presented. The targets under consideration are gas puff targets of various and novel geometries. Those targets were investigated using extreme ultraviolet (EUV) and soft X-ray (SXR) imaging techniques, such as shadowgraphy, tomography, and pinhole camera imaging. Details about characterization of those targets in the EUV and SXR spectral regions will be presented.

  18. FABRICATION AND CHARACTERIZATION OF FAST IGNITION TARGETS

    International Nuclear Information System (INIS)

    HILL, D.W; CASTILLO, E; CHEN, K.C; GRANT, S.E; GREENWOOD, A.L; KAAE, J.L; NIKROO, A; PAGUIO, S.P; SHEARER, C; SMITH, J.N Jr.; STEPHENS, R.B; STEINMAN, D.A; WALL, J.

    2003-09-01

    OAK-B135 Fast ignition is a novel scheme for achieving laser fusion. A class of these targets involves cone mounted CH shells. The authors have been fabricating such targets with shells with a wide variety of diameters and wall thicknesses for several years at General Atomics. In addition, recently such shells were needed for implosion experiments at Laboratory for Laser Energetics (LLE) that for the first time were required to be gas retentive. Fabrication of these targets requires producing appropriate cones and shells, assembling the targets, and characterization of the assembled targets. The cones are produced using micromachining and plating techniques. The shells are fabricated using the depolymerizable mandrel technique followed by micromachining a hole for the cone. The cone and the shell then need to be assembled properly for gas retention and precisely in order to position the cone tip at the desired position within the shell. Both are critical for the fast ignition experiments. The presence of the cone in the shell creates new challenges in characterization of the assembled targets. Finally, for targets requiring a gas fill, the cone-shell assembly needs to be tested for gas retention and proper strength at the glue joint. This paper presents an overview of the developmental efforts and technical issues addressed during the fabrication of fast ignition targets

  19. Development of windowless liquid lithium targets for fragmentation and fission of 400-kW uranium beams

    CERN Document Server

    Nolen, J A; Hassanein, A; Novick, V J; Plotkin, P; Specht, J R

    2003-01-01

    The driver linac of the proposed rare isotope accelerator facility is designed to deliver 2x10 sup 1 sup 3 uranium ions per second at 400 MeV/u on target for radionuclide production via the fission and fragmentation mechanisms. The ion optics of the large acceptance, high-resolution fragment separators that follow the production target require primary beam spot widths of 1 mm. To cope with the resulting high power densities, windowless liquid lithium targets are being developed. The present designs build on existing experience with liquid lithium and liquid sodium systems that have been used for fusion and fission applications. However, no completely windowless systems have been developed or tested to date. For the beam power indicated above (400 kW), the flow requirements are up to about 20 m/s and 10 l/s linear and volume flow rates, respectively. The required target thickness is 1-1.5 g/cm sup 2 (2-3 cm lithium thickness). At this time a prototype windowless system with a lithium thickness of 1-2 cm is und...

  20. MERIT - The high intensity liquid mercury target experiment at the CERN PS

    CERN Document Server

    Efthymiopoulos, I

    2009-01-01

    The MERIT experiment is a proof-of-principle test of a target system for high power proton beams to be used as front-end for a Neutrino Factory complex or a Muon Collider. The experiment took data in autumn 2007 with the fast extracted beam from the CERN Proton Synchrotron (PS) to a maximum intensity of about 30 × 1012 protons per pulse. The target system, based on a free mercury jet, allowed investigation of the interseption of a 4-MW proton beam inside a 15-T magnetic field required to capture the low-energy secondary pions as the source of the required intense muon beams. Particle detectors have been installed around the target setup to measure the secondary particle flux out of the target and probe cavitation effects in the mercury jet when exited with a beam of variable intensity. With the analysis of the data ongoing, results will be presented here that demonstrate the validity of the liquid target concept.

  1. Spin and diffractive physics with a fixed-target experiment at the LHC (AFTER-LHC)

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, C.; Chambert, V.; Didelez, J. P.; Genolini, B.; Hadjidakis, C.; Lansberg, J. P.; Rosier, P. [IPNO, Universite Paris-Sud, CNRS/IN2P3, F-91406, Orsay (France); Anselmino, M.; Arnaldi, R.; Scomparin, E. [INFN Sez. Torino, Via P. Giuria 1,1-10125, Torino (Italy); Brodsky, S. J. [SLAC National Accelerator Laboratory, Stanford U, Stanford, CA 94309, (United States); Ferreiro, E. G. [Departamento de Fisica de Particulas, Univ. de Santiago de C, 15782 Santiago de C (Spain); Fleuret, F. [Laboratoire Leprince Ringuet, Ecole Polytechnique, CNRS/IN2P3, 91128 Palaiseau (France); Rakotozafindrabe, A. [IRFU/SPhN, CFA Society, 91191 Gifsur-Yvette Cedex (France); Schienbein, I. [LPSC, Universite Joseph Fourier, CNRS/IN2P3/INPG, F-38026 Grenoble (France); Uggerhoj, U. I. [Department of Physics and Astronomy, University of Aarhus (Denmark)

    2013-04-15

    We report on the spin and diffractive physics at a future multi-purpose f xed-target experiment with proton and lead LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic f xed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER using typical targets would surpass that of RHIC by more than 3 orders of magnitude. The f xed-target mode has the advantage to allow for measurements of single-spin asymmetries with polarized target as well as of single-diffractive processes in the target region.

  2. Spin and diffractive physics with a fixed-target experiment at the LHC (AFTER-LHC)

    International Nuclear Information System (INIS)

    Lorcé, C.; Chambert, V.; Didelez, J. P.; Genolini, B.; Hadjidakis, C.; Lansberg, J. P.; Rosier, P.; Anselmino, M.; Arnaldi, R.; Scomparin, E.; Brodsky, S. J.; Ferreiro, E. G.; Fleuret, F.; Rakotozafindrabe, A.; Schienbein, I.; Uggerhøj, U. I.

    2013-01-01

    We report on the spin and diffractive physics at a future multi-purpose f xed-target experiment with proton and lead LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic f xed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER using typical targets would surpass that of RHIC by more than 3 orders of magnitude. The f xed-target mode has the advantage to allow for measurements of single-spin asymmetries with polarized target as well as of single-diffractive processes in the target region.

  3. First internal and external experiments at COSY Juelich

    International Nuclear Information System (INIS)

    Prasuhn, D.; Maier, R.; Bechstedt, U.; Dietrich, J.; Hacker, U.; Martin, S.; Stockhorst, H.; Toelle, R.; Grzonka, D.; Nake, C.; Mosel, F.

    1995-01-01

    The inauguration of the cooler synchrotron COSY Juelich was celebrated on April 1st, 1993. After the first successful acceleration to proton momenta above 800 GeV/c, beamtimes for experiments were scheduled in parallel to further machine development. The first experiment was the internal target experiment EDDA, which investigated the energy dependence of the p-p interaction. It makes use of a 3x4 μm 2 thin CH 2 fiber as an internal target. The thickness of the fiber is more than adequate to achieve high luminosities, so the intensity of the stored beam has to be reduced to 10 7 p. On the other hand, it is thin enough to achieve beam lifetimes of 3 s at 1.4 GeV/c. Details of the target fabrication and the first experimental results will be discussed. Both external experimental facilities at COSY, the time-of-flight spectrometer, and the magnetic spectrometer BIG KARL use a liquid hydrogen (deuterium) target. The first experiments were carried out at proton energies between 300 MeV and 500 MeV. Also, these experimental data will be presented. Two further internal experiments are prepared for the installation into the COSY ring. The target for the first experiment is a gas-jet target, the second experiment uses ribbon targets for the interaction. The status of both experimental setups will be shown. (orig.)

  4. Optical system for Argus 355-nm 90-mm aperture target-illumination experiments

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.C.; Boyd, R.; Hermes, G.; Hildum, J.S.; Linford, G.; Martin, W.E.

    1982-02-01

    The requirements of laser alignment, crystal tuning, target alignment, and laser beam diagnosis are provided by this optical system. Initial setup and preshot alignment techniques are discussed. Layout and operation are contrasted with the 532 nm target experiments.

  5. Gas-filled targets for large scalelength plasma interaction experiments on Nova

    International Nuclear Information System (INIS)

    Powers, L.V.; Berger, R.L.; Munro, D.H.

    1994-11-01

    Stimulated Brillouin backscatter from large scale length gas-filled targets has been measured on Nova. These targets were designed to approximate conditions in indirect drive ignition target designs in underdense plasma electron density (n e ∼10 21 /cm 3 ), temperature (T e >3 keV), and gradient scale lengths (L n ∼ mm, L v >6 mm) as well as calculated gain for stimulated Brillouin scattering (SBS). The targets used in these experiments were gas-filled balloons with polyimide walls (gasbags) and gas-filled hohlraums. Detailed characterization using x-ray imaging and x-ray and optical spectroscopy verifies that the calculated plasma conditions are achieved. Time-resolved SBS backscatter from these targets is <3% for conditions similar to ignition target designs

  6. Effectiveness of dispersants on thick oil slicks

    International Nuclear Information System (INIS)

    Ross, S.; Belore, R.

    1993-01-01

    Experiments were conducted to determine the relationship between dispersant effectiveness and oil slick thickness, and thereby determine the optimum time for applying dispersant onto spilled oil at sea. Tests were completed at a lab-scale level by varying the three parameters of oil type, dispersant application, and oil thickness. The tests were intended to be comparative only. The primary oils used were Alberta sweet mix blend and Hibernia B-27 crude. The dispersant, Corexit 9527, was applied either premixed with the oil, dropwise in one application, or dropwise in multiple applications to simulate a multi-hit aircraft operation. The apparatus used in the experiment was an oscillating hoop tank, with oil-containing rings used to obtain and maintain uniform slick thickness. The results indicate that the effectiveness potential of a chemical dispersant does not decrease as slick thickness increases. In fact, results of the tests involving Hibernia oil suggest that oils that tend to herd easily would be treated more effectively if dispersant were applied when the oil was relatively thick (1 mm or greater) to avoid herding problems. The oil slicks premixed with dispersant did not disperse well in the thick oil tests, not because of dispersant-oil interaction problems but because of reduced mixing energy. 6 refs., 4 figs., 1 tab

  7. Improved laser-to-proton conversion efficiency in isolated reduced mass targets

    Energy Technology Data Exchange (ETDEWEB)

    Morace, A. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Bellei, C.; Patel, P. K. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Bartal, T.; Kim, J.; Beg, F. N. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); Willingale, L.; Maksimchuk, A.; Krushelnick, K. [University of Michigan, 2200 Bonisteel Blvd. Ann Arbor, Michigan 48109 (United States); Wei, M. S. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States); Batani, D. [Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Piovella, N. [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Stephens, R. B. [General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States)

    2013-07-29

    We present experimental results of laser-to-proton conversion efficiency as a function of lateral confinement of the refluxing electrons. Experiments were carried out using the T-Cubed laser at the Center for Ultrafast Optical Science, University of Michigan. We demonstrate that the laser-to-proton conversion efficiency increases by 50% with increased confinement of the target from surroundings with respect to a flat target of the same thickness. Three-dimensional hybrid particle-in-cell simulations using LSP code agree with the experimental data. The adopted target design is suitable for high repetition rate operation as well as for Inertial Confinement Fusion applications.

  8. Experimental investigation of the IFMIF target mock-up

    International Nuclear Information System (INIS)

    Loginov, N.; Mikheyev, A.; Morozov, V.; Aksenov, Yu.; Arnol'dov, M.; Berensky, L.; Fedotovsky, V.; Chernov, V.; Nakamura, H.

    2009-01-01

    The international fusion materials irradiation facility (IFMIF) lithium neutron target mock-ups have been constructed and tested at water and lithium test facilities in the IPPE of Russia. Jet velocity in both mock-ups was up to 20 m/s. Calculations and experiments showed lithium flow instability at conjunction point of straight and concave sections of the mock-up back wall. Water velocity profile across the mock-up width, jet thickness, and wave height were measured. The significant increase of thickness of both water and lithium jets near the mock-up sidewalls was observed. The influence of shape of the nozzle outlet part on jet stability was investigated. Lithium evaporation from the jet free surface was investigated as well as lithium deposition on vacuum pipe walls of the target mock-up. It was shown that these phenomena are not very critical for the target efficiency. The possibility of lithium denitration down to 2 ppm (at 10 ppm requested) by means of aluminium getter was shown. Two types of cold traps and plug indicators of impurities were tested. The results are presented in the paper.

  9. Particle-induced X-ray emission: thick-target analysis of inorganic materials in the determination of light elements

    International Nuclear Information System (INIS)

    Perez-Arantegui, J.; Castillo, J.R.; Querre, G.

    1994-01-01

    Particle-induced X-ray emission (PIXE) has been applied to the analysis of inorganic materials to determine some elements with Z < 27: Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe, in thick-target analysis. A PIXE method has been developed for the analysis of geological materials, ceramics and pottery. Work has been carried out with an ion beam analytical system, using a low particle beam energy. Relative sensitivity, detection limits, reproducibility and accuracy of the method were calculated based on the analysis of geological standard materials (river sediments, argillaceous limestone, basalt, diorite and granite). Analysis using PIXE offers a number of advantages, such as short analysis time, multi-elemental and nondestructive determinations, and the results are similar to those obtained with other instrumental techniques of analysis. (Author)

  10. Growth and characterization of thick cBN coatings on silicon and tool substrates

    International Nuclear Information System (INIS)

    Bewilogua, K.; Keunecke, M.; Weigel, K.; Wiemann, E.

    2004-01-01

    Recently some research groups have achieved progress in the deposition of cubic boron nitride (cBN) coatings with a thickness of 2 μm and more, which is necessary for cutting tool applications. In our laboratory, thick cBN coatings were sputter deposited on silicon substrates using a boron carbide target. Following a boron carbide interlayer (few 100 nm thick), a gradient layer with continuously increasing nitrogen content was prepared. After the cBN nucleation, the process parameters were modified for the cBN film growth to a thickness of more than 2 μm. However, the transfer of this technology to technically relevant substrates, like cemented carbide cutting inserts, required some further process modifications. At first, a titanium interlayer had to be deposited followed by a more than 1-μm-thick boron carbide layer. The next steps were identical to those on silicon substrates. The total coating thickness was in the range of 3 μm with a 0.5- to nearly 1-μm-thick cBN top layer. In spite of the enormous intrinsic stress, both the coatings on silicon and on cemented carbide exhibited a good adhesion and a prolonged stability in humid air. Oxidation experiments revealed a stability of the coating system on cemented carbide up to 700 deg. C and higher. Coated cutting inserts were tested in turning operations with different metallic workpiece materials. The test results will be compared to those of well-established cutting materials, like polycrystalline cubic boron nitride (PCBN) and oxide ceramics, considering the wear of coated tools

  11. Neutron production in bombardments of thin and thick W, Hg, Pb targets by 0.4, 0.8, 1.2, 1.8 and 2.5 GeV protons

    International Nuclear Information System (INIS)

    Letrourneau, A.; Galin, J.; Goldenbaum, F.; Lott, B.; Peghaire, A.; Enke, M.; Hilscher, D.; Jahnke, U.; Nuenighoff, K.; Filges, D.; Neef, R.D.; Paul, N.; Schaal, H.; Sterzenbach, G.; Tietze, A.

    2000-05-01

    Neutron experimental data relevant to the design of the target of neutron spallation sources are presented and discussed. The data include the reaction cross sections for W, Hg and Pb investigated with 0.4, 0.8, 1.2, 1.8 and 2.5 GeV proton beams as well as the neutron production, neutron multiplicity distribution, as determined event per event using a high efficiency detector. The production as a function of target material is investigated for both thin (with a single reaction) and thick targets (multiple reactions). Comparisons are made with the predictions of a high energy transport code. (authors)

  12. Baseball II-T, a new target plasma startup experiment

    International Nuclear Information System (INIS)

    Chargin, A.; Denhoy, B.; Frank, A.; Thomas, S.

    1975-01-01

    A brief description is given of modifications and additions to the existing Baseball II experiment. These changes will make it possible to study target plasma buildup in a steady-state magnetic field. This experiment, now called Baseball II-T + will use a pellet generator to deliver ammonia pellets into the center of the magnetic mirror field where they will be heated with a 300-J, 50-ns, CO 2 laser. The plasma created by this method will have a density of approximately 10 13 cm -3 and a temperature of about 1 keV. This target plasma will be used for neutral beam injection startup studies with a 50-A, 20-keV neutral beam. Later, the beam power will be increased to study buildup. With ion injection energies of up to 50 keV, it may be possible to achieve etatau as high as 10 12 cm -3 s. The new components necessary to achieve these goals are described

  13. Increased sensitivity in thick-target particle induced X-ray emission analyses using dry ashing for preconcentration

    International Nuclear Information System (INIS)

    Lill, J.-O.; Harju, L.; Saarela, K.-E.; Lindroos, A.; Heselius, S.-J.

    1999-01-01

    The sensitivity in thick-target particle induced X-ray emission (PIXE) analyses of biological materials can be enhanced by dry ashing. The gain depends mainly on the mass reduction factor and the composition of the residual ash. The enhancement factor was 7 for the certified reference material Pine Needles and the limits of detection (LODs) were below 0.2 μg/g for Zn, Cu, Rb and Sr. When ashing biological materials with low ash contents such as wood of pine or spruce (0.3% of dry weight) and honey (0.1% of wet weight) the gain was far greater. The LODs for these materials were 30 ng/g for wood and below 10 ng/g for honey. In addition, the ashed samples were more homogenous and more resistant to changes during the irradiation than the original biological samples. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Ion acceleration from relativistic laser nano-target interaction

    International Nuclear Information System (INIS)

    Jung, Daniel

    2012-01-01

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the μm range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, λ=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C 6+ energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH 2 targets. Experimental data is presented, where the conversion efficiency into carbon C 6+ (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil targets at Trident with an

  15. Studies on the target detector of the LAND experiment

    International Nuclear Information System (INIS)

    Zinser, M.

    1991-09-01

    In the framework of this diploma thesis the target detector of the LAND experiment was for the first time taken into operation. The target detector consists of 48 BaF 2 crystals and 36 plastic scintillators. The BaF 2 detectors shall be mainly applied to the measurements of Γ quanta from giant resonance excitations and transitions in exotic nuclei. The plastic scintillators serve for the determination of the multiplicity of the charged particles emitted in a reaction. The electronics of the target detector were for the first experiment of the LAND collaboration on the electromagnetic excitation in peripheral heavy ion reactions at near-relativistic energies together constructed and tested. In the following for the BaF 2 crystals calibration measurements with two γ sources and for the plastic scintillators with a β preparate were performed. The evaluation of the measurements was performed on a VAX station of the Mainz University, on which a by the LAND collaboration modified version of the analysis program PAW was installed. The analysis of the plastic scintillators yields a bad energy resolution of at least 0.6. For the BaF 2 detectors PAW was extended by a comand, which allows a semi-automatic performation of the calibration. The results obtained by this procedure are consistent with calibrations, which were performed independently on this in the collaboration. By the new routine it is possible to perform the energy calibration of the BaF 2 crystals fastly and efficiently. The resolution of the BaF 2 detectors lies around 10%. By this experiments on the giant-resonance excitation and first studies on γ transitions with exotic nuclei are performable. (orig./HSI) [de

  16. Influence of micromachined targets on laser accelerated proton beam profiles

    Science.gov (United States)

    Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran

    2018-03-01

    High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.

  17. The thick-target 9Be(d,n) neutron spectra for deuteron energies between 2.6 and 7.0-MeV

    International Nuclear Information System (INIS)

    Meadows, J.W.

    1991-11-01

    The measurement of the zero deg. neutron spectra and yields from deuterons incident on thick beryllium metal targets is described. 235 U and 238 U fission ion chambers were used as neutron detectors to span the neutron energy range above 0.05-MeV with a time resolution of ≤ 3 nanosec. Measurements were made for incident deuteron energies from 2.6 to 7.0-MeV, at 0.4-MeV intervals, using time-of-flight techniques with flight paths of 2.7 and 6.8 meters. The results are presented in graphical form and in tables

  18. Cannonball target experiment with the GEKKO laser system at ILE Osaka

    International Nuclear Information System (INIS)

    Yamanaka, C.; Azechi, H.; Fujiwara, E.

    1985-01-01

    The GEKKO series glass laser systems are now in operation for the Cannonball target experiments. GEKKO XII is a twelve-beam 30 kJ, 50 TW laser provided with two target chambers. Three types of GEKKO lasers cover the UV, blue, green and red frequency ranges. The Cannonball target displays an excellent performance in implosion. Two kinds of Cannonball target are proposed: the plasma Cannonball and the radiation Cannonball. The neutron yield is 4x10 10 , and the DT fuel density attains 10 g.cm -3 . Laser-to-X-ray conversion has been investigated. Cryogenic target implosion has been performed by using a tailored laser pulse to produce the flush at the core. Various kinds of new diagnostics are being developed. (author)

  19. First internal and external experiments at COSY Juelich

    Energy Technology Data Exchange (ETDEWEB)

    Prasuhn, D [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Maier, R [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Bechstedt, U [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Dietrich, J [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Hacker, U [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Martin, S [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Stockhorst, H [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Toelle, R [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Grzonka, D [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Nake, C [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Mosel, F [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik

    1995-08-01

    The inauguration of the cooler synchrotron COSY Juelich was celebrated on April 1st, 1993. After the first successful acceleration to proton momenta above 800 GeV/c, beamtimes for experiments were scheduled in parallel to further machine development. The first experiment was the internal target experiment EDDA, which investigated the energy dependence of the p-p interaction. It makes use of a 3x4 {mu}m{sup 2} thin CH{sub 2} fiber as an internal target. The thickness of the fiber is more than adequate to achieve high luminosities, so the intensity of the stored beam has to be reduced to 10{sup 7} p. On the other hand, it is thin enough to achieve beam lifetimes of 3 s at 1.4 GeV/c. Details of the target fabrication and the first experimental results will be discussed. Both external experimental facilities at COSY, the time-of-flight spectrometer, and the magnetic spectrometer BIG KARL use a liquid hydrogen (deuterium) target. The first experiments were carried out at proton energies between 300 MeV and 500 MeV. Also, these experimental data will be presented. Two further internal experiments are prepared for the installation into the COSY ring. The target for the first experiment is a gas-jet target, the second experiment uses ribbon targets for the interaction. The status of both experimental setups will be shown. (orig.).

  20. Layered-disk transport experiments at 1.064μm and 0.355μm

    International Nuclear Information System (INIS)

    Campbell, E.M.; Mead, W.C.; Turner, R.E.

    1981-01-01

    The results of electron transport experiments conducted at 1.064μm and 0.355μm with the Argus Laser will be presented. The experiments were conducted at a fixed absorbed intensity and pulse width of approximately 1-2x10 14 W/cm 2 and 600 psec (FWHM) respectively. Energy on target ranged from 30 to 90 joules. To explore axial transport a variable thickness beryllium layer is coated onto an aluminum substrate. The effectiveness of electron heat conduction is studied by measuring the fall-off in aluminum x-ray yield (line and continuum) as the beryllium thickness is increased. In addition to the axial transport studies, lateral conduction is examined by placing the axial transport target onto a titanium disk

  1. Test of a High Power Target Design

    CERN Multimedia

    2002-01-01

    %IS343 :\\\\ \\\\ A high power tantalum disc-foil target (RIST) has been developed for the proposed radioactive beam facility, SIRIUS, at the Rutherford Appleton Laboratory. The yield and release characteristics of the RIST target design have been measured at ISOLDE. The results indicate that the yields are at least as good as the best ISOLDE roll-foil targets and that the release curves are significantly faster in most cases. Both targets use 20 -25 $\\mu$m thick foils, but in a different internal geometry.\\\\ \\\\Investigations have continued at ISOLDE with targets having different foil thickness and internal geometries in an attempt to understand the release mechanisms and in particular to maximise the yield of short lived isotopes. A theoretical model has been developed which fits the release curves and gives physical values of the diffusion constants.\\\\ \\\\The latest target is constructed from 2 $\\mu$m thick tantalum foils (mass only 10 mg) and shows very short release times. The yield of $^{11}$Li (half-life of ...

  2. Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.

    Science.gov (United States)

    Röst, Hannes L; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2015-07-15

    Targeted mass spectrometry comprises a set of powerful methods to obtain accurate and consistent protein quantification in complex samples. To fully exploit these techniques, a cross-platform and open-source software stack based on standardized data exchange formats is required. We present TAPIR, a fast and efficient Python visualization software for chromatograms and peaks identified in targeted proteomics experiments. The input formats are open, community-driven standardized data formats (mzML for raw data storage and TraML encoding the hierarchical relationships between transitions, peptides and proteins). TAPIR is scalable to proteome-wide targeted proteomics studies (as enabled by SWATH-MS), allowing researchers to visualize high-throughput datasets. The framework integrates well with existing automated analysis pipelines and can be extended beyond targeted proteomics to other types of analyses. TAPIR is available for all computing platforms under the 3-clause BSD license at https://github.com/msproteomicstools/msproteomicstools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Preparation of thin arsenic and radioarsenic targets for neutron capture studies

    International Nuclear Information System (INIS)

    Fassbender, M.; Bach, H.; Bond, E.; Nortier, F.M.; Vieira, D.

    2009-01-01

    A simple method for the electrodeposition of elemental arsenic (As) on a metal backing from aqueous solutions has been developed. The method was successfully applied to stable As ( 75 As). Thin (2.5 mg cm -2 ) coherent, smooth layers of the metalloid on Ti foils (2.5 μm thickness) were obtained. Electrodeposits served as targets for 75 As(n,γ) 76 As neutron capture experiments at Los Alamos Neutron Science Center (LANSCE). Respective 73 As(n,γ) 74 As experiments are planned for the near future, and 73 As targets will be prepared in a similar fashion utilizing the new electrodeposition method. The preparation of an 73 As (half-life 80.3 days) plating bath solution from proton irradiated germanium has been demonstrated. Germanium target irradiation was performed at the Los Alamos Isotope Production Facility (IPF). (author)

  4. Hadroproduction and photoproduction of beauty and charm in fixed-target experiments

    International Nuclear Information System (INIS)

    Slaughter, J.

    1996-01-01

    The authors summarize the current experimental situation for charm and beauty production in fixed-target experiments. Particular emphasis is placed on beauty cross-sections and charm pair correlations

  5. Utilization of the Rutherford backscattering technique for precise measurements of thickness by an alternative procedure

    International Nuclear Information System (INIS)

    Chagas, E.F.

    1985-01-01

    This technique was used to determine the thickness of targets on very thick substrates as this type of target is used a lot in nuclear physics, and especially in γ spectroscpy. The difficulties introduced in this case, occur because of the appearance of a small peak on a very high continuous background, due to the fact that the atomic number of the substrate is bigger than that of the targets. These difficulties are overcome using an alternative procedure to determine precisely the loss of energy of the beam whilst crossing the refered target. Targets of 59 Co, 46-48-50 Ti and 10 B on substrate of Pd and Ta, with thicknesses betwnn 30μg/cm 2 and 500μg/cm 2 were measured with a precision of 5%. The biggest sources of imprecision are the amounts of dE/dX. (Author) [pt

  6. Interferometric measurement of film thickness during bubble blowing

    Science.gov (United States)

    Wang, Z.; Mandracchia, B.; Ferraro, V.; Tammaro, D.; Di Maio, E.; Maffettone, P. L.; Ferraro, P.

    2017-06-01

    In this paper, we propose digital holography in transmission configuration as an effective method to measure the time-dependent thickness of polymeric films during bubble blowing. We designed a complete set of experiments to measure bubble thickness, including the evaluation of the refractive index of the polymer solution. We report the measurement of thickness distribution along the film during the bubble formation process until the bubble`s rupture. Based on those data, the variation range and variation trend of bubble film thickness are clearly measured during the process of expansion to fracture is indicated.

  7. Sentinel lymph node biopsy in thick malignant melanoma: A 16-year single unit experience.

    Science.gov (United States)

    Hunger, Robert E; Michel, Aude; Seyed Jafari, S Morteza; Shafighi, Maziar

    2015-01-01

    The role of sentinel lymph node biopsy (SLNB) and its benefits in patients with thick melanoma is still controversial. We evaluated the clinical effect of SLNB in patients with thick melanoma. We performed a retrospective cohort review (1996-2012) of thick melanomas. Collected data included the patient and tumour characteristics. Locoregional recurrence, distant metastases, disease free and overall survival were compared between the patients with positive and negative SLNB. 126 thick melanomas with a mean age of 64.09 years were included in the study. Positive SLNB were found in 47 (37.3%) patients. Significantly more locoregional recurrence (P = 0.002) and distant metastases (P = 0.030) were detected in the patients with positive SLNB. Furthermore, the patients with negative SLNB showed significantly better disease free survival (P = 0.021). Positive SLNB might be prognostic factor in thick melanoma and aggravates the outcome of thick melanomas.

  8. Equilibrium helium film in the thick film limit

    International Nuclear Information System (INIS)

    Klier, J.; Schletterer, F.; Leiderer, P.; Shikin, V.

    2003-01-01

    For the thickness of a liquid or solid quantum film, like liquid helium or solid hydrogen, there exist still open questions about how the film thickness develops in certain limits. One of these is the thick film limit, i.e., the crossover from the thick film to bulk. We have performed measurements in this range using the surface plasmon resonance technique and an evaporated Ag film deposited on glass as substrate. The thickness of the adsorbed helium film is varied by changing the distance h of the bulk reservoir to the surface of the substrate. In the limiting case, when h > 0, the film thickness approaches about 100 nm following the van der Waals law in the retarded regime. The film thickness and its dependence on h is precisely determined and theoretically modeled. The equilibrium film thickness behaviour is discussed in detail. The agreement between theory and experiment is very good

  9. Simulation of effusion from targets of tilted foils

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Gomes, I.C.

    2004-01-01

    Replacing a target transverse to the beam by a 10 times thinner one tilted at about 6 o from the beam direction reduces the thickness for heat transfer and diffusion by a factor of 10 while keeping the same production thickness. This concept makes the target cool faster and therefore supports higher beam power. Monte-Carlo effusion simulations of targets based on this concept were carried out to find optimum target geometries for both fast and slow diffusion materials

  10. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  11. Electron microbeam specifications for use in cell irradiation experiments

    International Nuclear Information System (INIS)

    Kim, E.-H.; Choi, M.-C.; Lee, D.-H.; Chang, M.; Kang, C.-S.

    2003-01-01

    The microbeam irradiation system was devised originally to identify the hit and unhit cells by confining the beam within the target cell. The major achievement through the microbeam experiment studies has turned out to be the discovery of the 'bystander effect'. Microbeam experiments have been performed with alpha and proton beams in major and with soft x-rays in minor. The study with electron microbeam has been deferred mainly due to the difficulty in confining the electron tracks within a single target cell. In this paper, the electron microbeam irradiation system under development in Korea is introduced in terms of the beam specifications. The KIRAMS electron microbeam irradiation system consists of an electron gun, a vacuum chamber for beam collimation into 5 μm in diameter and a biology stage. The beam characteristics in terms of current and energy spectrum of the electrons entering a target cell and its neighbor cells were investigated by Monte Carlo simulation for the electron source energies of 25, 50, 75 and 100 keV. Energy depositions in the target cell and the neighbor cells were also calculated. The beam attenuation in current and energy occurs while electrons pass through the 2 μm-thick Mylar vacuum window, 100 μm-thick air gap and the 2 μm-thick Mylar bottom of cell dish. With 25 keV electron source, 80 % of decrease in current and 30 % of decrease in average energy were estimated before entering the target cell. With 75 keV electron source, on the other hand, 55 % of decrease in current and less than 1 % of decrease in average energy were estimated. Average dose per single collimated electron emission was 0.067 cGy to the target cell nucleus of 5 μm in diameter and 0.030 cGy to the cytoplasm of 2.5 μm in thickness with 25 keV electron source while they were 0.15 cGy and 0.019 cGy, respectively, with 75 keV electron source. The multiple scattering of electrons resulted in energy deposition in the neighbor cells as well. Dose to the first

  12. Spallation reactions and energy deposition in heavy target materials comparison of measurements and MC-calculations

    International Nuclear Information System (INIS)

    Filges, D.; Enke, M.; Galin, J.

    2001-01-01

    A renascence of interest for energetic proton induced production of neutrons originates recently by the inception of new projects for target stations of intense spallation neutron sources (like the planned European Spallation Source ESS), accelerator-driven nuclear reactors, nuclear waste transmutation and also the application for radioactive beams. Here we verify the predictive power of transport codes currently on the market by confronting observables and quantities of interest with an exhaustive matrix of benchmark data essentially coming from two experiments being performed at the Cooler Synchrotron COSY at Juelich. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin(!) targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target. While also the observables related to the energy deposition in thick targets are in a good agreement with the model predictions, the production cross section measurements however for light charged particles on thin targets point out that problems exist within these models. (author)

  13. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  14. Fabrication Method of the Mo-99 Target with Advanced Planar Flow Casting

    International Nuclear Information System (INIS)

    Sim, M. S.; Lee, J. H.; Kim, C. K.; Kim, W. J.

