WorldWideScience

Sample records for thick lithium-compensated silicon

  1. Large diameter lithium compensated silicon detectors for the NASA Advanced Composition Explorer (ACE) mission

    International Nuclear Information System (INIS)

    Allbritton, G.L.; Andersen, H.; Barnes, A.

    1996-01-01

    Fabrication of the 100 mm diameter, 3 mm thick lithium-compensated silicon, Si(Li), detectors for the Cosmic Ray Isotope Spectrometer (CRIS) instrument on board the ACE satellite required development of new float-zone silicon growing techniques, new Si(Li) fabrication procedures, and new particle beam testing sequences. These developments are discussed and results are presented that illustrate the advances made in realizing these CRIS Si(Li) detectors, which, when operational in the CRIS detector telescopes, will usher in a new generation of cosmic-ray isotope spectrometers

  2. Effect of Processing Parameters on Thickness of Columnar Structured Silicon Wafers Directly Grown from Silicon Melts

    Directory of Open Access Journals (Sweden)

    Jin-Seok Lee

    2012-01-01

    Full Text Available In order to obtain optimum growth conditions for desired thickness and more effective silicon feedstock usage, effects of processing parameters such as preheated substrate temperatures, time intervals, moving velocity of substrates, and Ar gas blowing rates on silicon ribbon thickness were investigated in the horizontal growth process. Most of the parameters strongly affected in the control of ribbon thickness with columnar grain structure depended on the solidification rate. The thickness of the silicon ribbon decreased with an increasing substrate temperature, decreasing time interval, and increasing moving velocity of the substrate. However, the blowing of Ar gas onto a liquid layer existing on the surface of solidified ribbon contributed to achieving smooth surface roughness but did not closely affect the change of ribbon thickness in the case of a blowing rate of ≥0.65 Nm3/h because the thickness of the solidified layer was already determined by the exit height of the reservoir.

  3. Methods To Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes.

    Science.gov (United States)

    Loosli, Viviane; Germershaus, Oliver; Steinberg, Henrik; Dreher, Sascha; Grauschopf, Ulla; Funke, Stefanie

    2018-01-01

    The silicone lubricant layer in prefilled syringes has been investigated with regards to siliconization process performance, prefilled syringe functionality, and drug product attributes, such as subvisible particle levels, in several studies in the past. However, adequate methods to characterize the silicone oil layer thickness and distribution are limited, and systematic evaluation is missing. In this study, white light interferometry was evaluated to close this gap in method understanding. White light interferometry demonstrated a good accuracy of 93-99% for MgF 2 coated, curved standards covering a thickness range of 115-473 nm. Thickness measurements for sprayed-on siliconized prefilled syringes with different representative silicone oil distribution patterns (homogeneous, pronounced siliconization at flange or needle side, respectively) showed high instrument (0.5%) and analyst precision (4.1%). Different white light interferometry instrument parameters (autofocus, protective shield, syringe barrel dimensions input, type of non-siliconized syringe used as base reference) had no significant impact on the measured average layer thickness. The obtained values from white light interferometry applying a fully developed method (12 radial lines, 50 mm measurement distance, 50 measurements points) were in agreement with orthogonal results from combined white and laser interferometry and 3D-laser scanning microscopy. The investigated syringe batches (lot A and B) exhibited comparable longitudinal silicone oil layer thicknesses ranging from 170-190 nm to 90-100 nm from flange to tip and homogeneously distributed silicone layers over the syringe barrel circumference (110- 135 nm). Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. A silicone oil layer thickness of 100-200 nm was thus sufficient for adequate functionality in this particular study. Filling the syringe with a surrogate solution including short

  4. Orientation acoustic radiation of electrons in silicon thick crystal

    International Nuclear Information System (INIS)

    Alejnik, A.N.; Afanas'ev, S.G.; Vorob'ev, S.A.; Zabaev, V.N.; Il'in, S.I.; Kalinin, B.N.; Potylitsyn, A.P.

    1989-01-01

    Results of measuring orientation acoustic radiation of 900 and 500 MeV electrons during their movement along crystallographic axis in thick silicon crystal (h=20 mm thickness) are presented for the first time. Analysis of obtained results shows that dynamic mechanism describes rather completely the main regularities of orientation dependence of the amplitude of acoustic signal occuring under electron motion near crystallographic axis of the crystal. Phenomena of orientation acoustic radiation can be also used for investigation of solid bodies. Orientation both of thin and rather thick monocrystals can be conducted on the basis of dynamic mechanism of elastic wave excitation in crystals

  5. Coherent spin transport through a 350 micron thick silicon wafer.

    Science.gov (United States)

    Huang, Biqin; Monsma, Douwe J; Appelbaum, Ian

    2007-10-26

    We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500 ns at 60 K.

  6. Resistivity and thickness effects in dendritic web silicon solar cells

    Science.gov (United States)

    Meier, D. L.; Hwang, J. M.; Greggi, J.; Campbell, R. B.

    1987-01-01

    The decrease of minority carrier lifetime as resistivity decreases in dendritic-web silicon solar cells is addressed. This variation is shown to be consistent with the presence of defect levels in the bandgap which arise from extended defects in the web material. The extended defects are oxide precipitates (SiOx) and the dislocation cores they decorate. Sensitivity to this background distribution of defect levels increases with doping because the Fermi level moves closer to the majority carrier band edge. For high-resistivity dendritic-web silicon, which has a low concentration of these extended defects, cell efficiencies as high as 16.6 percent (4 sq cm, 40 ohm-cm boron-doped base, AM1.5 global, 100 mW/sq cm, 25 C JPL LAPSS1 measurement) and a corresponding electron lifetime of 38 microsec have been obtained. Thickness effects occur in bifacial cell designs and in designs which use light trapping. In some cases, the dislocation/precipitate defect can be passivated through the full thickness of web cells by hydrogen ion implantation.

  7. Film thickness determining method of the silicon isotope superlattices by SIMS

    International Nuclear Information System (INIS)

    Takano, Akio; Shimizu, Yasuo; Itoh, Kohei M.

    2008-01-01

    It is becoming important to evaluate silicon self-diffusion with progress of a silicon semiconductor industry. In order to evaluate the self-diffusion of silicon, silicon isotope superlattices (SLs) is the only marker. For this reason, it is important to correctly evaluate a film thickness and a depth distribution of isotope SLs by secondary ion mass spectrometry (SIMS). As for film thickness, it is difficult to estimate the thicknesses correctly if the cycles of SLs are short. In this work, first, we report the determination of the film thickness for short-period SLs using mixing roughness-information (MRI) analysis to SIMS profile. Next, the uncertainty of the conventional method to determine the film thicknesses of SLs is determined. It was found that the conventional methods cannot correctly determine film thickness of short-period-isotope SLs where film thickness differs for every layer

  8. Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films

    Energy Technology Data Exchange (ETDEWEB)

    Cai Qingyuan; Zheng Yuxiang; Mao Penghui; Zhang Rongjun; Zhang Dongxu; Liu Minghui; Chen Liangyao, E-mail: yxzheng@fudan.edu.c [Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2010-11-10

    A series of SiO{sub 2} films with thickness range 1-600 nm have been deposited on crystal silicon (c-Si) substrates by electron beam evaporation (EBE) method. Variable-angle spectroscopic ellipsometry (VASE) in combination with a two-film model (ambient-oxide-interlayer substrate) was used to determine the optical constants and thicknesses of the investigated films. The refractive indices of SiO{sub 2} films thicker than 60 nm are close to those of bulk SiO{sub 2}. For the thin films deposited at the rate of {approx}1.0 nm s{sup -1}, the refractive indices increase with decreasing thickness from {approx}60 to {approx}10 nm and then drop sharply with decreasing thickness below {approx}10 nm. However, for thin films deposited at the rates of {approx}0.4 and {approx}0.2 nm s{sup -1}, the refractive indices monotonically increase with decreasing thickness below 60 nm. The optical constants of the ultrathin film depend on the morphology of the film, the stress exerted on the film, as well as the stoichiometry of the oxide film.

