WorldWideScience

Sample records for thick oxide layers

  1. Development of examination technique for oxide layer thickness measurement of irradiated fuel rods

    International Nuclear Information System (INIS)

    Koo, D. S.; Park, S. W.; Kim, J. H.; Seo, H. S.; Min, D. K.; Kim, E. K.; Chun, Y. B.; Bang, K. S.

    1999-06-01

    Technique for oxide layer thickness measurement of irradiated fuel rods was developed to measure oxide layer thickness and study characteristic of fuel rods. Oxide layer thickness of irradiated fuels were measured, analyzed. Outer oxide layer thickness of 3 cycle-irradiated fuel rods were 20 - 30 μm, inner oxide layer thickness 0 - 10 μm and inner oxide layer thickness on cracked cladding about 30 μm. Oxide layer thickness of 4 cycle-irradiated fuel rods were about 2 times as thick as those of 1 cycle-irradiated fuel rods. Oxide layer on lower region of irradiated fuel rods was thin and oxide layer from lower region to upper region indicated gradual increase in thickness. Oxide layer thickness from 2500 to 3000 mm showed maximum and oxide layer thickness from 3000 to top region of irradiated fuel rods showed decreasing trend. Inner oxide layer thicknesses of 4 cycle-irradiated fuel rod were about 8 μm at 750 - 3500 mm from the bottom end of fuel rod. Outer oxide layer thickness were about 8 μm at 750 - 1000 mm from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel. Oxide layer thickness technique will apply safety evaluation and study of reactor fuels. (author). 6 refs., 14 figs

  2. Usage of neural network to predict aluminium oxide layer thickness.

    Science.gov (United States)

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer.

  3. Usage of Neural Network to Predict Aluminium Oxide Layer Thickness

    Directory of Open Access Journals (Sweden)

    Peter Michal

    2015-01-01

    Full Text Available This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A·dm−2 and 3 A·dm−2 for creating aluminium oxide layer.

  4. Ellipsometry measurements of thickness of oxide and water layers on spherical and flat silicon surfaces

    International Nuclear Information System (INIS)

    Kenny, M.J.; Netterfield, R.; Wielunski, L.S.

    1998-01-01

    Full text: Ellipsometry has been used to measure the thickness of oxide layers on single crystal silicon surfaces, both flat and spherical and also to measure the extent of adsorption of moisture on the surface as a function of partial water vapour pressure. The measurements form part of an international collaborative project to make a precise determination of the Avogadro constant (ΔN A /N A -8 ) which will then be used to obtain an absolute definition of the kilogram, rather than one in terms of an artefact. Typically the native oxide layer on a cleaned silicon wafer is about 2 nm thick. On a polished sphere this oxide layer is typically 8 to 10 nm thick, the increased thickness being attributed to parameters related to the polishing process. Ellipsometry measurements on an 89 mm diameter polished silicon sphere at both VUW and CSIRO indicated a SiO 2 layer at 7 to 10 nm thick. It was observed that this thickness varied regularly. The crystal orientation of the sphere was determined using electron patterns generated from an electron microscope and the oxide layer was then measured through 180 arcs of great circles along (110) and (100) planes. It was observed that the thickness varied systematically with orientation. The minimum thickness was 7.4 nm at the axis (softest direction in silicon) and the greatest thickness was 9.5 nm at the axis (hardest direction in silicon). This is similar to an orientation dependent cubic pattern which has been observed to be superimposed on polished silicon spheres. At VUW, the sphere was placed in an evacuated bell jar and the ellipsometry signal was observed as the water vapour pressure was progressively increased up to saturation. The amount of water vapour adsorbed at saturation was one or two monolayers, indicating that the sphere does not wet

  5. Measurement of oxide-layer thickness of internal granules in high-purity aluminium

    International Nuclear Information System (INIS)

    Takacs, S.; Ditroi, F.; Mahunka, I.

    1989-01-01

    Charged-particle activation analysis was used for the determination of bulk oxygen concentration in aluminium. High-purity aluminium samples and mixtures containing different amounts of alumina were irradiated by 13 MeV 3 He particles. The aim of the investigation was to determine the oxide-layer thickness on the surface of internal aluminium granules. The measurement was carried out by determining the bulk oxygen concentration in the samples, and calculating the oxide-layer thickness, by using model conditions about the microstructure of the aluminium samples. (author) 5 refs

  6. Oxide thickness measurement technique for duplex-layer Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    McClelland, R.G.; O'Leary, P.M.

    1992-01-01

    Siemens Nuclear Power Corporation (SNP) is investigating the use of duplex-layer Zircaloy-4 tubing to improve the waterside corrosion resistance of cladding for high-burnup pressurized water reactor (PWR) fuel designs. Standard SNP PWR cladding is typically 0.762-mm (0.030-in.)-thick Zircaloy-4. The SNP duplex cladding is nominally 0.660-mm (0.026-in.)-thick Zircalloy-4 with an ∼0.102-mm (0.004-in.) outer layer of another, more corrosion-resistant, zirconium-based alloy. It is common industry practice to monitor the in-reactor corrosion behavior of Zircaloy cladding by using an eddy-current 'lift-off' technique to measure the oxide thickness on the outer surface of the fuel cladding. The test program evaluated three different cladding samples, all with the same outer diameter and wall thickness: Zircaloy-4 and duplex clad types D2 and D4

  7. Thickness measurement of a thin hetero-oxide film with an interfacial oxide layer by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Kim, Kyung Joong; Lee, Seung Mi; Jang, Jong Shik; Moret, Mona

    2012-02-01

    The general equation Tove = L cos θ ln(Rexp/R0 + 1) for the thickness measurement of thin oxide films by X-ray photoelectron spectroscopy (XPS) was applied to a HfO2/SiO2/Si(1 0 0) as a thin hetero-oxide film system with an interfacial oxide layer. The contribution of the thick interfacial SiO2 layer to the thickness of the HfO2 overlayer was counterbalanced by multiplying the ratio between the intensity of Si4+ from a thick SiO2 film and that of Si0 from a Si(1 0 0) substrate to the intensity of Si4+ from the HfO2/SiO2/Si(1 0 0) film. With this approximation, the thickness levels of the HfO2 overlayers showed a small standard deviation of 0.03 nm in a series of HfO2 (2 nm)/SiO2 (2-6 nm)/Si(1 0 0) films. Mutual calibration with XPS and transmission electron microscopy (TEM) was used to verify the thickness of HfO2 overlayers in a series of HfO2 (1-4 nm)/SiO2 (3 nm)/Si(1 0 0) films. From the linear relation between the thickness values derived from XPS and TEM, the effective attenuation length of the photoelectrons and the thickness of the HfO2 overlayer could be determined.

  8. CANDU fuel sheath integrity and oxide layer thickness determination by Eddy current technique

    International Nuclear Information System (INIS)

    Gheorghe, Gabriela; Man, Ion; Parvan, Marcel; Valeca, Serban

    2010-01-01

    This paper presents results concerning the integrity assessment of the fuel elements cladding and measurements of the oxide layer on sheaths, using the eddy current technique. Flaw detection using eddy current provides information about the integrity of fuel element sheath or presence of defects in the sheath produced by irradiation. The control equipment consists of a flaw detector with eddy currents, operable in the frequency range 10 Hz to 10 MHz, and a differential probe. The calibration of the flaw detector is done using artificial defects (longitudinal, transversal, external and internal notches, bored and unbored holes) obtained on Zircaloy-4 tubes identical to those out of which the sheath of the CANDU fuel element is manufactured (having a diameter of 13.08 mm and a wall thickness of 0.4 mm). When analyzing the behavior of the fuel elements' cladding facing the corrosion is important to know the thickness of the zirconium oxide layer. The calibration of the device measuring the thickness of the oxide layer is done using a Zircaloy-4 tube identical to that which the cladding of the CANDU fuel element is manufactured of, and calibration foils, as well. (authors)

  9. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  10. Densification of ∼5 nm-thick SiO_2 layers by nitric acid oxidation

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Joo, Soyeong; Park, Tae Joo; Kim, Woo-Byoung

    2017-01-01

    Highlights: • Leakage current density of the commercial PECVD grown ∼5 nm SiO_2 layer has been decreased about three orders of magnitude by densification. • The densification of SiO_2 layer is achieved by high oxidation ability of O·. • Densities of suboxide, fixed charge (N_f) and defect state (N_d) in SiO_2/Si interface are decreased by NAOS and PMA. • Tunneling barrier height (Φ_t) is increased because of the increase of atomic density in SiO_2 layer. - Abstract: Low-temperature nitric acid (HNO_3) oxidation of Si (NAOS) has been used to improve the interface and electrical properties of ∼5 nm-thick SiO_2/Si layers produced by plasma-enhanced chemical vapor deposition (PECVD). Investigations of the physical properties and electrical characteristics of these thin films revealed that although their thickness is not changed by NAOS, the leakage current density at a gate bias voltage of −1 V decreases by about two orders of magnitude from 1.868 × 10"−"5 A/cm"2. This leakage current density was further reduced by post-metallization annealing (PMA) at 250 °C for 10 min in a 5 vol.% hydrogen atmosphere, eventually reaching a level (5.2 × 10"−"8 A/cm"2) approximately three orders of magnitude less than the as-grown SiO_2 layer. This improvement is attributed to a decrease in the concentration of suboxide species (Si"1"+, Si"2"+ and Si"3"+) in the SiO_2/Si interface, as well as a decrease in the equilibrium density of defect sites (N_d) and fixed charge density (N_f). The barrier height (Φ_t) generated by a Poole-Frenkel mechanism also increased from 0.205 to 0.371 eV after NAOS and PMA. The decrease in leakage current density is therefore attributed to a densification of the SiO_2 layer in combination with the removal of OH species and increase in interfacial properties at the SiO_2/Si interface.

  11. Thickness dependent growth of low temperature atomic layer deposited zinc oxide films

    International Nuclear Information System (INIS)

    Montiel-González, Z.; Castelo-González, O.A.; Aguilar-Gama, M.T.; Ramírez-Morales, E.; Hu, H.

    2017-01-01

    Highlights: • Polycrystalline columnar ZnO thin films deposited by ALD at low temperatures. • Higher deposition temperature leads to a greater surface roughness in the ALD ZnO films. • Higher temperature originates larger refractive index values of the ALD ZnO films. • ZnO thin films were denser as the numbers of ALD deposition cycles were larger. • XPS analysis revels mayor extent of the DEZ reaction during the ALD process. - Abstract: Zinc oxide films are promising to improve the performance of electronic devices, including those based on organic materials. However, the dependence of the ZnO properties on the preparation conditions represents a challenge to obtain homogeneous thin films that satisfy specific applications. Here, we prepared ZnO films of a wide range of thicknesses by atomic layer deposition (ALD) at relatively low temperatures, 150 and 175 °C. From the results of X-ray photoelectron spectroscopy, X-ray diffraction and Spectroscopic Ellipsometry it is concluded that the polycrystalline structure of the wurtzite is the main phase of the ALD samples, with OH groups on their surface. Ellipsometry revealed that the temperature and the deposition cycles have a strong effect on the films roughness. Scanning electron micrographs evidenced such effect, through the large pyramids developed at the surface of the films. It is concluded that crystalline ZnO thin films within a broad range of thickness and roughness can be obtained for optic or optoelectronic applications.

  12. Adhesion-enhanced thick copper film deposition on aluminum oxide by an ion-beam-mixed Al seed layer

    International Nuclear Information System (INIS)

    Kim, Hyung-Jin; Park, Jae-Won

    2012-01-01

    We report a highly-adherent 30-μm Cu conductive-path coating on an aluminum-oxide layer anodized on an aluminum-alloy substrate for a metal-printed circuit-board application. A 50-nm Al layer was first coated with an e-beam evaporative deposition method on the anodized oxide, followed by ion bombardment to mix the interfacial region. Subsequently, a Cu coating was deposited onto the mixed seed layer to the designed thickness. Adhesions of the interface were tested by using tape adhesion test, and pull-off tests and showed commercially acceptable adhesions for such thick coating layers. The ion beam mixing (IBM) plays the role of fastening the thin seed coating layer to the substrate and enhancing the adhesion of the Cu conductive path on the anodized aluminum surface.

  13. Impact of metal nano layer thickness on tunneling oxide and memory performance of core-shell iridium-oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, W.; Maikap, S. [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, Tao-Yuan, Taiwan 333, Taiwan (China); Tien, T.-C. [Material Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan 310, Taiwan (China); Li, W.-C.; Yang, J.-R. [Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2011-10-01

    The impact of iridium-oxide (IrO{sub x}) nano layer thickness on the tunneling oxide and memory performance of IrO{sub x} metal nanocrystals in an n-Si/SiO{sub 2}/Al{sub 2}O{sub 3}/IrO{sub x}/Al{sub 2}O{sub 3}/IrO{sub x} structure has been investigated. A thinner (1.5 nm) IrO{sub x} nano layer has shown better memory performance than that of a thicker one (2.5 nm). Core-shell IrO{sub x} nanocrystals with a small average diameter of 2.4 nm and a high density of {approx}2 x 10{sup 12}/cm{sup 2} have been observed by scanning transmission electron microscopy. The IrO{sub x} nanocrystals are confirmed by x-ray photoelectron spectroscopy. A large memory window of 3.0 V at a sweeping gate voltage of {+-}5 V and 7.2 V at a sweeping gate voltage of {+-} 8 V has been observed for the 1.5 nm-thick IrO{sub x} nano layer memory capacitors with a small equivalent oxide thickness of 8 nm. The electrons and holes are trapped in the core and annular regions of the IrO{sub x} nanocrystals, respectively, which is explained by Gibbs free energy. High electron and hole-trapping densities are found to be 1.5 x 10{sup 13}/cm{sup 2} and 2 x 10{sup 13}/cm{sup 2}, respectively, due to the small size and high-density of IrO{sub x} nanocrystals. Excellent program/erase endurance of >10{sup 6} cycles and good retention of 10{sup 4} s with a good memory window of >1.2 V under a small operation voltage of {+-} 5 V are obtained. A large memory size of >10 Tbit/sq. in. can be designed by using the IrO{sub x} nanocrystals. This study is not only important for the IrO{sub x} nanocrystal charge-trapping memory investigation but it will also help to design future metal nanocrystal flash memory.

  14. Impact of metal nano layer thickness on tunneling oxide and memory performance of core-shell iridium-oxide nanocrystals

    International Nuclear Information System (INIS)

    Banerjee, W.; Maikap, S.; Tien, T.-C.; Li, W.-C.; Yang, J.-R.

    2011-01-01

    The impact of iridium-oxide (IrO x ) nano layer thickness on the tunneling oxide and memory performance of IrO x metal nanocrystals in an n-Si/SiO 2 /Al 2 O 3 /IrO x /Al 2 O 3 /IrO x structure has been investigated. A thinner (1.5 nm) IrO x nano layer has shown better memory performance than that of a thicker one (2.5 nm). Core-shell IrO x nanocrystals with a small average diameter of 2.4 nm and a high density of ∼2 x 10 12 /cm 2 have been observed by scanning transmission electron microscopy. The IrO x nanocrystals are confirmed by x-ray photoelectron spectroscopy. A large memory window of 3.0 V at a sweeping gate voltage of ±5 V and 7.2 V at a sweeping gate voltage of ± 8 V has been observed for the 1.5 nm-thick IrO x nano layer memory capacitors with a small equivalent oxide thickness of 8 nm. The electrons and holes are trapped in the core and annular regions of the IrO x nanocrystals, respectively, which is explained by Gibbs free energy. High electron and hole-trapping densities are found to be 1.5 x 10 13 /cm 2 and 2 x 10 13 /cm 2 , respectively, due to the small size and high-density of IrO x nanocrystals. Excellent program/erase endurance of >10 6 cycles and good retention of 10 4 s with a good memory window of >1.2 V under a small operation voltage of ± 5 V are obtained. A large memory size of >10 Tbit/sq. in. can be designed by using the IrO x nanocrystals. This study is not only important for the IrO x nanocrystal charge-trapping memory investigation but it will also help to design future metal nanocrystal flash memory.

  15. Controlling the Performance of P-type Cu2O/SnO Bilayer Thin-Film Transistors by Adjusting the Thickness of the Copper Oxide Layer

    KAUST Repository

    Al-Jawhari, Hala A.

    2014-11-11

    The effect of copper oxide layer thickness on the performance of Cu2O/SnO bilayer thin-film transistors was investigated. By using sputtered Cu2O films produced at an oxygen partial pressure, Opp, of 10% as the upper layer and 3% Opp SnO films as the lower layer we built a matrix of bottom-gate Cu2O/SnO bilayer thin-film transistors of different thickness. We found that the thickness of the Cu2O layer is of major importance in oxidation of the SnO layer underneath. The thicker the Cu2O layer, the more the underlying SnO layer is oxidized, and, hence, the more transistor mobility is enhanced at a specific temperature. Both device performance and the annealing temperature required could be adjusted by controlling the thickness of each layer of Cu2O/SnO bilayer thin-film transistors.

  16. The magnetic characteristics of perpendicular magnetic tunnel junction with MgO and Al-O oxidation layers in various thickness

    International Nuclear Information System (INIS)

    Chen, T.-J.; Canizo-Cabrera, A.; Chang, C.-H.; Liao, K.-A.; Li, Simon C.; Hou, C.-K.; Wu Teho

    2006-01-01

    In this work we show the magnetic characteristics of perpendicular magnetic tunnel junction (pMTJ) with different oxidation layers. The pMTJs structures were made by RF and DC magnetron sputtering. Individual depositions of magnesium oxide layers and of aluminum oxide films were prepared by plasma oxidation. The experimental results showed that the initial switching field was decreased as the magnesium oxide thickness was increased. Further work of the aluminum oxide surface roughness and hysteresis loop influenced by different oxidation layers on pMTJs structures will be discussed as well

  17. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China

    Science.gov (United States)

    Song, Xie-Yan; Qi, Hua-Wen; Hu, Rui-Zhong; Chen, Lie-Meng; Yu, Song-Yue; Zhang, Jia-Fei

    2013-03-01

    Panzhihua intrusion is one of the largest layered intrusions that hosts huge stratiform Fe-Ti oxide layers in the central part of the Emeishan large igneous province, SW China. Up to 60 m thick stratiform massive Fe-Ti oxide layers containing 85 modal% of magnetite and ilmenite and overlying magnetite gabbro compose cyclic units of the Lower Zone of the intrusion. The cyclic units of the Middle Zone consist of magnetite gabbro and overlying gabbro. In these cyclic units, contents of Fe2O3(t), TiO2 and Cr and Fe3+/Ti4+ ratio of the rocks decrease upward, Cr content of magnetite and forsterite percentage of olivine decrease as well. The Upper Zone consists of apatite gabbro characterized by enrichment of incompatible elements (e.g., 12-18 ppm La, 20-28 ppm Y) and increasing of Fe3+/Ti4+ ratio (from 1.3 to 2.3) upward. These features indicate that the Panzhihua intrusion was repeatedly recharged by more primitive magma and evolved magmas had been extracted. Calculations using MELTS indicate that extensive fractionation of olivine and clinopyroxene in deep level resulted in increasing Fe and Ti contents in the magma. When these Fe-Ti-enriched magmas were emplaced along the base of the Panzhihua intrusion, Fe-Ti oxides became an early crystallization phase, leading to a residual magma of lower density. We propose that the unusually thick stratiform Fe-Ti oxide layers resulted from coupling of gravity settling and sorting of the crystallized Fe-Ti oxides from Fe-Ti-enriched magmas and frequent magma replenishment along the floor of the magma chamber.

  18. Effect of annealing and oxide layer thickness on doping profiles shape of ''through-oxide'' implanted P+ ions in textured silicon

    International Nuclear Information System (INIS)

    El-Dessouki, M.S.; Galloni, R.

    1987-10-01

    Phosphorous ions at energies of 60+100 KeV, and doses (4+5)x10 15 atom/cm 2 have been implanted randomly through SiO 2 layers into textured silicon crystals. The penetration profiles of the P + ions have been determined by means of differential sheet resistivity and Hall-effect, together with the anodic oxidation stripping technique. The effect of the oxide layer thickness, annealing temperature on the junction properties has been studied. The damage produced by implantation, has also been investigated using transmission electron microscope (TEM). From the mobility measurements of the free carriers as a function of depth through the junction, two minima have been observed in through oxide implanted samples. The one nearer to the Si-SiO 2 interface (at about 200A from the interface) was related to the damage produced by the recoil oxygen atoms from the oxide layer into silicon. The deeper minimum is lying at ∼ 0.2μm from the interface and was attributed to the damage produced by the implanted P + ions, which caused clusters and defect loops after annealing. This damage was observed through TEM photographs. The optimum conditions for producing shallow junction without losing much of the implanted P + ions through the oxide layer were estimated. (author). 22 refs, 7 figs, 1 tab

  19. Densification of ∼5 nm-thick SiO{sub 2} layers by nitric acid oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jaeyoung [Department of Energy Engineering, Dankook University, Cheonan 311-16 (Korea, Republic of); Joo, Soyeong [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Youngin 449-863 (Korea, Republic of); Park, Tae Joo [Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of); Kim, Woo-Byoung, E-mail: woo7838@dankook.ac.kr [Department of Energy Engineering, Dankook University, Cheonan 311-16 (Korea, Republic of)

    2017-08-15

    Highlights: • Leakage current density of the commercial PECVD grown ∼5 nm SiO{sub 2} layer has been decreased about three orders of magnitude by densification. • The densification of SiO{sub 2} layer is achieved by high oxidation ability of O·. • Densities of suboxide, fixed charge (N{sub f}) and defect state (N{sub d}) in SiO{sub 2}/Si interface are decreased by NAOS and PMA. • Tunneling barrier height (Φ{sub t}) is increased because of the increase of atomic density in SiO{sub 2} layer. - Abstract: Low-temperature nitric acid (HNO{sub 3}) oxidation of Si (NAOS) has been used to improve the interface and electrical properties of ∼5 nm-thick SiO{sub 2}/Si layers produced by plasma-enhanced chemical vapor deposition (PECVD). Investigations of the physical properties and electrical characteristics of these thin films revealed that although their thickness is not changed by NAOS, the leakage current density at a gate bias voltage of −1 V decreases by about two orders of magnitude from 1.868 × 10{sup −5} A/cm{sup 2}. This leakage current density was further reduced by post-metallization annealing (PMA) at 250 °C for 10 min in a 5 vol.% hydrogen atmosphere, eventually reaching a level (5.2 × 10{sup −8} A/cm{sup 2}) approximately three orders of magnitude less than the as-grown SiO{sub 2} layer. This improvement is attributed to a decrease in the concentration of suboxide species (Si{sup 1+}, Si{sup 2+} and Si{sup 3+}) in the SiO{sub 2}/Si interface, as well as a decrease in the equilibrium density of defect sites (N{sub d}) and fixed charge density (N{sub f}). The barrier height (Φ{sub t}) generated by a Poole-Frenkel mechanism also increased from 0.205 to 0.371 eV after NAOS and PMA. The decrease in leakage current density is therefore attributed to a densification of the SiO{sub 2} layer in combination with the removal of OH species and increase in interfacial properties at the SiO{sub 2}/Si interface.

  20. Controlling the Performance of P-type Cu2O/SnO Bilayer Thin-Film Transistors by Adjusting the Thickness of the Copper Oxide Layer

    KAUST Repository

    Al-Jawhari, Hala A.; Caraveo-Frescas, Jesus Alfonso; Hedhili, Mohamed N.

    2014-01-01

    The effect of copper oxide layer thickness on the performance of Cu2O/SnO bilayer thin-film transistors was investigated. By using sputtered Cu2O films produced at an oxygen partial pressure, Opp, of 10% as the upper layer and 3% Opp SnO films

  1. Microstructure and thermoelectric properties of screen-printed thick-films of misfit-layered cobalt oxides with Ag addition

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Samson, Alfred Junio; Pryds, Nini

    2012-01-01

    Thermoelectric properties of thick (~60 μm) films prepared by a screen-printing technique using p-type misfit-layered cobalt oxide Ca3Co4O9+δ with Ag addition have been studied. The screen-printed films were sintered in air at various temperatures ranging from 973 K to 1223 K. After each sintering...... process, crystal and microstructure analyses were carried out to determine the optimal sintering condition. The results show that the thermoelectric properties of pure Ca3Co4O9+δ thick film are comparable to those of cold isostatic pressing (CIP) samples. We found that the maximum power factor...... was improved by about 67% (to 0.3 mW/m K2) for film with proper silver (Ag) metallic inclusions as compared with 0.18 mW/m K2 for pure Ca3Co4O9+δ film under the same sintering condition of 1223 K for 2 h in air....

  2. Solid-state dewetting of single- and bilayer Au-W thin films: Unraveling the role of individual layer thickness, stacking sequence and oxidation on morphology evolution

    Directory of Open Access Journals (Sweden)

    A. Herz

    2016-03-01

    Full Text Available Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO2 evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI oxide (WO3 which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to the presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO3 is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO3 nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.

  3. Solid-state dewetting of single- and bilayer Au-W thin films: Unraveling the role of individual layer thickness, stacking sequence and oxidation on morphology evolution

    Energy Technology Data Exchange (ETDEWEB)

    Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Franz, A.; Theska, F.; Hentschel, M.; Kups, Th.; Wang, D., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Schaaf, P. [Department of Materials for Electronics and Electrical Engineering, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, D-98693 Ilmenau (Germany)

    2016-03-15

    Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO{sub 2} evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI) oxide (WO{sub 3}) which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to the presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO{sub 3} is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO{sub 3} nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.

  4. n-VO{sub 2}/p-GaN based nitride–oxide heterostructure with various thickness of VO{sub 2} layer grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minhuan [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bian, Jiming, E-mail: jmbian@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050, China (China); Sun, Hongjun; Liu, Weifeng [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Zhang, Yuzhi [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050, China (China); Luo, Yingmin [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2016-12-15

    Graphical abstract: The significant influences of VO{sub 2} layer thickness on the structural, electrical and contact properties of the n-VO{sub 2}/p-GaN based nitride-oxide heterostructure were investigated systemically. - Highlights: • High quality VO{sub 2} films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). • A distinct reversible SMT phase transition was observed for the n-VO{sub 2}/p-GaN based nitride-oxide heterostructure. • The clear rectifying transport characteristics originated from the n-VO{sub 2}/p-GaN interface were demonstrated before and after SMT of the VO{sub 2} over layer. • The XPS analyses confirmed the valence state of V in VO{sub 2} films was principally composed of V{sup 4+} with trace amount of V{sup 5+}. • The design and modulation of the n-VO{sub 2}/p-GaN based heterostructure devices will benefit significantly from these achievements. - Abstract: High quality VO{sub 2} films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). Results indicated that a distinct reversible semiconductor-to-metal (SMT) phase transition was observed for all the samples in the temperature dependent electrical resistance measurement, and the influence of VO{sub 2} layer thickness on the SMT properties of the as-grown n-VO{sub 2}/p-GaN based nitride-oxide heterostructure was investigated. Meanwhile, the clear rectifying transport characteristics originated from the n-VO{sub 2}/p-GaN interface were demonstrated before and after SMT of the VO{sub 2} over layer, which were attributed to the p-n junction behavior and Schottky contact character, respectively. Moreover, the X-ray photoelectron spectroscopy (XPS) analyses confirmed the valence state of vanadium (V) in VO{sub 2} films was principally composed of V{sup 4+} with trace amount of V{sup 5+}. The design and modulation of the n-VO{sub 2}/p-GaN based heterostructure

  5. Optical and structural properties of zinc oxide films with different thicknesses prepared by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Taner, Ahmet, E-mail: ataner@anadolu.edu.tr [Institute of Science and Technology, Anadolu University, Eskisehir 26470 (Turkey); Kul, Metin; Turan, Evren; Aybek, A. Senol; Zor, Muhsin [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey); Taskoeprue, Turan [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey); Department of Physics, Cank Latin-Small-Letter-Dotless-I r Latin-Small-Letter-Dotless-I Karatekin University, Cank Latin-Small-Letter-Dotless-I r Latin-Small-Letter-Dotless-I 18100 (Turkey)

    2011-12-01

    In this work, zinc oxide semiconducting films belonging to the II-VI group have been produced by successive ionic layer adsorption and reaction (SILAR) method on glass substrates with 10, 15, 20 and 25 cycles at room temperature. Following the deposition, the samples were dried in air at 400 Degree-Sign C for 1 h. The films were characterized by X-ray diffraction, field emission scanning electron microscopy and optical absorption measurement techniques. The X-ray diffractions of the films showed that they are hexagonal in structure. The crystallite size of ZnO films varied between 34 and 38 nm accordingly with the number of SILAR cycles. The material has exhibited direct band gap transition with the band gap values lying in the range between 3.13 and 3.18 eV. The red shift is observed in the absorption edge as the cycles increased. Transmission of the films decreased from 65 to 40% with increasing the number of cycles.

  6. Optical and structural properties of zinc oxide films with different thicknesses prepared by successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Taner, Ahmet; Kul, Metin; Turan, Evren; Aybek, A. Şenol; Zor, Muhsin; Taşköprü, Turan

    2011-01-01

    In this work, zinc oxide semiconducting films belonging to the II-VI group have been produced by successive ionic layer adsorption and reaction (SILAR) method on glass substrates with 10, 15, 20 and 25 cycles at room temperature. Following the deposition, the samples were dried in air at 400 °C for 1 h. The films were characterized by X-ray diffraction, field emission scanning electron microscopy and optical absorption measurement techniques. The X-ray diffractions of the films showed that they are hexagonal in structure. The crystallite size of ZnO films varied between 34 and 38 nm accordingly with the number of SILAR cycles. The material has exhibited direct band gap transition with the band gap values lying in the range between 3.13 and 3.18 eV. The red shift is observed in the absorption edge as the cycles increased. Transmission of the films decreased from 65 to 40% with increasing the number of cycles.

  7. Role of the SiO2 buffer layer thickness in the formation of Si/SiO2/nc-Ge/SiO2 structures by dry oxidation

    International Nuclear Information System (INIS)

    Kling, A.; Ortiz, M.I.; Prieto, A.C.; Rodriguez, A.; Rodriguez, T.; Jimenez, J.; Ballesteros, C.; Soares, J.C.

    2006-01-01

    Nanomemories, containing Ge-nanoparticles in a SiO 2 matrix, can be produced by dry thermal oxidation of a SiGe layer deposited onto a Si-wafer with a barrier SiO 2 layer on its top. Rutherford backscattering spectrometry has been used to characterize the kinetics of the oxidation process, the composition profile of the growing oxide, the Ge-segregation and its diffusion into the barrier oxide in samples with thin and thick barrier oxide layers. The Ge segregated during the oxidation of the SiGe layer diffuses into the barrier oxide. In the first case the diffusion through the thin oxide is enhanced by the proximity of the substrate that acts as a sink for the Ge, resulting in the formation of a low Ge concentration SiGe layer in the surface of the Si-wafer. In the second case, the Ge-diffusion progresses as slowly as in bulk SiO 2 . Since barrier oxide layers as thin as possible are favoured for device fabrication, the structures should be oxidized at lower temperatures and the initial SiGe layer thickness reduced to minimize the Ge-diffusion

  8. Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

    Directory of Open Access Journals (Sweden)

    A. Bargsten

    2010-05-01

    Full Text Available Nitric oxide (NO plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification, that occurs in the uppermost centimeter of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany. We performed laboratory incubation and flushing experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate. Net potential NO fluxes (in terms of mass of N from soil samples taken under different understories ranged from 1.7–9.8 ng m−2 s−1 (soil sampled under grass and moss cover, 55.4–59.3 ng m−2 s−1 (soil sampled under spruce cover, and 43.7–114.6 ng m−2 s−1 (soil sampled under blueberry cover at optimum water content and a soil temperature of 10 °C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level only for NH4+. Therefore, as an alternative explanation for the differences in soil biogenic NO emission we consider more biological factors like understory

  9. Study of buffer layer thickness on bulk heterojunction solar cell.

    Science.gov (United States)

    Noh, Seunguk; Suman, C K; Lee, Donggu; Kim, Seohee; Lee, Changhee

    2010-10-01

    We studied the effect of the buffer layer (molybdenum-oxide (MoO3)) thickness on the performance of organic solar cell based on blends of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester fullerene derivative (PCBM). The thickness of MoO3 was varied from 1 nm to 30 nm for optimization of device performance. The photocurrent-voltage and impedance spectroscopy were measured under dark and AM1.5G solar simulated illumination of 100 mW/cm2 for exploring the role of the buffer layer thickness on carrier collection at an anode. The MoO3 thickness of the optimized device (efficiency approximately 3.7%) was found to be in the range of 5 approximately 10 nm. The short-circuit current and the shunt resistance decrease gradually for thicker MoO3 layer over 5 nm. The device can be modeled as the combination of three RC parallel circuits (each one for the active layer, buffer layer and interface between the buffer layer and the active layer) in series with contact resistance (Rs approximately 60 ohm).

  10. Macular Choroidal Small-Vessel Layer, Sattler's Layer and Haller's Layer Thicknesses: The Beijing Eye Study.

    Science.gov (United States)

    Zhao, Jing; Wang, Ya Xing; Zhang, Qi; Wei, Wen Bin; Xu, Liang; Jonas, Jost B

    2018-03-13

    To study macular choroidal layer thickness, 3187 study participants from the population-based Beijing Eye Study underwent spectral-domain optical coherence tomography with enhanced depth imaging for thickness measurements of the macular small-vessel layer, including the choriocapillaris, medium-sized choroidal vessel layer (Sattler's layer) and large choroidal vessel layer (Haller's layer). In multivariate analysis, greater thickness of all three choroidal layers was associated (all P  0.05) associated with the prevalence of open-angle glaucoma or diabetic retinopathy. There was a tendency (0.07 > P > 0.02) toward thinner choroidal layers in chronic angle-closure glaucoma. The ratio of small-vessel layer thickness to total choroidal thickness increased (P layer and Haller's layer thickness to total choroidal thickness decreased. A higher ratio of small-vessel layer thickness to total choroidal thickness was significantly associated with a lower prevalence of AMD (early type, intermediate type, late geographic type). Axial elongation-associated and aging-associated choroidal thinning affected Haller's and Sattler's layers more markedly than the small-vessel layer. Non-exudative and exudative AMD, except for geographic atrophy, was associated with slightly increased choroidal thickness.

  11. on THICKNESS OF COPPER (|) OXIDE

    African Journals Online (AJOL)

    2006-12-20

    Dec 20, 2006 ... known materials to be used as semiconductor devices. The oxide is. Observed to be an attractive starting material for the production of solar cells for low cost terrestrial conversion of solar energy to electricity. Copper (I) oxide is one Of the earliest known photovoltaic materials and the first in which the ...

  12. Control of Alq3 wetting layer thickness via substrate surface functionalization.

    Science.gov (United States)

    Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J

    2007-06-05

    The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.

  13. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  14. The critical oxide thickness for Pb-free reflow soldering on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C. Key [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China); Assembly Test Global Materials, Intel Microelectronics Asia Ltd, B1, No. 205, Tun-Hwa North Road, 10595 Taipei, Taiwan (China); Chen, Y.J.; Li, C.C. [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China); Kao, C.R., E-mail: crkao@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China)

    2012-06-01

    Oxidation is an undesirable effect of reflow soldering. Non-wetting occurs when the oxide layer grows above the critical thickness. Characterizing the critical oxide thickness for soldering is challenging due to oxide's nano-scale thickness and irregular topographic surface. In this paper, the critical copper oxide thickness was characterized by Time-of-Flight Secondary Ion Mass Spectrometry, Scanning Electron Microscopy, Energy-Dispersive X-ray spectroscopy, and Transmission Electron Microscopy. Copper substrates were coated with an Organic-Solderable-Preservative (OSP) layer and baked at 150 Degree-Sign C and 85% Relative Humidity for different amounts of time. The onset of the non-wetting phenomenon occurred when the oxide thickness reached 18 {+-} 5 nm. As the oxide grew beyond this critical thickness, the percentage of non-wetting solder joint increased exponentially. The growth of the oxide thickness followed a parabolic rate law. The rate constant of oxidation was 0.6 Multiplication-Sign 10{sup -15} cm{sup 2} min{sup -1}. Oxidation resulted from interdiffusion of copper and oxygen atoms through the OSP and oxide layers. The oxidation mechanism will be presented and discussed. - Highlights: Black-Right-Pointing-Pointer Critical oxide thickness for Pb free solder on Cu substrate is 18 {+-} 5 nm. Black-Right-Pointing-Pointer Above the critical oxide, non-wet solder joint increases exponentially. Black-Right-Pointing-Pointer A maximum 13-nm oxide thickness is suggested for good solder joint. Black-Right-Pointing-Pointer Initial growth of oxide thickness is logarithmic and then parabolic after 12 nm. Black-Right-Pointing-Pointer Thick oxide (360-560 nm) is formed as pores shorten the oxidation path.

  15. Quantification of retinal layer thickness changes in acute macular neuroretinopathy

    DEFF Research Database (Denmark)

    Munk, Marion R.; Beck, Marco; Kolb, Simone

    2017-01-01

    Purpose To quantitatively evaluate retinal layer thickness changes in acute macular neuroretinopathy (AMN). Methods AMN areas were identified using near-infrared reflectance (NIR) images. Intraretinal layer segmentation using Heidelberg software was performed. The inbuilt ETDRS -grid was moved on...

  16. Metallic oxide switches using thick film technology

    Science.gov (United States)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  17. Aluminum oxide film thickness and emittance

    International Nuclear Information System (INIS)

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55 degrees C) moderator for about a year. The average moderator temperature was assumed to be 30 degrees C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 μm ± 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 μm ± 11%. Total hemispherical emittance is predicted to be 0.69 at 96 degrees C, decreasing to 0.45 at 600 degrees C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values

  18. Determination of accurate metal silicide layer thickness by RBS

    International Nuclear Information System (INIS)

    Kirchhoff, J.F.; Baumann, S.M.; Evans, C.; Ward, I.; Coveney, P.

    1995-01-01

    Rutherford Backscattering Spectrometry (RBS) is a proven useful analytical tool for determining compositional information of a wide variety of materials. One of the most widely utilized applications of RBS is the study of the composition of metal silicides (MSi x ), also referred to as polycides. A key quantity obtained from an analysis of a metal silicide is the ratio of silicon to metal (Si/M). Although compositional information is very reliable in these applications, determination of metal silicide layer thickness by RBS techniques can differ from true layer thicknesses by more than 40%. The cause of these differences lies in how the densities utilized in the RBS analysis are calculated. The standard RBS analysis software packages calculate layer densities by assuming each element's bulk densities weighted by the fractional atomic presence. This calculation causes large thickness discrepancies in metal silicide thicknesses because most films form into crystal structures with distinct densities. Assuming a constant layer density for a full spectrum of Si/M values for metal silicide samples improves layer thickness determination but ignores the underlying physics of the films. We will present results of RBS determination of the thickness various metal silicide films with a range of Si/M values using a physically accurate model for the calculation of layer densities. The thicknesses are compared to scanning electron microscopy (SEM) cross-section micrographs. We have also developed supporting software that incorporates these calculations into routine analyses. (orig.)

  19. Boosting water oxidation layer-by-layer.

    Science.gov (United States)

    Hidalgo-Acosta, Jonnathan C; Scanlon, Micheál D; Méndez, Manuel A; Amstutz, Véronique; Vrubel, Heron; Opallo, Marcin; Girault, Hubert H

    2016-04-07

    Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(III)/Ir(IV) and Ir(IV)-Ir(IV)/Ir(IV)-Ir(V) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology.

  20. Organic photovoltaic effects depending on CuPc layer thickness

    International Nuclear Information System (INIS)

    Hur, Sung Woo; Kim, Tae Wan; Chung, Dong Hoe; Oh, Hyun Seok; Kim, Chung Hyeok; Lee, Joon Ung; Park, Jong Wook

    2004-01-01

    Organic photovoltaic effects were studied in device structures of ITO/CuPc/Al and ITO/CuPc/C 60 /BCP/Al by varying the CuPc layer thickness. Since the exciton diffusion length is relatively short in organic semiconductors, a study on the thickness-dependent photovoltaic effects is important. The thickness of the CuPc layer was varied from 10 nm to 50 nm. We found that the optimum CuPc layer thickness was around 40 nm from the analysis of the current density-voltage characteristics in an ITO/CuPc/Al photovoltaic cell. The efficiency of the device shows that the multi-layered heterojunction structure is more appropriate for photovoltaic cells.

  1. Effect of layer thickness on the properties of nickel thermal sprayed steel

    Energy Technology Data Exchange (ETDEWEB)

    Nurisna, Zuhri, E-mail: zuhri-nurisna@yahoo.co.id; Triyono,, E-mail: triyonomesin@uns.ac.id; Muhayat, Nurul, E-mail: nurulmuhayat@staff.uns.ac.id; Wijayanta, Agung Tri, E-mail: agungtw@uns.ac.id [Department of Mechanical Engineering, Sebelas Maret University, Jl. Jr. Sutami 36 A, Surakarta (Indonesia)

    2016-03-29

    Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni–5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers were conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.

  2. Contact problems of a rectangular block on an elastic layer of finite thickness: Part II: The thick layer

    NARCIS (Netherlands)

    Alblas, J.B.; Kuipers, M.

    1970-01-01

    We consider a layer of finite thickness loaded in plane strain by a stamp with a straight horizontal base, which is smooth and rigid. The stamp is pressed vertically into the layer and is slightly rotated by an external moment load subsequently. Two cases are considered successively: the lower side

  3. Solid oxide fuel cell cathode with oxygen-reducing layer

    Science.gov (United States)

    Surdoval, Wayne A.; Berry, David A.; Shultz, Travis

    2018-04-03

    The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous film or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.

  4. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  5. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    International Nuclear Information System (INIS)

    Rosikhin, Ahmad; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-01-01

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO 2 in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO 2 layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices

  6. Charge state of oxide layer of SIMOX-structures

    CERN Document Server

    Askinazi, A Y; Dmitriev, V A; Miloglyadova, L V

    2001-01-01

    The charge state of the oxide layer of the SIMOX-structures, obtained in the course of forming the oxide layers, bricked up in the silicon volume, through the oxygen ions implantation into the Si, is studied. The charge state of the given structures is studied through the method of the layer-by-layer profiling, which makes it possible to obtain the dependence of the plane zones potential on the oxide layer thickness. It is established, that during the process of the SIMOX-structures formation in the oxide layer near the boundary with the Si there appear defects, responsible for the charge. The radiation from the near-the-ultraviolet (NUV) area without the applied electric field neutralizes the given charge. The simultaneous impact of the NUV-radiation and electric field leads to the formation of significantly positive charge

  7. The thickness of the HI gas layer in spiral galaxies

    NARCIS (Netherlands)

    Sicking, Floris Jan

    1997-01-01

    In the present study, in two inclined spiral galaxies, NGC 3198 and NGC 2403, the HI random velocity dispersion and layer thickness will be measured simultaneously. This will be done from the HI velocity dispersion field (the distribution on the sky of the observed HI line of sight velocity

  8. Localization in superlattices with randomness in layer thickness

    International Nuclear Information System (INIS)

    Yuan Jian; Tsai Chienhua.

    1987-08-01

    The localization length for electrons in superlattices with randomness in layer thickness is studied in both the commensurate and the incommensurate cases. It is demonstrated that disorder limits the electrons to see only structures within the extent of their wave functions and to be hardly effected by any long range correlation. (author). 4 refs, 6 figs

  9. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    International Nuclear Information System (INIS)

    Gao, Xu; Mao, Bao-Hua; Wang, Sui-Dong; Lin, Meng-Fang; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Tsukagoshi, Kazuhito; Nabatame, Toshihide; Liu, Zhi

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O 2 /air. The device with a thick IGZO layer shows similar electron mobility in O 2 /air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O 2 /air due to the electron transfer to adsorbed gas molecules. The O 2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results. (paper)

  10. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Youngseok Lee

    2012-01-01

    Full Text Available It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0 which improves the efficiency of HIT solar cell. The ultrathin thermal passivation silicon oxide (SiO2 layer was deposited by RTO system in the temperature range 500–950°C for 2 to 6 minutes. The thickness of the silicon oxide layer was affected by RTO annealing temperature and treatment time. The best value of surface recombination velocity was recorded for the sample treated at a temperature of 850°C for 6 minutes at O2 flow rate of 3 Lpm. A surface recombination velocity below 25 cm/s was obtained for the silicon oxide layer of 4 nm thickness. This ultrathin SiO2 layer was employed for the fabrication of HIT solar cell structure instead of a-Si:H, (i layer and the passivation and tunneling effects of the silicon oxide layer were exploited. The photocurrent was decreased with the increase of illumination intensity and SiO2 thickness.

  11. Effect of layer thickness on the thermal release from Be-D co-deposited layers

    Science.gov (United States)

    Baldwin, M. J.; Doerner, R. P.

    2014-08-01

    The results of previous work (Baldwin et al 2013 J. Nucl. Mater. 438 S967-70 and Baldwin et al 2014 Nucl. Fusion 54 073005) are extended to explore the influence of layer thickness on the thermal D2 release from co-deposited Be-(0.05)D layers produced at ˜323 K. Bake desorption of layers of thickness 0.2-0.7 µm are explored with a view to examine the influence of layer thickness on the efficacy of the proposed ITER bake procedure, to be carried out at the fixed temperatures of 513 K on the first wall and 623 K in the divertor. The results of experiment and modelling with the TMAP-7 hydrogen transport code, show that thicker Be-D co-deposited layers are relatively more difficult to desorb (time-wise) than thinner layers with the same concentrations of intrinsic traps and retained hydrogen isotope fraction.

  12. Optimal thickness of hole transport layer in doped OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.C.; Zhou, J.; Zhao, J.M.; Zhang, S.T.; Zhan, Y.Q.; Wang, X.Z.; Wu, Y.; Ding, X.M.; Hou, X.Y. [Fudan University, Surface Physics Laboratory (National Key Laboratory), Shanghai (China)

    2006-06-15

    Current-voltage (I-V) and electroluminescence (EL) characteristics of organic light-emitting devices with N,N'-Di-[(1-naphthalenyl)-N,N'-diphenyl]-(1,1'-biphenyl)-4,4'-diamine (NPB) of various thicknesses as the hole transport layer, and tris(8-hydroxyquinoline)aluminum (Alq{sub 3}) selectively doped with 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) as the electron transport layer, have been investigated. A trapped charge induced band bend model is proposed to explain the I-V characteristics. It is suggested that space charge changes the injection barrier and therefore influences the electron injection process in addition to the carrier transport process. Enhanced external quantum efficiency of the devices due to the electron blocking effect of an inserted NPB layer is observed. The optimal thickness of the NPB layer is experimentally determined to be 12{+-}3 nm in doped devices, a value different from that for undoped devices, which is attributed to the electron trap effect of DCM molecules. This is consistent with the result that the proportion of Alq{sub 3} luminescence in the total electroluminescence (EL) spectra increases with NPB thickness up to 12 nm under a fixed bias. (orig.)

  13. Layer thickness measurement using the X-ray fluorescence principle

    International Nuclear Information System (INIS)

    Mengelkamp, B.

    1980-01-01

    Curium 244 having a gamma energy of about 15.5 keV is used as excitation emitter for contactless and continuous measuring of the thickness of metallic layers on iron strip. Soft gamma radiation is absorbed in matter according to the photo effect, so that X-ray fluorescence radiation is generated in the matter, which depends on the element and is radiated to all sides. For instance, it amounts for iron 6.4 keV and is measured with a specific ionisation chamber for this energy range. With increasing atomic number of the elements, the energy of fluorescence radiation increases and hence also the emission signal of the detector. The prerequisite for a usable measuring effect is an element distance of at least two and the thickness of the layer to be measured being in an optimum range. A signal dependent on the thickness of the layer is produced either by absorption of iron radiation (absorption method - aluminium and tin) or by build-up radiation of the material of the layer (emission method - zinc and lead). (orig./GSCH) [de

  14. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  15. Direct comparison of the electrical properties in metal/oxide/nitride/oxide/silicon and metal/aluminum oxide/nitride/oxide/silicon capacitors with equivalent oxide thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    An, Ho-Myoung; Seo, Yu Jeong; Kim, Hee Dong; Kim, Kyoung Chan; Kim, Jong-Guk [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Won-Ju; Koh, Jung-Hyuk [Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Sung, Yun Mo [Department of Materials and Science Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.k [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2009-07-31

    We examine the electrical properties of metal/oxide/nitride/oxide/silicon (MONOS) capacitors with two different blocking oxides, SiO{sub 2} and Al{sub 2}O{sub 3}, under the influence of the same electric field. The thickness of the Al{sub 2}O{sub 3} layer is set to 150 A, which is electrically equivalent to a thickness of the SiO{sub 2} layer of 65 A, in the MONOS structure for this purpose. The capacitor with the Al{sub 2}O{sub 3} blocking layer shows a larger capacitance-voltage memory window of 8.6 V, lower program voltage of 7 V, faster program/erase speeds of 10 ms/1 {mu}s, lower leakage current of 100 pA and longer data retention than the one with the SiO{sub 2} blocking layer does. These improvements are attributed to the suppression of the carrier transport to the gate electrode afforded by the use of an Al{sub 2}O{sub 3} blocking layer physically thicker than the SiO{sub 2} one, as well as the effective charge-trapping by Al{sub 2}O{sub 3} at the deep energy levels in the nitride layer.

  16. Thickness optimization of the ZnO based TCO layer in a CZTSSe solar cell. Evolution of its performance with thickness when external temperature changes.

    Science.gov (United States)

    Chadel, Meriem; Moustafa Bouzaki, Mohammed; Chadel, Asma; Aillerie, Michel; Benyoucef, Boumediene

    2017-07-01

    The influence of the thickness of a Zinc Oxide (ZnO) transparent conductive oxide (TCO) layer on the performance of the CZTSSe solar cell is shown in detail. In a photovoltaic cell, the thickness of each layer largely influence the performance of the solar cell and optimization of each layer constitutes a complete work. Here, using the Solar Cell Capacitance Simulation (SCAPS) software, we present simulation results obtained in the analyze of the influence of the TCO layer thickness on the performance of a CZTSSe solar cell, starting from performance of a CZTSSe solar cell commercialized in 2014 with an initial efficiency equal to 12.6%. In simulation, the temperature was considered as a functioning parameter and the evolution of tthe performance of the cell for various thickness of the TCO layer when the external temperature changes is simulated and discussed. The best efficiency of the solar cell based in CZTSSe is obtained with a ZnO thickness equal to 50 nm and low temperature. Based on the considered marketed cell, we show a technological possible increase of the global efficiency achieving 13% by optimization of ZnO based TCO layer.

  17. Determination of oxide film thickness on aluminium using 14-MeV neutron activation and BET method

    International Nuclear Information System (INIS)

    Foerster, H.

    1983-01-01

    A new method is described for the determination of the mean film thickness of aluminium oxides by 14-MeV neutron activation analysis of the oxygen and by BET measurement of the surface area. The mean film thickness obtained is independent of the surface roughness. Stable oxide films consisting of only a few atomic layers of oxygen are detected on aluminium. (author)

  18. Effect of Thickness on Oxidation Behavior of Cr coated Zircaloy-4 using Arc Ion Plating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Jung; Kim, Sun Jin [Hanyang University, Seoul (Korea, Republic of); Park, Jung Hwan; Kim, Hyun Gil; Jung, Yang Il; Park, Dong Jun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Ever since the Fukushima accident, accident tolerant fuel (ATF) has been widely studied. To increase the life time and safety of nuclear claddings, there are increasing demands for protective coatings exhibiting excellent oxidation resistance. Many metal and oxide films are produced by using this method because of the high kinetic energy of the ions, ionization efficiency and deposition rate. Candidate materials for a protective layer have higher thermal neutron absorption cross sections than Zr. However, there is no systematic study of thickness effect on oxidation resistance of protective layer. In this study, Cr films with different thickness (from 1 μm to 50 μm) were deposited on the cladding surfaces by AIP. The high temperature oxidation resistance of Cr films with different thicknesses has been investigated. Uniform oxide layer with nanoporous structures have been fabricated on the surface of Zr-Nb-Sn alloy. Oxidation behavior of the pristine Zr-Nb-Sn alloy and the Zr-Nb-Sn alloy with nanostructured oxide layer evaluated by measuring weight gain (TGA).

  19. On the Explicit Expression for Plasma Layer Thickness

    CERN Document Server

    Sharma, R K

    2004-01-01

    The marginal zone theory is used to account for the observed Fahreus Linquist effect when the viscoity of blood changes with the diameter of the capillary. An attributable cause is the axial accumulation of cells. The discharge rate from Hagen Poiseulle law at steady state was derived by Haynes (1960) for the core and plasma layer and a total discharge rate was expressed as a function of the pressure drop along the capillary, quartic dependence on the radius of the capillary and quartic dependence on the dimensionless marginal zone thickness. The apparent of viscosity of the blood is expressed as a function of the ratio of the core layer viscosity and the plasma layer viscosity. In order to back out a marginal zone thickness from a given set of information, the Charm and Kurland expression (1974) for the viscosity and hematocrit variation and the temperature dependence parameter of the hematocrit alpha can be used to develop two transcendental equations and two un! knowns. This is the recommended procedure us...

  20. On a Explicit Expresion for Plasma Layer Thickness

    CERN Document Server

    Sharma, R K

    2004-01-01

    The marginal zone theory is used to account for the observed Fahreus Linquist effect when the viscoity of blood changes with the diameter of the capillary. An attributable cause is the axial accumulation of cells. The discharge rate from Hagen Poiseulle law at steady state was derived by Haynes (1960) for the core and plasma layer and a total discharge rate was expressed as a function of the pressure drop along the capillary, quartic dependence on the radius of the capillary and quartic dependence on the dimensionless marginal zone thickness. The apparent of viscosity of the blood is expressed as a function of the ratio of the core layer viscosity and the plasma layer viscosity. In order to back out a marginal zone thickness from a given set of information, the Charm and Kurland expression (1974) for the viscosity and hematocrit variation and the temperature dependence parameter of the hematocrit alpha can be used to develop two transcendental equations and two un! knowns. This is the recommended procedure us...

  1. Role of experimental resolution in measurements of critical layer thickness for strained-layer epitaxy

    International Nuclear Information System (INIS)

    Fritz, I.J.

    1987-01-01

    Experimental measurements of critical layer thicknesses (CLT's) in strained-layer epitaxy are considered. Finite experimental resolution can have a major effect on measured CLT's and can easily lead to spurious results. The theoretical approach to critical layer thicknesses of J. W. Matthews [J. Vac. Sci. Technol. 12, 126 (1975)] has been modified in a straightforward way to predict the apparent critical thickness for an experiment with finite resolution in lattice parameter. The theory has also been modified to account for the general empirical result that fewer misfit dislocations are generated than predicted by equilibrium calculation. The resulting expression is fit to recent x-ray diffraction data on InGaAs/GaAs and SiGe/Si. The results suggest that CLT's in these systems may not be significantly larger than predicted by equilibrium theory, in agreement with high-resolution measurements

  2. Effect of layer thickness on the thermal release from Be–D co-deposited layers

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.