    2011-01-01

    Mo-99 is a parent isotope of Tc-99m for medical diagnosis and very significant owing to its large fraction over 80% of the whole demand of medical radioisotopes in the all countries. Mo-99 isotope has been produced mainly by 235 U which is extracting fission products. All the major providers of fission Mo have used HEU as a target material. But RERTR program that is nonproliferation policy encourages using HEU to LEU. KAERI has developed a processing to be able to produce a uranium foil continuously at one go. This processing gave an opportunity for LEU target using uranium foil to be commercialized. It correspond RERTR program. KAERI developed a new process of making foil directly from uranium melt by PFC. This process is simple, productive, and cost-effective. But the foil's air-side surface is generally very rough. A typical transverse cross section had a minimum thickness of 65 μm and a maximum thickness of 205 μm. This roughness could affect target fabrication and irradiation behavior. After issuing this problem KAERI launched a further effort since 2008. A new equipment was designed and manufactured in the industry in 2009. While the new equipment being test-operating, some occurrence of appearing problems appeared. Since 2010, Equipment was moved to KAERI, we performed many experiments using depleted uranium, and go get satisfied some results. We have got interesting results and manufactured uranium foil. A typical transverse cross section had a minimum thickness of 87 μm and a maximum thickness of 194 μm. The average thickness is 120 μm as a result of calculation

  15. Accelerating Thick Aluminum Liners Using Pulsed Power

    International Nuclear Information System (INIS)

    Kyrala, G.A.; Hammerburg, J.E.; Bowers, D.; Stokes, J.; Morgan, D.V.; Anderson, W.E.; Cochrane, J.C.

    1999-01-01

    The authors have investigated the acceleration of very thick cylindrical aluminum liners using the Pegasus II capacitory bank. These accelerated solid liners will be used to impact other objects at velocities below 1.5 km/sec, allowing one to generate and sustain shocks of a few 100 kilobar for a few microseconds. A cylindrical shell of 1100 series aluminum with an initial inner radius of 23.61 mm, an initial thickness of 3.0 mm, and a height of 20 mm, was accelerated using a current pulse of 7.15 MA peak current and a 7.4 microsecond quarter cycle time. The aluminum shell was imploded within confining copper glide planes with decreasing separation with an inward slope of 8 degrees. At impact with a cylindrical target of diameter 3-cm, the liner was moving at 1.4 km/sec and its thickness increased to 4.5 mm. Radial X-ray radiograms of the liner showed both the liner and the glide plane interface. The curvature of the inner surface of the liner was measured before impact with the 15-mm radius target. The radiograms also showed that the copper glide planes distorted as the liner radius decreased and that some axial stress is induced in the liner. The axial stresses did not affect the inner curvature significantly. Post-shot calculations of the liner behavior indicated that the thickness of the glide plane played a significant role in the distortion of the interface between the liner and the glide plane

  16. Injector design for liner-on-target gas-puff experiments

    Science.gov (United States)

    Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  17. Introduction to charm decay analysis in fixed target experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bediaga, Ignacio; Goebel, Carla

    1996-01-01

    We present an introduction to data analysis in Experimental High Energy Physics, and some concepts and useful tools are discussed. To illustrate, we use the data of E-791, a fixed target experiment recently realized at Fermilab. In particular, we analyse decay modes of D{sup +} meson with three charged particles in the final state. (author). 8 refs., 22 figs., 1 tab.

  18. Introduction to charm decay analysis in fixed target experiments

    International Nuclear Information System (INIS)

    Bediaga, Ignacio; Goebel, Carla.

    1996-01-01

    We present an introduction to data analysis in Experimental High Energy Physics, and some concepts and useful tools are discussed. To illustrate, we use the data of E-791, a fixed target experiment recently realized at Fermilab. In particular, we analyse decay modes of D + meson with three charged particles in the final state. (author). 8 refs., 22 figs., 1 tab

  19. The SPS Target Station for CHORUS and NOMAD Neutrino Experiments

    CERN Document Server

    Péraire, S; Zazula, J M

    1996-01-01

    A new SPS target station, T9, has been constructed for the CHORUS and NOMAD neutrino experiments at CERN. The heart of the station is the target box : 11 beryllium rods are aligned in a cast aluminium box ; they are cooled by a closed circuit helium gas with adjusted flow to each rod. The box is motorised horizontally and vertically at both ends, to remotely optimise the secondary particle production by aligning the target with the incident proton beam. Radiation protection around the station is guaranteed by more than 100 tons of shielding material (iron, copper, marble). This presentation describes briefly the various components of the target station ; it emphasises particularly the thermal and mechanical calculations which define a safe maximum beam intensity on the beryllium rods. Over the first two years of successful operation, the station has received more than 2€1019 protons at 450 GeV/c, with intensity peaks of 2.8€1013 protons per machine cycle.

  20. Scattering from extended targets in range-dependent fluctuating ocean-waveguides with clutter from theory and experiments.

    Science.gov (United States)

    Jagannathan, Srinivasan; Küsel, Elizabeth T; Ratilal, Purnima; Makris, Nicholas C

    2012-08-01

    Bistatic, long-range measurements of acoustic scattered returns from vertically extended, air-filled tubular targets were made during three distinct field experiments in fluctuating continental shelf waveguides. It is shown that Sonar Equation estimates of mean target-scattered intensity lead to large errors, differing by an order of magnitude from both the measurements and waveguide scattering theory. The use of the Ingenito scattering model is also shown to lead to significant errors in estimating mean target-scattered intensity in the field experiments because they were conducted in range-dependent ocean environments with large variations in sound speed structure over the depth of the targets, scenarios that violate basic assumptions of the Ingenito model. Green's theorem based full-field modeling that describes scattering from vertically extended tubular targets in range-dependent ocean waveguides by taking into account nonuniform sound speed structure over the target's depth extent is shown to accurately describe the statistics of the targets' scattered field in all three field experiments. Returns from the man-made targets are also shown to have a very different spectral dependence from the natural target-like clutter of the dominant fish schools observed, suggesting that judicious multi-frequency sensing may often provide a useful means of distinguishing fish from man-made targets.

  1. Determination of the temperature of bremsstrahlung photon generated by ultraintense laser using various thickness attenuators

    International Nuclear Information System (INIS)

    Hasegawa, Shuichi; Takashima, Ryuta; Todoriki, Masaru; Kikkawa, Satoshi; Soda, Keita; Takano, Kei; Oishi, Yuji; Nayuki, Takuya; Fujii, Takashi; Nemoto, Koshichi

    2011-01-01

    We evaluate the simplified method using the Lambert-Beer law to measure the temperature of bremsstrahlung photon generated by an ultraintense laser. Analytical values are compared to the results of the Monte Carlo calculation of GEANT4 and they agreed very well on the condition of the appropriate distance between the attenuator and the detector. We performed the experiment to measure the temperature of bremsstrahlung x-ray emitted from a metal target irradiated by a Ti:sapphire laser with 76 mJ, 72 fs, 2.2 x 10 18 W/cm 2 . For a Cu target of 30 μm thick, the photon temperature was reasonably determined to be 0.18 MeV, which is in good agreement with previous studies.

  2. Status of the hydrogen and deuterium atomic beam polarized target for NEPTUN experiment

    International Nuclear Information System (INIS)

    Balandikov, N.I.; Ershov, V.P.; Fimushkin, V.V.; Kulikov, M.V.; Pilipenko, Y.K.; Shutov, V.B.

    1995-01-01

    NEPTUN-NEPTUN-A is a polarized experiment at Accelerating and Storage Complex (UNK, IHEP) with two internal targets. Status of the atomic beam polarized target that is being developed at the Joint Institute for Nuclear Research, Dubna is presented. copyright 1995 American Institute of Physics

  3. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  4. Integrated Laser-Target Interaction Experiments on the RAL Petawatt Laser

    International Nuclear Information System (INIS)

    Patel, P. K.; Key, M. H.; Mackinnon, A. J.; Akli, K.; Berry, R.; Borghesi, M.; Brummit, P. A.; Chambers, D.; Clarke, R. J.; Damian, C.; Chen, H.; Eagleton, R.; Freeman, R.; Glenzer, S.; Gregori, G.; Heathcote, R.; Izumi, N.; Kar, S.; King, J. A.; Kock, J.; Kuba, J.; May, M.; Moon, S.; Neely, D.; Neville, D. R.; Nikroo, A.; Niles, A.; Pasley, J.; Patel, N.; Park, H. S.; Romagnani, L.; Shepherd, R.; Snavely, R. A.; Stephens, R.; Stoeckl, C.; Storm, M.; Theobald, W.; Van Maren, R.; Wilks, S. C.; Zhang, B.

    2005-01-01

    We report on two recent experimental campaigns performed on the new Petawatt laser at the Rutherford Appleton Laboratory in the UK.The laser has recently demonstrated performance characteristics of 400 J of laser energy being delivered on target in a sub 400 fs pulse, reaching a peak focal intensity on the order of 10''21 W/cm''2. The experiments covered multiplic areas of investigation including hot electron transport in planar foil and cone focus geometries, relativistic laser-solid interactions proton beam focusing and heating, and high energy K-alpha production and radiography. A somewhat novel approach was taken to the experiments in that all of the diagnostics required for the different areas of study were fielded simultaneously and operated on all shots. Thus, we were able to obtain extensive sets of measurements on a single-shot basis which provides significant benefit to our understanding of the laser-target interaction conditions and plasma properties. (Author)

  5. A study on fracture characteristic of aluminum foam by thickness

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Teng [Dept. of Mechanical Engineering, Graduate School, Kongju National University, Kongju (Korea, Republic of); Cho, Jae Ung [Div. of Mechanical and Automotive Engineering, Kongju National University, Kongju (Korea, Republic of)

    2015-10-15

    Because foam metal has the excellent physical characteristics and mechanical performance, they are applied extensively into a lot of advanced technology areas. The aluminum foam with closed cell is one of the foam metals. It is applied widely into automobile and airplane because of the excellent absorption performance of impact energy. In this study, the mechanical characteristics by thickness was analyzed through the impact experiment of closed-cell aluminum foam, and the simulation analysis was performed for the verification. As the simulation analysis method, a finite-element analysis was carried under the same boundary conditions as the experiment by using ANSYS. By comparing with the results of experiment and simulation, it was thought that the case of thickness of 20 mm was the most efficient of among the cases of thicknesses of 10 mm, 20 mm and 30 mm. At the case of thickness of 20 mm, the absorption energy by comparing with the specimen thickness is shown to become the most among three models. By using the result of this study, it is thought that it can apply the material necessary to develop the mechanical structure with aluminum foam.

  6. The powder targets of hard materials for neutron halo studies

    International Nuclear Information System (INIS)

    Stolarz, A.

    1997-01-01

    The powder sedimentation from a glue solution has been used for preparation of the thick targets of high melting point elements. This technique is particularly suitable for expensive enriched isotopic materials available in very limited amount. The targets of 96 Ru, 104 Ru, 130 Te, 183 W, 192 Os with thickness range of 25-65 mg/cm 2 were prepared by this method. The target thickness uniformity was examined by X-ray absorption and variations less than 10% were found. (orig.)

  7. Thickness measurement by using cepstrum ultrasonic signal processing

    International Nuclear Information System (INIS)

    Choi, Young Chul; Yoon, Chan Hoon; Choi, Heui Joo; Park, Jong Sun

    2014-01-01

    Ultrasonic thickness measurement is a non-destructive method to measure the local thickness of a solid element, based on the time taken for an ultrasound wave to return to the surface. When an element is very thin, it is difficult to measure thickness with the conventional ultrasonic thickness method. This is because the method measures the time delay by using the peak of a pulse, and the pulses overlap. To solve this problem, we propose a method for measuring thickness by using the power cepstrum and the minimum variance cepstrum. Because the cepstrums processing can divides the ultrasound into an impulse train and transfer function, where the period of the impulse train is the traversal time, the thickness can be measured exactly. To verify the proposed method, we performed experiments with steel and, acrylic plates of variable thickness. The conventional method is not able to estimate the thickness, because of the overlapping pulses. However, the cepstrum ultrasonic signal processing that divides a pulse into an impulse and a transfer function can measure the thickness exactly.

  8. Preliminary investigation of solid target geometry

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Katsuhiro; Kaminaga, Masanori; Hino, Ryutaro; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shafiqul, I.M.; Tsuji, Nobumasa; Okamoto, Hutoshi; Kumasaka, Katsuyuki; Hayashi, Katsumi

    1997-11-01

    In this report, we introduce the developing plan for a solid metal target structure. Supposing tantalum as the target material, the temperature distribution and the maximum thermal stress in a tantalum plate of a solid metal target was evaluated under a water cooling condition, using the heat generation rate calculated with the JAERI`s neutron transport code. The calculation results showed that the water velocity was higher than 10 m/s in order to cool the 3mm-thick target plate down to 200degC when the target surface was smooth and heat transfer rate was calculated with the Dittus-Boelter equation. In this case, the maximum thermal stress is 50 MPa at the target plate surface. The coolant water flow distribution in a target vessel was also evaluated for ISIS-type flow channels and the parallel flow channels. In the ISIS-type flow channels, at least 25mm height of the coolant plenum is needed for a uniform flow distribution. The maximum flow velocity difference between the flow gaps in the parallel flow channels was 30%. A heat transfer augmentation experiment was conducted using ribbed-surface flow channel. The heat transfer rate was confirmed to increase up to twice the value of that for a smooth surface. (author)

  9. A super fixed target beauty experiment at the SSC

    International Nuclear Information System (INIS)

    Spiegel, L.; Murphy, C.T.; Cox, B.; Arenton, M.; Conetti, S.; Corti, G.; Dukes, C.; Golovatyuk, V.; Lawry, T.; McManus, A.

    1993-01-01

    The observation and precision measurement of CP violation asymmetries and the phase of the CKM matrix is a major objective of B experiments at the SSC. The yields of reconstructed and tagged B decays and the various factors which minimize the dilution factors make measurements of CP asymmetries in the fixed target option known as the SFT more than competitive with much more expensive hadron collider experiments and significantly better than asymmetric e + e - B factories. Moreover, the superior time resolution possible in the SFT configuration allows a precision in the measurement of the CKM matrix element phases possible with the SFT option for various B decay modes

  10. High gain direct drive target designs and supporting experiments with KrF

    International Nuclear Information System (INIS)

    Karasik, Max; Bates, Jason W.; Aglitskiy, Yefim

    2013-01-01

    Krypton-fluoride laser is an attractive inertial fusion energy driver from the standpoint of target physics. Target designs taking advantage of zooming, shock ignition, and favorable physics with KrF reach energy gains of 200 with sub-MJ laser energy. The designs are robust under 2D simulations. Experiments on the Nike KrF laser support the physics basis. (author)

  11. First Nuclear Reaction Experiment with Stored Radioactive 56Ni Beam and Internal Hydrogen and Helium Targets

    NARCIS (Netherlands)

    Egelhof, P.; Bagchi, Soumya; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Furuno, T; Geissel, H.; Gernhauser, R.; Kalantar-Nayestanaki, Nasser; Kuilman, M.; Mahjour-Shafiei, M.; Najafi, M.A.; Rigollet, C.; Streicher, B.

    2014-01-01

    The investigation of light-ion induced direct reactions using stored and cooled radioactive beams, interacting with internal targets of storage rings, can lead to substantial advantages over external target experiments, in particular for direct reaction experiments in inverse kinematics at very low

  12. Laboratory facility for production of cryogenic targets for hot plasma experiments

    International Nuclear Information System (INIS)

    Sadowski, M.; Szydlowski, A.; Jakubowski, L.; Cwiek, E.

    1990-10-01

    Results of preliminary operational tests of the cryogenic stand designed for the production of small droplets of liquid hydrogen or deuterium are presented. Such cryogenic micro-targets are needed for nuclear and thermonuclear experiments. (author)

  13. Development of a plutonium ceramic target for the MASHA separator

    Energy Technology Data Exchange (ETDEWEB)

    Shaughnessy, D.A.; Moody, K.J.; Kenneally, J.M.; Wild, J.F.; Stoyer, M.A.; Lougheed, R.W.; Yeremin, A.V.; Oganessian, Yu.Ts

    2004-04-05

    We are participating in the development of the target for the MASHA (Mass Analyzer of Super Heavy Atoms) on-line mass separator in Dubna. Along with recent upgrades of the U400 cyclotron, MASHA will provide for at least a ten-fold increase in the production- and-detection rate for element 114 atoms, and will allow us to measure their atomic masses precisely. The MASHA separator will employ a thick Pu ceramic target capable of tolerating temperatures in the vicinity of 2000 C without vaporizing the actinide compound. Reaction products will diffuse out of the target and will drift to an ECR ion source after which they will be transported through the separator and will impinge on a position-sensitive focal-plane detector array. Furthermore, operation of the MASHA hot target/ion source combination will provide chemical volatility information that will support our assignment of an atomic number of 114 to these nuclei. Taken together, these experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments in which the chemical properties of the heaviest elements are studied.

  14. Development of a Plutonium Ceramic Target for the MASHA Separator

    Science.gov (United States)

    Shaughnessy, D. A.; Moody, K. J.; Kenneally, J. M.; Wild, J. F.; Stoyer, M. A.; Lougheed, R. W.; Yeremin, A. V.; Oganessian, Yu. Ts.

    2004-04-01

    We are participating in the development of the target for the MASHA (Mass Analyzer of Super Heavy Atoms) on-line mass separator in Dubna. Along with recent upgrades of the U400 cyclotron, MASHA will provide for at least a ten-fold increase in the production- and-detection rate for element 114 atoms, and will allow us to measure their atomic masses precisely. The MASHA separator will employ a thick Pu ceramic target capa- ble of tolerating temperatures in the vicinity of 2000 C without vaporizing the actinide compound. Reaction products will diffuse out of the target and will drift to an ECR ion source after which they will be transported through the separator and will impinge on a position-sensitive focal-plane detector array. Furthermore, operation of the MASHA hot target/ion source combination will provide chemical volatility information that will support our assignment of an atomic number of 114 to these nuclei. Taken together, these experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments in which the chemical properties of the heaviest elements are studied.

  15. Development of a plutonium ceramic target for the MASHA separator

    International Nuclear Information System (INIS)

    Shaughnessy, D.A.; Moody, K.J.; Kenneally, J.M.; Wild, J.F.; Stoyer, M.A.; Lougheed, R.W.; Yeremin, A.V.; Oganessian, Yu.Ts.

    2004-01-01

    We are participating in the development of the target for the MASHA (Mass Analyzer of Super Heavy Atoms) on-line mass separator in Dubna. Along with recent upgrades of the U400 cyclotron, MASHA will provide for at least a ten-fold increase in the production- and-detection rate for element 114 atoms, and will allow us to measure their atomic masses precisely. The MASHA separator will employ a thick Pu ceramic target capable of tolerating temperatures in the vicinity of 2000 C without vaporizing the actinide compound. Reaction products will diffuse out of the target and will drift to an ECR ion source after which they will be transported through the separator and will impinge on a position-sensitive focal-plane detector array. Furthermore, operation of the MASHA hot target/ion source combination will provide chemical volatility information that will support our assignment of an atomic number of 114 to these nuclei. Taken together, these experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments in which the chemical properties of the heaviest elements are studied

  16. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, M., E-mail: osipenko@ge.infn.it [INFN, sezione di Genova, 16146 Genova (Italy); Ripani, M. [INFN, sezione di Genova, 16146 Genova (Italy); Alba, R. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Ricco, G. [INFN, sezione di Genova, 16146 Genova (Italy); Schillaci, M. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Barbagallo, M. [INFN, sezione di Bari, 70126 Bari (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Celentano, A. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy); Colonna, N. [INFN, sezione di Bari, 70126 Bari (Italy); Cosentino, L.; Del Zoppo, A.; Di Pietro, A. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Esposito, J. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Figuera, P.; Finocchiaro, P. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Kostyukov, A. [Moscow State University, Moscow 119992 (Russian Federation); Maiolino, C.; Santonocito, D.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Viberti, C.M. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy)

    2013-09-21

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a {sup 3}He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  17. Dynamically polarized hydrogen target as a broadband, wavelength-independent thermal neutron spin polarizer

    International Nuclear Information System (INIS)

    Zhao Jinkui; Garamus, Vasil M.; Mueller, Wilhelm; Willumeit, Regine

    2005-01-01

    A hydrogen-rich sample with dynamically polarized hydrogen nuclei was tested as a wavelength-independent neutron transmission spin polarizer. The experiment used a modified setup of the dynamic nuclear polarization target station at the GKSS research center. The standard solvent sample at the GKSS DNP station was used. It is 2.8mm thick and consists of 43.4wt% water, 54.6wt% glycerol, and 2wt% of EHBA-Cr(v) complex. The wavelength of the incident neutrons for the transmission experiment was λ=8.1A with Δλ/λ=10%. The polarization of neutron beam after the target sample was analyzed with a supermirror analyzer. A neutron polarization of -52% was achieved at the hydrogen polarization of -69%. Further experiments will test the feasibility of other hydrogen-rich materials, such as methane, as the polarizer. A theoretical calculation shows that a polarized methane target would allow over 95% neutron polarizations with more than 30% transmission

  18. Energy deposition in a thin copper target downstream and off-axis of a proton-radiography target

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.; Snead, C.L.; Hanson, A.L.; Murray, M.M.

    2002-01-01

    A series of proton energy-deposition experiments was conducted to measure the energy deposited in a copper target located downstream and off-axis of a high-energy proton-radiography target. The proton/target interactions involved low-intensity bunches of protons at 24 GeV/c onto a spherical target consisting of concentric shells of tungsten and copper. The energy-deposition target was placed at five locations downstream of the proton-radiography target, off-axis of the primary beam transport, and was either unshielded or shielded by 5 or 10 cm of lead. Maximum temperature rises measured in the energy-deposition target due to single bunches of 5x10 10 protons on the proton-radiography target were approximately 20 mK per bunch. The data indicated that the scattered radiation was concentrated close to the primary transport axis of the beam line. The energy deposited in the energy-deposition target was reduced by moving the target radially away from the primary transport axis. Placing lead shielding in front of the target further reduced the energy deposition. The measured temperature rises of the energy-deposition target were empirically correlated with the distance from the source, the number of protons incident on the proton-radiography target, the thickness of the lead shielding, and the angle of the energy-deposition target off-axis of the beam line from the proton-radiography target. The correlation of the experimental data that was developed provides a starting point for the evaluation of the shielding requirements for devices downstream of proton-radiography targets such as superconducting magnets

  19. Cryogenic-laser-fusion target implosion studies performed with the OMEGA uv-laser system

    International Nuclear Information System (INIS)

    Marshall, F.J.; Letzring, S.A.; Verdon, C.P.; Skupsky, S.; Keck, R.L.; Knauer, J.P.; Kremens, R.L.; Bradley, D.K.; Kessler, T.; Delettrez, J.; and others.

    1989-01-01

    A series of direct-drive laser-fusion implosion experiments was performed on cryogenically cooled, DT-filled glass microballoons with the OMEGA 24-beam uv (351-nm) laser system. The targets consisted of glass microballoons having radii of 100 to 150 μm, wall thicknesses of 3 to 7 μm, filled with DT gas at pressures of 75 to 100 atm. The targets were cooled to below the freezing point of DT, in situ, by a cryogenic target system. The targets were irradiated by approximately 1 to 1.2 kJ of uv light in 650-ps Gaussian pulses. The on-target irradiation uniformity was enhanced for these experiments by the use of distributed phase plates, which brought the estimated irradiation nonuniformities to ∼12% (σ rms ). Target performance was diagnosed by an array of x-ray, plasma, and nuclear instruments. The measured target performance showed ∼70% absorption, thermonuclear yields of 10 6 to 10 8 neutrons, and final fuel areal densities of 20 to 40 mg/cm 2 for the optimum targets examined in these experiments. Fuel densities at the time of thermonuclear neutron production, inferred from direct measurements of the fuel areal density, were in the range of 20 to 50 g/cm 3 (100 to 200 times the density of liquid DT) for the optimum targets

  20. Quarkonium Physics at a Fixed-Target Experiment Using the LHC Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lansberg, J.P.; /Orsay, IPN; Brodsky, S.J.; /SLAC; Fleuret, F.; /Ecole Polytechnique; Hadjidakis, C.; /Orsay, IPN

    2012-04-09

    We outline the many quarkonium-physics opportunities offered by a multi-purpose fixed-target experiment using the p and Pb LHC beams extracted by a bent crystal. This provides an integrated luminosity of 0.5 fb{sup -1} per year on a typical 1cm-long target. Such an extraction mode does not alter the performance of the collider experiments at the LHC. With such a high luminosity, one can analyse quarkonium production in great details in pp, pd and pA collisions at {radical}s{sub NN} {approx_equal} 115 GeV and at {radical}s{sub NN} {approx_equal} 72 GeV in PbA collisions. In a typical pp (pA) run, the obtained quarkonium yields per unit of rapidity are 2-3 orders of magnitude larger than those expected at RHIC and about respectively 10 (70) times larger than for ALICE. In PbA, they are comparable. By instrumenting the target-rapidity region, the large negative-x{sub F} domain can be accessed for the first time, greatly extending previous measurements by Hera-B and E866. Such analyses should help resolving the quarkonium-production controversies and clear the way for gluon PDF extraction via quarkonium studies. The nuclear target-species versatility provides a unique opportunity to study nuclear matter and the features of the hot and dense matter formed in PbA collisions. A polarised proton target allows the study of transverse-spin asymmetries in J/{Psi} and {Upsilon} production, providing access to the gluon and charm Sivers functions.

  1. Radiological safety design considerations for fusion research experiments

    International Nuclear Information System (INIS)

    Crase, K.W.; Singh, M.S.

    1979-01-01

    A wide variety of fusion research experiments are in the planning or construction stages. Two such experiments, the Nova Laser Fusion Facility and the Mirror Fusion Test Facility (MFTF), are currently under construction at Lawrence Livermore Laboratory. Although the plasma chamber vault for MFTF and the Nova target room will have thick concrete walls and roofs, the radiation safety problems are made complex by the numerous requirements for shield wall penetrations. This paper addresses radiation safety considerations for the MFTF and Nova experiments, and the need for integrated safety considerations and safety technology development during the planning stages of fusion experiments

  2. Target characterization by PIXE, alpha spectrometry and X-ray absorption

    International Nuclear Information System (INIS)

    Kheswa, N.Y.; Papka, P.; Pineda-Vargas, C.A.; Newman, R.T.

    2011-01-01

    We report on the thickness and homogeneity characterization of thin metallic targets of Zr-96 by means of alpha absorption spectrometry, Particle Induced X-ray Emission (PIXE) and X-ray absorption. The target thicknesses determined by means of the above mentioned methods are critically compared. The thicknesses were determined before and after irradiation with a 70 MeV beam of 14 N ions.

  3. [Endoscopic full-thickness resection].

    Science.gov (United States)

    Meier, B; Schmidt, A; Caca, K

    2016-08-01

    Conventional endoscopic resection techniques such as endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD) are powerful tools for the treatment of gastrointestinal (GI) neoplasms. However, those techniques are limited to the superficial layers of the GI wall (mucosa and submucosa). Lesions without lifting sign (usually arising from deeper layers) or lesions in difficult anatomic positions (appendix, diverticulum) are difficult - if not impossible - to resect using conventional techniques, due to the increased risk of complications. For larger lesions (>2 cm), ESD appears to be superior to the conventional techniques because of the en bloc resection, but the procedure is technically challenging, time consuming, and associated with complications even in experienced hands. Since the development of the over-the-scope clips (OTSC), complications like bleeding or perforation can be endoscopically better managed. In recent years, different endoscopic full-thickness resection techniques came to the focus of interventional endoscopy. Since September 2014, the full-thickness resection device (FTRD) has the CE marking in Europe for full-thickness resection in the lower GI tract. Technically the device is based on the OTSC system and combines OTSC application and snare polypectomy in one step. This study shows all full-thickness resection techniques currently available, but clearly focuses on the experience with the FTRD in the lower GI tract.

  4. X-ray absorption in characterization of laser fusion targets

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine, J.P.; Rouillard, R.

    1982-11-01

    Many plastic or metal coated targets are opaque, so their thickness and thickness uniformity cannot be obtained by optical means. Therefore, we have built and tested a new system using monochromatic X-ray absorption measurements. This system is also able to perform non-destructive measurements of argon fill pressure in glass microballoons. The X-ray source is a diffraction tube with a chromium target and fine focus (0.4 x 0.8 mm 2 ). Since monochromatic calculations are involved in this method, we use electronic discrimination to isolate the chromium Kα line (5.4 keV) from the bremsstrahlung spectrum. The detectors are xenon-filled proportional counters. The system is composed of two beams (10 μm in diameter), one used as a reference and the other as the measurement arm. A PET desk computer is coupled ot the experiment. We achieved a precision better than 10% for gold layers in the range of 0.1 to 1 μm, and better than 20% for argon pressures in the range of 5 - 13 bars

  5. REACTION RATE SENSITIVITY OF 44Ti PRODUCTION IN MASSIVE STARS AND IMPLICATIONS OF A THICK TARGET YIELD MEASUREMENT OF 40Ca(α, γ)44Ti

    International Nuclear Information System (INIS)

    Hoffman, R. D.; Sheets, S. A.; Burke, J. T.; Scielzo, N. D.; Norman, E. B.; Tumey, S.; Brown, T. A.; Grant, P. G.; Hurst, A. M.; Stoyer, M. A.; Wooddy, T.; Fisker, J. L.; Bleuel, D.; Rauscher, T.; Phair, L.

    2010-01-01

    We evaluate two dominant nuclear reaction rates and their uncertainties that affect 44 Ti production in explosive nucleosynthesis. Experimentally we develop thick target yields for the 40 Ca(α, γ) 44 Ti reaction at E α = 4.13, 4.54, and 5.36 MeV using γ-ray spectroscopy. At the highest beam energy, we also performed an activation measurement which agrees with the thick target result. From the measured yields a stellar reaction rate was developed that is smaller than current statistical-model calculations and recent experimental results, which would suggest lower 44 Ti production in scenarios for the α-rich freezeout. Special attention has been paid to assessing realistic uncertainties of stellar reaction rates produced from a combination of experimental and theoretical cross sections. With such methods, we also develop a re-evaluation of the 44 Ti(α, p) 47 V reaction rate. Using these two rates we carry out a sensitivity survey of 44 Ti synthesis in eight expansions representing peak temperature and density conditions drawn from a suite of recent supernova explosion models. Our results suggest that the current uncertainty in these two reaction rates could lead to as large an uncertainty in 44 Ti synthesis as that produced by different treatments of stellar physics.

  6. Investigation of thick-target neutron emission from Be-9(d,n)B-10 at E/sub d/ = 7 MeV for angles other than zero degrees

    International Nuclear Information System (INIS)

    Smith, D.L.; Meadows, J.W.; Guenther, P.T.

    1985-01-01

    Double-differential measurements of neutron emission from a thick beryllium target bombarded with 7-MeV deuterons are made for neutrons above 800 keV, over the angular range of 0 to 155 0 . The angular dependence of the neutron yield is found to be quite anisotropic. The importance of this anisotropy in integral neutron-induced reaction cross-section investigations is illustrated. 7 refs.,

  7. Rainfall and wet and dry cycle's impact on ash thickness. A laboratory experiment

    Science.gov (United States)

    Pereira, Paulo; Keestra, Saskia; Peters, Piet; Cerdà, Artemi

    2016-04-01

    AFR, BSR and ASR. The results showed that AFR, ash thickness was reduced by 7.97% (±18.13) and 32.02 % (±37.44) in the Oak ash produced at 200 C (Oak 200) and 400 C (Oak 400), respectively. The spruce ash layer produced at 200 (Spruce 200) decreased 7.26% (±15.11) and 13.11 % (±18.40) in the ash produced at 400 C (Spruce 400). Before the second rainfall we identified that Oak 200 ash layer reduced approximately 15.95 (±15.81) while Oak 400 decreased 47.98% (±28.97). Spruce 200 ash layer was reduced by 14.52 (±14.57) and Spruce 400 by 18.68 (±17.54). In the last rainfall experiment, it was observed that Oak 200 ash layer decreased 14.88 (±14.09) and Oak 400 ash layer 44.52 (±28.85). Spruce 200 ash layer reduced 13.10 (±14.76) and spruce 400 18.33 (±21.69). The spatial pattern (assessed with Moran's I index) of the ash later of Oak 200 and Oak 400 AFR was significantly clustered (p0.05) and Spruce 400 significantly clustered (pManagement Group from Wageningen University, The Netherlands for provide the infrastructure to develop this work, to the RECARE project (grant agreement n° 603498), and to the COST action ES1306: Connecting European Connectivity Research for funding a STSM at the Wageningen University. References Bodi, M., Martin, D.A., Santin, C., Balfour, V., Doerr, S.H., Pereira, P., Cerda, A., Mataix-Solera, J. (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. Bodi, M.B., Doerr, S.H., Cerda, A., Mataix-Solera, J. (2013) Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma, 191, 14-23. Cerdà, A., Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt

  8. Fast neutron dose equivalent rates in heavy ion target areas

    Energy Technology Data Exchange (ETDEWEB)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas.