  9. Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films

    International Nuclear Information System (INIS)

    Cai Qingyuan; Zheng Yuxiang; Mao Penghui; Zhang Rongjun; Zhang Dongxu; Liu Minghui; Chen Liangyao

    2010-01-01

    A series of SiO 2 films with thickness range 1-600 nm have been deposited on crystal silicon (c-Si) substrates by electron beam evaporation (EBE) method. Variable-angle spectroscopic ellipsometry (VASE) in combination with a two-film model (ambient-oxide-interlayer substrate) was used to determine the optical constants and thicknesses of the investigated films. The refractive indices of SiO 2 films thicker than 60 nm are close to those of bulk SiO 2 . For the thin films deposited at the rate of ∼1.0 nm s -1 , the refractive indices increase with decreasing thickness from ∼60 to ∼10 nm and then drop sharply with decreasing thickness below ∼10 nm. However, for thin films deposited at the rates of ∼0.4 and ∼0.2 nm s -1 , the refractive indices monotonically increase with decreasing thickness below 60 nm. The optical constants of the ultrathin film depend on the morphology of the film, the stress exerted on the film, as well as the stoichiometry of the oxide film.

  10. Porosity and thickness effect of porous silicon layer on photoluminescence spectra

    Science.gov (United States)

    Husairi, F. S.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.

    2018-05-01

    The porous silicon nanostructures was prepared by electrochemical etching of p-type silicon wafer. Porous silicon prepared by using different current density and fix etching time with assistance of halogen lamp. The physical structure of porous silicon measured by the parameters used which know as experimental factor. In this work, we select one of those factors to correlate which optical properties of porous silicon. We investigated the surface morphology by using Surface Profiler (SP) and photoluminescence using Photoluminescence (PL) spectrometer. Different physical characteristics of porous silicon produced when current density varied. Surface profiler used to measure the thickness of porous and the porosity calculated using mass different of silicon. Photoluminescence characteristics of porous silicon depend on their morphology because the size and distribution of pore its self will effect to their exciton energy level. At J=30 mA/cm2 the shorter wavelength produced and it followed the trend of porosity with current density applied.

  11. On selecting a sensitive region thickness of a silicon semiconductor detector for operation under counting conditions

    International Nuclear Information System (INIS)

    Pronkin, N.S.; Khakhalin, V.V.

    1972-01-01

    The paper discusses the selection of a thickness of a sensitive area of a silicon semiconductor detector, used in the count regime based on the signal to noise ratio and β-radiation registration efficiency. (author)

  12. Ellipsometry measurements of thickness of oxide and water layers on spherical and flat silicon surfaces

    International Nuclear Information System (INIS)

    Kenny, M.J.; Netterfield, R.; Wielunski, L.S.

    1998-01-01

    Full text: Ellipsometry has been used to measure the thickness of oxide layers on single crystal silicon surfaces, both flat and spherical and also to measure the extent of adsorption of moisture on the surface as a function of partial water vapour pressure. The measurements form part of an international collaborative project to make a precise determination of the Avogadro constant (ΔN A /N A -8 ) which will then be used to obtain an absolute definition of the kilogram, rather than one in terms of an artefact. Typically the native oxide layer on a cleaned silicon wafer is about 2 nm thick. On a polished sphere this oxide layer is typically 8 to 10 nm thick, the increased thickness being attributed to parameters related to the polishing process. Ellipsometry measurements on an 89 mm diameter polished silicon sphere at both VUW and CSIRO indicated a SiO 2 layer at 7 to 10 nm thick. It was observed that this thickness varied regularly. The crystal orientation of the sphere was determined using electron patterns generated from an electron microscope and the oxide layer was then measured through 180 arcs of great circles along (110) and (100) planes. It was observed that the thickness varied systematically with orientation. The minimum thickness was 7.4 nm at the axis (softest direction in silicon) and the greatest thickness was 9.5 nm at the axis (hardest direction in silicon). This is similar to an orientation dependent cubic pattern which has been observed to be superimposed on polished silicon spheres. At VUW, the sphere was placed in an evacuated bell jar and the ellipsometry signal was observed as the water vapour pressure was progressively increased up to saturation. The amount of water vapour adsorbed at saturation was one or two monolayers, indicating that the sphere does not wet

  13. Effect of thickness on silicon solar cell efficiency

    Science.gov (United States)

    Sah, C.-T.; Yamakawa, K. A.; Lutwack, R.

    1982-01-01

    A computer-aided-design study on the dependence of the efficiency peak of a back-surface field solar cell on the concentrations of the recombination and dopant impurities is presented. The illuminated current-voltage characteristics of more than 100 cell designs are obtained using the transmission line circuit model to numerically solve the Shockley equations. Using an AM 1 efficiency of 17% as a target value, it is shown that the efficiency versus thickness dependence has a broad maximum which varies by less than 1% over more than a three-to-one range of cell thicknesses from 30 to 100 microns. An optically reflecting back surface will give only a slight improvement of AM 1 efficiency, about 0.7%, in this thickness range. Attention is given to the dependence of the efficiency on patchiness across the back-surface field low-high junction in thin cells.

  14. Piezoresistive silicon nanowire resonators as embedded building blocks in thick SOI

    Science.gov (United States)

    Nasr Esfahani, Mohammad; Kilinc, Yasin; Çagatay Karakan, M.; Orhan, Ezgi; Hanay, M. Selim; Leblebici, Yusuf; Erdem Alaca, B.

    2018-04-01

    The use of silicon nanowire resonators in nanoelectromechanical systems for new-generation sensing and communication devices faces integration challenges with higher-order structures. Monolithic and deterministic integration of such nanowires with the surrounding microscale architecture within the same thick crystal is a critical aspect for the improvement of throughput, reliability and device functionality. A monolithic and IC-compatible technology based on a tuned combination of etching and protection processes was recently introduced yielding silicon nanowires within a 10 μ m-thick device layer. Motivated by its success, the implications of the technology regarding the electromechanical resonance are studied within a particular setting, where the resonator is co-fabricated with all terminals and tuning electrodes. Frequency response is measured via piezoresistive readout with frequency down-mixing. Measurements indicate mechanical resonance with frequencies as high as 100 MHz exhibiting a Lorentzian behavior with proper transition to nonlinearity, while Allan deviation on the order of 3-8 ppm is achieved. Enabling the fabrication of silicon nanowires in thick silicon crystals using conventional semiconductor manufacturing, the present study thus demonstrates an alternative pathway to bottom-up and thin silicon-on-insulator approaches for silicon nanowire resonators.