    2014-01-01

    The results of previous work (Baldwin et al 2013 J. Nucl. Mater. 438 S967–70 and Baldwin et al 2014 Nucl. Fusion 54 073005) are extended to explore the influence of layer thickness on the thermal D 2 release from co-deposited Be–(0.05)D layers produced at ∼323 K. Bake desorption of layers of thickness 0.2–0.7 µm are explored with a view to examine the influence of layer thickness on the efficacy of the proposed ITER bake procedure, to be carried out at the fixed temperatures of 513 K on the first wall and 623 K in the divertor. The results of experiment and modelling with the TMAP-7 hydrogen transport code, show that thicker Be–D co-deposited layers are relatively more difficult to desorb (time-wise) than thinner layers with the same concentrations of intrinsic traps and retained hydrogen isotope fraction. (paper)

  3. CoFe Layers Thickness and Annealing Effect on the Magnetic Behavior of the CoFe/Cu Multilayer Nanowires

    Directory of Open Access Journals (Sweden)

    M. Ahmadzadeh

    2015-04-01

    Full Text Available CoFe/Cu multilayer nanowires were electrodeposited into anodic aluminum oxide templates prepared by a two-step mild anodization method, using the single-bath technique. Nanowires with 30 nm diameter and the definite lengths were obtained. The effect of CoFe layers thickness and annealing on the magnetic behavior of the multilayer nanowires was investigated. The layers thickness was controlled through the pulses numbers: 200, 260, 310,360 and 410 pulses were used to deposit the CoFe layers, while 300 pulse for the Cu layers. A certain increase in coercivity and squareness of CoFe/Cu multilayer nanowires observed with increasing the CoFe layer thickness and annealing improved the coercivity and decrease squareness of CoFe/Cu multilayer nanowires. First order reversal curves after annealed showed amount domains with soft magnetic phase, it also shows decreasing spreading of distribution function along the Hu axis after annealed

  4. Impact of oxide thickness on gate capacitance – Modelling and ...

    Indian Academy of Sciences (India)

    Department of Electronics and Communication Engineering, National ... conventional HEMT, Schottky barrier diode is formed at the gate electrode. .... term corresponds to the energy required for the electric field in the oxide layer and the.

  5. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.

    Science.gov (United States)

    Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur

    2018-03-01

    Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework

  6. Effect of the Ti-Nanolayer Thickness on the Self-Lift-off of Thick GaN Epitaxial Layers

    International Nuclear Information System (INIS)

    Yugov, A. A.; Malahov, S. S.; Donskov, A. A.; Duhnovskii, M. P.; Knyazev, S. N.; Kozlova, Yu. P.; Yugova, T. G.; Belogorokhov, I. A.

    2016-01-01

    The effect of the type of substrate, sapphire substrate (c- and r-orientation) or GaN/Al_2O_3 template (c- and r-orientations), on the nitridation of an amorphous titanium nanolayer is shown. The effect of the titanium-nanolayer thickness on thick GaN epitaxial layer self-separation from the substrate is revealed. The titanium-nanolayer thickness at which thick GaN layer is reproducibly self-separated is within 20–40 nm.

  7. Thickness and composition of ultrathin SiO2 layers on Si

    International Nuclear Information System (INIS)

    Marel, C. van der; Verheijen, M.A.; Tamminga, Y.; Pijnenburg, R.H.W.; Tombros, N.; Cubaynes, F.

    2004-01-01

    Ultrathin SiO 2 layers are of importance for the semiconductor industry. One of the techniques that can be used to determine the chemical composition and thickness of this type of layers is x-ray photoelectron spectroscopy (XPS). As shown by Seah and Spencer [Surf. Interface Anal. 33, 640 (2002)], it is not trivial to characterize this type of layer by means of XPS in a reliable way. We have investigated a series of ultrathin layers of SiO 2 on Si (in the range from 0.3 to 3 nm) using XPS. The samples were also analyzed by means of transmission electron microscopy (TEM), Rutherford backscattering (RBS), and ellipsometry. The thickness of the SiO 2 layers (d) was determined from the XPS results using three different approaches: the 'standard' equation (Seah and Spencer) for d, an overlayer-substrate model calculation, and the QUASES-Tougaard [Surf. Interface Anal. 26, 249 (1998), QUASES-Tougaard: Software package for Quantitative Analysis of Surfaces by Electron Spectroscopy, version 4.4 (2000); http://www.quases.com] method. Good agreement was obtained between the results of XPS analyses using the 'standard' equation, the overlayer-substrate model calculation, and RBS results. The QUASES-Tougaard results were approximately 62% above the other XPS results. The optical values for the thickness were always slightly higher than the thickness according to XPS or RBS. Using the model calculation, these (relatively small) deviations from the optical results could be explained as being a consequence of surface contaminations with hydrocarbons. For a thickness above 2.5 nm, the TEM results were in good agreement with the results obtained from the other techniques (apart from QUASES-Tougaard). Below 2.5 nm, significant deviations were found between RBS, XPS, and optical data on the one hand and TEM results on the other hand; the deviations became larger as the thickness of the SiO 2 decreased. This effect may be related to interface states of oxygen, which have been

  8. Growth and characterization of oxide layers on zirconium alloys

    International Nuclear Information System (INIS)

    Maroto, A.J.G.; Bordoni, R.; Villegas, M.; Olmedo, A.M.; Blesa, M.A.; Iglesias, A.; Koenig, P.

    1996-01-01

    In the range 265-435 C Zr-2.5Nb corrosion takes place in two stages, as opposed to the cyclic behaviour of Zry-4. The Zry-4 corrosion stages are described by a single equation, in terms of the dense oxide layer thickness that decreases sharply at each transition. Tetragonal zirconia is present in the oxide layers of both alloys. In Zry-4, its volume fraction decreases as the oxide grows; it is barely discernible in Zr-2.5Nb in films below 1 μm, to later increase up to the transition. In both alloys, compressive stresses are developed associated with the oxide growth. Their relaxation at the transition correlates with the transformation of ZrO 2 (t) to ZrO 2 (m) and with the decrease of the dense oxide layer. In Zr-2.5Nb, oxide ridges form on the β-Zr phase filaments, at the very onset of film growth. The cyclic behaviour associated with the periodical breakdown of the dense oxide layer is therefore blurred, although optical microscopy shows that the scale retains the multilayered structure typical of Zry-4. (orig.)

  9. The measurement of layer thickness by the deconvolution of ultrasonic signals

    International Nuclear Information System (INIS)

    McIntyre, P.J.

    1977-07-01

    An ultrasonic technique for measuring layer thickness, such as oxide on corroded steel, is described. A time domain response function is extracted from an ultrasonic signal reflected from the layered system. This signal is the convolution of the input signal with the response function of the layer. By using a signal reflected from a non-layered surface to represent the input, the response function may be obtained by deconvolution. The advantage of this technique over that described by Haines and Bel (1975) is that the quality of the results obtained using their method depends on the ability of a skilled operator in lining up an arbitrary common feature of the signals received. Using deconvolution no operator manipulations are necessary and so less highly trained personnel may successfully make the measurements. Results are presented for layers of araldite on aluminium and magnetite of steel. The results agreed satisfactorily with predictions but in the case of magnetite, its high velocity of sound meant that thicknesses of less than 250 microns were difficult to measure accurately. (author)

  10. Evaluation of retinal nerve fiber layer thickness and choroidal thickness in pseudoexfoliative glaucoma and pseudoexfoliative syndrome.

    Science.gov (United States)

    Ozge, Gokhan; Koylu, Mehmet Talay; Mumcuoglu, Tarkan; Gundogan, Fatih Cakir; Ozgonul, Cem; Ayyildiz, Onder; Kucukevcilioglu, Murat

    2016-05-01

    To compare retinal nerve fiber layer thickness (RNFLT) and choroidal thickness (ChT) measurements in eyes with pseudoexfoliative (PEX) glaucoma, PEX syndrome and healthy control eyes. Eighteen patients with PEX glaucoma in one eye and PEX syndrome in the fellow eye were included. The right eyes of thirty-nine age- and sex-matched healthy subjects were included as control group. All participants underwent a detailed biomicroscopic and funduscopic examination. RNFLT and ChT measurements were performed with a commercially available spectral-domain optical coherence tomography (SD-OCT). ChT measurements were performed by using enhanced depth imaging (EDI) mode. Patients with PEX underwent diurnal IOP measurements with 4-hour intervals before inclusion in the study. RNFLT results included the average measurement and 6 quadrants (temporal, inferotemporal, inferonasal, nasal, superonasal and supero-temporal). ChT measurements were performed in the subfoveal region and around the fovea (500µm and 1500 µm nasal and temporal to the fovea), as well as around the optic disc (average peripapillary and eight quadrants in the peripapillary region (temporal, inferotemporal, inferior, inferonasal, nasal, superonasal, superior, supero-temporal)). RNFLT in all quadrants and average thickness were significantly lower in PEX glaucoma eyes compared to PEX syndrome eyes and healthy control eyes (p0.05) except the inferotemporal quadrant. ChT measurements were similar between groups (p>0.05). Thinning of the RNFL in association with unchanged ChT may mean that the presence of PEX material is a much more significant risk factor than choroidal changes in the progression of PEX syndrome to PEX glaucoma.

  11. Rapid optical determination of topological insulator nanoplate thickness and oxidation

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2017-01-01

    Full Text Available The stability of 2D antimony telluride (Sb2Te3 nanoplates in ambient conditions is elucidated. These materials exhibit an anisotropic oxidation mode, and CVD synthesized samples oxidize at a much faster rate than exfoliated samples investigated in previous studies. Optical measurement techniques are introduced to rapidly measure the oxidation modes and thickness of 2D materials. Auger characterization were conducted to confirm that oxygen replaces tellurium as opposed to antimony under ambient conditions. No surface morphology evolution was detected in AFM before and after exposure to air. These techniques were employed to determine the origin of the thickness dependent color change effect in Sb2Te3. It is concluded that this effect is a combination of refractive index change due to oxidation and Fresnel effects.

  12. The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction.

    Science.gov (United States)

    Kwon, Sangku; Lee, Kyung Eun; Lee, Hyunsoo; Koh, Sang Joon; Ko, Jae-Hyeon; Kim, Yong-Hyun; Kim, Sang Ouk; Park, Jeong Young

    2018-01-18

    The tribological properties of two-dimensional (2D) atomic layers are quite different from three-dimensional continuum materials because of the unique mechanical responses of 2D layers. It is known that friction on graphene shows a remarkable decreasing behavior as the number of layers increases, which is caused by the puckering effect. On other graphene derivatives, such as graphene oxide (GO) or reduced graphene oxide (rGO), the thickness dependence of friction is important because of the possibilities for technical applications. In this report, we demonstrate unexpected layer-dependent friction behavior on GO and rGO layers. Friction force microscopy measurements show that nanoscale friction on GO does not depend on the number of layers; however, after reduction, friction on rGO shows an inverse thickness dependence compared with pristine graphene. We show that the friction on rGO is higher than that on SiO 2 at low load, and that an interesting crossover behavior at higher load occurs because of the lower friction coefficient and higher adhesion of the rGO. We provide a relevant interpretation that explains the effect of thickness and chemical reduction on nanoscale friction.

  13. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  14. Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors.

    Science.gov (United States)

    Wang, Lei; Wang, Dong; Dong, Xin Yi; Zhang, Zhi Jun; Pei, Xian Feng; Chen, Xin Jiang; Chen, Biao; Jin, Jian

    2011-03-28

    An innovative strategy of fabricating electrode material by layered assembling two kinds of one-atom-thick sheets, carboxylated graphene oxide (GO) and Co-Al layered double hydroxide nanosheet (Co-Al LDH-NS) for the application as a pseudocapacitor is reported. The Co-Al LDH-NS/GO composite exhibits good energy storage properties.

  15. Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness

    Science.gov (United States)

    Wang, Mengyu; Elze, Tobias; Li, Dian; Baniasadi, Neda; Wirkner, Kerstin; Kirsten, Toralf; Thiery, Joachim; Loeffler, Markus; Engel, Christoph; Rauscher, Franziska G.

    2017-12-01

    Optical coherence tomography (OCT) manufacturers graphically present circumpapillary retinal nerve fiber layer thickness (cpRNFLT) together with normative limits to support clinicians in diagnosing ophthalmic diseases. The impact of age on cpRNFLT is typically implemented by linear models. cpRNFLT is strongly location-specific, whereas previously published norms are typically restricted to coarse sectors and based on small populations. Furthermore, OCT devices neglect impacts of lens or eye size on the diameter of the cpRNFLT scan circle so that the diameter substantially varies over different eyes. We investigate the impact of age and scan diameter reported by Spectralis spectral-domain OCT on cpRNFLT in 5646 subjects with healthy eyes. We provide cpRNFLT by age and diameter at 768 angular locations. Age/diameter were significantly related to cpRNFLT on 89%/92% of the circle, respectively (pointwise linear regression), and to shifts in cpRNFLT peak locations. For subjects from age 42.1 onward but not below, increasing age significantly decreased scan diameter (r=-0.28, p<0.001), which suggests that pathological cpRNFLT thinning over time may be underestimated in elderly compared to younger subjects, as scan diameter decrease correlated with cpRNFLT increase. Our detailed numerical results may help to generate various correction models to improve diagnosing and monitoring optic neuropathies.

  16. Oxide thickness measurement for monitoring fuel performance at high burnup

    International Nuclear Information System (INIS)

    Jaeger, M.A.; Van Swam, L.F.P.; Brueck-Neufeld, K.

    1991-01-01

    For on-site monitoring of the fuel performance at high burnup, Advanced Nuclear Fuels uses the linear scan eddy current method to determine the oxide thickness of irradiated Zircaloy fuel cans. Direct digital data acquisition methods are employed to collect the data on magnetic storage media. This field-proven methodology allows oxide thickness measurements and rapid interpretation of the data during the reactor outages and makes it possible to immediately reinsert the assemblies for the next operating cycle. The accuracy of the poolside measurements and data acquisition/interpretation techniques have been verified through hot cell metallographic measurements of rods previously measured in the fuel pool. The accumulated data provide a valuable database against which oxide growth models have been benchmarked and allow for effective monitoring of fuel performance. (orig.) [de

  17. Effect of boundary layer thickness on the flow characteristics around a rectangular prism

    International Nuclear Information System (INIS)

    Ji, Ho Seong; Kim, Kyung Chun

    2001-01-01

    Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers (thick, medium and thin) were generated in the atmospheric boundary layer wind tunnel at Pusan National University. The thick boundary layer having 670mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer(δ=270mm) was the natural turbulent boundary layer at the test section with fully long developing length(18m). The thin boundary layer with 36.5mm thickness was generated by on a smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity and the height of the model was 7.9X10 3 . The mean velocity vector fields and turbulent kinetic energy distribution were measured and compared. The effect of boundary layer thickness is clearly observed not only in the length of separation bubble but also in the reattachment points. The thinner boundary layer thickness, the higher turbulent kinetic energy peak around the model roof. It is strongly recommended that the height ratio between model and approaching boundary layer thickness should be a major parameter

  18. Magnetic and magnetoresistance studies of nanometric electrodeposited Co films and Co/Cu layered structures: Influence of magnetic layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Zsurzsa, S., E-mail: zsurzsa.sandor@wigner.mta.hu; Péter, L.; Kiss, L.F.; Bakonyi, I.

    2017-01-01

    The magnetic properties and the magnetoresistance behavior were investigated for electrodeposited nanoscale Co films, Co/Cu/Co sandwiches and Co/Cu multilayers with individual Co layer thicknesses ranging from 1 nm to 20 nm. The measured saturation magnetization values confirmed that the nominal and actual layer thicknesses are in fairly good agreement. All three types of layered structure exhibited anisotropic magnetoresistance for thick magnetic layers whereas the Co/Cu/Co sandwiches and Co/Cu multilayers with thinner magnetic layers exhibited giant magnetoresistance (GMR), the GMR magnitude being the largest for the thinnest Co layers. The decreasing values of the relative remanence and the coercive field when reducing the Co layer thickness down to below about 3 nm indicated the presence of superparamagnetic (SPM) regions in the magnetic layers which could be more firmly evidenced for these samples by a decomposition of the magnetoresistance vs. field curves into a ferromagnetic and an SPM contribution. For thicker magnetic layers, the dependence of the coercivity (H{sub c}) on magnetic layer thickness (d) could be described for each of the layered structure types by the usual equation H{sub c}=H{sub co}+a/d{sup n} with an exponent around n=1. The common value of n suggests a similar mechanism for the magnetization reversal by domain wall motion in all three structure types and hints also at the absence of coupling between magnetic layers in the Co/Cu/Co sandwiches and Co/Cu multilayers. - Highlights: • Electrodeposited nanoscale Co films and Co/Cu layered structures. • Co layer thickness (d) dependence of coercivity (H{sub c}) and magnetoresistance. • H{sub c} depends on Co layer thickness according to H{sub c}=H{sub co}+a/d{sup n} with n around 1. • The common n value suggests a similar mechanism of magnetization reversal. • The common n value suggests the absence of coupling between magnetic layers.

  19. Experimental study on effects of inlet boundary layer thickness and boundary layer fence in a turbine cascade

    International Nuclear Information System (INIS)

    Jun, Y. M.; Chung, J. T.

    2000-01-01

    The working fluid from the combustor to the turbine stage of a gas turbine makes various boundary layer thickness. Since the inlet boundary layer thickness is one of the important factors that affect the turbine efficiency, It is necessary to investigate secondary flow and loss with various boundary layer thickness conditions. In the present study, the effect of various inlet boundary layer thickness on secondary flow and loss and the proper height of the boundary layer fences for various boundary layer thickness were investigated. Measurements of secondary flow velocity and total pressure loss within and downstream of the passage were taken under 5 boundary layer thickness conditions, 16, 36, 52, 69, 110mm. It was found that total pressure loss and secondary flow areas were increased with increase of thickness but they were maintained almost at the same position. At the following research about the boundary layer fences, 1/6, 1/3, 1/2 of each inlet boundary layer thickness and 12mm were used as the fence heights. As a result, it was observed that the proper height of the fences was generally constant since the passage vortex remained almost at the same position. Therefore once the geometry of a cascade is decided, the location of the passage vortex and the proper fence height are appeared to be determined at the same time. When the inlet boundary layer thickness is relatively small, the loss caused by the proper fence becomes bigger than end wall loss so that it dominates secondary loss. In these cases the proper fence height is decided not by the cascade geometry but by the inlet boundary layer thickness as previous investigations

  20. Mass transfer model for two-layer TBP oxidation reactions

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development

  1. Preparation and properties of thick not intentionally doped GaInP(As)/GaAs layers

    CERN Document Server

    Nohavica, D; Zdansky, K

    1999-01-01

    We report on liquid-phase epitaxial growth of thick layers of GaInP(As), lattice matched to GaAs. Layers with thicknesses up to 10 mu m were prepared in a multi-melt bin, step-cooling, one-phase configuration. Unintentionally doped layers, grown from moderate purity starting materials, show a significant decrease in the residual impurity level when erbium is added to the melt. Fundamental electrical and optical properties of the layers were investigated. (author)

  2. Role of atomic layer deposited aluminum oxide as oxidation barrier for silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentino, Giuseppe, E-mail: g.fiorentino@tudelft.nl; Morana, Bruno [Department of Microelectronic, Delft University of Technology, Feldmannweg 17, 2628 CT Delft (Netherlands); Forte, Salvatore [Department of Electronic, University of Naples Federico II, Piazzale Tecchio, 80125 Napoli (Italy); Sarro, Pasqualina Maria [Department of Microelectronic, Delft University of Technology, Feldmannweg 17, 2628 CT, Delft (Netherlands)

    2015-01-15

    In this paper, the authors study the protective effect against oxidation of a thin layer of atomic layer deposited (ALD) aluminum oxide (Al{sub 2}O{sub 3}). Nitrogen doped silicon carbide (poly-SiC:N) based microheaters coated with ALD Al{sub 2}O{sub 3} are used as test structure to investigate the barrier effect of the alumina layers to oxygen and water vapor at very high temperature (up to 1000 °C). Different device sets have been fabricated changing the doping levels, to evaluate possible interaction between the dopants and the alumina layer. The as-deposited alumina layer morphology has been evaluated by means of AFM analysis and compared to an annealed sample (8 h at 1000 °C) to estimate the change in the grain structure and the film density. The coated microheaters are subjected to very long oxidation time in dry and wet environment (up to 8 h at 900 and 1000 °C). By evaluating the electrical resistance variation between uncoated reference devices and the ALD coated devices, the oxide growth on the SiC is estimated. The results show that the ALD alumina coating completely prevents the oxidation of the SiC up to 900 °C in wet environment, while an oxide thickness reduction of 50% is observed at 1000 °C compared to uncoated devices.

  3. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    Science.gov (United States)

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-07

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

  4. Effect of duration and severity of migraine on retinal nerve fiber layer, ganglion cell layer, and choroidal thickness.

    Science.gov (United States)

    Abdellatif, Mona K; Fouad, Mohamed M

    2018-03-01

    To investigate the factors in migraine that have the highest significance on retinal and choroidal layers' thickness. Ninety patients with migraine and 40 age-matched healthy participants were enrolled in this observational, cross-sectional study. After full ophthalmological examination, spectral domain-optical coherence tomography was done for all patients measuring the thickness of ganglion cell layer and retinal nerve fiber layer. Enhanced depth imaging technique was used to measure the choroidal thickness. There was significant thinning in the superior and inferior ganglion cell layers, all retinal nerve fiber layer quadrants, and all choroidal quadrants (except for the central subfield) in migraineurs compared to controls. The duration of migraine was significantly correlated with ganglion cell layer, retinal nerve fiber layer, and all choroidal quadrants, while the severity of migraine was significantly correlated with ganglion cell layer and retinal nerve fiber layer only. Multiregression analysis showed that the duration of migraine is the most important determinant factor of the superior retinal nerve fiber layer quadrant (β = -0.375, p = 0.001) and in all the choroidal quadrants (β = -0.531, -0.692, -0.503, -0.461, -0.564, respectively, p  layer quadrants (β = -0.256, -0.335, -0.308; p  = 0.036, 0.005, 0.009, respectively) and the inferior ganglion cell layer hemisphere (β = -0.377 and p = 0.001). Ganglion cell layer, retinal nerve fiber layer, and choroidal thickness are significantly thinner in patients with migraine. The severity of migraine has more significant influence in the thinning of ganglion cell layer and retinal nerve fiber layer, while the duration of the disease affected the choroidal thickness more.

  5. The effect of the gas factor on selecting the thickness of a layer during two-layer getting of thick seams. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Varekha, Zh P; Kurkin, A S; Vechera, V N

    1979-01-01

    For technico-economic verification of the selection of the efficient removed thickness of upper and lower layers under conditions of high gas abundance of seams, the KNIUI has developed an economic model of converted costs within a getting field, allowing for natural and technical factors. The calculation considers specific costs for stoping work when getting the upper and lower layers, digging and maintenance of development workings, coal transport, assembly-disassembly work, ventilation, labor costs, degassing, etc. The calculation dependences and nomogram obtained enable comparatively easy definition of efficient thicknesses of removed layers when designing stoping work at thick, gently sloping seams, as well as calculation converted costs using as the initial data the total thickness of the seam, its natural gas content, and the expected degree of preliminary degassing.

  6. Improved adhesion of metal oxide layer

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to: a method of preparing a coating ink for forming a zinc oxide layer, which method comprises the steps of: a) mixing zinc acetate and AlOH (OAc)2 in water or methanol and b) filtering out solids; a coating ink comprising zinc acetate and AlOH (OAc)2 in aqueous or m...

  7. Investigation of Top/Bottom electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Thomsen, Erik Vilain

    2008-01-01

    Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(ZrxTi1 - x)O3 (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process...... with a line width down to 3 μ m. A 700 nm thick ZrO2 layer as insolating diffusion barrier layer is found to be insufficient as barrier layer for PZT on a silicon substrate sintered at 850°C. EDX shows diffusion of Si into the PZT layer....

  8. The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules

    International Nuclear Information System (INIS)

    Mizoshiri, Mizue; Mikami, Masashi; Ozaki, Kimihiro

    2013-01-01

    The effect of Cr buffer layer thickness on the open-circuit voltage generated by thin-film thermoelectric modules of Bi 0.5 Sb 1.5 Te 3 (p-type) and Bi 2 Te 2.7 Se 0.3 (n-type) materials was investigated. A Cr buffer layer, whose thickness generally needs to be optimized to improve adhesion depending on the substrate surface condition, such as roughness, was deposited between thermoelectric thin films and glass substrates. When the Cr buffer layer was 1 nm thick, the Seebeck coefficients and electrical conductivity of 1 µm thermoelectric thin films with the buffer layers were approximately equal to those of the thermoelectric films without the buffer layers. When the thickness of the Cr buffer layer was 1 µm, the same as the thermoelectric films, the Seebeck coefficients of the bilayer films were reduced by an electrical current flowing inside the Cr buffer layer and the generation of Cr 2 Te 3 . The open-circuit voltage of the thin-film thermoelectric modules decreased with an increase in the thickness of the Cr buffer layer, which was primarily induced by the electrical current flow. The reduction caused by the Cr 2 Te 3 generation was less than 10% of the total voltage generation of the modules without the Cr buffer layers. The voltage generation of thin-film thermoelectric modules could be controlled by the Cr buffer layer thickness. (paper)

  9. Compensation of propagation loss of surface plasmon polaritons with a finite-thickness dielectric gain layer

    International Nuclear Information System (INIS)

    Zhang, Xin; Liu, Haitao; Zhong, Ying

    2012-01-01

    We theoretically study the compensation of propagation loss of surface plasmon polaritons (SPPs) with the use of a finite-thickness dielectric layer with optical gain. The impacts of the gain coefficient, the gain-layer thickness and the wavelength on the loss compensation and the field distribution of the SPP mode are systematically explored with a fully vectorial method. Abnormal behaviors for the loss compensation as the gain-layer thickness increases are found and explained. Critical values of the gain coefficient and of the corresponding gain-layer thickness for just compensating the propagation loss are provided. Our results show that as the SPP propagation loss is fully compensated with a gain coefficient at a reasonably low level, the gain layer is still thin enough to ensure a large exterior SPP field at the gain-layer/air interface, which is important for achieving a strong light–matter interaction for applications such as bio-chemical sensing. (paper)

  10. Study of ion beam sputtered Fe/Si interfaces as a function of Si layer thickness

    Science.gov (United States)

    Kumar, Anil; Brajpuriya, Ranjeet; Singh, Priti

    2018-01-01

    The exchange interaction in metal/semiconductor interfaces is far from being completely understood. Therefore, in this paper, we have investigated the nature of silicon on the Fe interface in the ion beam deposited Fe/Si/Fe trilayers keeping the thickness of the Fe layers fixed at 3 nm and varying the thickness of the silicon sandwich layer from 1.5 nm to 4 nm. Grazing incidence x-ray diffraction and atomic force microscopy techniques were used, respectively, to study the structural and morphological changes in the deposited films as a function of layer thickness. The structural studies show silicide formation at the interfaces during deposition and better crystalline structure of Fe layers at a lower spacer layer thickness. The magnetization behavior was investigated using magneto-optical Kerr effect, which clearly shows that coupling between the ferromagnetic layers is highly influenced by the semiconductor spacer layer thickness. A strong antiferromagnetic coupling was observed for a value of tSi = 2.5 nm but above this value an unexpected behavior of hysteresis loop (step like) with two coercivity values is recorded. For spacer layer thickness greater than 2.5 nm, an elemental amorphous Si layer starts to appear in the spacer layer in addition to the silicide layer at the interfaces. It is observed that in the trilayer structure, Fe layers consist of various stacks, viz., Si doped Fe layers, ferromagnetic silicide layer, and nonmagnetic silicide layer at the interfaces. The two phase hysteresis loop is explained on the basis of magnetization reversal of two ferromagnetic layers, independent of each other, with different coercivities. X-ray photo electron spectroscopy technique was also used to study interfaces characteristics as a function of tSi.

  11. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    Science.gov (United States)

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.

  12. Quantification of Discrete Oxide and Sulfur Layers on Sulfur-Passivated InAs by XPS

    National Research Council Canada - National Science Library

    Petrovykh, D. Y; Sullivan, J. M; Whitman, L. J

    2005-01-01

    .... The S-passivated InAs(001) surface can be modeled as a sulfur-indium-arsenic layer-cake structure, such that characterization requires quantification of both arsenic oxide and sulfur layers that are at most a few monolayers thick...

  13. Bi-layer functionally gradient thick film semiconducting methane

    Indian Academy of Sciences (India)

    ... used for the detection of toxic and combustible gases like carbon monoxide, ... By modifying the chemical compositions of the top and bottom layers and by ... being very reliable, can find applications in domestic, industrial and strategic ...

  14. Active layer thickness and ground temperatures, Svea, Svalbard, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Snow and soil temperature records for January 1988 - May 1996 are presented. Included are snow depth and weight measurements, snow density (calculated), active layer...

  15. Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Z. M., E-mail: zaki.saleh@aauj.edu, E-mail: zakimsaleh@yahoo.com; Nasser, H.; Özkol, E.; Günöven, M.; Abak, K. [Middle East Technical University, Center for Solar Energy Research and Applications (GÜNAM) (Turkey); Canli, S. [Middle East Technical University, Central Laboratory (Turkey); Bek, A.; Turan, R. [Middle East Technical University, Center for Solar Energy Research and Applications (GÜNAM) (Turkey)

    2015-10-15

    Plasmonic interfaces consisting of silver nanoparticles of different sizes (50–100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size and broadened into the red with the increasing spacer layer thickness. The photocurrent measured in a-Si:H is not only consistent with the red-shift and broadening of the LSPR, but exhibits critical dependence on the spacer layer thickness also. The samples with plasmonic interfaces and a SiNx spacer layer exhibit appreciable enhancement of photocurrent compared with flat a-Si:H reference depending on the size of the Ag nanoparticle. Simulations conducted on one-dimensional square structures exhibit electric fields that are localized near the plasmonic structures but extend appreciably into the higher refractive index a-Si:H. These simulations produce a clear red-shift and broadening of extinction spectra for all spacer layer thicknesses and predict an enhancement in photocurrent in agreement with experimental results. The spectral dependence of photocurrent for six plasmonic interfaces with different Ag nanoparticle sizes and spacer layer thicknesses are correlated with the optical spectra and compared with the simulations to predict an optimal spacer layer thickness.

  16. Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy.

    Science.gov (United States)

    Francis, Andrew W; Wanek, Justin; Lim, Jennifer I; Shahidi, Mahnaz

    2015-01-01

    To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.

  17. Contact problems of a rectangular block on an elastic layer of finite thickness. Part I: The thin layer

    NARCIS (Netherlands)

    Alblas, J.B.; Kuipers, M.

    1969-01-01

    We consider a layer of finite thickness loaded in plane strain by a stamp with a straight horizontal base, which is smooth and rigid. The stamp is pressed vertically into the layer and is slightly rotated by an external moment load subsequently. Two cases are considered successively: the lower side

  18. Optimization of intrinsic layer thickness, dopant layer thickness and concentration for a-SiC/a-SiGe multilayer solar cell efficiency performance using Silvaco software

    Directory of Open Access Journals (Sweden)

    Wei Yuan Wong

    2017-01-01

    Full Text Available Solar cell is expanding as green renewable alternative to conventional fossil fuel electricity generation, but compared to other land-used electrical generators, it is a comparative beginner. Many applications covered by solar cells starting from low power mobile devices, terrestrial, satellites and many more. To date, the highest efficiency solar cell is given by GaAs based multilayer solar cell. However, this material is very expensive in fabrication and material costs compared to silicon which is cheaper due to the abundance of supply. Thus, this research is devoted to develop multilayer solar cell by combining two different layers of P-I-N structures with silicon carbide and silicon germanium. This research focused on optimising the intrinsic layer thickness, p-doped layer thickness and concentration, n-doped layer thickness and concentration in achieving the highest efficiency. As a result, both single layer a-SiC and a-SiGe showed positive efficiency improvement with the record of 27.19% and 9.07% respectively via parametric optimization. The optimized parameters is then applied on both SiC and SiGe P-I-N layers and resulted the convincing efficiency of 33.80%.

  19. Optimization of intrinsic layer thickness, dopant layer thickness and concentration for a-SiC/a-SiGe multilayer solar cell efficiency performance using Silvaco software

    Science.gov (United States)

    Yuan, Wong Wei; Natashah Norizan, Mohd; Salwani Mohamad, Ili; Jamalullail, Nurnaeimah; Hidayah Saad, Nor

    2017-11-01

    Solar cell is expanding as green renewable alternative to conventional fossil fuel electricity generation, but compared to other land-used electrical generators, it is a comparative beginner. Many applications covered by solar cells starting from low power mobile devices, terrestrial, satellites and many more. To date, the highest efficiency solar cell is given by GaAs based multilayer solar cell. However, this material is very expensive in fabrication and material costs compared to silicon which is cheaper due to the abundance of supply. Thus, this research is devoted to develop multilayer solar cell by combining two different layers of P-I-N structures with silicon carbide and silicon germanium. This research focused on optimising the intrinsic layer thickness, p-doped layer thickness and concentration, n-doped layer thickness and concentration in achieving the highest efficiency. As a result, both single layer a-SiC and a-SiGe showed positive efficiency improvement with the record of 27.19% and 9.07% respectively via parametric optimization. The optimized parameters is then applied on both SiC and SiGe P-I-N layers and resulted the convincing efficiency of 33.80%.

  20. Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.

    Science.gov (United States)

    Zhao, Xiaoli; Gao, Weiwei; Yao, Weiquan; Jiang, Yanqiu; Xu, Zhen; Gao, Chao

    2017-10-24

    The layer-by-layer (LbL) assembly approach has been widely used to fabricate multilayer coatings on substrates with multiple cycles, whereas it is hard to access thick films efficiently. Here, we developed an ion diffusion-directed assembly (IDDA) strategy to rapidly make multilayer thick coatings in one step on arbitrary substrates. To achieve multifunctional coatings, graphene oxide (GO) and metallic ions were selected as the typical building blocks and diffusion director in IDDA, respectively. With diffusion of metallic ions from substrate to negatively charged GO dispersion spontaneously (i.e., from high-concentration region to low-concentration region), GO was assembled onto the substrate sheet-by-sheet via sol-gel transformation. Because metallic ions with size of subnanometers can diffuse directionally and freely in the aqueous dispersion, GO was coated on the substrate efficiently, giving rise to films with desired thickness up to 10 μm per cycle. The IDDA approach shows three main merits: (1) high efficiency with a μm-scale coating rate; (2) controllability over thickness and evenness; and (3) generality for substrates of plastics, metals and ceramics with any shapes and morphologies. With these merits, IDDA strategy was utilized in the efficient fabrication of functional graphene coatings that exhibit outstanding performance as supercapacitors, electromagnetic interference shielding textiles, and anticorrosion coatings. This IDDA approach can be extended to other building blocks including polymers and colloidal nanoparticles, promising for the scalable production and application of multifunctional coatings.

  1. Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces

    Directory of Open Access Journals (Sweden)

    Carvalho Luisa

    2017-01-01

    Full Text Available The nuclear industry produces a wide range of radioactive waste in terms of hazard level, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop safe techniques for dismantling and for decontamination, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. In this paper we propose a method for the creation of oxide layers on stainless steel 304L with europium (Eu as contaminant. This technique consists in spraying an Eu-solution on stainless steel samples. The specimens are firstly treated with a pulsed nanosecond laser after which the steel samples are placed in a 873 K furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer were analyzed by scanning electron microscopy coupled to an energy-dispersive X-ray microanalyzer, as well as by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm–4.5 μm depending on the laser treatment parameters and the heating duration. These contaminated oxides had a ‘duplex structure’ with a mean concentration of the order of 6 × 1016 atoms/cm2 (15 μg/cm2 of europium in the volume of the oxide layer. It appears that europium implementation prevented the oxide growth in the furnace. Nevertheless, the presence of the contamination had no impact on the thickness of the oxide layers obtained by preliminary laser treatment. These oxide layers were used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  2. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    Directory of Open Access Journals (Sweden)

    Jung-San Chen

    2016-09-01

    Full Text Available This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  3. Study of the Variation of Material layer Compotition and Thickness Related Neutron Flux and Gamma Radiation

    Science.gov (United States)

    Nirmalasari, Yuliana Dian; Suparmi; Sardjono, Y.

    2017-11-01

    Optimation of simulation design of collimator is corresponding to 30 MeV cyclotron generator. The simulation has used the variation of the thickness materials layers that was applied at treatment room’s door. The purpose of the variation and thickness of the material in this simulation to obtain optimum results for the shielding design in the irradiation chamber. The layers that we used are Pb-Fe and Pb-SS312. Simulation on cancer treatment is used with monte carlo simaulation MCNPX. The spesifications that we used for cyclotron is the spesification of the HM-30 Proton Cyclotron from Sumitomo Heavy Industries Ltd. The variation of the thickness materials layers that was applied at treatment room’s door are Pb remains 4cm while Fe and SS312 varies between 2 cm, 4 cm, 6 cm respectively. This simulation of Fe layer on Pb was give good result in measurement simulation at 4 cm thickness.

  4. Use of a Soluble Anode in Electrodeposition of Thick Bismuth Telluride Layers

    Science.gov (United States)

    Maas, M.; Diliberto, S.; de Vaulx, C.; Azzouz, K.; Boulanger, C.

    2014-10-01

    Integration of thermoelectric devices within an automotive heat exchanger could enable conversion of lost heat into electrical energy, contributing to improved total output from the engine. For this purpose, synthesis of thick bismuth telluride (Bi2Te3) films is required. Bismuth telluride has been produced by an electrochemical method in nitric acid with a sacrificial bismuth telluride anode as the source of cations. The binary layer grows on the working electrode while the counter-electrode, a Bi2Te3 disk obtained by high frequency melting, is oxidized to BiIII and TeIV. This process leads to auto-regeneration of the solution without modification of its composition. The thickness of films deposited by use of the Bi2Te3 anode was approximately 10 times that without. To demonstrate the utility of a soluble anode in electrochemical deposition, we report characterization of the composition and morphology of the films obtained under different experimental conditions. Perfectly dense and regular Bi2Te3 films (˜400 μm) with low internal stress and uniform composition across the cross-section were prepared. Their thermoelectric properties were assessed.

  5. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers

    DEFF Research Database (Denmark)

    Xu, Zhang-Cheng; Zhang, Ya-Ting; Hvam, Jørn Märcher

    2009-01-01

    The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which...

  6. Top layer's thickness dependence on total electron-yield X-ray standing-wave

    International Nuclear Information System (INIS)

    Ejima, Takeo; Yamazaki, Atsushi; Banse, Takanori; Hatano, Tadashi

    2005-01-01

    A Mo single-layer film with a stepwise thickness distribution was fabricated on the same Mo/Si reflection multilayer film. Total electron-yield X-ray standing-wave (TEY-XSW) spectra of the aperiodic multilayer were measured with reflection spectra. The peak positions of the standing waves in the TEY-XSW spectra changed as the film thickness of the top Mo-layer increased

  7. Detection of charged particles in thick hydrogenated amorphous silicon layers

    International Nuclear Information System (INIS)

    Fujieda, I.; Cho, G.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Ward, W.; Street, R.A.

    1988-03-01

    We show our results in detecting particles of various linear energy transfer, including minimum ionizing electrons from a Sr-90 source with 5 to 12 micron thick n-i-p and p-i-n diodes. We measured W ( average energy to produce one electron-hole pair) using 17keV filtered xray pulses with a result W = 6.0 /+-/ 0.2eV. This is consistent with the expected value for a semiconductor with band gap of 1.7 to 1.9eV. With heavily ionizing particles such as 6 MeV alphas and 1 to 2 MeV protons, there was some loss of signal due to recombination in the particle track. The minimum ionizing electrons showed no sign of recombination. Applications to pixel and strip detectors for physics experiments and medical imaging will be discussed. 7 refs., 8 figs

  8. Deuterium permeation behavior of HTUPS4 steel with thermal oxidation layer

    International Nuclear Information System (INIS)

    Xu, Yu-Ping; Liu, Feng; Zhao, Si-Xiang; Li, Xiao-Chun; Wang, Jing; An, Zhong-Qing; Lu, Tao; Liu, Hao-Dong; Ding, Fang; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-01-01

    The permeation behavior of creep-resistant, Al 2 O 3 -forming HTUPS austenitic stainless steels was studied using a gas driven permeation (GDP) device. The steel samples were first thermal oxidized at air condition, followed by GDP experiments. The permeability and diffusion coefficients of oxidized samples and bare 316L steels were derived and compared. In order to characterize the oxide layer, X-ray photoelectron spectroscopy was performed. An oxide layer with a thickness of 200 nm which mainly consists of Al 2 O 3 was detected.

  9. Effects of particles thickness and veneer reiforced layer in the properties of oriented strand boards OSB

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2009-03-01

    Full Text Available This work evaluated the effects of particle thickness and veneer reinforced layer on the physical and mechanicalproperties of OSB made of Pinus taeda L. The boards were manufactured with particle thickness of 0.4, 0.7 and 1.0 mm and phenolformaldehyderesin in the proportion of 6% of solid content. To the veneer reinforced layer was used veneer from Pinus taeda with 2.0mm of thickness. The increase in the slenderness (length/thickness ratio of thins particles, results in the higher values of MOE andMOR in the cross direction. The increase in the particles thickness contributed to higher values of the board internal bond. Thedifferent particles thickness did not clearly affected on the physical properties of OSB. The veneer reinforced layer results in the higheraverage values of MOE and MOR in the cross direction. All of the results of MOE and MOR obtained for boards with differentthickness attend tominimum values required per CSA 0437 (CSA, 1993. For the internal bond, the results were satisfactory to boardsmanufactured with particles thickness of 0.7 and 1.0 mm. According to the results the main conclusions were: (i The increase in theparticles thickness contributed to lower values of MOE and MOR, and higher values of the board internal bond; (ii the veneerreinforced layer increased MOE and MOR values in the cross direction.

  10. Adsorbed polymers in aqueous media. The relation between zeta-potential, layer thickness and ionic strength

    NARCIS (Netherlands)

    Cohen Stuart, M.A.; Mulder, J.W.

    1985-01-01

    Streaming potentials for glass capillaries with and without adsorbed poly(vinyl pyrrolidone) were used to determine the thickness of the adsorbed polymer layer. It was found that the thickness determined in this way is a strong function of the ionic strength of the solution. The results are compared

  11. Spin-transfer torque in tunnel junctions with ferromagnetic layer of finite thickness

    International Nuclear Information System (INIS)

    Wilczynski, M.

    2011-01-01

    Two components of the spin torque exerted on a free ferromagnetic layer of finite thickness and a half-infinite ferromagnetic electrode in single tunnel junctions have been calculated in the spin-polarized free-electron-like one-band model. It has been found that the torque oscillates with the thickness of ferromagnetic layer and can be enhanced in the junction with the special layer thickness. The bias dependence of torque components also significantly changes with layer thickness. It is non-symmetric for the normal torque, in contrast to the symmetric junctions with two identical half-infinite ferromagnetic electrodes. The asymmetry of the bias dependence of the normal component of the torque can be also observed in the junctions with different spin splitting of the electron bands in the ferromagnetic electrodes. - Research highlights: → The torque oscillates with the thickness of ferromagnetic layer. → Bias dependence of the torque changes with the layer thickness. → Bias dependence of the normal torque can be asymmetric.

  12. The Final Stage of Gravitationally Collapsed Thick Matter Layers

    Directory of Open Access Journals (Sweden)

    Piero Nicolini

    2013-01-01

    Full Text Available In the presence of a minimal length, physical objects cannot collapse to an infinite density, singular, matter point. In this paper, we consider the possible final stage of the gravitational collapse of “thick” matter layers. The energy momentum tensor we choose to model these shell-like objects is a proper modification of the source for “noncommutative geometry inspired,” regular black holes. By using higher momenta of Gaussian distribution to localize matter at finite distance from the origin, we obtain new solutions of the Einstein equation which smoothly interpolates between Minkowski’s geometry near the center of the shell and Schwarzschild’s spacetime far away from the matter layer. The metric is curvature singularity free. Black hole type solutions exist only for “heavy” shells; that is, M ≥Me, where Me is the mass of the extremal configuration. We determine the Hawking temperature and a modified area law taking into account the extended nature of the source.

  13. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells

    KAUST Repository

    Werner, Jé ré mie; Walter, Arnaud; Rucavado, Esteban; Moon, Soo Jin; Sacchetto, Davide; Rienaecker, Michael; Peibst, Robby; Brendel, Rolf; Niquille, Xavier; De Wolf, Stefaan; Lö per, Philipp; Morales-Masis, Monica; Nicolay, Sylvain; Niesen, Bjoern; Ballif, Christophe

    2016-01-01

    the concept, we fabricate monolithic tandem cells with mesoscopic top cell with up to 16% efficiency. We then investigate the effect of zinc tin oxide layer thickness variation, showing a strong influence on the optical interference pattern within the tandem

  14. Sputter fabricated Nb-oxide-Nb josephson junctions incorporating post-oxidation noble metal layers

    International Nuclear Information System (INIS)

    Bain, R.J.P.; Donaldson, G.B.

    1985-01-01

    We present an extension, involving other metals, of the work of Hawkins and Clarke, who found that a thin layer of copper prevented the formation of the superconductive shorts which are an inevitable consequence of sputtering niobium counter-electrodes directly on top of niobium oxide. We find gold to be the most satisfactory, and that 0.3 nm is sufficient to guarantee short-free junctions of excellent electrical and mechanical stability, though high excess conductance means they are best suited to shunted-junction applications, as in SQUIDs. We present results for critical current dependence on oxide thickness and on gold thickness. Our data shows that thermal oxide growth is described by the Cabrera-Mott mechanism. We show that the protective effect of the gold layer can be understood in terms of the electro-chemistry of the Nb-oxide-Au structure, and that the reduced quasi-particle resistance of the junctions relative to goldfree junctions with evaporated counterelectrodes can be explained in terms of barrier shape modification, and not by proximity effect mechanisms. The performance of a DC SQUID based on these junctions is described

  15. Analysis of zircaloy oxide thickness data from PWRs

    International Nuclear Information System (INIS)

    Sheppard, K.D.; Speyer, D.M.; Chan, Y.Y.; Frankl, I.; Strasser, A.A.

    1990-02-01

    Prior EPRI funded research (Project 1250-1) resulted in a set of Zircaloy waterside corrosion models. These models were based principally on KWU reactor data. The objective of this study was to evaluate the ability of the KWU corrosion models to predict available domestic USA data for all domestic PWR vendors in order to further validate the models and to provide a consistent basis to judge the corrosion data of the domestic plants. A methodology for analyzing the large amount of data was developed and implemented in a single channel model. This model includes the capability, by a method described herein, of accounting for open core related effects (crossflow) and the effect of the immediately adjacent fuel rods, guide tubes, etc., on the coolant conditions around the fuel rods that were measured for oxide thickness. Data from the Arkansas Unit number-sign 2 (ANO-2) Combustion Engineering (C-E), Oconee Units 1 and 2 built by Babcock ampersand Wilcox (B ampersand W), and the Trojan reactor built by Westinghouse (W) were used in this study. The corrosion models previously developed, and the present single channel model methodology, were able to predict the corrosion data quite well. The maximum corrosion thickness was on the order of 20 to 40 microns in all plants studied. 13 refs., 11 figs., 5 tabs

  16. Transition of hydrated oxide layer for aluminum electrolytic capacitors

    International Nuclear Information System (INIS)

    Chi, Choong-Soo; Jeong, Yongsoo; Ahn, Hong-Joo; Lee, Jong-Ho; Kim, Jung-Gu; Lee, Jun-Hee; Jang, Kyung-Wook; Oh, Han-Jun

    2007-01-01

    A hydrous oxide film for the application as dielectric film is synthesized by immersion of pure aluminum in hot water. From a Rutherford backscattering analysis, the ratio of aluminum to oxygen atoms was found to be 3:2 in the anodized aluminum oxide film, and 2:1 in the hydrous oxide layer. Anodization of the hydrous oxide layer was more effective for the transition of amorphous anodic oxides to the crystalline aluminum oxides

  17. Analysis on Interfacial Performance of CFRPConcrete with Different Thickness of Adhesive Layer and CFRP Plate

    Directory of Open Access Journals (Sweden)

    Guo Qingyong

    2018-01-01

    Full Text Available The bond behavior of CFRP-concrete interface is the analysis foundation for concrete structures with external strengthening CFRP. In the paper, the influences of the thickness of CFRP plate and adhesive layer on interfacial adhesive properties are investigated through the finite element program. The influence rules of the thickness on the interfacial ultimate bearing capacity and the effective bond length are performed. The results show that the thickness of adhesive layer and CFRP plate has a significant effect on the interfacial performance of CFRP-concrete.

  18. Variations of retinal nerve fiber layer thickness and ganglion cell-inner plexiform layer thickness according to the torsion direction of optic disc.

    Science.gov (United States)

    Lee, Kang Hoon; Kim, Chan Yun; Kim, Na Rae

    2014-02-20

    To examine the relationship between the optic disc torsion and peripapillary retinal nerve fiber layer (RNFL) thickness through a comparison with the macular ganglion cell inner plexiform layer complex (GCIPL) thickness measured by Cirrus optical coherence tomography (OCT). Ninety-four eyes of 94 subjects with optic disc torsion and 114 eyes of 114 subjects without optic disc torsion were enrolled prospectively. The participants underwent fundus photography and OCT imaging in peripapillary RNFL mode and macular GCIPL mode. The participants were divided into groups according to the presence or absence of optic disc torsion. The eyes with optic disc torsion were further divided into supranasal torsion and inferotemporal torsion groups according to the direction of optic disc torsion. The mean RNFL and GCIPL thicknesses for the quadrants and subsectors were compared. The superior and inferior peak locations of the RNFL were also measured according to the torsion direction. The temporal RNFL thickness was significantly thicker in inferotemporal torsion, whereas the GCIPL thickness at all segments was unaffected. The inferotemporal optic torsion had more temporally positioned superior peak locations of the RNFL than the nontorsion and supranasal-torted optic disc. Thickening of the temporal RNFL with a temporal shift in the superior peak within the eyes with inferotemporal optic disc torsion can lead to interpretation errors. The ganglion cell analysis algorithm can assist in differentiating eyes with optic disc torsion.

  19. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  20. Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications

    International Nuclear Information System (INIS)

    Gieraltowska, S.; Wachnicki, L.; Witkowski, B.S.; Godlewski, M.; Guziewicz, E.

    2012-01-01

    In this paper, we report on transparent transistor obtained using laminar structure of two high-k dielectric oxides (hafnium dioxide, HfO 2 and aluminum oxide, Al 2 O 3 ) and zinc oxide (ZnO) layer grown at low temperature (60 °C–100 °C) using Atomic Layer Deposition (ALD) technology. Our research was focused on the optimization of technological parameters for composite layers Al 2 O 3 /HfO 2 /Al 2 O 3 for thin film transistor structures with ZnO as a channel and a gate layer. We elaborate on the ALD growth of these oxides, finding that the 100 nm thick layers of HfO 2 and Al 2 O 3 exhibit fine surface flatness and required amorphous microstructure. Growth parameters are optimized for the monolayer growth mode and maximum smoothness required for gating.

  1. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, David [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy NY 12180 (United States); Department of Physics and Nuclear Engineering, United States Military Academy, West Point NY 10996 (United States); Mathews, Jay [US Army ARDEC – Benét Laboratories, Watervliet NY 12189 (United States); Department of Physics, University of Dayton, Dayton, OH 45469 (United States); Sullivan, Joseph T.; Buonassisi, Tonio [School of Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 (United States); Akey, Austin [School of Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 (United States); Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge MA 02138 (United States); Aziz, Michael J. [Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge MA 02138 (United States); Persans, Peter [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy NY 12180 (United States); Warrender, Jeffrey M., E-mail: jwarrend@post.harvard.edu [US Army ARDEC – Benét Laboratories, Watervliet NY 12189 (United States)

    2016-05-15

    We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  2. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    Directory of Open Access Journals (Sweden)

    David Hutchinson

    2016-05-01

    Full Text Available We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  3. Thickness and composition of ultrathin SiO2 layers on Si

    NARCIS (Netherlands)

    van der Marel, C; Verheijen, M.A.; Tamminga, Y; Pijnenburg, RHW; Tombros, N; Cubaynes, F

    2004-01-01

    Ultrathin SiO2 layers are of importance for the semiconductor industry. One of the techniques that can be used to determine the chemical composition and thickness of this type of layers is x-ray photoelectron spectroscopy (XPS). As shown by Seah and Spencer [Surf. Interface Anal. 33, 640 (2002)], it

  4. Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu; Lee, Sang Soon [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2003-12-15

    This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process

  5. Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

    International Nuclear Information System (INIS)

    Kim, No Hyu; Lee, Sang Soon

    2003-01-01

    This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process

  6. Hydrodynamic thickness of petroleum oil adsorbed layers in the pores of reservoir rocks.

    Science.gov (United States)

    Alkafeef, Saad F; Algharaib, Meshal K; Alajmi, Abdullah F

    2006-06-01

    The hydrodynamic thickness delta of adsorbed petroleum (crude) oil layers into the pores of sandstone rocks, through which the liquid flows, has been studied by Poiseuille's flow law and the evolution of (electrical) streaming current. The adsorption of petroleum oil is accompanied by a numerical reduction in the (negative) surface potential of the pore walls, eventually stabilizing at a small positive potential, attributed to the oil macromolecules themselves. After increasing to around 30% of the pore radius, the adsorbed layer thickness delta stopped growing either with time or with concentrations of asphaltene in the flowing liquid. The adsorption thickness is confirmed with the blockage value of the rock pores' area determined by the combination of streaming current and streaming potential measurements. This behavior is attributed to the effect on the disjoining pressure across the adsorbed layer, as described by Derjaguin and Churaev, of which the polymolecular adsorption films lose their stability long before their thickness has approached the radius of the rock pore.

  7. Passivation mechanism in silicon heterojunction solar cells with intrinsic hydrogenated amorphous silicon oxide layers

    Science.gov (United States)

    Deligiannis, Dimitrios; van Vliet, Jeroen; Vasudevan, Ravi; van Swaaij, René A. C. M. M.; Zeman, Miro

    2017-02-01

    In this work, we use intrinsic hydrogenated amorphous silicon oxide layers (a-SiOx:H) with varying oxygen content (cO) but similar hydrogen content to passivate the crystalline silicon wafers. Using our deposition conditions, we obtain an effective lifetime (τeff) above 5 ms for cO ≤ 6 at. % for passivation layers with a thickness of 36 ± 2 nm. We subsequently reduce the thickness of the layers using an accurate wet etching method to ˜7 nm and deposit p- and n-type doped layers fabricating a device structure. After the deposition of the doped layers, τeff appears to be predominantly determined by the doped layers themselves and is less dependent on the cO of the a-SiOx:H layers. The results suggest that τeff is determined by the field-effect rather than by chemical passivation.

  8. On determining dead layer and detector thicknesses for a position-sensitive silicon detector

    Science.gov (United States)

    Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.

    2018-04-01

    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.

  9. Modification of the laser triangulation method for measuring the thickness of optical layers

    Science.gov (United States)

    Khramov, V. N.; Adamov, A. A.

    2018-04-01

    The problem of determining the thickness of thin films by the method of laser triangulation is considered. An expression is derived for the film thickness and the distance between the focused beams on the photo detector. The possibility of applying the chosen method for measuring thickness is in the range [0.1; 1] mm. We could resolve 2 individual light marks for a minimum film thickness of 0.23 mm. We resolved with the help of computer processing of photos with a resolution of 0.10 mm. The obtained results can be used in ophthalmology for express diagnostics during surgical operations on the corneal layer.

  10. Mass transfer model for two-layer TBP oxidation reactions: Revision 1

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the Canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. Bubbles containing reaction products enhance the rate of transfer of water from the aqueous layer to the organic layer. These bubbles are generated by the oxidation of TBP and its reaction products in the organic layer and by the oxidation of butanol in the aqueous layer. Butanol is formed by the hydrolysis of TBP in the organic layer. For aqueous-layer bubbling to occur, butanol must transfer into the aqueous layer. Consequently, the rate of oxidation and bubble generation in the aqueous layer strongly depends on the rate of transfer of butanol from the organic to the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments

  11. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-22

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  12. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  13. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Mascagni, Daniela Branco Tavares [São Paulo State University - UNESP, Sorocaba, São Paulo (Brazil); Miyazaki, Celina Massumi [Federal University of São Carlos, UFSCar, Campus Sorocaba, SP (Brazil); Cruz, Nilson Cristino da [São Paulo State University - UNESP, Sorocaba, São Paulo (Brazil); Leite de Moraes, Marli [Federal University of São Paulo, Unifesp, Campus São José dos Campos, SP (Brazil); Riul, Antonio [University of Campinas - Unicamp, Campinas, São Paulo (Brazil); Ferreira, Marystela, E-mail: marystela@ufscar.br [Federal University of São Carlos, UFSCar, Campus Sorocaba, SP (Brazil)

    2016-11-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4 μmol·L{sup ‐1} and sensitivity of 2.47 μA·cm{sup −2}·mmol{sup −1}·L for glucose with the (GPDDA/GPSS){sub 1}/(GPDDA/GOx){sub 2} architecture, whose thickness was 19.80 ± 0.28 nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. - Highlights: • Direct electrochemistry of glucose oxidase at functionalized reduced graphene oxide. • Thickness (layer-by-layer) LbL film determined by Surface Plasmon Resonance (SPR). • Selective determination of glucose in the presence of several interferents. • Real sample test: commercial oral electrolyte solution and lactose-free milk.