  9. Fast neutron dose equivalent rates in heavy ion target areas

    International Nuclear Information System (INIS)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas

  10. Implosion of multilayered cylindrical targets driven by intense heavy ion beams.

    Science.gov (United States)

    Piriz, A R; Portugues, R F; Tahir, N A; Hoffmann, D H H

    2002-11-01

    An analytical model for the implosion of a multilayered cylindrical target driven by an intense heavy ion beam has been developed. The target is composed of a cylinder of frozen hydrogen or deuterium, which is enclosed in a thick shell of solid lead. This target has been designed for future high-energy-density matter experiments to be carried out at the Gesellschaft für Schwerionenforschung, Darmstadt. The model describes the implosion dynamics including the motion of the incident shock and the first reflected shock and allows for calculation of the physical conditions of the hydrogen at stagnation. The model predicts that the conditions of the compressed hydrogen are not sensitive to significant variations in target and beam parameters. These predictions are confirmed by one-dimensional numerical simulations and thus allow for a robust target design.

  11. In silico design of targeted SRM-based experiments

    Directory of Open Access Journals (Sweden)

    Nahnsen Sven

    2012-11-01

    Full Text Available Abstract Selected reaction monitoring (SRM-based proteomics approaches enable highly sensitive and reproducible assays for profiling of thousands of peptides in one experiment. The development of such assays involves the determination of retention time, detectability and fragmentation properties of peptides, followed by an optimal selection of transitions. If those properties have to be identified experimentally, the assay development becomes a time-consuming task. We introduce a computational framework for the optimal selection of transitions for a given set of proteins based on their sequence information alone or in conjunction with already existing transition databases. The presented method enables the rapid and fully automated initial development of assays for targeted proteomics. We introduce the relevant methods, report and discuss a step-wise and generic protocol and we also show that we can reach an ad hoc coverage of 80 % of the targeted proteins. The presented algorithmic procedure is implemented in the open-source software package OpenMS/TOPP.

  12. The HypHI Phase 0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.R. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Inst. fuer Kernphysik, Johannes Gutenberg Univ. Mainz, J.J.Becherweg 45, 55099 Mainz (Germany)], E-mail: t.saito@gsi.de; Bianchin, S. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Borodina, O. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Inst. fuer Kernphysik, Johannes Gutenberg Univ. Mainz, J.J. Becherweg 45, 55099 Mainz (Germany); Bozkurt, V.; Goekuezuem, B. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Dept. of Physics, Nigde Univ., 51100 Nigde (Turkey); Kavatsyuk, M. [KVI, Zernikelaan 25, NL-9747 AA Groningen (Netherlands); Kim, E. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Dept. of Physics and Astronomy, Seoul National Univ., Gwanakro Sillim-dong, Gwanak-gu, Seoul 151-747 (Korea, Republic of); Minami, S. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Nakajima, D. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Dept. of Physics, Graduate School of Science, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ozel-Tashenov, B. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Rappold, C. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Univ. Louis Pasteur Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg Cedex (France); Achenbach, P. [Inst. fuer Kernphysik, Johannes Gutenberg Univ. Mainz, J.J.Becherweg 45, 55099 Mainz (Germany); Ajimura, S. [Research Center for Nuclear Physics (RCNP), 10-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Aumann, T.; Caesar, C. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany)] (and others)

    2010-04-01

    The HypHI Phase 0 experiment to demonstrate the feasibility of precise hypernuclear spectroscopy with induced reactions of heavy ion beams was performed at GSI in August and October in 2009, with a projectile of {sup 6}Li at 2 A GeV impinged on carbon graphite target with a thickness of 8 g/cm{sup 2}. The experiment mainly aims to reconstruct events of {sup 3}{sub {lambda}}H, {sup 4}{sub {lambda}}H and {sup 5}{sub {lambda}}He by observing the {pi}{sup -} decay channel. Details of the HypHI Phase 0 experiment performed in August in 2009 will be discussed.

  13. Targeting Inflation in a Dollarized Economy: The Peruvian Experience

    OpenAIRE

    Adrián Armas; Francisco Grippa

    2005-01-01

    This discusses the unique experience of Peru`s Central Bank with inflation targeting in an economy characterized by a high degree of financial dollarization. The paper outlines how Peru has taken financial dollarization into consideration in the design of monetary policy, then deals with monetary policy implementation and the Central Bank`s strategy for controlling financial dollarization risks. The paper concludes with analysis and lessons drawn from the Peruvian case.

  14. Process simulations for manufacturing of thick composites

    Science.gov (United States)

    Kempner, Evan A.

    The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure

  15. Aberration design of zoom lens systems using thick lens modules.

    Science.gov (United States)

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  16. Fabrication Method of the Mo-99 Target with Advanced Planar Flow Casting

    Energy Technology Data Exchange (ETDEWEB)

    Sim, M. S.; Lee, J. H. [Chungnam University, Green Energy Technology, Daejeon (Korea, Republic of); Kim, C. K.; Woo, Y. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Mo-99 is a parent isotope of Tc-99m for medical diagnosis and very significant owing to its large fraction over 80% of the whole demand of medical radioisotopes in the all countries. Mo-99 isotope has been produced mainly by {sup 235}U which is extracting fission products. All the major providers of fission Mo have used HEU as a target material. But RERTR program that is non-proliferation policy encourages using HEU to LEU. KAERI has developed a processing to be able to produce a uranium foil continuously at one go. This processing gave an opportunity for LEU target using uranium foil to be commercialized. It correspond RERTR program. KAERI developed a new process of making foil directly from uranium melt by PFC. This process is simple, productive, and cost-effective. But the foil{center_dot}{center_dot}{center_dot}s air-side surface is generally very rough. A typical transverse cross section had a minimum thickness of 65 {mu}m and a maximum thickness of 205 {mu}m. This roughness could affect target fabrication and irradiation behavior. After issuing this problem KAERI launched a further effort since 2008. A new equipment was designed and manufactured in the industry in 2009. While the new equipment being test-operating, some occurrence of appearing problems appeared. Since 2010, Equipment was moved to KAERI, we performed many experiments using depleted uranium, and go get satisfied some results. We have got interesting results and manufactured uranium foil. A typical transverse cross section had a minimum thickness of 87 {mu}m and a maximum thickness of 194 {mu}m. However, the average thickness is 130 {mu}m as a result of measurement by a micrometer

  17. The effect of thickness in the through-diffusion experiment. Final report

    International Nuclear Information System (INIS)

    Valkiainen, M.; Aalto, H.; Lehikoinen, J.; Uusheimo, K.

    1996-01-01

    The report contains an experimental study of diffusion in the water-filled pores of rock samples. The samples studied are rapakivi granite from Loviisa, southern Finland. The drill-core sample was sectioned perpendicularly with a diamond saw and three cylindrical samples were obtained. The nominal thicknesses (heights of the cylinders) are 2, 4 and 6 cm. For the diffusion measurement the sample holders were pressed between two chambers. One of the chambers was filled with 0.0044 molar sodium chloride solution spiked with tracers. Another chamber was filled with inactive solution. Tritium (HTO) considered to be a water equivalent tracer and anionic 36 Cl - were used as tracers. The through diffusion was monitored about 1000 days after which time the diffusion cells were emptied and the sample holders dismantled. The samples were sectioned into 1 cm slices and the tracers were leached from the slices. The porosities of the slices were determined by the weighing method. The rock-capacity factors could be determined from the leaching results obtained. It was seen that the porosity values were in accordance with the rock capacity factors obtained with HTO. An anion exclusion can be seen comparing the results obtained with HTO and 36 Cl - . The concentration profile through even the thickest sample had reached a constant slope and the rate of diffusion was practically at a steady state. An anion exclusion effect was also seen in the effective diffusion coefficients. The effect of thickness on diffusion shows that the connectivity of the pores decreases in the thickness range 2-4 cm studied. The decrease as reflected in the diffusion coefficient was not dramatic and it can be said that especially for studying chemical interactions during diffusion, the thickness of 2 cm is adequate. (orig.) (12 refs.)

  18. Angular distributions of absorbed dose of Bremsstrahlung and secondary electrons induced by 18-, 28- and 38-MeV electron beams in thick targets.

    Science.gov (United States)

    Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki

    2013-03-01

    Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.

  19. Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.

    Science.gov (United States)

    Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V

    2010-10-01

    The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.

  20. Preliminary results on the cryogenic target for FIREX project

    International Nuclear Information System (INIS)

    Iwamoto, A.; Maekawa, R.; Mito, T.; Okamoto, M.; Motojima, O.; Nakai, M.; Norimatsu, T.; Nagai, K.

    2006-01-01

    Preliminary tests on the cryogenic target for the fast ignition realization experiment (FIREX) project has been conducted. A foam shell method is proposed to realize its target design. A foam target consists of three parts: a foam shell, a conical laser guide and a liquid or gas feeder made of glass. The shell is a hollow sphere (500 μm in diameter) with a uniform and thin foam layer (about 20 μm in thickness). Epoxy resin is utilized to assemble the parts into the target. Liquid fuel is fed into the shell by the feeder and is soaked up by the foam material through capillarity. The fuel is then solidified. Regarding target fabrication, one of the concerns is the influence on various thermal contractions from the different materials when it is cooled down to cryogenic environment. This paper describes the result on the validity check at cryogenic environment and the demonstration of H 2 liquefaction using a dummy target instead of the foam target. Judging from these results, the target assembled in the same process as the dummy target is sure to be practicable for the FIREX project. (authors)

  1. Infrared sensing and the measurement of oil slick thickness

    International Nuclear Information System (INIS)

    Brown, H.M.; Baschuk, J.J.; Goodman, R.H.

    1998-01-01

    The issue of whether infrared images can be used to detect the thickness of a marine oil spill was discussed. Infrared images of oil spills on water show density variations because of variations in oil temperature and emissivity. These observations have been used to determine thickness variations in the oil. Experiments were conducted in a large wave basin using two typical crude oils in the thickness range of 1 mm to 10 mm. Infrared images of oil spills were recorded and simultaneous thickness measurements were made using an acoustic thickness gauge. The study showed that there is no relationship between infrared image pixel greyness and the thickness measured with an acoustic probe. It was not possible to determine the volume of a spill using infrared images. 2 refs., 1 tab., 4 figs

  2. Thickness gauge for the measurement of the density of graphite

    International Nuclear Information System (INIS)

    Leveque, P.; Gasnier, M.; Hours, R.; Jouquet, G.; Rappeneau, J.; Tanguy, J.C.

    1961-01-01

    A thickness gauge was built, based on absorption of Bremsstrahlung generated in a Be target by a ( 90 Sr + 90 Y) β- source. This allows rapid and precise estimation (95 per cent probable error = 0.7 per cent) of the densities in slabs of graphite having a constant thickness of 25 ± 0.05 mm, the diameter of the beam being about 1 cm. Results obtained in this way are presented. (author) [fr

  3. Verification of the hydraulic design of the FMIT liquid lithium target

    International Nuclear Information System (INIS)

    Miles, R.R.; Annese, C.E.; Ingham, J.G.

    1983-01-01

    A liquid lithium target is being developed to generate a neutron flux for material testing in a fusion-like environment. The target consists of a thin, high speed, curved wall jet of lithium which is formed by an asymmetric nozzle. A prototype target was designed using potential flow analysis and was tested in water. Measurements of jet thickness and velocity in water and thickness in lithium were compared with isothermal design predictions and were shown to match within 1% for thickness and 5% for jet velocity

  4. D2 and DT Liquid-Layer Target Shots on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Curtis [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alger, Ethan [General Atomics, San Diego, CA (United States); Bhandarkar, Suhas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Boehm, Kurt [General Atomics, San Diego, CA (United States); Braun, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Espinosaloza, Francisco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haid, Benjamin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heredia, Ricardo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kline, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kozioziemski, Bernard [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kroll, Jeremy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Malone, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikroo, Abbas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Opsahl, Patrick [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sater, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zylstra, Alex [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-22

    Experiments at the National Ignition Facility (NIF) using targets containing a Deuterium-Tritium (DT) fuel layer have, until recently, required that a high-quality layer of solid deuterium-tritium (herein referred to as an "ice-layer") be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of icelayers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam lined capsule, but also changes to the capsule filling process and the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. These changes, and the target's performance during four target shots on NIF will be discussed.

  5. Measurement of the thickness and homogeneity of thin foils by slowing down alpha particles

    International Nuclear Information System (INIS)

    Bimbot, R.; Della Negra, S.; Deprun, C.; Gardes, D.; Rivet, M.F.

    1979-01-01

    The energy loss of 8.785 MeV α particles passing through a thin foil is used to measure the foil thickness. The measurement is performed in various points of the target, the abscissa and ordinate of which are set with precision from the outside of the chamber. This gives a thickness map of the target. The working up of the data, and the use of energy loss tables are made in a standard way. The absolute uncertainty is of some percent for 100 μg/cm 2 foils. The technique has been refined to reach the same precision for 10 μg/cm 2 targets [fr

  6. The first target experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Landen, O.L.; Glenzer, S.H.; Froula, D.H.; Dewald, E.L.; Suter, L.J.; Schneider, M.B.; Hinkel, D.E.; Fernandez, J.C.; Kline, J.L.; Goldman, S.R.; Braun, D.G.; Celliers, P.M.; Moon, S.J.; Robey, H.S.; Lanier, N.E.; Glendinning, S.G.; Blue, B.E.; Wilde, B.H.; Jones, O.S.; Schein, J.; Divol, L.; Kalantar, D.H.; Campbell, K.M.; Holder, J.P.; McDonald, J.W.; Niemann, C.; Mackinnon, A.J.; Collins, G.W.; Bradley, D.K.; Eggert, J.H.; Hicks, D.G.; Gregori, G.; Kirkwood, R.K.; Young, B.K.; Foster, J.M.; Hansen, J.F.; Perry, T.S.; Munro, D.H.; Baldis, H.A.; Grim, G.P.; Heeter, R.F.; Hegelich, M.B.; Montgomery, D.S.; Rochau, G.A.; Olson, R.E.; Turner, R.E.; Workman, J.B.; Berger, R.L.; Cohen, B.I.; Kruer, W.L.; Langdon, A.B.; Langer, S.H.; Meezan, N.B.; Rose, H.A.; Still, C.H.; Williams, E.A.; Dodd, E.A.; Edwards, M.J.; Monteil, M.C.; Stevenson, R.M.; Thomas, B.R.; Coker, R.F.; Magelssen, G.R.; Rosen, P.A.; Stry, P.E.; Woods, D.; Weber, S.V.; Young, P.E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, G.L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F.D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.

    2007-01-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3-dimensional codes by extending the study of laser driven hydrodynamic jets to 3-dimensional geometries. (authors)

  7. The first target experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O.L.; Glenzer, S.H.; Froula, D.H.; Dewald, E.L.; Suter, L.J.; Schneider, M.B.; Hinkel, D.E.; Fernandez, J.C.; Kline, J.L.; Goldman, S.R.; Braun, D.G.; Celliers, P.M.; Moon, S.J.; Robey, H.S.; Lanier, N.E.; Glendinning, S.G.; Blue, B.E.; Wilde, B.H.; Jones, O.S.; Schein, J.; Divol, L.; Kalantar, D.H.; Campbell, K.M.; Holder, J.P.; McDonald, J.W.; Niemann, C.; Mackinnon, A.J.; Collins, G.W.; Bradley, D.K.; Eggert, J.H.; Hicks, D.G.; Gregori, G.; Kirkwood, R.K.; Young, B.K.; Foster, J.M.; Hansen, J.F.; Perry, T.S.; Munro, D.H.; Baldis, H.A.; Grim, G.P.; Heeter, R.F.; Hegelich, M.B.; Montgomery, D.S.; Rochau, G.A.; Olson, R.E.; Turner, R.E.; Workman, J.B.; Berger, R.L.; Cohen, B.I.; Kruer, W.L.; Langdon, A.B.; Langer, S.H.; Meezan, N.B.; Rose, H.A.; Still, C.H.; Williams, E.A.; Dodd, E.A.; Edwards, M.J.; Monteil, M.C.; Stevenson, R.M.; Thomas, B.R.; Coker, R.F.; Magelssen, G.R.; Rosen, P.A.; Stry, P.E.; Woods, D.; Weber, S.V.; Young, P.E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, G.L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F.D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P

    2007-08-15

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3-dimensional codes by extending the study of laser driven hydrodynamic jets to 3-dimensional geometries. (authors)

  8. Plasma experiments with 1.06-μm lasers at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.; Holzrichter, J.F.; Manes, K.R.; Storm, E.K.; Boyle, M.J.; Brooks, K.M.; Haas, R.A.; Phillion, D.W.; Rupert, V.C.

    1976-01-01

    Recent laser fusion experiments at the Lawrence Livermore Laboratory have provided basic data concerning: laser beam propagation and absorption in high temperature plasmas, electron energy transport processes that transfer the absorbed laser energy to the high-density ablation region, the general fluid dynamic expansion and compression of the heated plasma, and the processes responsible for the production of 14-MeV neutrons during implosion experiments. Irradiation experiments were performed with Nd:YAG glass laser systems: the two-beam Janus (less than or equal to40 J/100 ps, approx.0.4 TW) and Argus (less than or equal to140 J, 35 ps, approx.4 TW), and the single beam Cyclops (less than or equal to70 J/100 ps, approx.0.7 TW). Two classes of targets have been used: glass microshells (approx.40 to 120 μm in diameter with approx.0.75-μm-thick walls) filled with an equimolar deuterium-tritium mixture, and disks (approx.160 to 600 μm in diameter and approx. 10 μm thick) of several compositions. The targets were supported in vacuum (pressure less than or equal to10 -5 Torr) by thin glass stalks. This paper reports on results related to the propagation, absorption, and scattering of laser light by both spherical and planar targets

  9. Full reflector thickness and isolation thickness on neutron transport

    International Nuclear Information System (INIS)

    Sakai, Tomohiro; Naito, Yoshitaka; Komuro, Yuichi.

    1988-08-01

    A method to determine ''full reflector thickness'' and ''isolation thickness'', which is utilized for criticality safety evaluation on nuclear fuel facilities, was proposed in this paper. Firstly, a calculation was tryed to obtain the two kinds of thicknesses from the result of criticality calculations for a specific case. Then, two simple equations which calculates the two kinds of thicknesses were made from the relation between reflector (or isolator) thickness and k eff , and one-group diffusion theory. Finally, we proposed a new method to determine the thicknesses. From the method we proposed, ''full reflector thickness'' and ''isolation thickness'' can be obtain using the equations and migration length of the reflector (or isolator) and infinite and effective multiplication factor of the fuel. (author)

  10. Degradation of PVC/rPLA Thick Films in Soil Burial Experiment

    Science.gov (United States)

    Nowak, Bożena; Rusinowski, Szymon; Chmielnicki, Blazej; Kamińska-Bach, Grażyna; Bortel, Krzysztof

    2016-10-01

    Some of the biodegradable polymers can be blended with a synthetic polymer to facilitate their biodegradation in the environment. The objective of the study was to investigate the biodegradation of thick films of poly(vinyl chloride)/recycled polylactide (PVC/rPLA). The experiments were carried out in the garden soil or in the mixture of garden soil and hydrocarbon-contaminated soil under laboratory conditions. Since it is widely accepted that the biosurfactants secreted by microorganisms enable biotransformation of various hydrophobic substances in the environment, it was assumed that the use of contaminated soil, rich in biosurfactant producing bacteria, may accelerate biodegradation of plastics. After the experimental period, the more noticeable weight loss of polymer films was observed after incubation in the garden soil. However, more pronounced changes in the film surface morphology and chemical structure as well as decrease of tensile strength were observed after incubation of films in the mixture of garden and contaminated soil. It turned out that as a result of competition between two distinct groups of microorganisms present in the mixture of garden and hydrocarbon-contaminated soils the number of microorganisms and their activity were lower than the activity of indigenous microflora of garden soil as well as the amount of secreted biosurfactants towards plastics.

  11. New designs of LMJ targets for early ignition experiments

    International Nuclear Information System (INIS)

    Clerouin, C; Bonnefille, M; Dattolo, E; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Poggi, F; Seytor, P

    2008-01-01

    The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress

  12. New designs of LMJ targets for early ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Clerouin, C; Bonnefille, M; Dattolo, E; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Poggi, F; Seytor, P [Commissariat a l' Energie Atomique, DAM-Ile de France, BP 12 91680 Bruyeres-le-Chatel (France)], E-mail: catherine.cherfils@cea.fr

    2008-05-15

    The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress.

  13. Advances in target design and fabrication for experiments on NIF

    Directory of Open Access Journals (Sweden)

    Obrey K.

    2013-11-01

    Full Text Available The ability to build target platforms for National Ignition Facility (NIF is a key feature in LANL's (Los Alamos National Laboratory Target Fabrication Program. We recently built and manufactured the first LANL targets to be fielded on NIF in March 2011. Experiments on NIF require precision component manufacturing and accurate knowledge of the materials used in the targets. The characterization of foams and aerogels, the Be ignition capsule, and machining unique components are of main material focus. One important characterization metric the physics' have determined is that the knowledge of density gradients in foams is important. We are making strides in not only locating these density gradients in aerogels and foams as a result of how they are manufactured and machined but also quantifying the density within the foam using 3D confocal micro x-ray fluorescence (μXRF imaging and 3D x-ray computed tomography (CT imaging. In addition, collaborative efforts between General Atomics (GA and LANL in the characterization of the NIF Ignition beryllium capsule have shown that the copper in the capsule migrates radially from the capsule center.

  14. The DESI Experiment Part I: Science,Targeting, and Survey Design

    Energy Technology Data Exchange (ETDEWEB)

    Aghamousa, Amir; et al.

    2016-10-31

    DESI (Dark Energy Spectroscopic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. To trace the underlying dark matter distribution, spectroscopic targets will be selected in four classes from imaging data. We will measure luminous red galaxies up to $z=1.0$. To probe the Universe out to even higher redshift, DESI will target bright [O II] emission line galaxies up to $z=1.7$. Quasars will be targeted both as direct tracers of the underlying dark matter distribution and, at higher redshifts ($ 2.1 < z < 3.5$), for the Ly-$\\alpha$ forest absorption features in their spectra, which will be used to trace the distribution of neutral hydrogen. When moonlight prevents efficient observations of the faint targets of the baseline survey, DESI will conduct a magnitude-limited Bright Galaxy Survey comprising approximately 10 million galaxies with a median $z\\approx 0.2$. In total, more than 30 million galaxy and quasar redshifts will be obtained to measure the BAO feature and determine the matter power spectrum, including redshift space distortions.

  15. A practical method for target preparation of powdered materials

    International Nuclear Information System (INIS)

    Sugai, Isao.

    1977-01-01

    This is the sixth report on the practical method of target preparation for use in nuclear physics experiments following the previous one (INS-TL-131, 1976). We have made various targets by developing the centrifugal precipitation method, which is particularly effective in the cases; (a) metal with high melting point and low vapor pressure, (b) oxides which are difficult to prepare by the usual vacuum evaporation technique and (c) some enriched isotopes which are very minute in quantity (less than - 10 mg) and low in recovery ratio. The samples were once suspended in liquid paraffin by ultrasonic wave vibrator, and then centrifugally precipitated on a thin backing foil such as Mylar or aluminum set and the bottom of the centrifugal tube. Uniformity of target made in this way was checked by an 24 Am-α ray thickness gauge. Contaminations smudged in the preparing process were checked by irradiating the targets with the proton beam from the FM Cyclotron at I.N.S. (auth.)

  16. LH2 Target Design & Position Survey Techniques for the MUSE experiment for Precise Proton Radius Measurement

    Science.gov (United States)

    Le Pottier, Luc; Roy, Pryiashee; Lorenzon, Wolfgang; Raymond, Richard; Steinberg, Noah; Rossi de La Fuente, Erick; MUSE (MUon proton Scattering Experiment) Collaboration

    2017-09-01

    The proton radius puzzle is a currently unresolved problem which has intrigued the scientific community, dealing with a 7 σ discrepancy between the proton radii determined from muonic hydrogen spectroscopy and electron scattering measurements. The MUon Scattering Experiment (MUSE) aims to resolve this puzzle by performing the first simultaneous elastic scattering measurements of both electrons and muons on the proton, which will allow the comparison of the radii from the two interactions with reduced systematic uncertainties. The data from this experiment is expected to provide the best test of lepton universality to date. The experiment will take place at the Paul Scherrer Institute in Switzerland in 2018. An essential component of the experiment is a liquid hydrogen (LH2) cryotarget system. Our group at the University of Michigan is responsible for the design, fabrication and installation of this system. Here we present our LH2 target cell design and fabrication techniques for successful operation at 20 K and 1 atm, and our computer vision-based target position survey system which will determine the position of the target, installed inside a vacuum chamber, with 0.01 mm or better precision at the height of the liquid hydrogen target and along the beam direction during the experiment.

  17. HARP targets pion production cross section and yield measurements. Implications for MiniBooNE neutrino flux

    Energy Technology Data Exchange (ETDEWEB)

    Wickremasinghe, Don Athula Abeyarathna [Univ. of Cincinnati, OH (United States)

    2015-07-01

    The prediction of the muon neutrino flux from a 71.0 cm long beryllium target for the MiniBooNE experiment is based on a measured pion production cross section which was taken from a short beryllium target (2.0 cm thick - 5% nuclear interaction length) in the Hadron Production (HARP) experiment at CERN. To verify the extrapolation to our longer target, HARP also measured the pion production from 20.0 cm and 40.0 cm beryllium targets. The measured production yields, d2Nπ± (p; θ )=dpd Ω, on targets of 50% and 100% nuclear interaction lengths in the kinematic rage of momentum from 0.75 GeV/c to 6.5 GeV/c and the range of angle from 30 mrad to 210 mrad are presented along with an update of the short target cross sections. The best fitted extended Sanford-Wang (SW) model parameterization for updated short beryllium target π+ production cross section is presented. Yield measurements for all three targets are also compared with that from the Monte Carlo predictions in the MiniBooNE experiment for different SW parameterization. The comparisons of vμ flux predictions for updated SW model is presented.

  18. Projectile rapidity dependence in target fragmentation

    International Nuclear Information System (INIS)

    Haustein, P.E.; Cumming, J.B.; Hseuh, H.C.

    1979-01-01

    The thick-target, thick-catcher technique was used to determine mean kinetic properties of selected products of the fragmentation of Cu by 1 H, 4 He, and 12 C ions (180 to 28,000 MeV/amu). Momentum transfer, as inferred from F/B ratios, is ovserved to occur most efficiently for the lower velocity projectiles. Recoil properties of target fragments vary strongly with product mass, but show only a weak dependence on projectile type. The projectile's rapidity is shown to be a useful variable for quantitative intercomparison of different reactions. These results indicate that E/sub proj//A/sub proj/ is the dominant parameter which governs the mean recoil behavior of target fragments. 20 references

  19. Environmental aspects of ion-induced x-ray emission by infinitely thick targets

    International Nuclear Information System (INIS)

    Van Rinsvelt, H.A.; Dunnam, F.E.; Russell, J.P.; Bolch, W.E.

    1974-01-01

    Elemental analysis through proton and alpha particle induced x-ray emission by infinitely thick samples of environmental interest was found to be feasible. A quantization technique using internal standards and the optimization of the beam energy for optimal sensitivity were investigated. The average limit of detection ranges from about 0.1 ppM for calcium to 1 ppM for strontium

  20. Angular distribution measurements of photo-neutron yields produced by 2.0 GeV electrons incident on thick targets

    International Nuclear Information System (INIS)

    Lee, H. S.; Ban, S.; Sanami, T.; Takahashi, K.; Sato, T.; Shin, K.; Chung, C.

    2005-01-01

    A study of differential photo-neutron yields by irradiation with 2 GeV electrons has been carried out. In this extension of a previous study in which measurements were made at an angle of 90 deg. relative to incident electrons, the differential photo-neutron yield was obtained at two other angles, 48 deg. and 140 deg., to study its angular characteristics. Photo-neutron spectra were measured using a pulsed beam time-of-flight method and a BC418 plastic scintillator. The reliable range of neutron energy measurement was 8-250 MeV. The neutron spectra were measured for 10 Xo-thick Cu, Sn, W and Pb targets. The angular distribution characteristics, together with the previous results for 90 deg., are presented in the study. The experimental results are compared with Monte Carlo calculation results. The yields predicted by MCNPX 2.5 tend to underestimate the measured ones. The same trend holds for the comparison results using the EGS4 and PICA3 codes. (authors)

  1. Angular distribution measurements of photo-neutron yields produced by 2.0 GeV electrons incident on thick targets.

    Science.gov (United States)

    Lee, Hee-Seock; Ban, Syuichi; Sanami, Toshiya; Takahashi, Kazutoshi; Sato, Tatsuhiko; Shin, Kazuo; Chung, Chinwha

    2005-01-01

    A study of differential photo-neutron yields by irradiation with 2 GeV electrons has been carried out. In this extension of a previous study in which measurements were made at an angle of 90 degrees relative to incident electrons, the differential photo-neutron yield was obtained at two other angles, 48 degrees and 140 degrees, to study its angular characteristics. Photo-neutron spectra were measured using a pulsed beam time-of-flight method and a BC418 plastic scintillator. The reliable range of neutron energy measurement was 8-250 MeV. The neutron spectra were measured for 10 Xo-thick Cu, Sn, W and Pb targets. The angular distribution characteristics, together with the previous results for 90 degrees, are presented in the study. The experimental results are compared with Monte Carlo calculation results. The yields predicted by MCNPX 2.5 tend to underestimate the measured ones. The same trend holds for the comparison results using the EGS4 and PICA3 codes.

  2. NMR parallel Q-meter with double-balanced-mixer detection for polarized target experiments

    International Nuclear Information System (INIS)

    Boissevain, J.; Tippens, W.B.

    1983-01-01

    A constant-voltage, parallel-tuned nuclear magnetic resonance (NMR) circuit, patterned after a Liverpool design, has been developed for polarized target experiments. Measuring the admittance of the resonance circuit allows advantageous use of double-balanced mixer detection. The resonant circuit is tolerant of stray capacitance between the NMR coil and the target cavity, thus easing target-cell-design constraints. The reference leg of the circuit includes a voltage-controlled attenuator and phase shifter for ease of tuning. The NMR output features a flat background and has good linearity and stability

  3. Improving friction stir welding of blanks of different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Fratini, L. [Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)], E-mail: abaqus@dtpm.unipa.it; Buffa, G. [Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Shivpuri, R. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, Ohio 43210 (United States)

    2007-06-25

    Friction stir welding (FSW) appears to be a promising process even in the welding of blanks of different thicknesses. Actually, such particular tailor welded blanks (TWBs) are usually characterized by a reduction in ductility due to the utilized fusion welding process. In this paper the authors, starting from a preliminary feasibility study, investigate the possibility to improve the mechanical performances of friction stir welded blanks of aluminum alloy with different thicknesses. Both experiments and a FE analyses are developed for a few case studies with different thickness ratios between the blanks. The numerical investigations are performed with the aim to highlight the material temperature distribution during the process in order to determine process conditions for which an almost symmetric thermal flow is obtained in the two blanks of the joint. In this way, a few simple process design rules are derived and verified through experiments. In particular a thickness ratio up to 2 was considered and a joint resistance of about the 80% of the parent material ultimate tensile strength was observed.

  4. Improving friction stir welding of blanks of different thicknesses

    International Nuclear Information System (INIS)

    Fratini, L.; Buffa, G.; Shivpuri, R.