  15. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, David [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy NY 12180 (United States); Department of Physics and Nuclear Engineering, United States Military Academy, West Point NY 10996 (United States); Mathews, Jay [US Army ARDEC – Benét Laboratories, Watervliet NY 12189 (United States); Department of Physics, University of Dayton, Dayton, OH 45469 (United States); Sullivan, Joseph T.; Buonassisi, Tonio [School of Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 (United States); Akey, Austin [School of Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 (United States); Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge MA 02138 (United States); Aziz, Michael J. [Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge MA 02138 (United States); Persans, Peter [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy NY 12180 (United States); Warrender, Jeffrey M., E-mail: jwarrend@post.harvard.edu [US Army ARDEC – Benét Laboratories, Watervliet NY 12189 (United States)

    2016-05-15

    We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  16. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    Directory of Open Access Journals (Sweden)

    David Hutchinson

    2016-05-01

    Full Text Available We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  17. Detection of charged particles in thick hydrogenated amorphous silicon layers

    International Nuclear Information System (INIS)

    Fujieda, I.; Cho, G.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Ward, W.; Street, R.A.

    1988-03-01

    We show our results in detecting particles of various linear energy transfer, including minimum ionizing electrons from a Sr-90 source with 5 to 12 micron thick n-i-p and p-i-n diodes. We measured W ( average energy to produce one electron-hole pair) using 17keV filtered xray pulses with a result W = 6.0 /+-/ 0.2eV. This is consistent with the expected value for a semiconductor with band gap of 1.7 to 1.9eV. With heavily ionizing particles such as 6 MeV alphas and 1 to 2 MeV protons, there was some loss of signal due to recombination in the particle track. The minimum ionizing electrons showed no sign of recombination. Applications to pixel and strip detectors for physics experiments and medical imaging will be discussed. 7 refs., 8 figs

  18. On determining dead layer and detector thicknesses for a position-sensitive silicon detector

    Science.gov (United States)

    Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.

    2018-04-01

    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.

  19. Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer.

    Science.gov (United States)

    Li, Chenlei; Dai, Daoxin

    2017-11-01

    A polarization beam splitter (PBS) is proposed and realized for silicon photonic integrated circuits with a 340-nm-thick silicon core layer by introducing an asymmetric directional coupler (ADC), which consists of a silicon-on-insulator (SOI) nanowire and a subwavelength grating (SWG) waveguide. The SWG is introduced to provide an optical waveguide which has much higher birefringence than a regular 340-nm-thick SOI nanowire, so that it is possible to make the phase-matching condition satisfied for TE polarization only in the present design when the waveguide dimensions are optimized. Meanwhile, there is a significant phase mismatching for TM polarization automatically. In this way, the present ADC enables strong polarization selectivity to realize a PBS that separates TE and TM polarizations to the cross and through ports, respectively. The realized PBS has a length of ∼2  μm for the coupling region. For the fabricated PBS, the extinction ratio (ER) is 15-30 dB and the excess loss is 0.2-2.6 dB for TE polarization while the ER is 20-27 dB and the excess loss is 0.3-2.8 dB for TM polarization when operating in the wavelength range of 1520-1580 nm.

  20. Growth and characterization of thick cBN coatings on silicon and tool substrates

    International Nuclear Information System (INIS)

    Bewilogua, K.; Keunecke, M.; Weigel, K.; Wiemann, E.

    2004-01-01

    Recently some research groups have achieved progress in the deposition of cubic boron nitride (cBN) coatings with a thickness of 2 μm and more, which is necessary for cutting tool applications. In our laboratory, thick cBN coatings were sputter deposited on silicon substrates using a boron carbide target. Following a boron carbide interlayer (few 100 nm thick), a gradient layer with continuously increasing nitrogen content was prepared. After the cBN nucleation, the process parameters were modified for the cBN film growth to a thickness of more than 2 μm. However, the transfer of this technology to technically relevant substrates, like cemented carbide cutting inserts, required some further process modifications. At first, a titanium interlayer had to be deposited followed by a more than 1-μm-thick boron carbide layer. The next steps were identical to those on silicon substrates. The total coating thickness was in the range of 3 μm with a 0.5- to nearly 1-μm-thick cBN top layer. In spite of the enormous intrinsic stress, both the coatings on silicon and on cemented carbide exhibited a good adhesion and a prolonged stability in humid air. Oxidation experiments revealed a stability of the coating system on cemented carbide up to 700 deg. C and higher. Coated cutting inserts were tested in turning operations with different metallic workpiece materials. The test results will be compared to those of well-established cutting materials, like polycrystalline cubic boron nitride (PCBN) and oxide ceramics, considering the wear of coated tools

  1. Determination of thicknesses and temperatures of crystalline silicon wafers from optical measurements in the far infrared region

    Science.gov (United States)

    Franta, Daniel; Franta, Pavel; Vohánka, Jiří; Čermák, Martin; Ohlídal, Ivan

    2018-05-01

    Optical measurements of transmittance in the far infrared region performed on crystalline silicon wafers exhibit partially coherent interference effects appropriate for the determination of thicknesses of the wafers. The knowledge of accurate spectral and temperature dependencies of the optical constants of crystalline silicon in this spectral region is crucial for the determination of its thickness and vice versa. The recently published temperature dependent dispersion model of crystalline silicon is suitable for this purpose. Because the linear thermal expansion of crystalline silicon is known, the temperatures of the wafers can be determined with high precision from the evolution of the interference patterns at elevated temperatures.

  2. A 240-channel thick film multi-chip module for readout of silicon drift detectors

    International Nuclear Information System (INIS)

    Lynn, D.; Bellwied, R.; Beuttenmueller, R.; Caines, H.; Chen, W.; DiMassimo, D.; Dyke, H.; Elliott, D.; Grau, M.; Hoffmann, G.W.; Humanic, T.; Jensen, P.; Kleinfelder, S.A.; Kotov, I.; Kraner, H.W.; Kuczewski, P.; Leonhardt, B.; Li, Z.; Liaw, C.J.; LoCurto, G.; Middelkamp, P.; Minor, R.; Mazeh, N.; Nehmeh, S.; O'Conner, P.; Ott, G.; Pandey, S.U.; Pruneau, C.; Pinelli, D.; Radeka, V.; Rescia, S.; Rykov, V.; Schambach, J.; Sedlmeir, J.; Sheen, J.; Soja, B.; Stephani, D.; Sugarbaker, E.; Takahashi, J.; Wilson, K.

    2000-01-01

    We have developed a thick film multi-chip module for readout of silicon drift (or low capacitance ∼200 fF) detectors. Main elements of the module include a custom 16-channel NPN-BJT preamplifier-shaper (PASA) and a custom 16-channel CMOS Switched Capacitor Array (SCA). The primary design criteria of the module were the minimizations of the power (12 mW/channel), noise (ENC=490 e - rms), size (20.5 mmx63 mm), and radiation length (1.4%). We will discuss various aspects of the PASA design, with emphasis on the preamplifier feedback network. The SCA is a modification of an integrated circuit that has been previously described [1]; its design features specific to its application in the SVT (Silicon Vertex Tracker in the STAR experiment at RHIC) will be discussed. The 240-channel multi-chip module is a circuit with five metal layers fabricated in thick film technology on a beryllia substrate and contains 35 custom and commercial integrated circuits. It has been recently integrated with silicon drift detectors in both a prototype system assembly for the SVT and a silicon drift array for the E896 experiment at the Alternating Gradient Synchrotron at the Brookhaven National Laboratory. We will discuss features of the module's design and fabrication, report the test results, and emphasize its performance both on the bench and under experimental conditions

  3. Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell

    Science.gov (United States)

    Zaki, A. A.; El-Amin, A. A.