  14. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection

    International Nuclear Information System (INIS)

    Mascagni, Daniela Branco Tavares; Miyazaki, Celina Massumi; Cruz, Nilson Cristino da; Leite de Moraes, Marli; Riul, Antonio; Ferreira, Marystela

    2016-01-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4 μmol·L ‐1 and sensitivity of 2.47 μA·cm −2 ·mmol −1 ·L for glucose with the (GPDDA/GPSS) 1 /(GPDDA/GOx) 2 architecture, whose thickness was 19.80 ± 0.28 nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. - Highlights: • Direct electrochemistry of glucose oxidase at functionalized reduced graphene oxide. • Thickness (layer-by-layer) LbL film determined by Surface Plasmon Resonance (SPR). • Selective determination of glucose in the presence of several interferents. • Real sample test: commercial oral electrolyte solution and lactose-free milk.

  15. Changes in the relative thickness of individual subcutaneous adipose tissue layers in growing pigs

    DEFF Research Database (Denmark)

    McEvoy, Fintan; Strathe, Anders Bjerring; Madsen, Mads T.

    2007-01-01

    change in body weight in normal growing pigs. Methods: A group of nine pigs was examined using 14 MHz linear array transducer on three A group of nine pigs was examined using 14 MHz linear array transducer on three separate occasions. The average weight was 51, 94 and 124 kg for each successive scan...... longevity and finally to assist in the calculation of payments to producers that allow for general adiposity. Currently for reasons of tradition and ease, total adipose thickness measurements are made at one or multiple sites although it has been long recognized that up to three well defined layers (outer...... (L1), middle (L2), and inner (L3)) may be present to make up the total. Various features and properties of these layers have been described. This paper examines the contribution of each layer to total adipose thickness at three time points and describes the change in thickness of each layer per unit...

  16. Retinal nerve fiber layer thickness and neuropsychiatric manifestations in systemic lupus erythematosus.

    Science.gov (United States)

    Shulman, S; Shorer, R; Wollman, J; Dotan, G; Paran, D

    2017-11-01

    Background Cognitive impairment is frequent in systemic lupus erythematosus. Atrophy of the corpus callosum and hippocampus have been reported in patients with systemic lupus erythematosus, and diffusion tensor imaging studies have shown impaired white matter integrity, suggesting that white matter damage in systemic lupus erythematosus may underlie the cognitive impairment as well as other neuropsychiatric systemic lupus erythematosus manifestations. Retinal nerve fiber layer thickness, as assessed by optical coherence tomography, has been suggested as a biomarker for white matter damage in neurologic disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Retinal nerve fiber layer thinning may occur early, even in patients with mild clinical symptoms. Aim The objective of this study was to assess the association of retinal nerve fiber layer thickness, as a biomarker of white matter damage in systemic lupus erythematosus patients, with neuropsychiatric systemic lupus erythematosus manifestations, including cognitive impairment. Methods Twenty-one consecutive patients with systemic lupus erythematosus underwent neuropsychological testing using a validated computerized battery of tests as well as the Rey-Auditory verbal learning test. All 21 patients, as well as 11 healthy, age matched controls, underwent optical coherence tomography testing to assess retinal nerve fiber layer thickness. Correlations between retinal nerve fiber layer thickness and results in eight cognitive domains assessed by the computerized battery of tests as well as the Rey-Auditory verbal learning test were assessed in patients with systemic lupus erythematosus, with and without neuropsychiatric systemic lupus erythematosus, and compared to retinal nerve fiber layer thickness in healthy controls. Results No statistically significant correlation was found between retinal nerve fiber layer thickness in patients with systemic lupus erythematosus as compared to healthy

  17. HYBRID LAYER THICKNESS IN PRIMARY AND PERMANENT TEETH – A COMPARISON BETWEEN TOTAL ETCH ADHESIVES

    Directory of Open Access Journals (Sweden)

    Natalia Gateva

    2012-05-01

    Full Text Available Purpose: The aim this study is to compare the hybrid layer thickness and its micromorphological characteristics in samples from primary and permanent teeth following application of total etch adhesives.Materials and methods: On intact specimens of 20 primary and 10 permanent teeth was created flat dentin surfaces. The patterns were divided in 6 groups. Two different total etch adhesive systems were used – one tree steps (OptiBond, Kerr and one two steps (Exite, VivaDent. In groups 3, 4, 5 and 6 recommended etching time was used - 15 s, in groups 1 and 2 the etching time was reduced to 7 s. After applying the adhesive, resin composite build-ups were constructed. Thus restored samples are stored in saline solution for 24 hours at temperature 37 C. Then they are subjected to thermal stress in temperature between 5 C to 55 C for 1,500 cycles and to masticatory stress – 150,000 cycles with force 100 N in intervals of 0.4 s. After that the teeth are cut through the middle in medio-distal direction with a diamond disc. SEM observation was done to investigate the thickness of the hybrid layer and the presence of microgaps. Statistical analysis was performed with ANOVA and Tukey׳s tests.Results: SEM observation showed significant differences of the hybrid layer thickness between primary and permanent teeth under equal conditions and after different etching time. Group 6 presented the highest average thickness 8.85 μ and group 1 the lowest average in hybrid layer 3.74 μ.Conclusion: In primary teeth the hybrid layer thickness increases with the increased etching time. The hybrid layer thickness in primary teeth is greater than that of the hybrid layer in permanent teeth under equal conditions. For primary teeth it is more appropriate to reduce the etching time to 7s to obtain a hybrid layer with better quality

  18. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness

    International Nuclear Information System (INIS)

    Dai Hui; Zhong Xinghua; Li Jiayan; Zhang Yanfei; Meng Jian; Cao Xueqiang

    2006-01-01

    Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y 2 O 3 + ZrO 2 ) and lanthanum zirconate (LZ, La 2 Zr 2 O 7 ) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 deg. C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 μm have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 μm, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 μm, the failure mainly occurs at the interface of the YSZ layer and the bond coat

  19. Characterization of 10 μm thick porous silicon dioxide obtained by complex oxidation process for RF application

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Lee, Jong-Hyun

    2003-01-01

    This paper proposes a 10 μm thick oxide layer structure, which can be used as a substrate for RF circuits. The structure has been fabricated by anodic reaction and complex oxidation, which is a combined process of low temperature thermal oxidation (500 deg. C, for 1 h at H 2 O/O 2 ) and a rapid thermal oxidation (RTO) process (1050 deg. C, for 1 min). The electrical characteristics of oxidized porous silicon layer (OPSL) were almost the same as those of standard thermal silicon dioxide. The leakage current through the OPSL of 10 μm was about 100-500 pA in the range of 0-50 V. The average value of breakdown field was about 3.9 MV cm -1 . From the X-ray photo-electron spectroscopy (XPS) analysis, surface and internal oxide films of OPSL, prepared by complex process were confirmed to be completely oxidized and also the role of RTO process was important for the densification of porous silicon layer (PSL) oxidized at a lower temperature. For the RF-test of Si substrate with thick silicon dioxide layer, we have fabricated high performance passive devices such as coplanar waveguide (CPW) on OPSL substrate. The insertion loss of CPW on OPSL prepared by complex oxidation process was -0.39 dB at 4 GHz and similar to that of CPW on OPSL prepared by a temperature of 1050 deg. C (1 h at H 2 O/O 2 ). Also the return loss of CPW on OPSL prepared by complex oxidation process was -23 dB at 10 GHz, which is similar to that of CPW on OPSL prepared by high temperature

  20. Investigation of the fabrication parameters of thick film metal oxide-polymer pH electrodes

    International Nuclear Information System (INIS)

    Gac, Arnaud

    2002-01-01

    This thesis describes a study into the development of an optimum material and fabrication process for the production of thick film pH electrodes. These devices consist of low cost, miniature and rugged pH sensors formed by screen printing a metal oxide bearing paste onto a high temperature (∼850 deg C) fired metal back contact supported on a standard alumina substrate. The pH sensitive metal oxide layer must be fabricated at relatively low temperatures (<300 deg C) in order to maintain the pH sensitivity of the layer and hence requires the use of a suitably stable low temperature curing binder. Bespoke fabricated inks are derived from a Taguchi style factorial experimental plans in which, different binder types, curing temperatures, hydration level and percentage mixtures of different metal oxides and layer thicknesses were investigated. The pH responses of 18 printed electrodes per batch were assessed in buffer solutions with respect to a commercial reference electrode forming a complete potentiometric circuit. The evaluation criteria used in the study included the device-to-device variation in sensitivity of the pH sensors and their sensitivity variation as a function of time. The results indicated the importance of the choice of binder type in particular on the performance characteristics. Reproducible device-to-device variation in sensitivity was determined for the best inks found, whatever the ink fabrication batch. A reduction in the sensitivity variation with time has been determined using the mathematical models derived from an experimental plan. The lack of reproducibility of the sensitivity magnitude, regardless of the ink manufacturing batch, seems to be a recurrent problem with prototype inks. Experimental sub-Nernstian responses are discussed in the light of possible pH mechanisms. (author)

  1. Room temperature plasma oxidation: A new process for preparation of ultrathin layers of silicon oxide, and high dielectric constant materials

    International Nuclear Information System (INIS)

    Tinoco, J.C.; Estrada, M.; Baez, H.; Cerdeira, A.

    2006-01-01

    In this paper we present basic features and oxidation law of the room temperature plasma oxidation (RTPO), as a new process for preparation of less than 2 nm thick layers of SiO 2 , and high-k layers of TiO 2 . We show that oxidation rate follows a potential law dependence on oxidation time. The proportionality constant is function of pressure, plasma power, reagent gas and plasma density, while the exponent depends only on the reactive gas. These parameters are related to the physical phenomena occurring inside the plasma, during oxidation. Metal-Oxide-Semiconductor (MOS) capacitors fabricated with these layers are characterized by capacitance-voltage, current-voltage and current-voltage-temperature measurements. Less than 2.5 nm SiO 2 layers with surface roughness similar to thermal oxide films, surface state density below 3 x 10 11 cm -2 and current density in the expected range for each corresponding thickness, were obtained by RTPO in a parallel-plate reactor, at 180 mW/cm 2 and pressure range between 9.33 and 66.5 Pa (0.07 and 0.5 Torr) using O 2 and N 2 O as reactive gases. MOS capacitors with TiO 2 layers formed by RTPO of sputtered Ti layers are also characterized. Finally, MOS capacitors with stacked layers of TiO 2 over SiO 2 , both layers obtained by RTPO, were prepared and evaluated to determine the feasibility of the use of TiO 2 as a candidate for next technology nodes

  2. Peripapillary retinal nerve fiber layer and choroidal thickness in cirrhosis patients

    Directory of Open Access Journals (Sweden)

    M.Orcun Akdemir

    2015-12-01

    Full Text Available ABSTRACT Purpose: To evaluate the effect of cirrhosis on peripapillary retinal nerve fiber layer and choroidal thickness with enhanced depth imaging optical coherence tomography. Methods: This cross sectional, single center study was undertaken at Bulent Ecevit University Ophthalmology department with the participation of internal medicine, Gastroenterology department. Patients who were treated with the diagnosis of cirrhosis (n=75 were examined in the ophthalmology clinic. Age and sex matched patients (n=50 who were healthy and met the inclusion, exclusion criteria were included in the study. Complete ophthalmological examination included visual acuity with Snellen chart, intraocular pressure measurement with applanation tonometry, biomicroscopy of anterior and posterior segments, gonioscopy, axial length measurement, visual field examination, peripapillary retinal nerve fiber layer, central macular and subfoveal choroidal thickness measurements. Results: The difference between intraocular pressure values was not statistically significant between cirrhosis and control group (p=0.843. However, mean peripapillary retinal nerve fiber layer thickness was significantly thinner in cirrhosis group in all regions (p<0.001 and subfoveal choroidal thickness was significantly thinner in cirrhosis group also (p<0.001. Moreover, central macular thickness of cirrhosis group was significantly thicker than the control group (p=0.001. Conclusion: Peripapillary retinal nerve fiber layer and subfoveal choroidal thickness was significantly thinner in cirrhosis patients.

  3. Methods To Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes.

    Science.gov (United States)

    Loosli, Viviane; Germershaus, Oliver; Steinberg, Henrik; Dreher, Sascha; Grauschopf, Ulla; Funke, Stefanie

    2018-01-01

    The silicone lubricant layer in prefilled syringes has been investigated with regards to siliconization process performance, prefilled syringe functionality, and drug product attributes, such as subvisible particle levels, in several studies in the past. However, adequate methods to characterize the silicone oil layer thickness and distribution are limited, and systematic evaluation is missing. In this study, white light interferometry was evaluated to close this gap in method understanding. White light interferometry demonstrated a good accuracy of 93-99% for MgF 2 coated, curved standards covering a thickness range of 115-473 nm. Thickness measurements for sprayed-on siliconized prefilled syringes with different representative silicone oil distribution patterns (homogeneous, pronounced siliconization at flange or needle side, respectively) showed high instrument (0.5%) and analyst precision (4.1%). Different white light interferometry instrument parameters (autofocus, protective shield, syringe barrel dimensions input, type of non-siliconized syringe used as base reference) had no significant impact on the measured average layer thickness. The obtained values from white light interferometry applying a fully developed method (12 radial lines, 50 mm measurement distance, 50 measurements points) were in agreement with orthogonal results from combined white and laser interferometry and 3D-laser scanning microscopy. The investigated syringe batches (lot A and B) exhibited comparable longitudinal silicone oil layer thicknesses ranging from 170-190 nm to 90-100 nm from flange to tip and homogeneously distributed silicone layers over the syringe barrel circumference (110- 135 nm). Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. A silicone oil layer thickness of 100-200 nm was thus sufficient for adequate functionality in this particular study. Filling the syringe with a surrogate solution including short

  4. THE THICKNESS DEPENDENCE OF OXYGEN PERMEABILITY IN SOL-GEL DERIVED CGO-COFE2O4 THIN FILMS ON POROUS CERAMIC SUBSTRATES: A SPUTTERED BLOCKING LAYER FOR THICKNESS CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K

    2009-01-08

    Mixed conductive oxides are a topic of interest for applications in oxygen separation membranes as well as use in producing hydrogen fuel through the partial oxidation of methane. The oxygen flux through the membrane is governed both by the oxygen ionic conductivity as well as the material's electronic conductivity; composite membranes like Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} (CGO)-CoFe{sub 2}O{sub 4} (CFO) use gadolinium doped ceria oxides as the ionic conducting material combined with cobalt iron spinel which serves as the electronic conductor. In this study we employ {approx} 50 nm sputtered CeO{sub 2} layers on the surface of porous CGO ceramic substrates which serve as solution 'blocking' layers during the thin film fabrication process facilitating the control of film thickness. Films with thickness of {approx} 2 and 4 microns were prepared by depositing 40 and 95 separate sol-gel layers respectively. Oxygen flux measurements indicated that the permeation increased with decreasing membrane thickness; thin film membrane with thickness on the micron level showed flux values an order of magnitude greater (0.03 {micro}mol/cm{sup 2} s) at 800 C as compared to 1mm thick bulk ceramic membranes (0.003 {micro}mol/cm{sup 2}).

  5. Method of forming buried oxide layers in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  6. High energy PIXE: A tool to characterize multi-layer thick samples

    Science.gov (United States)

    Subercaze, A.; Koumeir, C.; Métivier, V.; Servagent, N.; Guertin, A.; Haddad, F.

    2018-02-01

    High energy PIXE is a useful and non-destructive tool to characterize multi-layer thick samples such as cultural heritage objects. In a previous work, we demonstrated the possibility to perform quantitative analysis of simple multi-layer samples using high energy PIXE, without any assumption on their composition. In this work an in-depth study of the parameters involved in the method previously published is proposed. Its extension to more complex samples with a repeated layer is also presented. Experiments have been performed at the ARRONAX cyclotron using 68 MeV protons. The thicknesses and sequences of a multi-layer sample including two different layers of the same element have been determined. Performances and limits of this method are presented and discussed.

  7. Oxide layers of Zr-1% Nb under PWR primary circuit conditions

    International Nuclear Information System (INIS)

    Nagy, Gabor; Kerner, Zsolt; Battistig, Gabor; Pinter-Csordas, Anna; Balogh, Janos; Pajkossy, Tamas

    2001-01-01

    Oxide layers were grown on Zr-1% Nb under conditions simulating those in VVER-type pressurised water reactors (PWRs), viz. in borate solutions in an autoclave at 290 deg. C. The layers were characterised by various methods: their respective thickness values were determined by weight gain measurements, Rutherford backscattering (RBS), nuclear reaction analysis (NRA) and scanning electron microscopy (SEM); the electrical properties were tested by electrochemical impedance spectroscopy. The results show that the oxide layer on Zr-1% Nb is homogeneous and somewhat thicker than that on Zircaloy-4

  8. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Tekgül, Atakan, E-mail: atakantekgul@gmail.com [Akdeniz University, Physics Department, Science Faculty, TR-07058 Antalya (Turkey); Uludag University, Physics Department, Science and Literature Faculty, TR-16059 Bursa (Turkey); Alper, Mürsel [Uludag University, Physics Department, Science and Literature Faculty, TR-16059 Bursa (Turkey); Kockar, Hakan [Balikesir University, Physics Department, Science and Literature Faculty, TR-10145 Balikesir (Turkey)

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current–time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of −0.3 and −1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices. - Highlights: • The much thinner (0.5 nm) Cu layer was used to obtain the GMR effect on the electrodeposited CoFe/Cu multilayers. • All samples exhibited GMR and the maximum GMR value was 5.5%. • The M{sub s} and the H{sub c} changed with increasing magnetic layer thickness.

  9. Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates

    Directory of Open Access Journals (Sweden)

    Joseba Irigoyen

    2015-12-01

    Full Text Available A novel and facile method was developed to produce hybrid graphene oxide (GO–polyelectrolyte (PE capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO dispersion during the assembly. The capsules retain the approximate shape and size of the erythrocyte template after the latter is totally removed by oxidation with NaOCl in water. The PE/GO capsules maintain their integrity and can be placed or located on other surfaces such as in a device. When the capsules are dried in air, they collapse to form a film that is approximately twice the thickness of the capsule membrane. AFM images in the present study suggest a film thickness of approx. 30 nm for the capsules in the collapsed state implying a thickness of approx. 15 nm for the layers in the collapsed capsule membrane. The polyelectrolytes used in the present study were polyallylamine hydrochloride (PAH and polystyrenesulfonate sodium salt (PSS. Capsules where characterized by transmission electron microscopy (TEM, atomic force microscopy (AFM, dynamic light scattering (DLS and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and FTIR spectroscopies.

  10. Thickness-Dependent Bioelectrochemical and Energy Applications of Thickness-Controlled Meso-Macroporous Antimony-Doped Tin Oxide

    Directory of Open Access Journals (Sweden)

    Daniel Mieritz

    2018-04-01

    Full Text Available Coatings of hierarchically meso-macroporous antimony-doped tin oxide (ATO enable interfacing adsorbed species, such as biomacromolecules, with an electronic circuit. The coating thickness is a limiting factor for the surface coverage of adsorbates, that are electrochemically addressable. To overcome this challenge, a carbon black-based templating method was developed by studying the composition of the template system, and finding the right conditions for self-standing templates, preventing the reaction mixture from flowing out of the mask. The thicknesses of as-fabricated coatings were measured using stylus profilometry to establish a relationship between the mask thickness and the coating thickness. Cyclic voltammetry was performed on coatings with adsorbed cytochrome c to check whether the entire coating thickness was electrochemically addressable. Further, bacterial photosynthetic reaction centers were incorporated into the coatings, and photocurrent with respect to coating thickness was studied. The template mixture required enough of both carbon black and polymer, roughly 7% carbon black and 6% poly(ethylene glycol. Coatings were fabricated with thicknesses approaching 30 µm, and thickness was shown to be controllable up to at least 15 µm. Under the experimental conditions, photocurrent was found to increase linearly with the coating thickness, up to around 12 µm, above which were diminished gains.

  11. A method of detection to the grinding wheel layer thickness based on computer vision

    Science.gov (United States)

    Ji, Yuchen; Fu, Luhua; Yang, Dujuan; Wang, Lei; Liu, Changjie; Wang, Zhong

    2018-01-01

    This paper proposed a method of detection to the grinding wheel layer thickness based on computer vision. A camera is used to capture images of grinding wheel layer on the whole circle. Forward lighting and back lighting are used to enables a clear image to be acquired. Image processing is then executed on the images captured, which consists of image preprocessing, binarization and subpixel subdivision. The aim of binarization is to help the location of a chord and the corresponding ring width. After subpixel subdivision, the thickness of the grinding layer can be calculated finally. Compared with methods usually used to detect grinding wheel wear, method in this paper can directly and quickly get the information of thickness. Also, the eccentric error and the error of pixel equivalent are discussed in this paper.

  12. Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming

    Science.gov (United States)

    Taylan, Fatih

    2011-04-01

    In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.

  13. Comparison of various methods of measuring thin oxide layers formed on molybdenum and titanium

    International Nuclear Information System (INIS)

    Lepage, F.; Bardolle, J.; Boulben, J.M.

    1975-01-01

    The problem of the growth of thin layers is very interesting from both the fundamental and technological viewpoints. This work deals with oxide films produced on two metals, molybdenum and titanium. The thicknesses obtained by various methods (microgravimetry, nuclear reactions and spectrophotometry) are compared and the advantages and disadvantages of each method are shown [fr

  14. The influence of thickness and viscosity of liquid annular layer on dynamic behavior of cylindrical shell

    International Nuclear Information System (INIS)

    Kuzelka, V.; Neuman, F.; Pecinka, L.

    1983-01-01

    This paper presents the results of experiments concerning the influence of thickness and viscosity of inner and outer annular layers of a liquid on the dynamic behaviour of a cylindrical shell, and a mathematical model of the problem based on acoustic approach is formulated to compare experimental and theoretical results. The measurements of natural frequencies and of damping ratios of a cylindrical shell were carried out with water and with two kinds of mineral oils of different viscosities. The results point towards the fact that with a decreasing thickness of the liquid layer the influence of the added liquid mass increases and the frequency drop is higher. On the other hand there is a certain relative magnitude of the surrounding medium at which the system behaves as an unlimited one. This magnitude depends on the mode order. The statement that the lesser is the thickness of the annular liquid layer the more important is its influence and the larger is the added liquid mass holds up to a certain thickness of the gap, comparable with the thickness of the thin liquid layer on the surface of the shell in which there has not yet been formed a transverse wave. The flowing in this layer is not potential. The governing equation for the description of this problem then is not Euler equation but Stokes's and Helmholtz's theorems for whirling motion. The thickness of the surface layer depends on the viscosity of the liquid. The frequencies measured for the least gap for water were well identified, while for both the mineral oils were chaotical, without any conspicuous resonances. (orig./GL)

  15. Characterization Of Oxide Layers Produced On The AISI 321 Stainless Steel After Annealing

    Directory of Open Access Journals (Sweden)

    Bochnowski W.

    2015-09-01

    Full Text Available In this study, the structure, chemical composition and topography of oxide layers produced on the surface of the AISI 321 austenitic steel in the annealing process were analyzed. Heat treatment was done at 980°C temperature for 1 hour time in different conditions. The annealing was done in a ceramic furnace in oxidation atmosphere and in vacuum furnaces with cylindrical molybdenum and graphite chambers. The analysis was carried out using the following methods: a scanning electron microscope (SEM equipped with an energy-dispersive X-ray spectrometer (EDX, a transmission electron microscope (TEM equipped with an energy-dispersive X-ray spectrometer (EDX, an X-ray diffractometer (XRD, a secondary ion mass spectrometer with time-of-flight mass analyzer (TOF SIMS and an atomic force microscope (AFM. The oxide layer formed during annealing of the AISI 321 steel at 980°C consisted of sub-layers, diversified in the chemical composition. The thickness of the oxidized layer is depended on the annealing conditions. In a ceramic furnace in oxidation atmosphere, the thickness of the oxide layer was of 300-500 nm, in a vacuum furnace with molybdenum and graphite heating chambers, it ranged from 40 to 300 nm and from a few to 50 nm, respectively. TOF SIMS method allows to get average (for the surface of 100 μm × 100 μm depth profiles of concentration of particular elements and elements combined with oxygen. In oxide layers formed in vacuum furnaces there are no iron oxides. Titanium, apart from being bounded with carbon in carbides, is a component of the oxide layer formed on the surface of the AISI 321 steel.

  16. Improvement of oxidation resistance of copper by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, M.L.; Cheng, T.C. [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan (China); Lin, M.C. [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 110, Taiwan (China); Lin, H.C., E-mail: hclinntu@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan (China); Chen, M.J., E-mail: mjchen@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan (China)

    2012-10-01

    Graphical abstract: Results of glancing incident angle diffraction (GIXD) show the bare-Cu specimen was attacked by oxidation, whereas the coated-Cu specimens prevented from this problem. Highlights: Black-Right-Pointing-Pointer Deposition of Al{sub 2}O{sub 3} films on pure copper by an atomic layer deposition (ALD) technique. Black-Right-Pointing-Pointer Analysis of properties of the films coated at various substrate temperatures using the ALD technique. Black-Right-Pointing-Pointer Identification of the improvement of oxidation resistance of pure copper by the ALD-Al{sub 2}O{sub 3} films. Black-Right-Pointing-Pointer Assessment of the durability of the ALD-Al{sub 2}O{sub 3} films by adhesion strength. - Abstract: Al{sub 2}O{sub 3} films were deposited by the atomic layer deposition (ALD) technique onto pure copper at temperatures in the range 100-200 Degree-Sign C. The chemical composition, microstructure, and mechanic properties of the ALD-deposited Al{sub 2}O{sub 3} films were systematically analyzed. The variations in the film characteristics with substrate temperature were observed. Oxidation trials revealed that 20-nm-thick Al{sub 2}O{sub 3} films deposited at a substrate temperature as low as 100 Degree-Sign C suppress oxidative attack on pure copper. The Al{sub 2}O{sub 3} films also showed excellent durability of adhesion strength, according to predictions using the Coffin-Manson model based on the results of accelerated temperature cycling tests. These features indicate that ALD-deposited Al{sub 2}O{sub 3} film is a very promising candidate to be a protective coating for pure copper.

  17. Oxide layers for silicon detector protection against enviroment effects

    International Nuclear Information System (INIS)

    Bel'tsazh, E.; Brylovska, I.; Valerian, M.

    1986-01-01

    It is shown that for protection of silicon detectors of nuclear radiations oxide layers could be used. The layers are produced by electrochemical oxidation of silicon surface with the following low-temperature annealing. These layers have characteristics similar to those for oxide layers produced by treatment of silicon samples at elevated temperature in oxygen flow. To determine properties of oxide layers produced by electrochemical oxidation the α-particle back-scattering method and the method of volt-farad characteristics were used. Protection properties of such layers were checked on the surface-barrier detectors. It was shown that protection properties of such detectors were conserved during long storage at room temperature and during their storage under wet-bulb temperature. Detectors without protection layer have worsened their characteristics

  18. Thick-film effects in the oxidation and hydriding of zirconium alloys

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1989-08-01

    One of the fundamental discoveries involving radiation effects on the oxidation of Zircaloy in low-oxygen aqueous environments is the influence of thick oxide films. Zircaloy oxidation rates in low-oxygen (hydrogen-rich) coolants initially proceed at relatively low rates, often almost uninfluenced by radiation. Marked upturns in oxidation rate have signaled the onset of radiation effects. The radiation effects appear to correlate with a threshold oxide thickness. Results of the test reactor experiments lead to formulation of the Thick-Film Hypothesis: beyond a threshold oxide thickness, radiolysis of water that infiltrates oxide cracks and pores controls the oxidation rate; radiation creates microenvironments inside the oxide film, producing highly oxidizing conditions, that are no longer suppressed by the coolant-borne hydrogen. Upturns in oxidation rate on high-exposure Zircaloy pressure tubes add confirmatory evidence for the thick-film effect. This paper summarizes the early evidence for thick-film behavior, including oxidation and hydriding trends, updates confirmatory evidence from Zircaloy reactor and fuel assembly components, and highlights other observations from the test reactor series that have potential fundamental significance to explanations of radiation effects on Zircaloy. 23 refs., 10 figs

  19. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  20. Laser generated guided waves and finite element modeling for the thickness gauging of thin layers.

    Science.gov (United States)

    Lefevre, F; Jenot, F; Ouaftouh, M; Duquennoy, M; Ourak, M

    2010-03-01

    In this paper, nondestructive testing has been performed on a thin gold layer deposited on a 2 in. silicon wafer. Guided waves were generated and studied using a laser ultrasonic setup and a two-dimensional fast Fourier transform technique was employed to obtain the dispersion curves. A gold layer thickness of 1.33 microm has been determined with a +/-5% margin of error using the shape of the two first propagating modes, assuming for the substrate and the layer an uncertainty on the elastic parameters of +/-2.5%. A finite element model has been implemented to validate the data post-treatment and the experimental results. A good agreement between the numerical simulation, the analytical modeling and the experimentations has been observed. This method was considered suitable for thickness layer higher than 0.7 microm.

  1. Determination of the thickness of chemically removed thin layers on GaAs VPE structures

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, K.; Nemeth-Sallay, M.; Nemcsics, A. (Research Inst. for Technical Physics, Hungarian Academy of Sciences, Budapest (Hungary))

    1991-01-01

    Thinning of epitaxial GaAs layers was studied during the surface etching, with a special attention to submicron epitaxial structures, like MESFET or varactor-type structures. Each chemical treatment influences the crystal surface during the device preparation processes, though the possible thinning of the active layer is small. Therefore a method allowing determination of thicknesses as small as at about 20 nm of the layer removed by chemical etching from GaAs VPE structures was applied. Using special multilayered structures and a continuous electrochemical carrier concentration depth profiling, the influence of the layer thickness inhomogeneity and of some measurement errors can be minimized. Some frequently used etchants and the influence of different - so called - non-etching processes were compared in different combinations. It was shown that besides the direct etching a change of the surface conditions occurs, which influences the etch rate in the succeeding etching procedure. (orig.).

  2. Versatile technique for assessing thickness of 2D layered materials by XPS

    Science.gov (United States)

    Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C.; Fisher, Timothy S.; Voevodin, Andrey A.

    2018-03-01

    X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.

  3. Investigation of anodizing parameter effect on barrier layer of anodic zirconium oxide

    International Nuclear Information System (INIS)

    Kharchenko, Eh.P.

    1979-01-01

    Effect of fluoride concentration and forming direction upon kinetics of barrier layer transformations in the process of preparation of phase anodic zirconium oxide in acid fluorine-containing solutions is considered. Suppositions are made on the mechanism of barrier layer transformation under the effect of the parameters mentioned. The thickness of the barrier layer is determined by two methods and it is shown that coefficient of the layer thickess growth at the voltage increase by 1 V is much lower than during formation of the barrier films in non-agressive electrolytes

  4. Solid-state dewetting of Au-Ni bi-layer films mediated through individual layer thickness and stacking sequence

    Science.gov (United States)

    Herz, Andreas; Theska, Felix; Rossberg, Diana; Kups, Thomas; Wang, Dong; Schaaf, Peter

    2018-06-01

    In the present work, the solid-state dewetting of Au-Ni bi-layer thin films deposited on SiO2/Si is systematically studied with respect to individual layer thickness and stacking sequence. For this purpose, a rapid heat treatment at medium temperatures is applied in order to examine void formation at the early stages of the dewetting. Compositional variations are realized by changing the thickness ratio of the bi-layer films, while the total thickness is maintained at 20 nm throughout the study. In the event of Au/Ni films annealed at 500 °C, crystal voids exposing the substrate are missing regardless of chemical composition. In reverse order, the number of voids per unit area in two-phase Au-Ni thin films is found to be governed by the amount of Au-rich material. At higher temperatures up to 650 °C, a decreased probability of nucleation comes at the expense of a major portion of cavities, resulting in the formation of bubbles in 15 nm Ni/5 nm Au bi-layers. Film buckling predominantly occurred at phase boundaries crossing the bubbles.

  5. Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO™ oxide layers

    International Nuclear Information System (INIS)

    Gabory, Benoit de; Motta, Arthur T.; Wang, Ke

    2015-01-01

    Waterside corrosion of zirconium alloy nuclear fuel cladding varies markedly from one alloy to another. In addition, for a given alloy, the corrosion rate evolves during the corrosion process, most notably when the oxide loses its stability at the oxide transition. In an effort to understand the mechanism resulting in the variations of corrosion rate observed at the oxide transition, oxide layers formed on Zircaloy-4 and ZIRLO™ in high temperature water autoclave environments, and archived before and after the transition, are characterized using transmission electron microscopy. The study characterizes and compares the oxide morphology in both alloys at different times during the corrosion process, in an effort to understand the oxide growth mechanism for these alloys. Results show that the oxide is mainly composed of monoclinic ZrO 2 , with a preponderance of columnar oxide grains which extend to the oxide/metal interface. The oxide formed right after the transition has occurred, exhibits a 150 nm-wide layer of small equiaxed grains with high tetragonal oxide fraction. This layer has a similar morphology and structure as the first oxide layer formed (observed near the oxide/water interface). A study of the oxygen-rich region near the oxide/metal interface reveals a complex structure of different phases at different stages of corrosion. The interface exhibits an intermediate layer, identified as ZrO, a discontinuous layer of “blocky” Zr 3 O grains embedded in the ZrO layer, and a suboxide layer corresponding to an oxygen saturated solid solution in the metal matrix side. The thickness of this interfacial layer decreased markedly at the transition. Hydrides are also observed in that region, with a definite orientation relationship with the matrix. The observations of the oxide/metal interface are qualitatively similar for the two alloys but quantitatively different. The incorporation of intermetallic precipitates into the oxide layer is also studied, and

  6. Survey of Nerve Fiber Layer Thickness in Anisometropic and Strabismic Amblyopia

    Directory of Open Access Journals (Sweden)

    Reza Soltani Moghaddam

    2017-02-01

    Full Text Available . To investigate the effect of anisometropic and strabismic amblyopia on the nerve fiber layer thickness. This cross-sectional study was done on 54 amblyopic subjects, equally in both strabismic and anisometropic groups. The thickness otonerve fiber layer measured in superior, inferior, nasal, temporal quadrants and as a whole in both eyes of both groups. The means of thickness were compared in amblyopic and sound eyes. In strabismus group, the average nerve fiber layer thickness of the sound eye , in superior, inferior, nasal and temporal quadrants and as a whole were 113.23±14, 117.37±25, 68.96±6, 69.55±14 and 93.40±8 microns respectively. In amblyopic eyes of the same group, these measurements were 103.11±18, 67.74±11, and 69.59±16 and 89.59±12 microns in superior, inferior, nasal, temporal quadrants and as whole respectively. In anisometropic groups, the sound eye measurements were as 130.96±22, 129.07±29, 80.62±12, and 83.88±20 and 107.7±13 microns in superior, inferior, nasal and temporal quadrants and as a whole orderly. In amblyopic eyes of this group the mean thicknesses were 115.63±29, 133.15±25, 78.8±15, 80.2±16 and 109.17±21 microns in superior, inferior, nasal, temporal quadrants and as a whole respectively. Statistically, there were no significant differences between amblyopic and sound eyes (P>0.5. Our study did not support any significant change in a nerve fiber layer thickness of amblyopic patients; however, decreased thickness in superior and nasal quadrants of strabismic amblyopia and except inferior quadrant and as a whole. These measurements may be a clue for management and prognosis of amblyopia in old age.

  7. Effect of layer thickness in selective laser melting on microstructure of Al/5 wt.%Fe2O3 powder consolidated parts.

    Science.gov (United States)

    Dadbakhsh, Sasan; Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75  μm layer thickness, and 50  μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  8. Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3 Powder Consolidated Parts

    Directory of Open Access Journals (Sweden)

    Sasan Dadbakhsh

    2014-01-01

    Full Text Available In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  9. Channel layer thickness dependence of In-Ti-Zn-O thin-film transistors fabricated using pulsed laser deposition

    International Nuclear Information System (INIS)

    Zhang, Q.; Shan, F. K.; Liu, G. X.; Liu, A.; Lee, W. J.; Shin, B. C.

    2014-01-01

    Amorphous indium-titanium-zinc-oxide (ITZO) thin-film transistors (TFTs) with various channel thicknesses were fabricated at room temperature by using pulsed laser deposition. The channel layer thickness (CLT) dependence of the TFTs was investigated. All the ITZO thin films were amorphous, and the surface roughnesses decreased slightly first and then increased with increasing CLT. With increasing CLT from 35 to 140 nm, the on/off current ratio and the field-effect mobility increased, and the subthreshold swing decreased. The TFT with a CLT of 210 nm exhibited the worst performance, while the ITZO TFT with a CLT of 140 nm exhibited the best performance with a subthreshold voltage of 2.86 V, a mobility of 53.9 cm 2 V -1 s -1 , a subthreshold swing of 0.29 V/decade and an on/off current ratio of 10 9 .

  10. Effect of biomolecules adsorption on oxide layers developed on metallic materials used in cooling water systems

    International Nuclear Information System (INIS)

    Torres-Bautista, Blanca-Estela

    2014-01-01

    This thesis was carried out in the frame of the BIOCOR ITN European project, in collaboration with the industrial partner RSE S.p.A. (Italy). Metallic materials commonly used in cooling systems of power plants may be affected by bio-corrosion induced by biofilm formation. The objective of this work was to study the influence of biomolecules adsorption, which is the initial stage of biofilm formation, on the electrochemical behaviour and the surface chemical composition of three metallic materials (70Cu-30Ni alloy, 304L stainless steel and titanium) in seawater environments. In a first step, the interactions between a model protein, the bovine serum albumin (BSA), and the surface of these materials were investigated. Secondly, tightly bound (TB) and loosely bound (LB) extracellular polymeric substances (EPS), that play a fundamental role in the different stages of biofilm formation, maturation and maintenance, were extracted from Pseudomonas NCIMB 2021 marine strain, and their effects on oxide layers were also evaluated. For that purpose, electrochemical measurements (corrosion potential E(corr) vs time, polarization curves and electrochemical impedance spectroscopy (EIS)) performed during the very first steps of oxide layers formation (1 h immersion time) were combined to surface analysis by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ions mass spectrometry (ToF-SIMS). Compared to 70Cu-30Ni alloy in static artificial seawater (ASW) without biomolecules, for which a thick duplex oxide layer (outer redeposited Cu 2 O layer and inner oxidized nickel layer) is shown, the presence of BSA, TB EPS and LB EPS leads to a mixed oxide layer (oxidized copper and nickel) with a lower thickness. In the biomolecules-containing solutions, this oxide layer is covered by an adsorbed organic layer, mainly composed of proteins. A model is proposed to analyse impedance data obtained at E(corr). The results show a slow-down of the anodic reaction in the presence

  11. Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V

    Directory of Open Access Journals (Sweden)

    Xuezhi Shi

    2016-12-01

    Full Text Available To increase building rate and save cost, the selective laser melting (SLM of Ti6Al4V with a high layer thickness (200 μm and low cost coarse powders (53 μm–106 μm at a laser power of 400 W is investigated in this preliminary study. A relatively large laser beam with a diameter of 200 μm is utilized to produce a stable melt pool at high layer thickness, and the appropriate scanning track, which has a smooth surface with a shallow contact angle, can be obtained at the scanning speeds from 40 mm/s to 80 mm/s. By adjusting the hatch spacings, the density of multi-layer samples can be up to 99.99%, which is much higher than that achieved in previous studies about high layer thickness selective laser melting. Meanwhile, the building rate can be up to 7.2 mm3/s, which is about 2 times–9 times that of the commercial equipment. Besides, two kinds of defects are observed: the large un-melted defects and the small spherical micropores. The formation of the un-melted defects is mainly attributed to the inappropriate overlap rates and the unstable scanning tracks, which can be eliminated by adjusting the processing parameters. Nevertheless, the micropores cannot be completely eliminated. It is worth noting that the high layer thickness plays a key role on surface roughness rather than tensile properties during the SLM process. Although a sample with a relatively coarse surface is generated, the average values of yield strength, ultimate tensile strength, and elongation are 1050 MPa, 1140 MPa, and 7.03%, respectively, which are not obviously different than those with the thin layer thickness used in previous research; this is due to the similar metallurgical bonding and microstructure.

  12. Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V.

    Science.gov (United States)

    Shi, Xuezhi; Ma, Shuyuan; Liu, Changmeng; Chen, Cheng; Wu, Qianru; Chen, Xianping; Lu, Jiping

    2016-12-01

    To increase building rate and save cost, the selective laser melting (SLM) of Ti6Al4V with a high layer thickness (200 μm) and low cost coarse powders (53 μm-106 μm) at a laser power of 400 W is investigated in this preliminary study. A relatively large laser beam with a diameter of 200 μm is utilized to produce a stable melt pool at high layer thickness, and the appropriate scanning track, which has a smooth surface with a shallow contact angle, can be obtained at the scanning speeds from 40 mm/s to 80 mm/s. By adjusting the hatch spacings, the density of multi-layer samples can be up to 99.99%, which is much higher than that achieved in previous studies about high layer thickness selective laser melting. Meanwhile, the building rate can be up to 7.2 mm³/s, which is about 2 times-9 times that of the commercial equipment. Besides, two kinds of defects are observed: the large un-melted defects and the small spherical micropores. The formation of the un-melted defects is mainly attributed to the inappropriate overlap rates and the unstable scanning tracks, which can be eliminated by adjusting the processing parameters. Nevertheless, the micropores cannot be completely eliminated. It is worth noting that the high layer thickness plays a key role on surface roughness rather than tensile properties during the SLM process. Although a sample with a relatively coarse surface is generated, the average values of yield strength, ultimate tensile strength, and elongation are 1050 MPa, 1140 MPa, and 7.03%, respectively, which are not obviously different than those with the thin layer thickness used in previous research; this is due to the similar metallurgical bonding and microstructure.

  13. Exchange bias variations of the seed and top NiFe layers in NiFe/FeMn/NiFe trilayer as a function of seed layer thickness

    International Nuclear Information System (INIS)

    Sankaranarayanan, V.K.; Yoon, S.M.; Kim, C.G.; Kim, C.O.

    2005-01-01

    Development of exchange bias at the seed and top NiFe layers in the NiFe (t nm)/FeMn(10 nm)/NiFe(5 nm) trilayer structure is investigated as a function of seed layer thickness, in the range of 2-20 nm. The seed NiFe layer shows maximum exchange bias at 4 nm seed layer thickness. The bias shows inverse thickness dependence with increasing thickness. The top NiFe layer on the other hand shows only half the bias of the seed layer which is retained even after the sharp fall in seed layer bias. The much smaller bias for the top NiFe layer is related to the difference in crystalline texture and spin orientations at the top FeMn/NiFe interface, in comparison to the bottom NiFe/FeMn interface which grows on a saturated NiFe layer with (1 1 1) orientation

  14. Relationship between Outer Retinal Layers Thickness and Visual Acuity in Diabetic Macular Edema

    Directory of Open Access Journals (Sweden)

    Raymond L. M. Wong

    2015-01-01

    Full Text Available Purpose. To investigate the correlation of outer retinal layers (ORL thickness and visual acuity (VA in patients with diabetic macular edema (DME. Methods. Consecutive DME patients seen at the Retina Clinic of The University of Hong Kong were recruited for OCT assessment. The ORL thickness was defined as the distance between external limiting membrane (ELM and retinal pigment epithelium (RPE at the foveal center. The correlation between total retinal thickness, ORL thickness, and vision was calculated. Results. 78 patients with DME were recruited. The mean age was 58.1 years (±11.5 years and their mean visual acuity measured with Snellen chart was 0.51 (±0.18. The correlation coefficient between total retinal thickness and visual acuity was 0.34 (P < 0.001 whereas the correlation coefficient was 0.65 between ORL thickness and visual acuity (P < 0.001. Conclusion. ORL thickness correlates better with vision than the total retinal thickness. It is a novel OCT parameter in the assessment of DME. Moreover, it could be a potential long term visual prognostic factor for patients with DME.

  15. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    Science.gov (United States)

    Carvalho, Luisa; Pacquentin, Wilfried; Tabarant, Michel; Maskrot, Hicham; Semerok, Alexandre

    2017-09-01

    The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu) as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a `duplex structure' with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  16. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    Directory of Open Access Journals (Sweden)

    Carvalho Luisa

    2017-01-01

    Full Text Available The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a ‘duplex structure’ with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  17. Influence of crustal layering and thickness on co-seismic effects of Wenchuan earthquake

    Directory of Open Access Journals (Sweden)

    Tan Hongbo

    2011-02-01

    Full Text Available Using the PSGRN/PSCMP software and the fault model offered by USGS and on the basis of finite rectangular dislocation theory and the local layered wave velocity structures of the crust-upper-mantle, the influences of crustal layering and thickness on co-seismic gravity changes and deformation of Wenchuan earthquake have been simulated. The results indicate that; the influences have a relationship with the attitude of faults and the relative position between calculated points and fault. The difference distribution form of simulated results between the two models is similar to that of co-seismic effect. For the per centum distribution, it’s restricted by the zero line of the co-seismic effects obviously. Its positive is far away from the zero line. For the crustal thickness, the effect is about 10% – 20%. The negative and the effect over 30% focus around the zero line. The average influences of crustal layering and thickness for the E-W displacement, N-S displacement, vertical displacement and gravity changes are 18.4%,18.0%, 15.8% and 16.2% respectively, When the crustal thickness is 40 km, they are 4.6%, 5.3%, 3.8% and 3.8%. Then the crustal thickness is 70 km, the average influences are 3.5%, 4.6%, 3.0% and 2.5% respectively.

  18. Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells

    Science.gov (United States)

    Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.

    2012-11-01

    Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.

  19. Quantification of the effect of oil layer thickness on entrainment of surface oil

    NARCIS (Netherlands)

    Klaas Dijkstra; Albertinka J. Murk; Marieke Zeinstra-Helfrich; Wierd Koops

    2015-01-01

    This study quantifies the effect of oil layer thickness on entrainment and dispersion of oil into seawater, using a plunging jet with a camera system. In contrast to what is generally assumed, we revealed that for the low viscosity “surrogate MC252 oil” we used, entrainment rate is directly

  20. Sensing and controlling resin-layer thickness in additive manufacturing processes

    NARCIS (Netherlands)

    Kozhevnikov, A.

    2017-01-01

    This AM-TKI project in collaboration with TNO focusses on the sensing and control of resin-layer thickness in AM applications. Industrial Additive Manufacturing is considered to be a potential breakthrough production technology for many applications. A specific AM implementation is VAT photo

  1. Formation of nickel germanides from Ni layers with thickness below 10 nm

    Energy Technology Data Exchange (ETDEWEB)

    Jablonka, Lukas; Kubart, Tomas; Primetzhofer, Daniel; Abedin, Ahmad; Hellström, Per-Erik; Östling, Mikael; Jordan-Sweet, Jean; Lavoie, Christian; Zhang, Shi-Li; Zhang, Zhen

    2017-03-01

    The authors have studied the reaction between a Ge (100) substrate and thin layers of Ni ranging from 2 to 10 nm in thickness. The formation of metal-rich Ni5Ge3Ni5Ge3 was found to precede that of the monogermanide NiGe by means of real-time in situ x-ray diffraction during ramp-annealing and ex situ x-ray pole figure analyses for phase identification. The observed sequential growth of Ni5Ge3Ni5Ge3 and NiGe with such thin Ni layers is different from the previously reported simultaneous growth with thicker Ni layers. The phase transformation from Ni5Ge3Ni5Ge3 to NiGe was found to be nucleation-controlled for Ni thicknesses <5 nm<5 nm, which is well supported by thermodynamic considerations. Specifically, the temperature for the NiGe formation increased with decreasing Ni (rather Ni5Ge3Ni5Ge3) thickness below 5 nm. In combination with sheet resistance measurement and microscopic surface inspection of samples annealed with a standard rapid thermal processing, the temperature range for achieving morphologically stable NiGe layers was identified for this standard annealing process. As expected, it was found to be strongly dependent on the initial Ni thickness

  2. Electrical properties of thick-layer piezo resistors based on Bi2Ru2O7

    International Nuclear Information System (INIS)

    Golonka, L.; Tankiewicz, S.

    1997-01-01

    Piezoelectric effect and electrical properties of thick-layer resistors based on Bi 2 Ru 2 O 7 (on ceramic substrate) have been studied. The influence of selected technological parameters (sintering temperature, chemical composition, heat treatment) on system properties has been estimated. 4 refs, 7 figs

  3. Retinal nerve fiber layer thickness map determined from optical coherence tomography images

    NARCIS (Netherlands)

    Mujat, M.; Chan, R. C.; Cense, B.; Park, B.H.; Joo, C.; Akkin, T.; Chen, TC; de Boer, JF

    2005-01-01

    We introduce a method to determine the retinal nerve fiber layer (RNFL) thickness in OCT images based on anisotropic noise suppression and deformable splines. Spectral-Domain Optical Coherence Tomography (SDOCT) data was acquired at 29 kHz A-line rate with a depth resolution of 2.6 mum and a depth

  4. Inversion of potential-field data for layers with uneven thickness

    OpenAIRE

    Caratori Tontini, F.; Cocchi, L.; Carmisciano, C.; Stefanelli, P.

    2008-01-01

    AB: Inversion of large-scale potential-field anomalies, aimed at determining density or magnetization, is usually made in the Fourier domain. The commonly adopted geometry is based on a layer of constant thickness, characterized by a bottom surface at a fixed distance from the top surface.....

  5. Reduction in Retinal Nerve Fiber Layer Thickness in Young Adults with Autism Spectrum Disorders

    Science.gov (United States)

    Emberti Gialloreti, Leonardo; Pardini, Matteo; Benassi, Francesca; Marciano, Sara; Amore, Mario; Mutolo, Maria Giulia; Porfirio, Maria Cristina; Curatolo, Paolo

    2014-01-01

    Recent years have seen an increase in the use of retinal nerve fiber layer (RNFL) evaluation as an easy-to-use, reproducible, proxy-measure of brain structural abnormalities. Here, we evaluated RNFL thickness in a group of subjects with high functioning autism (HFA) or with Asperger Syndrome (AS) to its potential as a tool to study autism…

  6. Photoacoustic signal attenuation analysis for the assessment of thin layers thickness in paintings

    Science.gov (United States)

    Tserevelakis, George J.; Dal Fovo, Alice; Melessanaki, Krystalia; Fontana, Raffaella; Zacharakis, Giannis

    2018-03-01

    This study introduces a novel method for the thickness estimation of thin paint layers in works of art, based on photoacoustic signal attenuation analysis (PAcSAA). Ad hoc designed samples with acrylic paint layers (Primary Red Magenta, Cadmium Yellow, Ultramarine Blue) of various thicknesses on glass substrates were realized for the specific application. After characterization by Optical Coherence Tomography imaging, samples were irradiated at the back side using low energy nanosecond laser pulses of 532 nm wavelength. Photoacoustic waves undergo a frequency-dependent exponential attenuation through the paint layer, before being detected by a broadband ultrasonic transducer. Frequency analysis of the recorded time-domain signals allows for the estimation of the average transmitted frequency function, which shows an exponential decay with the layer thickness. Ultrasonic attenuation models were obtained for each pigment and used to fit the data acquired on an inhomogeneous painted mock-up simulating a real canvas painting. Thickness evaluation through PAcSAA resulted in excellent agreement with cross-section analysis with a conventional brightfield microscope. The results of the current study demonstrate the potential of the proposed PAcSAA method for the non-destructive stratigraphic analysis of painted artworks.

  7. Comparisons of retinal nerve fiber layer thickness changes after macular hole surgery

    Directory of Open Access Journals (Sweden)

    Nelson Chamma Capelanes

    Full Text Available ABSTRACT Purpose: To compare postoperative changes in retinal nerve fiber layer thickness in patients with macular holes treated with vitrectomy with Brilliant Blue-assisted internal limiting membrane peeling. Methods: Twenty-two eyes of 20 patients with macular holes were studied. Each eye was selected to undergo Brilliant Blue-assisted internal limiting membrane peeling. The circumferential retinal nerve fiber layer thickness was determined using spectral domain optical coherence tomography preoperatively and 2 months postoperatively. Mean overall and sectoral retinal nerve fiber layer thicknesses were obtained for each patient. Results: There was no statistically significant difference (p≥0.05 between the pre- and post-treatment measurements in relation to each CFN variable, i.e., on average, pre-treatment measures were the same as post-treatment measures. Furthermore, despite the differences between the pre- and post-treatment measures always being positive (pre-post >0, they are not statistically significant. Conclusions: This study showed no significant decrease in retinal nerve fiber layer thickness measurements after macular holes surgery, regardless of age or sex.

  8. Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses

    OpenAIRE

    Macak, Jan M.; Ghicov, Andrei; Hahn, Robert; Tsuchiya, Hiroaki; Schmuki, Patrik

    2013-01-01

    The present work reports nitrogen doping of self-organized TiO2 nanotubular layers. Different thicknesses of the nanotubular layer architecture were formed by electrochemical anodization of Ti in different fluoride-containing electrolytes; tube lengths were 500 nm, 2.5 μm, and 6.1 μm. As-formed nanotube layers were annealed to an anatase structure and treated in ammonia environment at 550 °C to achieve nitrogen doping. The crystal structure, morphology, composition and photoresponse of the N-...

  9. Vanishing stick-slip friction in few-layer graphenes: the thickness effect.

    Science.gov (United States)

    Xu, Liang; Ma, Tian-Bao; Hu, Yuan-Zhong; Wang, Hui

    2011-07-15

    We report the thickness dependence of intrinsic friction in few-layer graphenes, adopting molecular dynamics simulations. The friction force drops dramatically with decreasing number of layers and finally approaches zero with two or three layers. The results, which are robust over a wide range of temperature, shear velocity, and pressure are quantitatively explained by a theoretical model with regard to lateral stiffness, slip length, and maximum lateral force, which could provide a new conceptual framework for understanding stick-slip friction. The results reveal the crucial role of the dimensional effect in nanoscale friction, and could be helpful in the design of graphene-based nanodevices.

  10. Large exchange bias induced by polycrystalline Mn3Ga antiferromagnetic films with controlled layer thickness

    Science.gov (United States)

    Wu, Haokaifeng; Sudoh, Iori; Xu, Ruihan; Si, Wenshuo; Vaz, C. A. F.; Kim, Jun-young; Vallejo-Fernandez, Gonzalo; Hirohata, Atsufumi

    2018-05-01

    Polycrystalline Mn3Ga layers with thickness in the range from 6–20 nm were deposited at room temperature by a high target utilisation sputtering. To investigate the onset of exchange-bias, a ferromagnetic Co0.6Fe0.4 layer (3.3–9 nm thick) capped with 5 nm Ta, were subsequently deposited. X-ray diffraction measurements confirm the presence of Mn3Ga (0 0 0 2) and (0 0 0 4) peaks characteristic of the D019 antiferromagnetic structure. The 6 nm thick Mn3Ga film shows the largest exchange bias of 430 Oe at 120 K with a blocking temperature of 225 K. The blocking temperature is found to decrease with increasing Mn3Ga thickness. These results in combination with x-ray reflectivity measurements confirm that the quality of the Mn3Ga/Co0.6Fe0.4 interface controls the exchange bias, with the sharp interface with the 6-nm-thick Mn3Ga inducing the largest exchange bias. The magneto-crystalline anisotropy for 6 nm thick Mn3Ga thin film sample is calculated to be . Such a binary antiferromagnetic Heusler alloy is compatible with the current memory fabrication process and hence has a great potential for antiferromagnetic spintronics.