    2007-01-01

    Friction stir welding (FSW) appears to be a promising process even in the welding of blanks of different thicknesses. Actually, such particular tailor welded blanks (TWBs) are usually characterized by a reduction in ductility due to the utilized fusion welding process. In this paper the authors, starting from a preliminary feasibility study, investigate the possibility to improve the mechanical performances of friction stir welded blanks of aluminum alloy with different thicknesses. Both experiments and a FE analyses are developed for a few case studies with different thickness ratios between the blanks. The numerical investigations are performed with the aim to highlight the material temperature distribution during the process in order to determine process conditions for which an almost symmetric thermal flow is obtained in the two blanks of the joint. In this way, a few simple process design rules are derived and verified through experiments. In particular a thickness ratio up to 2 was considered and a joint resistance of about the 80% of the parent material ultimate tensile strength was observed

  5. Neutrons production in thick targets of Be and {sup 238}U bombarded by 100 MeV/u deuterons and in a thick target of C bombarded by 95 MeV/u {sup 36}Ar. Attenuation in concrete and dose equivalent rate of the activated uranium; Neutrons produits dans des cibles epaisses de Be et {sup 238}U irradiees par des deutons de 100 MeV/u et dans une cible epaisse de C irradiee par des {sup 36}Ar de 95 MeV/u. Longueurs d'attenuation dans du beton et debit d'equivalent de dose resultant de l'activation de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, N.; Proust, J.; Clapier, F.; Gara, P.; Obert, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Mirea, M. [Institute of Physics and Nuclear Engineering, Bucharest (Romania); Belier, G.; Ethvignot, T.; Granier, T. [CEA/DAM-Ile de France, 91 - Bruyeres-Le-Chatel (France). Service de Physique Nucleaire; Liang, C.F. [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse; Bajard, M.; Leroy, R.; Villari, A.C.C. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    1999-09-01

    Neutrons production in thick targets of Be and {sup 238}U bombarded by 100 MeV/u deuterons and in a thick target of C bombarded by 95 MeV/u {sup 36}Ar. Attenuation in concrete and dose equivalent rate of the activated uranium. The yields of secondary neutrons produced by the interaction of a beam with thick target were determined with activation detectors. Three projectile-target couples have been studied: deuterons (100 MeV/u)+{sup 238}U, deuterons (100 MeV/u)+{sup 9}Be and {sup 36}Ar (95 MeV/u)+{sup 12}C. At 0 deg.. the yields were also measured after a piece of concrete and the corresponding attenuation length evaluated. The dose rate of the uranium target was monitored during several days after the end of the irradiation. (author)

  6. TiO2 thin and thick films grown on Si/glass by sputtering of titanium targets in an RF inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2015-01-01

    TiO 2 thin and thick films were deposited on silicon/glass substrates using RF inductive plasma in continuous wave. The films thickness, as well as phases control, is achieved with a gradual increase in temperature substrates varying supplied RF power or working gas pressure besides deposition time as well. The deposition conditions were: argon 80%/oxygen 20% carefully calibrated mixture of 2 to 7×10 −2 mbar as working gas pressure range. Deposition time 0.5 to 5 hours, 500 or 600 W RF power at 13.56 MHz frequency and 242-345 °C substrates temperature range. The titanium dioxide deposited on the substrates is grown by sputtering of a titanium target negatively polarized at 3-5 kV DC situated 14 mm in front of such substrates. The plasma reactor is a simple Pyrex-like glass cylindrical vessel of 50 cm long and 20 cm in diameter. Using the before describe plasma parameters we obtained films only anatase and both anatase/rutile phases with stoichiometric different. The films were characterized by X-ray photoelectron spectroscopy (XPS), stylus profilometer, X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. (paper)

  7. Electron cooling application for luminosity preservation in an experiment with internal targets at COSY

    CERN Document Server

    Meshkov, I N; Maier, R; Prasuhn, D; Sidorin, A O; Smirnov, A V; Stein, H J; Stockhorst, H; Trubnikov, G V

    2003-01-01

    This report is an investigation of the beam parameter evolution in the experiments with internal target. In calculations of the proton and deuteron beams we concentrated on cluster, atomic beam, storage cell and pellet targets at ANKE experiment mainly. In these calculations electron and stochastic cooling, intrabeam scattering, scattering on the target and residual gas atoms are taken into account. Beam parameter evolution is investigated in the long-term time scale, up to one hour, at different beam energies in the range from 1.0 to 2.7 GeV for proton beam and from 1 to 2.11 GeV for deuteron beam. The results of numerical simulations of the proton and deuteron beam parameters at different energies obtained using new version of BETACOOL program (elaborated at the first stage of this work [1]) are presented. Optimum parameters of the electron cooling system are estimated. The COSY experiment requirements can be satisfied even when electron cooling time is rather long. That allows to apply an electron cooling ...

  8. Hadron identification in a fixed target experiment at the SSC

    International Nuclear Information System (INIS)

    Nelson, K.S.; Cox, B.

    1993-01-01

    This article presents the design criteria and expected performance of a hadron identification system in a fixed target experiment at the SSC. The proposed SFT spectrometer will be used as a model for the discussion. Two primary uses of hadron identification is a B physics experiment are flavor tagging and the rejection of background due to particle reflections in the reconstruction of exclusive decay modes. In the first case it is shown that use of kaons can increase substantially the number of events which can be tagged. In the latter case, decays in which particles are mis-identified can form a background to a desired decay mode

  9. Systematic comparison of ISOLDE-SC yields with calculated in-target production rates

    International Nuclear Information System (INIS)

    Lukic, S.; Gevaert, F.; Kelic, A.; Ricciardi, M.V.; Schmidt, K.H.; Yordanov, O.

    2006-02-01

    Recently, a series of dedicated inverse-kinematics experiments performed at GSI, Darmstadt, has brought an important progress in our understanding of proton and heavy-ion induced reactions at relativistic energies. The nuclear reaction code ABRABLA that has been developed and benchmarked against the results of these experiments has been used to calculate nuclide production cross sections at different energies and with different targets and beams. These calculations are used to estimate nuclide production rates by protons in thick targets, taking into account the energy loss and the attenuation of the proton beam in the target, as well as the low-energy fission induced by the secondary neutrons. The results are compared to the yields of isotopes of various elements obtained from different targets at CERN-ISOLDE with 600 MeV protons, and the overall extraction efficiencies are deduced. The dependence of these extraction efficiencies on the nuclide half-life is found to follow a simple pattern in many different cases. A simple function is proposed to parameterize this behavior in a way that quantifies the essential properties of the extraction efficiency for the element and the target - ion-source system in question. (orig.)

  10. Hunting for CDF multi-muon ''ghost'' events at collider and fixed-target experiments

    International Nuclear Information System (INIS)

    Bornhauser, Nicki; Drees, Manuel

    2011-01-01

    In 2008 the CDF collaboration discovered a large excess of events containing two or more muons, at least one of which seemed to have been produced outside the beam pipe. We investigate whether similar ''ghost'' events could (and should) have been seen in already completed experiments. The CDF di-muon data can be reproduced by a simple model where a relatively light X particle undergoes 4-body decay. This model predicts a large number of ghost events in Fermilab fixed-target experiments E772, E789 and E866, applying the cuts optimized for analyses of Drell-Yan events. A correct description of events with more than two muons requires a more complicated model, where two X particles are produced from a very broad resonance Y. This model can be tested in fixed-target experiments only if the cut on the angles, or rapidities, of the muons can be relaxed. Either way, the UA1 experiment at the CERN p anti p collider should have observed O(100) ghost events. (orig.)

  11. Optimization of the target system for the hypernuclear experiment at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Iazzi, Felice [Politecnico, Torino (Italy); INFN, Torino (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Mainz (Germany)

    2014-07-01

    Gamma spectroscopy of double Λ hypernuclei will be one of the main topics addressed by the PANDA experiment at the planned FAIR-facility at Darmstadt, Germany. For this project a dedicated hypernuclear detector setup will be installed. In addition to the general purpose of the PANDA detector it consists of a primary nuclear target for the production of Ξ{sup -} + anti Ξ pairs, a secondary active target for the formation of hypernuclei and the identification of associated decay products as well as a germanium detector array to perform γ spectroscopy. Results of the current hardware development will be presented in the talk: For the positioning of the primary filament target in the beam halo the functionality of piezo motors is investigated in vacuum. Stability tests of the primary target chamber are performed with various thin materials. For the secondary target the readout of silicon microstrip detectors with ultra-thin flexible cables is checked to fan out the readout electronics. Furthermore, design studies of support structures for the whole detector setup are considered. On the simulation side a compromise between the stopping probability of Ξ{sup -} hyperons and the reconstruction accuracy of weak decay pions is discussed.

  12. Effects of buffer thickness on ATW blanket performance

    International Nuclear Information System (INIS)

    Yang, W. S.; Mercatali, L.; Taiwo, T. A.; Hill, R. N.

    2001-01-01

    This paper presents preliminary results of target and buffer design studies for liquid metal cooled accelerator transmutation of waste (ATW) systems, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using 840 MWt liquid metal cooled ATW designs, the effects of buffer thickness on the blanket performance have been studied. Varying the buffer thickness for a given blanket configuration, system performance parameters have been estimated by a series of calculations using the MCNPX and REBUS-3 codes. The effects of source importance variation are studied by investigating the low-energy ( and lt; 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. For investigating irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. Results for the liquid-metal-cooled designs show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable. Investigation of the impact of the proton beam energy on the target and buffer design shows that for a given blanket power level, a lower beam energy (0.6 GeV versus 1 GeV) results in a higher irradiation damage to the beam window. This trend occurs because of the increase in the beam intensity required to maintain the power level

  13. Effects of Buffer Thickness on ATW Blanket Performance

    International Nuclear Information System (INIS)

    Yang, W.S.; Mercatali, L.; Taiwo, T.A.; Hill, R.N.

    2002-01-01

    This paper presents preliminary results of target and buffer design studies for liquid metal cooled accelerator transmutation of waste (ATW) systems, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using 840 MWt liquid metal cooled ATW designs, the effects of buffer thickness on the blanket performance have been studied. Varying the buffer thickness for a given blanket configuration, system performance parameters have been estimated by a series of calculations using the MCNPX and REBUS-3 codes. The effects of source importance variation are studied by investigating the low-energy (< 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. For investigating irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. Results for the liquid-metal-cooled designs show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable. Investigation of the impact of the proton beam energy on the target and buffer design shows that for a given blanket power level, a lower beam energy (0.6 GeV versus 1 GeV) results in a higher irradiation damage to the beam window. This trend occurs because of the increase in the beam intensity required to maintain the power level. (authors)

  14. Feasibility study of an active target for the MEG experiment

    Energy Technology Data Exchange (ETDEWEB)

    Papa, A., E-mail: angela.papa@psi.ch [Paul Scherrer Institut PSI, CH-5232 Villigen (Switzerland); Cavoto, G. [INFN Sezione di Roma, P.le Aldo Moro, 2, 00185 Roma (Italy); Ripiccini, E. [INFN Sezione di Roma, P.le Aldo Moro, 2, 00185 Roma (Italy); Dipartimento di Fisica dell' Università degli studi di Roma, P.le Aldo Moro, 2, 00185 Roma (Italy)

    2014-03-01

    We consider the possibility to have an active target for the upgrade of the MEG experiment (MEG II). The active target should work as (1) a beam monitoring, to continuously measure the muon stopping rate and therefore provide a direct evaluation of the detector acceptance (or an absolute normalization of the stopped muon); and as (2) an auxiliary device for the spectrometer, to improve the determination of the muon decay vertex and consequently to achieve a better positron momentum and angular resolutions, detecting the positron from the muon decay. In this work we studied the feasibility of detecting minimum ionizing particle with a single layer of 250 μm fiber and the capability to discriminate between the signal induced by either a muon or a positron.

  15. Feasibility study of an active target for the MEG experiment

    International Nuclear Information System (INIS)

    Papa, A.; Cavoto, G.; Ripiccini, E.

    2014-01-01

    We consider the possibility to have an active target for the upgrade of the MEG experiment (MEG II). The active target should work as (1) a beam monitoring, to continuously measure the muon stopping rate and therefore provide a direct evaluation of the detector acceptance (or an absolute normalization of the stopped muon); and as (2) an auxiliary device for the spectrometer, to improve the determination of the muon decay vertex and consequently to achieve a better positron momentum and angular resolutions, detecting the positron from the muon decay. In this work we studied the feasibility of detecting minimum ionizing particle with a single layer of 250 μm fiber and the capability to discriminate between the signal induced by either a muon or a positron

  16. On the production of thick pellicles of Kodak NTB-3 nuclear track emulsion

    International Nuclear Information System (INIS)

    Claesson, G.; Soederstroem, K.; Ingelman, G.

    1980-11-01

    We describe procedures for making thick pellicles of Kodak NTB-3 nuclear emulsion. The technique has successfully been applied for the production of a 15 liter emulsion target, consisting of 600 μm thick pellicles. Melting and pouring of the gel is discussed as well as the conditions during the drying and processing. (author)

  17. OMEGA ICF experiments and preparations for direct drive on NIF

    International Nuclear Information System (INIS)

    McCrory, R.L.; Bahr, R.E.; Betti, R.

    2001-01-01

    Direct-drive laser-fusion ignition experiments rely on detailed understanding and control of irradiation uniformity, the Rayleigh-Taylor instability, and target fabrication. LLE is investigating various theoretical aspects of a direct-drive NIF ignition target based on an 'all-DT' design: a spherical target of ∼3.4-mm diameter, 1 to 2 μm of CH wall thickness, and an ∼340-μm DT-ice layer near the triple point of DT (∼19 K). OMEGA experiments are designed to address the critical issues related to direct-drive laser fusion and to provide the necessary data to validate the predictive capability of LLE computer codes. The cryogenic targets to be used on OMEGA are hydrodynamically equivalent to those planned for the NIF. The current experimental studies on OMEGA address the essential components of direct-drive laser fusion: irradiation uniformity and laser imprinting, Rayleigh-Taylor growth and saturation, compressed core performance and shell fuel mixing, laser plasma interactions and their effect on target performance, and cryogenic target fabrication and handling. (author)

  18. Effect of thickness on silicon solar cell efficiency

    Science.gov (United States)

    Sah, C.-T.; Yamakawa, K. A.; Lutwack, R.

    1982-01-01

    A computer-aided-design study on the dependence of the efficiency peak of a back-surface field solar cell on the concentrations of the recombination and dopant impurities is presented. The illuminated current-voltage characteristics of more than 100 cell designs are obtained using the transmission line circuit model to numerically solve the Shockley equations. Using an AM 1 efficiency of 17% as a target value, it is shown that the efficiency versus thickness dependence has a broad maximum which varies by less than 1% over more than a three-to-one range of cell thicknesses from 30 to 100 microns. An optically reflecting back surface will give only a slight improvement of AM 1 efficiency, about 0.7%, in this thickness range. Attention is given to the dependence of the efficiency on patchiness across the back-surface field low-high junction in thin cells.

  19. Tensor polarized deuteron targets for intermediate energy physics experiments

    International Nuclear Information System (INIS)

    Meyer, W.; Schilling, E.

    1985-03-01

    At intermediate energies measurements from a tensor polarized deuteron target are being prepared for the following reactions: the photodisintegration of the deuteron, the elastic pion-deuteron scattering and the elastic electron-deuteron scattering. The experimental situation of the polarization experiments for these reactions is briefly discussed in section 2. In section 3 the definitions of the deuteron polarization and the possibilities to determine the vector and tensor polarization are given. Present tensor polarization values and further improvements in this field are reported in section 4. (orig.)

  20. The Merit(nTOF-11) High Intensity Liquid Mercury Target Experiment at the CERN PS

    CERN Document Server

    Efthymiopoulos, I; Caretta, O; Carroll, A J; Fabich, A; Graves, V B; Grudiev, A; Haug, F; Kirk, H G; Lettry, Jacques; Loveridge, P; McDonald, K T; Mokhov, N; Palm, M; Park, H; Pernegger, H; Spampinato, P T; Steerenberg, R; Striganov, S; Tsang, T

    2008-01-01

    The MERIT(nTOF-11) experiment is a proof-ofprinciple test of a target system for a high power proton beam to be used as front-end for a neutrino factory or a muon collider. The experiment took data in autumn 2007 with the fast-extracted beam from the CERN Proton Synchrotron (PS) to a maximum intensity of $30 × 10^{12}$ per pulse. The target system, based on a free mercury jet, is capable of intercepting a 4-MW proton beam inside a 15-T magnetic field required to capture the low energy secondary pions as the source for intense muon beams. Partice detectors installed around the target setup measure the secondary particle flux out of the target and can probe cavitation effects in the mercury jet when excited by an intense proton beam.Preliminary results of the data analysis will be presented here.

  1. The preparation of Th-232 target by molecular plating method

    International Nuclear Information System (INIS)

    Yang Chunli; Wu Junde; Su Shuxin; Yang Jingling

    2010-01-01

    In order to measure the reaction cross-section of 232 Th(α,2n) 234 U, the preparation of uniform and adherent Th-232 targets on Al foils of thickness 2-8 μm fixed on target frame by molecular plating technique from isopropanol was described. The substrate of electrolytic cell was reconstructed and the optimum acidity for the deposition of thorium were investigated. Through deposition yield analysis, the target thickness of 100- 200μg/cm 2 was determined. The α-spectrometry for the Th-232 targets shows a good energy resolution. (authors)

  2. The determination of the pressure-viscosity coefficient of a lubricant through an accurate film thickness formula and accurate film thickness measurements : part 2 : high L values

    NARCIS (Netherlands)

    Leeuwen, van H.J.

    2011-01-01

    The pressure-viscosity coefficient of a traction fluid is determined by fitting calculation results on accurate film thickness measurements, obtained at different speeds, loads, and temperatures. Through experiments, covering a range of 5.6 thickness values are

  3. Formation and damping of a shock wave induced by laser in a metallic target

    International Nuclear Information System (INIS)

    Cottet, F.

    1981-01-01

    In the first part of this work, a numerical simulation of the formation and of the damping of the shock wave induced in a solid target by a laser impulse is developed. It allows to interpret the experimental obtained in the second part of the study. Two series of experiments have been realized. An iron target metallographic study is intended to verify if laser shocks produce effects comparable with conventional shocks, particularly a deformation by albite twinning the existence of which is related to the shock amplitude and its evolution during the propagation in the target. Macles observation become a possible mean to estimate the value of the induced pressures. Another experiment series has been realized to determine more directly the shock parameters. Piezoelectric cermets have been used to detect a shock-wave passage and to measure the time taken to go through targets of variable thickness. The numerical solution allows, afterwards, to deduce the maximum pressure of the induced shock. The most part of the tests have been done on copper targets, the behaviour of which is well known in a large pressure domain. Some tests have been realized on aluminium and iron targets [fr

  4. When the target may know better : Effects of experience and information asymmetries on value from mergers and acquisitions

    NARCIS (Netherlands)

    Cuypers, I.R.P.; Cuypers, Y.K.; Martin, Xavier

    2017-01-01

    Research Summary: Extending research on the effect of experience on acquisition outcomes, we examine how the differential in previous M&A experience between the target and the acquirer affects the value they respectively obtain when the acquirer takes over the target. Drawing on literature about

  5. D-T neutron skyshine experiments at JAERI/FNS

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, Takeo; Ochiai, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yoshida, Shigeo [Tokai Univ., Hiratsuka, Kanagawa (JP)] (and others)

    2003-03-01

    The D-T neutron skyshine experiments have been carried out at the Fusion Neutronics Source (FNS) of JAERI with the neutron yield of {approx}1.7x10{sup 11} n/s. The concrete thickness of the roof and the wall of a FNS target room are 1.15 and 2 m, respectively. The FNS skyshine port with a size of 0.9x0.9 m{sup 2} was open during the experimental period. The radiation dose rate outside the target room was measured as far as about 550 m away from the D-T target point with a spherical rem-counter. The highest neutron dose was about 0.5 {mu}Sv/hr at a distance of 30 m from the D-T target point and the dose rate was attenuated to 0.002 {mu}Sv/hr at a distance of 550 m. The measured neutron dose distribution was analyzed with Monte Carlo code MCNP-4B and a simple line source model. The MCNP calculation overestimates the neutron dose in the distance range larger than 250 m. The neutron spectra were evaluated with a {sup 3}He detector with different thickness of polyethylene neutron moderators. Secondary gamma-rays were measured with high purity Ge detectors and NaI scintillation detectors. (author)

  6. Anomalons, recent copper-target experiments and the first law of thermodynamics

    International Nuclear Information System (INIS)

    Brandt, R.; Khan, H.A.; Krivopustov, M.I.

    1991-01-01

    A reanalysis of the old Alexander experiment, reporting on the anomalous behavior of pie in K-decays indicates that this anomalous behavior may be connected to a state of lower entropy or in other words to 'anomalous information', considering the well-known relation: negative entropy information. Now, recent copper-target experiments from the Synchrophasotron entail, that the wide-angle emission of hadrons in the reaction (44 GeV/sup 12/c + Cu) cannot be understood with concepts of physics, as known to the authors. However, this could be understood with 'anomalous information'. Further effects of this 'anomalous information' may be obtained in future studies with very massive heavy element targets irradiated with relativistic ions. The total production of neutrons in such a system could both be measured experimentally and calculated theoretically. As the calculations are based on the 1st Law of Thermodynamic, a significant excess of neutron fluxes beyond calculations may indicate the effete of anomalous information, even on the expense of the 1st law of Thermodynamics. (Orig./A.B.)

  7. Evidence for reduction of turbulent mixing at the ablation front in experiments with shell targets

    International Nuclear Information System (INIS)

    Lykov, V.A.; Avrorin, E.N.; Karlykhanov, N.G.; Murashkina, V.A.; Myalitsin, L.A.; Neuvazhaev, V.E.; Pasyukova, A.F.; Yakovlev, V.G.

    1994-01-01

    The results of the computation analysis of the turbulent mixing in the direct and indirect-driven shell targets are presented. The simulation were carried out by TURLINA-code based on phenomenological mixing model. The effects of the mixing are studied numerically for the SOKOL-laser experiments and for the indirect-driven targets. The comparison of the TURLINA-code simulations with the SOKOL experimental X-ray picture gives the evidence for reduction of turbulent mixing at the ablation front in experiments with shell targets. The estimates of the initial roughness and the effect of ablation-stabilization influence on the turbulent mixing and neutron yield from DT-filled glass microballoon are carried out. The allowable compression asymmetry for thermonuclear ignition is discussed. copyright 1994 American Institute of Physics

  8. Self-heating forecasting for thick laminate specimens in fatigue

    Science.gov (United States)

    Lahuerta, F.; Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    Thick laminate sections can be found from the tip to the root in most common wind turbine blade designs. Obtaining accurate and reliable design data for thick laminates is subject of investigations, which include experiments on thick laminate coupons. Due to the poor thermal conductivity properties of composites and the material self-heating that occurs during the fatigue loading, high temperature gradients may appear through the laminate thickness. In the case of thick laminates in high load regimes, the core temperature might influence the mechanical properties, leading to premature failures. In the present work a method to forecast the self-heating of thick laminates in fatigue loading is presented. The mechanical loading is related with the laminate self-heating, via the cyclic strain energy and the energy loss ratio. Based on this internal volumetric heat load a thermal model is built and solved to obtain the temperature distribution in the transient state. Based on experimental measurements of the energy loss factor for 10mm thick coupons, the method is described and the resulting predictions are compared with experimental surface temperature measurements on 10 and 30mm UD thick laminate specimens.

  9. High pressure deuterium-tritium gas target vessels for muon-catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Spaletta, H.W.; Ware, A.G.; Zabriskie, J.M.; Hardwick, D.A.; Maltrud, H.R.; Paciotti, M.A.

    1989-01-01

    In experimental studies of muon-catalyzed fusion, the density of the hydrogen gas mixture is an important parameter. Catalysis of up to 150 fusions per muon has been observed in deuterium-tritium gas mixtures at liquid hydrogen density; at room temperature, such densities require a target gas pressure of the order of 1000 atmospheres (100 MPa, 15,000 psi). We report here the design considerations for hydrogen gas target vessels for muon-catalyzed fusion experiments that operate at 1000 and 10,000 atmospheres. The 1000 atmosphere high pressure target vessels are fabricated of Type A-286 stainless steel and lined with oxygen-free, high-conductivity (OFHC) copper to provide a barrier to hydrogen permeation of the stainless steel. The 10,000 atmosphere ultrahigh pressure target vessels are made from 18Ni (200 grade) maraging steel and are lined with OFHC copper, again to prevent hydrogen permeation of the steel. In addition to target design features, operating requirements, fabrication procedures, and secondary containment are discussed. 13 refs., 3 figs., 1 tab

  10. Development of aerogel-lined targets for inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Tom [Technical Univ. Munchen (Germany)

    2013-03-28

    This thesis explores the formation of ICF compatible foam layers inside of an ablator shell used for inertial confinement fusion experiments at the National Ignition Facility. In particular, the capability of p- DCPD polymer aerogels to serve as a scaffold for the deuterium-tritium mix was analyzed. Four different factors were evaluated: the dependency of different factors such as thickness or composition of a precursor solution on the uniformity of the aerogel layer, how to bring the optimal composition inside of the ablator shell, the mechanical stability of ultra-low density p-DCPD aerogel bulk pieces during wetting and freezing with hydrogen, and the wetting behavior of thin polymer foam layers in HDC carbon ablator shells with liquid deuterium. The research for thesis was done at Lawrence Livermore National Laboratory in cooperation with the Technical University Munich.

  11. Criticality safety benchmark experiment on 10% enriched uranyl nitrate solution using a 28-cm-thickness slab core

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Miyoshi, Yoshinori; Kikuchi, Tsukasa; Watanabe, Shouichi

    2002-01-01

    The second series of critical experiments with 10% enriched uranyl nitrate solution using 28-cm-thick slab core have been performed with the Static Experiment Critical Facility of the Japan Atomic Energy Research Institute. Systematic critical data were obtained by changing the uranium concentration of the fuel solution from 464 to 300 gU/l under various reflector conditions. In this paper, the thirteen critical configurations for water-reflected cores and unreflected cores are identified and evaluated. The effects of uncertainties in the experimental data on k eff are quantified by sensitivity studies. Benchmark model specifications that are necessary to construct a calculational model are given. The uncertainties of k eff 's included in the benchmark model specifications are approximately 0.1%Δk eff . The thirteen critical configurations are judged to be acceptable benchmark data. Using the benchmark model specifications, sample calculation results are provided with several sets of standard codes and cross section data. (author)

  12. Using Rutherford Backscattering Spectroscopy to Characterize Targets for MTW

    Science.gov (United States)

    Brown, Gunnar; Stockler, Barak; Ward, Ryan; Freeman, Charlie; Padalino, Stephen; Stillman, Collin; Ivancic, Steven; Reagan, S. P.; Sangster, T. C.

    2017-10-01

    A study is underway to determine the composition and thickness of targets used at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) using Rutherford backscattering spectroscopy (RBS). In RBS, an ion beam is incident on a sample and the scattered ions are detected with a surface barrier detector. The resulting energy spectra of the scattered ions can be analyzed to determine important parameters of the target including elemental composition and thickness. Proton, helium and deuterium beams from the 1.7 MV Pelletron accelerator at SUNY Geneseo have been used to characterize several different targets for MTW, including CH and aluminum foils of varying thickness. RBS spectra were also obtained for a cylindrical iron buried-layer target with aluminum dopant which was mounted on a silicon carbide stalk. The computer program SIMNRA is used to analyze the spectra. This work was funded in part by a Grant from the DOE through the Laboratory for Laser Energetics.

  13. Fabrication of 121Sb isotopic targets for the study of nuclear high spin features

    Science.gov (United States)

    Devi, K. Rojeeta; Kumar, Suresh; Kumar, Neeraj; Abhilash, S. R.; Kabiraj, D.

    2018-06-01

    Isotopic 121Sb targets with 197Au backing have been prepared by Physical Vapor Deposition (PVD) method using the diffusion pump based coating unit at target laboratory, Inter University Accelerator Centre (IUAC), New Delhi, India. The target thickness was measured by stylus profilo-meter and the purity of the targets was investigated by Energy Dispersive X-ray Analysis (EDXA). One of these targets has been used in an experiment which was performed at IUAC for nuclear structure study through fusion evaporation reaction. The excitation function of the 121Sb(12C, yxnγ) reaction has been performed for energies 58 to 70 MeV in steps of 4 MeV. The experimental results were compared with the calculations of statistical models : PACE4 and CASCADE. The methods adopted to achieve best quality foils and good deposition efficiency are reported in this paper.

  14. Some properties of Cerenkov radiation due to the finite thickness of the radiator

    International Nuclear Information System (INIS)

    Kobzev, A.P.; Frank, I.M.

    1981-01-01

    The properties of Cerenkov radiation are analyzed for a small radiator thickness. It is shown that the directionality of the radiation, its threshold properties, and also the dependence on the electron energy and radiator thickness differ substantially from the well known characteristics of Cerenkov radiation corresponding to the case of an unlimited particle trajectory in an extended medium. We have experimentally studied the directionality and energy characteristics of radiation excited by electrons in a mica target of thickness 12 400 A at wavelength 4000 A. The experimental results are in good agreement with the calculations

  15. Generation of the line radiation of argon added to DT gas in Iskra-5 experiments

    International Nuclear Information System (INIS)

    Bel'kov, S.A.; Bessarab, A.V.; Veselov, A.V.; Gaidash, V.A.; Dolgoleva, G.V.; Zhidkov, N.V.; Izgorodin, V.M.; Kirillov, G.A.; Kochemasov, G.G.; Litvin, D.N.; Martynenko, S.P.; Mitrofanov, E.I.; Murugov, V.M.; Mkhitar'yan, L.S.; Petrov, S.I.; Pinegin, A.V.; Punin, V.T.; Suslov, N.A.

    1998-01-01

    The first experiments measuring the density of a compressed deuterium and tritium mixture in microtargets of indirect irradiation (x-ray targets) were performed at the Iskra-5 facility. The density was determined according to the broadening of the lines of hydrogen- and helium-like argon added to the DT gas as a diagnostics material. A series of three experiments was performed with x-ray targets in which the central capsule filled with a DT+Ar mixture over a range of shell thicknesses. In two of the experiments, argon emission spectra were recorded and the density of the compressed gas was determined. For a microtarget approximately 280 μm in diameter with a wall approximately 7 μm thick, an analysis of the experimental results yielded an estimated density in the compressed gas of ∼1 g/cm 3 . Gas-dynamic calculations using the SNDA (spectral nonequilibrium diffusion with absorption) program show that argon emission takes place just after reaching maximum temperature, but much sooner than maximum compression. The results of a calculation for an experiment with low relative Ar concentration are in overall agreement with the experimental data. Additional investigations are needed to interpret experiments at a relatively high concentration

  16. Design and Fabrication of Titanium Target for Portable Neutron Generator

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Oh, Byunghoon; Chang, Daesik; Jang, Dohyun; In Sang Yeol; Park, Jaewon; Hong, Kwangpyo

    2014-01-01

    For the neutron generator to produce a neutron flux of the above order, a target that produces fast neutrons in the generator plays an important role, and the target is used and applied to develop the generator due to its simplicity and inexpensive. Making suitable targets for neutron production, especially mono-energy neutrons, has always been of interest. These targets have been used for neutron production reaction studies, calibration of detectors, and neutron therapy. Different studies have been carried out on deuterium and tritium for making solid targets to produce mono-energy neutron from D-D and D-T reactions. A lot of investigations have been carried out on solid target properties such as lifetime, thermal stability, neutron yield, and energy. Vaporized zirconium and titanium layers on a high thermal conductivity substrate (Cu, Mo, Ag) have been used as deuterium and tritium absorbing metals. The density of titanium is smaller than zirconium and the range of charged particles in the titanium targets is more than that in zirconium targets. Thus, titanium targets have more neutron yield than zirconium targets in a low energy beam and titanium is usually used to make a target. The titanium target was designed and simulated to determine the suitable thickness of the target. As a result of the simulation, the target was fabricated to generate fast neutrons by the reaction. The thickness of the target was measured using a profiler. The thickness of the two targets is 2.108 and 2.190 μm. The target will be applied to produce neutrons in a neutron generator

  17. Determination of spallation residues in thin target: toward an hybrid reactor lead target simulation

    International Nuclear Information System (INIS)

    Audouin, L.; Tassan-Got, L.; Bernas, M.; Rejmund, F.; Stephan, C.; Taieb, J.; Boudard, A.; Fernandez, B.; Legrain, R.; Leray, S.; Volant, C.; Wlazlo, W.; Benlliure, J.; Casajeros, E.; Pereira, J.; Czajkowski, S.