    2017-12-01

    In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.

  4. The influence of silicon wafer thickness on characteristics of multijunction solar cells with vertical p—n-junctions

    Directory of Open Access Journals (Sweden)

    Gnilenko A. B.

    2012-02-01

    Full Text Available A multijunction silicon solar cell with vertical p–n junctions consisted of four serial n+–p–p+-structures was simulated using Silvaco TCAD software package. The dependence of solar cell characteristics on the silicon wafer thickness is investigated for a wide range of values.

  5. Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests

    International Nuclear Information System (INIS)

    Merle, B.; Goeken, M.

    2011-01-01

    A bulge test setup was used to determine the fracture toughness of amorphous low-pressure chemical vapor deposited (LPCVD) silicon nitride films with various thicknesses in the range 40-108 nm. A crack-like slit was milled in the center of each free-standing film with a focused ion beam, and the membrane was deformed in the bulge test until failure occurred. The fracture toughness K IC was calculated from the pre-crack length and the stress at failure. It is shown that the membrane is in a transition state between pure plane-stress and plane-strain which, however, had a negligible influence on the measurement of the fracture toughness, because of the high brittleness of silicon nitride and its low Young's modulus over yield strength ratio. The fracture toughness K IC was found to be constant at 6.3 ± 0.4 MPa m 1/2 over the whole thickness range studied, which compares well with bulk values. This means that the fracture toughness, like the Young's modulus, is a size-independent quantity for LPCVD silicon nitride. This presumably holds true for all amorphous brittle ceramic materials.

  6. Analogy between electrochemical behaviour of thick silicon granular electrodes for lithium batteries and fine soils micromechanics

    International Nuclear Information System (INIS)

    Nguyen, B.P.N.; Gaubicher, J.; Lestriez, B.

    2014-01-01

    In this paper we study the influence of the distribution and the shape of the carbon conductive additives on the cyclability of thick silicon based composite electrodes. Results pinpoint the influence of carbon additives is not only to play on the electronic conductivity but also to play on the micromechanics (stress distribution) of the composite films. The lack of correlation between electrochemical performance and the macroscopic electronic conductivity of the pristine electrodes and the observation of repeated drops and jumps in capacity during cycling brought us to make an analogy between the silicon composite electrodes and cohesive granular materials such as fine soils media. Considering the collective mechanical behavior of a stack of silicon particles upon repeated volume variations shed a novel understanding to the electrochemical behavior of composite electrodes based on silicon and alloying materials and tells us how critically important is the design at the different scales (the particle, a few particles, the composite electrode, the cell) to engineer the mechanical stress and strain and improve cycle life

  7. Formation of cross-cutting structures with different porosity on thick silicon wafers

    Directory of Open Access Journals (Sweden)

    Vera A. Yuzova

    2017-06-01

    The second type pass-through structures include a macroporous silicon layer with a thickness of 250 μm which interlock in the depth of the silicon wafer to form a cavity with a size of 4–8 μm. For the formation of the second type structures we only used the first one of the abovementioned stages, the etching time being longer, i.e. 210 min. All the etching procedures were carried out in a cooling chamber at 5 °C. The developed technology will provided for easier and more reliable formation of the monolithic structures of membrane-electrode assembly micro fuel cells.

  8. Uncertainty evaluation of thickness and warp of a silicon wafer measured by a spectrally resolved interferometer

    Science.gov (United States)

    Praba Drijarkara, Agustinus; Gergiso Gebrie, Tadesse; Lee, Jae Yong; Kang, Chu-Shik

    2018-06-01

    Evaluation of uncertainty of thickness and gravity-compensated warp of a silicon wafer measured by a spectrally resolved interferometer is presented. The evaluation is performed in a rigorous manner, by analysing the propagation of uncertainty from the input quantities through all the steps of measurement functions, in accordance with the ISO Guide to the Expression of Uncertainty in Measurement. In the evaluation, correlation between input quantities as well as uncertainty attributed to thermal effect, which were not included in earlier publications, are taken into account. The temperature dependence of the group refractive index of silicon was found to be nonlinear and varies widely within a wafer and also between different wafers. The uncertainty evaluation described here can be applied to other spectral interferometry applications based on similar principles.

  9. The application of thick hydrogenated amorphous silicon layers to charged particle and x-ray detection

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Fujieda, I.; Kaplan, S.N.; Qureshi, S.; Street, R.A.

    1989-04-01

    We outline the characteristics of thick hydrogenated amorphous silicon layers which are optimized for the detection of charged particles, x-rays and γ-rays. Signal amplitude as a function of the linear energy transfer of various particles are given. Noise sources generated by the detector material and by the thin film electronics - a-Si:H or polysilicon proposed for pixel position sensitive detectors readout are described, and their relative amplitudes are calculated. Temperature and neutron radiation effects on leakage currents and the corresponding noise changes are presented. 17 refs., 12 figs., 2 tabs

  10. Material parameters in a thick hydrogenated amorphous silicon detector and their effect on signal collection

    International Nuclear Information System (INIS)

    Qureshi, S.; Perez-Mendez, V.; Kaplan, S.N.; Fujieda, I.; Cho, G.; Street, R.A.

    1989-04-01

    Transient photoconductivity and ESR measurements were done to relate the ionized dangling bond density of thick hydrogenated amorphous silicon (a-Si:H) detectors. We found that only a fraction (/approximately/30--35%) of the total defect density as measured by ESR is ionized when the detector is biased into deep depletion. The measurements on annealed samples also show that this fraction is about 0.3. An explanation based on the shift of the Fermi energy is given. The measurements show that the time dependence of relaxation is a stretched exponential. 8 refs., 4 figs., 1 tab

  11. A High Performance Silicon-on-Insulator LDMOSTT Using Linearly Increasing Thickness Techniques

    International Nuclear Information System (INIS)

    Yu-Feng, Guo; Zhi-Gong, Wang; Gene, Sheu; Jian-Bing, Cheng

    2010-01-01

    We present a new technique to achieve uniform lateral electric field and maximum breakdown voltage in lateral double-diffused metal-oxide-semiconductor transistors fabricated on silicon-on-insulator substrates. A linearly increasing drift-region thickness from the source to the drain is employed to improve the electric field distribution in the devices. Compared to the lateral linear doping technique and the reduced surface field technique, two-dimensional numerical simulations show that the new device exhibits reduced specific on-resistance, maximum off- and on-state breakdown voltages, superior quasi-saturation characteristics and improved safe operating area. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Growth of misfit dislocation-free p/p+ thick epitaxial silicon wafers on Ge-B-codoped substrates

    International Nuclear Information System (INIS)

    Jiang Huihua; Yang Deren; Ma Xiangyang; Tian Daxi; Li Liben; Que Duanlin

    2006-01-01

    The growth of p/p + silicon epitaxial silicon wafers (epi-wafers) without misfit dislocations has been successfully achieved by using heavily boron-doped Czochralski (CZ) silicon wafers codoped with desirable level of germanium as the substrates. The lattice compensation by codoping of germanium and boron into the silicon matrix to reduce the lattice mismatch between the substrate (heavily boron-doped) and epi-layer (lightly boron-doped) is the basic idea underlying in the present achievement. In principle, the codoping of germanium and boron in the CZ silicon can be tailored to achieve misfit dislocation-free epi-layer with required thickness. It is reasonably expected that the presented solution to elimination of misfit dislocations in the p/p + silicon wafers can be applied in the volume production

  13. Thick silicon microstrip detectors simulation for PACT: Pair and Compton Telescope

    Science.gov (United States)

    Khalil, M.; Laurent, P.; Lebrun, F.; Tatischeff, V.; Dolgorouky, Y.; Bertoli, W.; Breelle, E.