  11. Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells

    International Nuclear Information System (INIS)

    Badawy, Waheed A.

    2008-01-01

    Photovoltaic and photoelectrochemical systems were prepared by the formation of a thin porous film on silicon. The porous silicon layer was formed on the top of a clean oxide free silicon wafer surface by anodic etching in HF/H 2 O/C 2 H 5 OH mixture (2:1:1). The silicon was then covered by an oxide film (tin oxide, ITO or titanium oxide). The oxide films were prepared by the spray/pyrolysis technique which enables doping of the oxide film by different atoms like In, Ru or Sb during the spray process. Doping of SnO 2 or TiO 2 films with Ru atoms improves the surface characteristics of the oxide film which improves the solar conversion efficiency. The prepared solar cells are stable against environmental attack due to the presence of the stable oxide film. It gives relatively high short circuit currents (I sc ), due to the presence of the porous silicon layer, which leads to the recorded high conversion efficiency. Although the open-circuit potential (V oc ) and fill factor (FF) were not affected by the thickness of the porous silicon film, the short circuit current was found to be sensitive to this thickness. An optimum thickness of the porous film and also the oxide layer is required to optimize the solar cell efficiency. The results represent a promising system for the application of porous silicon layers in solar energy converters. The use of porous silicon instead of silicon single crystals in solar cell fabrication and the optimization of the solar conversion efficiency will lead to the reduction of the cost as an important factor and also the increase of the solar cell efficiency making use of the large area of the porous structures

  12. Impacts of age and sex on retinal layer thicknesses measured by spectral domain optical coherence tomography with Spectralis.

    Science.gov (United States)

    Nieves-Moreno, María; Martínez-de-la-Casa, José M; Morales-Fernández, Laura; Sánchez-Jean, Rubén; Sáenz-Francés, Federico; García-Feijoó, Julián

    2018-01-01

    To examine differences in individual retinal layer thicknesses measured by spectral domain optical coherence tomography (SD-OCT) (Spectralis®) produced with age and according to sex. Cross-sectional, observational study. The study was conducted in 297 eyes of 297 healthy subjects aged 18 to 87 years. In one randomly selected eye of each participant the volume and mean thicknesses of the different macular layers were measured by SD-OCT using the instrument's macular segmentation software. Volume and mean thickness of macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigmentary epithelium (RPE) and photoreceptor layer (PR). Retinal thickness was reduced by 0.24 μm for every one year of age. Age adjusted linear regression analysis revealed mean GCL, IPL, ONL and PR thickness reductions and a mean OPL thickness increase with age. Women had significantly lower mean GCL, IPL, INL, ONL and PR thicknesses and volumes and a significantly greater mRNFL volume than men. The thickness of most retinal layers varies both with age and according to sex. Longitudinal studies are needed to determine the rate of layer thinning produced with age.

  13. Characterization of anisotropic UF-membranes: top layer thickness and pore structure

    NARCIS (Netherlands)

    Cuperus, F.P.; Cuperus, F.P.; Bargeman, D.; Bargeman, D.; Smolders, C.A.; Smolders, C.A.

    1991-01-01

    Anisotropic poly(2,6-dimethyl-, 1,4-phenylene oxide) (PPO) ultrafiltration membranes are characterized by means of two techniques. A new method for the determination of skin thicknesses, the gold sol method, is introduced and applied to these membranes. The membranes appeared to have a well-defined

  14. Novel sensing approach for LPG leakage detection: Part II: Effects of particle size, composition and coating layer thickness

    KAUST Repository

    Mukhopadhyay, Subhas

    2015-10-30

    Prominent research has been going on to develop a low-cost, efficient gas sensing system. The paper presents a continuation of our earlier research work done to develop a new sensing approach for gas detection at ambient conditions. The work exhibits the optimization of the response time of the sensor by inhabiting characteristic changes like variation in the concentration of the dispersion medium, thickness of the coating and the size of the dispersed medium. Different concentrations of the dispersion medium in the coated suspension were tested to determine the optimal composition required to achieve the highest sensitivity of the tin oxide (SnO2) layer towards the tested gas. The control over adsorption and desorption of the gas molecules in the coated layer was achieved by investigating the particle size of the dispersed medium. The response time of the coated sensor was encouraging and owns a promising potential to the development of a more efficient gas sensing system.

  15. Nonmonotonic behaviour of superconducting critical temperature of Nb/CuNi bilayers with a nanometer range of layer thickness

    International Nuclear Information System (INIS)

    Morari, R.; Antropov, E.; Socrovisciuc, A.; Prepelitsa, A.; Zdravkov, V.I.; Tagirov, L.R.; Kupriyanov, M.Yu.; Sidorenko, A.S.

    2009-01-01

    Present work reports the result of the proximity effect investigation for superconducting Nb/CuNi-bilayers with the thickness of the ferromagnetic layer (Cu x Ni 1-x ) being in the sub-nanometer range. It was found a non-monotonic behavior of the critical temperature T c , i.e. its growth with the increasing of the ferromagnetic layer thickness dF, for the series of the samples with constant thickness of Nb layer, (d Nb = const). (authors)

  16. Scanning laser polarimetry retinal nerve fiber layer thickness measurements after LASIK.

    Science.gov (United States)

    Zangwill, Linda M; Abunto, Teresa; Bowd, Christopher; Angeles, Raymund; Schanzlin, David J; Weinreb, Robert N

    2005-02-01

    To compare retinal nerve fiber layer (RNFL) thickness measurements before and after LASIK. Cohort study. Twenty participants undergoing LASIK and 14 normal controls. Retinal nerve fiber layer thickness was measured before LASIK and approximately 3 months after surgery in one eye each of 20 patients using a scanning laser polarimeter (GDx Nerve Fiber Analyzer) with fixed corneal compensation (FCC), one with variable corneal compensation (GDx VCC), and optical coherence tomography (OCT). Fourteen normal controls also were tested at baseline and approximately 3 months later. Retinal nerve fiber layer thicknesses measured with the GDx FCC, GDx VCC, and OCT. At baseline, mean (95% confidence interval [CI]) RNFL thicknesses for the GDx FCC, GDx VCC, and OCT were 78.1 microm (72.2-83.9), 54.3 microm (52.7-56.0), and 96.8 microm (93.2-100.5), respectively. In both LASIK and control groups, there were no significant changes between baseline and follow-up examinations in GDx VCC and OCT RNFL thickness measurements globally or in the superior and inferior quadrants (mean change, FCC measurements between baseline and follow-up. In LASIK patients, significant reductions were observed in GDx FCC RNFL measurements. Average absolute values of the mean (95% CI) change in thickness were 12.4 microm (7.7-17.2), 15.3 microm (9.6-20.9), and 12.9 microm (7.6-18.1) for GDx FCC RNFL measurements superiorly, inferiorly, and globally, respectively (all Ps FCC RNFL thickness measurements after LASIK is a measurement artifact and is most likely due to erroneous compensation for corneal birefringence. With scanning laser polarimetry, it is mandatory to compensate individually for change in corneal birefringence after LASIK to ensure accurate RNFL assessment.

  17. Ultrasound-based measurement of liquid-layer thickness: A novel time-domain approach

    Science.gov (United States)

    Praher, Bernhard; Steinbichler, Georg

    2017-01-01

    Measuring the thickness of a thin liquid layer between two solid materials is important when the adequate separation of metallic parts by a lubricant film (e.g., in bearings or mechanical seals) is to be assessed. The challenge in using ultrasound-based systems for such measurements is that the signal from the liquid layer is a superposition of multiple reflections. We have developed an algorithm for reconstructing this superimposed signal in the time domain. By comparing simulated and measured signals, the time-of-flight of the ultrasonic pulse in a layer can be estimated. With the longitudinal sound velocity known, the layer thickness can then be calculated. In laboratory measurements, we validate successfully (maximum relative error 4.9%) our algorithm for layer thicknesses ranging from 30 μm to 200 μm. Furthermore, we tested our method in the high-temperature environment of polymer processing by measuring the clearance between screw and barrel in the plasticisation unit of an injection moulding machine. The results of such measurements can indicate (i) the wear status of the tribo-mechanical screw-barrel system and (ii) unsuitable process conditions.

  18. Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections

    Science.gov (United States)

    Messinger, Jeffrey D.; Sloan, Kenneth R.; Mitra, Arnab; McGwin, Gerald; Spaide, Richard F.

    2011-01-01

    Purpose. To provide a comprehensive description of chorioretinal layer thicknesses in the normal human macula, including two-layer pairs that can produce a combined signal in some optical coherence tomography (OCT) devices (ganglion cell [GCL] and inner plexiform [IPL] layers and outer plexiform [OPL] and outer nuclear [ONL] layers). Methods. In 0.8-μm-thick, macula-wide sections through the foveola of 18 donors (age range, 40–92 years), 21 layers were measured at 25 locations by a trained observer and validated by a second observer. Tissue volume changes were assessed by comparing total retinal thickness in ex vivo OCT and in sections. Results. Median tissue shrinkage was 14.5% overall and 29% in the fovea. Histologic laminar boundaries resembled those in SD-OCT scans, but the shapes of the foveolar OPL and ONL differed. Histologic GCL, IPL, and OPLHenle were thickest at 0.8. to 1, 1.5, and 0.4 mm eccentricity, respectively. ONL was thickest in an inward bulge at the foveal center. At 1 mm eccentricity, GCL, INL, and OPLHenle represented 17.3% to 21.1%, 18.0% to 18.5%, and 14.2% to 16.6% of total retinal thickness, respectively. In donors ≥70 years of age, the RPE and choroid were 17.1% and 29.6% thinner and OPLHenle was 20.8% thicker than in donors macula were generated. Newer OCT systems can separate GCL from IPL and OPLHenle from ONL, with good agreement for the proportion of retinal thickness occupied by OPLHenle in OCT and histology. The thickening of OPLHenle in older eyes may reflect Müller cell hypertrophy associated with rod loss. PMID:21421869

  19. [Multiplayer white organic light-emitting diodes with different order and thickness of emission layers].

    Science.gov (United States)

    Xu, Wei; Lu, Fu-Han; Cao, Jin; Zhu, Wen-Qing; Jiang, Xue-Yin; Zhang, Zhi-Lin; Xu, Shao-Hong

    2008-02-01

    In multilayer OLED devices, the order and thickness of the emission layers have great effect on their spectrum. Based on the three basic colours of red, blue and green, a series of white organic light-emitting diodes(WOLEDS)with the structure of ITO/CuPc(12 nm)/NPB(50 nm)/EML/LiF(1 nm)/Al(100 nm) and a variety of emission layer's orders and thicknesses were fabricated. The blue emission material: 2-t-butyl-9,10-di-(2-naphthyl)anthracene (TBADN) doped with p-bis(p-N, N-diphenyl-amono-styryl)benzene(DSA-Ph), the green emission material: tris-[8-hydroxyquinoline]aluminum(Alq3) doped with C545, and the red emission material: tris-[8-hydroxyquinoline]aluminum( Alq3) doped with 4-(dicyanomethylene)-2-t-butyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) were used. By adjusting the order and thickness of each emission layer in the RBG structure, we got a white OLED with current efficiency of 5.60 cd x A(-1) and Commission Internationale De L'Eclairage (CIE) coordinates of (0. 34, 0.34) at 200 mA x cm(-2). Its maximum luminance reached 20 700 cd x m(-2) at current density of 400 mA x cm(-2). The results were analyzed on the basis of the theory of excitons' generation and diffusion. According to the theory, an equation was set up which relates EL spectra to the luminance efficiency, the thickness of each layer and the exciton diffusion length. In addition, in RBG structure with different thickness of red layer, the ratio of th e spectral intensity of red to that of blue was calculated. It was found that the experimental results are in agreement with the theoretical values.

  20. Intermediate layer thickness dependence on switching field distribution in perpendicular recording media

    International Nuclear Information System (INIS)

    Sbiaa, R.; Gandhi, R.; Srinivasan, K.; Piramanayagam, S.N.; Seoh, R.M.

    2009-01-01

    The effect of intermediate layer (IL) thickness on crystallographic texture and magnetic properties of CoCrPtSiO 2 granular perpendicular recording media was investigated with switching field distribution (SFD) as the focus. Even though the c-axis orientation of the Co-based recording layer (RL) broadens with the reduction of IL thickness, the SFD becomes narrower. This result demonstrates that the intrinsic SFD is not directly dependent on c-axis orientation of the recording layer but instead dependent on the magnitude of exchange coupling. It is thus possible to have a medium with thin IL and narrow SFD. This is desirable for bit-patterned media (BPM), where highly exchange-coupled grains are required.

  1. Influence of strain on the growth of thick InGaN layers

    International Nuclear Information System (INIS)

    Stellmach, J.; Leyer, M.; Pristovsek, M.; Kneissl, M.

    2008-01-01

    The growth of high quality InGaN alloys is critical for a number of various optoelectronic device applications like LEDs and laser diodes. Nevertheless, the exact growth mechanisms of InGaN with high indium content is still not fully understood. In the present study the growth of thick InGaN layers was systematically investigated. InGaN films with thicknesses between ∝35 nm and ∝200 nm were grown on GaN templates with metal-organic vapour phase epitaxy (MOVPE). The group III partial pressures of 1.1 Pa for TMGa, 0.45 Pa for TMIn and the V/III-ratio of 1600 were kept constant. The growth temperature was varied between 750 C and 800 C. The growth of InGaN layer was characterized by in-situ spectroscopic ellipsometry (SE). Up to temperatures of 790 C structural analysis by XRD showed two strained layers with different indium content. The formation of the layer structure was investigated by varying the growth times at 770 C. In the first 500 s (35 nm) a rough (rms=9 nm) and pseudomorphically strained InGaN layer with low indium content (4%) is formed. Between 500 s and 1000 s this strained layer becomes smoother (rms=3.4 nm). For thicknesses beyond the In content increases (8% at 84 nm) and reaches 11% at 200 nm. We propose that the transition from a first layer with a low indium content to a second layer with an higher indium content is due to a gradual release of strain

  2. Retina ganglion cell/inner plexiform layer and peripapillary nerve fiber layer thickness in patients with acromegaly.

    Science.gov (United States)

    Şahin, Muhammed; Şahin, Alparslan; Kılınç, Faruk; Yüksel, Harun; Özkurt, Zeynep Gürsel; Türkcü, Fatih Mehmet; Pekkolay, Zafer; Soylu, Hikmet; Çaça, İhsan

    2017-06-01

    Increased secretion of growth hormone and insulin-like growth factor-1 in acromegaly has various effects on multiple organs. However, the ocular effects of acromegaly have yet to be investigated in detail. The aim of the present study was to compare retina ganglion cell/inner plexiform layer (GCIPL) and peripapillary nerve fiber layer thickness (pRNFL) between patients with acromegaly and healthy control subjects using spectral domain optical coherence tomography (SD-OCT). This cross-sectional, comparative study included 18 patients with acromegaly and 20 control subjects. All participants underwent SD-OCT to measure pRNFL (in the seven peripapillary areas), GCIPL (in the nine ETDRS areas), and central macular thickness (CMT). Visual field (VF) examinations were performed using a Humphrey field analyzer in acromegalic patients. Measurements were compared between patients with acromegaly and control subjects. A total of 33 eyes of 18 patients with acromegaly and 40 eyes of 20 control subjects met the inclusion criteria of the present study. The overall calculated average pRNFL thickness was significantly lower in patients with acromegaly than in control subjects (P = 0.01), with pRNFL thickness significantly lower in the temporal superior and temporal inferior quadrants. Contrary to our expectations, pRNFL thickness in the nasal quadrant was similar between acromegalic and control subjects. The mean overall pRNFL thickness and superonasal, nasal, inferonasal, and inferotemporal quadrant pRNFL thicknesses were found to correlate with the mean deviation (MD) according to Spearman's correlation. However, other quadrants were not correlated with VF sensitivity. No significant difference in CMT values was observed (P = 0.6). GCIPL thickness was significantly lower in all quadrants of the inner and outer macula, except for central and inferior outer quadrants, in the acromegaly group than that in the control group (P acromegaly compared with that in control subjects

  3. Positron annihilation spectroscopy for the determination of thickness and defect profile in thin semiconductor layers

    Science.gov (United States)

    Zubiaga, A.; García, J. A.; Plazaola, F.; Tuomisto, F.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2007-05-01

    We present a method, based on positron annihilation spectroscopy, to obtain information on the defect depth profile of layers grown over high-quality substrates. We have applied the method to the case of ZnO layers grown on sapphire, but the method can be very easily generalized to other heterostructures (homostructures) where the positron mean diffusion length is small enough. Applying the method to the ratio of W and S parameters obtained from Doppler broadening measurements, W/S plots, it is possible to determine the thickness of the layer and the defect profile in the layer, when mainly one defect trapping positron is contributing to positron trapping at the measurement temperature. Indeed, the quality of such characterization is very important for potential technological applications of the layer.

  4. Numerical algorithm for laser treatment of powder layer with variable thickness

    Science.gov (United States)

    Soboleva, Polina; Knyazeva, Anna

    2017-12-01

    Two-dimensional model of laser treatment of powder layer on the substrate is proposed in this paper. The model takes into account the shrinkage of powder layer due to the laser treatment. Three simplified variants of the model were studied. Firstly, the influence of optical properties of powder layer on the maximal temperature was researched. Secondly, two-dimensional model for given thickness of powder layer was studied where practically uniform temperature distribution across thin powder layer was demonstrated. Then, the numerical algorithm was developed to calculate the temperature field for the area of variable size. The impact of the optical properties of powder material on the character of the temperature distribution was researched numerically.

  5. Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films

    Science.gov (United States)

    Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna

    2017-11-01

    Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.

  6. Prospective Study on Retinal Nerve Fibre Layer Thickness Changes in Isolated Unilateral Retrobulbar Optic Neuritis

    Directory of Open Access Journals (Sweden)

    Gordon S. K. Yau

    2013-01-01

    Full Text Available Purpose. To investigate the retinal nerve fibre layer (RNFL thickness after unilateral acute optic neuritis using optical coherence tomography (OCT. Patients and Methods. This prospective cohort study recruited consecutive patients with a first episode of isolated, unilateral acute optic neuritis. RNFL thickness and visual acuity (VA of the attack and normal fellow eye were measured at presentation and 3 months in both the treatment and nontreatment groups. Results. 11 subjects received systemic steroids and 9 were treated conservatively. The baseline RNFL thickness was similar in the attack and fellow eye (P≥0.4. At 3 months, the attack eye had a thinner temporal (P=0.02 and average (P=0.05 RNFL compared to the fellow eye. At 3 months, the attack eye had significant RNFL thinning in the 4 quadrants and average thickness (P≤0.0002 compared to baseline. The RNFL thickness between the treatment and nontreatment groups was similar at baseline and 3 months (P≥0.1. Treatment offered better VA at 3 months (0.1 ± 0.2 versus 0.3 ± 0.2 LogMAR, P=0.04. Conclusion. Generalized RNFL thinning occurred at 3 months after a first episode of acute optic neuritis most significantly in the temporal quadrant and average thickness. Visual improvement with treatment was independent of RNFL thickness.

  7. Formation of Lamellar Structured Oxide Dispersion Strengthening Layers in Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Park, Jung-Hwan; Park, Dong-Jun; Kim, Hyun-Gil; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, Yoon-Soo [Hanbat National University, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. The oxide dispersion strengthened (ODS) zirconium was proposed to increase the strength of the Zr-based alloy up to high temperatures. According to our previous investigations, the tensile strength of Zircaloy-4 was increased by up to 20% with the formation of a thin dispersed oxide layer with a thickness less than 10% of that of the Zircaloy-4 substrate. However, the tensile elongation of the samples decreased drastically. The brittle fracture was a major concern in development of the ODS Zircaloy-4. In this study, a lamellar structure of ODS layer was formed to increase ductility of the ODS Zircaloy-4. The mechanical properties were varied depending on the structure of ODS layer. For example, the partial formation of ODS layer with the thickness of 10% to the substrate thickness induced the increase in tensile strength up to about 20% than fresh Zircaloy-4.

  8. Changes in Macular Retinal Layers and Peripapillary Nerve Fiber Layer Thickness after 577-nm Pattern Scanning Laser in Patients with Diabetic Retinopathy.

    Science.gov (United States)

    Shin, Ji Soo; Lee, Young Hoon

    2017-12-01

    The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p 0.05). Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. © 2017 The Korean Ophthalmological Society

  9. Impact of thickness on the structural properties of high tin content GeSn layers

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.; Gassenq, A.; Milord, L.; Pauc, N.; Reboud, V.; Calvo, V.

    2017-09-01

    We have grown various thicknesses of GeSn layers in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition cluster tool using digermane (Ge2H6) and tin tetrachloride (SnCl4). The growth pressure (100 Torr) and the F(Ge2H6)/F(SnCl4) mass-flow ratio were kept constant, and incorporation of tin in the range of 10-15% was achieved with a reduction in temperature: 325 °C for 10% to 301 °C for 15% of Sn. The layers were grown on 2.5 μm thick Ge Strain Relaxed Buffers, themselves on Si(0 0 1) substrates. We used X-ray Diffraction, Atomic Force Microscopy, Raman spectroscopy and Scanning Electron Microscopy to measure the Sn concentration, the strain state, the surface roughness and thickness as a function of growth duration. A dramatic degradation of the film was seen when the Sn concentration and layer thickness were too high resulting in rough/milky surfaces and significant Sn segregation.

  10. Leaping shampoo glides on a 500-nm-thick lubricating air layer

    Science.gov (United States)

    Li, Erqiang; Lee, Sanghyun; Marston, Jeremy; Bonito, Andrea; Thoroddsen, Sigurdur

    2013-11-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer [Lee et al., Phys. Rev. E 87, 061001 (2013)]. We identify this layer by looking through the pool liquid and observing its rupture into fine micro-bubbles. The resulting micro-bubble sizes suggest that the thickness of this air layer is around 500 nm. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding, with the shear stress within the thin air layer sufficient for the observed deceleration. Particle tracking within the jet shows uniform velocity, with no pronounced shear, which would be required for shear-thinning effects. The role of the surfactant may primarily be to stabilize the air film.

  11. Influence of emissive layer thickness on electrical characteristics of polyfluorene copolymer based polymer light emitting diodes

    International Nuclear Information System (INIS)

    Das, D; Gopikrishna, P; Singh, A; Dey, A; Iyer, P K

    2016-01-01

    Polymer light emitting diodes (PLEDs) with a device configuration of ITO/PEDOT:PSS/PFONPN01 [Poly [2,7-(9,9’-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)]/LiF/Al have been fabricated by varying the emissive layer (EML) thickness (40/65/80/130 nm) and the influence of EML thickness on the electrical characteristics of PLED has been studied. PLED can be modelled as a simple combination of resistors and capacitors. The impedance spectroscopy analysis showed that the devices with different EML thickness had different values of parallel resistance (R P ) and the parallel capacitance (C P ). The impedance of the devices is found to increase with increasing EML thickness resulting in an increase in the driving voltage. The device with an emissive layer thickness of 80nm, spin coated from a solution of concentration 15 mg/mL is found to give the best device performance with a maximum brightness value of 5226 cd/m 2 . (paper)

  12. Perform Tests and Document Results and Analysis of Oxide Layer Effects and Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E. D. [ORNL; DelCul, G. D. [ORNL; Spencer, B. B. [ORNL; Hunt, R. D. [ORNL; Ausmus, C. [ORNL

    2014-08-30

    During the initial feasibility test using actual used nuclear fuel (UNF) cladding in FY 2012, an incubation period of 30–45 minutes was observed in the initial dry chlorination. The cladding hull used in the test had been previously oxidized in a dry air oxidation pretreatment prior to removal of the fuel. The cause of this incubation period was attributed to the resistance to chlorination of an oxide layer imparted by the dry oxidation pretreatment on the cladding. Subsequently in 2013, researchers at the Korea Atomic Energy Institute (KAERI) reported on their chlorination study [R1] on ~9-gram samples of unirradiated ZirloTM cladding tubes that had been previously oxidized in air at 500oC for various time periods to impart oxide layers of varying thickness. In early 2014, discussions with Indefinite Delivery, Indefinite Quantity (IDIQ) contracted technical consultants from Westinghouse described their previous development (and patents) [R2] on methods of chemical washing to remove some or all of the hydrous oxide layer imparted on UNF cladding during irradiation in light water reactors (LWRs) . Thus, the Oak Ridge National Laboratory (ORNL) study, described herein, was planned to extend the KAERI study on the effects of anhydrous oxide layers, but on larger ~100-gram samples of unirradiated zirconium alloy cladding tubes, and to investigate the effects of various methods of chemical pretreatment prior to chlorination with 100% chlorine on the average reaction rates and Cl2 usage efficiencies.

  13. Aluminum oxide barrier coating on polyethersulfone substrate by atomic layer deposition for barrier property enhancement

    International Nuclear Information System (INIS)

    Kim, Hyun Gi; Kim, Sung Soo

    2011-01-01

    Aluminum oxide layers were deposited on flexible polyethersulfone (PES) substrates via plasma enhanced atomic layer deposition (PEALD) process using trimethylaluminum (TMA) and oxygen as precursor and reactant materials. Several process parameters in PEALD process were investigated in terms of refractive index and layer thickness. Number of process cycle increased the thickness and refractive index of the layer to enhance the barrier properties. Non-physisorbed TMA and unreacted oxygen were purged before and after the plasma reaction, respectively. Identical purge time was applied to TMA and oxygen and it was optimized for 10 s. Thinner and denser layer was formed as substrate temperature increased. However, the PES substrate could be deformed above 120 o C. Aluminum oxide layer formed on PES at optimized conditions have 11.8 nm of thickness and reduced water vapor transmission rate and oxygen transmission rate to below 4 x 10 -3 g/m 2 day and 4 x 10 -3 cm 3 /m 2 day, respectively. Polycarbonate and polyethylene naphthalate films were also tested at optimized conditions, and they also showed quite appreciable barrier properties to be used as plastic substrates.

  14. Macular retinal ganglion cell-inner plexiform layer thickness in patients on hydroxychloroquine therapy.

    Science.gov (United States)

    Lee, Min Gyu; Kim, Sang Jin; Ham, Don-Il; Kang, Se Woong; Kee, Changwon; Lee, Jaejoon; Cha, Hoon-Suk; Koh, Eun-Mi

    2014-11-25

    We evaluated macular ganglion cell-inner plexiform layer (GC-IPL) thickness using spectral-domain optical coherence tomography (SD-OCT) in patients with chronic exposure to hydroxychloroquine (HCQ). This study included 130 subjects, who were divided into three groups: Group 1A, 55 patients with HCQ use ≥5 years; Group 1B, 46 patients with HCQ use 1000 g), significant correlations were not observed. This study revealed that macular GC-IPL thickness did not show definite correlations with HCQ use. However, some patients, especially with HCQ retinopathy or high cumulative doses, showed thin GC-IPL. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  15. Temperature-dependent evolution of the wetting layer thickness during Ge deposition on Si(001).

    Science.gov (United States)

    Bergamaschini, R; Brehm, M; Grydlik, M; Fromherz, T; Bauer, G; Montalenti, F

    2011-07-15

    The evolution of the wetting layer (WL) thickness during Ge deposition on Si(001) is analyzed with the help of a rate-equation approach. The combined role of thickness, island volume and shape-dependent chemical potentials is considered. Several experimental observations, such as WL thinning following the pyramid-to-dome transformation, are captured by the model, as directly demonstrated by a close comparison with photoluminescence measurements (PL) on samples grown at three different temperatures. The limitations of the model in describing late stages of growth are critically addressed.

  16. Second Harmonic Generation characterization of SOI wafers: Impact of layer thickness and interface electric field

    Science.gov (United States)

    Damianos, D.; Vitrant, G.; Lei, M.; Changala, J.; Kaminski-Cachopo, A.; Blanc-Pelissier, D.; Cristoloveanu, S.; Ionica, I.

    2018-05-01

    In this work, we investigate Second Harmonic Generation (SHG) as a non-destructive characterization method for Silicon-On-Insulator (SOI) materials. For thick SOI stacks, the SHG signal is related to the thickness variations of the different layers. However, in thin SOI films, the comparison between measurements and optical modeling suggests a supplementary SHG contribution attributed to the electric fields at the SiO2/Si interfaces. The impact of the electric field at each interface of the SOI on the SHG is assessed. The SHG technique can be used to evaluate interfacial electric fields and consequently interface charge density in SOI materials.

  17. Investigation of Top/bottom Electrode and Diffusion Barrier Layer for PZT thick film MEMS Sensors

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Hindrichsen, Christian Carstensen; Lou-Møller, R.

    2007-01-01

    In this work screen printed piezoelectric Ferroperm PZ26 lead zirconate titanate (PZT) thick film is used for two MEMS devices. A test structure is used to investigate several aspects regarding bottom and top electrodes. 450 nm ZrO2 thin film is found to be an insufficient diffusion barrier layer...... for thick film PZT sintered at 850degC. E-beam evaporated Al and Pt is patterned on PZT with a lift-off process with a line width down to 3 mum. The roughness of the PZT is found to have a strong influence on the conductance of the top electrode....

  18. Secondary electron emission influenced by oxidation on the aluminum surface: the roles of the chemisorbed oxygen and the oxide layer

    Science.gov (United States)

    Li, Jiangtao; Hoekstra, Bart; Wang, Zhen-Bin; Qiu, Jie; Pu, Yi-Kang

    2018-04-01

    A relationship between the apparent secondary electron yield ({γ }{{se}}) and the oxygen coverage/oxide layer thickness on an aluminum cathode is obtained in an experiment under a controlled environment. The apparent secondary electron yield ({γ }{{se}}) is deduced from the breakdown voltage between two parallel plate electrodes in a 360 mTorr argon environment using a simple Townsend breakdown model with the assumption that the variation of the apparent secondary electron yield is dominated by the variation of the argon ion induced processes. The oxygen coverage/oxide layer thickness on the aluminum cathode is measured by a semi in situ x-ray photoemission spectroscopy equipment which is directly attached to the discharge chamber. It is found that three phases exist: (1) in the monomonolayer regime, as the oxygen coverage increases from 0 to 0.3, {γ }{{se}} decreases by nearly 40 % , (2) as the oxygen coverage increases from 0.3 to 1, {γ }{{se}} keeps nearly constant, (3) as the oxide layer thickness increases from about 0.3 nm to about 1.1 nm, {γ }{{se}} increases by 150 % . We propose that, in the submonolayer regime, the chemisorbed oxygen on the aluminum surface causes the decrease of {γ }{{se}} by creating a local potential barrier, which reduces the Auger neutralization rate and the energy gained by the Auger electrons. In the multilayer regime, as the oxide layer grows in thickness, there are three proposed mechanisms which cause the increase of {γ }{{se}}: (1) the work function decreases; (2) resonance neutralization and Auger de-excitation may exist. This is served as another channel for secondary electron production; (3) the kinetic energy of Auger electrons is increased on average, leading to a higher probability for electrons to overcome the surface potential barrier.

  19. Direct measurements of the velocity and thickness of ''explosively'' propagating buried molten layers in amorphous silicon

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Jellison, G.E. Jr.; Pennycook, S.J.; Withrow, S.P.; Mashburn, D.N.

    1986-01-01

    Simultaneous infrared (1152 nm) and visible (633 nm) reflectivity measurements with nanosecond resolution were used to study the initial formation and subsequent motion of pulsed KrF laser-induced ''explosively'' propagating buried molten layers in ion implantation-amorphized silicon. The buried layer velocity decreases with depth below the surface, but increases with KrF laser energy density; a maximum velocity of about 14 m/s was observed, implying an undercooling-velocity relationship of approx. 14 K/(m/s). Z-contrast scanning transmission electron microscopy was used to form a direct chemical image of implanted Cu ions transported by the buried layer and showed that the final buried layer thickness was <15 nm

  20. Macular and peripapillary retinal nerve fiber layer thickness in children with hyperopic anisometropic amblyopia

    Directory of Open Access Journals (Sweden)

    Shuang-Qing Wu

    2013-02-01

    Full Text Available AIM:To compare the retinal nerve fiber layer (RNFL thickness and macular thickness in the amblyopic eye with that in the sound eye of children with hyperopic anisometropic amblyopia using optical coherence tomography (OCT.METHODS: A prospective, nonrandom, intraindividual comparative cohort study includes 72 children with hyperopic anisometropic amblyopia in a single center. Macular thickness, macular foveola thickness, and peripapillary RNFL thickness were compared between the amblyopia eyes and the contralateral sound eyes.RESULTS:There were 38 male and 34 female patients, with a mean age as 9.7±1.9 years (range, 5–16 years. Hyperopic was +3.62±1.16D (range +2.00D to +6.50D in the amblyopic eyes, which was significantly higher in the control eyes with +0.76±0.90D (range 0D to +2.00D (P P = 0.02. The mean macular foveola thickness was significantly thicker in the amblyopic eyes than the contralateral sound eyes (181.4±14.2µm vs 175.2±13.3µm, P CONCLUSION:Eyes with hyperopic anisometropic amblyopia are found thicker macular foveola and peripapillary RNFL than the contralateral eyes in children.

  1. Impact of active layer thickness of nitrogen-doped In–Sn–Zn–O films on materials and thin film transistor performances

    Science.gov (United States)

    Li, Zhi-Yue; Yang, Hao-Zhi; Chen, Sheng-Chi; Lu, Ying-Bo; Xin, Yan-Qing; Yang, Tian-Lin; Sun, Hui

    2018-05-01

    Nitrogen-doped indium tin zinc oxide (ITZO:N) thin film transistors (TFTs) were deposited on SiO2 (200 nm)/p-Si〈1 0 0〉 substrates by RF magnetron sputtering at room temperature. The structural, chemical compositions, surface morphology, optical and electrical properties as a function of the active layer thickness were investigated. As the active layer thickness increases, Zn content decreases and In content increases gradually. Meanwhile, Sn content is almost unchanged. When the thickness of the active layer is more than 45 nm, the ITZO:N films become crystallized and present a crystal orientation along InN(0 0 2) plan. No matter what the thickness is, ITZO:N films always display a high transmittance above 80% in the visible region. Their optical band gaps fluctuate between 3.4 eV and 3.62 eV. Due to the dominance of low interface trap density and high carrier concentration, ITZO:N TFT shows enhanced electrical properties as the active layer thickness is 35 nm. Its field-effect mobility, on/off radio and sub-threshold swing are 17.53 cm2 V‑1 · s‑1, 106 and 0.36 V/dec, respectively. These results indicate that the suitable thickness of the active layer can enhance the quality of ITZO:N films and decrease the defects density of ITZO:N TFT. Thus, the properties of ITZO:N TFT can be optimized by adjusting the thickness of the active layer.

  2. Subattoampere current induced by single ions in silicon oxide layers of nonvolatile memory cells

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Larcher, L.; Visconti, A.; Bonanomi, M.

    2006-01-01

    A single ion impinging on a thin silicon dioxide layer generates a number of electron/hole pairs proportional to its linear energy transfer coefficient. Defects generated by recombination can act as a conductive path for electrons that cross the oxide barrier, thanks to a multitrap-assisted mechanism. We present data on the dependence of this phenomenon on the oxide thickness by using floating gate memory arrays. The tiny number of excess electrons stored in these devices allows for extremely high sensitivity, impossible with any direct measurement of oxide leakage current. Results are of particular interest for next generation devices

  3. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.

    2015-02-13

    Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.

  4. The effect of donor layer thickness on the power conversion efficiency of organic photovoltaic devices fabricated with a double small-molecular layer

    International Nuclear Information System (INIS)

    Lee, Su-Hwan; Kim, Dal-Ho; Shim, Tae-Hun; Park, Jea-Gun

    2009-01-01

    In organic photovoltaic (OPV) devices fabricated with a double small-molecular layer, the power conversion efficiency strongly depends on the thickness of the organic donor layer (here, copper phthalocyanine). In other words, the power conversion efficiency increases with the donor layer thickness up to a specific thickness (∼12.7 nm) and then decreases beyond that thickness. This trend is associated with the light absorption and carrier transport resistance of the small-molecular donor layer, both of which strongly depend on the layer thickness. Experimental and calculated results showed that the short-circuit current due to light absorption increased with the donor layer thickness, while that due to current through the donor layer decreased with 1/R. Since the total short-circuit current is the product of the light absorption current and current through the donor layer, there is a trade-off, and the maximum power conversion efficiency occurs at a specific organic donor layer thickness (e.g. ∼12.7 nm in this experiment).

  5. On the Fundamental Mode Love Wave in Devices Incorporating Thick Viscoelastic Layers

    International Nuclear Information System (INIS)

    Liu Jian-Sheng; Wang Li-Jun; He Shi-Tang

    2015-01-01

    A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90° X quartz substrate and two 28-μm periodic interdigital transducers. Both the calculated and the measured results show an increase in propagation velocity when h/λ > 0.05. The measured insertion loss of LWs is consistent with the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of LWs. (paper)

  6. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    Science.gov (United States)

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  7. Growth optimization for thick crack-free GaN layers on sapphire with HVPE

    Energy Technology Data Exchange (ETDEWEB)

    Richter, E.; Hennig, Ch.; Kissel, H.; Sonia, G.; Zeimer, U.; Weyers, M. [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, 12489 Berlin (Germany)

    2005-05-01

    Conditions for optimized growth of thick GaN layers with crack-free surfaces by HVPE are reported. It was found that a 1:1 mixture of H{sub 2}/N{sub 2} as carrier gas leads to the lowest density of cracks in the surface. Crack formation also depends on the properties of the GaN/sapphire templates used. Best results have been obtained for 5 {mu}m thick GaN/sapphire templates grown by MOVPE with medium compressive strain {epsilon}{sub zz} of about 0.05%. But there is no simple dependence of the crack formation on the strain status of the starting layer indicating that the HVPE growth of GaN can itself introduce strong tensile strain. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. [Performance dependence of organic light-emitting devices on the thickness of Alq3 emitting layer].

    Science.gov (United States)

    Lian, Jia-rong; Liao, Qiao-sheng; Yang, Rui-bo; Zheng, Wei; Zeng, Peng-ju

    2010-10-01

    The dependence of opto-electronical characteristics in organic light-emitting devices on the thickness of Alq3 emitter layer was studied, where MoO3, NPB, and Alq3 were used as hole injector, hole transporter, and emitter/electron transporter, respectively. By increasing the thickness of Alq3 layer from 20 to 100 nm, the device current decreased gradually, and the EL spectra of devices performed a little red shift with an obvious broadening in long wavelength range but a little decrease in intensity of short wavelength range. The authors simulated the EL spectra using the photoluminescence (PL) spectra of Alq3 as Alq3 intrinsic emission, which coincided with the experimental EL spectra well. The simulated results suggested that the effect of interference takes the major role in broadening the long wavelength range of EL spectra, and the distribution of emission zone largely affects the profile of EL spectra in short wavelength range.

  9. Thiophene Rings Improve the Device Performance of Conjugated Polymers in Polymer Solar Cells with Thick Active Layers

    NARCIS (Netherlands)

    Duan, C.; Gao, K.; Colberts, F. J. M.; Liu, F.; Meskers, S. C. J.; Wienk, M. M.; Janssen, R. A. J.

    2017-01-01

    Developing novel materials that tolerate thickness variations of the active layer is critical to further enhance the efficiency of polymer solar cells and enable large-scale manufacturing. Presently, only a few polymers afford high efficiencies at active layer thickness exceeding 200 nm and

  10. Predicting the Equilibrium Deuterium-Tritium Fuel Layer Thickness Profile in an Indirect-Drive Hohlraum Capsule

    International Nuclear Information System (INIS)

    Sanchez, Jorge J.; Giedt, Warren H.

    2004-01-01

    A numerical procedure for calculating the equilibrium thickness distribution of a thin layer of deuterium and tritium on the inner surface of an indirect drive target sphere (∼2.0 mm in diameter) is described. Starting with an assumed uniform thickness layer and with specified thermal boundary conditions, the temperature distribution throughout the capsule and hohlraum (including natural convection in the hohlraum gas) is calculated. Results are used to make a first estimate of the final non-uniform thickness distribution of the layer. This thickness distribution is then used to make a second calculation of the temperature distribution with the same boundary conditions. Legendre polynomial coefficients are evaluated for the two temperature distributions and the two thickness profiles. Final equilibrium Legendre coefficients are determined by linear extrapolation. From these coefficients, the equilibrium layer thickness can be computed

  11. Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects.

    Directory of Open Access Journals (Sweden)

    Chunwei Zhang

    Full Text Available To investigate macular ganglion cell-inner plexiform layer (mGCIPL thickness in glaucomatous eyes with visible localized retinal nerve fiber layer (RNFL defects on stereophotographs.112 healthy and 149 glaucomatous eyes from the Diagnostic Innovations in Glaucoma Study (DIGS and the African Descent and Glaucoma Evaluation Study (ADAGES subjects had standard automated perimetry (SAP, optical coherence tomography (OCT imaging of the macula and optic nerve head, and stereoscopic optic disc photography. Masked observers identified localized RNFL defects by grading of stereophotographs.47 eyes had visible localized RNFL defects on stereophotographs. Eyes with visible localized RNFL defects had significantly thinner mGCIPL thickness compared to healthy eyes (68.3 ± 11.4 μm versus 79.2 ± 6.6 μm respectively, P<0.001 and similar mGCIPL thickness to glaucomatous eyes without localized RNFL defects (68.6 ± 11.2 μm, P = 1.000. The average mGCIPL thickness in eyes with RNFL defects was 14% less than similarly aged healthy controls. For 29 eyes with a visible RNFL defect in just one hemiretina (superior or inferior mGCIPL was thinnest in the same hemiretina in 26 eyes (90%. Eyes with inferior-temporal RNFL defects also had significantly thinner inferior-temporal mGCIPL (P<0.001 and inferior mGCIPL (P = 0.030 compared to glaucomatous eyes without a visible RNFL defect.The current study indicates that presence of a localized RNFL defect is likely to indicate significant macular damage, particularly in the region of the macular that topographically corresponds to the location of the RNFL defect.

  12. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection.

    Science.gov (United States)

    Mascagni, Daniela Branco Tavares; Miyazaki, Celina Massumi; da Cruz, Nilson Cristino; de Moraes, Marli Leite; Riul, Antonio; Ferreira, Marystela

    2016-11-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4μmol·L(-1) and sensitivity of 2.47μA·cm(-2)·mmol(-1)·L for glucose with the (GPDDA/GPSS)1/(GPDDA/GOx)2 architecture, whose thickness was 19.80±0.28nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Splitting diffraction peak in different thickness LL-interferometer and determination of thickness of damaged layer induced by electron irradiation of plates

    International Nuclear Information System (INIS)

    Truni, K.G.; Sedrakyan, A.G.; Papoyan, A.A.; Bezirganyan, P.A.

    1988-01-01

    Amplitude of twice reflected beam is calculated analytically, oscillatory dependence of peak intensity in the centre of diffraction image on the small variations in thickness is shown. The expression, clearly binding the splitting value of diffraction peak with variation in thickness of the interferometer plates, is received. The effect of variation in thickness on the splitting value of focal line is studied experimentally in case of irradiation of the equal-arm Π-shaped interferometer blocks by fast electron flow, thickness of the originated damaged layers are determined

  14. Lesion dehydration rate changes with the surface layer thickness during enamel remineralization

    Science.gov (United States)

    Chang, Nai-Yuan N.; Jew, Jamison M.; Fried, Daniel

    2018-02-01

    A transparent highly mineralized outer surface zone is formed on caries lesions during remineralization that reduces the permeability to water and plaque generated acids. However, it has not been established how thick the surface zone should be to inhibit the penetration of these fluids. Near-IR (NIR) reflectance coupled with dehydration can be used to measure changes in the fluid permeability of lesions in enamel and dentin. Based on our previous studies, we postulate that there is a strong correlation between the surface layer thickness and the rate of dehydration. In this study, the rates of dehydration for simulated lesions in enamel with varying remineralization durations were measured. Reflectance imaging at NIR wavelengths from 1400-2300 nm, which coincides with higher water absorption and manifests the greatest sensitivity to contrast changes during dehydration measurements, was used to image simulated enamel lesions. The results suggest that the relationship between surface zone thickness and lesion permeability is highly non-linear, and that a small increase in the surface layer thickness may lead to a significant decrease in permeability.

  15. Effect of ultrathin GeOx interfacial layer formed by thermal oxidation on Al2O3 capped Ge

    International Nuclear Information System (INIS)

    Han Le; Zhang Xiong; Wang Sheng-Kai; Xue Bai-Qing; Liu Hong-Gang; Wu Wang-Ran; Zhao Yi

    2014-01-01

    We propose a modified thermal oxidation method in which an Al 2 O 3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeO x interfacial layer, and obtain a superior Al 2 O 3 /GeO x /Ge gate stack. The GeO x interfacial layer is formed in oxidation reaction by oxygen passing through the Al 2 O 3 OBL, in which the Al 2 O 3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeO x interfacial layer would dramatically decrease as the thickness of Al 2 O 3 OBL increases, which is beneficial to achieving an ultrathin GeO x interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeO x interfacial layer has little influence on the passivation effect of the Al 2 O 3 /Ge interface. Ge (100) p-channel metal–oxide–semiconductor field-effect transistors (pMOSFETs) using the Al 2 O 3 /GeO x /Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (I on /I off ) ratio of above 1×10 4 , a subthreshold slope of ∼ 120 mV/dec, and a peak hole mobility of 265 cm 2 /V·s are achieved. (condensed matter: structural, mechanical, and thermal properties)

  16. Numerical modelling of the impedance plane for simultaneous determining, by eddy currents, the oxide thickness and conductivity in Zircaloy

    International Nuclear Information System (INIS)

    Lois, Alejandro E.

    2001-01-01

    During service at high temperature or in aggressive media, metallic structures and components may suffer different types of changes or degradation. As an example, phase transformations may occur, second phases may precipitate, and in consequence the mechanical and chemical properties of the material may change. Their behavior will therefore differ from that considered for the design of the component. The knowledge of the amount of a precipitated second phase in a component should be an important tool in the hands of the maintenance engineer. And it would be very important to obtain this knowledge nondestructively and reliably. The objective of this project is to evaluate by eddy currents the amount of the hydrogen incorporated during service in structural zirconium base materials. For this purpose, a series of Zircaloy-4 specimens with oxide layers of different thickness and different concentration of hydrogen obtained by controlled autoclave treatments were used. These specimens were tested with eddy current equipment. The information produced by an eddy current test is the superposition of many variables, e.g.: thickness of oxide layers, conductance, thickness of specimen, etc. In order to sort out this information, an analytical model of the impedance plane was programmed in a PC, with which this information was processed, permitting, in this way, to evaluate the conductivity of materials, taking into account the effect of oxide layers thickness. A linear relationship between the conductivity and the hydrogen content in the range of hydrogen concentrations of technological interest was observed. Therefore, the calculated electrical conductivity may be transformed to the amount of hydrogen content, using a suitable calibration curve. This process will allow for the nondestructive assessment of the amount of hydrogen in reactor components, such as pressure and calandria tubes, a knowledge which will enable the experts to predict the degree of fragility of those

  17. Evaluation of endothelial mucin layer thickness after phacoemulsification with next generation ophthalmic irrigating solution.

    Science.gov (United States)

    Ghate, Deepta A; Holley, Glenn; Dollinger, Harli; Bullock, Joseph P; Markwardt, Kerry; Edelhauser, Henry F

    2008-10-01

    To evaluate human corneal endothelial mucin layer thickness and ultrastructure after phacoemulsification and irrigation-aspiration with either next generation ophthalmic irrigating solution (NGOIS) or BSS PLUS. Paired human corneas were mounted in an artificial anterior chamber, exposed to 3 minutes of continuous ultrasound (US) at 80% power using the Alcon SERIES 20000 LEGACY surgical system (n = 9) or to 2 minutes of pulsed US at 50% power, 50% of the time at 20 pps using the Alcon INFINITI Vision System (n = 5), and irrigated with 250 mL of either NGOIS or BSS PLUS. A control group of paired corneas did not undergo phacoemulsification or irrigation-aspiration (n = 5). Corneas were divided and fixed for mucin staining or transmission electron microscopy. Mucin layer thickness was measured on the transmission electron microscopy prints. The mucin layer thickness in the continuous phaco group was 0.77 +/- 0.02 microm (mean +/- SE) with NGOIS and 0.51 +/- 0.01 microm with BSS PLUS (t test, P INFINITI Vision System (pulsed US) and the LEGACY surgical system (continuous US).

  18. Confined methane-water interfacial layers and thickness measurements using in situ Raman spectroscopy.

    Science.gov (United States)

    Pinho, Bruno; Liu, Yukun; Rizkin, Benjamin; Hartman, Ryan L

    2017-11-07

    Gas-liquid interfaces broadly impact our planet, yet confined interfaces behave differently than unconfined ones. We report the role of tangential fluid motion in confined methane-water interfaces. The interfaces are created using microfluidics and investigated by in situ 1D, 2D and 3D Raman spectroscopy. The apparent CH 4 and H 2 O concentrations are reported for Reynolds numbers (Re), ranging from 0.17 to 8.55. Remarkably, the interfaces are comprised of distinct layers of thicknesses varying from 23 to 57 μm. We found that rarefaction, mixture, thin film, and shockwave layers together form the interfaces. The results indicate that the mixture layer thickness (δ) increases with Re (δ ∝ Re), and traditional transport theory for unconfined interfaces does not explain the confined interfaces. A comparison of our results with thin film theory of air-water interfaces (from mass transfer experiments in capillary microfluidics) supports that the hydrophobicity of CH 4 could decrease the strength of water-water interactions, resulting in larger interfacial thicknesses. Our findings help explain molecular transport in confined gas-liquid interfaces, which are common in a broad range of societal applications.

  19. Changes in Nitric Oxide Level and Thickness Index of Synovial Fluid ...

    African Journals Online (AJOL)

    Changes in Nitric Oxide Level and Thickness Index of Synovial Fluid in Osteoarthritis Patients ... Tropical Journal of Pharmaceutical Research ... and moderate phase patients after intra-articular injection of sodium hyaluronate, while the effect ...

  20. The thickness of native oxides on aluminum alloys and single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Evertsson, J., E-mail: jonas.evertsson@sljus.lu.se [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Bertram, F. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Zhang, F. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Rullik, L.; Merte, L.R.; Shipilin, M. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Soldemo, M.; Ahmadi, S. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Vinogradov, N.; Carlà, F. [ESRF, B.P. 220, 38043 Grenoble (France); Weissenrieder, J.; Göthelid, M. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Pan, J. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Mikkelsen, A. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Nilsson, J.-O. [Sapa Technology, Kanalgatan 1, 612 31 Finspång (Sweden); Lundgren, E. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden)

    2015-09-15

    Highlights: • We have determined the native oxide film thickness on several Al samples. • The results obtained from XRR and XPS show excellent agreement. • The results obtained from EIS show consistently thinner oxide films. • The oxides on the alloys are thicker than the oxides on the single crystals. - Abstract: We present results from measurements of the native oxide film thickness on four different industrial aluminum alloys and three different aluminum single crystals. The thicknesses were determined using X-ray reflectivity, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. In addition, atomic force microscopy was used for micro-structural studies of the oxide surfaces. The reflectivity measurements were performed in ultra-high vacuum, vacuum, ambient, nitrogen and liquid water conditions. The results obtained using X-ray reflectivity and X-ray photoelectron spectroscopy demonstrate good agreement. However, the oxide thicknesses determined from the electrochemical impedance spectroscopy show a larger discrepancy from the above two methods. In the present contribution the reasons for this discrepancy are discussed. We also address the effect of the substrate type and the presence of water on the resultant oxide thickness.

  1. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Chollet, Mélanie; Valance, Stéphane; Abolhassani, Sousan; Stein, Gene; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes

    2017-01-01

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO 2 are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components. - Highlights: •A Zircaloy-2 cladding irradiated 9 cycles was investigated thanks to synchrotron X-ray diffraction. •Microstructure and uniform strain through the oxide layer is revealed. •The m-ZrO 2 uniform strain is oriented presenting compression along the (−111) plane. •Virtual tensor is built based on reflecting planes of families of grains. •Tensor components vary from tensile to compressive along the oxide layer.

  2. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Chollet, Mélanie, E-mail: melanie.chollet@psi.ch [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland); Valance, Stéphane; Abolhassani, Sousan; Stein, Gene [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland); Grolimund, Daniel [Paul Scherrer Institute, SLS, 5232 Villigen (Switzerland); Martin, Matthias; Bertsch, Johannes [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland)

    2017-05-15

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO{sub 2} are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components. - Highlights: •A Zircaloy-2 cladding irradiated 9 cycles was investigated thanks to synchrotron X-ray diffraction. •Microstructure and uniform strain through the oxide layer is revealed. •The m-ZrO{sub 2} uniform strain is oriented presenting compression along the (−111) plane. •Virtual tensor is built based on reflecting planes of families of grains. •Tensor components vary from tensile to compressive along the oxide layer.

  3. All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal

    Science.gov (United States)

    Chen, Binbin; Xu, Haoran; Ma, Chao; Mattauch, Stefan; Lan, Da; Jin, Feng; Guo, Zhuang; Wan, Siyuan; Chen, Pingfan; Gao, Guanyin; Chen, Feng; Su, Yixi; Wu, Wenbin

    2017-07-01

    Synthesizing antiferromagnets with correlated oxides has been challenging, owing partly to the markedly degraded ferromagnetism of the magnetic layer at nanoscale thicknesses. Here we report on the engineering of an antiferromagnetic interlayer exchange coupling (AF-IEC) between ultrathin but ferromagnetic La2/3Ca1/3MnO3 layers across an insulating CaRu1/2Ti1/2O3 spacer. The layer-resolved magnetic switching leads to sharp steplike hysteresis loops with magnetization plateaus depending on the repetition number of the stacking bilayers. The magnetization configurations can be switched at moderate fields of hundreds of oersted. Moreover, the AF-IEC can also be realized with an alternative magnetic layer of La2/3Sr1/3MnO3 that possesses a Curie temperature near room temperature. The findings will add functionalities to devices with correlated-oxide interfaces.

  4. The dependence of the modulation transfer function on the blocking layer thickness in amorphous selenium x-ray detectors

    International Nuclear Information System (INIS)

    Hunter, David M.; Belev, Gueorgi; DeCrescenzo, Giovanni; Kasap, Safa O.; Mainprize, James G.; Rowlands, J. A.; Smith, Charles; Tuemer, Tuemay; Verpakhovski, Vladimir; Yin Shi; Yaffe, Martin J.

    2007-01-01

    Blocking layers are used to reduce leakage current in amorphous selenium detectors. The effect of the thickness of the blocking layer on the presampling modulation transfer function (MTF) and on dark current was experimentally determined in prototype single-line CCD-based amorphous selenium (a-Se) x-ray detectors. The sampling pitch of the detectors evaluated was 25 μm and the blocking layer thicknesses varied from 1 to 51 μm. The blocking layers resided on the signal collection electrodes which, in this configuration, were used to collect electrons. The combined thickness of the blocking layer and a-Se bulk in each detector was ∼200 μm. As expected, the dark current increased monotonically as the thickness of the blocking layer was decreased. It was found that if the blocking layer thickness was small compared to the sampling pitch, it caused a negligible reduction in MTF. However, the MTF was observed to decrease dramatically at spatial frequencies near the Nyquist frequency as the blocking layer thickness approached or exceeded the electrode sampling pitch. This observed reduction in MTF is shown to be consistent with predictions of an electrostatic model wherein the image charge from the a-Se is trapped at a characteristic depth within the blocking layer, generally near the interface between the blocking layer and the a-Se bulk

  5. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    International Nuclear Information System (INIS)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G.

    2014-01-01

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems

  6. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G., E-mail: zgdeng@gmail.com

    2014-10-15

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  7. Fabrication and characterization of iron oxide dextran composite layers

    Science.gov (United States)

    Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.

    2018-02-01

    Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.

  8. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT.