    2001-01-01

    The production of spallation primary residual nuclei in thin target has been studied by measurement of isotopic yields distributions for several systems. Issues relevant for the design of accelerator-driven systems are presented. Monte-Carlo code abilities to reproduce data are studied in details; it is shown that calculations do not reproduce data in a satisfactory way. Future work orientations leading to an improvement of thin targets calculations and ultimately to a thick target simulation are discussed. (author)

  18. Determination of spallation residues in thin target: toward an hybrid reactor lead target simulation

    Energy Technology Data Exchange (ETDEWEB)

    Audouin, L.; Tassan-Got, L.; Bernas, M.; Rejmund, F.; Stephan, C.; Taieb, J. [Paris-11 Univ., 91- Orsay (France). Inst. de Physique Nucleaire; Enqvist, T.; Armbruster, P.; Ricciardi, M.V.; Schmidt, K.H. [GSI, Planckstrasse 1, Darmstadt (Germany); Boudard, A.; Fernandez, B.; Legrain, R.; Leray, S.; Volant, C.; Wlazlo, W. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91 - Gif sur Yvette (France); Benlliure, J.; Casajeros, E.; Pereira, J. [University of Santiago de Compostella (Spain); Czajkowski, S. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, CENBG, CNRS-IN2P3, 33 - Gradignan (France)

    2001-07-01

    The production of spallation primary residual nuclei in thin target has been studied by measurement of isotopic yields distributions for several systems. Issues relevant for the design of accelerator-driven systems are presented. Monte-Carlo code abilities to reproduce data are studied in details; it is shown that calculations do not reproduce data in a satisfactory way. Future work orientations leading to an improvement of thin targets calculations and ultimately to a thick target simulation are discussed. (author)

  19. Observation of normal appearance and wall thickness of esophagus on CT images

    International Nuclear Information System (INIS)

    Xia Fan; Mao Jingfang; Ding Jinquan; Yang Huanjun

    2009-01-01

    Purpose: This study sought to observe the appearance of normal esophagus, measure and record the thickness of esophageal wall in order to offer reference for estimating esophageal wall abnormalities and delineating gross tumor target of esophageal carcinomas on CT images. Materials and methods: From September 2006 to February 2007, 110 consecutive CT films from adult patients without esophageal diseases were collected and studied. On CT images the entire esophagus was divided into cervical, thoracic, retrocardiac and intraabdominal segments. The appearance of esophagus was described when the esophagus contracted or dilated. Thickness of esophageal wall and diameters of esophageal cavities were measured by hard-copy reading with a magnifying glass. Age, sex and the thickness of subcutaneous fat of each patient were recorded. Results: It was observed that the esophagus presented both contracted and dilated status on CT images. In each segment there were certain portions of esophagus in complete contraction or dilatation. 47 images (42.7%) showed contracted esophagus in each segment available for measurement. The largest wall thickness when esophagus was in contraction and dilatation was 4.70 (95%CI: 4.44-4.95) mm and 2.11 (95%CI: 2.00-2.23) mm, respectively. When contracting, the intraabdominal esophagus was thicker than the cervical, thoracic and retrocardiac parts, and the average thickness was 5.68 (95%CI: 5.28-6.09) mm, 4.67 (95%CI: 4.36-4.86) mm, 4.56 (95%CI: 4.31-4.87) mm, and 4.05 (95%CI: 3.71-4.21) mm, respectively. When the esophagus was dilating, the average esophageal wall thickness was between 1.87 and 2.70 mm. The thickest part was cervical esophagus. Thickness of esophageal wall was larger in males than that of females (5.26 mm vs. 4.34 mm p < 0.001). Age and the thickness of subcutaneous fat had no significant impact on the thickness of esophageal wall (p-value was 0.056 and 0.173, respectively). Conclusion: The Observation of normal appearance and

  20. Experience gained during 10 years transmutation experiments in Dubna

    Science.gov (United States)

    Zamani, M.; Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Krivopustov, M.; Sosnin, A.; Golovatyuk, S.

    2006-05-01

    Transmutation, the procedure of transforming long-lived radioactive isotopes into stable or short-lived, was proposed for reducing the amount of radioactive waste resulting from technological applications of nuclear fission. The Accelerator Driven Systems (ADS) provide the possibility to generate intense neutron spectrum yielding in an effective transmutation of unwanted isotopes. Such experiments are being carried out for the last 10 years in Synchrophasotron / Nuclotron accelerators at the Veksler-Baldin Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna, Russia. Thick Pb and Pb-U targets, surrounded by moderators, have been irradiated by protons in the energy range of 0.5-7.4 GeV. Neutron fluence measurements have been performed by different techniques of passive detectors (neutron activation detectors, solid state nuclear track detectors). Transmutation of 129I, 237Np, 239Pu was studied. The results of these experiments are presented and discussed.

  1. A new measurement method of coatings thickness based on lock-in thermography

    Science.gov (United States)

    Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao

    2016-05-01

    Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.

  2. Determination of material and its thickness for Cs-137 gamma source shielding

    International Nuclear Information System (INIS)

    Tukiman

    2008-01-01

    Its has been determined the shielding material and its thickness necessarily conducted due to every material will have different half-thickness characteristics, and by the selection a suitable material and its thickness will be obtained. Half-thickness of any material is the ability of the material at a certain thickness to absorb any radiation intensity so that the intensity becomes half of its source. Sample materials to be used are concrete, wood, and lead with their thickness varied. From experiment data and theoretical computation can be concluded that lead is the suitable material for shielding with the value of HVT for gamma radiation 0,732 cm. For wood and concrete will give half-thickness of 11,0 cm and 3,164 cm respectively. (author)

  3. Impact cratering on porous targets in the strength regime

    Science.gov (United States)

    Nakamura, Akiko M.

    2017-12-01

    Cratering on small bodies is crucial for the collision cascade and also contributes to the ejection of dust particles into interplanetary space. A crater cavity forms against the mechanical strength of the surface, gravitational acceleration, or both. The formation of moderately sized craters that are sufficiently larger than the thickness of the regolith on small bodies, in which mechanical strength plays the dominant role rather than gravitational acceleration, is in the strength regime. The formation of microcraters on blocks on the surface is also within the strength regime. On the other hand, the formation of a crater of a size comparable to the thickness of the regolith is affected by both gravitational acceleration and cohesion between regolith particles. In this short review, we compile data from the literature pertaining to impact cratering experiments on porous targets, and summarize the ratio of spall diameter to pit diameter, the depth, diameter, and volume of the crater cavity, and the ratio of depth to diameter. Among targets with various porosities studied in the laboratory to date, based on conventional scaling laws (Holsapple and Schmidt, J. Geophys. Res., 87, 1849-1870, 1982) the cratering efficiency obtained for porous sedimentary rocks (Suzuki et al., J. Geophys. Res. 117, E08012, 2012) is intermediate. A comparison with microcraters formed on a glass target with impact velocities up to 14 km s-1 indicates a different dependence of cratering efficiency and depth-to-diameter ratio on impact velocity.

  4. The polarized atomic-beam target for the EDDA experiment and the time-reversal invariance test at COSY

    International Nuclear Information System (INIS)

    Eversheim, P.D.; Altmeier, M.; Felden, O.

    1996-01-01

    For the the EDDA experiment, which was set up to measure the p-vector - p-vector excitation function during the acceleration ramp of the cooler synchrotron COSY at Juelich, a polarized atomic-beam target was designed regarding the restrictions imposed by the geometry of the EDDA detector. Later, when the time-reversal invariance experiment is to be performed, the EDDA detector will serve as efficient internal polarimeter and the source has to deliver tensor polarized deuterons. The modular design of this polarized atomic-beam target that allows to meet these conditions are discussed in comparison to other existing polarized atomic-beam targets. (orig.)

  5. Proposed Fermilab fixed target experiment: Kaons at the Tevatron

    International Nuclear Information System (INIS)

    1993-12-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0898, evaluating the impacts associated with the proposed fixed target experiment at the Fermi National Accelerator Laboratory (Femilab) in Batavia, Illinois, known as Kaons at the Tevatron (KTeV). The proposed KTeV project includes reconfiguration of an existing target station, enhancement of an existing beam transport system connected to existing utility facilities, and construction of a new experimental detector hall area. The study of the K meson, a type of subatomic particle, has been going on at Fermilab for 20 years. The proposed KTEV project advances the search for the origins of a violation of a fundamental symmetry of nature called charge parity (CP) violation. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required

  6. Intraoperative Boost Radiotherapy during Targeted Oncoplastic Breast Surgery: Overview and Single Center Experiences

    Directory of Open Access Journals (Sweden)

    Wolfram Malter

    2014-01-01

    Full Text Available Breast-conserving surgery followed by whole-breast irradiation is the standard local therapy for early breast cancer. The international discussion of reduced importance of wider tumor-free resection margins than “tumor not touching ink” leads to the development of five principles in targeted oncoplastic breast surgery. IORT improves local recurrence risk and diminishes toxicity since there is less irradiation of healthy tissue. Intraoperative radiotherapy (IORT can be delivered in two settings: an IORT boost followed by a conventional regimen of external beam radiotherapy or a single IORT dose. The data from TARGIT-A and ELIOT reinforce the conviction that intraoperative radiotherapy during breast-conserving surgery is a reliable alternative to conventional postoperative fractionated irradiation, but only in a carefully selected population at low risk of local recurrence. We describe our experiences with IORT boost (50 kV energy X-rays; 20 Gy in combination with targeted oncoplastic breast surgery in a routine clinical setting. Our experiences demonstrate the applicability and reliability of combining IORT boost with targeted oncoplastic breast surgery in breast-conserving therapy of early breast cancer.

  7. The NA50 segmented target and vertex recognition system

    International Nuclear Information System (INIS)

    Bellaiche, F.; Cheynis, B.; Contardo, D.; Drapier, O.; Grossiord, J.Y.; Guichard, A.; Haroutunian, R.; Jacquin, M.; Ohlsson-Malek, F.; Pizzi, J.R.

    1997-01-01

    The NA50 segmented target and vertex recognition system is described. The segmented target consists of 7 sub-targets of 1-2 mm thickness. The vertex recognition system used to determine the sub-target where an interaction has occured is based upon quartz elements which produce Cerenkov light when traversed by charged particles from the interaction. The geometrical arrangement of the quartz elements has been optimized for vertex recognition in 208 Pb-Pb collisions at 158 GeV/nucleon. A simple algorithm provides a vertex recognition efficiency of better than 85% for dimuon trigger events collected with a 1 mm sub-target set-up. A method for recognizing interactions of projectile fragments (nuclei and/or groups of nucleons) is presented. The segmented target allows a large target thickness which together with a high beam intensity (∼10 7 ions/s) enables high statistics measurements. (orig.)

  8. Secondary neutron production from thick Pb target by light particle irradiation

    CERN Document Server

    Adloff, J C; Debeauvais, M; Fernández, F; Krivopustov, M; Kulakov, B A; Sosnin, A; Zamani, M

    1999-01-01

    Neutron multiplicities from spallation neutron sources were measured by Solid State Nuclear Track Detectors. Light particles as protons, deuterons and alphas in the GeV range were used on Pb targets. For neutron thermalization the targets were covered by 6 cm paraffin moderator. Neutron multiplicity distributions were studied inside and on the moderator surface. Comparison of SSNTDs results were made for thermal-epithermal neutrons with sup 1 sup 3 sup 9 La activation method as well as with Dubna DCM/CEM code. Discussion including previous sup 1 sup 2 C results are given.

  9. AA antiproton production target

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The first version of the antiproton production target was a tungsten rod, 11 cm long and 3 mm in diameter. The rod was embedded in graphite, pressure-seated into an outer casing of stainless steel. At the entrance to the target assembly was a scintillator screen, imprinted with circles every 5 mm in radius, which allowed to precisely aim the 26 GeV high-intensity proton beam from the PS onto the centre of the target rod. The scintillator screen was a 1 mm thick plate of Cr-doped alumina. See also 7903034 and 7905091.

  10. Finite plate thickness effects on the Rayleigh-Taylor instability in elastic-plastic materials

    Science.gov (United States)

    Polavarapu, Rinosh; Banerjee, Arindam

    2017-11-01

    The majority of theoretical studies have tackled the Rayleigh-Taylor instability (RTI) problem in solids using an infinitely thick plate. Recent theoretical studies by Piriz et al. (PRE 95, 053108, 2017) have explored finite thickness effects. We seek to validate this recent theoretical estimate experimentally using our rotating wheel RTI experiment in an accelerated elastic-plastic material. The test section consists of a container filled with air and mayonnaise (a non-Newtonian emulsion) with an initial perturbation between two materials. The plate thickness effects are studied by varying the depth of the soft-solid. A set of experiments is run by employing different initial conditions with different container dimensions. Additionally, the effect of acceleration rate (driving pressure rise time) on the instability threshold with reference to the finite thickness will also be inspected. Furthermore, the experimental results are compared to the analytical strength models related to finite thickness effects on RTI. Authors acknowledge financial support from DOE-SSAA Grant # DE-NA0003195 and LANL subcontract #370333.

  11. Build-up of a liquid hydrogen target with extremely thin windows

    International Nuclear Information System (INIS)

    Jaeckle, V.G.

    1992-06-01

    Small hydrogen targets with only a few cubic millimeters of liquid have many advantages in experiments on accelerators with phase-space cooled particle beams. In order to achieve good suppression of systematic errors by secondary reactions in the target and in the target windows, the thickness of the foil window for a 1 mm target may only be 0.3 μm. A pressure difference of 200 mbar permits the use of such thin foils (with a diameter of 6 mm). A purely mechanical pressure control unit was built, which consists of soft bellows and a loading weight. The pressure difference from a vacuum, which is in the bellows, is set by the weight on the bellows. The working parameters were chosen so that deuterium, nitrogen and oxygen can be used. The pressure variations in the cell are only ± 2.5 mbar. A mixing of gaseous and liquid hydrogen in the target cell and the formation of bubbles due to free convection can be prevented. A quiet volume of liquid hydrogen free of bubbles was obtained. (orig./HP) [de

  12. Measurements of attenuation lengths through concrete and iron for neutrons produced by 800-MeV proton on tantalum target at ISIS

    CERN Document Server

    Nunomiya, T; Wright, P; Nakamura, T; Kim, E; Kurosawa, T; Taniguchi, S; Sasaki, M; Iwase, H; Uwamino, Y; Shibata, T; Ito, S; Perry, D R

    2002-01-01

    A deep penetration experiment through a thick bulk shield was performed at an intense spallation neutron source facility, ISIS, of the Rutherford Appleton Laboratory (RAL), United Kingdom. ISIS is a 800 MeV-200 mu A proton accelerator facility. Neutrons are produced from a tantalum target, and are shielded with approximately 3-m thick steel and 1-m thick ordinary concrete. On top of the shield, we measured the neutron flux attenuation through concrete and iron shields, which were additionally placed up to 120-cm and 60-cm thickness, respectively, using activation detectors of graphite and bismuth. The attenuation lengths of concrete and iron for high-energy neutrons above 20 MeV were obtained from the sup 1 sup 2 C(n, 2n) sup 1 sup 1 C reaction of graphite.

  13. Effects of buffer thickness on ATW blanket performances

    International Nuclear Information System (INIS)

    Yang, Won Sik

    2001-01-01

    This paper presents the preliminary results of target and buffer design studies for a lead-bismuth eutectic (LBE) cooled accelerator transmutation of waste (ATW) system, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using an 840 MWt LBE cooled ATW design, the effects of buffer thickness on the blanket performances have been studied. Varying the buffer thickness for a given blanket configuration, system performances have been estimated by a series of calculations using MCNPX and REBUS-3 codes. The effects of source importance change are studied by investigating the low-energy (< 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. As the irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. The results show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable

  14. The polarized atomic-beam target for the EDDA experiment and the time-reversal invariance test at COSY

    Science.gov (United States)

    Eversheim, P. D.; Altmeier, M.; Felden, O.

    1997-02-01

    For the the EDDA experiment, which was set up to measure the p¯-p¯ excitation function during the acceleration ramp of the cooler synchrotron COSY at Jülich, a polarized atomic-beam target was designed regarding the restrictions imposed by the geometry of the EDDA detector. Later, when the time-reversal invariance experiment is to be performed, the EDDA detector will serve as efficient internal polarimeter and the source has to deliver tensor polarized deuterons. The modular design of this polarized atomic-beam target that allows to meet these conditions will be discussed in comparison to other existing polarized atomic-beam targets.

  15. Highly accurate adaptive TOF determination method for ultrasonic thickness measurement

    Science.gov (United States)

    Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing

    2018-04-01

    Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.

  16. Account of magnetic field effects of polarized proton target on charged particle trajectories in experiments with magnetic spectrometers

    International Nuclear Information System (INIS)

    Telegin, Yu.N.; Ranyuk, Yu.N.; Karnaukhov, I.M.; Lukhanin, A.A.; Sporov, E.A.

    1980-01-01

    Some effects of the influence of magnetic field of a polarized proton target (PPT) on trajectories of secondary particles in experiments using magnetic spectrometers are considered. It is shown that these effects can be eliminated by the target shift relatively to the spectrometer rotation axis and variation of the spectrometer installation angle. Numerical calculations of the correction values were performed for emitted particle momenta of 100-800 MeB/s and working intensity of the H 0 magnetic field H 0 =27 kG. The influence of the PPT magnetic field on the functions of angular and energy resolution in the γp→π + n experiment is investigated. The results obtained can be used in experiments with a polarized proton target

  17. Calibration of an analyzing magnet using the 12C(d, p0)13C nuclear reaction with a thick carbon target

    Science.gov (United States)

    Andrade, E.; Canto, C. E.; Rocha, M. F.

    2017-09-01

    The absolute energy of an ion beam produced by an accelerator is usually determined by an electrostatic or magnetic analyzer, which in turn must be calibrated. Various methods for accelerator energy calibration are extensively reported in the literature, like nuclear reaction resonances, neutron threshold, and time of flight, among others. This work reports on a simple method to calibrate the magnet associated to a vertical 5.5 MV Van de Graaff accelerator. The method is based on bombarding with deuteron beams a thick carbon target and measuring with a surface barrier detector the particle energy spectra produced. The analyzer magnetic field is measured for each spectrum and the beam energy is deduced by the best fit of the simulation of the spectrum with the SIMNRA code that includes 12C(d,p0)13C nuclear cross sections.

  18. A T0/Trigger detector for the External Target Experiment at CSR

    Science.gov (United States)

    Hu, D.; Shao, M.; Sun, Y.; Li, C.; Chen, H.; Tang, Z.; Zhang, Y.; Zhou, J.; Zeng, H.; Zhao, X.; You, W.; Song, G.; Deng, P.; Lu, J.; Zhao, L.

    2017-06-01

    A new T0/Trigger detector based on multi-gap resistive plate chamber (MRPC) technology has been constructed and tested for the external target experiment (ETE) at HIRFL-CSR. It measures the multiplicity and timing information of particles produced in heavy-ion collisions at the target region, providing necessary event collision time (T0) and collision centrality with high precision. Monte-Carlo simulation shows a time resolution of several tens of picosecond can be achieved at central collisions. The experimental tests have been performed for this prototype detector at the CSR-ETE. The preliminary results are shown to demonstrate the performance of the T0/Trigger detector.

  19. Study of compact X-ray laser pumped by pulse-train laser. Double-target experiment

    International Nuclear Information System (INIS)

    Yamaguchi, Naohiro; Fujikawa, Chiemi; Hara, Tamio

    2000-01-01

    We have been developing a tabletop x-ray laser based on the recombination plasma scheme. An advanced experiment has been started to improve x-ray laser output substantially. Two 11-mm-long laser produced plasmas were produced so that their axis aligned into a line, the double-target configuration. X-ray intensity of the 15.47 nm transition line of the Li-like Al ion has been enhanced in the double-target configuration. (author)

  20. Electronic radiative capture in solid targets

    International Nuclear Information System (INIS)

    Pregliasco, R.; Nemirovsky, I.; Suarez, S.

    1988-01-01

    X-ray spectra originating from electron radiative capture from aluminium target to K shell on F 9+ and F 8+ beams with 115MeV are studied. Using an electrostatic analyzer, it was obtained the charge fractions Fi to aluminiun thicknesses of 39 and 58 micrograms/cm 2 . These thicknesses are determined by the stopping power of alpha particles. (A.C.A.S.) [pt

  1. Quantification of esophageal wall thickness in CT using atlas-based segmentation technique

    Science.gov (United States)

    Wang, Jiahui; Kang, Min Kyu; Kligerman, Seth; Lu, Wei

    2015-03-01

    Esophageal wall thickness is an important predictor of esophageal cancer response to therapy. In this study, we developed a computerized pipeline for quantification of esophageal wall thickness using computerized tomography (CT). We first segmented the esophagus using a multi-atlas-based segmentation scheme. The esophagus in each atlas CT was manually segmented to create a label map. Using image registration, all of the atlases were aligned to the imaging space of the target CT. The deformation field from the registration was applied to the label maps to warp them to the target space. A weighted majority-voting label fusion was employed to create the segmentation of esophagus. Finally, we excluded the lumen from the esophagus using a threshold of -600 HU and measured the esophageal wall thickness. The developed method was tested on a dataset of 30 CT scans, including 15 esophageal cancer patients and 15 normal controls. The mean Dice similarity coefficient (DSC) and mean absolute distance (MAD) between the segmented esophagus and the reference standard were employed to evaluate the segmentation results. Our method achieved a mean Dice coefficient of 65.55 ± 10.48% and mean MAD of 1.40 ± 1.31 mm for all the cases. The mean esophageal wall thickness of cancer patients and normal controls was 6.35 ± 1.19 mm and 6.03 ± 0.51 mm, respectively. We conclude that the proposed method can perform quantitative analysis of esophageal wall thickness and would be useful for tumor detection and tumor response evaluation of esophageal cancer.

  2. The effect of thickness in the through-diffusion experiment

    International Nuclear Information System (INIS)

    Lehikoinen, J.; Uusheimo, K.; Valkiainen, M.

    1994-01-01

    The publication contains an experimental study of diffusion in the water filled pores of rock samples. The samples studied are rapakivi granite from Loviisa, southern Finland. The drill-core sample was sectioned perpendicularly with diamond saw and three cylinder formed samples were obtained. The nominal thicknesses (heights of the cylinders) are 2, 4 and 6 cm. For the diffusion measurement the sample holders were pressed between two chambers. One of the chambers was filled with 0.0044 molar sodium chloride solution spiked with tracers. Another chamber was filled with inactive solution. Tritium (HTO) considered to be water equivalent tracer and anionic 36 Cl were used as tracers. (9 refs., 19 figs., 2 tabs.)

  3. A preparation of thin flat target for RD lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    El-Badry, A M; Abdel Samie, Sh; Ahmed, A A [Department of Physics, Faculty of Science, El Minia University, Minia (Egypt); Kuroyanagi, T; Morinobu, S [Tandem Accelerator Laboratory, Department of Physics, Kyushu University, (Japan)

    1997-12-31

    An extreme flatness for a target surface is the most necessary in recoil distance method (RDM). A suitable technique was used for preparing a La target. The {sup 139} La target of thickness 0.22 mg/cm{sup 2} was evaporated onto a very flat soft Au foil of thickness 2 mg/cm{sup 2}. This target was successively used for lifetime measurements of the excited nuclear states in {sup 145} Sm nucleus through the nuclear reaction {sup 139} La ({sup 10} B, 4 n) {sup 145} Sm. Background {gamma} rays produced by the {sup 10} B irradiation for the Au backing and the Pb stopper without the La target were measured. Besides that, the {gamma} rays from residual activities were also measured. 3 figs.

  4. Measurements of secondary neutrons producted from thick targets bombarded by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, T.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Nakao, N.; Shibata, T.; Uwamino, Y.; Nakanishi, N.; Fukumura, A.; Kumamoto, Y.

    1997-03-01

    We measured neutron angular and energy distributions from high energy heavy ions stopping in targets of carbon, aluminum, copper and lead at HIMAC. These spectra are much harder for the lighter target nucleus like carbon. This means that the momentum transfer in the forward direction from heavy ion beam to lighter nuclei is much higher than that to heavier nuclei. (author)

  5. Automated Estimation of Melanocytic Skin Tumor Thickness by Ultrasonic Radiofrequency Data.

    Science.gov (United States)

    Andrekute, Kristina; Valiukeviciene, Skaidra; Raisutis, Renaldas; Linkeviciute, Gintare; Makstiene, Jurgita; Kliunkiene, Renata

    2016-05-01

    High-frequency (>20-MHz) ultrasound (US) is a noninvasive preoperative tool for assessment of melanocytic skin tumor thickness. Ultrasonic melanocytic skin tumor thickness estimation is not always easy and is related to the experience of the clinician. In this article, we present an automated thickness measurement method based on time-frequency analysis of US radiofrequency signals. The study was performed on 52 thin (≤1-mm) melanocytic skin tumors (46 melanocytic nevi and 6 melanomas). Radiofrequency signals were obtained with a single-element focused transducer (fundamental frequency, 22 MHz; bandwidth, 12-28 MHz). The radiofrequency data were analyzed in the time-frequency domain to make the tumor boundaries more noticeable. The thicknesses of the tumors were evaluated by 3 different metrics: histologically measured Breslow thickness, manually measured US thickness, and automatically measured US thickness. The results showed a higher correlation coefficient between the automatically measured US thickness and Breslow thickness (r= 0.83; Pmeasured US thickness (r = 0.68; P measurement algorithm was 96.55%, and the specificity was 78.26% compared with histologic measurement. The sensitivity of the manually measured US thickness was 75.86%, and the specificity was 73.91%. The efficient automated tumor thickness measurement method developed could be used as a tool for preoperative assessment of melanocytic skin tumor thickness. © 2016 by the American Institute of Ultrasound in Medicine.

  6. Fixed target B experiments and the angle alpha using B0 → ππ and B0 → a1π

    International Nuclear Information System (INIS)

    McManus, A.P.; Cox, B.; Dukes, E.C.; Lawry, T.

    1993-01-01

    Fixed target beauty (B) experiments proposed at the SSC or LHC come in two basic types. The first type is the extracted beam experiments using a bent crystal of silicon or some other method to extract a beam of protons parasitically from the circulating beam as the collider experiments are taking data. The two chief experiments proposing this method are the LHB collaboration which would use the LHC at CERN and the SFT collaboration which would use the SSC. The second type of fixed target experiment is one that would place the detector around the circulating beam using a gas jet or thin wire(s) as a target. Two experiments of this type are the one proposed at CERN for LHC (GAJET) and the Hera-B experiment proposed at DESY using the Hera collider

  7. SMOS brightness data indicate ice thickness hence bedrock topography in east antarctica

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup

    2017-01-01

    In order to evaluate a potential calibration target for spaceborne L-band radiometer systems, a 350 × 350 km area near the Concordia station on the East Antarctica plateau was mapped by an airborne L-band radiometer. Unexpectedly, the area showed significant brightness temperature spatial...... variations, well correlated with bedrock topography, hence ice thickness. Using SMOS data over a poorly known part of Antarctica, ice thickness in this area has been assessed, and an existing bedrock map has been improved....

  8. Lead Thickness Measurements

    International Nuclear Information System (INIS)

    Rucinski, R.

    1998-01-01

    The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in 3 , an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.

  9. Design Optimisation of a High Intensity Beam Facility and Feasibility Experiment of a Solid Fragmented Target

    CERN Document Server

    Charitonidis, Nikolaos; Rivkin, Leonid

    2014-06-13

    The present PhD thesis describes the design, execution and results of the HRMT-10 experiment performed at the HiRadMat facility of the CERN/SPS complex. The first part of the thesis covers the design optimization studies of the HiRadMat facility, focusing in particular on the radiation protection issues. A detailed Monte-Carlo model of the facility has been developed and validated through comparison with measurements. A very satisfactory agreement between the simulation and the experimental data is observed. In the second part of this thesis, a novel feasibility experiment of a fragmented solid target for a future Neutrino Factory or a Super Beam facility, able to support high beam powers ( 1 MW) is presented in detail. A solid granular target has been proposed as an interesting alternative to an open Hg jet target, presently considered as the baseline for such facilities, but posing considerable technical challenges. The HRMT-10 experiment seeks to address the lack of experimental data of the feasibility of...

  10. Generation and Transport of Hot Electrons in Cone-Wire Targets

    Science.gov (United States)

    Beg, Farhat

    2009-11-01

    We present results from a series of experiments where cone-wire targets in various configurations were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Initial experiments were performed on the Vulcan petawatt laser at the Rutherford Appleton Laboratory and Titan laser at the Lawrence Livermore National Laboratory. Results with aluminum cones joined to Cu wires of diameters from 10 to 40 μm show that the laser coupling efficiency to electron energy within the wire is proportional to the cross sectional area of the wire. In addition, coupling into the wire was observed to decrease with the laser prepulse and cone-wall thickness. More recently, this study was extended, using the OMEGA EP laser. The resulting changes in coupling energy give indications of the scaling as we approach FI-relevant conditions. Requirements for FI scale fast ignition cone parameters: tip thickness, wall thickness, laser prepulse and laser pulse length, will be discussed. In collaboration with T. Yabuuchi, T. Ma, D. Higginson, H. Sawada, J. King, M.H. Key, K.U. Akli, Al Elsholz, D. Batani, H. Chen, R.R. Freeman, L. Gizzi, J. Green, S. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, D.Larson, A.J. MacKinnon, H. McLean, A. MacPhee, P.A. Norreys, P.K Patel, R. B. Stephens, W. Theobald, R. Town, M. Wei, S. Wilks, Roger Van Maren, B. Westover and L. VanWoerkom.

  11. Release studies of a thin foil tantalum target for the production of short-lived radioactive nuclei

    CERN Document Server

    Bennett, J R J; Drumm, P V; Lettry, Jacques; Nilsson, T; Catherall, R; Jonsson, O C; Ravn, H L; Simon, H

    2002-01-01

    Measurements have been made at ISOLDE, of the release curves and yields of radioactive beams of lithium, sodium and beryllium from a target constructed from 2 $\\mu$m thick foils. The release curves have been analysed by fitting to a mathematical model to determine the coefficients of diffusion of the particles in the foils and effusion through the target and ionizer at several temperatures. Through a better understanding of the rate of transport of the particles, it is possible to design targets and ionizers with improved yields. This is most important for the rare, short-lived isotopes in which there is considerable interest for physics experiments. This target has demonstrated large increases in the yields of $^{11}$Li and $^{12}$Be, in agreement with the predictions of the model. (11 refs).

  12. Experiment study on the thick GEM-like multiplier for X-ray photoelectrons energy deposition gaining

    International Nuclear Information System (INIS)

    Zhu Pengfei; Ye Yan; Long Yan; Cao Ningxiang; Jia Xing; Li Jianfeng

    2009-01-01

    The GEM is a novel detector with high gain,high time and location resolution. Imitating the structure of the GEM, a thick GEM-like multiplier which has the similar function with that of the GEM is designed and manufactured. The characteristics of the thick GEM-like multiplier increasing electron energy deposition in absorbing medium has been experimentally studied. The results indicate that the energy deposition gain of x-ray photoelectron in medium is apparent, and the maximum energy deposition can increase by more than 40%. Some suggestions of further increasing the energy deposition are given, and the future application of the way of increasing the x-ray photoelectron energy deposition by the thick GEM-like multiplier in hard x-ray imaging is prospected. (authors)

  13. Experimental thin-target and thick-target yields for natOs(α, xn)Pt, natOs(α, X)Os, Ir and natMo(p, xn)Tc nuclear reactions from threshold up to 38 and 45 MeV, by combined single and stacked foil techniques

    International Nuclear Information System (INIS)

    Birattari, Claudio; Bonardi, Mauro; Gini, Luigi; Groppi, Flavia; Menapace, Enzo

    2002-01-01

    The experimental values of thin-target excitation functions for the nuclear reactions: nat Os(α, X) 188,189,191 Pt, 192g,194m Ir in the energy range 11 - 38 MeV and nat Mo(p, xn) 94g,95g,95m,96(m+g) Tc in the energy range 5 - 44 MeV are presented. The experimental values were obtained by cyclotron activation followed by off-line HPGe γ-spectrometry and corrected at the End Of an Instantaneous Bombardment, EOIB. In different cases use was made of single foil and stacked foil techniques, which present significantly different advantages and disadvantages. The thin-target yield values can be easily either numerically or analytically integrated, as a function of both incoming particle energy and energy loss in target itself, in order to calculate apriori the thick-target yield of various radionuclides under any different experimental condition. Moreover, the thin-target yields are directly related to the effective cross-sections of various nuclear reaction channels involved. The data are of relevant interest for optimizing cyclotron production of platinum and technetium radionuclides to be used as radiotracers for metallo-biochemical, biomedical, toxicological and environmental studies. (author)

  14. Experience with dust suppression in mining a thick, dirty seam

    Energy Technology Data Exchange (ETDEWEB)

    Siepmann, D; Kohlhauer, H

    1975-11-20

    Dust suppression measures used when mining a thick, dirty seam are described. Dust sprays inside and outside the shearer drum helped to reduce coarse dust, but the resulting increase in moisture content of the coal limits the extent to which this method can be used. The shields were also fitted with sprays. Because of the dirt in the seam, continuous, remotely controlled deep infusion was used. This reduced the dust concentration from more than 10 mg/m/sup 3/ to between 3.9 and 6.6 mg/m/sup 3/.