    2016-11-01

    PACT is a space borne Pair and Compton Telescope that aims to make a sensitive survey of the gamma-ray sky between 100 keV and 100 MeV. It is based upon two main components: a silicon-based gamma-ray tracker and a crystal-based calorimeter. In this paper we will explain the imaging technique of PACT as a Multi-layered Compton telescope (0.1-10 MeV) and its major improvements over its predecessor COMPTEL. Then we will present a simulation study to optimize the silicon tracker of PACT. This tracker is formed of thousands of identical silicon double sided strip detectors (DSSDs). We have developed a simulation model (using SILVACO) to simulate the DSSD performance while varying its thickness, impurity concentration of the bulk material, electrode pitch, and electrode width. We will present a comprehensive overview of the impact of each varied parameter on the DSSD performance, in view of the application to PACT. The considered DSSD parameters are its depletion voltage, capacitance, and leakage current. After the selection of the PACT DSSD, we will present a simulation of the performance of the PACT telescope in the 0.1-10 MeV range.

  14. Thick silicon microstrip detectors simulation for PACT: Pair and Compton Telescope

    International Nuclear Information System (INIS)

    Khalil, M.; Laurent, P.; Lebrun, F.; Tatischeff, V.; Dolgorouky, Y.; Bertoli, W.; Breelle, E.

    2016-01-01

    PACT is a space borne Pair and Compton Telescope that aims to make a sensitive survey of the gamma-ray sky between 100 keV and 100 MeV. It is based upon two main components: a silicon-based gamma-ray tracker and a crystal-based calorimeter. In this paper we will explain the imaging technique of PACT as a Multi-layered Compton telescope (0.1–10 MeV) and its major improvements over its predecessor COMPTEL. Then we will present a simulation study to optimize the silicon tracker of PACT. This tracker is formed of thousands of identical silicon double sided strip detectors (DSSDs). We have developed a simulation model (using SILVACO) to simulate the DSSD performance while varying its thickness, impurity concentration of the bulk material, electrode pitch, and electrode width. We will present a comprehensive overview of the impact of each varied parameter on the DSSD performance, in view of the application to PACT. The considered DSSD parameters are its depletion voltage, capacitance, and leakage current. After the selection of the PACT DSSD, we will present a simulation of the performance of the PACT telescope in the 0.1–10 MeV range.

  15. Thick silicon microstrip detectors simulation for PACT: Pair and Compton Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M., E-mail: khalilmohammad@hotmail.com [APC Laboratory, 10rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); Laurent, P.; Lebrun, F. [APC Laboratory, 10rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); CEA, Centre de Saclay, 91191 Gif-Sur-Yvette Cedex (France); Tatischeff, V. [CSNSM, IN2P3/CNRSand Paris-Sud University, 91405 Orsay Campus (France); Dolgorouky, Y.; Bertoli, W.; Breelle, E. [APC Laboratory, 10rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)

    2016-11-01

    PACT is a space borne Pair and Compton Telescope that aims to make a sensitive survey of the gamma-ray sky between 100 keV and 100 MeV. It is based upon two main components: a silicon-based gamma-ray tracker and a crystal-based calorimeter. In this paper we will explain the imaging technique of PACT as a Multi-layered Compton telescope (0.1–10 MeV) and its major improvements over its predecessor COMPTEL. Then we will present a simulation study to optimize the silicon tracker of PACT. This tracker is formed of thousands of identical silicon double sided strip detectors (DSSDs). We have developed a simulation model (using SILVACO) to simulate the DSSD performance while varying its thickness, impurity concentration of the bulk material, electrode pitch, and electrode width. We will present a comprehensive overview of the impact of each varied parameter on the DSSD performance, in view of the application to PACT. The considered DSSD parameters are its depletion voltage, capacitance, and leakage current. After the selection of the PACT DSSD, we will present a simulation of the performance of the PACT telescope in the 0.1–10 MeV range.

  16. Effects of varying the through silicon via liners thickness on their hoop stresses and deflections

    Directory of Open Access Journals (Sweden)

    Juma Mary Atieno

    2017-03-01

    Full Text Available Through silicon via (TSV interconnect reliability is a problem in electronic packaging. The authors address the insertion losses, deflections which can result to separation of TSV layers and hoop stresses. These problems are due to different coefficient of thermal expansion between materials. The authors propose a robust methodology for (TSV liners in this paper which in turn solves the reliability problem in (TSV. Silicon dioxide material is used in their paper as a TSV liner. First, they modelled the equivalent TSV circuit in advanced design systems (ADS. The authors then simulated it to obtain the TSV characterisation from which they obtained the S-parameter S21 which represents the insertion losses. Insertion losses have been described with changes in frequencies from 0 to 20 GHz with changes in TSV thickness from 7 to 8 µm. Later two different shapes of the TSV liner; the disc- and rod-shaped are modelled in analysis system 14 software. The two shapes with a radius of 5 µm each and a fixed pressure of 100 µPa developed changes in hoop stresses and deflections when the liners thicknesses are varied from 2 to 3 µm. The disc shape experienced least reliability problems so the authors propose its use in via structures.

  17. Observation of enhanced infrared absorption in silicon supersaturated with gold by pulsed laser melting of nanometer-thick gold films

    Science.gov (United States)

    Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.

    2018-04-01

    We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.

  18. Thick amorphous silicon layers suitable for the realization of radiation detectors

    International Nuclear Information System (INIS)

    Hong, Wan-Shick; Drewery, J.S.; Jing, Tao; Lee, Hyong-Koo; Perez-Mendez, V.; Petrova-Koch, V.

    1995-04-01

    Thick silicon films with good electronic quality have been prepared by glow discharge of He-diluted SiH 4 at a substrate temperature ∼ 150 degree C and subsequent annealing at 160 degree C for about 100 hours. The stress in the films obtained this way decreased to ∼ 100 MPa compared to the 350 MPa in conventional a-Si:H. The post-annealing helped to reduce the ionized dangling bond density from 2.5 x 10 15 cm -3 to 7 x 10 14 cm -3 without changing the internal stress. IR spectroscopy and hydrogen effusion measurements implied the existence of microvoids and tiny crystallites in the material showing satisfactory electronic properties. P-I-N diodes for radiation detection applications have been realized out of the new material

  19. Direct measurements of the velocity and thickness of ''explosively'' propagating buried molten layers in amorphous silicon

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Jellison, G.E. Jr.; Pennycook, S.J.; Withrow, S.P.; Mashburn, D.N.