    Science.gov (United States)

    Bendschneider, Delia; Tornow, Ralf P; Horn, Folkert K; Laemmer, Robert; Roessler, Christopher W; Juenemann, Anselm G; Kruse, Friedrich E; Mardin, Christian Y

    2010-09-01

    To determine normal values for peripapillary retinal nerve fiber layer thickness (RNFL) measured by spectral domain Optical Coherence Tomography (SOCT) in healthy white adults and to examine the relationship of RNFL with age, gender, and clinical variables. The peripapillary RNFL of 170 healthy patients (96 males and 74 females, age 20 to 78 y) was imaged with a high-resolution SOCT (Spectralis HRA+OCT, Heidelberg Engineering) in an observational cross-sectional study. RNFL thickness was measured around the optic nerve head using 16 automatically averaged, consecutive circular B-scans with 3.4-mm diameter. The automatically segmented RNFL thickness was divided into 32 segments (11.25 degrees each). One randomly selected eye per subject entered the study. Mean RNFL thickness in the study population was 97.2 ± 9.7 μm. Mean RNFL thickness was significantly negatively correlated with age (r = -0.214, P = 0.005), mean RNFL decrease per decade was 1.90 μm. As age dependency was different in different segments, age-correction of RNFL values was made for all segments separately. Age-adjusted RNFL thickness showed a significant correlation with axial length (r = -0.391, P = 0.001) and with refractive error (r = 0.396, P<0.001), but not with disc size (r = 0.124). Normal RNFL results with SOCT are comparable to those reported with time-domain OCT. In accordance with the literature on other devices, RNFL thickness measured with SOCT was significantly correlated with age and axial length. For creating a normative database of SOCT RNFL values have to be age adjusted.

  9. Analysis on Propagation Characteristics and Experimental Verification of A1 Circumferential Waves in Nuclear Fuel Rods Coated with Oxide Layers

    International Nuclear Information System (INIS)

    Joo, Young Sang; Jung, Hyun Kyu; Cheong, Yong Moo; Ih, Jeong Guon

    1999-01-01

    The resonance scattering of acoustic waves from the cylindrical shells of nuclear fuel rods coated with oxide layers has been theoretically modeled and numerically analyzed for the propagation characteristics of the circumferential waves. The normal mode solutions of the scattering pressure of the coated shells have been obtained. The pure resonance components have been isolated using the newly proposed inherent background coefficients. The propagation characteristics of resonant circumferential waves for the shells coated with oxide layers are affected by the presence and the thickness of an oxide layer. The characteristics have been experimentally confirmed through the method of isolation and identification of resonances. The change of the phase velocity of the A 1 circumferential wave mode for the coated shell is negligible at the specified partial waves in spite of the presence of the oxide layer and the increase in coating thickness. Utilizing the invariability characteristics of the phase velocity of the A 1 mode, the oxide layer thickness of the coated shells can be estimated. A new nondestructive technique for the relative measurement of the coating thickness of coated shells has been proposed

  10. Conduction and stability of holmium titanium oxide thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castán, H., E-mail: helena@ele.uva.es [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); García, H.; Dueñas, S.; Bailón, L. [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); Miranda, E. [Departament d' Enginyería Electrònica, Universitat Autónoma de Barcelona, 08193 Bellaterra (Spain); Kukli, K. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland); Institute of Physics, University of Tartu, EE-50411,Tartu (Estonia); Kemell, M.; Ritala, M.; Leskelä, M. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland)

    2015-09-30

    Holmium titanium oxide (HoTiO{sub x}) thin films of variable chemical composition grown by atomic layer deposition are studied in order to assess their suitability as dielectric materials in metal–insulator–metal electronic devices. The correlation between thermal and electrical stabilities as well as the potential usefulness of HoTiO{sub x} as a resistive switching oxide are also explored. It is shown that the layer thickness and the relative holmium content play important roles in the switching behavior of the devices. Cycled current–voltage measurements showed that the resistive switching is bipolar with a resistance window of up to five orders of magnitude. In addition, it is demonstrated that the post-breakdown current–voltage characteristics in HoTiO{sub x} are well described by a power-law model in a wide voltage and current range which extends from the soft to the hard breakdown regimes. - Highlights: • Gate and memory suitabilities of atomic layer deposited holmium titanium oxide. • Holmium titanium oxide exhibits resistive switching. • Layer thickness and holmium content influence the resistive switching. • Low and high resistance regimes follow a power-law model. • The power-law model can be extended to the hard breakdown regime.

  11. Relationship between reaction layer thickness and leach rate for nuclear waste glasses

    International Nuclear Information System (INIS)

    Chick, L.A.; Pederson, L.R.

    1984-02-01

    Three leaching tests, devised to distinguish among several proposed nuclear waste glass leaching mechanisms, were carried out for four different waste glasses. In the first test, the influence of a pre-formed reaction layer on elemental release was evaluated. In the second test, glass specimens were replaced with fresh samples halfway through the leaching experiment, to evaluate the influence of the concentration of glass components in leaching. Finally, regular replacement of the leachant at fixed time intervals essentially removed the variable changing solution concentration, and allowed an assessment of the influence of reaction layer thickness on the leaching rate. Results for all glasses tested indicated that the reaction layer presented little or no barrier to leaching, and that most of the retardation on leaching rates generally observed are attributable to saturation effects. 20 references, 6 figures, 1 table

  12. Energy and angular distribution of electrons after transmission of thick layers

    International Nuclear Information System (INIS)

    Kreyling, H.

    1975-01-01

    In this work, the behaviour of electrons going through material-layers is studied. For a layer-thickness where the theories of multiple-scattering are no longer valid, a Monte-Carlo-method is presented for the calculation of energy distributions as a function of scattering-angle. Plastic-scintillator-material (NE 102 A produced by Nuclear Enterprises Ltd.) was bombarded by electrons with energies between 0.5 and 2.0 MeV and the energy-distributions of the electrons, scatterd in the layer, were measured as a function of the scattering-angle. With the aid of the Monte-Carlo-method developed in this paper, energy distributions were calculated as a function of scattering-angle for the two absorber materials aluminium (single-element material) and NE 102 A (chemical compound of C, N, H, O). (orig./WL) [de

  13. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    Science.gov (United States)

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.

  14. Investigation of radiative effects of the optically thick dust layer over the Indian tropical region

    Directory of Open Access Journals (Sweden)

    S. K. Das

    2013-04-01

    Full Text Available Optical and physical properties of aerosols derived from multi-satellite observations (MODIS-Aqua, OMI-Aura, MISR-Terra, CALIOP-CALIPSO have been used to estimate radiative effects of the dust layer over southern India. The vertical distribution of aerosol radiative forcing and heating rates are calculated with 100 m resolution in the lower atmosphere, using temperature and relative humidity data from balloon-borne radiosonde observations. The present study investigates the optically thick dust layer of optical thickness 0.18 ± 0.06 at an altitude of 2.5 ± 0.7 km over Gadanki, transported from the Thar Desert, producing radiative forcing and heating rate of 11.5 ± 3.3 W m−2 and 0.6 ± 0.26 K day−1, respectively, with a forcing efficiency of 43 W m−2 and an effective heating rate of 4 K day−1 per unit dust optical depth. Presence of the dust layer increases radiative forcing by 60% and heating rate by 60 times at that altitude compared to non-dusty cloud-free days. Calculation shows that the radiative effects of the dust layer strongly depend on the boundary layer aerosol type and mass loading. An increase of 25% of heating by the dust layer is found over relatively cleaner regions than urban regions in southern India and further 15% of heating increases over the marine region. Such heating differences in free troposphere may have significant consequences in the atmospheric circulation and hydrological cycle over the tropical Indian region.

  15. A comparison of Zircaloy oxide thicknesses on Millstone-3 and North Anna-1 PWR fuel cladding

    International Nuclear Information System (INIS)

    Polley, M.V.; Evans, H.E.

    1993-08-01

    High concentrations of lithium in the coolant may enhance the corrosion rate of Zircaloy fuel cladding. In the present work, oxide thicknesses on fuel cladding from the Millstone 3 PWR were compared with those from the North Anna 1 PWR. The intention was to identify whether the higher lithium levels (up to 3.5 ppM) in the Millstone 3 primary coolant during cycles 2 and 3 led to significantly greater oxidation rates than in North Anna 1 which operated generally with lithium levels lower than 2.2 ppM. The comparisons were made by comparing the measurements with code predictions of Zircaloy oxidation in order to factor out the effect of operational variables on the oxide thicknesses achieved. Overall, Millstone 3 oxide thicknesses were found to be approximately 14% greater than North Anna 1 values. However, approximately 29% lower oxide thicknesses were found on reload Millstone 3 rods exposed to one cycle of elevated lithium chemistry than on Millstone 3 initial fuel exposed to one cycle of normal lithium chemistry during cycle 1. Furthermore, oxide thicknesses on Millstone 3 rods exposed to two cycles of elevated lithium chemistry were approximately 36% lower than on Millstone 3 rods exposed to one cycle of normal lithium chemistry plus one cycle of elevated lithium chemistry. Therefore, it cannot be concluded that elevated lithium operation in Millstone 3 led to enhanced Zircaloy fuel clad corrosion

  16. Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2017-09-01

    Full Text Available Selective laser melting (SLM is a potential additive manufacturing (AM technology. However, the application of SLM was confined due to low efficiency. To improve efficiency, SLM fabrication with a high layer thickness and fine powder was systematically researched, and the void areas and hollow powders can be reduced by using fine powder. Single-track experiments were used to narrow down process parameter windows. Multi-layer fabrication relative density can be reached 99.99% at the exposure time-point distance-hatch space of 120 μs-40 μm-240 μm. Also, the building rate can be up to 12 mm3/s, which is about 3–10 times higher than the previous studies. Three typical defects were found by studying deeply, including the un-melted defect between the molten pools, the micro-pore defect within the molten pool, and the irregular distribution of the splashing phenomenon. Moreover, the microstructure is mostly equiaxed crystals and a small amount of columnar crystals. The averages of ultimate tensile strength, yield strength, and elongation are 625 MPa, 525 MPa, and 39.9%, respectively. As exposure time increased from 80 μs to 200 μs, the grain size is gradually grown up from 0.98 μm to 2.23 μm, the grain aspect ratio is close to 1, and the tensile properties are shown as a downward trend. The tensile properties of high layer thickness fabricated are not significantly different than those with a coarse-powder layer thickness of low in previous research.

  17. Characterization of boundary layer thickness of nano fluid ZrO_2 on natural convection process

    International Nuclear Information System (INIS)

    V-Indriati Sri Wardhani; Henky P Rahardjo

    2015-01-01

    Cooling system is highly influenced by the process of convection heat transfer from the heat source to the cooling fluid. The cooling fluid usually used conventional fluid such as water. Cooling system performance can be improved by using fluids other than water such as nano fluid that is made from a mixture of water and nano-sized particles. Researchers at BATAN Bandung have made nano fluid ZrO_2 from local materials, as well as experimental equipment for studying the thermohydraulic characteristics of nano fluid as the cooling fluid. In this study, thermohydraulic characteristics of nano fluid ZrO_2 are observed through experimentation. Nano fluid ZrO_2 is made from a mixture of water with ZrO_2 nano-sized particles of 10-7-10-9 nm whose concentration is 1 g/liter. This nano fluid is used as coolant in the cooling process of natural convection. The natural convection process depends on the temperature difference between heat source and the cooling fluid, which occur in the thermal boundary layer. Therefore it is necessary to study the thermal boundary layer thickness of nano fluid ZrO_2, which is also able to determine the local velocity. Experimentations are done with several variation of the heater power and then the temperature are measured at several horizontal points to see the distribution of the temperatures. The temperature distribution measurement results can be used to determine the boundary layer thickness and flow rate. It is obtained that thermal boundary layer thickness and velocity of nano fluid ZrO_2 is not much different from the conventional fluid water. (author)

  18. Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting.

    Science.gov (United States)

    Wang, Shuo; Liu, Yude; Shi, Wentian; Qi, Bin; Yang, Jin; Zhang, Feifei; Han, Dong; Ma, Yingyi

    2017-09-08

    Selective laser melting (SLM) is a potential additive manufacturing (AM) technology. However, the application of SLM was confined due to low efficiency. To improve efficiency, SLM fabrication with a high layer thickness and fine powder was systematically researched, and the void areas and hollow powders can be reduced by using fine powder. Single-track experiments were used to narrow down process parameter windows. Multi-layer fabrication relative density can be reached 99.99% at the exposure time-point distance-hatch space of 120 μs-40 μm-240 μm. Also, the building rate can be up to 12 mm³/s, which is about 3-10 times higher than the previous studies. Three typical defects were found by studying deeply, including the un-melted defect between the molten pools, the micro-pore defect within the molten pool, and the irregular distribution of the splashing phenomenon. Moreover, the microstructure is mostly equiaxed crystals and a small amount of columnar crystals. The averages of ultimate tensile strength, yield strength, and elongation are 625 MPa, 525 MPa, and 39.9%, respectively. As exposure time increased from 80 μs to 200 μs, the grain size is gradually grown up from 0.98 μm to 2.23 μm, the grain aspect ratio is close to 1, and the tensile properties are shown as a downward trend. The tensile properties of high layer thickness fabricated are not significantly different than those with a coarse-powder layer thickness of low in previous research.

  19. Improved performances of organic light-emitting diodes with mixed layer and metal oxide as anode buffer

    Science.gov (United States)

    Xue, Qin; Liu, Shouyin; Zhang, Shiming; Chen, Ping; Zhao, Yi; Liu, Shiyong

    2013-01-01

    We fabricated organic light-emitting devices (OLEDs) employing 2-methyl-9,10-di(2-naphthyl)-anthracene (MADN) as hole-transport material (HTM) instead of commonly used N,N'-bis-(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl-4,4'-diamine (NPB). After inserting a 0.9 nm thick molybdenum oxide (MoOx) layer at the indium tin oxide (ITO)/MADN interface and a 5 nm thick mixed layer at the organic/organic heterojunction interface, the power conversion efficiency of the device can be increased by 4-fold.

  20. Study on thermo-oxide layers of uranium-niobium alloy

    International Nuclear Information System (INIS)

    Luo Lizhu; Yang Jiangrong; Zhou Ping

    2010-01-01

    Surface oxides structure of uranium-niobium alloys which were annealed under different temperatures (room temperature, 100, 200, 300 degree C, respectively)in air were studied by X-ray photoelectron spectroscopy (XPS) analysis and depth profile. Thickness of thermo-oxide layers enhance with the increasing oxide temperature, and obvious changes to oxides structure are observed. Under different delt temperatures, Nb 2 O 5 are detected on the initial surface of U-Nb alloys, and a layer of NbO mixed with some NbO x (0 2 O 5 and Nb metal. Dealing samples in air from room temperature to 200 degree C, non-stoichiometric UO 2+x (UO 2 + interstitial oxygen, P-type semiconductor) are found on initial surface of U-Nb alloys, which has 0.7 eV shift to lower binding energy of U 4f 7/2 characteristics comparing to that of UO 2 . Under room temperature, UO 2 are commonly detected in the oxides layer, while under temperature of 100 and 200 degree C, some P-type UO 2+x are found in the oxide layers,which has a satellite at binding energy of 396.6 eV. When annealing at 300 degree C, higher valence oxides, such as U 3 O 8 or UO x (2 5/2 and U 4f 7/2 peaks are 392.2 and 381.8 eV, respectively. UO 2 mixed uranium metal are the main compositions in the oxide layers. From the results, influence of temperature to oxidation of uranium is more visible than to niobium in uranium-niobium alloys. (authors)

  1. Seismic Wave Propagation from Underground Chemical Explosions: Sensitivity to Velocity and Thickness of a Weathered Layer

    Science.gov (United States)

    Hirakawa, E. T.; Ezzedine, S. M.

    2017-12-01

    Recorded motions from underground chemical explosions are complicated by long duration seismic coda as well as motion in the tangential direction. The inability to distinguish the origins of these complexities as either source or path effects comprises a limitation to effective monitoring of underground chemical explosions. With numerical models, it is possible to conduct rigorous sensitivity analyses for chemical explosive sources and their resulting ground motions under the influence of many attributes, including but not limited to complex velocity structure, topography, and non-linear source characteristics. Previously we found that topography can cause significant scattering in the direct wave but leads to relatively little motion in the coda. Here, we aim to investigate the contribution from the low-velocity weathered layer that exists in the shallow subsurface apart from and in combination with surface topography. We use SW4, an anelastic anisotropic fourth order finite difference code to simulate chemical explosive source in a 1D velocity structure consisting of a single weathered layer over a half space. A range of velocity magnitudes are used for the upper weathered layer with the velocities always being lower than that of the granitic underlaying layer. We find that for lower weathered layer velocities, the wave train is highly dispersed and causes a large percentage of energy to be contained in the coda in relation to the entire time series. The percentage of energy contained in the coda grows with distance from the source but saturates at a certain distance that depends on weathered layer velocity and thickness. The saturation onset distance increases with decreasing layer thickness and increasing velocity of the upper layer. Measurements of relative coda energy and coda saturation onset distance from real recordings can provide an additional constraint on the properties of the weathered layer in remote sites as well as test sites like the Nevada

  2. Correlation of retinal nerve fibre layer and macular thickness with serum uric acid among type 2 diabetes mellitus.

    Science.gov (United States)

    Vinuthinee-Naidu, Munisamy-Naidu; Zunaina, Embong; Azreen-Redzal, Anuar; Nyi-Nyi, Naing

    2017-06-14

    Uric acid is a final breakdown product of purine catabolism in humans. It's a potent antioxidant and can also act as a pro-oxidant that induces oxidative stress on the vascular endothelial cells, thus mediating progression of diabetic related diseases. Various epidemiological and experimental evidence suggest that uric acid has a role in the etiology of type 2 diabetes mellitus. We conducted a cross-sectional study to evaluate the correlation of retinal nerve fibre layer (RNFL) and macular thickness with serum uric acid in type 2 diabetic patients. A cross-sectional study was conducted in the Eye Clinic, Hospital Universiti Sains Malaysia, Kelantan between the period of August 2013 till July 2015 involving type 2 diabetes mellitus patients with no diabetic retinopathy and with non-proliferative diabetic retinopathy (NPDR). An evaluation for RNFL and macular thickness was measured using Spectralis Heidelberg optical coherence tomography. Six ml of venous blood was taken for the measurement of serum uric acid and glycosylated haemoglobin (HbA1 C ). A total of 180 diabetic patients were recruited (90 patients with no diabetic retinopathy and 90 patients with NPDR) into the study. The mean level of serum uric acid for both the groups was within normal range and there was no significance difference between the two groups. Based on gender, both male and female gender showed significantly higher level of mean serum uric acid in no diabetic retinopathy group (p = 0.004 respectively). The mean serum uric acid was significantly higher in patient with HbA1 C  uric acid in both the groups. Serum uric acid showed a poor correlation with RNFL and macular thickness among type 2 diabetic patients.

  3. Formation and electrical characteristics of silicon dioxide layers by use of nitric acid oxidation method

    International Nuclear Information System (INIS)

    Imal, S.; Takahashi, M.; Matsuba, K.; Asuha; Ishikawa, Y.; Kobayashi, Hikaru

    2005-01-01

    SiO 2 /Si structure can be formed at low temperatures by use of nitric acid (HNO 3 ) oxidation of Si (NAOS) method. When Si wafers are immersed in ∼ 40 wt% HNO 3 solutions at 108 deg C, ∼ 1 nm SiO 2 layers are formed. The subsequent immersion in 68 wt% HNO 3 (i.e., azeotropic mixture of HNO 3 with water) at 121 deg C increases the SiO 2 thickness. The 3,5 nm-thick SiO 2 layers produced by this two-step NAOS method possess a considerably low leakage current density (e.g. 1 x 10 2 A/cmi 2 at the forward gate bias, V G , of 1.5 V), in spite of the low temperature oxidation, and further decreased (e.g., 8 x 10 4 A/cm 2 at V G = 1.5 V) by post-metallization annealing at 250 deg C in hydrogen atmosphere. In order to increase the SiO 2 thickness, a bias voltage is applied during the NAOS method. When 10 V is applied to Si with respect to a Pt counter electrode both immersed in 1 M HNO 3 solutions at 25 deg C, SiO 2 layers with 8 nm thickness can be formed for 1 h(Authors)

  4. Glow discharge mass spectrometry study of chemical impurities diffusion in zirconium oxide layers

    International Nuclear Information System (INIS)

    Actis-Dato, L.O.

    2000-02-01

    In the Pressurised Water Reactors (PWR) the primary cooling system is water at 350 deg C and 16 Mpa. In these extreme conditions the corrosion of the out-of-pile components of the reactor and in particular of the Zircaloy cladding containing the nuclear fuel pellets is accelerated. The formation of a growing oxide layer is observed on the elements of the nuclear reactor core. When the thickness of the oxide layer reaches a critical value, problems like structural malfunction and material failure can occur. At this stage the danger of the release of radioactivity in the coolant becomes effective. In this work a glow discharge mass spectrometer is used to study the diffusion of impurities like lithium, zinc and boron in oxide layers growing on Zircaloy samples. After a brief description of the different technique used the preparation and analysis of Zircaloy samples on which oxide layers of different thickness have been produced will be described. The analysis of these samples will allow the determination and evaluation the depth profiles of the impurities absorbed by the oxide. The analysis of the shape of the crater produced during the mass spectrometric analysis will give additional informations on the quality of the results obtained. The technique developed will finally be applied to the study of samples produced during reactor operation under real irradiation conditions. The results obtained show a lithium intake in the oxide layer and confirm the beneficial effect on the corrosion produced by boron. The influence of zinc on the corrosion behaviour of Zircaloy has not been established. The technique developed has also shown interesting capabilities concerning the analysis of irradiated samples. (author)

  5. Influence of interface layer on optical properties of sub-20 nm-thick TiO2 films

    Science.gov (United States)

    Shi, Yue-Jie; Zhang, Rong-Jun; Li, Da-Hai; Zhan, Yi-Qiang; Lu, Hong-Liang; Jiang, An-Quan; Chen, Xin; Liu, Juan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao

    2018-02-01

    The sub-20 nm ultrathin titanium dioxide (TiO2) films with tunable thickness were deposited on Si substrates by atomic layer deposition (ALD). The structural and optical properties were acquired by transmission electron microscopy, atomic force microscopy and spectroscopic ellipsometry. Afterwards, a constructive and effective method of analyzing interfaces by applying two different optical models consisting of air/TiO2/Ti x Si y O2/Si and air/effective TiO2 layer/Si, respectively, was proposed to investigate the influence of interface layer (IL) on the analysis of optical constants and the determination of band gap of TiO2 ultrathin films. It was found that two factors including optical constants and changing components of the nonstoichiometric IL could contribute to the extent of the influence. Furthermore, the investigated TiO2 ultrathin films of 600 ALD cycles were selected and then annealed at the temperature range of 400-900 °C by rapid thermal annealing. Thicker IL and phase transition cause the variation of optical properties of TiO2 films after annealing and a shorter electron relaxation time reveals the strengthened electron-electron and electron-phonon interactions in the TiO2 ultrathin films at high temperature. The as-obtained results in this paper will play a role in other studies of high dielectric constants materials grown on Si substrates and in the applications of next generation metal-oxide-semiconductor devices.

  6. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics. Relationship of oxide film thickness, hematite/magnetite ratio, ECP and wall thinning rate

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi

    2011-01-01

    Systematic approaches to evaluate flow accelerated corrosion (FAC) are desired before discussing application of countermeasures for FAC. First, future FAC occurrence should be evaluated to identify locations where a higher possibility of FAC occurrence exists, and then, wall thinning rate at the identified FAC occurrence zone is evaluated to obtain the preparation time for applying countermeasures. Wall thinning rates were calculated with two coupled models: 1.static electrochemical analysis and 2.dynamic oxide layer growth analysis. The anodic current density and the electrochemical corrosion potential (ECP) were calculated with the static electrochemistry model based on an Evans diagram. The ferrous ion release rate, determined by the anodic current density, was applied as input for the dynamic double oxide layer model. Some of the dissolved ferrous ion was removed to the bulk water and others precipitated on the surface as magnetite particles. The thickness of oxide layer was calculated with the dynamic oxide layer growth model and then its value was used as input in the electrochemistry model. It was confirmed that the calculated results (corrosion rate and ECP) based on the coupled models were in good agreement with the measured ones. Higher ECP was essential for preventing FAC rate. Moderated conditions due to lower mass transfer coefficients resulted in thicker oxide layer thickness and then higher ECP, while moderated corrosion conditions due to higher oxidant concentrations resulted in larger hematite/magnetite rate and then higher ECP.

  7. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics (3), relationship of oxide film thickness, hematite/magnetite ratio, ECP and wall thinning rate

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi

    2009-01-01

    Systematic approaches for evaluating flow accelerated corrosion (FAC) are desired before discussing application of countermeasures for FAC. Firstly, future FAC occurrence should be evaluated to identify locations where a higher possibility of FAC occurrence exists, and then, wall thinning rate at the identified FAC occurrence zone is evaluated to obtain the preparation time for applying countermeasures. Wall thinning rates were calculated with the coupled models of static electrochemical analysis and dynamic double oxide layer analysis. Anodic current density and electrochemical corrosion potential (ECP) were calculated with the static electrochemistry model based on an Evans diagram and ferrous ion release rate determined by the anodic current density was applied as input for the dynamic double oxide layer model. Some of the dissolved ferrous ion was removed to the bulk water and others precipitated on the surface as magnetite particles. The thickness of oxide layer was calculated with the dynamic double oxide layer model and then was applied as input for the electrochemistry model. It was confirmed that the calculated results based on the coupled models resulted good agreement with the measured ones. Higher ECP was essential for preventing FAC rate. Moderated conditions due to lower mass transfer coefficients resulted in thicker oxide layer thickness and then higher ECP, while moderated corrosion conditions due to higher oxidant concentrations resulted in larger hematite/magnetite rate and then higher ECP. (author)

  8. Thin and thick layers of resin-based sealer cement bonded to root dentine compared: Adhesive behaviour.

    Science.gov (United States)

    Pane, Epita S; Palamara, Joseph E A; Messer, Harold H

    2015-12-01

    This study aims to evaluate tensile and shear bond strengths of one epoxy (AH) and two methacrylate resin-based sealers (EZ and RS) in thin and thick layers bonded to root dentine. An alignment device was prepared for accurate positioning of 20 root dentine cylinders in a predefined gap of 0.1 or 1 mm. Sealer was placed in the interface. Bond strength tests were conducted. Mode of failures and representative surfaces were evaluated. Data were analysed using anova and post-hoc tests, with P thick layer of sealer produced higher bond strength, except for the shear bond strength of EZ. Significant differences between thin and thick layers were found only in tensile bond strengths of AH and RS. Mixed type of failure was constantly found with all sealers. Bond strengths of thick layers of resin-based sealers to root dentine tended to be higher than with thin layers. © 2015 Australian Society of Endodontology.

  9. TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.R.G. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia)]. E-mail: drm@ansto.gov.au; Attard, D.J. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Finnie, K.S. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Triani, G. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Barbe, C.J. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Depagne, C. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Bartlett, J.R. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia)

    2005-04-30

    Nanolaminate oxide layers consisting of TiO{sub 2} and Al{sub 2}O{sub 3} have been deposited on silicon using atomic layer deposition (ALD). Characterisation of these films has been achieved by use of a range of modern transmission electron microscopy (TEM)-based techniques, including plasmon loss imaging, energy filtered imaging and scanning TEM (STEM) X-ray line profiling. These have shown that the target thickness of the individual layers in the nanolaminate structures (20 nm) has been met with a high degree of accuracy, that the layers are extremely flat and parallel and that the interfaces between the layers are compositionally abrupt. Localised crystallisation within the stacks, and responses to electron beam irradiation point to the presence of a stress gradient within the layers. The performance of ellipsometry in characterising multilayer stacks has been benchmarked against the TEM measurements. Errors in determination of individual layer thicknesses were found to increase with growing stack size, as expected given the increasing number of interfaces incorporated in each model. The most sophisticated model gave maximum deviations of {+-}4 nm from the TEM determined values for the 5- and 10-layer stacks.

  10. Growth and properties of epitaxial iron oxide layers

    NARCIS (Netherlands)

    Voogt, F.C; Fujii, T; Hibma, T; Zhang, G.L.; Smulders, P.J M

    1996-01-01

    Epitaxial layers of iron oxides have been grown on a MgO(001) substrate by evaporating natural Fe or Fe-57 from Knudsen cells in the presence of a NO2 flow directed to the substrate. The resulting layers have been investigated in situ with LEED, RHEED, AES and XPS and ex situ with GEMS and ion beam

  11. Leveraging Subsidence in Permafrost with Remotely Sensed Active Layer Thickness (ReSALT) Products

    Science.gov (United States)

    Schaefer, K. M.; Chen, A.; Chen, J.; Chen, R. H.; Liu, L.; Michaelides, R. J.; Moghaddam, M.; Parsekian, A.; Tabatabaeenejad, A.; Thompson, J. A.; Zebker, H. A.; Meyer, F. J.

    2017-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence in permafrost regions. Seasonal subsidence results from the expansion of soil water into ice as the surface soil or active layer freezes and thaws each year. Subsidence trends result from large-scale thaw of permafrost and from the melting and subsequent drainage of excess ground ice in permafrost-affected soils. The attached figure shows the 2006-2010 average seasonal subsidence from ReSALT around Barrow, Alaska. The average active layer thickness (the maximum surface thaw depth during summer) is 30-40 cm, resulting in an average seasonal subsidence of 1-3 cm. Analysis of the seasonal subsidence and subsidence trends provides valuable insights into important permafrost processes, such as the freeze/thaw of the active layer, large-scale thawing due to climate change, the impact of fire, and infrastructure vulnerability. ReSALT supports the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential NASA-ISRO Synthetic Aperture Radar (NISAR) product. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. Here we present examples of ReSALT products in Alaska to highlight the untapped potential of the InSAR technique to understand permafrost dynamics, with a strong emphasis on the underlying processes that drive the subsidence.

  12. Endoscopic full-thickness resection for gastric submucosal tumors arising from the muscularis propria layer.

    Science.gov (United States)

    Huang, Liu-Ye; Cui, Jun; Lin, Shu-Juan; Zhang, Bo; Wu, Cheng-Rong

    2014-10-14

    To evaluate the efficacy, safety and feasibility of endoscopic full-thickness resection (EFR) for the treatment of gastric submucosal tumors (SMTs) arising from the muscularis propria. A total of 35 gastric SMTs arising from the muscularis propria layer were resected by EFR between January 2010 and September 2013. EFR consists of five major steps: injecting normal saline into the submucosa; pre-cutting the mucosal and submucosal layers around the lesion; making a circumferential incision as deep as the muscularis propria around the lesion using endoscopic submucosal dissection and an incision into the serosal layer around the lesion with a Hook knife; a full-thickness resection of the tumor, including the serosal layer with a Hook or IT knife; and closing the gastric wall with metallic clips. Of the 35 gastric SMTs, 14 were located at the fundus, and 21 at the corpus. EFR removed all of the SMTs successfully, and the complete resection rate was 100%. The mean operation time was 90 min (60-155 min), the mean hospitalization time was 6.0 d (4-10 d), and the mean tumor size was 2.8 cm (2.0-4.5 cm). Pathological examination confirmed the presence of gastric stromal tumors in 25 patients, leiomyomas in 7 and gastric autonomous nerve tumors in 2. No gastric bleeding, peritonitis or abdominal abscess occurred after EFR. Postoperative contrast roentgenography on the third day detected no contrast extravasation into the abdominal cavity. The mean follow-up period was 6 mo, with no lesion residue or recurrence noted. EFR is efficacious, safe and minimally invasive for patients with gastric SMTs arising from the muscularis propria layer. This technique is able to resect deep gastric lesions while providing precise pathological information about the lesion. With the development of EFR, the indications of endoscopic resection might be extended.

  13. Chip-scale pattern modification method for equalizing residual layer thickness in nanoimprint lithography

    Science.gov (United States)

    Youn, Sung-Won; Suzuki, Kenta; Hiroshima, Hiroshi

    2018-06-01

    A software program for modifying a mold design to obtain a uniform residual layer thickness (RLT) distribution has been developed and its validity was verified by UV-nanoimprint lithography (UV-NIL) simulation. First, the effects of granularity (G) on both residual layer uniformity and filling characteristics were characterized. For a constant complementary pattern depth and a granularity that was sufficiently larger than the minimum pattern width, filling time decreased with the decrease in granularity. For a pattern design with a wide density range and an irregular distribution, the choice of a small granularity was not always a good strategy since the etching depth required for a complementary pattern occasionally exceptionally increased with the decrease in granularity. On basis of the results obtained, the automated method was applied to a chip-scale pattern modification. Simulation results showed a marked improvement in residual layer thickness uniformity for a capacity-equalized (CE) mold. For the given conditions, the standard deviation of RLT decreased in the range from 1/3 to 1/5 in accordance with pattern designs.

  14. Investigation of the electrochemical deposition of thick layers of cadmium telluride

    International Nuclear Information System (INIS)

    Rousset, J.

    2007-04-01

    This research thesis deals with the problem of electrochemical deposition of thick layers of cadmium telluride (CdTe) meeting the requirements of high energy radiation detection. The author first recalls the physicochemical properties of CdTe and the basic principles of radiology. He details the different criteria which define a material for X ray detection. He describes the experimental conditions, the nature and preparation of substrates, and the different electrochemical systems used in this research. He studies the impact of the applied potential on the material properties, and compares previously obtained results available in the literature with those obtained in the chosen pool conditions. He discusses the synthesis of CdTe thick layers for which different methods are tested: static in potential, static in intensity, pulsed. The coatings obtained with a given potential and then with a given current are investigated. Finally, the influence of a thermal treatment in presence or absence of a sintering agent on the morphology, the chemical composition, and the crystalline and electric properties of the deposited material is discussed, and the results of the behaviour under X rays of a electrodeposited layer are presented

  15. Effect of Catalytic Layer Thickness on Diameter of Vertically Aligned Individual Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Hyun Kyung Jung

    2014-01-01

    Full Text Available The effect of catalytic thin film thickness on the diameter control of individual carbon nanotubes grown by plasma enhanced chemical vapor deposition was investigated. Individual carbon nanotubes were grown on catalytic nanodot arrays, which were fabricated by e-beam lithography and e-beam evaporation. During e-beam evaporation of the nanodot pattern, more catalytic metal was deposited at the edge of the nanodots than the desired catalyst thickness. Because of this phenomenon, carbon atoms diffused faster near the center of the dots than at the edge of the dots. The carbon atoms, which were gathered at the interface between the catalytic nanodot and the diffusion barrier, accumulated near the center of the dot and lifted the catalyst off. From the experiments, an individual carbon nanotube with the same diameter as that of the catalytic nanodot was obtained from a 5 nm thick catalytic nanodot; however, an individual carbon nanotube with a smaller diameter (~40% reduction was obtained from a 50 nm thick nanodot. We found that the thicker the catalytic layer, the greater the reduction in diameter of the carbon nanotubes. The diameter-controlled carbon nanotubes could have applications in bio- and nanomaterial scanning and as a contrast medium for magnetic resonance imaging.

  16. Retina nerve fiber layer and choroidal thickness changes in obstructive sleep apnea syndrome.

    Science.gov (United States)

    Ozge, Gokhan; Dogan, Deniz; Koylu, Mehmet Talay; Ayyildiz, Onder; Akincioglu, Dorukcan; Mumcuoglu, Tarkan; Mutlu, Fatih Mehmet

    2016-01-01

    The purpose of this study was to determine the effects of obstructive sleep apnea syndrome (OSAS) on the submacular and peripapillary retinal nerve fiber layer (RNFL) and choroidal thickness (ChT). Eighty-four eyes of 42 male patients with OSAS and 112 eyes of 56 aged-matched and body mass index-matched healthy male subjects were enrolled in this case-control study. The ChT and peripapillary RNFL thickness was measured using enhanced depth imaging optical coherence tomography. The ChT and RNFL thickness measurements of the groups were compared, and correlations among the Apnea Hypopnea Index (AHI) values and these measurements were calculated. Right and left eyes were separately evaluated. There were no significant differences in the subfoveal and temporal ChT between the groups (p > 0.05). The OSAS group had significantly thicker ChT at 0.5 and 1.5 mm nasal to the fovea in both eyes than the control group (p 0.05). Between AHI and mean RNFL thickness showed a median negative correlation (r = - 0.411, p = 0.001). The choroidal thickening in patients with OSAS may be associated with the pathophysiology of the neurodegeneration process of the disease.

  17. Thickness related textural properties of retinal nerve fiber layer in color fundus images.

    Science.gov (United States)

    Odstrcilik, Jan; Kolar, Radim; Tornow, Ralf-Peter; Jan, Jiri; Budai, Attila; Mayer, Markus; Vodakova, Martina; Laemmer, Robert; Lamos, Martin; Kuna, Zdenek; Gazarek, Jiri; Kubena, Tomas; Cernosek, Pavel; Ronzhina, Marina

    2014-09-01

    Images of ocular fundus are routinely utilized in ophthalmology. Since an examination using fundus camera is relatively fast and cheap procedure, it can be used as a proper diagnostic tool for screening of retinal diseases such as the glaucoma. One of the glaucoma symptoms is progressive atrophy of the retinal nerve fiber layer (RNFL) resulting in variations of the RNFL thickness. Here, we introduce a novel approach to capture these variations using computer-aided analysis of the RNFL textural appearance in standard and easily available color fundus images. The proposed method uses the features based on Gaussian Markov random fields and local binary patterns, together with various regression models for prediction of the RNFL thickness. The approach allows description of the changes in RNFL texture, directly reflecting variations in the RNFL thickness. Evaluation of the method is carried out on 16 normal ("healthy") and 8 glaucomatous eyes. We achieved significant correlation (normals: ρ=0.72±0.14; p≪0.05, glaucomatous: ρ=0.58±0.10; p≪0.05) between values of the model predicted output and the RNFL thickness measured by optical coherence tomography, which is currently regarded as a standard glaucoma assessment device. The evaluation thus revealed good applicability of the proposed approach to measure possible RNFL thinning. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Thickness-Dependent Dielectric Constant of Few-Layer In 2 Se 3 Nanoflakes

    KAUST Repository

    Wu, Di

    2015-11-17

    © 2015 American Chemical Society. The dielectric constant or relative permittivity (εr) of a dielectric material, which describes how the net electric field in the medium is reduced with respect to the external field, is a parameter of critical importance for charging and screening in electronic devices. Such a fundamental material property is intimately related to not only the polarizability of individual atoms but also the specific atomic arrangement in the crystal lattice. In this Letter, we present both experimental and theoretical investigations on the dielectric constant of few-layer In2Se3 nanoflakes grown on mica substrates by van der Waals epitaxy. A nondestructive microwave impedance microscope is employed to simultaneously quantify the number of layers and local electrical properties. The measured εr increases monotonically as a function of the thickness and saturates to the bulk value at around 6-8 quintuple layers. The same trend of layer-dependent dielectric constant is also revealed by first-principles calculations. Our results of the dielectric response, being ubiquitously applicable to layered 2D semiconductors, are expected to be significant for this vibrant research field.

  19. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method

    Directory of Open Access Journals (Sweden)

    Chien-Chen Diao

    2014-01-01

    Full Text Available In this study, a new thin-film deposition process, spray coating method (SPM, was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method.

  20. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    Science.gov (United States)

    Krimi, Soufiene; Klier, Jens; Jonuscheit, Joachim; von Freymann, Georg; Urbansky, Ralph; Beigang, René

    2016-07-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  1. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    International Nuclear Information System (INIS)

    Krimi, Soufiene; Beigang, René; Klier, Jens; Jonuscheit, Joachim; Freymann, Georg von; Urbansky, Ralph

    2016-01-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  2. Pulsations of white dwarf stars with thick hydrogen or helium surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.N.; Starrfield, S.G.; Kidman, R.B.; Pesnell, W.D.

    1986-07-01

    In order to see if there could be agreement between results of stellar evolution theory and those of nonradial pulsation theory, calculations of white dwarf models have been made for hydrogen surface masses of 10/sup -4/ solar masses. Earlier results indicated that surface masses greater than 10/sup -8/ solar masses would not allow nonradial pulsations, even though all the driving and damping is in surface layers only 10/sup -12/ of the mass thick. It is shown that the surface mass of hydrogen in the pulsating white dwarfs (ZZ Ceti variables) can be any value as long as it is thick enough to contain the surface convection zone. 10 refs., 6 figs.

  3. The effects of substrate layer thickness on piezoelectric vibration energy harvesting with a bimorph type cantilever

    Science.gov (United States)

    Palosaari, Jaakko; Leinonen, Mikko; Juuti, Jari; Jantunen, Heli

    2018-06-01

    In this research four piezoelectric bimorph type cantilevers for energy harvesting were manufactured, measured and analyzed to study the effects of substrate layer thickness on energy harvesting efficiency and durability under different accelerations. The cantilevers had the same dimensions of the piezoelectric ceramic components, but had different thicknesses of the steel substrate (no steel, 30 μm, 50 μm and 75 μm). The cantilevers were tuned to the same resonance frequency with different sizes of tip mass (2.13 g, 3.84 g, 4.17 g and 5.08 g). The energy harvester voltage outputs were then measured across an electrical load near to the resonance frequency (∼40 Hz) with sinusoidal vibrations under different accelerations. The stress exhibited by the four cantilevers was compared and analyzed and their durability was tested with accelerations up to 2.5 g-forces.

  4. Evolution of structure with Fe layer thickness in low dimensional Fe/Tb multilayered structures

    International Nuclear Information System (INIS)

    Harris, V.G.; Aylesworth, K.D.; Elam, W.T.; Koon, N.C.; Coehoorn, R.; Hoving, W.

    1992-01-01

    This paper reports on the atomic structure of a series of low-dimensional Fe/Tb multilayered structures which has been explored using a conversion-electron, extended x-ray absorption fine structure (EXAFS) technique. A structural transition from a close-packed amorphous structure to a body-centered crystalline structure is detected to occur over an Fe layer thickness range of 12.5 Angstrom to 15.0 Angstrom (Tb thickness is held constant at 4.5 Angstrom). Magnetic properties, specifically, magnetization, anisotropy field, and Kerr rotation angle, are measured and found to change significantly in response to this transition. Exploitation of the polarization properties of synchrotron radiation allowed for the description of the atomic structure both perpendicular and parallel to the sample plane

  5. Improvement of corrosion resistance of transparent conductive multilayer coating consisting of silver layers and transparent metal oxide layers

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Yamazaki, Fumiharu; Okamura, Tomoyuki; Fukuda, Shin

    2007-01-01

    An optical filter for plasma display panel (PDP) requires an electromagnetic shield with very high ability. The authors investigated a transparent conductive multilayer coating consisting of silver (Ag) layers and transparent metal oxide layers. The durability of the multilayer sputter coating, including the silver layer, is very sensitive to the surrounding atmosphere. For example, after an exposure test they found discolored points on the multilayer sputter coatings, possibly caused by migration of silver atoms in the silver layers. In their investigation, they modified the top surface of the multilayer sputter coatings with transition metals to improve the corrosion resistance of the multilayer coating. Specifically, they deposited transition metals 0.5-2 nm thick on the top surface of the multilayer coatings by sputtering. They chose indium tin oxide (ITO) as the transparent metal oxide. They applied the multilayer sputter coatings of seven layers to a polyethylene terephthalate (PET) film substrate. A cross-sectional structure of the film with the multilayer coatings is PET film/ITO/Ag/ITO/Ag/ITO/Ag/ITO. They evaluated the corrosion resistance of the films by a salt-water immersion test. In the test, they immersed the film with multilayer coatings into salt water, and then evaluated the appearance, transmittance, and electrical resistance of the multilayer coatings. They investigated several transition metals as the modifying material, and found that titanium and tantalum drastically improved the resistance of the multilayer coatings to the salt-water exposure without a significant decline in transmittance. They also investigated the relation between elapsed time after deposition of the modifying materials and resistance to the salt water. Furthermore, they investigated the effects of a heat treatment and an oxide plasma treatment on resistance to the salt water

  6. The application of thick hydrogenated amorphous silicon layers to charged particle and x-ray detection

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Fujieda, I.; Kaplan, S.N.; Qureshi, S.; Street, R.A.

    1989-04-01

    We outline the characteristics of thick hydrogenated amorphous silicon layers which are optimized for the detection of charged particles, x-rays and γ-rays. Signal amplitude as a function of the linear energy transfer of various particles are given. Noise sources generated by the detector material and by the thin film electronics - a-Si:H or polysilicon proposed for pixel position sensitive detectors readout are described, and their relative amplitudes are calculated. Temperature and neutron radiation effects on leakage currents and the corresponding noise changes are presented. 17 refs., 12 figs., 2 tabs

  7. An RBS study of thin PLD and MOCVD strontium copper oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Kantor, Z. [Institute of Physics, University of Pannonia, H-8200 Veszprem (Hungary); Papadopoulou, E.L.; Aperathitis, E. [Inst. Electronic Struture and Laser, Foundation for Research and Technology - Hellas, P.O. Box 1527, Heraklion 71110 (Greece); Deschanvres, J.-L. [LMPG INP Grenoble-Minatec, BP 257, 38016 Grenoble Cedex 1 (France); Somogyi, K. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)], E-mail: karoly.somogyi@microvacuum.com; Szendro, I. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)

    2008-09-30

    Strontium copper oxide (SCO) has been studied as p-type transparent (VIS) conductive oxide material. Also theoretical studies suggested p-type conductivity of the SrCu{sub 2}O{sub 2} composition. SCO thin layers, with thicknesses of 30-2000 nm, were deposited on glass and silicon substrates both by pulsed laser deposition (PLD) and by MOCVD method. The as-grown layers showed high electrical resistance. Due to an annealing process, the resistivity significantly decreased and the layers showed p-type conductivity. Optical transparency measured on samples grown on glass substrates was found about or above 80%, including also thickness dependence. RBS measurements were applied for the determination of the chemical composition profile of the layers. A comparison revealed some specific differences between as-grown and annealed PLD samples. Due to the annealing, the ratio of oxide phases was changed and a vertical inhomogeneity in chemical composition was observed. Our measurements revealed also the influence of the deposition technique and of the substrate.

  8. The electrochemical transfer reactions and the structure of the iron|oxide layer|electrolyte interface

    International Nuclear Information System (INIS)

    Petrović, Željka; Metikoš-Huković, Mirjana; Babić, Ranko

    2012-01-01

    The thickness, barrier (protecting) and semiconducting properties of the potentiostatically formed oxide films on the pure iron electrode in an aqueous borate buffer solution were investigated by electrochemical quartz crystal nanobalance (EQCN), electrochemical impedance spectroscopy (EIS), and Mott–Schottky (MS) analysis. The thicknesses of the prepassive Fe(II)hydroxide layer (up to monolayer) nucleated on the bare iron surface and the passive Fe(II)/Fe(III) layer (up to 2 nm), deposited on the top of the first one, were determined using in situ gravimetry. Electronic properties of iron prepassive and passive films as well as ionic and electronic transfer reactions at the film|solution interface were discussed on the basis of a band structure model of the surface oxide film and the potential distribution at the interface. The anodic oxide film formation and cathodic decomposition are coupled processes and their reversible inter-conversion is mediated by the availability of free charge carriers on the electrode|solution interface. The structure of the reversible double layer at the iron oxide|solution interface was discussed based on the concept of the specific adsorption of the imidazolium cation on the negatively charged electrode surface at pH > pH pzc .

  9. Regression Methods for Virtual Metrology of Layer Thickness in Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Purwins, Hendrik; Barak, Bernd; Nagi, Ahmed

    2014-01-01

    The quality of wafer production in semiconductor manufacturing cannot always be monitored by a costly physical measurement. Instead of measuring a quantity directly, it can be predicted by a regression method (Virtual Metrology). In this paper, a survey on regression methods is given to predict...... average Silicon Nitride cap layer thickness for the Plasma Enhanced Chemical Vapor Deposition (PECVD) dual-layer metal passivation stack process. Process and production equipment Fault Detection and Classification (FDC) data are used as predictor variables. Various variable sets are compared: one most...... algorithm, and Support Vector Regression (SVR). On a test set, SVR outperforms the other methods by a large margin, being more robust towards changes in the production conditions. The method performs better on high-dimensional multivariate input data than on the most predictive variables alone. Process...

  10. Retinal nerve fiber layer thickness is associated with lesion length in acute optic neuritis

    DEFF Research Database (Denmark)

    Kallenbach, K; Simonsen, Helle Juhl; Sander, B

    2010-01-01

    included 41 patients with unilateral optic neuritis and 19 healthy volunteers. All patients were evaluated and examined within 28 days of onset of symptoms. The peripapillary retinal nerve fiber layer thickness (RNFLT), an objective quantitative measure of optic nerve head edema, was measured by optical...... coherence tomography and the length and location of the inflammatory optic nerve lesion were evaluated using MRI. RESULTS: Ophthalmoscopically, 34% of the patients had papillitis. The retinal nerve fiber layer in affected eyes (mean 123.1 microm) was higher during the acute phase than that of fellow eyes......BACKGROUND: Acute optic neuritis occurs with and without papillitis. The presence of papillitis has previously been thought to imply an anterior location of the neuritis, but imaging studies seeking to test this hypothesis have been inconclusive. METHODS: This prospective observational cohort study...

  11. Towards printed perovskite solar cells with cuprous oxide hole transporting layers

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liang, Jun

    2015-01-01

    Solution-processed p-type metal oxide materials have shown great promise in improving the stability of perovskite-based solar cells and offering the feasibility for a low cost printing fabrication process. Herein, we performed a device modeling study on planar perovskite solar cells with cuprous...... oxide (Cu2O) hole transporting layers (HTLs) by using a solar cell simulation program, wxAMPS. The performance of a Cu2O/perovskite solar cell was correlated to the material properties of the Cu2O HTL, such as thickness, carrier mobility, mid-gap defect, and doping...

  12. Nanoporous Al sandwich foils using size effect of Al layer thickness during Cu/Al/Cu laminate rolling

    Science.gov (United States)

    Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie

    2018-06-01

    The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the 'thickness effect' during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate 'nanoporous' Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.

  13. E2CAV, Pavement layer thickness estimation system based on image texture operators

    Directory of Open Access Journals (Sweden)

    Brayan Barrios Arcila

    2017-01-01

    Full Text Available Context: Public roads are an essential part of economic progress in any country; they are fundamental for increasing the efficiency on transportation of goods and are a remarkable source of employment. For its part, Colombia has few statistics on the condition of its roads; according with INVIAS the state of the roads in Colombia can be classified as “Very Good” (21.1%, “Good” (34.7%, and “Regular” or “Bad” (43.46%. Thus, from the point of view of pavement rehabilitation, it is worth securing the quality of those roads classified as “Regular” or “Bad”. Objective: In this paper we propose a system to estimate the thickness of the pavement layer using image segmentation methods. The pavement thickness is currently estimated using radars of terrestrial penetration, extraction of cores or making pips; and it is part of structural parameters in the systems of evaluation of pavement. Method: The proposed system is composed of a vertical movement control unit, which introduces a video scope into a small hole in the pavement, then the images are obtained and unified in a laptop. Finally, this mosaic is processed through texture operators to estimate the thickness of the pavement. Users can select between the Otsu method and Gabor filters to process the image data. Results: The results include laboratory and field tests; these tests show errors of 5.03% and 11.3%, respectively, in the thickness of the pavement. Conclusion: The proposed system is an attractive option for local estimation of pavement thickness, with minimal structural damage and less impact on mobility and number of operators.

  14. A comparison of oxide thickness predictability from the perspective of codes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo-Young; Shin, Hye-In; Kim, Kyung-Tae; Han, Hee-Tak; Kim, Hong-Jin; Kim, Yong-Hwan [KEPCO Nuclear Fuel Co. Ltd., Daejeon (Korea, Republic of)

    2016-10-15

    In Korea, OPR1000 and Westinghouse type nuclear power plant reactor fuel rods oxide thickness has been evaluated by imported code A. Because of this, there have been multiple constraints in operation and maintenance of fuel rod design system. For this reason, there has been a growing demand to establish an independent fuel rod design system. To meet this goal, KNF has recently developed its own code B for fuel rod design. The objective of this study is to compare oxide thickness prediction performance between code A and code B and to check the validity of predicting corrosion behaviors of newly developed code B. This study is based on Pool Side Examination (PSE) data for the performance confirmation. For the examination procedures, the oxide thickness measurement methods and equipment of PSE are described in detail. In this study, code B is confirmed conservatism and validity on evaluating cladding oxide thickness through the comparison with code A. Code prediction values show higher value than measured data from PSE. Throughout this study, the values by code B are evaluated and proved to be valid in a view point of the oxide thickness evaluation. However, the code B input for prediction has been made by designer's judgment with complex handwork that might be lead to excessive conservative result and ineffective design process with some possibility of errors.

  15. Graphene Oxide as a Monoatomic Blocking Layer

    DEFF Research Database (Denmark)

    Petersen, Søren; Glyvradal, Magni; Bøggild, Peter

    2012-01-01

    Monolayer graphene oxide (mGO) is shown to effectively protect molecular thin films from reorganization and function as an atomically thin barrier for vapor-deposited Ti/Al metal top electrodes. Fragile organic Langmuir–Blodgett (LB) films of C22 fatty acid cadmium salts (cadmium(II) behenate) were...

  16. Optimization of electrode geometry and piezoelectric layer thickness of a deformable mirror

    Directory of Open Access Journals (Sweden)

    Nováková Kateřina

    2013-05-01

    Full Text Available Deformable mirrors are the most commonly used wavefront correctors in adaptive optics systems. Nowadays, many applications of adaptive optics to astronomical telescopes, high power laser systems, and similar fast response optical devices require large diameter deformable mirrors with a fast response time and high actuator stroke. In order to satisfy such requirements, deformable mirrors based on piezoelectric layer composite structures have become a subject of intense scientific research during last two decades. In this paper, we present an optimization of several geometric parameters of a deformable mirror that consists of a nickel reflective layer deposited on top of a thin lead zirconate titanate (PZT piezoelectric disk. Honeycomb structure of gold electrodes is deposited on the bottom of the PZT layer. The analysis of the optimal thickness ratio between the PZT and nickel layers is performed to get the maximum actuator stroke using the finite element method. The effect of inter-electrode distance on the actuator stroke and influence function is investigated. Applicability and manufacturing issues are discussed.

  17. Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers.

    Science.gov (United States)

    Hyun, Byung-Ryool; Choi, Joshua J; Seyler, Kyle L; Hanrath, Tobias; Wise, Frank W

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Room-temperature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures.

  18. Heterojunction PbS Nanocrystal Solar Cells with Oxide Charge-Transport Layers

    KAUST Repository

    Hyun, Byung-Ryool

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Roomerature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures. © 2013 American Chemical Society.

  19. Effect of Substrate Permittivity and Thickness on Performance of Single-Layer, Wideband, U-Slot Antennas on Microwave Substrates

    National Research Council Canada - National Science Library

    Natarajan, V; Chatterjee, D

    2004-01-01

    This paper presents effects of substrate permittivity and thickness on the performance characteristics like impedance bandwidth, radiation efficiency and gain of a single-layer, wideband, U-slot antenna...

  20. Ta thickness-dependent perpendicular magnetic anisotropy features in Ta/CoFeB/MgO/W free layer stacks

    Energy Technology Data Exchange (ETDEWEB)

    Yang, SeungMo; Lee, JaBin; An, GwangGuk [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, JaeHong [Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, WooSeong [Nano Quantum Electronics Lab, Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, JinPyo, E-mail: jphong@hanyang.ac.kr [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-07-31

    We describe Ta underlayer thickness influence on thermal stability of perpendicular magnetic anisotropy in Ta/CoFeB/MgO/W stacks. It is believed that thermal stability based on Ta underlay is associated with thermally-activated Ta atom diffusion during annealing. The difference in Ta thickness-dependent diffusion behaviors was confirmed with X-ray photoelectron spectroscopy analysis. Along with a feasible Ta thickness model, our observations suggest that an appropriate seed layer choice is needed for high temperature annealing stability, a critical issue in the memory industry. - Highlights: • We observed changes in the diffusion behavior with regard to Ta seed layer thickness. • It was observed that a thinner Ta seed layer induced more annealing-stable features. • However, ultra-thin (0.75 nm) Ta shows unstable characteristics about the annealing process. • It was possibly due to a rugged interface of the Ta layer by the island growth process.