  15. Reliability assessment for thickness measurements of pipe wall using probability of detection

    International Nuclear Information System (INIS)

    Nakamoto, Hiroyuki; Kojima, Fumio; Kato, Sho

    2013-01-01

    This paper proposes a reliability assessment method for thickness measurements of pipe wall using probability of detection (POD). Thicknesses of pipes are measured by qualified inspectors with ultrasonic thickness gauges. The inspection results are affected by human factors of the inspectors and include some errors, because the inspectors have different experiences and frequency of inspections. In order to ensure reliability for inspection results, first, POD evaluates experimental results of pipe-wall thickness inspection. We verify that the results have differences depending on inspectors including qualified inspectors. Second, two human factors that affect POD are indicated. Finally, it is confirmed that POD can identify the human factors and ensure reliability for pipe-wall thickness inspections. (author)

  16. A blow-in windowless gas target

    International Nuclear Information System (INIS)

    Sagara, K.; Motoshima, A.; Fujita, T.; Akiyoshi, H.; Nishimori, N.

    1996-01-01

    A new-type windowless gas target has been developed to realize a dense target with a low gas flow rate. The target is similar to the conventional differentially pumped windowless gas target except that the target gas is blown into the target region from both the side holes of the beam entrance and exit. Due to the gas-confining action caused by the blown-in gas, the target thickness is about twice increased and the target density sharply falls in the holes. Most of the target gas is at rest and the density is uniform. The gas flow rate is the same as that of the conventional target and is about an order of magnitude lower than that of the dense gas-jet target. (orig.)

  17. A transition radiation detector interleaved with low-density targets for the NOE experiment

    CERN Document Server

    Alexandrov, K V; Bernardini, P; Brigida, M; Campana, D; Candela, A M; Caruso, R; Cassese, F; Ceres, A; D'Aquino, B; De Cataldo, G; De Mitri, I; Di Credico, A; Favuzzi, C; Fusco, P; Gargano, F; Giglietto, N; Giordano, F; Grillo, A; Guarino, F; Gustavino, C; Lamanna, E; Lauro, A; Leone, A; Loparco, F; Mancarella, G; Martello, D; Mazziotta, M N; Mikheyev, S P; Mongelli, M; Osteria, G; Palladino, Vittorio; Passeggio, G; Perchiazzi, M; Pontoniere, G; Rainó, A; Rocco, R; Romanucci, E; Rubizzo, U; Sacchetti, A; Scapparone, E; Spinelli, P; Tikhomirov, V; Vaccina, A; Vanzanella, E; Weber, M

    2001-01-01

    The NOE Collaboration has proposed a transition radiation detector (TRD) interleaved with marble targets to tag the electron decay channel of tau leptons produced by nu /sub tau /, eventually originated by nu /sub mu / oscillations in a long base line experiment. A reduced scale TRD detector prototype has been built and exposed to an electron/pion beam at the CERN PS. Discrimination capabilities between electrons and both charged and neutral pions, representing the main source of background for our measurement, have been determined obtaining rejection factors of the order of the tenth of percent for charged pions, and of a few percent for the neutral pion, matching the experiment requirements. The capabilities of this detector to measure the energy released by particles that start showering inside the targets are shown. A momentum resolution sigma /sub p//P

  18. Confirmatory experiments for the United States Department of Energy Accelerator Production of Tritium Program: Neutron, triton and radionuclide production by thick targets of lead and tungsten bombarded by 800 MeV protons

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Cappiello, M.; Ullmann, J.L.; Gavron, A.; King, J.D.; Laird, R.; Mayo, D.; Waters, L.; Zoeller, C.; Staples, P.

    1994-01-01

    Neutron and Triton Production by 800 MeV Protons: The experiments presented in this report were performed in support of the Accelerator Production of Tritium (APT) project at the Los Alamos Weapons Neutron Research (WNR) facility in order to provide data to benchmark and validate physics simulations used in the APT target/blanket design. An experimental apparatus was built that incorporated many of the features of the neutron source region of the 3 He target/blanket. Those features included a tungsten neutron source, flux traps, neutron moderator, lead backstop, lead multiplying annulus, neutron absorbing blanket and a combination neutron de-coupler and tritium producing gas ( 3 He). The experiments were performed in two separate proton irradiations each with approximately 100 nA-hr of 800 MeV protons. The first irradiation was made with a small neutron moderating blanket, allowing the authors to measure tritium production in the 3 He gas by sampling, and counting the amount of tritium. The second irradiation was performed with a large neutron moderating blanket (light water with a 1% manganese sulfate solution) that allowed them to measure both the tritium production in the central region and the total neutron production. The authors did this by sampling and counting the tritium produced and by measuring the activation of the manganese solution. Results of the three tritium production measurements show large disagreements with each other and therefore with the values predicted using the LAHET-MCNP code system. The source of the discrepancies may lie with the sampling system or adsorption on the tungsten surfaces. The authors discuss tests that may resolve that issue. The data for the total neutron production measurement is much more consistent. Those results show excellent agreement between calculation and experiment

  19. Development of target capsules for muon catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Watts, K.D.; Jones, S.E.; Caffrey, A.J.

    1983-01-01

    A series of Muon Catalyzed Fusion experiments has been conducted at the Los Alamos Meson Physics Facility to determine how many fusion reactions one muon would catalyze under various temperature, pressure, contamination, and tritium concentration conditions. Target capsules to contain deuterium and tritium at elevated temperatures and pressures were engineered for a maximum temperature of 540 K (512 0 F) and a maximum pressure of 103 MPa (15,000 psig). Experimental data collected with these capsules indicated that the number of fusion reactions per muon continued to increase with temperature up to the 540-K design limit. Theory had indicated that the reaction rate should peak at approximately 540 K, but this was not confirmed during the experiments. A second generation of capsules which have a maximum design temperature of 800 K (980 0 F) and a maximum design pressure of 103 MPa (15,000 psig) has now been engineered. These new capsules will be used to further study the muon catalysis rate versus deuterium-tritium mixture temperature

  20. Design of the solid target structure and the study on the coolant flow distribution in the solid target using the 2-dimensional flow analysis

    International Nuclear Information System (INIS)

    Haga, Katsuhiro; Terada, Atsuhiko; Ishikura, Shuichi; Teshigawara, Makoto; Kinoshita, Hidetaka; Kobayashi, Kaoru; Kaminaga, Masaki; Hino, Ryutaro; Susuki, Akira

    1999-11-01

    A solid target cooled by heavy water is presently under development under the Neutron Science Research Project of the Japan Atomic Energy Research Institute (JAERI). Target plates of several millimeters thickness made of heavy metal are used as the spallation target material and they are put face to face in a row with one to two millimeters gaps in between though which heavy water flows, as the coolant. Based on the design criteria regarding the target plate cooling, the volume percentage of the coolant, and the thermal stress produced in the target plates, we conducted thermal and hydraulic analysis with a one dimensional target plate model. We choosed tungsten as the target material, and decided on various target plate thicknesses. We then calculated the temperature and the thermal stress in the target plates using a two dimensional model, and confirmed the validity of the target plate thicknesses. Based on these analytical results, we proposed a target structure in which forty target plates are divided into six groups and each group is cooled using a single pass of coolant. In order to investigate the relationship between the distribution of the coolant flow, the pressure drop, and the coolant velocity, we conducted a hydraulic analysis using the general purpose hydraulic analysis code. As a result, we realized that an uniform coolant flow distribution can be achieved under a wide range of flow velocity conditions in the target plate cooling channels from 1 m/s to 10 m/s. The pressure drop along the coolant path was 0.09 MPa and 0.17 MPa when the coolant flow velocity was 5 m/s and 7 m/s respectively, which is required to cool the 1.5 MW and 2.5 MW solid targets. (author)

  1. Physics perspectives with AFTER@LHC (A Fixed Target ExpeRiment at LHC

    Directory of Open Access Journals (Sweden)

    Massacrier L.

    2018-01-01

    Full Text Available AFTER@LHC is an ambitious fixed-target project in order to address open questions in the domain of proton and neutron spins, Quark Gluon Plasma and high-x physics, at the highest energy ever reached in the fixed-target mode. Indeed, thanks to the highly energetic 7 TeV proton and 2.76 A.TeV lead LHC beams, center-of-mass energies as large as sNN = 115 GeV in pp/pA and sNN = 72 GeV in AA can be reached, corresponding to an uncharted energy domain between SPS and RHIC. We report two main ways of performing fixed-target collisions at the LHC, both allowing for the usage of one of the existing LHC experiments. In these proceedings, after discussing the projected luminosities considered for one year of data taking at the LHC, we will present a selection of projections for light and heavy-flavour production.

  2. Predicting the Equilibrium Deuterium-Tritium Fuel Layer Thickness Profile in an Indirect-Drive Hohlraum Capsule

    International Nuclear Information System (INIS)

    Sanchez, Jorge J.; Giedt, Warren H.

    2004-01-01

    A numerical procedure for calculating the equilibrium thickness distribution of a thin layer of deuterium and tritium on the inner surface of an indirect drive target sphere (∼2.0 mm in diameter) is described. Starting with an assumed uniform thickness layer and with specified thermal boundary conditions, the temperature distribution throughout the capsule and hohlraum (including natural convection in the hohlraum gas) is calculated. Results are used to make a first estimate of the final non-uniform thickness distribution of the layer. This thickness distribution is then used to make a second calculation of the temperature distribution with the same boundary conditions. Legendre polynomial coefficients are evaluated for the two temperature distributions and the two thickness profiles. Final equilibrium Legendre coefficients are determined by linear extrapolation. From these coefficients, the equilibrium layer thickness can be computed

  3. Efficient and robust identification of cortical targets in concurrent TMS-fMRI experiments

    Science.gov (United States)

    Yau, Jeffrey M.; Hua, Jun; Liao, Diana A.; Desmond, John E.

    2014-01-01

    Transcranial magnetic stimulation (TMS) can be delivered during fMRI scans to evoke BOLD responses in distributed brain networks. While concurrent TMS-fMRI offers a potentially powerful tool for non-invasively investigating functional human neuroanatomy, the technique is currently limited by the lack of methods to rapidly and precisely localize targeted brain regions – a reliable procedure is necessary for validly relating stimulation targets to BOLD activation patterns, especially for cortical targets outside of motor and visual regions. Here we describe a convenient and practical method for visualizing coil position (in the scanner) and identifying the cortical location of TMS targets without requiring any calibration or any particular coil-mounting device. We quantified the precision and reliability of the target position estimates by testing the marker processing procedure on data from 9 scan sessions: Rigorous testing of the localization procedure revealed minimal variability in coil and target position estimates. We validated the marker processing procedure in concurrent TMS-fMRI experiments characterizing motor network connectivity. Together, these results indicate that our efficient method accurately and reliably identifies TMS targets in the MR scanner, which can be useful during scan sessions for optimizing coil placement and also for post-scan outlier identification. Notably, this method can be used generally to identify the position and orientation of MR-compatible hardware placed near the head in the MR scanner. PMID:23507384

  4. Optimization of the target system for the hypernuclear experiment at anti PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Iazzi, Felice [Politecnico di Torino, Turin (Italy); INFN, Turin (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Mainz Univ. (Germany). Inst. fuer Kernphysik; Collaboration: PANDA-Collaboration

    2013-07-01

    Gamma spectroscopy of double Λ hypernuclei will be one of the main topics addressed by the anti PANDA experiment at the planned FAIR-Facility at Darmstadt, Germany. For this project a dedicated hypernuclear detector setup will be installed. In addition to the general purpose of the anti PANDA detector it consists of a primary nuclear target for the production of Ξ{sup -}+ anti Ξ pairs, a secondary active target for the formation of hypernuclei and the identification of associated decay products as well as a germanium detector array to perform γ spectroscopy. In order to stop the Ξ{sup -} particles and track pions from the decay of the produced hypernuclei, the secondary target is composed as a compact structure of silicon microstrip detectors and absorber material. Results of the current hardware development will be presented on the poster including stability tests for the primary target chamber, the readout of silicon microstrip detectors with ultra-thin flexible cables to fan out the readout electronics and design studies of support structures for the whole detector setup. On the simulation side a compromise between the stopping of Ξ{sup -} hyperons and the reconstruction accuracy of weak decay pions is discussed.

  5. Cooling System for the Merit High-Power Target Experiment

    CERN Document Server

    Haug, F; Silva, P; Pezzeti, M; Pavlov, O; Pirotte, O; Metselaar, J; Efthymiopoulos, I; Fabich, A; Lettry, J; Kirk, H G; McDonald, K T; Titus, P; Bennett, J R J

    2010-01-01

    MERIT is a proof-of-principle experiment of a target station suitable as source for future muon colliders or neutrino factories. When installed at the CERN (European Organization for Nuclear Research) PS (Proton Synchrotron)complex fast-extracted high-intensity proton beams intercepted a free mercury jet inside a normal-conducting, pulsed 15-T capture solenoid magnet cooled with liquid nitrogen. Up to 25 MJ of Joule heat was dissipated in the magnet during a pulse. The fully automated, remotely controlled cryogenic system of novel design permitted the transfer of nitrogen by the sole means of differential pressures inside the vessels. This fast cycling system permitted several hundred tests in less than three weeks during the 2007 data taking campaign.

  6. Preparation of rhodium target for cyclone-30 accelerator

    International Nuclear Information System (INIS)

    Deng Xuesong; Li Dakang; Xie Xiangqian; Li Chao

    2002-01-01

    The rhodium target for Cyclone-30 accelerator is prepared by pulse electroplating method. The effects of pulse parameters, rhodium concentration, acidity and temperature on the properties of the target layer are studied, and the optimal process is determined. The rhodium target, mass thickness is more than 150 mg/cm 2 , adapts to producing 103 Pd on Cyclone-30 accelerator

  7. Recent US target-physics-related research in heavy-ion inertial fusion: simulations for tamped targets and for disk experiments in accelerator test facilities

    International Nuclear Information System (INIS)

    Mark, J.W.K.

    1982-01-01

    Within the last few years, there have also appeared in the Heavy-Ion Fusion literature several studies of targets which have outer tampers. One-dimensional simulations indicate higher target gains with a judicious amount of tamping. But for these targets, a full investigation has not been carried through in regards to conservative criteria for fluid instabilities as well as reasonable imperfections in target fabrication and illumination symmetry which all affect target ignition and burn. Comparisons of these results with the gain survey of Part I would have to be performed with care. These calculations suggest that experiments relating to high temperature disk heating, as well as beam deposition, focusing and transport can be performed within the context of current design proposals for accelerator test-facilities. Since the test-facilities have lower ion kinetic energy and beam pulse power as compared to reactor drivers, we achieve high-beam intensities at the focal spot by using short focal distance and properly designed beam optics

  8. Fabrication technology for a series of cylindrical thin-wall cavity targets

    CERN Document Server

    Zheng Yong; Sun Zu Oke; Wang Ming Da; Zhou La; Zhou Zhi Yun

    2002-01-01

    Cylindrical thin-wall cavity targets have been fabricated to study the behavior of superthermal electrons and their effects on inertial confinement fusion (ICF). Self-supporting cavity targets having adjustable, uniform wall thickness, and low surface roughness were required. This required production of high-quality mandrels, coating them by sputtering or electroplating, developing techniques for measurement of wall thickness and other cavity parameters, improving the uniformity of rotation of the mandrels, and preventing damage to the targets during removal from the mandrels. Details of the fabrication process are presented. Experimental results from the use of these targets are presented. These results, in good agreement with simulations, indicate that the use of thin-wall cavity targets is an effective method for studying superthermal electrons in ICF.

  9. On the role of secondary pions in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mancusi, Davide [Paris-Saclay Univ., Gif-sur-Yvette (France). Den-Service d' Etude des Reacteurs et de Mathematiques Appliquees (SERMA); Lo Meo, Sergio [ENEA, Research Centre ' ' Ezio Clementel' ' , Bologna (Italy); INFN, Bologna (Italy); Colonna, Nicola [INFN, Bari (Italy); Boudard, Alain; David, Jean-Christophe; Leray, Sylvie [Paris-Saclay Univ., Gif-sur-Yvette (France). IRFU, CEA; Cortes-Giraldo, Miguel Antonio; Lerendegui-Marco, Jorge [Sevilla Univ. (Spain). Facultad de Fisica; Cugnon, Joseph [Liege Univ. (Belgium). AGO Dept.; Massimi, Cristian [INFN, Bologna (Italy); Bologna Univ. (Italy). Physics and Astronomy Dept.; Vlachoudis, Vasilis [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2017-05-15

    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the nTOF lead spallation target, irradiated with 20 GeV/c protons, neutral pions are involved in the production of ∝ 90% of the high-energy photons; charged pions participate in ∝ 40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets. (orig.)

  10. On the role of secondary pions in spallation targets

    CERN Document Server

    Mancusi, Davide; Colonna, Nicola; Boudard, Alain; Cortés-Giraldo, Miguel Antonio; Cugnon, Joseph; David, Jean-Christophe; Leray, Sylvie; Lerendegui-Marco, Jorge; Massimi, Cristian; Vlachoudis, Vasilis

    2017-01-01

    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the n_TOF lead spallation target, irradiated with 20-GeV/c protons, neutral pions are involved in the production of ~90% of the high-energy photons; charged pions participate in ~40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets.

  11. Study of bremsstrahlung photons in bulk target using MCNP code

    Directory of Open Access Journals (Sweden)

    S. Sangaroon

    2017-11-01

    Full Text Available The aim of this research was to study the feasibility of bremsstrahlung photon production in target bombarded by 1 GeV electrons. The calculations were performed by the Monte Carlo code MCNP. Six target materials with densities between 2 and 20 g/cm3 were studied. The bremsstrahlung photon flux is high for the target density above 8 g/cm3. Copper is the best target for 1 GeV electron beam due to high bremsstrahlung photon production, low scattering and low transmission electron flux. The copper target was altered to have different thicknesses between 0.01 and 2.5 cm. The results showed that the bremsstrahlung photon flux significantly increased when the target thickness increased from 0.01 to 1.5 cm. The angular distribution of the bremsstrahlung photons with angles between 0 and 120 degrees was determined for copper target. The maximum angle of the photon scattering was about 20 degree.

  12. T2K Replica Target Hadron Production Measurements in NA61/SHINE and T2K Neutrino Flux Predictions

    CERN Document Server

    AUTHOR|(SzGeCERN)710687

    Accelerator based neutrino experiments generate their neutrino beams by impinging high energy protons on thick targets. The neutrino beam predictions are thus based on modeling the interactions of the beam protons inside the targets. Different hadronic models can be used with different accuracies depending on the energy range of the incident protons and on the target material. Nevertheless, none of the models can be seen as perfectly describing all different interactions. In order to reach high precision neutrino flux predictions, it is thus mandatory to be able to test and constrain the models with hadron production measurements. The T2K experiment in Japan uses the ancillary NA61/SHINE facility at CERN to constrain the production of hadrons resulting from the interactions of proton beam particles impinging on a 90cm long graphite target. Data taken by NA61/SHINE with a 30 GeV proton beam on a thin (4% interaction length) graphite target have been recorded in 2007 and 2009. They have been analysed and extens...

  13. Analysis of target implosion irradiated by proton beam, (1)

    International Nuclear Information System (INIS)

    Tamba, Moritake; Nagata, Norimasa; Kawata, Shigeo; Niu, Keishiro.

    1982-10-01

    Numerical simulation and analysis were performed for the implosion of a hollow shell target driven by proton beam. The target consists of three layers of Pb, Al and DT. As the Al layer is heated by proton beam, the layer expands and pushes the DT layer toward the target center. To obtain the optimal velocity of DT implosion, the optimal target size and optimal layer thickness were determined. The target size is determined by, for example, the instability of the implosion or beam focusing on the target surface. The Rayleigh-Taylor instability and the unstable implosion due to the inhomogeneity were investigated. Dissipation, nonlinear effects and density gradient at the boundary were expected to reduce the growth rate of the Rayleigh-Taylor instability during the implosion. In order that the deviation of the boundary surface during the implosion is less than the thickness of fuel, the inhomogeneity of the temperature and the density of the target should be less than ten percent. The amplitude of the boundary surface roughness is required to be less than 4 micrometer. (Kato, T.)

  14. Target injection and tracking for inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, R.W. [Lawrence Livermore National Lab., CA (United States); Moir, R.W. [Lawrence Livermore National Lab., CA (United States)

    1996-11-01

    In an inertial fusion power plant, several cryogenic targets must be injected each second into a reaction chamber with speeds of about 100 m s{sup -1}. This speed can be achieved with an acceleration in the range from 1000 to 10 000 m s{sup -2}. The total accuracy of driver beam pointing and target position prediction must be less than {+-}0.6 mm for a 3 mm beam spot radius. A 0.1 {mu}m thick dual membrane supporting the capsule in the hohlraum will allow nearly 2000 m s{sup -2} acceleration. The strength of frozen DT in the capsule is calculated to allow acceleration in excess of 10 000 m s{sup -2} if the DT temperature is less than 17 K. A gas gun is the preferred device for injecting indirect drive targets owing to its simplicity and proven reliability. The amount of gas required for each target (about 10-100 mg) is acceptable. A revolver loading mechanism is recommendced with a cam-operated poppet valve to control the gas flow. Slots near the muzzle of the gun barrel are recommended to vent gas and thereby to improve accuracy and to aid gas pumping. Optical target tracking and electronic timing devices can predict target arrival time with sufficient accuracy. Target steering by electrostatic deflection of the in-flight target is shown to be feasible and would avoid the need to point the beams actively. Calculations show that induced tumble from electrostatically steering the target is not excessive. An experiment has been designed to develop target injection and to verify the predicted accuracy of sequential injection and tracking of multiple targets. (orig.)

  15. Effects of thin high-Z layers on the hydrodynamics of laser-accelerated plastic targets

    International Nuclear Information System (INIS)

    Obenschain, S.P.; Colombant, D.G.; Karasik, M.; Pawley, C.J.; Serlin, V.; Schmitt, A.J.; Weaver, J.L.; Gardner, J.H.; Phillips, L.; Aglitskiy, Y.; Chan, Y.; Dahlburg, J.P.; Klapisch, M.

    2002-01-01

    Experimental results and simulations that study the effects of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of laser accelerated plastic targets are presented. These experiments employ a laser pulse with a low-intensity foot that rises into a high-intensity main pulse. This pulse shape simulates the generic shape needed for high-gain fusion implosions. Imprint of laser nonuniformity during start up of the low intensity foot is a well-known seed for hydrodynamic instability. Large reductions are observed in hydrodynamic instability seeded by laser imprint when certain minimum thickness gold or palladium layers are applied to the laser-illuminated surface of the targets. The experiment indicates that the reduction in imprint is at least as large as that obtained by a 6 times improvement in the laser uniformity. Simulations supported by experiments are presented showing that during the low intensity foot the laser light can be nearly completely absorbed by the high-Z layer. X rays originating from the high-Z layer heat the underlying lower-Z plastic target material and cause large buffering plasma to form between the layer and the accelerated target. This long-scale plasma apparently isolates the target from laser nonuniformity and accounts for the observed large reduction in laser imprint. With onset of the higher intensity main pulse, the high-Z layer expands and the laser light is transmitted. This technique will be useful in reducing laser imprint in pellet implosions and thereby allow the design of more robust targets for high-gain laser fusion

  16. Electron beams accelerated with two TW class lasers. Preplasma effect of target materials

    International Nuclear Information System (INIS)

    Bergaux, M.; Gobet, F.; Tarisien, M.; Hannachi, F.; Aleonard, M.M.; D'Humieres, E.; Nicolai, P.; Tikhonchuk, V.; Malka, G.; Debayle, A.

    2010-01-01

    Complete text of publication follows. It is well known that ultra short pulses of UH1 lasers in the TW domain can produce energetic electrons above 10 MeV. For nuclear physics purposes the range 10-100 MeV is well appropriate to explore (g,xn) reactions. These reactions are of interest, in particular, to study the production of isomers in plasma in relation with astrophysical problems. Meanwhile a careful study of the produced photons is of interest for the study of intense photon 'beams' (radiography, ignition in the Inertial Fusion physics). In both cases, the optimization of these photon beams as regards the number of photons as well as their angular dispersion is important. From previous experiments, with polypropylene targets, it has been shown that both the target thickness and the preplasma conditions influenced the distributions of the produced electrons. Here we investigate the effect of the target atomic number (Z) on the electron production. The experiments have been done with two TW class lasers, with fs pulses; targets of CH, Al, Cu, Au and Ta have been used. All the targets had the same thickness (10 μm). The energy distribution of the electrons and their angular distribution have been characterized. Both lasers had nearly the same energy, the pulse duration was respectively 40 and 80 fs, respectively at LOA (Palaiseau) and IOQ (Iena). The main differences of the lasers regarded the contrast (10 6 at LOA, 10 7 at IOQ) and the ASE duration (2 ns or 0.5 ns). In presence of a large ASE the number of electrons above 10 MeV were ∼ 10 9 , roughly 3 orders of magnitude higher than without ASE. As regards the angular dispersion of electrons above 10 MeV, measured at LOA, it was increasing progressively between CH targets and Au ones, ranging from 10 deg to 40 deg between these increasing atomic numbers. The explanation of such a flagrant difference in the results of these two apparently similar experimental campaigns is related to the size and form of

  17. Water flow experiments and analyses on the cross-flow type mercury target model with the flow guide plates

    CERN Document Server

    Haga, K; Kaminaga, M; Hino, R

    2001-01-01

    A mercury target is used in the spallation neutron source driven by a high-intensity proton accelerator. In this study, the effectiveness of the cross-flow type mercury target structure was evaluated experimentally and analytically. Prior to the experiment, the mercury flow field and the temperature distribution in the target container were analyzed assuming a proton beam energy and power of 1.5 GeV and 5 MW, respectively, and the feasibility of the cross-flow type target was evaluated. Then the average water flow velocity field in the target mock-up model, which was fabricated from Plexiglass for a water experiment, was measured at room temperature using the PIV technique. Water flow analyses were conducted and the analytical results were compared with the experimental results. The experimental results showed that the cross-flow could be realized in most of the proton beam path area and the analytical result of the water flow velocity field showed good correspondence to the experimental results in the case w...

  18. Choroidal thickness in Malaysian eyes with full-thickness macular holes

    Directory of Open Access Journals (Sweden)

    Chew Y Tan

    2018-02-01

    Full Text Available AIM: To compare choroidal thickness at the macula in eyes with unilateral idiopathic full-thickness macular holes(FTMHwith that of unaffected fellow eyes, and eyes of normal control patients.METHODS: Cross-sectional study. Thirty patients with unilateral idiopathic FTMH and thirty age, sex, and race-matched controls were recruited. Axial lengths were measured using laser interferometry. Enhanced depth imaging optical coherence tomography images were obtained using Heidelberg spectral-domain optical coherence tomography. Choroidal thickness was measured at the fovea, and at 1 mm and 2 mm nasally, temporally, superiorly and inferiorly from the center of the fovea. Statistical analysis was performed using independent and paired t-tests, chi-square tests, and Pearson correlation tests(PRESULTS: The mean subfoveal choroidal thickness was 201.0±44.0 μm in the FTMH group, 225.3±51.4 μm in the fellow eye group and 262.3±70.3 μm in the control group. The choroid was thinner in FTMH eyes at all locations when compared to control eyes(PPP>0.05. Choroidal thickness was generally highest subfoveally and lowest nasally. Subfoveal choroidal thickness was negatively correlated with age(r=-0.278, P=0.032, and axial length(r=-0.328, P=0.011.CONCLUSION: Choroidal thickness is lower in both eyes of patients with unilateral FTMH compared to healthy control eyes.

  19. Experimental study of laser acceleration of planar targets at the wavelength 0.26 μm

    International Nuclear Information System (INIS)

    Fabbro, R.; Faral, B.; Cottet, F.; Romain, J.P.

    1984-01-01

    The main characteristics of accelerated aluminum targets, which are the target velocity, the uniformity of the acceleration and the backside temperature have been studied in laser experiments performed at wavelength 0.26 μm with an absorbed flux of a few 10 13 W/cm 2 , in 400-ps pulse duration by using the double-foil technique and an optical pyrometry diagnostic: The ablation pressure was inferred from the velocity measurements. The uniformity of the acceleration was shown to be controlled by the hot spots in the focal spot, and the importance of studying the smoothing of laser inhomogeneities for accelerated targets with large ablated fractions was emphasized. The observed dependence of the backside temperature as a function of the initial foil thickness is discussed in the light of shock wave heating and radiative heating

  20. Solid hydrogen target for laser driven proton acceleration

    Science.gov (United States)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  1. Confirm calculation of 12 MeV non-destructive testing electron linear accelerator target

    International Nuclear Information System (INIS)

    Ma Shudong; Zhang Rutong; Guo Yanbin; Zhou Yuan; Li Xuexian; Chen Yan

    2012-01-01

    The confirm calculation of 12 MeV non-destructive testing (NDT) electron linear accelerator (LINAC) target was studied. Firstly, the most optimal target thickness and related photon dose yield, distributions of dose rate, and related photon conversion efficiencies were got by calculation with specific analysis of the physical mechanism of the interactions between the beam and target; Secondly, the photon dose rate distribution, converter efficiencies, and thickness of various kinds of targets, such as W, Au, Ta, etc. were verified by MCNP simulation and the most optimal target was got using the MCNP code; Lastly, the calculation results of theory and MCNP were compared to confirm the validity of target calculation. (authors)

  2. Neutrons produced in thick targets of Be, {sup 238}U and C by means of 100 MeV/A deutons and 95 MeV/A {sup 36}Ar. Dose rate due to uranium activation; Neutrons produits dans des cibles epaisses de Be et {sup 238}U par des deutons de 100 MeV/A et de C par des {sup 36}Ar de 95 MeV/A. Debit de dose resultant de l`activation de l`uranium

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, N.; Proust, J.; Clapier, F.; Gara, P.; Mirea, M.; Obert, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Granier, T.; Belier, G.; Ethvignot, T. [CEA, Service de Physique Nucleaire, 91 - Bruyeres-le-Chatel (France)

    1998-12-01

    This study presents the results of two experiments, one lead in GANIL facilities and the other at Saturn National Laboratory. Both aim at neutron production. The energy spectra of neutrons are given for different targets and ion beams. The efficiency of deuteron beams in term of neutron production is reinforced. The neutron flux appears to be higher in any forward direction when using a beryllium target. In order to optimize shielding the neutron attenuation length in 15 cm thick concrete slab is revalued. (A.C.) 13 refs.

  3. Metallicity gradient of the thick disc progenitor at high redshift

    Science.gov (United States)

    Kawata, Daisuke; Allende Prieto, Carlos; Brook, Chris B.; Casagrande, Luca; Ciucă, Ioana; Gibson, Brad K.; Grand, Robert J. J.; Hayden, Michael R.; Hunt, Jason A. S.

    2018-01-01

    We have developed a novel Markov Chain Monte Carlo chemical 'painting' technique to explore possible radial and vertical metallicity gradients for the thick disc progenitor. In our analysis, we match an N-body simulation to the data from the Apache Point Observatory Galactic Evolution Experiment survey. We assume that the thick disc has a constant scaleheight and has completed its formation at an early epoch, after which time radial mixing of its stars has taken place. Under these assumptions, we find that the initial radial metallicity gradient of the thick disc progenitor should not be negative, but either flat or even positive, to explain the current negative vertical metallicity gradient of the thick disc. Our study suggests that the thick disc was built-up in an inside-out and upside-down fashion, and older, smaller and thicker populations are more metal poor. In this case, star-forming discs at different epochs of the thick disc formation are allowed to have different radial metallicity gradients, including a negative one, which helps to explain a variety of slopes observed in high-redshift disc galaxies. This scenario helps to explain the positive slope of the metallicity-rotation velocity relation observed for the Galactic thick disc. On the other hand, radial mixing flattens the slope of an existing gradient.

  4. Inertial-confinement-fusion targets

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1982-01-01

    Much of the research in laser fusion has been done using simple ball on-stalk targets filled with a deuterium-tritium mixture. The targets operated in the exploding pusher mode in which the laser energy was delivered in a very short time (approx. 100 ps or less) and was absorbed by the glass wall of the target. The high energy density in the glass literally exploded the shell with the inward moving glass compressing the DT fuel to high temperatures and moderate densities. Temperatures achieved were high enough to produce DT reactions and accompanying thermonuclear neutrons and alpha particles. The primary criteria imposed on the target builders were: (1) wall thickness, (2) sphere diameter, and (3) fuel in the sphere

  5. Exploratory investigation of the HIPPO gas-jet target fluid dynamic properties

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, Zach, E-mail: zmeisel@nd.edu [Department of Physics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Shi, Ke; Jemcov, Aleksandar [Hessert Laboratory for Aerospace Research, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States); Couder, Manoel [Department of Physics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-08-21

    In order to optimize the performance of gas-jet targets for future nuclear reaction measurements, a detailed understanding of the dependence of the gas-jet properties on experiment design parameters is required. Common methods of gas-jet characterization rely on measuring the effective thickness using nuclear elastic scattering and energy loss techniques; however, these tests are time intensive and limit the range of design modifications which can be explored to improve the properties of the jet as a nuclear reaction target. Thus, a more rapid jet-characterization method is desired. We performed the first steps towards characterizing the gas-jet density distribution of the HIPPO gas-jet target at the University of Notre Dame's Nuclear Science Laboratory by reproducing results from {sup 20}Ne(α,α){sup 20}Ne elastic scattering measurements with computational fluid dynamics (CFD) simulations performed with the state-of-the-art CFD software ANSYS Fluent. We find a strong sensitivity to experimental design parameters of the gas-jet target, such as the jet nozzle geometry and ambient pressure of the target chamber. We argue that improved predictive power will require moving to three-dimensional simulations and additional benchmarking with experimental data.