    1986-01-01

    Simultaneous infrared (1152 nm) and visible (633 nm) reflectivity measurements with nanosecond resolution were used to study the initial formation and subsequent motion of pulsed KrF laser-induced ''explosively'' propagating buried molten layers in ion implantation-amorphized silicon. The buried layer velocity decreases with depth below the surface, but increases with KrF laser energy density; a maximum velocity of about 14 m/s was observed, implying an undercooling-velocity relationship of approx. 14 K/(m/s). Z-contrast scanning transmission electron microscopy was used to form a direct chemical image of implanted Cu ions transported by the buried layer and showed that the final buried layer thickness was <15 nm

  20. Formation of silicon Oxide nano thickness on Si (III) with the assistance of Cs

    International Nuclear Information System (INIS)

    Bahari, A.; Bagheri, M.

    2006-01-01

    : The possibility of controlling the growth of a uniform ultra thin oxide on silicon via oxygen dosing at low temperatures, would be a great interest for the projected further development of nano electronics. One way to achieve this is to be able to control the conversion of chemically adsorbed oxygen and retained at room temperature into oxide during subsequent heating. Oxygen is chemisorbed at room temperature on Si(111) surface to saturation ( >100 L O 2 ), and the experimental chamber is then evacuated. This leaves adsorbed oxygen as atomically inserted on Si surface which sits on the back bonds. This surface is then used as a base for further processing which in one case consists of annealing to 600- 700 d eg C and subsequent exposures equivalent to the first step. This is repeated again. As the focus of this work, a series of experiments are done with adsorbed Cs, which assists in retaining oxygen and in transforming the adsorbed oxygen into oxide upon heating. It was found that the oxide formed on the surface at low coverage clusters. Without any external influence, the clusters may be made to coalesce upon further oxygen adsorption at room temperature, and annealing terminates as a continuous monolayer of amorphous oxide on top of a well-ordered silicon substrate. This configuration is inert to further uptake of oxygen. A higher oxide thickness could be obtained with Cs. Also in this case, the oxide growth saturates in an inert oxide Iayer

  1. Characterization of 150μm thick epitaxial silicon detectors from different producers after proton irradiation

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Moll, M.; Haerkoenen, J.; Kronberger, M.; Trummer, J.; Rodeghiero, P.

    2007-01-01

    Epitaxial (EPI) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of 150μm thick EPI silicon diodes irradiated with 24GeV/c protons up to a fluence of 3x10 15 p/cm 2 has been performed by means of Charge Collection Efficiency (CCE) measurements, investigations with the Transient Current Technique (TCT) and standard CV/IV characterizations. The aim of the work was to investigate the impact of radiation damage as well as the influence of the wafer processing on the material performance by comparing diodes from different manufacturers. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. While the generation of leakage current due to irradiation is similar in all investigated series of detectors, a difference in the effective doping concentration can be observed after irradiation. In the CCE measurements an anomalous drop in performance was found even for diodes exposed to very low fluences (5x10 13 p/cm 2 ) in all measured series. This result was confirmed for one series of diodes in TCT measurements with an infrared laser. TCT measurements with a red laser showed no type inversion up to fluences of 3x10 15 p/cm 2 for n-type devices whereas p-type diodes undergo type inversion from p- to n-type for fluences higher than ∼2x10 14 p/cm 2

  2. Characterization of 150 $\\mu$m thick epitaxial silicon detectors from different producers after proton irradiation

    CERN Document Server

    Hoedlmoser, H; Haerkoenen, J; Kronberger, M; Trummer, J; Rodeghiero, P

    2007-01-01

    Epitaxial (EPI) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of 150 mm thick EPI silicon diodes irradiated with 24GeV=c protons up to a fluence of 3 1015 p=cm2 has been performed by means of Charge Collection Efficiency (CCE) measurements, investigations with the Transient Current Technique (TCT) and standard CV=IV characterizations. The aim of the work was to investigate the impact of radiation damage as well as the influence of the wafer processing on the material performance by comparing diodes from different manufacturers. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. While the generation of leakage current due to irradiation is similar in all investigated series of detectors, a difference in the effective doping concentration can be observed after irradiation. In the CCE measurements an anomalous drop in performance was found even for diodes exposed to ...

  3. Thick and low-stress PECVD amorphous silicon for MEMS applications

    International Nuclear Information System (INIS)

    Iliescu, Ciprian; Chen Bangtao

    2008-01-01

    This paper presents a solution for the deposition of thick amorphous silicon (α-Si:H) in PECVD reactors for MEMS applications, such as sacrificial layer or mask layer for dry or wet etching of glass. This achievement was possible by tuning the deposition parameters to a 'zero' value of the residual stress in the α-Si:H layer. The influence of the process parameters, such as power, frequency mode, temperature, pressure and SiH 4 /Ar flow rates for tuning the residual stress and for a good deposition rate is analyzed. The deposition of low-stress and thick (more than 12 µm in our case) α-Si:H layers was possible without generation of hillock defects (previously reported in literature for layers thicker then 2 µm). Finally, the paper presents some MEMS applications of such a deposited α-Si:H layer: masking layer for deep wet etching as well as dry etching of glass, and sacrificial layer for dry or wet release

  4. Crystallization of silicon films of submicron thickness by blue-multi-laser-diode annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mugiraneza, Jean de Dieu; Shirai, Katsuya; Suzuki, Toshiharu; Okada, Tatsuya; Noguchi, Takashi [University of the Ryukyus, Okinawa (Japan); Matsushima, Hideki; Hashimoto, Takao; Ogino, Yoshiaki; Sahota, Eiji [Hitachi Computer Peripherals Co. Ltd, Kanagawa (Japan)

    2012-01-15

    Blue-Multi-Laser-Diode Annealing (BLDA) was performed in the continuous wave (CW) mode on Si films as thick as 0.5 {mu}m and 1 {mu}m deposited by rf sputtering. As a result of controlling the laser power from 4.0 to 4.8 W, a whole Si layer of 0.5 {mu}m in thickness was completely crystallized and consisted of a columnar structure of fine grains beneath a partially melted Si surface owing to the high temperature gradient along the depth in the Si layer. After additional hydrogenation in a furnace ambient, the ratio of the photo/dark current under AM 1.5 illumination distinctly improved to 6 times higher than that of as-deposited condition. The BLDA is expected to be applied to thin-film solar cells and/or to thin film transistor (TFT) photo-sensor systems on panels as a new low-temperature poly-silicon (LTPS) fabrication technique.