  1. Spatial Atomic Layer Deposition of transparent conductive oxides

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Poodt, P.; Roozeboom, F.

    2013-01-01

    Undoped and indium doped ZnO films have been grown by Spatial Atomic Layer Deposition at atmospheric pressure. The electrical properties of ZnO films are controlled by varying the indium content in the range from 0 to 15 %. A minimum resistivity value of 3 mΩ•cm is measured in 180 nm thick films for

  2. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    OpenAIRE

    Lee, Youngseok; Oh, Woongkyo; Dao, Vinh Ai; Hussain, Shahzada Qamar; Yi, Junsin

    2012-01-01

    It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT) solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO) process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0) which improves the efficie...

  3. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    Science.gov (United States)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  4. Analysis of chemical bond states and electrical properties of stacked AlON/HfO{sub 2} gate oxides formed by using a layer-by-layer technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wonjoon; Lee, Jonghyun; Yang, Jungyup; Kim, Chaeok; Hong, Jinpyo; Nahm, Tschanguh; Byun, Byungsub; Kim, Moseok [Hanyang University, Seoul (Korea, Republic of)

    2006-06-15

    Stacked AlON/HfO{sub 2} thin films for gate oxides in metal-oxide-semiconductor devices are successfully prepared on Si substrates by utilizing a layer-by-layer technique integrated with an off-axis RF remote plasma sputtering process at room temperature. This off-axis structure is designed to improve the uniformity and the quality of gate oxide films. Also, a layer-by-layer technique is used to control the interface layer between the gate oxide and the Si substrate. The electrical properties of our stacked films are characterized by using capacitance versus voltage and leakage current versus voltage measurements. The stacked AlON/HfO{sub 2} gate oxide exhibits a low leakage current of about 10{sup -6} A/cm{sup 2} and a high dielectric constant value of 14.26 by effectively suppressing the interface layer between gate oxide and Si substrate. In addition, the chemical bond states and the optimum thickness of each AlON and HfO{sub 2} thin film are analyzed using X-ray photoemission spectroscopy and transmission electron microscopy measurement.

  5. New Normative Database of Inner Macular Layer Thickness Measured by Spectralis OCT Used as Reference Standard for Glaucoma Detection.

    Science.gov (United States)

    Nieves-Moreno, María; Martínez-de-la-Casa, José M; Bambo, María P; Morales-Fernández, Laura; Van Keer, Karel; Vandewalle, Evelien; Stalmans, Ingeborg; García-Feijoó, Julián

    2018-02-01

    This study examines the capacity to detect glaucoma of inner macular layer thickness measured by spectral-domain optical coherence tomography (SD-OCT) using a new normative database as the reference standard. Participants ( N = 148) were recruited from Leuven (Belgium) and Zaragoza (Spain): 74 patients with early/moderate glaucoma and 74 age-matched healthy controls. One eye was randomly selected for a macular scan using the Spectralis SD-OCT. The variables measured with the instrument's segmentation software were: macular nerve fiber layer (mRNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) volume and thickness along with circumpapillary RNFL thickness (cpRNFL). The new normative database of macular variables was used to define the cutoff of normality as the fifth percentile by age group. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of each macular measurement and of cpRNFL were used to distinguish between patients and controls. Overall sensitivity and specificity to detect early-moderate glaucoma were 42.2% and 88.9% for mRNFL, 42.4% and 95.6% for GCL, 42.2% and 94.5% for IPL, and 53% and 94.6% for RNFL, respectively. The best macular variable to discriminate between the two groups of subjects was outer temporal GCL thickness as indicated by an AUROC of 0.903. This variable performed similarly to mean cpRNFL thickness (AUROC = 0.845; P = 0.29). Using our normative database as reference, the diagnostic power of inner macular layer thickness proved comparable to that of peripapillary RNFL thickness. Spectralis SD-OCT, cpRNFL thickness, and individual macular inner layer thicknesses show comparable diagnostic capacity for glaucoma and RNFL, GCL, and IPL thickness may be useful as an alternative diagnostic test when the measure of cpRNFL shows artifacts.

  6. Electrostatic layer-by-layer a of platinum-loaded multiwall carbon nanotube multilayer: A tunable catalyst film for anodic methanol oxidation

    International Nuclear Information System (INIS)

    Yuan Junhua; Wang Zhijuan; Zhang Yuanjian; Shen Yanfei; Han Dongxue; Zhang Qixian; Xu Xiaoyu; Niu Li

    2008-01-01

    A simple layer-by-layer (LBL) electrostatic adsorption technique was developed for deposition of films composed of alternating layers of positively charged poly(diallyldimethylammonium chloride) (PDDA) and negatively charged multiwall carbon nanotubes bearing platinum nanoparticles (Pt-CNTs). PDDA/Pt-CNT film structure and morphology up to six layers were characterized by scanning electron microscopy and ultraviolet-visible spectroscopy, showing the Pt-CNT layers to be porous and uniformly deposited within the multilayer films. Electrochemical properties of the PDDA/Pt-CNT films, as well as electrocatalytic activity toward methanol oxidation, were investigated with cyclic voltammetry. Significant activity toward anodic methanol oxidation was observed and is readily tunable through changing film thickness and/or platinum-nanoparticle loading. Overall, the observed properties of these PDDA/Pt-CNT multilayer films indicated unique potential for application in direct methanol fuel cell

  7. Remotely Sensed Active Layer Thickness (ReSALT at Barrow, Alaska Using Interferometric Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Kevin Schaefer

    2015-03-01

    Full Text Available Active layer thickness (ALT is a critical parameter for monitoring the status of permafrost that is typically measured at specific locations using probing, in situ temperature sensors, or other ground-based observations. Here we evaluated the Remotely Sensed Active Layer Thickness (ReSALT product that uses the Interferometric Synthetic Aperture Radar technique to measure seasonal surface subsidence and infer ALT around Barrow, Alaska. We compared ReSALT with ground-based ALT obtained using probing and calibrated, 500 MHz Ground Penetrating Radar at multiple sites around Barrow. ReSALT accurately reproduced observed ALT within uncertainty of the GPR and probing data in ~76% of the study area. However, ReSALT was less than observed ALT in ~22% of the study area with well-drained soils and in ~1% of the area where soils contained gravel. ReSALT was greater than observed ALT in some drained thermokarst lake basins representing ~1% of the area. These results indicate remote sensing techniques based on InSAR could be an effective way to measure and monitor ALT over large areas on the Arctic coastal plain.

  8. Amino Acid Composition, Urease Activity and Trypsin Inhibitor Activity after Toasting of Soybean in Thick and Thin Layer

    OpenAIRE

    Krička, Tajana; Jurišić, Vanja; Voća, Neven; Ćurić, Duška; Brlek Savić, Tea; Matin, Ana

    2009-01-01

    The objective of this study was to determine amino acid content, urease activity and trypsin inhibitor activity in soybean grain for polygastric animals’ feed aft er toasting with the aim to introduce thick layer in toasting technology. Hence, soybean was toasted both in thick and thin layer at 130 oC during 10 minutes. In order to properly monitor the technological process of soybean thermal processing, it was necessary to study crude protein content, urease activity, trypsin inhibitor activ...

  9. The roles of buffer layer thickness on the properties of the ZnO epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Kun, E-mail: ktang@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Huang, Shimin [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Gu, Shulin, E-mail: slgu@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Zhu, Shunming [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Ye, Jiandong [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009 (China); Xu, Zhonghua; Zheng, Youdou [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China)

    2016-12-01

    Highlights: • The growth mechanism has been revealed for the ZnO buffers with different thickness. • The surface morphology has been determined as the key factor to affect the epitaxial growth. • The relation between the hexagonal pits from buffers and epi-films has been established. • The hexagonal pits formed in the epi-films have been attributed to the V-shaped defects inheriting from the dislocations in the buffers. • The structural and electrical properties of the V-defects have been presented and analyzed. - Abstract: In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.

  10. The roles of buffer layer thickness on the properties of the ZnO epitaxial films

    International Nuclear Information System (INIS)

    Tang, Kun; Huang, Shimin; Gu, Shulin; Zhu, Shunming; Ye, Jiandong; Xu, Zhonghua; Zheng, Youdou

    2016-01-01

    Highlights: • The growth mechanism has been revealed for the ZnO buffers with different thickness. • The surface morphology has been determined as the key factor to affect the epitaxial growth. • The relation between the hexagonal pits from buffers and epi-films has been established. • The hexagonal pits formed in the epi-films have been attributed to the V-shaped defects inheriting from the dislocations in the buffers. • The structural and electrical properties of the V-defects have been presented and analyzed. - Abstract: In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.

  11. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    Science.gov (United States)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  12. Nanometer-resolution electron microscopy through micrometers-thick water layers

    Energy Technology Data Exchange (ETDEWEB)

    Jonge, Niels de, E-mail: niels.de.jonge@vanderbilt.edu [Vanderbilt University Medical Center, Department of Molecular Physiology and Biophysics, Nashville, TN 37232-0615 (United States); Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6064 (United States); Poirier-Demers, Nicolas; Demers, Hendrix [Universite de Sherbrooke, Electrical and Computer Engineering, Sherbrooke, Quebec J1K 2R1 (Canada); Peckys, Diana B. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6064 (United States); University of Tennessee, Center for Environmental Biotechnology, Knoxville, TN 37996-1605 (United States); Drouin, Dominique [Universite de Sherbrooke, Electrical and Computer Engineering, Sherbrooke, Quebec J1K 2R1 (Canada)

    2010-08-15

    Scanning transmission electron microscopy (STEM) was used to image gold nanoparticles on top of and below saline water layers of several micrometers thickness. The smallest gold nanoparticles studied had diameters of 1.4 nm and were visible for a liquid thickness of up to 3.3 {mu}m. The imaging of gold nanoparticles below several micrometers of liquid was limited by broadening of the electron probe caused by scattering of the electron beam in the liquid. The experimental data corresponded to analytical models of the resolution and of the electron probe broadening as function of the liquid thickness. The results were also compared with Monte Carlo simulations of the STEM imaging on modeled specimens of similar geometry and composition as used for the experiments. Applications of STEM imaging in liquid can be found in cell biology, e.g., to study tagged proteins in whole eukaryotic cells in liquid and in materials science to study the interaction of solid:liquid interfaces at the nanoscale.

  13. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.

  14. Clinical analysis of retinal nerve fiber layer thickness and macular fovea in hyperopia children with anisometropia amblyopia

    Directory of Open Access Journals (Sweden)

    Fei-Fei Li

    2017-10-01

    Full Text Available AIM:To analyze the clinical significance of axial length, diopter and retinal nerve fiber layer thickness in hyperopia children with anisometropia amblyopia. METHODS: From January 2015 to January 2017 in our hospital for treatment, 103 cases, all unilateral, were diagnosed as hyperopia anisometropia amblyopia. The eyes with amblyopia were as experimental group(103 eyes, another normal eye as control group(103 eyes. We took the detection with axial length, refraction, foveal thickness, corrected visual acuity, diopter and the average thickness of retinal nerve fiber layer. RESULTS: Differences in axial length and diopter and corrected visual acuity were statistically significant between the two groups(PP>0.05. There was statistical significance difference on the foveal thickness(PP>0.05. The positive correlation between diopter with nerve fiber layer thickness of foveal and around the optic disc were no statistically significant difference(P>0.05. CONCLUSION: Retinal thickness of the fovea in the eye with hyperopic anisometropia amblyopia were thicker than those in normal eyes; the nerve fiber layer of around the optic disc was not significantly different between the amblyopic eyes and contralateral eyes. The refraction and axial length had no significant correlation with optic nerve fiber layer and macular foveal thickness.

  15. Traps in Zirconium Alloys Oxide Layers

    Directory of Open Access Journals (Sweden)

    Helmar Frank

    2005-01-01

    Full Text Available Oxide films long-time grown on tubes of three types of zirconium alloys in water and in steam were investigated, by analysing I-V characteristic measured at constant voltages with various temperatures. Using theoretical concepts of Rose [3] and Gould [5], ZryNbSn(Fe proved to have an exponential distribution of trapping centers below the conduction band edge, wheras Zr1Nb and IMP Zry-4 proved to have single energy trap levels.

  16. Dependence of magnetic properties on ferromagnetic layer thickness in trilayer Co/Ge/Co films with granular semiconducting spacer

    International Nuclear Information System (INIS)

    Patrin, G.S.; Lee, C.-G.; Turpanov, I.A.; Zharkov, S.M.; Velikanov, D.A.; Maltsev, V.K.; Li, L.A.; Lantsev, V.V.

    2006-01-01

    We have investigated the magnetic properties of trilayer films of Co-Ge-Co. At a fixed thickness of germanium of 3.5 nm, the formation and distribution of metastable amorphous and cubic phases depends on the thickness of the ferromagnetic layer. The portion of the stable hexagonal phase is affected, too. Possible mechanisms for forming the observed magnetic structure are discussed

  17. Influences of layer thickness on the compatibility and physical properties of polycarbonate/polystyrene multilayered film via nanolayer coextrusion

    Science.gov (United States)

    Cheng, Junfeng; Chen, Zhiru; Zhou, Jiaqi; Cao, Zheng; Wu, Dun; Liu, Chunlin; Pu, Hongting

    2018-05-01

    The effects of layer thickness on the compatibility between polycarbonate (PC) and polystyrene (PS) and physical properties of PC/PS multilayered film via nanolayer coextrusion are studied. The morphology of multilayered structure is observed using a scanning electron microscope. This multilayered structure may have a negative impact on the transparency, but it can improve the water resistance and heat resistance of film. To characterize the compatibility between PC and PS, differential scanning calorimetry is used to measure the glass transition temperature. The compatibility is found to be improved with the decrease of layer thickness. Therefore, the viscosity of multilayered film is also reduced with the decrease of layer thickness. In addition, the multilayered structure can improve the tensile strength with the increase of layer numbers. Because of the complete and continuous layer structure of PC, the PC/PS multilayered film can retain its mechanical strength at the temperature above Tg of PS.

  18. Texture and microstructure analysis of epitaxial oxide layers prepared on textured Ni-12wt%Cr tapes

    Energy Technology Data Exchange (ETDEWEB)

    Huehne, R; Kursumovic, A; Tomov, R I; Glowacki, B A [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Holzapfel, B [Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstrasse 20, 01069 Dresden (Germany); Evetts, J E [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    2003-05-07

    Oxide layers for the preparation of YBa{sub 2}Cu{sub 3}O{sub 7-x} coated conductors were grown on highly textured Ni-12wt%Cr tapes in pure oxygen using surface oxidation epitaxy at temperatures between 1000 deg. C and 1300 deg. C. Microstructural investigations revealed a layered oxide structure. The upper layer consists mainly of dense cube textured NiO. This is followed by a porous layer containing NiO and NiCr{sub 2}O{sub 4} particles. A detailed texture analysis showed a cube-on-cube relationship of the NiCr{sub 2}O{sub 4} spinel to the metal substrate. Untextured Cr{sub 2}O{sub 3} particles in a nickel matrix were found in a third layer arising from internal oxidation of the alloy. A high surface roughness and mechanical instability of the oxide were observed, depending on oxidation temperature and film thickness. However, mechanically stable oxide layers have been prepared using an additional annealing step in a protective atmosphere. Additionally, mechanical polishing or a second buffer layer, which grows with a higher smoothness, may be applied to reduce the surface roughness for coated conductor applications.

  19. Monitoring the layer-by-layer self-assembly of graphene and graphene oxide by spectroscopic ellipsometry.

    Science.gov (United States)

    Zhou, Kai-Ge; Chang, Meng-Jie; Wang, Hang-Xing; Xie, Yu-Long; Zhang, Hao-Li

    2012-01-01

    Thin films of graphene oxide, graphene and copper (II) phthalocyanine dye have been successfully fabricated by electrostatic layer-by-layer (LbL) assembly approach. We present the first variable angle spectroscopic ellipsometry (VASE) investigation on these graphene-dye hybrid thin films. The thickness evaluation suggested that our LbL assembly process produces highly uniform and reproducible thin films. We demonstrate that the refractive indices of the graphene-dye thin films undergo dramatic variation in the range close to the absorption of the dyes. This investigation provides new insight to the optical properties of graphene containing thin films and shall help to establish an appropriate optical model for graphene-based hybrid materials.

  20. Optimisation of the material properties of indium tin oxide layers for use in organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Doggart, P.; Bristow, N.; Kettle, J., E-mail: j.kettle@bangor.ac.uk [School of Electronic Engineering, Bangor University, Dean St., Bangor, Gwynedd, Wales LL57 1UT (United Kingdom)

    2014-09-14

    The influence of indium tin oxide [(In{sub 2}O{sub 3}:Sn), ITO] material properties on the output performance of organic photovoltaic (OPV) devices has been modelled and investigated. In particular, the effect of altering carrier concentration (n), thickness (t), and mobility (μ{sub e}) in ITO films and their impact on the optical performance, parasitic resistances and overall efficiency in OPVs was studied. This enables optimal values of these parameters to be calculated for solar cells made with P3HT:PC{sub 61}BM and PCPDTBT:PC{sub 71}BM active layers. The optimal values of n, t and μ{sub e} are not constant between different OPV active layers and depend on the absorption spectrum of the underlying active layer material system. Consequently, design rules for these optimal values as a function of donor bandgap in bulk-heterojunction active layers have been formulated.

  1. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  2. Studies of oxide-based thin-layered heterostructures by X-ray scattering methods

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O. [Thales Research and Technology France, Route Departementale 128, F-91767 Palaiseau Cedex (France)]. E-mail: olivier.durand@thalesgroup.com; Rogers, D. [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Universite de Technologie de Troyes, 10-12 rue Marie Curie, 10010 (France); Teherani, F. Hosseini [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Andrieux, M. [LEMHE, ICMMOCNRS-UMR 8182, Universite d' Orsay, Batiment 410, 91410 Orsay (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-06-04

    Some X-ray scattering methods (X-ray reflectometry and Diffractometry) dedicated to the study of thin-layered heterostructures are presented with a particular focus, for practical purposes, on the description of fast, accurate and robust techniques. The use of X-ray scattering metrology as a routinely working non-destructive testing method, particularly by using procedures simplifying the data-evaluation, is emphasized. The model-independent Fourier-inversion method applied to a reflectivity curve allows a fast determination of the individual layer thicknesses. We demonstrate the capability of this method by reporting X-ray reflectometry study on multilayered oxide structures, even when the number of the layers constitutive of the stack is not known a-priori. Fast Fourier transform-based procedure has also been employed successfully on high resolution X-ray diffraction profiles. A study of the reliability of the integral-breadth methods in diffraction line-broadening analysis applied to thin layers, in order to determine coherent domain sizes, is also reported. Examples from studies of oxides-based thin-layers heterostructures will illustrate these methods. In particular, X-ray scattering studies performed on high-k HfO{sub 2} and SrZrO{sub 3} thin-layers, a (GaAs/AlOx) waveguide, and a ZnO thin-layer are reported.

  3. Measurement of transient thickness between the body and glaze layers of ancient porcelains using microprobe EDXRF technique

    International Nuclear Information System (INIS)

    Peng Zicheng

    2004-01-01

    The oxide contents of TiO 2 , MnO, SrO and Fe 2 O 3 in the body and glaze layers of the Jiao-Tan-Xia (JTX) and Lao-Hu-Dong (LHD) porcelains in Southern Song Dynasty (1127-1279 A.D.) have been determined using an International Eagle-II μ-probe EDXRF spectrometer. The results show that the contents in the body are much different from those in the glaze one. Therefore, the transient thickness (TT) between the body and glaze layers can be measured through determination of a distance of the drift change in the chemical contents. The TT average for the JTX porcelains is 161 μm, while that for the LHD porcelains is 258 μm, which are consistent with a range of 0.15-0.3 mm in the Ru-Yao porcelains. The different TT is related to the variances in firing temperature and raw material for manufacturing the respective porcelains. (authors)

  4. Atomic layer-by-layer oxidation of Ge (100) and (111) surfaces by plasma post oxidation of Al2O3/Ge structures

    International Nuclear Information System (INIS)

    Zhang, Rui; Huang, Po-Chin; Lin, Ju-Chin; Takenaka, Mitsuru; Takagi, Shinichi

    2013-01-01

    The ultrathin GeO x /Ge interfaces formed on Ge (100) and (111) surfaces by applying plasma post oxidation to thin Al 2 O 3 /Ge structures are characterized in detail using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. It is found that the XPS signals assigned to Ge 1+ and the 2+ states in the GeO x layers by post plasma oxidation have oscillating behaviors on Ge (100) surfaces in a period of ∼0.3 nm with an increase in the GeO x thickness. Additionally, the oscillations of the signals assigned to Ge 1+ and 2+ states show opposite phase to each other. The similar oscillation behaviors are also confirmed on Ge (111) surfaces for Ge 1+ and 3+ states in a period of ∼0.5 nm. These phenomena can be strongly regarded as an evidence of the atomic layer-by-layer oxidation of GeO x /Ge interfaces on Ge (100) and (111) surfaces.

  5. The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media

    International Nuclear Information System (INIS)

    Li, W.M.; Lim, W.K.; Shi, J.Z.; Ding, J.

    2013-01-01

    A systematic investigation of magnetic switching behavior of CoCrPt based capped media (perpendicularly coupled granular/continuous (CGC) media consisting of granular CoCrPt:SiO 2 TiO 2 Ta 2 O 5 /capped CoCrPt(B)) is performed by varying the thickness of the capped layer from 0 to 9 nm. The microscopic structures of CGC media with different thickness of capped layer are examined by transmission electron microscope. We find out that CoCrPt magnetic grains are separated by nonmagnetic oxide grain boundaries. Grain size and grain boundary are about 8.9 nm and 2 nm, respectively. The nonmagnetic oxide grain boundaries in the granular layer do not disappear immediately at the interface between the granular and capped layers. The amorphous grain boundary phase in the granular layer propagates to the top surface of the capped layer. After capping with the CoCrPt(B) layer, the grain size at the surface of CGC structure increases and the grain boundary decreases. Both coercivity and intergranular exchange coupling of the CGC media are investigated by Polar magneto-optic Kerr effect magnetometer and alternating gradient force magnetometer. Although H c apparently decreases at thicker capped layer, no obvious variation of macroscopic switching field distribution (SFD/H c ) is observed. We separate intrinsic switching field distribution from intergranular interactions. The investigation of reduced intrinsic SFD/H c and increased hysteresis loop slope at coercivity, suggests that improvement of absolute switching field distribution (SFD) is caused by both strong intergranular exchange coupling and uniform grain size. Micromagnetic simulation results further verify our conclusion that the capped layer in CGC media is not uniformly continuous but has some granular nature. However, grains in the CoCrPt(B) capped layer is not absolutely isolated, strong exchange coupling exists between grains. - Highlights: • In CGC media, CoCrPt magnetic grains are separated by nonmagnetic oxide

  6. Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Saikumar, Jagannath H; Massey, Katherine J; Hong, Nancy J; Dominici, Fernando P; Carretero, Oscar A; Garvin, Jeffrey L

    2016-02-01

    Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Flexible bactericidal graphene oxide-chitosan layers for stem cell proliferation

    Science.gov (United States)

    Mazaheri, M.; Akhavan, O.; Simchi, A.

    2014-05-01

    Graphene oxide (GO)-chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ˜1 μm and thickness of ˜1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ˜80% and 45%, respectively. Similar to the chitosan layer, the GO-chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)-chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs.

  8. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  9. Normative data of outer photoreceptor layer thickness obtained by software image enhancing based on Stratus optical coherence tomography images

    DEFF Research Database (Denmark)

    Christensen, U.C.; Krøyer, K.; Thomadsen, Jakob

    2008-01-01

    backscattered light within the outer nuclear layer (ONL) in the fovea was registered and compared with backscattered light within the ONL in the peripheral part of the macula (I-ratio-ONL). Results: The mean RPE-OScomplex thickness in the foveal centre was 77.2 mu m (SD = 3.95). The RPE-OScomplex thickness...... in the superior macula 0.5-3 mm of the centre was significantly increased as compared with the corresponding inferior retina. In healthy subjects, the I-ratio-ONL was 1.06. Conclusions: Contrast-enhanced OCT images enable quantification of outer photoreceptor layer thickness, and normative values may help...

  10. Effects of thickness and geometric variations in the oxide gate stack on the nonvolatile memory behaviors of charge-trap memory thin-film transistors

    Science.gov (United States)

    Bak, Jun Yong; Kim, So-Jung; Byun, Chun-Won; Pi, Jae-Eun; Ryu, Min-Ki; Hwang, Chi Sun; Yoon, Sung-Min

    2015-09-01

    Device designs of charge-trap oxide memory thin-film transistors (CTM-TFTs) were investigated to enhance their nonvolatile memory performances. The first strategy was to optimize the film thicknesses of the tunneling and charge-trap (CT) layers in order to meet requirements of both higher operation speed and longer retention time. While the program speed and memory window were improved for the device with a thinner tunneling layer, a long retention time was obtained only for the device with a tunneling layer thicker than 5 nm. The carrier concentration and charge-trap densities were optimized in the 30-nm-thick CT layer. It was observed that 10-nm-thick tunneling, 30-nm-thick CT, and 50-nm-thick blocking layers were the best configuration for our proposed CTM-TFTs, where a memory on/off margin higher than 107 was obtained, and a memory margin of 6.6 × 103 was retained even after the lapse of 105 s. The second strategy was to examine the effects of the geometrical relations between the CT and active layers for the applications of memory elements embedded in circuitries. The CTM-TFTs fabricated without an overlap between the CT layer and the drain electrode showed an enhanced program speed by the reduced parasitic capacitance. The drain-bias disturbance for the memory off-state was effectively suppressed even when a higher read-out drain voltage was applied. Appropriate device design parameters, such as the film thicknesses of each component layer and the geometrical relations between them, can improve the memory performances and expand the application fields of the proposed CTM-TFTs.

  11. Foam Core Particleboards with Intumescent FRT Veneer: Cone Calorimeter Testing With Varying Adhesives, Surface Layer Thicknesses, and Processing Conditions

    Science.gov (United States)

    Mark A. Dietenberger; Johannes Welling; Ali Shalbafan

    2014-01-01

    Intumescent FRT Veneers adhered to the surface of foam core particleboard to provide adequate fire protection were evaluated by means of cone calorimeter tests (ASTM E1354). The foam core particleboards were prepared with variations in surface layer treatment, adhesives, surface layer thicknesses, and processing conditions. Ignitability, heat release rate profile, peak...

  12. Electrochemical Corrosion Behavior of Oxidation Layer on Fe30Mn5Al Alloy

    Directory of Open Access Journals (Sweden)

    ZHU Xue-mei

    2017-08-01

    Full Text Available The Fe30Mn5Al alloy was oxidized at 800℃ in air for 160h, the oxidation-induced layer about 15μm thick near the scale-metal interface was induced to transform to ferrite and become enriched in Fe and depletion in Mn. The effect of the oxidation-induced Mn depletion layer on the electrochemical corrosion behavior of Fe30Mn5Al alloy was evaluated. The results show that in 1mol·L-1 Na2SO4 solution, the anodic polarization curve of the Mn depletion layer exhibits self-passivation, compared with Fe30Mn5Al austenitic alloy, and the corrosion potential Evs SCE is increased to -130mV from -750mV and the passive current density ip is decreased to 29μA/cm2 from 310μA/cm2. The electrochemical impedance spectroscopy(EIS of the Mn depletion layer has the larger diameter of capacitive arc, the higher impedance modulus|Z|, and the wider phase degree range, and the fitted polarization resistant Rt is increased to 9.9kΩ·cm2 from 2.7kΩ·cm2 by using an equivalent electric circuit of Rs-(Rt//CPE. The high insulation of the Mn depletion layer leads to an improved corrosion resistance of Fe30Mn5Al austenitic alloy.

  13. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    Science.gov (United States)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  14. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Martin D.; Ngo, Thong Q.; Hu, Shen; Ekerdt, John G., E-mail: ekerdt@utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Posadas, Agham; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-12-15

    Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al{sub 2}O{sub 3} and HfO{sub 2}. However, there has been much effort to deposit ternary oxides, such as perovskites (ABO{sub 3}), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable.

  15. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

    International Nuclear Information System (INIS)

    McDaniel, Martin D.; Ngo, Thong Q.; Hu, Shen; Ekerdt, John G.; Posadas, Agham; Demkov, Alexander A.

    2015-01-01

    Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al 2 O 3 and HfO 2 . However, there has been much effort to deposit ternary oxides, such as perovskites (ABO 3 ), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable

  16. Enhanced Performance of Nanowire-Based All-TiO2 Solar Cells using Subnanometer-Thick Atomic Layer Deposited ZnO Embedded Layer

    International Nuclear Information System (INIS)

    Ghobadi, Amir; Yavuz, Halil I.; Ulusoy, T. Gamze; Icli, K. Cagatay; Ozenbas, Macit; Okyay, Ali K.

    2015-01-01

    In this paper, the effect of angstrom-thick atomic layer deposited (ALD) ZnO embedded layer on photovoltaic (PV) performance of Nanowire-Based All-TiO 2 solar cells has been systematically investigated. Our results indicate that by varying the thickness of ZnO layer the efficiency of the solar cell can be significantly changed. It is shown that the efficiency has its maximum for optimal thickness of 1 ALD cycle in which this ultrathin ZnO layer improves device performance through passivation of surface traps without hampering injection efficiency of photogenerated electrons. The mechanisms contributing to this unprecedented change in PV performance of the cell have been scrutinized and discussed

  17. High Temperature Oxidation Behavior of Zirconium Alloy with Nano structured Oxide Layer in Air Environment

    International Nuclear Information System (INIS)

    Park, Y. J.; Kim, J. W.; Park, J. W.; Cho, S. O.

    2016-01-01

    If the temperature of the cladding materials increases above 1000 .deg. C, which can be caused by a loss of coolant accident (LOCA), Zr becomes an auto-oxidation catalyst and hence produces a huge amount of hydrogen gas from water. Therefore, many investigations are being carried out to prevent (or reduce) the hydrogen production from Zr-based cladding materials in the nuclear reactors. Our team has developed an anodization technique by which nanostructured oxide can be formed on various flat metallic elements such as Al, Ti, and Zr-based alloy. Anodization is a simple electrochemical technique and requires only a power supply and an electrolyte. In this study, Zr-based alloys with nanostructured oxide layers were oxidized by using Thermogravimetry analysis (TGA) and compared with the pristine one. It reveals that the nanostructured oxide layer can prevent oxidation of substrate metal in air. Oxidation behavior of the pristine Zr-Nb-Sn alloy and the Zr-Nb-Sn alloy with nanostructured oxide layer evaluated by measuring weight gain (TGA). In comparison with the pristine Zr-Nb-Sn alloy, weight gain of the Zr-Nb-Sn alloy with nanostructured oxide layer is lower than 10% even for 12 hours oxidation in air.

  18. Thick Escaping Magnetospheric Ion Layer in Magnetopause Reconnection with MMS Observations

    Science.gov (United States)

    Nagai, T.; Kitamura, N.; Hasagawa, H.; Shinohara, I.; Yokota, S.; Saito, Y.; Nakamura, R.; Giles, B. L.; Pollock, C.; Moore, T. E.; hide

    2016-01-01

    The structure of asymmetric magnetopause reconnection is explored with multiple point and high-time-resolution ion velocity distribution observations from the Magnetospheric Multiscale mission. On 9 September 2015, reconnection took place at the magnetopause, which separated the magnetosheath and the magnetosphere with a density ratio of 25:2. The magnetic field intensity was rather constant, even higher in the asymptotic magnetosheath. The reconnected field line region had a width of approximately 540 km. In this region, streaming and gyrating ions are discriminated. The large extension of the reconnected field line region toward the magnetosheath can be identified where a thick layer of escaping magnetospheric ions was formed. The scale of the magnetosheath side of the reconnected field line region relative to the scale of its magnetospheric side was 4.5:1.

  19. The determination of superheated layer thickness for boiling incipience in a vertical thermosiphon reboiler

    International Nuclear Information System (INIS)

    Shamsuzzoha, M.; Kamil, M.; Alam, S.S.

    2003-01-01

    The characteristics of the incipient boiling for vertical thermosiphon reboiler were examined in detail. At the onset of boiling, liquid film adjacent to the heating surface, the super-heated layers thickness δ * , must attain a threshold value so that the critical bubble nuclei with radius r c can further grow to the point of detachment. Thus, the value of δ * /r c is of primary importance for the superheat calculation. In the present study a semi-empirical equation was proposed for the incipient point of boiling including the effect of submergence. The results predicted from theoretical analysis are consistent with the experimental data available in the literature. All the data for fluids namely, distilled water, toluene and ethylene glycol having different thermophysical properties were correlated with a unified correlation having mean absolute deviation 12.73%. (author)

  20. Effect of Organic Layer Thickness on Black Spruce Aging Mistakes in Canadian Boreal Forests

    Directory of Open Access Journals (Sweden)

    Ahmed Laamrani

    2016-03-01

    Full Text Available Boreal black spruce (Picea mariana forests are prone to developing thick organic layers (paludification. Black spruce is adapted to this environment by the continuous development of adventitious roots, masking the root collar and making it difficult to age trees. Ring counts above the root collar underestimate age of trees, but the magnitude of age underestimation of trees in relation to organic layer thickness (OLT is unknown. This age underestimation is required to produce appropriate age-correction tools to be used in land resource management. The goal of this study was to assess aging errors that are done with standard ring counts of trees growing in sites with different degrees of paludification (OLT; 0–25 cm, 26–65 cm, >65 cm. Age of 81 trees sampled at three geographical locations was determined by ring counts at ground level and at 1 m height, and real age of trees was determined by cross-dating growth rings down to the root collar (root/shoot interface. Ring counts at 1 m height underestimated age of trees by a mean of 22 years (range 13–49 and 52 years (range 14–112 in null to low vs. moderately to highly paludified stands, respectively. The percentage of aging-error explained by our linear model was relatively high (R2adj = 0.71 and showed that OLT class and age at 0-m could be used to predict total aging-error while neither DBH nor geographic location could. The resulting model has important implications for forest management to accurately estimate productivity of these forests.

  1. The thickness of odontoblast-like cell layer after induced by propolis extract and calcium hydroxide

    Directory of Open Access Journals (Sweden)

    Irfan Dwiandhono

    2016-12-01

    Full Text Available Background: Propolis is a substance made from resin collected by bees (Apis mellifera from variety of plants, mixed with its saliva and various enzymes to build a nest. Propolis has potential antimicrobial and antiinflammatory agents with some advantages over calcium hydroxide (Ca(OH2. Ca(OH2 has been considered as the “gold standard” of direct pulp-capping materials, but there are still some weakness of its application. First, it can induce pulp inflammation which last up to 3 months. Second, the tissue response to Ca(OH2 is not always predictable. Third, the tunnel defect can probably formed in dentinal bridge with possible bacterial invasion in that gap. Purpose: This study was aimed to determine and compare the thickness of odontoblast-like cells layer after induced by propolis extract and Ca(OH2 in rat’s pulp tissue. Method: Class 1 preparation was done in maxillary first molar tooth of wistar mice until the pulp opened. The Ca(OH2 and propolis extract was applied to induce the formation of odontoblast-like cells, the cavity was filled with RMGIC. The teeth were extracted (after 14 and 28 days of induction. The samples were then processed for histological evaluation. Result: There were significant differences between the thickness of odontoblast-like cells after induced by propolis extract and Ca(OH2. Conclusion: The propolis extract as the direct pulp capping agent produces thicker odontoblast-like cell layer compared to Ca(OH2.

  2. Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Mehmet Demir

    2014-01-01

    Full Text Available Aim: The aim of the following study is to evaluate the retinal nerve fiber layer (RNFL and ganglion cell complex (GCC thickness in patients with type 2 diabetes mellitus (DM. Materials and Methods: Average, inferior, and superior values of RNFL and GCC thickness were measured in 123 patients using spectral domain optical coherence tomography. The values of participants with DM were compared to controls. Diabetic patients were collected in Groups 1, 2 and 3. Group 1 = 33 participants who had no diabetic retinopathy (DR; Group 2 = 30 participants who had mild nonproliferative DR and Group 3 = 30 participants who had moderate non-proliferative DR. The 30 healthy participants collected in Group 4. Analysis of variance test and a multiple linear regression analysis were used for statistical analysis. Results: The values of RNFL and GCC in the type 2 diabetes were thinner than controls, but this difference was not statistically significant. Conclusions: This study showed that there is a nonsignificant loss of RNFL and GCC in patients with type 2 diabetes.

  3. Tunable band structures in digital oxides with layered crystal habits

    Science.gov (United States)

    Shin, Yongjin; Rondinelli, James M.

    2017-11-01

    We use density functional calculations to show that heterovalent cation-order sequences enable control over band-gap variations up to several eV and band-gap closure in the bulk band insulator LaSrAlO4. The band-gap control originates from the internal electric fields induced by the digital chemical order, which induces picoscale band bending; the electric-field magnitude is mainly governed by the inequivalent charged monoxide layers afforded by the layered crystal habit. Charge transfer and ionic relaxations across these layers play secondary roles. This understanding is used to construct and validate a descriptor that captures the layer-charge variation and to predict changes in the electronic gap in layered oxides exhibiting antisite defects and in other chemistries.

  4. Studies on Gas Sensing Performance of Pure and Surface Chrominated Indium Oxide Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    D. N. CHAVAN

    2010-12-01

    Full Text Available The thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performance of thick film was tested for various gases. It showed maximum gas response to ethanol vapor at 350 oC for 80 ppm. To improve the gas response and selectivity of the film towards a particular gas, In2O3 thick films were modified by dipping them in an aqueous solution of 0.1 M CrO3 for different intervals of time. The surface chrominated (20 min In2O3 thick film showed maximum response to H2S gas (40 ppm than pure In2O3 thick film at 250 oC. Chromium oxide on the surface of the film shifts the gas response from ethanol vapor to H2S gas. A systematic study of sensing performance of the sensor indicates the key role played by chromium oxide on the surface of thick film. The selectivity, gas response and recovery time of the sensor were measured and presented.

  5. Studies on Gas Sensing Performance of Cr-doped Indium Oxide Thick Film Sensors

    Directory of Open Access Journals (Sweden)

    D. N. Chavan

    2011-02-01

    Full Text Available A series of In1-xCrxO3 composites, with x ranging from 0.01 to 0.5wt% were prepared by mechanochemically starting from InCl3 and CrO3. Structural and micro structural characteristics of the sample were investigated by XRD, SEM with EDAX. Thick films of pure Indium Oxide and composites were prepared by standard screen printing technique. The gas sensitivity of these thick films was tested for various gases. The pure Indium Oxide thick film (x=0 shows maximum sensitivity to ethanol vapour (80 ppm at 350 oC, but composite-A (x=0.01 thick film shows maximum sensitivity to H2S gas (40 ppm at 250 oC, composite-B (x=0.1 thick film shows higher sensitivity to NH3 gas (80 ppm at 250 oC and composite-C (x=0.5 thick film shows maximum sensitivity to Cl2 gas (80 ppm at 350 oC. A systematic study of gas sensing performance of the sensors indicates the key role played by concentration variation of Cr doped species. The sensitivity, selectivity and recovery time of the sensor were measured and presented.

  6. Layer Dependence of Graphene for Oxidation Resistance of Cu Surface

    Institute of Scientific and Technical Information of China (English)

    Yu-qing Song; Xiao-ping Wang

    2017-01-01

    We studied the oxidation resistance of graphene-coated Cu surface and its layer dependence by directly growing monolayer graphene with different multilayer structures coexisted,diminishing the influence induced by residue and transfer technology.It is found that the Cu surface coated with the monolayer graphene demonstrate tremendous difference in oxidation pattern and oxidation rate,compared to that coated with the bilayer graphene,which is considered to be originated from the strain-induced linear oxidation channel in monolayer graphene and the intersection of easily-oxidized directions in each layer of bilayer graphene,respectively.We reveal that the defects on the graphene basal plane but not the boundaries are the main oxidation channel for Cu surface under graphene protection.Our finding indicates that compared to putting forth efforts to improve the quality of monolayer graphene by reducing defects,depositing multilayer graphene directly on metal is a simple and effective way to enhance the oxidation resistance of graphene-coated metals.

  7. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    Science.gov (United States)

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  8. Dependence of the optical constants and the performance in the SPREE gas measurement on the thickness of doped tin oxide over coatings

    Science.gov (United States)

    Fischer, D.; Hertwig, A.; Beck, U.; Negendank, D.; Lohse, V.; Kormunda, M.; Esser, N.

    2017-11-01

    In this study, thickness related changes of the optical properties of doped tin oxide were studied. Two different sets of samples were prepared. The first set was doped with iron or nickel on silicon substrate with thicknesses of 29-56 nm, the second was iron doped on gold/glass substrate with 1.6-6.3 nm. The optical constants were determined by using spectral ellipsometry (SE) followed by modelling of the dielectric function with an oscillator model using Gaussian peaks. The analysis of the optical constants shows a dependence of the refraction and the absorption on the thickness of the doped tin oxide coating. In addition to the tin oxide absorption in the UV, one additional absorption peak was found in the near-IR/red which is related to plasmonic effects due to the doping. This peak shifts from the near-IR to the red part of the visible spectrum and becomes stronger by reducing the thickness, probably due to the formation of metal nanoparticles in this layer. These results were found for two different sets of samples by using the same optical model. Afterwards the second sample set was tested in the Surface Plasmon Resonance Enhanced Ellipsometric (SPREE) gas measurement with CO gas. It was found that the thickness has significant influence on the sensitivity and thus the adsorption of the CO gas. By increasing the thickness from 1.6 nm to 5.1 nm, the sensing ability is enhanced due to a higher coverage of the surface with the over coating. This is explained by the high affinity of CO molecules to the incorporated Fe-nanoparticles in the tin oxide coating. By increasing the thickness further to 6.3 nm, the sensing ability drops because the layer disturbs the SPR sensing effect too much.

  9. Distribution and landscape controls of organic layer thickness and carbon within the Alaskan Yukon River Basin

    Science.gov (United States)

    Pastick, Neal J.; Rigge, Matthew B.; Wylie, Bruce K.; Jorgenson, M. Torre; Rose, Joshua R.; Johnson, Kristofer D.; Ji, Lei

    2014-01-01

    Understanding of the organic layer thickness (OLT) and organic layer carbon (OLC) stocks in subarctic ecosystems is critical due to their importance in the global carbon cycle. Moreover, post-fire OLT provides an indicator of long-term successional trajectories and permafrost susceptibility to thaw. To these ends, we 1) mapped OLT and associated uncertainty at 30 m resolution in the Yukon River Basin (YRB), Alaska, employing decision tree models linking remotely sensed imagery with field and ancillary data, 2) converted OLT to OLC using a non-linear regression, 3) evaluate landscape controls on OLT and OLC, and 4) quantified the post-fire recovery of OLT and OLC. Areas of shallow (2 = 0.68; OLC: R2 = 0.66), where an average of 16 cm OLT and 5.3 kg/m2 OLC were consumed by fires. Strong predictors of OLT included climate, topography, near-surface permafrost distributions, soil wetness, and spectral information. Our modeling approach enabled us to produce regional maps of OLT and OLC, which will be useful in understanding risks and feedbacks associated with fires and climate feedbacks.

  10. Characterization of Zircaloy-4 oxide layers by impedance spectroscopy

    International Nuclear Information System (INIS)

    Barberis, P.

    1999-01-01

    Two Zircaloy-4 type alloys with different tin contents (0.5 and 1.2 wt%) have been oxidized in autoclave (400 C in steam) for several durations (1-140 days). The film has been characterized by electrochemical impedance spectroscopy (EIS). Several soaking times have been investigated (up to 40 days). The Cole-Cole representation has been used to display and study the data. A simple electrical model has been derived from the observed spectra: the electrical circuit includes two RC loops in series, whose capacitances are frequency dispersed. It is thoroughly related to the layer structure. It has been shown that even before the kinetic transition, the film is constituted of three parts: an inner layer which is compact, an outer layer subdivided in an external region immediately soaked by the electrolyte, and an internal one in which electrolyte diffusion processes can take place. The kinetic transition is interpreted in terms of an abrupt 'compacity' change, both layers degrading at this point. The alloy with high tin content exhibits higher dispersive properties of the oxide layer formed on it, in correlation with its faster oxidation kinetics. (orig.)

  11. Single versus double-layer uterine closure at cesarean: impact on lower uterine segment thickness at next pregnancy.

    Science.gov (United States)

    Vachon-Marceau, Chantale; Demers, Suzanne; Bujold, Emmanuel; Roberge, Stephanie; Gauthier, Robert J; Pasquier, Jean-Charles; Girard, Mario; Chaillet, Nils; Boulvain, Michel; Jastrow, Nicole

    2017-07-01

    Uterine rupture is a potential life-threatening complication during a trial of labor after cesarean delivery. Single-layer closure of the uterus at cesarean delivery has been associated with an increased risk of uterine rupture compared with double-layer closure. Lower uterine segment thickness measurement by ultrasound has been used to evaluate the quality of the uterine scar after cesarean delivery and is associated with the risk of uterine rupture. To estimate the impact of previous uterine closure on lower uterine segment thickness. Women with a previous single low-transverse cesarean delivery were recruited at 34-38 weeks' gestation. Transabdominal and transvaginal ultrasound evaluation of the lower uterine segment thickness was performed by a sonographer blinded to clinical data. Previous operative reports were reviewed to obtain the type of previous uterine closure. Third-trimester lower uterine segment thickness at the next pregnancy was compared according to the number of layers sutured and according to the type of thread for uterine closure, using weighted mean differences and multivariate logistic regression analyses. Of 1613 women recruited, with operative reports available, 495 (31%) had a single-layer and 1118 (69%) had a double-layer closure. The mean third-trimester lower uterine segment thickness was 3.3 ± 1.3 mm and the proportion with lower uterine segment thickness cesarean delivery is associated with a thicker third-trimester lower uterine segment and a reduced risk of lower uterine segment thickness <2.0 mm in the next pregnancy. The type of thread for uterine closure has no significant impact on lower uterine segment thickness. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Oxidation Characteristics and Electrical Properties of Doped Mn-Co Spinel Reaction Layer for Solid Oxide Fuel Cell Metal Interconnects

    Directory of Open Access Journals (Sweden)

    Pingyi Guo

    2018-01-01

    Full Text Available To prevent Cr poisoning of the cathode and to retain high conductivity during solid oxide fuel cell (SOFC operation, Cu or La doped Co-Mn coatings on a metallic interconnect is deposited and followed by oxidation at 750 °C. Microstructure and composition of coatings after preparation and oxidation is analyzed by X-ray diffraction (XRD and scanning electron microscopy (SEM. High energy micro arc alloying process, a low cost technique, is used to prepare Cu or La doped Co-Mn coatings with the metallurgical bond. When coatings oxidized at 750 °C in air for 20 h and 100 h, Co3O4 is the main oxide on the surface of Co-38Mn-2La and Co-40Mn coatings, and (Co,Mn3O4 spinel continues to grow with extended oxidation time. The outmost scales of Co-33Mn-17Cu are mainly composed of cubic MnCo2O4 spinel with Mn2O3 after oxidation for 20 h and 100 h. The average thickness of oxide coatings is about 60–70 μm after oxidation for 100 h, except that Co-40Mn oxide coatings are a little thicker. Area-specific resistance of Cu/La doped Co-Mn coatings are lower than that of Co-40Mn coating. (Mn,Co3O4/MnCo2O4 spinel layer is efficient at blocking the outward diffusion of chromium and iron.

  13. RNA-Seq reveals seven promising candidate genes affecting the proportion of thick egg albumen in layer-type chickens.

    Science.gov (United States)

    Wan, Yi; Jin, Sihua; Ma, Chendong; Wang, Zhicheng; Fang, Qi; Jiang, Runshen

    2017-12-22

    Eggs with a much higher proportion of thick albumen are preferred in the layer industry, as they are favoured by consumers. However, the genetic factors affecting the thick egg albumen trait have not been elucidated. Using RNA sequencing, we explored the magnum transcriptome in 9 Rhode Island white layers: four layers with phenotypes of extremely high ratios of thick to thin albumen (high thick albumen, HTA) and five with extremely low ratios (low thick albumen, LTA). A total of 220 genes were differentially expressed, among which 150 genes were up-regulated and 70 were down-regulated in the HTA group compared with the LTA group. Gene Ontology (GO) analysis revealed that the up-regulated genes in HTA were mainly involved in a wide range of regulatory functions. In addition, a large number of these genes were related to glycosphingolipid biosynthesis, focal adhesion, ECM-receptor interactions and cytokine-cytokine receptor interactions. Based on functional analysis, ST3GAL4, FUT4, ITGA2, SDC3, PRLR, CDH4 and GALNT9 were identified as promising candidate genes for thick albumen synthesis and metabolism during egg formation. These results provide new insights into the molecular mechanisms of egg albumen traits and may contribute to future breeding strategies that optimise the proportion of thick egg albumen.

  14. Tungsten oxides as interfacial layers for improved performance in hybrid optoelectronic devices

    International Nuclear Information System (INIS)

    Vasilopoulou, M.; Palilis, L.C.; Georgiadou, D.G.; Argitis, P.; Kennou, S.; Kostis, I.; Papadimitropoulos, G.; Stathopoulos, N.A.; Iliadis, A.A.; Konofaos, N.; Davazoglou, D.; Sygellou, L.

    2011-01-01

    Tungsten oxide (WO 3 ) films with thicknesses ranging from 30 to 100 nm were grown by Hot Filament Vapor Deposition (HFVD). Films were studied by X-Ray Photoemission Spectroscopy (XPS) and were found to be stoichiometric. The surface morphology of the films was characterized by Atomic Force Microscopy (AFM). Samples had a granular form with grains in the order of 100 nm. The surface roughness was found to increase with film thickness. HFVD WO 3 films were used as conducting interfacial layers in advanced hybrid organic-inorganic optoelectronic devices. Hybrid-Organic Light Emitting Diodes (Hy-OLEDs) and Organic Photovoltaics (Hy-OPVs) were fabricated with these films as anode and/or as cathode interfacial conducting layers. The Hy-OLEDs showed significantly higher current density and a lower turn-on voltage when a thin WO 3 layer was inserted at the anode/polymer interface, while when inserted at the cathode/polymer interface the device performance was found to deteriorate. The improvement was attributed to a more efficient hole injection and transport from the Fermi level of the anode to the Highest Occupied Molecular Orbital (HOMO) of a yellow emitting copolymer (YEP). On the other hand, the insertion of a thin WO 3 layer at the cathode/polymer interface of Hy-OPV devices based on a polythiophene-fullerene bulk-heterojunction blend photoactive layer resulted in an increase of the produced photogenerated current, more likely due to improved electron extraction at the Al cathode.

  15. Magnetic properties of Pr-Fe-B thick-film magnets deposited on Si substrates with glass buffer layer

    Science.gov (United States)

    Nakano, M.; Kurosaki, A.; Kondo, H.; Shimizu, D.; Yamaguchi, Y.; Yamashita, A.; Yanai, T.; Fukunaga, H.

    2018-05-01

    In order to improve the magnetic properties of PLD-made Pr-Fe-B thick-film magnets deposited on Si substrates, an adoption of a glass buffer layer was carried out. The glass layer could be fabricated under the deposition rate of approximately 70 μm/h on a Si substrate using a Nd-YAG pulse laser in the vacuum atmosphere. The use of the layer enabled us to reduce the Pr content without a mechanical destruction and enhance (BH)max value by approximately 20 kJ/m3 compared with the average value of non-buffer layered Pr-Fe-B films with almost the same thickness. It is also considered that the layer is also effective to apply a micro magnetization to the films deposited on Si ones.

  16. Steam Assisted Accelerated Growth of Oxide Layer on Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Yuksel, Serkan; Jellesen, Morten Stendahl

    2013-01-01

    Corrosion resistance of aluminium alloys is related to the composition and morphology of the oxide film on the surface of aluminium. In this paper we investigated the use of steam on the surface modification of aluminium to produce boehmite films. The study reveals a detailed investigation...... of the effect of vapour pressure, structure of intermetallic particles and thickness of boehmite films on the corrosion behaviour of aluminium alloys....

  17. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness.

    Science.gov (United States)

    Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław

    2017-12-20

    The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the

  18. Influence of layer thickness on the structure and the magnetic properties of Co/Pd epitaxial multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Tobari, Kousuke, E-mail: tobari@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Nagano, Katsumasa; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2012-03-15

    Co/Pd epitaxial multilayer films were prepared on Pd(111){sub fcc} underlayers hetero-epitaxially grown on MgO(111){sub B1} single-crystal substrates at room temperature by ultra-high vacuum RF magnetron sputtering. In-situ reflection high energy electron diffraction shows that the in-plane lattice spacing of Co on Pd layer gradually decreases with increasing the Co layer thickness, whereas that of Pd on Co layer remains unchanged during the Pd layer formation. The CoPd alloy phase formation is observed around the Co/Pd interface. The atomic mixing is enhanced for thinner Co and Pd layers in multilayer structure. With decreasing the Co and the Pd layer thicknesses and increasing the repetition number of Co/Pd multilayer film, stronger perpendicular magnetic anisotropy is observed. The relationships between the film structure and the magnetic properties are discussed. - Highlights: Black-Right-Pointing-Pointer Epitaxial Co/Pd multilayer films are prepared on Pd(111){sub fcc} underlayers. Black-Right-Pointing-Pointer Lattice strain in Co layer and CoPd-alloy formation are noted around the interface. Black-Right-Pointing-Pointer Magnetic property dependence on layer thickness is reported.

  19. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography

    Science.gov (United States)

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa

    2016-01-01

    Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541

  20. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography.

    Directory of Open Access Journals (Sweden)

    Tomomi Higashide

    Full Text Available To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects.The thickness of retinal layers {retinal nerve fiber layer (RNFL, ganglion cell layer plus inner plexiform layer (GCLIPL, RNFL plus GCLIPL (ganglion cell complex, GCC, total retina, total retina minus GCC (outer retina} were measured by macular scans (RS-3000, NIDEK in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters with or without magnification correction. For each layer thickness, a semipartial correlation (sr was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index.Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13 regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33 and a negative sr with GCLIPL (sr2, 0.22 to 0.31, GCC (sr2, 0.03 to 0.17, total retina (sr2, 0.07 to 0.17 and outer retina (sr2, 0.16 to 0.29 in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction.The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.

  1. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography.

    Science.gov (United States)

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K W; Yoshimura, Nagahisa

    2016-01-01

    To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.

  2. Correlation between central corneal thickness and visual field defects, cup to disc ratio and retinal nerve fiber layer thickness in primary open angle glaucoma patients.

    Science.gov (United States)

    Sarfraz, Muhammad Haroon; Mehboob, Mohammad Asim; Haq, Rana Intisar Ul

    2017-01-01

    To evaluate the correlation between Central Corneal Thickness (CCT) and Visual Field (VF) defect parameters like Mean Deviation (MD) and Pattern Standard Deviation (PSD), Cup-to-Disc Ratio (CDR) and Retinal Nerve Fibre Layer Thickness (RNFL-T) in Primary Open-Angle Glaucoma (POAG) patients. This cross sectional study was conducted at Armed Forces Institute of Ophthalmology (AFIO), Rawalpindi from September 2015 to September 2016. Sixty eyes of 30 patients with diagnosed POAG were analysed. Correlation of CCT with other variables was studied. Mean age of study population was 43.13±7.54 years. Out of 30 patients, 19 (63.33%) were males and 11 (36.67%) were females. Mean CCT, MD, PSD, CDR and RNFL-T of study population was 528.57±25.47µm, -9.11±3.07, 6.93±2.73, 0.63±0.13 and 77.79±10.44µm respectively. There was significant correlation of CCT with MD, PSD and CDR (r=-0.52, pfield parameters like mean deviation and pattern standard deviation, as well as with cup-to-disc ratio. However, central corneal thickness had no significant relationship with retinal nerve fibre layer thickness.