  6. Attempt to produce both thick and thinned flowing superfluid films

    International Nuclear Information System (INIS)

    Kwoh, D.S.W.; Goodstein, D.L.

    1977-01-01

    As discussed in the preceding paper by Graham, a controversy has arisen over conflicting reports of whether a superfluid film becomes thinned when it is set into motion. We have performed an experiment designed to reproduce as nearly as possible two previous measurements giving opposite results. Our experiment is also designed to test directly a theory proposed by Goodstein and Saffman which would have reconciled the apparently contradictory observations. We are unable to reproduce the thick-film result, finding kinetic thinning in all cases, even where the Goodstein--Saffman theory would lead us to expect a thick film. We conclude, in agreement with Graham, that the film is always thinned when it flows, and that the theory is therefore unnecessary

  7. Gastric wall thickness and stapling in laparoscopic sleeve gastrectomy - a literature review.

    Science.gov (United States)

    Barski, Krzysztof; Binda, Artur; Kudlicka, Emilia; Jaworski, Paweł; Tarnowski, Wiesław

    2018-03-01

    Despite the growing experience of bariatric surgeons in performing laparoscopic sleeve gastrectomy, the number of complications involving staple line leaks remains constant. Hence a solution to avoid such complications is still sought. A defect of the staple line may be the consequence of an inappropriate choice of staple size in relation to gastric wall thickness. Due to the variable nature of gastric wall thickness, the choice of proper staple height is not obvious. In the few studies in which gastric wall thickness was measured, it was observed to decrease gradually from the antrum to the fundus. However, the authors are divided on the issue of whether gender and body mass index influence gastric wall thickness. The question whether there are other perioperative factors that would allow gastric wall thickness to be predicted remains unanswered.

  8. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans Jr., James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parten, Randy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.

  9. Target experimental area and systems of the Us national ignition facility

    International Nuclear Information System (INIS)

    Tobin, M.; Van Wonterghem, B.; MacGowan, B.J.; Hibbard, W.; Kalantar, D.; Lee, F.D.; Pittenger, L.; Wong, K.

    2000-01-01

    One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition we will describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools. (authors)

  10. Brain cortical thickness in male adolescents with serious substance use and conduct problems.

    Science.gov (United States)

    Chumachenko, Serhiy Y; Sakai, Joseph T; Dalwani, Manish S; Mikulich-Gilbertson, Susan K; Dunn, Robin; Tanabe, Jody; Young, Susan; McWilliams, Shannon K; Banich, Marie T; Crowley, Thomas J

    2015-01-01

    Adolescents with substance use disorder (SUD) and conduct problems exhibit high levels of impulsivity and poor self-control. Limited work to date tests for brain cortical thickness differences in these youths. To investigate differences in cortical thickness between adolescents with substance use and conduct problems and controls. We recruited 25 male adolescents with SUD, and 19 male adolescent controls, and completed structural 3T magnetic resonance brain imaging. Using the surface-based morphometry software FreeSurfer, we completed region-of-interest (ROI) analyses for group cortical thickness differences in left, and separately right, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and insula. Using FreeSurfer, we completed whole-cerebrum analyses of group differences in cortical thickness. Versus controls, the SUD group showed no cortical thickness differences in ROI analyses. Controlling for age and IQ, no regions with cortical thickness differences were found using whole-cerebrum analyses (though secondary analyses co-varying IQ and whole-cerebrum cortical thickness yielded a between-group cortical thickness difference in the left posterior cingulate/precuneus). Secondary findings showed that the SUD group, relative to controls, demonstrated significantly less right > left asymmetry in IFG, had weaker insular-to-whole-cerebrum cortical thickness correlations, and showed a positive association between conduct disorder symptom count and cortical thickness in a superior temporal gyrus cluster. Functional group differences may reflect a more nuanced cortical morphometric difference than ROI cortical thickness. Further investigation of morphometric differences is needed. If replicable findings can be established, they may aid in developing improved diagnostic or more targeted treatment approaches.

  11. Comparison of GEANT4 Simulations with Experimental Data for Thick Al Absorbers

    International Nuclear Information System (INIS)

    Yevseyeva, Olga; Assis, Joaquim de; Evseev, Ivan; Schelin, Hugo; Paschuk, Sergei; Milhoretto, Edney; Setti, Joao; Diaz, Katherin; Lopes, Ricardo; Hormaza, Joel

    2009-01-01

    Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Therefore, relatively small differences in the total proton stopping power given, for example, by the different models provided by GEANT4 can lead to significant disagreements in the final proton energy spectra when integrated along lengthy proton trajectories. This work presents proton energy spectra obtained by GEANT4.8.2 simulations using ICRU49, Ziegler1985 and Ziegler2000 models for 19.68 MeV protons passing through a number of Al absorbers with various thicknesses. The spectra were compared with the experimental data, with TRIM/SRIM2008 and MCNPX2.4.0 simulations, and with the Payne analytical solution for the transport equation in the Fokker-Plank approximation. It is shown that the MCNPX simulations reasonably reproduce well all experimental spectra. For the relatively thin targets all the methods give practically identical results but this is not the same for the thick absorbers. It should be noted that all the spectra were measured at the proton energies significantly above 2 MeV, i.e., in the so-called 'Bethe-Bloch region'. Therefore the observed disagreements in GEANT4 results, simulated with different models, are somewhat unexpected. Further studies are necessary for better understanding and definitive conclusions.

  12. Ferromagnetic resonance of facing-target sputtered epitaxial γ‧-Fe4N films: the influence of thickness and substrates

    Science.gov (United States)

    Lai, Zhengxun; Li, Zirun; Liu, Xiang; Bai, Lihui; Tian, Yufeng; Mi, Wenbo

    2018-06-01

    The microstructure and high frequency properties of facing-target sputtered epitaxial γ‧-Fe4N films were investigated in detail. It was found that the eddy current in ultrathin γ‧-Fe4N films is too small to influence the ferromagnetic resonance (FMR) linewidth, where the linewidth is mostly determined by intrinsic damping and the two-magnon scattering (TMS) process. In relatively thick films, the TMS process can significantly affect the linewidth due to the roughness on the sample surface. However, the TMS process in a thin film is quite weak because of its smooth surface. The Gilbert damping constant of about 0.0135 in our γ‧-Fe4N films is smaller than the experimental value in the previous work. Moreover, substrates can also influence the FMR linewidth of the γ‧-Fe4N films by the TMS process. Besides, the resonance field of polycrystalline γ‧-Fe4N film is larger than the epitaxial ones because of the lack of a magnetic anisotropic field, but the linewidth of the polycrystalline γ‧-Fe4N film is smaller.

  13. Optimization of in-target yields for RIB production: Part 1: direct targets

    International Nuclear Information System (INIS)

    Chabod, S.; Thiolliere, N.; David, J.Ch.; Dore, D.; Ene, D.; Rapp, B.; Ridikas, D.; Chabod, S.; Blideanu, V.

    2008-03-01

    In the framework of the EURISOL-DS project and within Task-11, we have performed in-target yield calculations for different configurations of thick direct targets. The target materials tested are Al 2 O 3 , SiC, Pb(molten), Ta and UC 3 . The target was irradiated with protons of 0.5, 1.0, 1.5 and 2.0 GeV. The production rates have been computed using the MCNPX transport/generation code, coupled with the CINDER-90 evolution program. The yield distributions as a function of charge number Z and mass number A have been evaluated. Their production rates have been optimized for 11 selected elements (Li, Be, Ne, Mg, Ar, Ni, Ga, Kr, Hg, Sn and Fr) and 23 of their isotopes of interest. Finally, the isotopic distributions for each of these 11 elements have been optimized in terms of the target material, its geometry, and incident proton energy

  14. Electroplating fission-recoil barriers onto LEU-metal foils for 99Mo-production targets

    International Nuclear Information System (INIS)

    Smaga, J.A.; Sedlet, J.; Conner, C.; Liberatore, M.W.; Walker, D.E.; Wygmans, D.G.; Vandegrift, G.F.

    1997-01-01

    Electroplating experiments on uranium foil have been conducted in order to develop low-enriched uranium composite targets suitable for the production of 99 Mo. Preparation of the foil surface prior to plating was found to play a key role in the quality of the resultant coating. A surface preparation procedure was developed that produces both zinc and nickel coatings with the desired level of coating adherence and coverage. Modifications of the existing plating processes now need investigation to improve to uniformity of the plating thickness, especially at the foil perimeter. (author)

  15. Electroplating fission-recoil barriers onto LEU-metal foils for 99Mo-production targets

    International Nuclear Information System (INIS)

    Smaga, J.A.; Sedlet, J.; Conner, C.; Liberatore, M.W.; Walker, D.E.; Wygmans, D.G.; Vandegrift, G.F.

    1997-10-01

    Electroplating experiments on uranium foil have been conducted in order to develop low-enriched uranium composite targets suitable for the production of 99 Mo. Preparation of the foil surface prior to plating was found to play a key role in the quality of the resultant coating. A surface preparation procedure was developed that produces both zinc and nickel coatings with the desired level of coating adherence and coverage. Modifications of the existing plating processes now need investigation to improve to uniformity of the plating thickness, especially at the foil perimeter

  16. Intense ${^31-35}$Ar beams produced with a nanostructured CaO target at ISOLDE

    CERN Document Server

    Ramos, J P; Mendonça, T M; Seiffert, C; Senos, A M R; Fynbo, H O U; Tengblad, O; Briz, J A; Lund, M V; Koldste, G T; Carmona-Gallardo, M; Pesudo, V; Stora, T

    2014-01-01

    At the ISOLDE facility at CERN, thick targets are bombarded with highly energetic pulsed protons to produce radioactive ion beams (RIBs). The isotopes produced in the bulk of the material have to diffuse out of the grain and effuse throughout the porosity of the material to a transfer line which is connected to an ionizer, from which the charged isotopes are extracted and delivered for physics experiments. Calcium oxide (CaO) powder targets have been used to produce mainly neutron deficient argon and carbon RIBs over the past decades. Such targets presented unstable yields, either decaying over time or low from the beginning of operation. These problems were suspected to come from the degradation of the target microstructure (sintering due to high temperature and/or high proton intensity). In this work, a CaO microstructural study in terms of sintering was conducted on a nanostructured CaO powder synthesized from the respective carbonate. Taking the results of this study, several changes were made at ISOLDE i...

  17. Surface thickness effects and splitting of multipole excitations in deformed nuclei. [Sum rule, hydrodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Christillin, P [Scuola Normale Superiore, Pisa (Italy); Lipparini, E; Stringari, S [Dipartimento Matematica e Fisica, Trento, Italy

    1978-09-25

    A sum-rule approach is used to study the influence of surface thickness upon the splitting of dipole and isoscalar quadrupole energies in deformed nuclei. It is shown that hydrodynamic model results are recovered in the case of a deformed skin thickness. A constant skin thickness leads in the dipole case to slightly different predictions which seem in better agreement with experiments. The splitting of the isoscalar quadrupole mode is not sensitive to the surface thickness shape.

  18. Estimation of creep life of thick welded joints using a simple model. Creep characteristics in thick welded joint and their improvements. 2

    International Nuclear Information System (INIS)

    Nakacho, Keiji; Yamazaki, Masayoshi

    2001-01-01

    The information of the creep behavior of the thick welded joint is very important to secure the safety of the elevated temperature vessels like the nuclear reactors. The creep behavior of the thick welded point is very complex, thence it is difficult to practice the experiment or the theoretical analysis. A simple accurate model for theoretical analysis was developed in the first study. The simple model is constructed of several one-dimensional finite elements which can analyze three-dimensional creep behavior under a assumption. The model is easy to treat, and needs only a little labor and computation time to simulate the creep curve and local strain of the thick welded joint. In this second study, the capability of the model is expanded to estimate the creep life of the thick welded joint. New model can easily estimate the time of the rupture of the thick welded joint. It is verified comparing the result with the experimental one that the model can accurately predict the creep life. The histories of the local strains to the rupture time may be observed in the simulation by using the model. The information will be useful to improve the creep characteristics of the joints. (author)

  19. The application of XRF to the thickness measurement of paper

    International Nuclear Information System (INIS)

    Guo Wei; Lai Wangchang; Guo Shengliang; Cheng Feng

    2007-01-01

    The purpose of this paper is to study on the application of XRF to the thickness measurement of paper. The mass thickness of a number of paper samples were respectively measured by the X-ray absorption method and the primary rays of radiated sources scattering method. The measurement results had been compared with each other, and got several helpful discussions. The measurement was using the IED-2000P type X-ray fluorescence analyzer from Chengdu Micro-Particle Technology Ltd., which is composed of a Si-pin X-ray detector with thermo electrical cooler, and double isotope sources ( 238 Pu). The experiment indicated that the veracity of the X-ray absorption method on the thickness measurement of paper is better than the primary rays of radiated sources scattering method, and the application of the primary rays of radiated sources scattering method to the thickness measurement of paper is verified as feasible. (authors)

  20. Full-scale turbine-missile concrete impact experiments. Final report

    International Nuclear Information System (INIS)

    Woodfin, R.L.

    1983-02-01

    Four full-scale experiments were conducted at Sandia National Laboratories' rocket sled facility to provide data on the response of reinforced concrete containment walls to impact and penetration by postulated turbine-produced missiles. The missiles' mass, velocity, and attitude, and the steel liner thickness, were varied. A 1476-kg, 120 0 segment cut from a shrunk-on turbine disc was used for three experiments, and a 2100-kg, 137 0 segment of another disc was used for one experiment. The targets were concrete panels fabricated of commercial ready-mix concrete of strength 24 to 28 MPa at 28 days and heavily reinforced (approx. = 5% by volume) with No. 18 (57-mm-dai) bars. Impacts were perpendicular to the targets at their centers. Three impacts were with the sharp corner of the missile forward (piercing) and one was with the rounded side forward (blunt). Rebar strains, liner strains, and rear face kinematic quantities were recorded for each test. Internal pressure pulses generated by the impacts were recorded on two tests. High-speed camera coverage was extensive. Depth of penetration was the primary measure diameter. Penetration depths into the 1.37-m-thick panels ranged from 33 cm for the blunt impact of the 1476-kg missile at 92 m/s to 65 cm for the piercing impact of the 2100-kg missile at 115m/s. Impact at the piercing attitude caused significantly more severe rear face cracking than did impact at the blunt attitude, but since rear face panel displacements in excess of 6 cm and velocities greater than 7 m/s were measured, results suggested that impact at a blunt attitude might cause scabbing at lower velocities than impact at a piercing attidude. In these tests, the presence of a 9.5-mm-thick steel liner on the rear face of the panel in the latter two tests precluded scabbing. Results also indicated that design formulas in common use give conservative results

  1. Mercury flow experiments. 4th report: Measurements of erosion rate caused by mercury flow

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2002-06-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be weak by thickness decreasing. This report presents experimental results of wall thickness change by erosion using a mercury experimental loop. In the experiments, an erosion test section and coupons were installed in the mercury experimental loop, and their wall thickness was measured with an ultra sonic thickness gage after every 1000 hours. As a result, under 0.7 m/s of mercury velocity condition which is slightly higher than the practical velocity in mercury pipelines, the erosion is about 3 μm in 1000 hours. The wall thickness decrease during facility lifetime of 30 years is estimated to be less than 0.5 mm. According to the experimental result, it is confirmed that the effect of erosion on component strength is extremely small. Moreover, a measurement of residual mercury on the piping surface was carried out. As a result, 19 g/m 2 was obtained as the residual mercury for the piping surface. According to this result, estimated amount of residual mercury for

  2. Discrimination of Cylinders with Different Wall Thicknesses using Neural Networks and Simulated Dolphin Sonar Signals

    DEFF Research Database (Denmark)

    Andersen, Lars Nonboe; Au, Whitlow; Larsen, Jan

    1999-01-01

    This paper describes a method integrating neural networks into a system for recognizing underwater objects. The system is based on a combination of simulated dolphin sonar signals, simulated auditory filters and artificial neural networks. The system is tested on a cylinder wall thickness...... difference experiment and demonstrates high accuracy for small wall thickness differences. Results from the experiment are compared with results obtained by a false killer whale (pseudorca crassidens)....

  3. MHD modeling of ATLAS experiments to study transverse shear interface interactions

    CERN Document Server

    Faehl, R J; Keinigs, R K; Lindemuth, I R

    2001-01-01

    Summary form only given. The transverse shear established at the interface of two solids moving at differential velocities on the order of the sound speed is being studied in experiments on the ATLAS capacitor bank at Los Alamos, beginning in August 2001. The ATLAS bank has finished certification tests and has demonstrated peak currents of 27.5 MA with a 5 microsecond risetime into an inductive load. One- and two-dimensional MHD calculations have been performed in support of these "friction-like" ATLAS experiments. Current flowing along the outer surface of a thick aluminum liner, roughly 8 mm thick, accelerates the solid liner to velocities ~1 km/s. This cylindrically imploding liner then impacts a target assembly, composed of alternating regions of high and low density materials. The different shock speeds in the two materials leads to a differential velocity along the interface. Shock heating, elastic- plastic flow, and stress transport are included in the calculations. Material strength properties are tre...

  4. iNOS-dependent increase in colonic mucus thickness in DSS-colitic rats.

    Directory of Open Access Journals (Sweden)

    Olof Schreiber

    Full Text Available AIM: To investigate colonic mucus thickness in vivo in health and during experimental inflammatory bowel disease. METHODS: Colitis was induced with 5% DSS in drinking water for 8 days prior to experiment, when the descending colonic mucosa of anesthetized rats was studied using intravital microscopy. Mucus thickness was measured with micropipettes attached to a micromanipulator. To assess the contributions of NOS and prostaglandins in the regulation of colonic mucus thickness, the non-selective NOS-inhibitor L-NNA (10 mg/kg bolus followed by 3 mg/kg/h, the selective iNOS-inhibitor L-NIL (10 mg/kg bolus followed by 3 mg/kg/h and the non-selective COX-inhibitor diclofenac (5 mg/kg were administered intravenously prior to experiment. To further investigate the role of iNOS in the regulation of colonic mucus thickness, iNOS -/- mice were used. RESULTS: Colitic rats had a thicker firmly adherent mucus layer following 8 days of DSS treatment than untreated rats (88±2 µm vs 76±1 µm. During induction of colitis, the thickness of the colonic mucus layer initially decreased but was from day 3 significantly thicker than in untreated rats. Diclofenac reduced the mucus thickness similarly in colitic and untreated rats (-16±5 µm vs -14±2 µm. While L-NNA had no effect on colonic mucus thickness in DSS or untreated controls (+3±2 µm vs +3±1 µm, L-NIL reduced the mucus thickness significantly more in colitic rats than in controls (-33±4 µm vs -10±3 µm. The importance of iNOS in regulating the colonic mucus thickness was confirmed in iNOS-/- mice, which had thinner colonic mucus than wild-type mice (35±3 µm vs 50±2 µm, respectively. Furthermore, immunohistochemistry revealed increased levels of iNOS in the colonic surface epithelium following DSS treatment. CONCLUSION: Both prostaglandins and nitric oxide regulate basal colonic mucus thickness. During onset of colitis, the thickness of the mucus layer is initially reduced followed by an i

  5. The elimination of charging in the PIXE analysis of thick biological samples

    International Nuclear Information System (INIS)

    Papper, C.S.; Chaudhri, M.A.; Rouse, J.L.

    1978-01-01

    A simple technique is described for the elimination of charging of thick biological samples subjected to proton bombardment. This involves evaporating a thin layer of carbon onto the target face and results in the reduction of background and therefore enhances the sensitivity of the technique. (Auth.)

  6. Overview on the target fabrication facilities at ELI-NP and ongoing strategies

    Science.gov (United States)

    Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.

    2016-10-01

    Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.

  7. X-ray generation from Bremsstrahlung effect using stainless steel target

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Shari Jahar; Leo Kee Wah; Muhammad Zahidee Taat

    2004-01-01

    X-ray radiation is produced when high energy electron interacts with metals. This process is known as Bremsstrahlung. In commercial electron beam irradiator, this process may be utilized to serve irradiation of thick products with lower dose requirement such disinfestation of fruits, delaying ripening and medical product sterilization. Initial experiment was carried out to measure the amount of x-ray radiation produced by using a simple converter. In this experiment, the target material is the stainless steel beam shutter that is normally used to protect the window. The maximum energy for the Eps 3000 is 3 MeV and was used generate the x-ray radiation. The dose was measure using CTA film and analyzed using UV spectrophotometer. The results obtained showed that sufficient amount of x-ray dose can be generated for low dose irradiation by using this simple set up. (Author)

  8. Target support for inertial confinement fusion

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1995-08-01

    General Atomics (GA) plays an important industrial support role for the US Inertial Confinement Fusion (ICF) program in the area of target technology. This includes three major activities: target fabrication support, target handling systems development, and target chamber design. The work includes target fabrication for existing ICF experiments, target and target system development for future experiments, and target research and target chamber design for experiments on future machines, such as the National Ignition Facility (NIF)

  9. Pressurized-thermal-shock experiments with thick vessels

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1986-01-01

    Information is provided on the series of pressurized-thermal-shock experiments at the Oak Ridge National Laboratory, motivated by a concern for the behavior of flaws in reactor pressure vessels having welds or shells exhibiting low upper-shelf Charpy impact energies, approx. 68J or less

  10. Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from Preclinical Experiments towards Possible Clinical Anticancer Applications.

    Science.gov (United States)

    Li, Junjie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng

    2013-01-01

    Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely (131)I-hypericin ((131)I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications.

  11. Thickness, Doping Accuracy, and Roughness Control in Graded Germanium Doped Ch{sub x} Micro-shells for Lmj

    Energy Technology Data Exchange (ETDEWEB)

    Legay, G.; Theobald, M.; Barnouin, J.; Peche, E.; Bednarczyk, S.; Hermerel, C. [CEA Valduc, Dept Rech Mat Nucl, Serv Microcibles, 21 - Is-sur-Tille (France)

    2009-05-15

    In the Commissariat a l'Energie Atomique Laser Megajoule (LMJ) facility, amorphous hydrogenated carbon (a-C: H or CH{sub x}) is the nominal ablator used to achieve inertial confinement fusion experiments. These targets are filled with of fusible mixture of deuterium-tritium in order to perform ignition. The a-C: H shell is deposited on a poly-alpha-methylstyrene (PAMS) mandrel by glow discharge polymerization with trans-2-butene, hydrogen, and helium. Graded germanium doped CH{sub x} micro-shells are supposed to be more stable regarding hydrodynamic instabilities. The shells are composed of four layers for a total thickness of 180 {mu}m. The germanium gradient is obtained by doping the different a-C: H layers with the addition of tetra-methylgermanium in the gas mixture. As the achievement of ignition greatly depends on the physical properties of the shell, the thicknesses, doping concentration, and roughness must be precisely controlled. Quartz microbalances were used to perform an in situ and real-time measurement of the thickness in order to reduce the variations and so our fabrication tolerances on each layer thickness. Ex situ control of the thickness of each layer was carried out, with both optical coherent tomography and interferometry, (wall-mapper). High-quality, PAMS and a rolling system have been used to lower the low-mode roughness [root-mean-square (rms) (mode 2) {<=} 70 nm]. High modes were clearly, reduced by, coating the pan containing the shells with polyvinyl alcohol + CH{sub x} instead of polystyrene + CH{sub x} resulting in an rms ({>=}mode 10) {<=} 20 nm, which can be {<=}15 nm for the best micro-shells. The germanium concentration (0. 4 and 0. 75 at. %) in the a-CH layer is obtained by regulating the tetramethyl-germanium flow. Low range mass flow controllers have been used to improve the doping accuracy. (authors)

  12. Effect of adhesive thickness on adhesively bonded T-joint

    International Nuclear Information System (INIS)

    Abdullah, A R; Afendi, Mohd; Majid, M S Abdul

    2013-01-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding

  13. Experimental study of laser acceleration of planar targets at the wavelength 0. 26. mu. m

    Energy Technology Data Exchange (ETDEWEB)

    Fabbro, R.; Faral, B.; Cottet, F.; Romain, J.P.

    1984-12-01

    The main characteristics of accelerated aluminum targets, which are the target velocity, the uniformity of the acceleration and the backside temperature have been studied in laser experiments performed at wavelength 0.26 ..mu..m with an absorbed flux of a few 10/sup 13/ W/cm/sup 2/, in 400-ps pulse duration by using the double-foil technique and an optical pyrometry diagnostic: The ablation pressure was inferred from the velocity measurements. The uniformity of the acceleration was shown to be controlled by the hot spots in the focal spot, and the importance of studying the smoothing of laser inhomogeneities for accelerated targets with large ablated fractions was emphasized. The observed dependence of the backside temperature as a function of the initial foil thickness is discussed in the light of shock wave heating and radiative heating.

  14. Numerical investigation on anti-penetration behavior of ceramic/metal target under ballistic impact

    International Nuclear Information System (INIS)

    Mei, H; Wang, Y C; Liu, X; Cao, D F; Liu, L S

    2013-01-01

    In the paper, we used the LS-DYNA FE code to simulate the bullet penetration against the target plate with different ceramic-steel ratio of thickness. The main stages of the bullet penetration and damage contours of the target were studied by analyzing the residual velocity-time curves. We also studied energy absorption of the ceramic/metal target. Considering curves of residual velocity-time, we reckon the process of penetration contains four stages. Ceramic performed good resistance before the formation of damage cone of ceramic. But after the damage cone formed, the anti-penetration behavior kept declining. When the bullet started to penetrate the layer of metal, the anti-penetration behavior of target rose slightly. Compared with thickness ratio of 0.4 and 0.6, ceramic with 0.2 absorbed more energy and works longer. Of several different thicknesses, layers of ceramic and steel were studied. Steel per cm absorbed more energy than ceramic per cm.

  15. 29 mm Diameter Target Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Angela Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-10-23

    After numerous delays, the test of the 29 mm diameter target was conducted on 8/18/2017. The complete target design report, dated 8/15/2016, is reproduced below for completeness. This describes in detail the 10 disk target with varying thickness disks. The report presents and discusses the test results. In brief summary, there appears to have been multiple instrumentation errors. Measured temperatures, pressures and IR camera window temperature measurement are all suspect. All tests were done at 35 MeV, with 171 μA current, or 6 kW of beam power.

  16. 钢筋混凝土靶厚度影响 PELE 侵彻效果的数值分析%Numerical Simulation on Influence of Reinforced Concrete Thickness on PELE Penetration

    Institute of Scientific and Technical Information of China (English)

    叶小军; 杜忠华; 姚方堂

    2014-01-01

    In order to study the influence of the reinforced concrete target(RC)thickness on penetrator with enhanced lateral effect (PELE)penetrating,the different thickness RC impacted with the velocity of 800 m·s -1 was simulated by LS-DYNA 3D software. Results show that PELE can penetrate the 80 cm thickness target at large. In this range,PELE body shell residual length is shorter with the target getting thicker when PELE could penetrate the targets,and the residual axial velocity of PELE decreases at the same time. With increase of target thickness,the undermining effect of penetration first increases,then decreases. The kinetic energy consumes totally in the penetration process when the targets thickness is over 80 cm. The experiment was carried to verify the sim-ulation results. The experimental and simulated results both show that the 35 cm thickness target is damaged most severely,impl-ying that the simulation are correct and reliable.%为研究钢筋混凝土靶厚度对横向效应弹(Penetrator with Enhanced Lateral Effect,PELE)侵彻效果的影响,采用 ANSYS /LS-DYNA 3D 软件,对 PELE 侵彻破坏不同厚度的钢筋混凝土(Reinforced Concrete,RC)靶进行了数值计算。计算结果表明:利用质量和结构都相同的 PELE 以800 m·s -1的速度垂直撞击混凝土靶板,PELE 可最大穿透80 cm 厚的靶板,在该范围内,靶板由薄变厚时,弹体破碎愈加严重,弹体剩余轴向速度逐渐降低;对靶的侵彻随靶厚的增加,靶破坏效应先增强,然后减弱;当靶厚超过80 cm 时,弹体的动能全部消耗于侵彻过程中。为验证仿真结果,进行了实弹实验,实验结果也表明:对靶的侵彻随靶厚的增加,破坏效应先增强,然后减弱,35 cm 厚的靶板破坏最严重;验证了模拟结果的正确性和可靠性。

  17. New type of metal targets

    International Nuclear Information System (INIS)

    Bukharov, A.V.; Ankudinov, V.B.; Ogorodnikov, V.P.; Marukhin, Y.A.

    2014-01-01

    Now the technologies based on interaction of high-intensity beams with substance of a target are being intensively developed. As a target it is possible to use the new type of monodisperse metal targets. The principal advantages of new targets type are: target cooling isn't required; there is no induced activity: the target can be used many times; small dispersion on the speed, the size and interaction points with a beam. The basis of a target is the jet of molten metal, following in the vacuum chamber .Under the influence of the special disturbance superimposed on the liquid jet, the jet disintegrated into identical drops. In the vacuum chamber the drops freeze and form into the solid granules. It is possible to receive monodisperse targets from different metals, alloys and salts (diameter of targets is from 30 .m to 1.5 mm). Dispersion by the sizes and speed is less than 1%. The technique allows to receive not only continuous targets, but also hollow targets with dispersion on thickness of wall within 1...2%.

  18. Target experimental area and systems of the U.S. National Ignition Facility

    International Nuclear Information System (INIS)

    Tobin, M; Van Wonterghem, B; MacGowan, B J; Hibbard, W; Kalantar, D; Lee, F D; Pittenger, L; Wong, K

    1999-01-01

    One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition the authors describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools

  19. A thin gold coated hydrogen heat pipe -cryogenic target for external experiments at cosy

    International Nuclear Information System (INIS)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G.A.; Kilian, K.; Ritman, J.

    2008-01-01

    A gravity assisted Gold Coated Heat Pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a polished gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers super isolation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super isolation and without. The operating characteristics for both conditions were compared to show the advantages and disadvantages

  20. Ultrasmooth plasma polymerized coatings for laser-fusion targets

    International Nuclear Information System (INIS)

    Letts, S.A.; Myers, D.W.; Witt, L.A.

    1980-01-01

    Coatings for laser fusion targets were deposited up to 135 μm thick by plasma polymerization onto 140 μm diameter DT filled glass microspheres. Ultrasmooth surfaces (no defect higher than 0.1 μm) were achieved by eliminating particulate contamination. Process generated particles were eliminated by determining the optimum operating conditions of power, gas flow, and pressure, and maintaining these conditions through feedback control. From a study of coating defects grown over known surface irregularities, a quantitative relationship between irregularity size, film thickness, and defect size was determined. This relationship was used to set standards for the maximum microshell surface irregularity tolerable in the production of hydrocarbon or fluorocarbon coated laser fusion targets

  1. Experimental and analytical studies on high-speed plane jet along concave wall simulating IFMIF Li target flow

    International Nuclear Information System (INIS)

    Nakamura, H.; Ida, M.; Kato, Y.; Maekawa, H.; Katsuta, H.; Itoh, K.; Kukita, Y.

    1998-01-01

    As part of the conceptual design activity (CDA) of the international fusion materials irradiation facility (IFMIF), the characteristics of the high-speed liquid lithium (Li) plane jet target flow have been studied by water experiments and numerical analyses for both heating and non-heating conditions. The simulated prototypal-size water flows were stable over the entire length of ∝130 mm at the average velocity up to 17 m/s. The jet flow had a specific radial velocity profile, close to that of free-vortex flow, because of a static pressure distribution in the jet thickness due to centrifugal force. Detailed velocity measurement revealed that this flow condition is penetrating into the upstream reducer nozzle up to a distance ∼ the jet thickness. The numerical analyses using a two-dimensional Cartesian-coordinate model were successful to predict the velocity profile transient around the nozzle exit, though underestimated the development of the velocity profile and the jet thickness. (orig.)