  5. Study of thick, nuclear-compensated silicon detectors; Etude des detecteurs epais au silicium compense nucleairement

    Energy Technology Data Exchange (ETDEWEB)

    Le Coroller, Y. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-09-01

    A study is made here, from the point of view of the realization and the performance, of thick nuclear-compensated silicon detectors. After recalling the need for compensation and reviewing the existing methods, the author describes in detail the controlled realization of thick detectors by nuclear compensation from the theoretical and experimental points of view. The practical precautions which should be observed are given: control of the homogeneity of the starting material, control of the evolution of the compensation, elimination of parasitic processes. The performances of the detectors obtained are then studied: electrical characteristics (current, life-time) on the one hand, detection and spectrometry of penetrating radiations on the other hand. The results show, that the compensated diodes having an effective thickness of two millimeters operate satisfactorily as detectors for applied voltages of about 500 volts. The resolutions observed are then about 2 per cent for mono-energetic electrons and about 4 per cent for the gamma; they can be improved by the use of a pre-amplifier of very low background noise. (author) [French] Les detecteurs epais au silicium compense nucleairement sont etudies ici du double point de vue realisation et performances. Apres un rappel sur la necessite de la compensation et les procedes existants, la realisation controlee des detecteurs epais par compensation nucleaire est decrite en detail sous l'aspect theorique et l'aspect experimental. On met en evidence les precautions a prendre dans la pratique: controle de l'homogeneite du materiau de base, controle de l'evolution de la compensation, elimination des processus parasites. On etudie ensuite les performances de detecteurs obtenus : caracteristiques electriques (courant, duree de vie) d'une part, d'autre part detection et spectrometrie des rayonnements penetrants. Les resultats montrent que les diodes compensees ayant une epaisseur utile de deux

  6. Study of thick, nuclear-compensated silicon detectors; Etude des detecteurs epais au silicium compense nucleairement

    Energy Technology Data Exchange (ETDEWEB)

    Le Coroller, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-09-01

    A study is made here, from the point of view of the realization and the performance, of thick nuclear-compensated silicon detectors. After recalling the need for compensation and reviewing the existing methods, the author describes in detail the controlled realization of thick detectors by nuclear compensation from the theoretical and experimental points of view. The practical precautions which should be observed are given: control of the homogeneity of the starting material, control of the evolution of the compensation, elimination of parasitic processes. The performances of the detectors obtained are then studied: electrical characteristics (current, life-time) on the one hand, detection and spectrometry of penetrating radiations on the other hand. The results show, that the compensated diodes having an effective thickness of two millimeters operate satisfactorily as detectors for applied voltages of about 500 volts. The resolutions observed are then about 2 per cent for mono-energetic electrons and about 4 per cent for the gamma; they can be improved by the use of a pre-amplifier of very low background noise. (author) [French] Les detecteurs epais au silicium compense nucleairement sont etudies ici du double point de vue realisation et performances. Apres un rappel sur la necessite de la compensation et les procedes existants, la realisation controlee des detecteurs epais par compensation nucleaire est decrite en detail sous l'aspect theorique et l'aspect experimental. On met en evidence les precautions a prendre dans la pratique: controle de l'homogeneite du materiau de base, controle de l'evolution de la compensation, elimination des processus parasites. On etudie ensuite les performances de detecteurs obtenus : caracteristiques electriques (courant, duree de vie) d'une part, d'autre part detection et spectrometrie des rayonnements penetrants. Les resultats montrent que les diodes compensees ayant une epaisseur utile de deux millimetres fonctionnent

  7. A study for the detection of ionizing particles with phototransistors on thick high-resistivity silicon substrates

    International Nuclear Information System (INIS)

    Batignani, G.; Angelini, C.; Bisogni, M.G.; Boscardin, M.; Bettarini, S.; Bondioli, M.; Bosisio, L.; Bucci, F.; Calderini, G.; Carpinelli, M.; Ciacchi, M.; Dalla Betta, G.F.; Dittongo, S.; Forti, F.; Giorgi, M.A.; Gregori, P.; Han, D.J.; Manfredi, P.F.; Manghisoni, M.; Marchiori, G.; Neri, N.; Novelli, M.; Paoloni, E.; Piemonte, C.; Rachevskaia, I.; Rama, M.; Ratti, L.; Re, V.; Rizzo, G.; Ronchin, S.; Rosso, V.; Simi, G.; Speziali, V.; Stefanini, A.; Zorzi, N.

    2004-01-01

    We report on bipolar NPN phototransistors fabricated at ITC-IRST on thick high-resistivity silicon substrates. The phototransistor emitter is composed of a phosphorus n+ implant, the base is a diffused high-energy boron implant, and the collector is the 600-800 μm thick silicon bulk, contacted on the backplane. We have studied the current amplification for two different doping profiles of the emitter, obtaining values of β ranging from 60 to 3000. For various emitter and base configurations, we measured the static device characteristics and extracted the leakage currents and the base resistance, verifying the fundamental relationship between them and the total base capacitances. The use of such phototransistors to detect ionizing particles is exploited and discussed

  8. A study for the detection of ionizing particles with phototransistors on thick high-resistivity silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Batignani, G. E-mail: giovanni.batignani@pi.infn.it; Angelini, C.; Bisogni, M.G.; Boscardin, M.; Bettarini, S.; Bondioli, M.; Bosisio, L.; Bucci, F.; Calderini, G.; Carpinelli, M.; Ciacchi, M.; Dalla Betta, G.F.; Dittongo, S.; Forti, F.; Giorgi, M.A.; Gregori, P.; Han, D.J.; Manfredi, P.F.; Manghisoni, M.; Marchiori, G.; Neri, N.; Novelli, M.; Paoloni, E.; Piemonte, C.; Rachevskaia, I.; Rama, M.; Ratti, L.; Re, V.; Rizzo, G.; Ronchin, S.; Rosso, V.; Simi, G.; Speziali, V.; Stefanini, A.; Zorzi, N

    2004-09-01

    We report on bipolar NPN phototransistors fabricated at ITC-IRST on thick high-resistivity silicon substrates. The phototransistor emitter is composed of a phosphorus n+ implant, the base is a diffused high-energy boron implant, and the collector is the 600-800 {mu}m thick silicon bulk, contacted on the backplane. We have studied the current amplification for two different doping profiles of the emitter, obtaining values of {beta} ranging from 60 to 3000. For various emitter and base configurations, we measured the static device characteristics and extracted the leakage currents and the base resistance, verifying the fundamental relationship between them and the total base capacitances. The use of such phototransistors to detect ionizing particles is exploited and discussed.

  9. Structural and electronic characterization of 355 nm laser-crystallized silicon: Interplay of film thickness and laser fluence

    International Nuclear Information System (INIS)

    Semler, Matthew R.; Swenson, Orven F.; Hoey, Justin M.; Guruvenket, Srinivasan; Gette, Cody R.; Hobbie, Erik K.

    2014-01-01

    We present a detailed study of the laser crystallization of amorphous silicon thin films as a function of laser fluence and film thickness. Silicon films grown through plasma-enhanced chemical vapor deposition were subjected to a Q-switched, diode-pumped solid-state laser operating at 355 nm. The crystallinity, morphology, and optical and electronic properties of the films are characterized through transmission and reflectance spectroscopy, resistivity measurements, Raman spectroscopy, X-ray diffraction, atomic force microscopy, and optical and scanning-electron microscopy. Our results reveal a unique surface morphology that strongly couples to the electronic characteristics of the films, with a minimum laser fluence at which the film properties are optimized. A simple scaling model is used to relate film morphology to conductivity in the laser-processed films

  10. Characterization of 13 and 30 mum thick hydrogenated amorphous silicon diodes deposited over CMOS integrated circuits for particle detection application

    CERN Document Server

    Despeisse, M; Commichau, S C; Dissertori, G; Garrigos, A; Jarron, P; Miazza, C; Moraes, D; Shah, A; Wyrsch, N; Viertel, Gert M; 10.1016/j.nima.2003.11.022

    2004-01-01

    We present the experimental results obtained with a novel monolithic silicon pixel detector which consists in depositing a n-i-p hydrogenated amorphous silicon (a-Si:H) diode straight above the readout ASIC (this technology is called Thin Film on ASIC, TFA). The characterization has been performed on 13 and 30mum thick a-Si:H films deposited on top of an ASIC containing a linear array of high- speed low-noise transimpedance amplifiers designed in a 0.25mum CMOS technology. Experimental results presented have been obtained with a 600nm pulsed laser. The results of charge collection efficiency and charge collection speed of these structures are discussed.