  3. Resveratrol increases nitric oxide production in the rat thick ascending limb via Ca2+/calmodulin.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Cabral, Pablo D; Garvin, Jeffrey L

    2014-01-01

    The thick ascending limb of the loop of Henle reabsorbs 30% of the NaCl filtered through the glomerulus. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl absorption by this segment. Resveratrol, a polyphenol, has beneficial cardiovascular and renal effects, many of which are mediated by NO. Resveratrol increases intracellular Ca2+ (Cai) and AMP kinase (AMPK) and NAD-dependent deacetylase sirtuin1 (SIRT1) activities, all of which could activate NO production. We hypothesized that resveratrol stimulates NO production by thick ascending limbs via a Ca2+/calmodulin-dependent mechanism. To test this, the effect of resveratrol on NO bioavailability was measured in thick ascending limb suspensions. Cai was measured in single perfused thick ascending limbs. SIRT1 activity and expression were measured in thick ascending limb lysates. Resveratrol (100 µM) increased NO bioavailability in thick ascending limb suspensions by 1.3±0.2 AFU/mg/min (pthick ascending limbs via a Ca2+/calmodulin dependent mechanism, and SIRT1 and AMPK do not participate. Resveratrol-stimulated NO production in thick ascending limbs may account for part of its beneficial effects.

  4. Ultrathin silicon dioxide layers with a low leakage current density formed by chemical oxidation of Si

    Science.gov (United States)

    Asuha,; Kobayashi, Takuya; Maida, Osamu; Inoue, Morio; Takahashi, Masao; Todokoro, Yoshihiro; Kobayashi, Hikaru

    2002-10-01

    Chemical oxidation of Si by use of azeotrope of nitric acid and water can form 1.4-nm-thick silicon dioxide layers with a leakage current density as low as those of thermally grown SiO2 layers. The capacitance-voltage (C-V) curves for these ultrathin chemical SiO2 layers have been measured due to the low leakage current density. The leakage current density is further decreased to approx1/5 (cf. 0.4 A/cm2 at the forward gate bias of 1 V) by post-metallization annealing at 200 degC in hydrogen. Photoelectron spectroscopy and C-V measurements show that this decrease results from (i) increase in the energy discontinuity at the Si/SiO2 interface, and (ii) elimination of Si/SiO2 interface states and SiO2 gap states.

  5. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    Science.gov (United States)

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  6. Study of diffusion processes in the oxide layer of zirconium alloys

    Directory of Open Access Journals (Sweden)

    Sialini P.

    2016-03-01

    Full Text Available In the active zone of a nuclear reactor where zirconium alloys are used as a coating material, this material is subject to various harmful impacts. During water decomposition reactions, hydrogen and oxygen are evolved that may diffuse through the oxidic layer either through zirconium dioxide (ZrO2 crystals or along ZrO2 grains. The diffusion mechanism can be studied using the Ion Beam Analysis (IBA method where nuclear reaction 18O(p,α15N is used. A tube made of zirconium alloy E110 (with 1 wt. % of Nb was used for making samples that were pre-exposed in UJP PRAHA a.s. and subsequently exposed to isotopically cleansed environment of H2 18O medium in an autoclave. The samples were analysed with gravimetric methods and IBA methods performed at the electrostatic particle accelerator Tandetron 4130 MC in the Nucler Physics Institute of the CAS, Řež. With IBA methods, the overall thicknesses of corrosion layers on the samples, element composition of the alloy and distribution of oxygen isotope 18O in the corrosion layer and its penetration in the alloy were identified. The retrieved data shows at the oxygen diffusion along ZrO2 grains because there are two peaks of 18O isotope concentrations in the corrosion layer. These peaks occur at the environment-oxide and oxide-metal interface. The element analysis identified the presence of undesirable hafnium.

  7. Non-Toxic Buffer Layers in Flexible Cu(In,GaSe2 Photovoltaic Cell Applications with Optimized Absorber Thickness

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2017-01-01

    Full Text Available Absorber layer thickness gradient in Cu(In1−xGaxSe2 (CIGS based solar cells and several substitutes for typical cadmium sulfide (CdS buffer layers, such as ZnS, ZnO, ZnS(O,OH, Zn1−xSnxOy (ZTO, ZnSe, and In2S3, have been analyzed by a device emulation program and tool (ADEPT 2.1 to determine optimum efficiency. As a reference type, the CIGS cell with CdS buffer provides a theoretical efficiency of 23.23% when the optimum absorber layer thickness was determined as 1.6 μm. It is also observed that this highly efficient CIGS cell would have an absorber layer thickness between 1 μm and 2 μm whereas the optimum buffer layer thickness would be within the range of 0.04–0.06 μm. Among all the cells with various buffer layers, the best energy conversion efficiency of 24.62% has been achieved for the ZnO buffer layer based cell. The simulation results with ZnS and ZnO based buffer layer materials instead of using CdS indicate that the cell performance would be better than that of the CdS buffer layer based cell. Although the cells with ZnS(O,OH, ZTO, ZnSe, and In2S3 buffer layers provide slightly lower efficiencies than that of the CdS buffer based cell, the use of these materials would not be deleterious for the environment because of their non-carcinogenic and non-toxic nature.

  8. Optoelectric Properties of GaInP p-i-n Solar Cells with Different i-Layer Thicknesses

    Directory of Open Access Journals (Sweden)

    Tsung-Shine Ko

    2015-01-01

    Full Text Available The optoelectric properties of GaInP p-i-n solar cells with different intrinsic layer (i-layer thicknesses from 0.25 to 1 μm were studied. Both emission intensity and full width at half maximum features of the photoluminescence spectrum indicate that the optimum i-layer thickness would be between 0.5 and 0.75 μm. The integrated current results of photocurrent experiment also point out that the samples with 0.5 to 0.75 μm i-layer thicknesses have optimum value around 156 nA. Electroreflectance measurements reveal that the built-in electric field strength of the sample gradually deviates from the theoretical value larger when i-layer thickness of the sample is thicker than 0.75 μm. I-V measurements also confirm crystal quality for whole samples by obtaining the information about short currents of photovoltaic performances. A series of experiments reflect that thicker i-layer structure would induce more defects generation lowering crystal quality.

  9. A novel and efficient oxidative functionalization of lignin by layer-by-layer immobilised Horseradish peroxidase.

    Science.gov (United States)

    Perazzini, Raffaella; Saladino, Raffaele; Guazzaroni, Melissa; Crestini, Claudia

    2011-01-01

    Horseradish peroxidase (HRP) was chemically immobilised onto alumina particles and coated by polyelectrolytes layers, using the layer-by-layer technique. The reactivity of the immobilised enzyme was studied in the oxidative functionalisation of softwood milled wood and residual kraft lignins and found higher than the free enzyme. In order to investigate the chemical modifications in the lignin structure, quantitative (31)P NMR was used. The immobilised HRP showed a higher reactivity with respect to the native enzyme yielding extensive depolymerisation of lignin. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Interface Controlled Oxidation States in Layered Cobalt Oxide Nanoislands on Gold

    DEFF Research Database (Denmark)

    Walton, Alexander; Fester, Jakob; Bajdich, Michal

    2015-01-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER; half of the catalytic “water splitting” reaction), particularly when promoted with gold. However, the surface chemistry of cobalt oxides and in particular the nature of the synergistic effect...

  11. Study of oxide layers in creep of Ti alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Machado, J.P.B.; Martins, G.V.; Barboza, M.J.R.

    2009-01-01

    The present study is about the effect of oxide layers in creep of Ti-6Al-4V alloy, in different atmospheres (air, nitrogen and argon). Ti-6Al-4V alloy was treated during 24 hours in a thermal treatment furnace at 600°C in different atmospheres (argon, nitrogen and air). The samples were analyzed by High Resolution X-Ray Diffraction, Scanning Electronic Microscopy (SEM), Atomic Force Microscopy (AFM) and microhardness test. The polished samples of Ti-6Al-4V alloy were treated during 24 hours at 600°C and the oxidation behavior in each case using argon, nitrogen and air atmospheres was observed. The oxidation was more aggressive in air atmosphere, forming TiO 2 film in the surface. The oxidation produced a weight gain through the oxide layer growth and hardening by oxygen dissolution. Ti-6Al-4V alloy specimens also were produced in order to test them in creep, at 250 MPa and 600 deg C, with argon, nitrogen and air atmospheres. When the Ti-6Al-4V alloy was tested under argon and nitrogen atmospheres oxidation effects are smaller and the behavior of the creep curves shows that the creep life time was better in atmospheres not so oxidant. It is observed a decreasing of steady state creep in function of the oxidation process reduction. It is shown that, for the Ti-6Al-4V alloy, their useful life is strongly affected by the atmosphere that is submitted, on account of the oxidation suffered by the material. (author)

  12. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates

    International Nuclear Information System (INIS)

    Park, Taesoon; Kim, Dongsik

    2015-01-01

    Technology to fabricate electrically-conducting, transparent thin-film patterns on flexible substrates has possible applications in flexible electronics. In this work, a pulsed-laser sintering process applicable to indium tin oxide (ITO) thin-film fabrication on a substrate without thermal damage to the substrate was developed. A nanosecond pulsed laser was used to minimize thermal penetration into the substrate and to control the thickness of the sintered layer. ITO nanoparticles (NPs) of ~ 20 nm diameter were used to lower the process temperature by exploiting their low melting point. ITO thin film patterns were fabricated by first spin coating the NPs onto a surface, then sintering them using a KrF excimer laser. The sintered films were characterized using field emission scanning electron microscopy. The electrical resistivity and transparency of the film were measured by varying the process parameters. A single laser pulse could generate the polycrystalline structure (average grain size ~ 200 nm), reducing the electrical resistivity of the film by a factor of ~ 1000. The sintering process led to a minimum resistivity of 1.1 × 10 −4 Ω·m without losing the transparency of the film. The thickness of the sintered layer could be varied up to 150 nm by adjusting the laser fluence. Because the estimated thermal penetration depth in the ITO film was less than 200 nm, no thermal damage was observed in the substrate. This work suggests that the proposed process, combined with various particle deposition methods, can be an effective tool to form thin-film ITO patterns on flexible substrates. - Highlights: • Excimer laser sintering can fabricate ITO thin films on flexible substrates. • The laser pulse can form a polycrystalline structure without thermal damage. • The laser sintering process can reduce the electrical resistivity substantially. • The thickness of the sintered layer can be varied effectively

  13. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Park, Taesoon; Kim, Dongsik, E-mail: dskim87@postech.ac.kr

    2015-03-02

    Technology to fabricate electrically-conducting, transparent thin-film patterns on flexible substrates has possible applications in flexible electronics. In this work, a pulsed-laser sintering process applicable to indium tin oxide (ITO) thin-film fabrication on a substrate without thermal damage to the substrate was developed. A nanosecond pulsed laser was used to minimize thermal penetration into the substrate and to control the thickness of the sintered layer. ITO nanoparticles (NPs) of ~ 20 nm diameter were used to lower the process temperature by exploiting their low melting point. ITO thin film patterns were fabricated by first spin coating the NPs onto a surface, then sintering them using a KrF excimer laser. The sintered films were characterized using field emission scanning electron microscopy. The electrical resistivity and transparency of the film were measured by varying the process parameters. A single laser pulse could generate the polycrystalline structure (average grain size ~ 200 nm), reducing the electrical resistivity of the film by a factor of ~ 1000. The sintering process led to a minimum resistivity of 1.1 × 10{sup −4} Ω·m without losing the transparency of the film. The thickness of the sintered layer could be varied up to 150 nm by adjusting the laser fluence. Because the estimated thermal penetration depth in the ITO film was less than 200 nm, no thermal damage was observed in the substrate. This work suggests that the proposed process, combined with various particle deposition methods, can be an effective tool to form thin-film ITO patterns on flexible substrates. - Highlights: • Excimer laser sintering can fabricate ITO thin films on flexible substrates. • The laser pulse can form a polycrystalline structure without thermal damage. • The laser sintering process can reduce the electrical resistivity substantially. • The thickness of the sintered layer can be varied effectively.

  14. Fractal-like thickness and topography of the salt layer in a pillows province of the southern North Sea

    Science.gov (United States)

    Hernandez Maya, K.; Mitchell, N. C.; Huuse, M.

    2017-12-01

    Salt topography and thickness variations are important for testing theories of how halokinetic deformation proceeds. The ability to predict thickness variations of salt at small scale is also important for reservoir evaluations, as breach of the salt layer can lead to loss of petroleum fluids and can be difficult to evaluate from seismic reflection data. Relevant to these issues, we here report analysis of data on salt layer topography and thickness from the southern North Sea, where the salt is organized into pillows. These data were derived by the Geological Survey of the Netherlands (TNO) from industry 3D seismic reflection data combined with a dense network of well information. Highs and lows in the topography of the upper salt interface occur spaced over a variety of lengthscales. Power spectral analysis of the interface topography reveals a simple inverse power law relationship between power spectral density and spatial wave number. The relationship suggests that the interface is a self-affine fractal with a fractal dimension of 2.85. A similar analysis of the salt layer thickness also suggests a fractal-like power law. Whereas the layer thickness power law is unsurprising as the underlying basement topography dominates the thickness and it also has a fractal-like power spectrum, the salt topography is not so easily explained as not all the basement faults are overlaid by salt pillows, instead some areas of the dataset salt thinning overlies faults. We consider instead whether a spatially varied loading of the salt layer may have caused this fractal-like geometry. Varied density and thickness of overburdening layers seem unlikely causes, as thicknesses of layers and their reflectivities do not vary sympathetically with the topography of the interface. The composition of the salt layer varies with the relative proportions of halite and denser anhydrite and other minerals. Although limited in scope and representing the mobilized salt layer, the information from

  15. Observing the semiconducting band-gap alignment of MoS2 layers of different atomic thicknesses using a MoS2/SiO2/Si heterojunction tunnel diode

    NARCIS (Netherlands)

    Nishiguchi, K.; Castellanos-Gomez, A.; Yamaguchi, H.; Fujiwara, A.; Van der Zant, H.S.J.; Steele, G.A.

    2015-01-01

    We demonstrate a tunnel diode composed of a vertical MoS2/SiO2/Si heterostructure. A MoS2 flake consisting four areas of different thicknesses functions as a gate terminal of a silicon field-effect transistor. A thin gate oxide allows tunneling current to flow between the n-type MoS2 layers and

  16. Analysis and optimization of acoustic wave micro-resonators integrating piezoelectric zinc oxide layers

    Science.gov (United States)

    Mortada, O.; Zahr, A. H.; Orlianges, J.-C.; Crunteanu, A.; Chatras, M.; Blondy, P.

    2017-02-01

    This paper reports on the design, simulation, fabrication, and test results of ZnO-based contour-mode micro-resonators integrating piezoelectric zinc oxide (ZnO) layers. The inter-digitated (IDT) type micro-resonators are fabricated on ZnO films and suspended top of 2 μm thick silicon membranes using silicon-on insulator technology. We analyze several possibilities of increasing the quality factor (Q) and the electromechanical coupling coefficient (kt2) of the devices by varying the numbers and lengths of the IDT electrodes and using different thicknesses of the ZnO layer. We designed and fabricated IDTs of different finger numbers (n = 25, 40, 50, and 80) and lengths (L = 100/130/170/200 μm) for three different thicknesses of ZnO films (200, 600, and 800 nm). The measured Q factor confirms that reducing the length and the number of IDT fingers enables us to reach better electrical performances at resonant frequencies around 700 MHz. The extracted results for an optimized micro-resonator device having an IDT length of 100 μm and 40 finger electrodes show a Q of 1180 and a kt2 of 7.4%. We demonstrate also that the reduction of the ZnO thickness from 800 nm to 200 nm increases the quality factor from 430 to 1600, respectively, around 700 MHz. Experimental data are in very good agreement with theoretical simulations of the fabricated devices

  17. The silicon-silicon oxide multilayers utilization as intrinsic layer on pin solar cells

    International Nuclear Information System (INIS)

    Colder, H.; Marie, P.; Gourbilleau, F.

    2008-01-01

    Silicon nanostructures are promising candidate for the intrinsic layer on pin solar cells. In this work we report on new material: silicon-rich silicon oxide (SRSO) deposited by reactive magnetron sputtering of a pure silica target and an interesting structure: multilayers consisting of a stack of SRSO and pure silicon oxide layers. Two thicknesses of the SRSO sublayer, t SRSO , are studied 3 nm and 5 nm whereas the thickness of silica sublayer is maintaining at 3 nm. The presence of nanocrystallites of silicon, evidenced by X-Ray diffraction (XRD), leads to photoluminescence (PL) emission at room temperature due to the quantum confinement of the carriers. The PL peak shifts from 1.3 eV to 1.5 eV is correlated to the decreasing of t SRSO from 5 nm down to 3 nm. In the purpose of their potential utilization for i-layer, the optical properties are studied by absorption spectroscopy. The achievement a such structures at promising absorption properties. Moreover by favouring the carriers injection by the tunnel effect between silicon nanograins and silica sublayers, the multilayers seem to be interesting for solar cells

  18. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel

    Science.gov (United States)

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially ‘clean’ strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2•- radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO-) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  19. Spatial representation of organic carbon and active-layer thickness of high latitude soils in CMIP5 earth system models

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Umakant; Drewniak, Beth; Jastrow, Julie D.; Matamala, Roser M.; Vitharana, U. W. A.

    2017-08-01

    Soil properties such as soil organic carbon (SOC) stocks and active-layer thickness are used in earth system models (F.SMs) to predict anthropogenic and climatic impacts on soil carbon dynamics, future changes in atmospheric greenhouse gas concentrations, and associated climate changes in the permafrost regions. Accurate representation of spatial and vertical distribution of these soil properties in ESMs is a prerequisite for redudng existing uncertainty in predicting carbon-climate feedbacks. We compared the spatial representation of SOC stocks and active-layer thicknesses predicted by the coupled Modellntercomparison Project Phase 5 { CMIP5) ESMs with those predicted from geospatial predictions, based on observation data for the state of Alaska, USA. For the geospatial modeling. we used soil profile observations {585 for SOC stocks and 153 for active-layer thickness) and environmental variables (climate, topography, land cover, and surficial geology types) and generated fine-resolution (50-m spatial resolution) predictions of SOC stocks (to 1-m depth) and active-layer thickness across Alaska. We found large inter-quartile range (2.5-5.5 m) in predicted active-layer thickness of CMIP5 modeled results and small inter-quartile range (11.5-22 kg m-2) in predicted SOC stocks. The spatial coefficient of variability of active-layer thickness and SOC stocks were lower in CMIP5 predictions compared to our geospatial estimates when gridded at similar spatial resolutions (24.7 compared to 30% and 29 compared to 38%, respectively). However, prediction errors. when calculated for independent validation sites, were several times larger in ESM predictions compared to geospatial predictions. Primaly factors leading to observed differences were ( 1) lack of spatial heterogeneity in ESM predictions, (2) differences in assumptions concerning environmental controls, and (3) the absence of pedogenic processes in ESM model structures. Our results suggest that efforts to incorporate

  20. Validation and Variation of Upper Layer Thickness in South China Sea from Satellite Altimeter Data

    Directory of Open Access Journals (Sweden)

    Nan-Jung Kuo

    2008-06-01

    Full Text Available Satellite altimeter data from 1993 to 2005 has been used to analyze the seasonal variation and the interannual variability of upper layer thickness (ULT in the South China Sea (SCS. Base on in-situ measurements, the ULT is defined as the thickness from the sea surface to the depth of 16°C isotherm which is used to validate the result derived from satellite altimeter data. In comparison with altimeter and in-situ derived ULTs yields a correlation coefficient of 0.92 with a slope of 0.95 and an intercept of 6 m. The basin averaged ULT derived from altimeter is 160 m in winter and 171 m in summer which is similar to the in-situ measurements of 159 m in winter and 175 m in summer. Both results also show similar spatial patterns. It suggests that the sea surface height data derived from satellite sensors are usable for study the variation of ULT in the semi-closed SCS. Furthermore, we also use satellite derived ULT to detect the development of eddy. Interannual variability of two meso-scale cyclonic eddies and one anticyclonic eddy are strongly influenced by El Niño events. In most cases, there are highly positive correlations between ULT and sea surface temperature except the periods of El Niño. During the onset of El Niño event, ULT is deeper when sea surface temperature is lower.

  1. Pigments analysis and gold layer thickness evaluation of polychromy on wood objects by PXRF

    International Nuclear Information System (INIS)

    Blonski, M.S.; Appoloni, C.R.

    2014-01-01

    The X-ray fluorescence technique by energy dispersion (EDXRF), being a multi elemental and non-destructive technique, has been widely used in the analysis of artworks and archeometry. An X-ray fluorescence portable equipment from the Laboratory of Applied Nuclear Physics of the State University of Londrina (LFNA/UEL) was used for the measurement of pigments in golden parts of a Gilding Preparation Standard Plaque and also pigments measurement on the Wood Adornment of the High Altar Column of the Side Pulpit of the Immaculate Conception Church Parish Sao Paulo-SP. The portable X-ray fluorescence PXRF-LFNA-02 consists of an X-ray tube with Ag anode, a Si-PIN detector (FWHM=221 eV for Mn line at 5.9 keV), a chain of electronics nuclear standard of X-ray spectrometer, a multichannel 8 K, a notebook and a mechanical system designed for the positioning of detector and X-ray tube, which allows movements with two degrees of freedom from the system of excitation–detection. The excitation–detection time of each measurement was 100 and 500 s, respectively. The presence of elements Ti, Cr, Fe, Cu, Zn and Au was found in the golden area of the Altar Column ornament. On the other hand, analysis of the ratios for the intensities of K α /K β lines measured in the areas made it possible to explore the possibility of measuring the stratigraphies of the layers of pigments and to estimate the thickness of the same. - Highlights: • The X-ray fluorescence technique by energy dispersion (EDXRF) and an X-ray fluorescence portable equipment are used for measurement of pigments. • Analysis of the ratios for the intensities of K α /K β lines measured in the areas made it possible to explore the possibility of measuring the stratigraphies of the layers of pigments and to estimate the thickness of the same. • The result of pigment analysis performed on these objects indicates that they are of the twentieth century

  2. Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si

    International Nuclear Information System (INIS)

    Charitidis, C.A.; Skarmoutsou, A.; Nassiopoulou, A.G.; Dragoneas, A.

    2011-01-01

    Highlights: → The nanomechanical properties of bulk crystalline Si. → The nanomechanical properties of porous Si. → The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.

  3. The Bending Strength, Internal Bonding and Thickness Swelling of a Five Layer Sandwiched Bamboo Particleboard

    Science.gov (United States)

    Jamaludin, M. A.; Bahari, S. A.; Nordin, K.; Soh, T. F. T.

    2010-03-01

    The demand for wood based material is increasing but the supply is decreasing. Therefore the price of these raw materials has increased. Bamboo provides an economically feasible alternative raw material for the wood based industry. Its properties are comparable to wood. It is also compatible with the existing processing technology. Bamboo is in abundance, easy to propagate and of short maturation period. Bamboo provides a cheaper alternative resource for the wood based industry. The development of new structural components from bamboo will widen its area of application from handicrafts to furniture and building components. In this study, five layer sandwiched bamboo particleboard were manufactured. The sandwiched Bamboo PB consists of a bamboo PB core, oil palm middle veneers and thin meranti surface veneers. The physical and mechanical properties of the bamboo sandwiched particleboards were tested in accordance to the BS-EN 317:1993 [1] and BS-EN 310:1993 [2], respectively. All the samples passed the standards. The modulus of elasticity was about 352% higher than the value specified in the BS standard, BS-EN 312-4:1996 [3]. The Internal bonding was about 23% higher than the general requirements specified in the standard. On the other hand, the thickness swelling was about 6% lower than the standard. No glue line failure was observed in the strength tests. Critical failures in the IB tests were observed in the particleboards. Tension failures were observed in the surface veneers in the bending tests. The five layer sandwiched bamboo particleboard can be used for light weight construction such as furniture, and wall and door panels in buildings.

  4. Formation of silicon Oxide nano thickness on Si (III) with the assistance of Cs

    International Nuclear Information System (INIS)

    Bahari, A.; Bagheri, M.

    2006-01-01

    : The possibility of controlling the growth of a uniform ultra thin oxide on silicon via oxygen dosing at low temperatures, would be a great interest for the projected further development of nano electronics. One way to achieve this is to be able to control the conversion of chemically adsorbed oxygen and retained at room temperature into oxide during subsequent heating. Oxygen is chemisorbed at room temperature on Si(111) surface to saturation ( >100 L O 2 ), and the experimental chamber is then evacuated. This leaves adsorbed oxygen as atomically inserted on Si surface which sits on the back bonds. This surface is then used as a base for further processing which in one case consists of annealing to 600- 700 d eg C and subsequent exposures equivalent to the first step. This is repeated again. As the focus of this work, a series of experiments are done with adsorbed Cs, which assists in retaining oxygen and in transforming the adsorbed oxygen into oxide upon heating. It was found that the oxide formed on the surface at low coverage clusters. Without any external influence, the clusters may be made to coalesce upon further oxygen adsorption at room temperature, and annealing terminates as a continuous monolayer of amorphous oxide on top of a well-ordered silicon substrate. This configuration is inert to further uptake of oxygen. A higher oxide thickness could be obtained with Cs. Also in this case, the oxide growth saturates in an inert oxide Iayer

  5. Interfacial bonding stabilizes rhodium and rhodium oxide nanoparticles on layered Nb oxide and Ta oxide supports.

    Science.gov (United States)

    Strayer, Megan E; Binz, Jason M; Tanase, Mihaela; Shahri, Seyed Mehdi Kamali; Sharma, Renu; Rioux, Robert M; Mallouk, Thomas E

    2014-04-16

    Metal nanoparticles are commonly supported on metal oxides, but their utility as catalysts is limited by coarsening at high temperatures. Rhodium oxide and rhodium metal nanoparticles on niobate and tantalate supports are anomalously stable. To understand this, the nanoparticle-support interaction was studied by isothermal titration calorimetry (ITC), environmental transmission electron microscopy (ETEM), and synchrotron X-ray absorption and scattering techniques. Nanosheets derived from the layered oxides KCa2Nb3O10, K4Nb6O17, and RbTaO3 were compared as supports to nanosheets of Na-TSM, a synthetic fluoromica (Na0.66Mg2.68(Si3.98Al0.02)O10.02F1.96), and α-Zr(HPO4)2·H2O. High surface area SiO2 and γ-Al2O3 supports were also used for comparison in the ITC experiments. A Born-Haber cycle analysis of ITC data revealed an exothermic interaction between Rh(OH)3 nanoparticles and the layered niobate and tantalate supports, with ΔH values in the range -32 kJ·mol(-1) Rh to -37 kJ·mol(-1) Rh. In contrast, the interaction enthalpy was positive with SiO2 and γ-Al2O3 supports. The strong interfacial bonding in the former case led to "reverse" ripening of micrometer-size Rh(OH)3, which dispersed as 0.5 to 2 nm particles on the niobate and tantalate supports. In contrast, particles grown on Na-TSM and α-Zr(HPO4)2·H2O nanosheets were larger and had a broad size distribution. ETEM, X-ray absorption spectroscopy, and pair distribution function analyses were used to study the growth of supported nanoparticles under oxidizing and reducing conditions, as well as the transformation from Rh(OH)3 to Rh nanoparticles. Interfacial covalent bonding, possibly strengthened by d-electron acid/base interactions, appear to stabilize Rh(OH)3, Rh2O3, and Rh nanoparticles on niobate and tantalate supports.

  6. TiN films by Atomic Layer Deposition: Growth and electrical characterization down to sub-nm thickness

    NARCIS (Netherlands)

    Van Hao, B.; Wolters, Robertus A.M.; Kovalgin, Alexeij Y.

    2012-01-01

    This study reports on the growth and characterization of TiN thib films obtained by atomic layer deposition at 350-425 ◦C. We observe a growth of the continuous layers from the very beginning of the process, i.e. for a thickness of 0.65 nm, which is equivalent to 3 monolayers of TiN. The film growth

  7. The creep of multi-layered moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Takezono, S.; Migita, K.

    1987-01-01

    In the present paper the authors study the creep deformation of the multi-layered thick shells of revolution under asymmetrical loads. The equations of equilibrium and the strain-displacement relations are derived from the Reissner-Naghdi theory (1941, 1957) for elastic shells where a consideration on the effect of shear deformation is given. In the theory of creep it is assumed that in a given increment of time the total strain increments are composed of an elastic part and a part due to creep. The elastic strains are proportional to the stresses by Hooke's law. For the constitutive equations in the creep range, McVetty's equation modified by Arrhenius' equation for thermal effect is employed. The basic differential equations on the creep problems derived for the incremental values with respect to time are numerically solved by a finite difference method and the solutions at any time are obtained by summation of the incremental values. Resultant forces and resultant moments are given from numerical integration of the stresses by Simpson's 1/3 rules. (orig./GL)

  8. Refracted arrival waves in a zone of silence from a finite thickness mixing layer.

    Science.gov (United States)

    Suzuki, Takao; Lele, Sanjiva K

    2002-02-01

    Refracted arrival waves which propagate in the zone of silence of a finite thickness mixing layer are analyzed using geometrical acoustics in two dimensions. Here, two simplifying assumptions are made: (i) the mean flow field is transversely sheared, and (ii) the mean velocity and temperature profiles approach the free-stream conditions exponentially. Under these assumptions, ray trajectories are analytically solved, and a formula for acoustic pressure amplitude in the far field is derived in the high-frequency limit. This formula is compared with the existing theory based on a vortex sheet corresponding to the low-frequency limit. The analysis covers the dependence on the Mach number as well as on the temperature ratio. The results show that both limits have some qualitative similarities, but the amplitude in the zone of silence at high frequencies is proportional to omega(-1/2), while that at low frequencies is proportional to omega(-3/2), omega being the angular frequency of the source.

  9. Chemical Vapor Identification by Plasma Treated Thick Film Tin Oxide Gas Sensor Array and Pattern Recognition

    Directory of Open Access Journals (Sweden)

    J. K. Srivastava

    2011-02-01

    Full Text Available Present study deals the class recognition potential of a four element plasma treated thick film tin oxide gas sensor array exposed with volatile organic compounds (VOCs. Methanol, Ethanol and Acetone are selected as target VOCs and exposed on sensor array at different concentration in range from 100-1000 ppm. Sensor array consist of four tin oxide sensors doped with 1-4 % PbO concentrations were fabricated by thick film technology and then treated with oxygen plasma for 5-10 minute durations. Sensor signal is analyzed by principal component analysis (PCA for visual classification of VOCs. Further output of PCA is used as input for classification of VOCs by four pattern classification techniques as: linear discriminant analysis (LDA, k-nearest neighbor (KNN, back propagation neural network (BPNN and support vector machine (SVM. All the four classifier results 100 % correct classification rate of VOCs by response analysis of sensor array treated with plasma for 5 minute.

  10. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    Directory of Open Access Journals (Sweden)

    Mario Boehme

    2011-02-01

    Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  11. Reaction products between Bi-Sr-Ca-Cu-oxide thick films and alumina substrates

    International Nuclear Information System (INIS)

    Alarco, J.A.; Ilushechkin, A.; Yamashita, T.; Bhargava, A.; Barry, J.; Mackinnon, I.D.R.

    1997-01-01

    The structure and composition of reaction products between Bi-Sr-Ca-Cu-oxide (BSCCO) thick films and alumina substrates have been characterized using a combination of electron diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry (EDX). Sr and Ca are found to be the most reactive cations with alumina. Sr 4 Al 6 O 12 SO 4 is formed between the alumina substrates and BSCCO thick films prepared from paste with composition close to Bi-2212 (and Bi-2212+10 wt.% Ag). For paste with composition close to Bi(Pb)-2223 +20 wt.% Ag, a new phase with f.c.c. structure, lattice parameter about a=24.5 A and approximate composition Al 3 Sr 2 CaBi 2 CuO x has been identified in the interface region. Understanding and control of these reactions is essential for growth of high quality BSCCO thick films on alumina. (orig.)

  12. Simultaneous sound velocity and thickness measurement by the ultrasonic pitch-catch method for corrosion-layer-forming polymeric materials.

    Science.gov (United States)

    Kusano, Masahiro; Takizawa, Shota; Sakai, Tetsuya; Arao, Yoshihiko; Kubouchi, Masatoshi

    2018-01-01

    Since thermosetting resins have excellent resistance to chemicals, fiber reinforced plastics composed of such resins and reinforcement fibers are widely used as construction materials for equipment in chemical plants. Such equipment is usually used for several decades under severe corrosive conditions so that failure due to degradation may result. One of the degradation behaviors in thermosetting resins under chemical solutions is "corrosion-layer-forming" degradation. In this type of degradation, surface resins in contact with a solution corrode, and some of them remain asa corrosion layer on the pristine part. It is difficult to precisely measure the thickness of the pristine part of such degradation type materials by conventional pulse-echo ultrasonic testing, because the sound velocity depends on the degree of corrosion of the polymeric material. In addition, the ultrasonic reflection interface between the pristine part and the corrosion layer is obscure. Thus, we propose a pitch-catch method using a pair of normal and angle probes to measure four parameters: the thicknesses of the pristine part and the corrosion layer, and their respective sound velocities. The validity of the proposed method was confirmed by measuring a two-layer sample and a sample including corroded parts. The results demonstrate that the pitch-catch method can successfully measure the four parameters and evaluate the residual thickness of the pristine part in the corrosion-layer-forming sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of the thickness of the anode electrode catalyst layers on the performance in direct methanol fuel cells

    Science.gov (United States)

    Glass, Dean E.; Olah, George A.; Prakash, G. K. Surya

    2017-06-01

    For the large scale fuel cell manufacture, the catalyst loading and layer thickness are critical factors affecting the performance and cost of membrane electrode assemblies (MEAs). The influence of catalyst layer thicknesses at the anode of a PEM based direct methanol fuel cell (DMFC) has been investigated. Catalysts were applied with the drawdown method with varied thicknesses ranging from 1 mil to 8 mils (1 mil = 25.4 μm) with a Pt/Ru anode loading of 0.25 mg cm-2 to 2.0 mg cm-2. The MEAs with the thicker individual layers (8 mils and 4 mils) performed better overall compared to the those with the thinner layers (1 mil and painted). The peak power densities for the different loading levels followed an exponential decrease of Pt/Ru utilization at the higher loading levels. The highest power density achieved was 49 mW cm-2 with the 4 mil layers at 2.0 mg cm-2 catalyst loading whereas the highest normalized power density was 116 mW mg-1 with the 8 mil layers at 0.25 mg cm-2 loading. The 8 mil drawdowns displayed a 50% and 23% increase in normalized power density compared to the 1 mil drawdowns at 0.25 mg cm-2 and 0.5 mg cm-2 loadings, respectively.

  14. Evolution of the thickness of the aluminum oxide film due to the pH of the cooling water and surface temperature of the fuel elements clad of a nuclear reactor

    International Nuclear Information System (INIS)

    Babiche, Ivan

    2013-01-01

    This paper describes the mechanism of growth of a film of aluminum oxide on an alloy of the same material, which serves as a protective surface being the constituent material of the RP-10 nuclear reactor fuel elements clads. The most influential parameters on the growth of this film are: the pH of the cooling water and the clad surface temperature of the fuel element. For this study, a mathematical model relating the evolution of the aluminum oxide layer thickness over the time, according to the same oxide film using a power law is used. It is concluded that the time of irradiation, the heat flux at the surface of the aluminum material, the speed of the coolant, the thermal conductivity of the oxide, the initial thickness of the oxide layer and the solubility of the protective oxide are parameters affecting in the rate and film formation. (author).

  15. Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes

    OpenAIRE

    Belwalkar, A.; Grasing, E.; Van Geertruyden, W.; Huang, Z.; Misiolek, W.Z.

    2008-01-01

    Nanoporous anodic aluminum oxide (AAO) tubular membranes were fabricated from aluminum alloy tubes in sulfuric and oxalic acid electrolytes using a two-step anodization process. The membranes were investigated for characteristics such as pore size, interpore distance and thickness by varying applied voltage and electrolyte concentration. Morphology of the membranes was examined using light optical and scanning electron microscopy and characterized using ImageJ software. Results showed that me...

  16. Computed tomography evaluation of human mandibles with regard to layer thickness and bone density of the cortical bone

    International Nuclear Information System (INIS)

    Markwardt, Jutta; Meissner, H.; Weber, A.; Reitemeier, B.; Laniado, M.

    2013-01-01

    Application of function-restoring individual implants for the bridging of defects in mandibles with continuity separation requires a stable fixation with special use of the cortical bone stumps. Five section planes each of 100 computed tomographies of poly-traumatized patients' jaws were used for measuring the thickness of the cortical layer and the bone density of the mandible. The CT scans of 28 female and 72 male candidates aged between 12 and 86 years with different dentition of the mandible were available. The computed tomographic evaluations of human mandibles regarding the layer thickness of the cortical bone showed that the edge of the mandible in the area of the horizontal branch possesses the biggest layer thickness of the whole of the lower jaws. The highest medians of the cortical bone layer thickness were found in the area of the molars and premolars at the lower edge of the lower jaws in 6-o'clock position, in the area of the molars in the vestibular cranial 10-o'clock position and in the chin region lingual-caudal in the 4-o'clock position. The measurement of the bone density showed the highest values in the 8-o'clock position (vestibular-caudal) in the molar region in both males and females. The average values available of the bone density and the layer thickness of the cortical bone in the various regions of the lower jaw, taking into consideration age, gender and dentition, are an important aid in practice for determining a safe fixation point for implants in the area of the surface layer of the mandible by means of screws or similar fixation elements. (orig.)

  17. Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells.

    Science.gov (United States)

    Liang, Lusheng; Huang, Zhifeng; Cai, Longhua; Chen, Weizhong; Wang, Baozeng; Chen, Kaiwu; Bai, Hua; Tian, Qingyong; Fan, Bin

    2014-12-10

    Suitable electrode interfacial layers are essential to the high performance of perovskite planar heterojunction solar cells. In this letter, we report magnetron sputtered zinc oxide (ZnO) film as the cathode interlayer for methylammonium lead iodide (CH3NH3PbI3) perovskite solar cell. Scanning electron microscopy and X-ray diffraction analysis demonstrate that the sputtered ZnO films consist of c-axis aligned nanorods. The solar cells based on this ZnO cathode interlayer showed high short circuit current and power conversion efficiency. Besides, the performance of the device is insensitive to the thickness of ZnO cathode interlayer. Considering the high reliability and maturity of sputtering technique both in lab and industry, we believe that the sputtered ZnO films are promising cathode interlayers for perovskite solar cells, especially in large-scale production.

  18. The Effect of LASIK Procedure on Peripapillary Retinal Nerve Fiber Layer and Macular Ganglion Cell-Inner Plexiform Layer Thickness in Myopic Eyes

    Directory of Open Access Journals (Sweden)

    Maja Zivkovic

    2017-01-01

    Full Text Available Purpose. To evaluate the effect of applied suction during microkeratome-assisted laser in situ keratomileusis (LASIK procedure on peripapillary retinal nerve fiber layer (RNFL thickness as well as macular ganglion cell-inner plexiform layer (GC-IPL thickness. Methods. 89 patients (124 eyes with established myopia range from −3.0 to −8.0 diopters and no associated ocular diseases were included in this study. RNFL and GC-IPL thickness measurements were performed by spectral domain optical coherence tomography (SD OCT one day before LASIK and at 1 and 6 months postoperatively. Results. Mean RNFL thickness prior to LASIK was 93.86±12.17 μm while the first month and the sixth month postoperatively were 94.01±12.04 μm and 94.46±12.27 μm, respectively. Comparing results, there is no significant difference between baseline, one month, and six months postoperatively for mean RNFL (p>0.05. Mean GC-IPL thickness was 81.70±7.47 μm preoperatively with no significant difference during the follow-up period (82.03±7.69 μm versus 81.84±7.64 μm; p>0.05. Conclusion. RNFL and GC-IPL complex thickness remained unaffected following LASIK intervention.

  19. Interface morphology of Mo/Si multilayer systems with varying Mo layer thickness studied by EUV diffuse scattering.

    Science.gov (United States)

    Haase, Anton; Soltwisch, Victor; Braun, Stefan; Laubis, Christian; Scholze, Frank

    2017-06-26

    We investigate the influence of the Mo-layer thickness on the EUV reflectance of Mo/Si mirrors with a set of unpolished and interface-polished Mo/Si/C multilayer mirrors. The Mo-layer thickness is varied in the range from 1.7 nm to 3.05 nm. We use a novel combination of specular and diffuse intensity measurements to determine the interface roughness throughout the multilayer stack and do not rely on scanning probe measurements at the surface only. The combination of EUV and X-ray reflectivity measurements and near-normal incidence EUV diffuse scattering allows to reconstruct the Mo layer thicknesses and to determine the interface roughness power spectral density. The data analysis is conducted by applying a matrix method for the specular reflection and the distorted-wave Born approximation for diffuse scattering. We introduce the Markov-chain Monte Carlo method into the field in order to determine the respective confidence intervals for all reconstructed parameters. We unambiguously detect a threshold thickness for Mo in both sample sets where the specular reflectance goes through a local minimum correlated with a distinct increase in diffuse scatter. We attribute that to the known appearance of an amorphous-to-crystallization transition at a certain thickness threshold which is altered in our sample system by the polishing.

  20. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.

    2010-11-19

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  1. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.; Caraveo-Frescas, J. A.; Cha, D. K.

    2010-01-01

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  2. Modeling and simulation of stamp deflections in nanoimprint lithography: Exploiting backside grooves to enhance residual layer thickness uniformity

    DEFF Research Database (Denmark)

    Taylor, Hayden; Smistrup, Kristian; Boning, Duane

    2011-01-01

    We describe a model for the compliance of a nanoimprint stamp etched with a grid of backside grooves. We integrate the model with a fast simulation technique that we have previously demonstrated, to show how etched grooves help reduce the systematic residual layer thickness (RLT) variations...

  3. Influence of the magnetic dead layer thickness of Mg-Zn ferrites nanoparticle on their magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, H.M. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Ali, I.A.; Azzam, A. [Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Sattar, A.A. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    2017-02-15

    Nanoparticle ferrite with chemical formula Mg{sub (1−x)}Zn{sub x}Fe{sub 2}O{sub 4} (where x=0.0, 0.2, 0.4, 0.6, 0.8 and 1) were prepared by sol-gel technique. Single phase structure of these ferrites was confirmed using X-ray diffraction (XRD). Transmission Electron Microscope (TEM) showed that the particle size of the samples in the range of (5.7–10.6 nm). The hysteresis studies showed superparamagnetic behaviour at room temperature. The magnetization behaviour with Zn-content is expressed in the light of Yafet-Kittel angles. The dead layer thickness (t) was calculated and its effect on the magnetization and magnetic losses was debated. The Specific Absorption Rate (SAR) in an alternating magnetic field with frequency 198 kHz for these ferrites has been studied. It is found that, the thickness of magnetic dead layer of the surface of the materials has greatly affected the SAR value of the samples. - Highlights: • Synthesis of Mg-Zn nanoparticle ferrite by sol-gel technique. • Methods of dead layer thickness calculation. • Magnetic behaviour explanation. • Relation between the Specific Absorption Rate, dead layer thickness and particle size.

  4. Changes in retinal nerve fiber layer thickness after spinal surgery in the prone position: a prospective study

    OpenAIRE

    Gencer, Baran; Cosar, Murat; Tufan, Hasan Ali; Kara, Selcuk; Arikan, Sedat; Akman, Tarik; Kiraz, Hasan Ali; Comez, Arzu Taskiran; Hanci, Volkan

    2015-01-01

    BACKGROUND AND OBJECTIVES: Changes in ocular perfusion play an important role in the pathogenesis of ischemic optic neuropathy. Ocular perfusion pressure is equal to mean arterial pressure minus intraocular pressure. The aim of this study was to evaluate the changes in the intraocular pressure and the retinal nerve fiber layer thickness in patients undergoing spinal surgery in the prone position. ...

  5. The Thickness of the Mushy Layer on the Floor of the Skaergaard Magma Chamber at Apatite Saturation

    DEFF Research Database (Denmark)

    Holness, Marian B.; Tegner, Christian; Nielsen, Troels F. D.

    2017-01-01

    We present a novel way of constraining the thickness of the crystal mush in fractionated layered intrusions using detailed microstructural analysis. The results are combined with geochemical data to create a snapshot of the crystal mush on the floor of the Skaergaard magma chamber in the period i...

  6. Charge transport along luminescent oxide layers containing Si and SiC nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jambois, O. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)]. E-mail: ojambois@el.ub.es; Vila, A. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Pellegrino, P. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Carreras, J. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Perez-Rodriguez, A. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Garrido, B. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Bonafos, C. [Nanomaterials Group, CEMES-CNRS, 29 rue J. Marvig 31055, Toulouse (France); BenAssayag, G. [Nanomaterials Group, CEMES-CNRS, 29 rue J. Marvig 31055, Toulouse (France)

    2006-12-15

    The electrical conductivity of silicon oxides containing silicon and silicon-carbon nanoparticles has been investigated. By use of sequential Si{sup +} and C{sup +} ion implantations in silicon oxide followed by an annealing at 1100 deg. C, luminescent Si nanocrystals and SiC nanoparticles were precipitated. The characterization of the electrical transport has been carried out on two kinds of structures, allowing parallel or perpendicular transport, with respect to the substrate. The first type of samples were elaborated by means of a focus-ion-beam technique: electrical contacts to embedded nanoparticles were made by milling two nanotrenches on the sample surface until reaching the buried layer, then filling them with tungsten. The distance between the electrodes is about 100 nm. The second type of samples correspond to 40 nm thick typical MOS capacitors. The electron transport along the buried layer has shown a dramatic lowering of the electrical current, up to five orders of magnitude, when applying a sequence of voltages. It has been related to a progressive charge retention inside the nanoparticles, which, on its turn, suppresses the electrical conduction along the layer. On the other hand, the MOS capacitors show a reversible carrier charge and discharge effect that limits the current at low voltage, mostly due to the presence of C in the layers. A typical Fowler-Nordheim injection takes place at higher applied voltages, with a threshold voltage equal to 23 V.

  7. Normative spectral domain optical coherence tomography data on macular and retinal nerve fiber layer thickness in Indians

    Directory of Open Access Journals (Sweden)

    Bindu Appukuttan

    2014-01-01

    Full Text Available Aim: To provide the normative data of macular and retinal nerve fiber layer (RNFL thickness in Indians using spectral domain OCT (Spectralis OCT, Heidelberg Engineering, Germany and to evaluate the effects of age, gender, and refraction on these parameters. Design: Observational, cross-sectional study. Materials and Methods: The eyes of 105 healthy patients aged between 20-75 years, with no ocular disease and best corrected visual acuity of 20/20, were scanned using standard scanning protocols by a single examiner. Exclusion criteria included glaucoma, retinal diseases, diabetes, history of prior intraocular surgery or laser treatment. The mean macular and RNFL thickness were recorded, and the effects of age, gender, and refraction on these parameters were evaluated. This data was compared with published literature on Caucasians to assess the ethnic variations of these parameters. Results: The normal central foveal thickness in healthy Indian eyes measured using Spectralis OCT was 260.1 ± 18.19 ΅m. The nasal inner quadrant showed maximum retinal thickness (338.88 ± 18.17 ΅m.The mean RNFL thickness was 101.43 ± 8.63 ΅m with maximum thickness in the inferior quadrant. The central foveal thickness showed a gender-based difference (P = 0.005 but did not correlate significantly with age (P = 0.134, whereas the parafoveal, perifoveal thickness, macular volume, and RNFL thickness showed significant negative correlation with age. Conclusions: Our study provides the normative database for Indians on Spectralis OCT. It also suggests that age should be considered while interpreting the macular thickness and RNFL, whereas gender should also be given consideration in central foveal thickness.

  8. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    Science.gov (United States)

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-06

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  9. Dependence of surface distribution of self-assembled InSb nanodots on surface morphology and spacer layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Godbole, M., E-mail: mohit.godbole@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Olivier, E.J. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Coetsee, E.; Swart, H.C. [Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300 (South Africa); Neethling, J.H.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    Self-assembled InSb nanodots (NDs) were grown on a GaSb (1 0 0) substrate using metal-organic vapour phase epitaxy (MOVPE). The effects of etching depth of the substrate and thickness of the GaSb buffer layer on the density and size distribution of single and double layer dots were studied for detector applications. The etch depth of the substrate was varied up to 30 {mu}m. In this particular study, the dots were grown at 450 Degree-Sign C and the GaSb spacer thickness was varied between 50 nm and 200 nm. The optimum substrate etch depth was found to be 30 {mu}m while the best spacer thickness was found to be 200 nm.

  10. Dependence of surface distribution of self-assembled InSb nanodots on surface morphology and spacer layer thickness

    International Nuclear Information System (INIS)

    Godbole, M.; Olivier, E.J.; Coetsee, E.; Swart, H.C.; Neethling, J.H.; Botha, J.R.

    2012-01-01

    Self-assembled InSb nanodots (NDs) were grown on a GaSb (1 0 0) substrate using metal-organic vapour phase epitaxy (MOVPE). The effects of etching depth of the substrate and thickness of the GaSb buffer layer on the density and size distribution of single and double layer dots were studied for detector applications. The etch depth of the substrate was varied up to 30 μm. In this particular study, the dots were grown at 450 °C and the GaSb spacer thickness was varied between 50 nm and 200 nm. The optimum substrate etch depth was found to be 30 μm while the best spacer thickness was found to be 200 nm.

  11. Formation and investigation of multilayer nanostructured coatings TiN/MoN for different layers thicknesses with c-pvd

    International Nuclear Information System (INIS)

    Pogrebnyak, A.D.; Bondar, O.V.; Postol'nyj, B.A.; Andreev, A.A.; Abadias, G.; Beresnev, V.M.; Sobol', O.B.

    2013-01-01

    Multilayer coatings based on TiN/MoN were obtained using the vacuum arc evaporation cathode method (C-PVD). Multilayers thickness was in the range 6,7 ÷ 8,7 μm and monolayers thickness was 2, 10, 20 and 40 nm. Vacuum-arc unit Bulat 6 was used for depositions. For the analysis of multilayer structures and properties of nanostructured coatings XRD analysis method was used (D8 ADVANCE, Bruker). For elemental composition and morphology investigation of the surface layers and multilayered coatings SEM (JEOL-7001F) with EDX attachment was used. Also HRTEM method was used to analyze the phase composition. In addition, this article provides investigation of hardness by Micro-Hardness Tester CSM (Switzerland). AFM was used for additional analysis of the topography and surface roughness of these coatings. This investigation have revealed the relationship between the layers thicknesses, substrate potential, the annealing process, physical and mechanical properties of samples. (authors)

  12. Correlation between glycemic control and peripapillary retinal nerve fiber layer thickness in Saudi type II diabetics

    Directory of Open Access Journals (Sweden)

    Fahmy RM

    2018-03-01

    Full Text Available Rania M Fahmy,1,2 Ramesa S Bhat,3 Manar Al-Mutairi,4 Feda S Aljaser,5 Afaf El-Ansary4 1Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia; 2Department of Ophthalmology, Faculty of Medicine, Cairo University, Giza, Egypt; 3Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia; 4Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh, Saudi Arabia; 5Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia Objective: To evaluate the effect of diabetes mellitus (DM, diabetic retinopathy, and degree of glycemic control (glycosylated hemoglobin [HbA1c] on peripapillary retinal nerve fiber layer thickness (RNFLT using optical coherence tomography.Methods: The study included 126 eyes of healthy controls (n=32 and diabetics patients (n=31, whose ages ranged from 40 to 70 years. The diabetic group was divided into: Subgroup 1: with HbA1c <7% and Subgroup 2: with HbA1c ≥7%. All patients underwent full ophthalmic examination. HbA1c level was obtained with the A1cNow+ system and the peripapillary RNFLT was measured using 3D-OCT 2000 Topcon (360-degree circular scan with 3.4 mm diameter centered on optic disc.Results: The obtained data demonstrates significant decrease in peripapillary RNFLT in superior and inferior quadrants of the right eye (p=0.000 and p=0.039, respectively, and in superior quadrant of the left eye (p=0.002 with impairment of glycemic control. Pearson’s correlation test showed significant negative correlation of RNFLT with HbA1c in the superior quadrant in both eyes.Conclusion: Impairment of glycemic control affects the peripapillary RNFLT mainly in the superior quadrant. This thickness also tends to decrease with long-standing DM, use of DM medications, and development of diabetic retinopathy. The measurement of peripapillary RNFLT

  13. Study on coated layer material performance of coated particle fuel FBR (2). High temperature property and capability of coating to thick layer of TiN

    International Nuclear Information System (INIS)

    Naganuma, Masayuki; Mizuno, Tomoyasu

    2002-08-01

    'Helium Gas Cooled Coated Particle Fuel FBR' is one of attractive core concepts in the Feasibility Study on Commercialized Fast Reactor Cycle System in Japan, and the design study is presently proceeded. As one of key technologies of this concept, the coated layer material is important, and ceramics is considered to be a candidate material because of the superior refractory. Based on existing knowledge, TiN is regarded to be a possible candidate material, to which some property tests and evaluations have been conducted. In this study, preliminary tests about the high temperature property and the capability of thick layer coating of TiN have been conducted. Results of these tests come to the following conclusions. Heating tests of two kinds of TiN layer specimens coated by PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) were conducted. As a result, as for CVD coating specimens, remarkable charge was not observed on the layer up to 2,000degC, therefore we concluded that the layer by CVD had applicability up to high temperature of actual operation level. On the other hand, as for PVD coating specimens, an unstable behavior that the layer changed to a mesh like texture was observed on a 2,000degC heated specimen, therefore the applied PVD method is not considered to be promising as the coating technique. The surface conditions of some parts inside CVD device were investigated in order to evaluate possibility of TiN thick coating (∼100 μm). As a result, around 500 μm of TiN coating layer was observed on the condition of multilayer. Therefore, we conclude that CVD has capability of coating up to thick layer in actual coated particle fuel fabrication. (author)

  14. Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy

    OpenAIRE

    Lei, Qingyu; Golalikhani, Maryam; Davidson, Bruce A.; Liu, Guozhen; Schlom, D. G.; Qiao, Qiao; Zhu, Yimei; Chandrasena, Ravini U.; Yang, Weibing; Gray, Alexander X.; Arenholz, Elke; Farrar, Andrew K.; Tenne, Dmitri A.; Hu, Minhui; Guo, Jiandong

    2016-01-01

    Advancements in nanoscale engineering of oxide interfaces and heterostructures have led to discoveries of emergent phenomena and new artificial materials. Combining the strengths of reactive molecular-beam epitaxy and pulsed-laser deposition, we show here, with examples of Sr1+xTi1-xO3+delta, Ruddlesden-Popper phase Lan+1NinO3n+1 (n = 4), and LaAl1+yO3(1+0.5y)/SrTiO3 interfaces, that atomic layer-by-layer laser molecular-beam epitaxy (ALL-Laser MBE) significantly advances the state of the art...

  15. Study of thickness and uniformity of oxide passivation with DI-O3 on silicon substrate for electronic and photonic applications

    Science.gov (United States)

    Sharma, Mamta; Hazra, Purnima; Singh, Satyendra Kumar

    2018-05-01

    Since the beginning of semiconductor fabrication technology evolution, clean and passivated substrate surface is one of the prime requirements for fabrication of Electronic and optoelectronic device fabrication. However, as the scale of silicon circuits and device architectures are continuously decreased from micrometer to nanometer (from VLSI to ULSI technology), the cleaning methods to achieve better wafer surface qualities has raised research interests. The development of controlled and uniform silicon dioxide is the most effective and reliable way to achieve better wafer surface quality for fabrication of electronic devices. On the other hand, in order to meet the requirement of high environment safety/regulatory standards, the innovation of cleaning technology is also in demand. The controlled silicon dioxide layer formed by oxidant de-ionized ozonated water has better uniformity. As the uniformity of the controlled silicon dioxide layer is improved on the substrate, it enhances the performance of the devices. We can increase the thickness of oxide layer, by increasing the ozone time treatment. We reported first time to measurement of thickness of controlled silicon dioxide layer and obtained the uniform layer for same ozone time.