  2. Determination of tungsten target parameters for transmission X-ray tube: A simulation study using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Nasseri, Mohammad M. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology (AEOI), Tehran (Iran, Islamic Republic of)

    2016-06-15

    Transmission X-ray tubes based on carbon nanotube have attracted significant attention recently. In most of these tubes, tungsten is used as the target material. In this article, the well-known simulator Geant4 was used to obtain some of the tungsten target parameters. The optimal thickness for maximum production of usable X-rays when the target is exposed to electron beams of different energies was obtained. The linear variation of optimal thickness of the target for different electron energies was also obtained. The data obtained in this study can be used to design X-ray tubes. A beryllium window was considered for the X-ray tube. The X-ray energy spectra at the moment of production and after passing through the target and window for different electron energies in the 30-110 keV range were also obtained. The results obtained show that with a specific thickness, the target material itself can act as filter, which enables generation of X-rays with a limited energy.

  3. Study of 50 GeV proton ionization loss by semiconductor detector with smoothly tunable thickness

    Energy Technology Data Exchange (ETDEWEB)

    Nazhmudinov, R.M.; Kubankin, A.S. [Belgorod National Research University, Belgorod (Russian Federation); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Shchagin, A.V., E-mail: shchagin@kipt.kharkov.ua [Belgorod National Research University, Belgorod (Russian Federation); Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Shul' ga, N.F.; Trofymenko, S.V. [Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Kharkov National University, Kharkov (Ukraine); Britvich, G.I.; Durum, A.A.; Kostin, M. Yu.; Maisheev, V.A.; Chesnokov, Yu.A.; Yanovich, A.A. [Institute for High Energy Physics in National Research Centre Kurchatov Institute, Protvino (Russian Federation)

    2017-01-15

    The possibility of the measurement of proton ionization loss in the Silicon (Si) layer of smoothly tunable thickness was demonstrated in an experiment with a 50-GeV proton beam. The Si surface-barrier detector with the depleted layer thickness controlled by the value of high-voltage power supply was used in the experiment. The measured spectra of ionization loss are discussed and compared with the calculated spectra. The possibilities of research of the evolution of electromagnetic field of ultrarelativistic particles traversing the media interface and the study of dynamics of particles moving in the channeling regime or the volume reflection regime with the use of detectors with smoothly tunable thickness are indicated.

  4. Experimental and numerical studies on penetration of shaped charge into concrete and pebble layered targets

    Directory of Open Access Journals (Sweden)

    C Wang

    2017-09-01

    Full Text Available Experiments on penetrating into concrete and pebble layered targets were performed by shaped charge with different cone angles, liner wall thicknesses, length to diameter ratios and charge diameters at different standoffs. Based on the experimental data, the influence of shaped charge’s structural parameters on crater diameter, hole diameter, crater depth and penetration depth was analyzed in detail. Meanwhile, formation and penetration processes of all shaped charges were simulated by AUTODYN software for investigating the more intrinsic mechanisms, in which the numerical models are the same as those set up in the experiments. The results obtained in this paper indicate that there are obvious differences between jetting projectile charge (JPC and explosively formed projectile (EFP in penetrating into multi-layer targets. For the same charge diameter, the values of hole diameter formed by EFP were much larger than JPC. However, for the same standoff, the penetration depth caused by JCP were larger than EFP. The interfacial effect exists in the penetration progress of JPC.

  5. Thick tissue diffusion model with binding to optimize topical staining in fluorescence breast cancer margin imaging

    Science.gov (United States)

    Xu, Xiaochun; Kang, Soyoung; Navarro-Comes, Eric; Wang, Yu; Liu, Jonathan T. C.; Tichauer, Kenneth M.

    2018-03-01

    Intraoperative tumor/surgical margin assessment is required to achieve higher tumor resection rate in breast-conserving surgery. Though current histology provides incomparable accuracy in margin assessment, thin tissue sectioning and the limited field of view of microscopy makes histology too time-consuming for intraoperative applications. If thick tissue, wide-field imaging can provide an acceptable assessment of tumor cells at the surface of resected tissues, an intraoperative protocol can be developed to guide the surgery and provide immediate feedback for surgeons. Topical staining of margins with cancer-targeted molecular imaging agents has the potential to provide the sensitivity needed to see microscopic cancer on a wide-field image; however, diffusion and nonspecific retention of imaging agents in thick tissue can significantly diminish tumor contrast with conventional methods. Here, we present a mathematical model to accurately simulate nonspecific retention, binding, and diffusion of imaging agents in thick tissue topical staining to guide and optimize future thick tissue staining and imaging protocol. In order to verify the accuracy and applicability of the model, diffusion profiles of cancer targeted and untargeted (control) nanoparticles at different staining times in A431 tumor xenografts were acquired for model comparison and tuning. The initial findings suggest the existence of nonspecific retention in the tissue, especially at the tissue surface. The simulator can be used to compare the effect of nonspecific retention, receptor binding and diffusion under various conditions (tissue type, imaging agent) and provides optimal staining and imaging protocols for targeted and control imaging agent.

  6. Development of fission Mo-99 production technology - A nuclear feasibility study on UN target for Mo-99 production in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun; Kim, Woo Sik [Kyunghee University, Seoul (Korea)

    2000-03-01

    Nuclear target design satisfying all the constraints for fission moly production in HANARO was proposed in this project. The 'MCNP-ORIGEN' code system which was previously proposed for a design tool, was evaluated by the comparison with through the 'MCNP-Analytic Eq.' system. A characteristics of each chemical processing step were analysed and material balance was set up to evaluate the overall yield ratio of Mo-99 recovery. A parametric study was done for the optimum HEU target design. Tested parameters were target thickness, recoil-loss rate to the fuel thickness, target radius, cladding materials, thickness of irradiation guide tube, and barrier materials. Optimized HEU target design was proposed which satisfying the constraints and having high production yield. For a LEU target design using 19.7 w/o UN powder fuel, a parametric study was also done for the optimization of fuel thickness, powder packing density, mixture material volume ratio. 24 refs., 35 figs., 57 tabs. (Author)

  7. Obtaining Thickness-Limited Electrospray Deposition for 3D Coating.

    Science.gov (United States)

    Lei, Lin; Kovacevich, Dylan A; Nitzsche, Michael P; Ryu, Jihyun; Al-Marzoki, Kutaiba; Rodriguez, Gabriela; Klein, Lisa C; Jitianu, Andrei; Singer, Jonathan P

    2018-04-04

    Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.

  8. Thick-film effects in the oxidation and hydriding of zirconium alloys

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1989-08-01

    One of the fundamental discoveries involving radiation effects on the oxidation of Zircaloy in low-oxygen aqueous environments is the influence of thick oxide films. Zircaloy oxidation rates in low-oxygen (hydrogen-rich) coolants initially proceed at relatively low rates, often almost uninfluenced by radiation. Marked upturns in oxidation rate have signaled the onset of radiation effects. The radiation effects appear to correlate with a threshold oxide thickness. Results of the test reactor experiments lead to formulation of the Thick-Film Hypothesis: beyond a threshold oxide thickness, radiolysis of water that infiltrates oxide cracks and pores controls the oxidation rate; radiation creates microenvironments inside the oxide film, producing highly oxidizing conditions, that are no longer suppressed by the coolant-borne hydrogen. Upturns in oxidation rate on high-exposure Zircaloy pressure tubes add confirmatory evidence for the thick-film effect. This paper summarizes the early evidence for thick-film behavior, including oxidation and hydriding trends, updates confirmatory evidence from Zircaloy reactor and fuel assembly components, and highlights other observations from the test reactor series that have potential fundamental significance to explanations of radiation effects on Zircaloy. 23 refs., 10 figs

  9. Model-based cartilage thickness measurement in the submillimeter range

    International Nuclear Information System (INIS)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.; Wee, R. ter; Venema, H. W.

    2007-01-01

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness was varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical

  10. Moessbauer polarimetry using fluosilicates. Double motion drive and effective thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Henry, M; Varret, F [Centre Universitaire du Mans, 72 (France)

    1977-12-16

    Calculations are made and spectra are obtained on linear experiments using single crystals. The energy coincidence between the source and the polarizer is achieved by using a double motion drive which moves the source at a constant velocity. Such an experiment provides an accurate determination of both the polarizer and the analyzer effective thicknesses.

  11. Defect-induced mix experiment for NIF

    Directory of Open Access Journals (Sweden)

    Schmitt M.J.

    2013-11-01

    Full Text Available The Defect Induced Mix Experiment (DIME-II will measure the implosion and mix characteristics of CH capsules filled with 5 atmospheres of DT by incorporating mid-Z dopant layers of Ge and Ga. This polar direct drive (PDD experiment also will demonstrate the filling of a CH capsule at target chamber center using a fill tube. Diagnostics for these experiments include areal x-ray backlighting to obtain early time images of the implosion trajectory and a multiple-monochromatic imager (MMI to collect spectrally-resolved images of the capsule dopant line emission near bangtime. The inclusion of two (or more thin dopant layers at separate depths within the capsule shell facilitates spatial correlation of mix between the layers and the hot gas core on a single shot. The dopant layers are typically 2 μm thick and contain dopant concentrations of 1.5%. Three dimensional Hydra simulations have been performed to assess the effects of PDD asymmetry on capsule performance.

  12. The fixed target experiment for studies of baryonic matter at the Nuclotron (BM rate at N)

    Energy Technology Data Exchange (ETDEWEB)

    Kapishin, Mikhail [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation)

    2016-08-15

    BM rate at N (Baryonic Matter at Nuclotron) is the first experiment to be realized at the accelerator complex of NICA-Nuclotron. The aim of the BM rate at N experiment is to study interactions of relativistic heavy-ion beams with fixed targets. The BM rate at N setup, results of Monte Carlo simulations and the BM rate at N experimental program are presented. (orig.)

  13. Measurements of activation reaction rate distributions on a mercury target bombarded with high-energy protons at AGS

    International Nuclear Information System (INIS)

    Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro; Jerde, Eric; Glasgow, David

    2000-02-01

    A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the 115 In(n,n') 115m In, 93 Nb(n,2n) 92m Nb, and 209 Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured 115 In(n,n') 115m In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)

  14. Monte Carlo simulation on hard X-ray dose produced in interaction between high intensity laser and solid target

    International Nuclear Information System (INIS)

    Yang Bo; Qiu Rui; Li Junli; Zhang Hui

    2014-01-01

    The X-ray dose produced in the interaction between high intensity laser and solid target was studied by simulation using Monte Carlo code. Compared with experimental results, the calculation model was verified. The calculation model was used to study the effect on X-ray dose with different electron temperatures, target materials (including Au, Cu and PE) and thicknesses. The results indicate that the X-ray dose is mainly determined by the electron temperature, and will be affected by the target parameters. X-ray dose of Au is about 1.2 times that of Cu, and is about 5 times that of PE (polyethylene). In addition, compared with other target thickness, when target thickness is the mean range of electron in the target, X-ray dose is relatively large. These results will provide references on evaluating the ionizing radiation dose for laser devices. (authors)

  15. Use of a piezo-electric quartz as substrate for the preparation of self-supporting rare earth targets, in metallic form, not oxidized

    International Nuclear Information System (INIS)

    Bonetti, C.

    1975-01-01

    A technique for preparing rare earth self-supporting targets is described. These high purity foils are used for nuclear spectroscopy, with a tandem Van de Graaff accelerator. Target thicknesses range from 1000μg/cm 2 to 2500μg/cm 2 . The originality of this procedure consists in using the piezo-electric quartz for target thickness measurements and for temporary substrate. With this method, it is possible to measure the target thickness without geometrical errors and to suppress the effects of the molecular flux anisotropy. (Auth.)

  16. A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.

    2009-05-01

    A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.

  17. Static and dynamic through thickness lamina properties of thick laminates

    NARCIS (Netherlands)

    Lahuerta, F.; Nijssen, R.P.L.; Van der Meer, F.P.; Sluys, L.J.

    2015-01-01

    Thick laminates are increasingly present in large composites structures such as wind turbine blades. Different factors are suspected to be involved in the decreased static and dynamic performance of thick laminates. These include the effect of self-heating, the scaling effect, and the manufacturing

  18. A target concept for intense radioactive beams in the 132Sn Region

    International Nuclear Information System (INIS)

    Nolen, J.A. Jr.

    1993-01-01

    To produce intense secondary beams of radioactive isotopes, primary beams of up to 100 kW are being proposed at some facilities. There are plans to test production targets with 800 MeV protons at such higher power at the Rutherford Appleton Laboratory. In this paper the use of high energy neutrons as a possible alternative is presented. The concept is to generate an intense beam of neutrons in a well-cooled target with a primary deuteron beam. The neutrons have a high cross section for producing fission fragments in a thick uranium target which is coupled to the ion source for the secondary beams. The effective target thickness is large and the power dissipated in the ISOL target is relatively small, which should lead to intense beams of neutron-rich, intermediate-mass isotopes such as 132 Sn

  19. Construction and performance of a plastic scintillating fiber target for a rare kaon decay experiment

    International Nuclear Information System (INIS)

    Frank, J.S.; Strand, R.C.

    1988-01-01

    A K + stopping target consisting of 2269 plastic fibers, 2 mm diameter and 3.12 m long has been installed in an experiment searching for the rare decay K + to πν/bar nu/ at Brookhaven National Laboratory. The fibers are bundled onto 379 photomultiplier tube and base assemblies with single photoelectron resolution. After routing to the counting room, the signals are amplified and then distributed to TDC's and high-pass filter circuits that provide signals to ADC's and to fan-ins that provide a target energy-sum pulse used in the fast triggering logic. A minimum ionizing particle 3 m from the photomultiplier yields 1 photoelectron/mm path. The target provides transverse spatial resolution of 4 mm (FWHM) for the vertex of the K + decay and 2 ns timing resolution (FWHM) on the difference between the K + stop and the subsequent decay. Details of the target construction and operating performance are provided. 4 refs., 7 figs

  20. Examination of the X-ray piping diagnostic system using EGS4 (measuring the thickness of a steel pipe with rust)

    International Nuclear Information System (INIS)

    Kajiwara, G.

    2001-01-01

    In a series of papers entitled 'Examination of the X-ray piping diagnostic system using EGS4' presented the proceedings of the EGS4 users' meetings, I discussed the possibility of measuring the thickness of piping walls with rust. In the present paper, I describe, based on our earlier results, how the thickness of steel pipes with rust can be measured. I conducted EGS4 simulation to measure the thickness of a combination of steel and rust and made an energy absorption diagram for this combination. The equivalent thickness of steel was obtained through experiments and the system operation. The thickness of the steel determined by using the diagram agreed well with the actual steel thickness obtained by the experiments. In the future, we will focus on how to automate this measurement procedure and how to use the same procedure to measure the thickness of pipes filled with water. (author)

  1. Heavy water jet target and a beryllium target for production of fast neutrons

    International Nuclear Information System (INIS)

    Logan, C.M.; Anderson, J.D.; Barschall, H.H.; Davis, J.C.

    1975-01-01

    A limitation on the neutron flux obtainable from proton or deuteron induced reactions is the heating of the target by the accelerated charged particles. The heat can be removed more easily if the target moves. The possibility of using a rotating Be target and a heavy water jet as a target for bombardment by 35-MeV deuterons was studied. In a thick Be metal target moving at 10 m/sec through such a beam of 1 cm diameter a temperature pulse of about 300 0 C will be produced by the 0.3 MW beam. The Be target should be able to withstand such a temperature pulse. A Be target suitable for 3 MW of power in a 1 cm diameter beam would require internal cooling and a higher velocity. A free jet of heavy water is also a possible target. Laser photographs of water jets in vacuum show small angles of divergence. The effect of heating by a 0.3 MW beam is probably not important because the temperature rise produced by the beam is small compared to the absolute temperature of the unheated jet. (auth)

  2. The use of the foil technique for the elimination of charging, and for beam monitoring in microbeam analysis of thick insulating samples

    International Nuclear Information System (INIS)

    Chaudhri, M.A.; Melbourne Univ., Austin

    1982-01-01

    It has been demonstrated that the 'thin-foil-technique' for the elimination of charging and accurate beam current/charge measurement, first developed by us, can also be conveniently applied to microbeam analysis of thick insulating samples. We have calculated the spatial broadening of proton microbeams of 1-20 MeV energies at the target, due to thin carbon foils of different thicknesses ranging from 10-40 μg/cm 2 placed either 2 or 5 mm in front of the target by using Moliere's theory of multiple scattering. The results show that at higher proton energies there is very little broadening of the incident beam even from thicker foils. But for lower energy protons (1 and 2 MeV) this broadening or worsening of the spatial resolution is relatively larger, especially from thicker foils. However, we have further shown that, even at these energies, the beam broadening can be minimized to acceptable limits by selecting a suitable thickness of carbon foil and placing it as close to the insulating target as possible. A comprehensive table is provided, which would help in selecting the most suitable carbon-foil thickness and the distance in front of the target where this foil should be placed, for microprobe application requiring different beam spots and proton energies. The advantages of this foil technique are described. (orig.)

  3. An experiment to study CP violation in the B system using an internal target at the HERA proton ring

    International Nuclear Information System (INIS)

    Hofmann, W.

    1993-03-01

    A group of physicists centered around the ARGUS collaboration got interested in hadron accelerators as a prolific source of B hadrons. The group is presently studying the option of a major-B-physics experiment to be performed at the HERA proton storage ring in fixed target mode using an internal target. Basic goal of the experiment is the detection of CP violation in the 'gold plated' B 0 → J/Ψ K s decay mode, using a dedicated detector triggered on lepton pairs from J/Ψ decay. (orig./HSI)

  4. Nanometer-resolution electron microscopy through micrometers-thick water layers

    Energy Technology Data Exchange (ETDEWEB)

    Jonge, Niels de, E-mail: niels.de.jonge@vanderbilt.edu [Vanderbilt University Medical Center, Department of Molecular Physiology and Biophysics, Nashville, TN 37232-0615 (United States); Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6064 (United States); Poirier-Demers, Nicolas; Demers, Hendrix [Universite de Sherbrooke, Electrical and Computer Engineering, Sherbrooke, Quebec J1K 2R1 (Canada); Peckys, Diana B. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6064 (United States); University of Tennessee, Center for Environmental Biotechnology, Knoxville, TN 37996-1605 (United States); Drouin, Dominique [Universite de Sherbrooke, Electrical and Computer Engineering, Sherbrooke, Quebec J1K 2R1 (Canada)

    2010-08-15

    Scanning transmission electron microscopy (STEM) was used to image gold nanoparticles on top of and below saline water layers of several micrometers thickness. The smallest gold nanoparticles studied had diameters of 1.4 nm and were visible for a liquid thickness of up to 3.3 {mu}m. The imaging of gold nanoparticles below several micrometers of liquid was limited by broadening of the electron probe caused by scattering of the electron beam in the liquid. The experimental data corresponded to analytical models of the resolution and of the electron probe broadening as function of the liquid thickness. The results were also compared with Monte Carlo simulations of the STEM imaging on modeled specimens of similar geometry and composition as used for the experiments. Applications of STEM imaging in liquid can be found in cell biology, e.g., to study tagged proteins in whole eukaryotic cells in liquid and in materials science to study the interaction of solid:liquid interfaces at the nanoscale.

  5. The Development of a Framework for Target Diagnostic Centralized Control System (TDCCS) in ICF Experiments

    International Nuclear Information System (INIS)

    Zhang Chi; Wang Jian; Yu Xiaoqi; Yang Dong

    2008-01-01

    A framework for target diagnostic centralized control system (TDCCS) in inertial confinement fusion (ICF) experiment has been developed. The developed framework is based on the common object request broker architecture (CORBA) standard and part of the concept from the ICFRoot (a framework based on ROOT for ICF experiments) framework design. This framework is of a component architecture, including a message bus, command executer, status processor, parser and proxy. To test the function of the framework, a simplified prototype of the TDCCS has been developed as well.

  6. Experimental and FE simulation validation of sheet thickness optimization in superplastic forming of Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kumaresan, G.; Jothilingam, A. [Anna University, Chennai (India)

    2016-07-15

    Superplasticity is the ability of a polycrystalline materials to exhibit very large elongations without necking prior to failure. In this paper, the superplastic forming potential of fine grained 7075 aluminium alloy was studied. The process parameters like pressure, forming time and initial sheet thickness were selected, using the design of experiments technique. The same condition of formation process was attempted in the finite element simulation using ABAQUS software. The deviation of the thickness distribution between the simulation and experiment was made and the variation lies within 8%.

  7. Through thickness property variations in a thick plate AA7050 friction stir welded joint

    International Nuclear Information System (INIS)

    Canaday, Clinton T.; Moore, Matthew A.; Tang, Wei; Reynolds, A.P.

    2013-01-01

    In this study, moderately thick (32 mm) AA7050 plates were joined by friction stir welding (FSW). Various methods were used to characterize the welded joints, including nugget grain size measurements at different locations through the thickness, micro-hardness indentation through nugget, thermo-mechanically affected zone (TMAZ), and heat affected zone (HAZ) at different cross section heights, and residual stress measurement using the cut compliance method with full thickness and partial thickness specimens. All testing results are consistent with the presence of a strong gradient in peak temperature through the plate thickness during FSW.

  8. Gas Sensing Performance of Pure and Modified BST Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    G. H. JAIN

    2008-04-01

    Full Text Available Barium Strontium Titanate (BST-(Ba0.87Sr0.13TiO3 ceramic powder was prepared by mechanochemical process. The thick films of different thicknesses of BST were prepared by screen-printing technique and gas-sensing performance of these films was tested for various gases. The films showed highest response and selectivity to ammonia gas. The pure BST film was surface modified by surfactant CrO3 by using dipping technique. The surface modified film suppresses the response to ammonia and enhances to H2S gas. The surface modification of films changes the adsorption-desorption relationship with the target gas and shifts its selectivity. The gas response, selectivity, response and recovery time of the pure and modified films were measured and presented.

  9. Simulation and experimental determination of the macro-scale layer thickness distribution of electrodeposited Cu-line patterns on a wafer substrate

    DEFF Research Database (Denmark)

    Pantleon, Karen; Bossche, Bart van den; Purcar, Marius

    2005-01-01

    The impact of adjacent patterned zones with different active area densities on the current density and electrodeposited layer thickness distribution over a wafer substrate is examined, both by experiment and numerical simulation. The experiments consist in running an acid copper plating process o......) approach to compute the current density distribution over the electrodes. Experimental and computed layer thickness distributions are in very good agreement.......The impact of adjacent patterned zones with different active area densities on the current density and electrodeposited layer thickness distribution over a wafer substrate is examined, both by experiment and numerical simulation. The experiments consist in running an acid copper plating process...... on the patterned wafer, and layer thickness measurements by means of X-ray fluorescence (XRF) and atomic force microscopy (AFM). The simulations are based on a potential model approach taking into account electrolyte ohmic drop and electrode polarization effects, combined to a boundary element method (BEM...

  10. A new, simple and precise method for measuring cyclotron proton beam energies using the activity vs. depth profile of zinc-65 in a thick target of stacked copper foils

    International Nuclear Information System (INIS)

    Asad, A.H.; Chan, S.; Cryer, D.; Burrage, J.W.; Siddiqui, S.A.; Price, R.I.

    2015-01-01

    The proton beam energy of an isochronous 18 MeV cyclotron was determined using a novel version of the stacked copper-foils technique. This simple method used stacked foils of natural copper forming ‘thick’ targets to produce Zn radioisotopes by the well-documented (p,x) monitor-reactions. Primary beam energy was calculated using the "6"5Zn activity vs. depth profile in the target, with the results obtained using "6"2Zn and "6"3Zn (as comparators) in close agreement. Results from separate measurements using foil thicknesses of 100, 75, 50 or 25 µm to form the stacks also concurred closely. Energy was determined by iterative least-squares comparison of the normalized measured activity profile in a target-stack with the equivalent calculated normalized profile, using ‘energy’ as the regression variable. The technique exploits the uniqueness of the shape of the activity vs. depth profile of the monitor isotope in the target stack for a specified incident energy. The energy using "6"5Zn activity profiles and 50-μm foils alone was 18.03±0.02 [SD] MeV (95%CI=17.98–18.08), and 18.06±0.12 MeV (95%CI=18.02–18.10; NS) when combining results from all isotopes and foil thicknesses. When the beam energy was re-measured using "6"5Zn and 50-μm foils only, following a major upgrade of the ion sources and nonmagnetic beam controls the results were 18.11±0.05 MeV (95%CI=18.00–18.23; NS compared with ‘before’). Since measurement of only one Zn monitor isotope is required to determine the normalized activity profile this indirect yet precise technique does not require a direct beam-current measurement or a gamma-spectroscopy efficiency calibrated with standard sources, though a characteristic photopeak must be identified. It has some advantages over published methods using the ratio of cross sections of monitor reactions, including the ability to determine energies across a broader range and without need for customized beam degraders. - Highlights: • Simple

  11. Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature

    Science.gov (United States)

    Arends, A. A.; Germain, T. M.; Owens, J. F.; Putnam, S. A.

    2018-05-01

    A coupled reflectometer-interferometer apparatus is described for thin-film thickness and curvature characterization in the three-phase contact line region of evaporating fluids. Validation reflectometry studies are provided for Au, Ge, and Si substrates and thin-film coatings of SiO2 and hydrogel/Ti/SiO2. For interferometry, liquid/air and solid/air interferences are studied, where the solid/air samples consisted of glass/air/glass wedges, cylindrical lenses, and molded polydimethylsiloxane lenses. The liquid/air studies are based on steady-state evaporation experiments of water and isooctane on Si and SiO2/Ti/SiO2 wafers. The liquid thin-films facilitate characterization of both (i) the nano-scale thickness of the absorbed fluid layer and (ii) the macro-scale liquid meniscus thickness, curvature, and curvature gradient profiles. For our validation studies with commercial lenses, the apparatus is shown to measure thickness profiles within 4.1%-10.8% error.

  12. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    International Nuclear Information System (INIS)

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y.; Fourmentel, D.; Destouches, C.; Villard, J.F.

    2015-01-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m -2 .K -1 and 130 μC.N -1 for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in order to

  13. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y. [University Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Fourmentel, D.; Destouches, C.; Villard, J.F. [CEA, DEN, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul lez Durance (France)

    2015-07-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m{sup -2}.K{sup -1} and 130 μC.N{sup -1} for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in

  14. Thickness mapping of submerged portions of a BWR torus using an ROV

    International Nuclear Information System (INIS)

    Somers, T.; Bagley, J.G.

    1992-01-01

    A methodology has been developed for establishing an ultrasonic baseline of the submerged portions of a boiling water reactor torus shell. A remotely operated vehicle (ROV) is equipped to deliver an array of ultrasonic thickness transducers to within a fixed stand-off from the shell. The position of the transducers at each ultrasound reading is measured and recorded using a precision acoustic navigation system. The resulting thickness contour map makes it possible to visualize the condition of the torus shell and provides quantitative documentation of shell thickness at a large number of known locations. The navigation system can be reinstalled in the future so that by comparing future thickness readings acquired at the same location, it is possible to create a map of the rate of change in shell thickness. An ultrasonic thickness survey was conducted recently using a preliminary version of such a system. The experience gained in performing this survey has been incorporated in the design of a full-scale prototype system, which is currently under development. This system will include such features as automatic control of the ROV based on the acoustic navigation data, generation of three-dimensional thickness maps, and remote control of the data acquisition process from outside the radiation area

  15. Non-contact radiation thickness gauge

    International Nuclear Information System (INIS)

    Tsujii, T.; Okino, T.

    1983-01-01

    A noncontact thickness gauge system for measuring the thickness of a material comprising a source of radiation, a detector for detecting the amount of radiation transmitted through the material which is a function of the absorptance and thickness of the material, a memory for storing the output signals of the detector and curve-defining parameters for a plurality of quadratic calibration curves which correspond to respective thickness ranges, and a processor for processing the signals and curve defining parameters to determine the thickness of the material. Measurements are made after precalibration to obtain calibration curves and these are stored in the memory, providing signals representative of a nominal thickness and an alloy compensation coefficient for the material. The calibration curve corresponding to a particular thickness range is selected and the curve compensated for drift; the material is inserted into the radiation path and the detector output signal processed with the compensated calibration curve to determine the thickness of the material. (author)

  16. Simulation of the Production of Secondary Particles from a Neutron Beam on Polyethylene Targets using the GEANT4 Simulation Tool

    CERN Document Server

    Ilgner, C

    2003-01-01

    In view of a beam test of RadFET semiconductor detectors and optically stimulated luminescence (OSL) detectors as on-line dosimeters for radiation monitoring purposes in the caverns of the Large Hadron Collider (LHC) experiments, a simulation on the production of secondary particles from a neutron beam on a polyethylene target was carried out. We describe the yield of recoil protons, scattered neutrons as well as electrons, positrons and photons, when neutrons of an average energy of 20 MeV hit polyethylene targets of several thicknesses. The simulation was carried out using the latest release 5.2 of the GEANT4 detector description and simulation tool, including advanced hadron interaction models.

  17. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets

    Science.gov (United States)

    Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan

    2018-05-01

    Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.

  18. Thickness measurement for the different metals by using Cs-137 gamma source with gamma transmission technique

    International Nuclear Information System (INIS)

    Bueyuek, B.; Tugrul, B.

    2009-01-01

    The purpose of this study is an experimental analysis of thickness measurement for various metals with the gamma transmission technique using Cs-137 as the radioisotope source. Lead, steel, brass, and aluminum, which are frequently used metals in industry, were chosen for the experiments. As the radioisotope source Cs-137 was preferred for the study since it has long half-life, it is mono energetic, and it penetrates the metals that were studied. Experiments were observed in the constant experimental geometry. Calibration curves for the four metal samples were plotted using the obtained results. To test the plotted calibration curves, counts for determining thickness measurement were collected for each sample and the obtained relative count values were used in conjunction with the plotted calibration curves for each sample to determine its thickness. The thicknesses of the samples have been measured with a micrometer and the results were comparatively analyzed with the measurement results obtained by the gamma transmission technique. The results of the analyses revealed that the thickness measurement values obtained with the gamma transmission technique and the thickness measurement values obtained with the conventional technique significantly converge to each other and the difference between the two values is at an acceptable level. Therefore the reliability of thickness measurements with the gamma transmission technique and the resulting calibration curves have been demonstrated.

  19. Effect of subcooling and wall thickness on pool boiling from downward-facing curved surfaces in water

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Glebov, A.G. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-09-01

    Quenching experiments were performed to investigate the effects of water subcooling and wall thickness on pool boiling from a downward-facing curved surface. Experiments used three copper sections of the same diameter (50.8 mm) and surface radius (148 mm), but different thickness (12.8, 20 and 30 mm). Local and average pool boiling curves were obtained at saturation and 5 K, 10 K, and 14 K subcooling. Water subcooling increased the maximum heat flux, but decreased the corresponding wall superheat. The minimum film boiling heat flux and the corresponding wall superheat, however, increased with increased subcooling. The maximum and minimum film boiling heat fluxes were independent of wall thickness above 20 mm and Biot Number > 0.8, indicating that boiling curves for the 20 and 30 thick sections were representative of quasi steady-state, but not those for the 12.8 mm thick section. When compared with that for a flat surface section of the same thickness, the data for the 12.8 mm thick section showed significant increases in both the maximum heat flux (from 0.21 to 0.41 MW/m{sup 2}) and the minimum film boiling heat flux (from 2 to 13 kW/m{sup 2}) and about 11.5 K and 60 K increase in the corresponding wall superheats, respectively.

  20. A new attempt of measurement film thickness by x-ray diffractometry

    International Nuclear Information System (INIS)

    Kosaka, Masao; Kobayashi, Hideo

    1987-01-01

    In order to make film thickness measurements independent from the property or the structure of the film materials or the substrate, it is needed to adopt instead of directly utilizing the X-ray diffraction intensity, or attenuation information obtained from the substrate or film material, other new methods for measurement. Among the information obtained by X-ray diffraction, if intensity is excluded, others are F.W.H.M. and diffraction angle, only. If it is possible to investigate the film thickness dependency of the diffraction angle, it should be possible to measure the film thickness by diffraction angle. However, since diffraction angle has no film thickness dependency, it cannot be used directly for measurement. However, if we consider the principle of the X-ray diffractometer method, although it may be very slight, the substrate will be eccentric from the revolving center of the goniometer on account of the thickness of the film. If eccentricity occurs, this will cause changes in the diffraction angle. If we set the radius of the goniometer as R, diffraction angle θ, and the eccentricity from the revolving center of the specimen surface X, the deflection angle Δ2θ of 2θ may be expressed by Δ2θ = -2X · COSθ/R Thus, if X is caused by the film thickness, and by measuring the Δ2θ, it will be possible to measure the film thickness. As a result of the experiment, it was found that X-ray diffraction method can be used for the measurement of the film thickness of a few microns or above by utilizing the eccentricity caused by the film thickness. Especially it has the advantage of being able to measure thick films that X-rays will not penetrate, without being influenced by the chemical structure of the film or the substrates. (author)