  16. LONGITUDINAL CHANGES IN THICKNESSES OF THE MACULA, GANGLION CELL-INNER PLEXIFORM LAYER, AND RETINAL NERVE FIBER LAYER AFTER VITRECTOMY: A 12-Month Observational Study.

    Science.gov (United States)

    Lim, Hyung-Bin; Lee, Min-Woo; Kwak, Baek-Soo; Jo, Young-Joon; Kim, Jung-Yeul

    2018-01-01

    To analyze longitudinal changes in the thicknesses of the macula, ganglion cell-inner plexiform layer (GC-IPL), and peripapillary retinal nerve fiber layer (RNFL) after vitrectomy. Thirty-eight patients diagnosed with intraocular lens (IOL) dislocation without evidence of other vitreoretinal diseases were included. They underwent conventional vitrectomy and IOL transscleral fixation, with a follow-up of 12 months. Using spectral domain optical coherence tomography, the thicknesses of the macula, GC-IPL, and peripapillary RNFL in the vitrectomized and fellow control eyes were measured. Various optic nerve head parameters were also determined. Optical coherence tomography showed that there were no significant differences in postoperative central macular thickness compared with baseline values. The average GC-IPL thickness increased 1 month after surgery from baseline (P = 0.038). The average RNFL thickness increased from baseline at 1 month (P = 0.001) and 3 months (P = 0.011) after vitrectomy. The mean foveal, GC-IPL, and RNFL thicknesses of the study eyes compared with the fellow control eyes increased at 1 month (P = 0.034), 1 month (P = 0.048), and 1 month (P = 0.013) to 3 months (P = 0.038), respectively, after surgery. However, no significant differences were found in intraocular pressure or optic nerve head parameters between the study and fellow control eyes at 12 months after surgery. Transient increases in the thickness of the macula and GC-IPL were observed at 1 month after vitrectomy, and the postoperative RNFL thickness increased until 3 months after surgery, after which it returned to preoperative levels. There was no significant change in intraocular pressure or optic nerve head parameters before and after surgery.

  17. Determination of thickness of thin turbid painted over-layers using micro-scale spatially offset Raman spectroscopy

    Science.gov (United States)

    Conti, Claudia; Realini, Marco; Colombo, Chiara; Botteon, Alessandra; Bertasa, Moira; Striova, Jana; Barucci, Marco; Matousek, Pavel

    2016-12-01

    We present a method for estimating the thickness of thin turbid layers using defocusing micro-spatially offset Raman spectroscopy (micro-SORS). The approach, applicable to highly turbid systems, enables one to predict depths in excess of those accessible with conventional Raman microscopy. The technique can be used, for example, to establish the paint layer thickness on cultural heritage objects, such as panel canvases, mural paintings, painted statues and decorated objects. Other applications include analysis in polymer, biological and biomedical disciplines, catalytic and forensics sciences where highly turbid overlayers are often present and where invasive probing may not be possible or is undesirable. The method comprises two stages: (i) a calibration step for training the method on a well characterized sample set with a known thickness, and (ii) a prediction step where the prediction of layer thickness is carried out non-invasively on samples of unknown thickness of the same chemical and physical make up as the calibration set. An illustrative example of a practical deployment of this method is the analysis of larger areas of paintings. In this case, first, a calibration would be performed on a fragment of painting of a known thickness (e.g. derived from cross-sectional analysis) and subsequently the analysis of thickness across larger areas of painting could then be carried out non-invasively. The performance of the method is compared with that of the more established optical coherence tomography (OCT) technique on identical sample set. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  18. Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell

    Science.gov (United States)

    Park, Tae Hyung; Song, Seul Ji; Kim, Hae Jin; Kim, Soo Gil; Chung, Suock; Kim, Beom Yong; Lee, Kee Jeung; Kim, Kyung Min; Choi, Byung Joon; Hwang, Cheol Seong

    2015-11-01

    Resistance switching (RS) devices with ultra-thin Ta2O5 switching layer (0.5-2.0 nm) with a cell diameter of 28 nm were fabricated. The performance of the devices was tested by voltage-driven current—voltage (I-V) sweep and closed-loop pulse switching (CLPS) tests. A Ta layer was placed beneath the Ta2O5 switching layer to act as an oxygen vacancy reservoir. The device with the smallest Ta2O5 thickness (0.5 nm) showed normal switching properties with gradual change in resistance in I-V sweep or CLPS and high reliability. By contrast, other devices with higher Ta2O5 thickness (1.0-2.0 nm) showed abrupt switching with several abnormal behaviours, degraded resistance distribution, especially in high resistance state, and much lower reliability performance. A single conical or hour-glass shaped double conical conducting filament shape was conceived to explain these behavioural differences that depended on the Ta2O5 switching layer thickness. Loss of oxygen via lateral diffusion to the encapsulating Si3N4/SiO2 layer was suggested as the main degradation mechanism for reliability, and a method to improve reliability was also proposed.

  19. Multi-layer thickness determination using differential-based enhanced Fourier transforms of X-ray reflectivity data

    Energy Technology Data Exchange (ETDEWEB)

    Poust, Benjamin [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States); Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sandhu, Rajinder [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Goorsky, Mark [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States)

    2009-08-15

    Layer thickness determination of single and multi-layer structures is achieved using a new method for generating Fourier transforms (FTs) of X-ray reflectivity data. This enhanced Fourier analysis is compared to other techniques in the determination of AlN layer thickness deposited on sapphire. In addition to demonstrably improved results, the results also agree with thicknesses determined using simulations and TEM measurements. The effectiveness of the technique is further demonstrated using the more complicated metamorphic epitaxial multi-layer AlSb/InAs structures deposited on GaAs. The approach reported here is based upon differentiating the specular intensity with respect to the vertical reciprocal space coordinate Q{sub Z}. In general, differentiation is far more effective at removing the sloping background present in reflectivity scans than logarithmic compression alone, average subtraction alone, or other methods. When combined with any of the other enhancement techniques, however, differentiation yields distinguishable discrete Fourier transform (DFT) power spectrum peaks for even the weakest and most truncated of sloping oscillations that are present in many reflectivity scans from multi-layer structures. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    Science.gov (United States)

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  1. Energy level and thickness control on PEDOT:PSS layer for efficient planar heterojunction perovskite cells

    Science.gov (United States)

    Wang, Chunhua; Zhang, Chujun; Tong, Sichao; Xia, Huayan; Wang, Lijuan; Xie, Haipeng; Gao, Yongli; Yang, Junliang

    2018-01-01

    Efficient planar heterojunction perovskite solar cells (PHJ-PSCs) with an architecture of ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Al were fabricated by controlling the energy level and thickness of the PEDOT:PSS layer, where the PEDOT:PSS precursor was diluted with deionized water (H2O) and isopropyl alcohol (IPA), i.e. W-PEDOT:PSS and I-PEDOT:PSS. The performance parameters of the PHJ-PSCs showed soaring enhancement after employing W-PEDOT:PSS or I-PEDOT:PSS instead of pristine PEDOT:PSS (P-PEDOT:PSS), resulting in an increase of the power conversion efficiency (PCE) of W-PEDOT:PSS-based PHJ-PSCs to 15.60% from 11.95% for P-PEDOT:PSS-based PHJ-PSCs. The performance improvement results from two aspects. On the one hand, as compared to P-PEDOT:PSS, the occupied molecular orbital energy (HOMO) level of dilute PEDOT:PSS showed an impressive decrease and can well match the valence band of CH3NH3PbI3 film, resulting in less energy loss and a significant improvement in the open-circuit voltage (V oc). On the other hand, the dilute PEDOT:PSS could produce a thinner film as compared with the P-PEDOT:PSS, which also played an important role in the performance of the PHJ-PSCs. Furthermore, the electrochemical impedance spectroscopy (EIS) results indicated that the interface between perovskite and PEDOT:PSS was greatly improved by employing W-PEDOT:PSS or I-PEDOT:PSS, leading to an obvious decrease in the series resistance (R s) and an increase in the recombination resistance (R rec). The research demonstrated that diluting PEDOT:PSS with a common solvent, such as H2O and IPA, is a feasible low-temperature way of achieving efficient PHJ-PSCs.

  2. Pigments analysis and gold layer thickness evaluation of polychromy on wood objects by PXRF.

    Science.gov (United States)

    Blonski, M S; Appoloni, C R

    2014-07-01

    The X-ray fluorescence technique by energy dispersion (EDXRF), being a multi elemental and non-destructive technique, has been widely used in the analysis of artworks and archeometry. An X-ray fluorescence portable equipment from the Laboratory of Applied Nuclear Physics of the State University of Londrina (LFNA/UEL) was used for the measurement of pigments in golden parts of a Gilding Preparation Standard Plaque and also pigments measurement on the Wood Adornment of the High Altar Column of the Side Pulpit of the Immaculate Conception Church Parish Sao Paulo-SP. The portable X-ray fluorescence PXRF-LFNA-02 consists of an X-ray tube with Ag anode, a Si-PIN detector (FWHM=221 eV for Mn line at 5.9 keV), a chain of electronics nuclear standard of X-ray spectrometer, a multichannel 8K, a notebook and a mechanical system designed for the positioning of detector and X-ray tube, which allows movements with two degrees of freedom from the system of excitation-detection. The excitation-detection time of each measurement was 100 and 500 s, respectively. The presence of elements Ti, Cr, Fe, Cu, Zn and Au was found in the golden area of the Altar Column ornament. On the other hand, analysis of the ratios for the intensities of Kα/Kβ lines measured in the areas made it possible to explore the possibility of measuring the stratigraphies of the layers of pigments and to estimate the thickness of the same. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The Effect of Post-Baking Temperature and Thickness of ZnO Electron Transport Layers for Efficient Planar Heterojunction Organometal-Trihalide Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Kun-Mu Lee

    2017-11-01

    Full Text Available Solution-processed zinc oxide (ZnO-based planar heterojunction perovskite photovoltaic device is reported in this study. The photovoltaic device benefits from the ZnO film as a high-conductivity and high-transparent electron transport layer. The optimal electron transport layer thickness and post-baking temperature for ZnO are systematically studied by scanning electron microscopy, photoluminescence and time-resolved photoluminescence spectroscopy, and X-ray diffraction. Optimized perovskite solar cells (PSCs show an open-circuit voltage, a short-circuit current density, and a fill factor of 1.04 V, 18.71 mA/cm2, and 70.2%, respectively. The highest power conversion efficiency of 13.66% was obtained when the device was prepared with a ZnO electron transport layer with a thickness of ~20 nm and when post-baking at 180 °C for 30 min. Finally, the stability of the highest performance ZnO-based PSCs without encapsulation was investigated in detail.

  4. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO₂ Films Deposited by Atomic Layer Deposition.

    Science.gov (United States)

    Wilson, Rachel L; Simion, Cristian Eugen; Blackman, Christopher S; Carmalt, Claire J; Stanoiu, Adelina; Di Maggio, Francesco; Covington, James A

    2018-03-01

    Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO₂ and inferred for TiO₂. In this paper, TiO₂ thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO₂ films were exposed to different concentrations of CO, CH₄, NO₂, NH₃ and SO₂ to evaluate their gas sensitivities. These experiments showed that the TiO₂ film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH₄ and NH₃ exposure indicated typical n -type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.

  5. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Rachel L. Wilson

    2018-03-01

    Full Text Available Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes, at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.

  6. Analysis of macular and nerve fiber layer thickness in multiple sclerosis patients according to severity level and optic neuritis episodes.

    Science.gov (United States)

    Soler García, A; Padilla Parrado, F; Figueroa-Ortiz, L C; González Gómez, A; García-Ben, A; García-Ben, E; García-Campos, J M

    2016-01-01

    Quantitative assessment of macular and nerve fibre layer thickness in multiple sclerosis patients with regard to expanded disability status scale (EDSS) and presence or absence of previous optic neuritis episodes. We recruited 62 patients with multiple sclerosis (53 relapsing-remitting and 9 secondary progressive) and 12 disease-free controls. All patients underwent an ophthalmological examination, including quantitative analysis of the nerve fibre layer and macular thickness using optical coherence tomography. Patients were classified according to EDSS as A (lower than 1.5), B (between 1.5 and 3.5), and C (above 3.5). Mean nerve fibre layer thickness in control, A, B, and C groups was 103.35±12.62, 99.04±14.35, 93.59±15.41, and 87.36±18.75μm respectively, with statistically significant differences (P<.05). In patients with no history of optic neuritis, history of episodes in the last 3 to 6 months, or history longer than 6 months, mean nerve fibre layer thickness was 99.25±13.71, 93.92±13.30 and 80.07±15.91μm respectively; differences were significant (P<.05). Mean macular thickness in control, A, B, and C groups was 220.01±12.07, 217.78±20.02, 217.68±20.77, and 219.04±24.26μm respectively. Differences were not statistically significant. The mean retinal nerve fibre layer thickness in multiple sclerosis patients is related to the EDSS level. Patients with previous optic neuritis episodes have a thinner retinal nerve fibre layer than patients with no history of these episodes. Mean macular thickness is not correlated to EDSS level. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Non-destructive prediction of enteric coating layer thickness and drug dissolution rate by near-infrared spectroscopy and X-ray computed tomography.

    Science.gov (United States)

    Ariyasu, Aoi; Hattori, Yusuke; Otsuka, Makoto

    2017-06-15

    The coating layer thickness of enteric-coated tablets is a key factor that determines the drug dissolution rate from the tablet. Near-infrared spectroscopy (NIRS) enables non-destructive and quick measurement of the coating layer thickness, and thus allows the investigation of the relation between enteric coating layer thickness and drug dissolution rate. Two marketed products of aspirin enteric-coated tablets were used in this study, and the correlation between the predicted coating layer thickness and the obtained drug dissolution rate was investigated. Our results showed correlation for one product; the drug dissolution rate decreased with the increase in enteric coating layer thickness, whereas, there was no correlation for the other product. Additional examination of the distribution of coating layer thickness by X-ray computed tomography (CT) showed homogenous distribution of coating layer thickness for the former product, whereas the latter product exhibited heterogeneous distribution within the tablet, as well as inconsistent trend in the thickness distribution between the tablets. It was suggested that this heterogeneity and inconsistent trend in layer thickness distribution contributed to the absence of correlation between the layer thickness of the face and side regions of the tablets, which resulted in the loss of correlation between the coating layer thickness and drug dissolution rate. Therefore, the predictability of drug dissolution rate from enteric-coated tablets depended on the homogeneity of the coating layer thickness. In addition, the importance of micro analysis, X-ray CT in this study, was suggested even if the macro analysis, NIRS in this study, are finally applied for the measurement. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  9. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer

    Science.gov (United States)

    Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.

    2017-12-01

    The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.

  10. Investigation of thin oxide layer removal from Si substrates using an SiO2 atomic layer etching approach: the importance of the reactivity of the substrate

    International Nuclear Information System (INIS)

    Metzler, Dominik; Oehrlein, Gottlieb S; Li, Chen; Lai, C Steven; Hudson, Eric A

    2017-01-01

    The evaluation of a plasma-based atomic layer etching (ALE) approach for native oxide surface removal from Si substrates is described. Objectives include removal of the native oxide while minimizing substrate damage, surface residues and substrate loss. Oxide thicknesses were measured using in situ ellipsometry and surface chemistry was analyzed by x-ray photoelectron spectroscopy. The cyclic ALE approach when used for removal of native oxide SiO 2 from a Si substrate did not remove native oxide to the extent required. This is due to the high reactivity of the silicon substrate during the low-energy (<40 eV) ion bombardment phase of the cyclic ALE approach which leads to reoxidation of the silicon surface. A modified process, which used continuously biased Ar plasma with periodic CF 4 injection, achieved significant oxygen removal from the Si surface, with some residual carbon and fluorine. A subsequent H 2 /Ar plasma exposure successfully removed residual carbon and fluorine while passivating the silicon surface. The combined treatment reduced oxygen and carbon levels to about half compared to as received silicon surfaces. The downside of this process sequence is a net loss of about 40 Å of Si. A generic insight of this work is the importance of the substrate and final surface chemistry in addition to precise etch control of the target film for ALE processes. By a fluorocarbon-based ALE technique, thin SiO 2 layer removal at the Ångstrom level can be precisely performed from an inert substrate, e.g. a thick SiO 2 layer. However, from a reactive substrate, like Si, complete removal of the thin SiO 2 layer is prevented by the high reactivity of low energy Ar + ion bombarded Si. The Si surfaces are reoxidized during the ALE ion bombardment etch step, even for very clean and ultra-low O 2 process conditions. (paper)

  11. Preparation and spectroscopic analysis of zinc oxide nanorod thin films of different thicknesses

    Directory of Open Access Journals (Sweden)

    Mia Nasrul Haque

    2017-10-01

    Full Text Available Zinc oxide thin films with different thicknesses were prepared on microscopic glass slides by sol-gel spin coating method, then hydrothermal process was applied to produce zinc oxide nanorod arrays. The nanorod thin films were characterized by various spectroscopic methods of analysis. From the images of field emission scanning electron microscope (FESEM, it was observed that for the film thickness up to 200 nm the formed nanorods with wurtzite hexagonal structure were uniformly distributed over the entire surface substrate. From X-ray diffraction analysis it was revealed that the thin films had good polycrystalline nature with highly preferred c-axis orientation along (0 0 2 plane. The optical characterization done by UV-Vis spectrometer showed that all the films had high transparency of 83 % to 96 % in the visible region and sharp cut off at ultraviolet region of electromagnetic spectrum. The band gap of the films decreased as their thickness increased. Energy dispersive X-ray spectroscopy (EDS showed the presence of zinc and oxygen elements in the films and Fourier transform infrared spectroscopy (FT-IR revealed the chemical composition of ZnO in the film.

  12. Oxide layer stability in lead-bismuth at high temperature

    Science.gov (United States)

    Martín, F. J.; Soler, L.; Hernández, F.; Gómez-Briceño, D.

    2004-11-01

    Materials protection by 'in situ' oxidation has been studied in stagnant lead-bismuth, with different oxygen levels (H 2/H 2O ratios of 0.3 and 0.03), at temperatures from 535 °C to 600 °C and times from 100 to 3000 h. The materials tested were the martensitic steels F82Hmod, EM10 and T91 and the austenitic stainless steels, AISI 316L and AISI 304L. The results obtained point to the existence of an apparent threshold temperature above which corrosion occurs and the formation of a protective and stable oxide layer is not possible. This threshold temperature depends on material composition, oxygen concentration in the liquid lead-bismuth and time. The threshold temperature is higher for the austenitic steels, especially for the AISI 304L, and it increases with the oxygen concentration in the lead-bismuth. The oxide layer formed disappear with time and, after 3000 h all the materials, except AISI 304L, suffer corrosion, more severe for the martensitic steels and at the highest temperature tested.

  13. Performance Analysis of GaN Capping Layer Thickness on GaN/AlGaN/GaN High Electron Mobility Transistors.

    Science.gov (United States)

    Sharma, N; Periasamy, C; Chaturvedi, N

    2018-07-01

    In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.

  14. The effect of the thicknesses of the various layers on the colour emitted by an organic electroluminescent device

    Science.gov (United States)

    Jolinat, P.; Clergereaux, R.; Farenc, J.; Destruel, P.

    1998-05-01

    Organic electroluminescent diodes based on thin organic layers are one of the most promising next-generation systems for the backlighting of the liquid crystal screens. Among other methods to obtain white light, three-layer luminescent devices with each layer emitting one of the three fundamental colours have been studied here. Red, green and blue light were produced by 0022-3727/31/10/018/img1 doped with Nile red, 0022-3727/31/10/018/img1 and TPD layers respectively. A fourth thin film of TAZ has been inserted between TPD and 0022-3727/31/10/018/img1 to control injection of electrons into the TPD. The effect of the layers' thicknesses on the spectral emission of the device has been examined. Results show that the thicknesses of TAZ and doped 0022-3727/31/10/018/img1 layers have to be controlled to within a precision of better than 5 Å. The discussion turns on the possibility of applying this technology to screen backlighting.

  15. Thickness of the Macula, Retinal Nerve Fiber Layer, and Ganglion Cell Layer in the Epiretinal Membrane: The Repeatability Study of Optical Coherence Tomography.

    Science.gov (United States)

    Lee, Haeng-Jin; Kim, Min-Su; Jo, Young-Joon; Kim, Jung-Yeul

    2015-07-01

    To analyze the repeatability of measurements of the thicknesses of the macula, retinal nerve fiber layer (RNFL), and ganglion cell inner plexiform layer (GCIPL) using spectral-domain optical coherence tomography (SD-OCT) in the epiretinal membrane (ERM). The prospective study analyzed patients who visited our retinal clinic from June 2013 to January 2014. An experienced examiner measured the thicknesses twice using macular cube 512 × 128 and optic disc cube 200 × 200 scans. The repeatability of the thicknesses of the macula, RNFL, and GCIPL were compared using the intraclass correlation coefficient (ICC) of two groups based on the central macular thickness (group A, ≤ 450 μm; group B, > 450 μm). A total of 88 patients were analyzed. The average thicknesses of the central macula, RNFL, and GCIPL were 256.5, 96.6, and 84.4 μm, respectively, in the normal fellow eye and 412.3, 94.6, and 56.7 μm in the affected eye. The ICCs of the central macula, RNFL, and GCIPL were 0.995, 0.994, and 0.996, respectively, for the normal fellow eye and 0.991, 0.973, and 0.881 for the affected eye. The average thicknesses of the central macula, RNFL, and GCIPL in group A were 360.9, 93.5, and 63.4 μm, respectively, and the ICCs were 0.997, 0.987, and 0.995. The thicknesses in group B were 489.5, 96.2, and 46.6 μm, respectively, and the ICCs were 0.910, 0.942, and 0.603, significantly lower repeatability compared with group A (P macula.

  16. Deposition of yttria stabilized zirconia layer for solid oxide fuel cell by chemical vapor infiltration

    International Nuclear Information System (INIS)

    John, John T.; Dubey, Vivekanand; Kain, Vivekanand; Dey, Gautham Kumar; Prakash, Deep

    2011-01-01

    Free energy associated with a chemical reaction can be converted into electricity, if we can split the reaction into an anodic reaction and a cathodic reaction and carry out the reactions in an electrochemical cell using electrodes that will catalyze the reactions. We also have to use a suitable electrolyte, that serves to isolate the chemical species in the two compartments from getting mixed directly but allow an ion produced in one of the reactions to proceed to the other side and complete the reaction. For this reason cracks and porosity are not tolerated in the electrolyte. First generation solid oxide fuel cell (SOFC) uses yttria stabilized zirconia (YSZ) as the electrolyte. In spite of the fact that several solid electrolytes with higher conductivities at lower temperature are being investigated and developed, 8 mol% yttria stabilized zirconia (8YSZ) is considered to be the most favored electrolyte for the SOFC today. The electrolyte should be present as a thin, impervious layer of uniform thickness with good adherence, chemical and mechanical stability, in between the porous cathode and anode. Efforts to produce the 8YSZ coatings on porous lanthanum strontium manganite tubes by electrochemical vapor deposition (ECVD) have met with unexpected difficulties such as impurity pick up and chemical and mechanical instability of the LSM tubes in the ECVD environment. It was also difficult to keep the chemical composition of the YSZ coating at exactly 8 mol% Yttria in zirconia and to control the coating thickness in tight control. These problems were overcome by a two step deposition process where a YSZ layer of required thickness was produced by electrophoretic coating from an acetyl acetone bath at a voltage of 30-300V DC and sintered at 1300 deg C. The resulting porous YSZ layer was made impervious by chemical vapor infiltration (CVI) by the reaction between a mixture of vapors of YCl 3 and ZrCl 4 and steam at 1300 deg C as in the case of ECVD for a short

  17. Measurements of the Stiffness and Thickness of the Pavement Asphalt Layer Using the Enhanced Resonance Search Method

    Directory of Open Access Journals (Sweden)

    Nur Mustakiza Zakaria

    2014-01-01

    Full Text Available Enhanced resonance search (ERS is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner. This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard.

  18. Analysis of chemical dissolution of the barrier layer of porous oxide on aluminum thin films using a re-anodizing technique

    Energy Technology Data Exchange (ETDEWEB)

    Vrublevsky, I. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka street, Minsk 220013 (Belarus)]. E-mail: nil-4-2@bsuir.edu.by; Parkoun, V. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka street, Minsk 220013 (Belarus); Sokol, V. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka street, Minsk 220013 (Belarus); Schreckenbach, J. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany)

    2005-09-30

    Chemical dissolution of the barrier layer of porous oxide formed on thin aluminum films (99.9% purity) in the 4% oxalic acid after immersion in 2 mol dm{sup -3} sulphuric acid at 50 deg. C has been studied. The barrier layer thickness before and after dissolution was calculated using a re-anodizing technique. It has been shown that above 57 V the change in the growth mechanism of porous alumina films takes place. As a result, the change in the amount of regions in the barrier oxide with different dissolution rates is observed. The barrier oxide contains two layers at 50 V: the outer layer with the highest dissolution rate and the inner layer with a low dissolution rate. Above 60 V the barrier oxide contains three layers: the outer layer with a high dissolution rate, the middle layer with the highest dissolution rate and the inner layer with a low dissolution rate. We suggest that the formation of the outer layer of barrier oxide with a high dissolution rate is linked with the injection of protons or H{sub 3}O{sup +} ions from the electrolyte into the oxide film at the anodizing voltages above 57 V.

  19. Effect of precursor concentration and film thickness deposited by layer on nanostructured TiO2 thin films

    Science.gov (United States)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Sol-gel spin coating method is used in the production of nanostructured TiO2 thin film. The surface topology and morphology was observed using the Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The electrical properties were investigated by using two probe current-voltage (I-V) measurements to study the electrical resistivity behavior, hence the conductivity of the thin film. The solution concentration will be varied from 14.0 to 0.01wt% with 0.02wt% interval where the last concentration of 0.02 to 0.01wt% have 0.01wt% interval to find which concentrations have the highest conductivity then the optimized concentration's sample were chosen for the thickness parameter based on layer by layer deposition from 1 to 6 layer. Based on the result, the lowest concentration of TiO2, the surface becomes more uniform and the conductivity will increase. As the result, sample of 0.01wt% concentration have conductivity value of 1.77E-10 S/m and will be advanced in thickness parameter. Whereas in thickness parameter, the 3layer deposition were chosen as its conductivity is the highest at 3.9098E9 S/m.

  20. Dynamic Analysis of Three-Layer Sandwich Beams with Thick Viscoelastic Damping Core for Finite Element Applications

    Directory of Open Access Journals (Sweden)

    Fernando Cortés

    2015-01-01

    Full Text Available This paper presents an analysis of the dynamic behaviour of constrained layer damping (CLD beams with thick viscoelastic layer. A homogenised model for the flexural stiffness is formulated using Reddy-Bickford’s quadratic shear in each layer, and it is compared with Ross-Kerwin-Ungar (RKU classical model, which considers a uniform shear deformation for the viscoelastic core. In order to analyse the efficiency of both models, a numerical application is accomplished and the provided results are compared with those of a 2D model using finite elements, which considers extensional and shear stress and longitudinal, transverse, and rotational inertias. The intermediate viscoelastic material is characterised by a fractional derivative model, with a frequency dependent complex modulus. Eigenvalues and eigenvectors are obtained from an iterative method avoiding the computational problems derived from the frequency dependence of the stiffness matrices. Also, frequency response functions are calculated. The results show that the new model provides better accuracy than the RKU one as the thickness of the core layer increases. In conclusion, a new model has been developed, being able to reproduce the mechanical behaviour of thick CLD beams, reducing storage needs and computational time compared with a 2D model, and improving the results from the RKU model.

  1. Impact of oxide thickness on SEGR failure in vertical power MOSFETs: Development of a semi-empirical expression

    International Nuclear Information System (INIS)

    Titus, J.L.; Wheatley, C.F.; Burton, D.I.; Mouret, I.; Allenspach, M.; Brews, J.; Schrimpf, R.; Galloway, K.; Pease, R.L.

    1995-01-01

    This paper investigates the role that the gate oxide thickness (T ox ) plays on the gate and drain failure threshold voltages required to induce the onset of single-event gate rupture (SEGR). The impact of gate oxide thickness on SEGR is experimentally determined from vertical power metal-oxide semiconductor field-effect transistors (MOSFETs) having identical process and design parameters, except for the gate oxide thickness. Power MOSFETs from five variants were specially fabricated with nominal gate oxide thicknesses of 30, 50, 70, 100, and 150 nm. Devices from each variant were characterized to mono-energetic ion beams of Nickel, Bromine, Iodine, and Gold, Employing different bias conditions, failure thresholds for the onset of SEGR were determined for each oxide thickness. Applying these experimental test results, the previously published empirical expression is extended to include the effects of gate oxide thickness. In addition, observations of ion angle, temperature, cell geometry, channel conductivity, and curvature at high drain voltages are briefly discussed

  2. Fabrication of tubed functionally graded material by slurry dipping process. Thickness control of dip-coated layer

    International Nuclear Information System (INIS)

    Watanabe, Ryuzo

    1997-03-01

    In order to obtain long life fuel cladding tubes for the fast breeder reactor, the concept of functionally graded material was applied for the material combination of Molybdenum/stainless steel/Titanium, in which Titanium and Molybdenum were placed at the inner and outer sides, respectively. Slurry dipping method was employed because of its capability of shape forming and microstructural control. We have hitherto reported the design criteria for the graded layers, preparation of the slurry, and microstructural control of the dip-coated layers. In the present report, the thickness control of the dip-coated layer is described in detail. The thickness of the dip-coated layer depends primarily on the viscosity of the slurry. Nevertheless, for the stable dispersion of the powder in the slurry, which dominates the microstructural homogeneity, an optimum viscosity value is present for the individual slurries. With stable slurries of Ti, Mo, stainless steel powders and their mixtures, the thicknesses of dip-coated layers were controlled in dependence of their viscosities and yield values. For Ti and stainless steel powders and their mixture a PAANa was used as a dispersing agent. A NaHMP was found to be effective for the dispersion of Mo powder and Mo/stainless steel powder mixture. For all slurries tested in the present investigation PVA addition was helpful for the viscosity control. Dip-coating maps have been drawn for the stabilization of the slurries and for the formation of films with a sufficient strength for further manipulation for the slurries with low viscosity (∼10 mPa s). The final film thickness for the low-viscosity slurry with the optimum condition was about 200 μm. The slurries with high viscosities of several hundreds mPa s had a good stability and the yield value was easy to be controlled. The film thickness was able to be adjusted in the size range between several tens and several hundreds μm. The final thickness of the graded layer was determined

  3. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Fidan, S.; Muhaffel, F. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey); Riool, M. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Cempura, G. [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Boer, L. de; Zaat, S.A.J. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Filemonowicz, A. Czyrska - [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Cimenoglu, H., E-mail: cimenogluh@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey)

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC{sub 2}H{sub 3}O{sub 2}). In general, synthesized MAO layers were composed of zirconium oxide (ZrO{sub 2}) and zircon (ZrSiO{sub 4}). Addition of AgC{sub 2}H{sub 3}O{sub 2} into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  4. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    International Nuclear Information System (INIS)

    Fidan, S.; Muhaffel, F.; Riool, M.; Cempura, G.; Boer, L. de; Zaat, S.A.J.; Filemonowicz, A. Czyrska -; Cimenoglu, H.

    2017-01-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  5. Multiphase layered oxide growth on pure metals. I. General formulation

    International Nuclear Information System (INIS)

    Fromhold, A.T. Jr.

    1982-01-01

    A general formulation for the simultaneous growth of any number of layered planar oxide phases on a pure metal under diffusion-controlled conditions has been developed. Four individual situations have been developed in detail, namely, situations in which the predominant mode of ion transport is by cation interstitials, cation vacancies, anion interstitials, or anion vacancies. The generalized formulation enables the determination of quasi-steady-state growth kinetics following step function changes in the experimental conditions such as ambient oxygen pressure or temperature. Numerical evaluation of the coupled growth equations for the individual phases is required to deduce the general predictions of the theory. In the limit of two-layer growth by cation interstitial diffusion, the present formulation reproduces the earlier results of Fromhold and Sato

  6. Solid oxide fuel cells with bi-layered electrolyte structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, B.C. V6T 1W5 (Canada)

    2008-01-10

    In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 {mu}m SSZ and 4 {mu}m SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm{sup -2} at 650 C and 0.85 W cm{sup -2} at 700 C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R{sub el}) and electrode polarization resistance (R{sub p,a+c}) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O{sub 2-x} during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R{sub el} value (0.32 {omega} cm{sup 2}) at 650 C, which is almost one order of magnitude higher than the calculated value. (author)

  7. High-efficiency green phosphorescent organic light-emitting diodes with double-emission layer and thick N-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Nobuki, Shunichiro, E-mail: shunichiro.nobuki.nb@hitachi.com [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Wakana, Hironori; Ishihara, Shingo [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Mikami, Akiyoshi [Dept. of Electrical Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichimachi, Ishikawa 921-8501 (Japan)

    2014-03-03

    We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high external quantum efficiency of 59.7% and power efficiency of 243 lm/W at 2.73 V at 0.053 mA/cm{sup 2}. A double emission layer and a thick n-doped electron transport layer were adopted to improve the exciton recombination factor. A high refractive index hemispherical lens was attached to a high refractive index substrate for extracting light trapped inside the substrate and the multiple-layers of OLEDs to air. Additionally, we analyzed an energy loss mechanism to clarify room for the improvement of our OLEDs including the charge balance factor. - Highlights: • We developed high efficiency green phosphorescent organic light-emitting diode (OLED). • Our OLED had external quantum efficiency of 59.7% and power efficiency of 243 lm/W. • A double emission layer and thick n-doped electron transport layer were adopted. • High refractive index media (hemispherical lens and substrate) were also used. • We analyzed an energy loss mechanism to clarify the charge balance factor of our OLED.

  8. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics.

    Science.gov (United States)

    Fidan, S; Muhaffel, F; Riool, M; Cempura, G; de Boer, L; Zaat, S A J; Filemonowicz, A Czyrska-; Cimenoglu, H

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. W-containing oxide layers obtained on aluminum and titanium by PEO as catalysts in thiophene oxidation

    Science.gov (United States)

    Rudnev, V. S.; Lukiyanchuk, I. V.; Vasilyeva, M. S.; Morozova, V. P.; Zelikman, V. M.; Tarkhanova, I. G.

    2017-11-01

    W-containing oxide layers fabricated on titanium and aluminum alloys by Plasma electrolytic oxidation (PEO) have been tested in the reaction of the peroxide oxidation of thiophene. Samples with two types of coatings have been investigated. Coatings I contained tungsten oxide in the matrix and on the surface of amorphous silica-titania or silica-alumina layers, while coatings II comprised crystalline WO3 and/or Al2(WO4)3. Aluminum-supported catalyst containing a smallest amount of transition metals in the form of tungsten oxides and manganese oxides in low oxidation levels showed high activity and stability.

  10. Effects of Zinc Injection on the Cladding Oxide Thickness in the Domestic Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hak Kyu; Kim, Hong Jin; Shin, Jung Cheol [KEPCO Nuclear Fuel Co. Ltd., Daejeon (Korea, Republic of)

    2013-10-15

    The first commercial plant for zinc injection demonstration was Farley-2 in 1994, and the effect of zinc injection was successfully demonstrated. Since then the PWR with zinc injection has been increased, there are about 80 PWR with zinc injection in the world in 2012. Zinc injection at the high duty plant has potential risk of increasing the cladding oxide thickness. Zinc injection doesn't affect the cladding corrosion directly but it may negatively affect crud deposit in the subcooled boiling region of the fuel. So the effect of zinc injection on fuel integrity has been evaluated. For low duty plant it is confirmed that zinc injection doesn't affect the fuel integrity. For high duty plant Callaway in U. S. and Vandellos II in Spain were successfully demonstrated but the experience with zinc injection of high duty plant was still lacking. Thus EPRI recommend the fuel surveillance programs for the high duty plant to apply zinc. The High Duty Core Index (HDCI) of most domestic nuclear power plant is above 150 Btu/ft{sup 2}-gal- .deg. F. Those plants with a HDCI of 150 Btu/ft{sup 2}-gal- .deg. F or greater may be considered as 'high duty'. As aforementioned, the experience with zinc injection of high duty plant was lacking. Thus to apply zinc injection in domestic plant with high duty, prudent approach is needed. In this study the effect of zinc injection in Hanul unit 1 with a HDCI of around 150 Btu/ft{sup 2}-gal- .deg. F was evaluated. And in the next study the effect of zinc injection in the plant of HDCI of around 200 Btu/ft{sup 2}-gal- .deg. F will be evaluated. Zinc injection had not caused any increase in oxide thickness in Hanul unit 1. Most of the oxide thickness measurement data with zinc injection are well within the non-zinc injection database. And the computer code which was developed based on non-zinc injection database well predicts oxide thickness for fuel rod with zinc injection. Thus, it can be concluded that zinc injection doesn

  11. Effects of Zinc Injection on the Cladding Oxide Thickness in the Domestic Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yoon, Hak Kyu; Kim, Hong Jin; Shin, Jung Cheol

    2013-01-01

    The first commercial plant for zinc injection demonstration was Farley-2 in 1994, and the effect of zinc injection was successfully demonstrated. Since then the PWR with zinc injection has been increased, there are about 80 PWR with zinc injection in the world in 2012. Zinc injection at the high duty plant has potential risk of increasing the cladding oxide thickness. Zinc injection doesn't affect the cladding corrosion directly but it may negatively affect crud deposit in the subcooled boiling region of the fuel. So the effect of zinc injection on fuel integrity has been evaluated. For low duty plant it is confirmed that zinc injection doesn't affect the fuel integrity. For high duty plant Callaway in U. S. and Vandellos II in Spain were successfully demonstrated but the experience with zinc injection of high duty plant was still lacking. Thus EPRI recommend the fuel surveillance programs for the high duty plant to apply zinc. The High Duty Core Index (HDCI) of most domestic nuclear power plant is above 150 Btu/ft 2 -gal- .deg. F. Those plants with a HDCI of 150 Btu/ft 2 -gal- .deg. F or greater may be considered as 'high duty'. As aforementioned, the experience with zinc injection of high duty plant was lacking. Thus to apply zinc injection in domestic plant with high duty, prudent approach is needed. In this study the effect of zinc injection in Hanul unit 1 with a HDCI of around 150 Btu/ft 2 -gal- .deg. F was evaluated. And in the next study the effect of zinc injection in the plant of HDCI of around 200 Btu/ft 2 -gal- .deg. F will be evaluated. Zinc injection had not caused any increase in oxide thickness in Hanul unit 1. Most of the oxide thickness measurement data with zinc injection are well within the non-zinc injection database. And the computer code which was developed based on non-zinc injection database well predicts oxide thickness for fuel rod with zinc injection. Thus, it can be concluded that zinc injection doesn't accelerate clad corrosion. Based

  12. Reduced retinal nerve fiber layer (RNFL) thickness in ALS patients: a window to disease progression.

    Science.gov (United States)

    Rohani, Mohammad; Meysamie, Alipasha; Zamani, Babak; Sowlat, Mohammad Mahdi; Akhoundi, Fahimeh Haji

    2018-04-30

    To assess RNFL thickness in ALS patients and compare it to healthy controls, and to detect possible correlations between RNFL thickness in ALS patients and disease severity and duration. Study population consisted of ALS patients and age- and sex-matched controls. We used the revised ALS functional rating scale (ALSFRS-R) as a measure of disease severity. RNFL thickness in the four quadrants were measured with a spectral domain OCT (Topcon 3D, 2015). We evaluated 20 ALS patients (40 eyes) and 25 healthy matched controls. Average RNFL thickness in ALS patients was significantly reduced compared to controls (102.57 ± 13.46 compared to 97.11 ± 10.76, p 0.04). There was a significant positive correlation between the functional abilities of the patients based on the ALSFRS-R and average RNFL thickness and also RNFL thickness in most quadrants. A linear regression analysis proved that this correlation was independent of age. In ALS patients, RNFL thickness in the nasal quadrant of the left eyes was significantly reduced compared to the corresponding quadrant in the right eyes even after adjustment for multiplicity (85.80 ± 23.20 compared to 96.80 ± 16.96, p = 0.008). RNFL thickness in ALS patients is reduced compared to healthy controls. OCT probably could serve as a marker of neurodegeneration and progression of the disease in ALS patients. RNFL thickness is different among the right and left eyes of ALS patients pointing to the fact that asymmetric CNS involvement in ALS is not confined to the motor system.

  13. Impact of thickness reduction of the ZnO:Al window layer on opto-electronical properties of CIGSSe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jan; Knipper, M.; Parisi, J.; Riedel, I. [Thin Film Photovoltaics, University of Oldenburg, D-26111 Oldenburg (Germany); Dalibor, T.; Avellan, A. [AVANCIS GmbH and Co. KG, D-81739 Munich (Germany)

    2011-07-01

    The application of highly doped transparent conducting oxides in chalcopyrite solar cells requires an optimized trade-off between optical transmission and sheet-conductivity. In this respect we studied the thickness variation of ZnO:Al films used as window layer in Cu(In,Ga)(Se,S){sub 2} (CIGSSe) thin film solar cells. Thin ZnO:Al layers (200nm) on glass exhibit significantly enhanced transmission at wavelengths {lambda}<400nm while a considerable sub-bandgap absorption at {lambda}>800nm appears in thicker films which is attributed to free charge carrier absorption. The IV-characteristics of CIGSSe solar cells with d{sub ZnO:Al}=200nm exhibit a strong enhancement of the short-circuit current density J{sub SC} ({delta}J{sub SC}=3mA) as compared to samples with conventional ZnO:Al-film thickness. However, the reduced parallel (R{sub p}) and increased series (R{sub s}) resistance of samples with thin ZnO:Al-layer cause reduction of the fill factor, which has direct consequences for the series connection of cells in a CIGSSe-module. XRD-diffractograms suggest that the high R{sub s} in thin ZnO:Al is not only related to the thickness but also due to reduced (002)-texture that appears to be beneficial for lateral conductivity. By thermographic investigations we are able to directly locate the cell-regimes responsible for the decreased R{sub p}.

  14. Atomic layer deposition of calcium oxide and calcium hafnium oxide films using calcium cyclopentadienyl precursor

    International Nuclear Information System (INIS)

    Kukli, Kaupo; Ritala, Mikko; Sajavaara, Timo; Haenninen, Timo; Leskelae, Markku

    2006-01-01

    Calcium oxide and calcium hafnium oxide thin films were grown by atomic layer deposition on borosilicate glass and silicon substrates in the temperature range of 205-300 o C. The calcium oxide films were grown from novel calcium cyclopentadienyl precursor and water. Calcium oxide films possessed refractive index 1.75-1.80. Calcium oxide films grown without Al 2 O 3 capping layer occurred hygroscopic and converted to Ca(OH) 2 after exposure to air. As-deposited CaO films were (200)-oriented. CaO covered with Al 2 O 3 capping layers contained relatively low amounts of hydrogen and re-oriented into (111) direction upon annealing at 900 o C. In order to examine the application of CaO in high-permittivity dielectric layers, mixtures of Ca and Hf oxides were grown by alternate CaO and HfO 2 growth cycles at 230 and 300 o C. HfCl 4 was used as a hafnium precursor. When grown at 230 o C, the films were amorphous with equal amounts of Ca and Hf constituents (15 at.%). These films crystallized upon annealing at 750 o C, showing X-ray diffraction peaks characteristic of hafnium-rich phases such as Ca 2 Hf 7 O 16 or Ca 6 Hf 19 O 44 . At 300 o C, the relative Ca content remained below 8 at.%. The crystallized phase well matched with rhombohedral Ca 2 Hf 7 O 16 . The dielectric films grown on Si(100) substrates possessed effective permittivity values in the range of 12.8-14.2

  15. Modulation of spin-orbit torque efficiency by thickness control of heavy metal layers in Co/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, P.; Krishnia, S.; Li, S.H.; Lew, W.S., E-mail: wensiang@ntu.edu.sg

    2017-03-15

    We investigate and quantify spin-orbit torque (SOT) strength by current induced effective in-plane magnetic fields and spin Hall angle (SHA) using AC harmonic Hall voltage measurements techniques on Ta/Pt/Co/Pt/Co/Ta thin film structures. The proposed Co/Pt thin film double stack gives property enhancement on thermal stability and perpendicular magnetization anisotropy strength over the single stack Pt/Co/Ta. In the proposed Co/Pt double stack we observed that increasing the Ta capping thickness to three times enhances the SHA in similar order, consistent with larger spin injection efficiency. Doubling the Pt spacer layer thickness reduces the SHA by nearly 1.4 times, due to partial cancellation of SOT by bottom layer Pt, negating the increase from the top Co/Pt interface. The in-plane current threshold for magnetization switching is lower with the increase of the SHA.

  16. Trends in (LaMnO3)n/(SrTiO3)m superlattices with varying layer thicknesses

    KAUST Repository

    Jilili, J.

    2015-09-01

    We investigate the thickness dependence of the structural, electronic, and magnetic properties of (LaMnO3)n/(SrTiO3)m (n, m = 2, 4, 6, 8) superlattices using density functional theory. The electronic structure turns out to be highly sensitive to the onsite Coulomb interaction. In contrast to bulk SrTiO3, strongly distorted O octahedra are observed in the SrTiO3 layers with a systematic off centering of the Ti atoms. The systems favour ferromagnetic spin ordering rather than the antiferromagnetic spin ordering of bulk LaMnO3 and all show half-metallicity, while a systematic reduction of the minority spin band gaps as a function of the LaMnO3 and SrTiO3 layer thicknesses originates from modifications of the Ti dxy states.

  17. Static Buckling Model Tests and Elasto-plastic Finite Element Analysis of a Pile in Layers with Various Thicknesses

    Science.gov (United States)

    Okajima, Kenji; Imai, Junichi; Tanaka, Tadatsugu; Iida, Toshiaki

    Damage to piles in the liquefied ground is frequently reported. Buckling by the excess vertical load could be one of the causes of the pile damage, as well as the lateral flow of the ground and the lateral load at the pile head. The buckling mechanism is described as a complicated interaction between the pile deformation by the vertical load and the earth pressure change cased by the pile deformation. In this study, series of static buckling model tests of a pile were carried out in dried sand ground with various thickness of the layer. Finite element analysis was applied to the test results to verify the effectiveness of the elasto-plastic finite element analysis combining the implicit-explicit mixed type dynamic relaxation method with the return mapping method to the pile buckling problems. The test results and the analysis indicated the possibility that the buckling load of a pile decreases greatly where the thickness of the layer increases.

  18. High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream

    Science.gov (United States)

    Todd, Robert E.

    2017-06-01

    Autonomous underwater gliders are conducting high-resolution surveys within the Gulf Stream along the U.S. East Coast. Glider surveys reveal two mechanisms by which energy is extracted from the Gulf Stream as it flows over the Blake Plateau, a portion of the outer continental shelf between Florida and North Carolina where bottom depths are less than 1000 m. Internal waves with vertical velocities exceeding 0.1 m s-1 and frequencies just below the local buoyancy frequency are routinely found over the Blake Plateau, particularly near the Charleston Bump, a prominent topographic feature. These waves are likely internal lee waves generated by the subinertial Gulf Stream flow over the irregular bathymetry of the outer continental shelf. Bottom mixed layers with O(100) m thickness are also frequently encountered; these thick bottom mixed layers likely form in the lee of topography due to enhanced turbulence generated by O(1) m s-1 near-bottom flows.

  19. Evaluation of retinal nerve fiber layer thickness in vernal keratoconjunctivitis patients under long-term topical corticosteroid therapy.

    Science.gov (United States)

    Cingu, Abdullah Kursat; Cinar, Yasin; Turkcu, Fatih Mehmet; Sahinoglu-Keskek, Nedime; Sahin, Alparslan; Sahin, Muhammed; Yuksel, Harun; Caca, Ihsan

    2014-09-01

    The aim of this study was to evaluate the retinal nerve fiber layer (RNFL) thickness in vernal keratoconjunctivitis (VKC) patients who were under long-term topical corticosteroid therapy. Thirty-six eyes of 36 VKC patients with clear cornea and normal videokeratography and 40 eyes of 40 age- and gender-matched normal children were included in the study. Clinical and demographic characteristics of the patients were noted and detailed ophthalmological examination was performed. Visual acuity (VA), spherical equivalent (SE), axial length (AL) and RNFL thickness measurements were compared between the groups. To correct ocular magnification effect on RNFL, we used Littmann's formula. All VKC patients had history of topical corticosteroid use and the mean duration of the topical corticosteroid use was 23.8 ± 9.09 months. There was no significant difference between the groups in terms of intraocular pressure (IOP). VKC group had significantly worse VA, greater SE and AL and thinner mean global, superior and inferior RNFL thickness. There were significant negative correlations between the duration of topical corticosteroid use and the mean global, superior and temporal RNFL thickness in VKC group. After correction of magnification effect, VKC group still had thinner mean global, superior and inferior RNFL thickness, and significant difference between the groups in inferior RNFL thickness did not disappear. Significant RNFL thickness difference between the groups suggests a possible effect of long-term corticosteroid use in VKC patients. Because visual field (VF) analysis in pediatric patients is difficult to perform and IOP may be illusive, RNFL thickness measurements in addition to routine examinations in VKC patients may help clinicians in their practice.

  20. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Quesnel, David J. [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  1. Effect of thermal processing on silver thin films of varying thickness deposited on zinc oxide and indium tin oxide

    International Nuclear Information System (INIS)

    Sivaramakrishnan, K.; Ngo, A. T.; Alford, T. L.; Iyer, S.

    2009-01-01

    Silver films of varying thicknesses (25, 45, and 60 nm) were deposited on indium tin oxide (ITO) on silicon and zinc oxide (ZnO) on silicon. The films were annealed in vacuum for 1 h at different temperatures (300-650 deg. C). Four-point-probe measurements were used to determine the resistivity of the films. All films showed an abrupt change in resistivity beyond an onset temperature that varied with thickness. Rutherford backscattering spectrometry measurements revealed agglomeration of the Ag films upon annealing as being responsible for the resistivity change. X-ray pole figure analysis determined that the annealed films took on a preferential texturing; however, the degree of texturing was significantly higher in Ag/ZnO/Si than in Ag/ITO/Si samples. This observation was accounted for by interface energy minimization. Atomic force microscopy (AFM) measurements revealed an increasing surface roughness of the annealed films with temperature. The resistivity behavior was explained by the counterbalancing effects of increasing crystallinity and surface roughness. Average surface roughness obtained from the AFM measurements were also used to model the agglomeration of Ag based on Ostwald ripening theory

  2. Changes in retinal nerve fiber layer thickness after spinal surgery in the prone position: a prospective study

    Directory of Open Access Journals (Sweden)

    Baran Gencer

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: Changes in ocular perfusion play an important role in the pathogenesis of ischemic optic neuropathy. Ocular perfusion pressure is equal to mean arterial pressure minus intraocular pressure. The aim of this study was to evaluate the changes in the intraocular pressure and the retinal nerve fiber layer thickness in patients undergoing spinal surgery in the prone position. METHODS: This prospective study included 30 patients undergoing spinal surgery. Retinal nerve fiber layer thickness were measured one day before and after the surgery by using optical coherence tomography. Intraocular pressure was measured by tonopen six times at different position and time-duration: supine position (baseline; 10 min after intubation (Supine 1; 10 (Prone 1, 60 (Prone 2, 120 (Prone 3 min after prone position; and just after postoperative supine position (Supine 2. RESULTS: Our study involved 10 male and 20 female patients with the median age of 57 years. When postoperative retinal nerve fiber layer thickness measurements were compared with preoperative values, a statistically significant thinning was observed in inferior and nasal quadrants (p = 0.009 and p = 0.003, respectively. We observed a statistically significant intraocular pressure decrease in Supine 1 and an increase in both Prone 2 and Prone 3 when compared to the baseline. Mean arterial pressure and ocular perfusion pressure were found to be significantly lower in Prone 1, Prone 2 and Prone 3, when compared with the baseline. CONCLUSIONS: Our study has shown increase in intraocular pressure during spinal surgery in prone position. A statistically significant retinal nerve fiber layer thickness thinning was seen in inferior and nasal quadrants one day after the spinal surgery.

  3. Simulation of Natural Convection in the Oxide Layer of Three-Layer Corium Pool in an IVR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su-Hyeon; Park, Hae-Kyun; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    This paper describes the three-layer phenomena and preliminary plan to simulate the oxide layer experimentally. We will perform the mass transfer experiments using a copper sulfate-sulfuric acid (CuSO{sub 4}-H{sub 2}SO{sub 4}) electroplating system based on the heat and mass transfer analogy concept. By performing the mass transfer experiments, we can achieve the high buoyancy condition with small facilities. The test facility is semicircular whose bottom is chopped, simulating the oxide pool above the heavy metal layer in a three-layer configuration. We will measure the heat flux at the top plate, side wall and bottom plate, and compare these results with those for a two-layer pool. In a three-layer configuration, the upper light metal layer becomes thinner, increasing the focusing effect. Thus, it is important to evaluate the heat flux from the oxide pool to the upper metallic layer. However, there is few heat transfer studies for a three-layer configuration. This paper is to discuss and to make a plan for the heat transfer experiments of oxide pool in a three- layer system. We will perform the mass transfer experiments based on the heat and mass transfer analogy concept. The test results will be analyzed phenomenologically and compared with two-layer results.

  4. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes

    Science.gov (United States)

    Sheng, Jiazhen; Han, Ki-Lim; Hong, TaeHyun; Choi, Wan-Ho; Park, Jin-Seong

    2018-01-01

    The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors (TFTs), fabricating with atomic layer deposition (ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types (directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields. Project supported by the National Research Foundation of Korea (NRF) (No. NRF-2017R1D1A1B03034035), the Ministry of Trade, Industry & Energy (No. #10051403), and the Korea Semiconductor Research Consortium.

  5. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  6. Effect of film thickness, type of buffer layer, and substrate temperature on the morphology of dicyanovinyl-substituted sexithiophene films

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Alexandr A., E-mail: alexander.levin@iapp.de [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Levichkova, Marieta [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Heliatek GmbH, 01187 Dresden (Germany); Hildebrandt, Dirk; Klisch, Marina; Weiss, Andre [Heliatek GmbH, 01187 Dresden (Germany); Wynands, David; Elschner, Chris [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Pfeiffer, Martin [Heliatek GmbH, 01187 Dresden (Germany); Leo, Karl; Riede, Moritz [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2012-01-31

    The influence of film thickness, type of buffer underlayer, and deposition substrate temperature on the crystal structure, microstructure, and morphology of the films of dicyanovinyl-substituted sexithiophene with four butyl-chains (DCV6T-Bu{sub 4}) is investigated by means of X-ray diffraction (XRD) and X-ray reflectivity methods. A neat Si wafer or a Si wafer covered by a 15 nm buffer underlayer of fullerene C{sub 60} or 9,9-Bis[4-(N,N-bis-biphenyl-4-yl-amino)phenyl]-9H-fluorene (BPAPF) is used as a substrate. The crystalline nature and ordered molecular arrangement of the films are recorded down to 6 nm film thickness. By using substrates heated up to 90 Degree-Sign C during the film deposition, the size of the DCV6T-Bu{sub 4} crystallites in direction perpendicular to the film surface increases up to value of the film thickness. With increasing deposition substrate temperature or film thickness, the DCV6T-Bu{sub 4} film relaxes, resulting in reducing the interplane distances closer to the bulk values. For the films of the same thickness deposited at the same substrate temperature, the DCV6T-Bu{sub 4} film relaxes for growth on Si to BPAPF to C{sub 60}. Thicker films grown at heated substrates are characterized by smaller density, higher roughness and crystallinity and better molecular ordering. A thin (up to about 6 nm-thick) intermediate layer with linear density-gradient is formed at the C{sub 60}/DCV6T-Bu{sub 4} interface for the films with buffer C{sub 60} layer. The XRD pattern of the DCV6T-Bu{sub 4} powder is indexed using triclinic unit cell parameters.

  7. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of t