  11. Characterization of 10 μm thick porous silicon dioxide obtained by complex oxidation process for RF application

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Lee, Jong-Hyun

    2003-01-01

    This paper proposes a 10 μm thick oxide layer structure, which can be used as a substrate for RF circuits. The structure has been fabricated by anodic reaction and complex oxidation, which is a combined process of low temperature thermal oxidation (500 deg. C, for 1 h at H 2 O/O 2 ) and a rapid thermal oxidation (RTO) process (1050 deg. C, for 1 min). The electrical characteristics of oxidized porous silicon layer (OPSL) were almost the same as those of standard thermal silicon dioxide. The leakage current through the OPSL of 10 μm was about 100-500 pA in the range of 0-50 V. The average value of breakdown field was about 3.9 MV cm -1 . From the X-ray photo-electron spectroscopy (XPS) analysis, surface and internal oxide films of OPSL, prepared by complex process were confirmed to be completely oxidized and also the role of RTO process was important for the densification of porous silicon layer (PSL) oxidized at a lower temperature. For the RF-test of Si substrate with thick silicon dioxide layer, we have fabricated high performance passive devices such as coplanar waveguide (CPW) on OPSL substrate. The insertion loss of CPW on OPSL prepared by complex oxidation process was -0.39 dB at 4 GHz and similar to that of CPW on OPSL prepared by a temperature of 1050 deg. C (1 h at H 2 O/O 2 ). Also the return loss of CPW on OPSL prepared by complex oxidation process was -23 dB at 10 GHz, which is similar to that of CPW on OPSL prepared by high temperature

  12. Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement

    International Nuclear Information System (INIS)

    Yang Yongliang; Li Xinxin

    2011-01-01

    The p-type silicon giant piezoresistive coefficient is measured in top-down fabricated nano-thickness single-crystalline-silicon strain-gauge resistors with a macro-cantilever bending experiment. For relatively thicker samples, the variation of piezoresistive coefficient in terms of silicon thickness obeys the reported 2D quantum confinement effect. For ultra-thin samples, however, the variation deviates from the quantum-effect prediction but increases the value by at least one order of magnitude (compared to the conventional piezoresistance of bulk silicon) and the value can change its sign (e.g. from positive to negative). A stress-enhanced Si/SiO 2 interface electron-trapping effect model is proposed to explain the 'abnormal' giant piezoresistance that should be originated from the carrier-concentration change effect instead of the conventional equivalent mobility change effect for bulk silicon piezoresistors. An interface state modification experiment gives preliminary proof of our analysis.

  13. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.

    Science.gov (United States)

    Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-12-03

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  14. Hydrogen in hydrogenated amorphous silicon thick film and its relation to the photoresponse of the film in contact with molybdenum

    International Nuclear Information System (INIS)

    Sridhar, N.; Chung, D.D.L.

    1992-01-01

    This paper reports that hydrogenated amorphous silicon films of thickness 0.5-7 μm on molybdenum substrates were deposited from silane by dc glow discharge and studied by mass spectrometric observation of the evolution of hydrogen upon heating and correlating this information with the photoresponse. The films were found to contain two types of hydrogen, namely weak bonded hydrogen, which evolved at 365 degrees C and was the minority, and strongly bonded hydrogen, which evolved at 460-670 degrees C and was the majority. The proportion of strongly bonded hydrogen increased with increasing film thickness and with increasing substrate temperature during deposition. The total amount of hydrogen increased when the substrate temperature was decreased from 350 to 275 degrees C. The strongly bonded hydrogen resided throughout the thickness of the film, whereas the weakly bonded hydrogen resided near the film surface. The evolution of the strongly bonded hydrogen was diffusion controlled, with an activation energy of 1.6 eV. The strongly bonded hydrogen enhanced the photoresponse, whereas the weakly bonded hydrogen degraded the photoresponse

  15. Direct comparison of the electrical properties in metal/oxide/nitride/oxide/silicon and metal/aluminum oxide/nitride/oxide/silicon capacitors with equivalent oxide thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    An, Ho-Myoung; Seo, Yu Jeong; Kim, Hee Dong; Kim, Kyoung Chan; Kim, Jong-Guk [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Won-Ju; Koh, Jung-Hyuk [Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Sung, Yun Mo [Department of Materials and Science Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.k [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2009-07-31

    We examine the electrical properties of metal/oxide/nitride/oxide/silicon (MONOS) capacitors with two different blocking oxides, SiO{sub 2} and Al{sub 2}O{sub 3}, under the influence of the same electric field. The thickness of the Al{sub 2}O{sub 3} layer is set to 150 A, which is electrically equivalent to a thickness of the SiO{sub 2} layer of 65 A, in the MONOS structure for this purpose. The capacitor with the Al{sub 2}O{sub 3} blocking layer shows a larger capacitance-voltage memory window of 8.6 V, lower program voltage of 7 V, faster program/erase speeds of 10 ms/1 {mu}s, lower leakage current of 100 pA and longer data retention than the one with the SiO{sub 2} blocking layer does. These improvements are attributed to the suppression of the carrier transport to the gate electrode afforded by the use of an Al{sub 2}O{sub 3} blocking layer physically thicker than the SiO{sub 2} one, as well as the effective charge-trapping by Al{sub 2}O{sub 3} at the deep energy levels in the nitride layer.

  16. Calculation of radiation loss of 1. 2 GeV-electrons in a thick silicon monocrystal

    Energy Technology Data Exchange (ETDEWEB)

    Keshtova, S.V.; Komarov, F.F.; Telegin, V.I.

    1988-10-01

    The angular distribution of radiation loss of different fractions of 1.2 GeV-electrons during axial channeling in a Si monocrystal of 1.6 mm thickness is discussed. The results of the numerical calculations are compared with the experimental data.

  17. Reflection color filters of the three primary colors with wide viewing angles using common-thickness silicon subwavelength gratings.

    Science.gov (United States)

    Kanamori, Yoshiaki; Ozaki, Toshikazu; Hane, Kazuhiro

    2014-10-20

    We fabricated reflection color filters of the three primary colors with wide viewing angles using silicon two-dimensional subwavelength gratings on the same quartz substrate. The grating periods were 400, 340, and 300 nm for red, green, and blue filters, respectively. All of the color filters had the same grating thickness of 100 nm, which enabled simple fabrication of a color filter array. Reflected colors from the red, green, and blue filters under s-polarized white-light irradiation appeared in the respective colors at incident angles from 0 to 50°. By rigorous coupled-wave analysis, the dimensions of each color filter were designed, and the calculated reflectivity was compared with the measured reflectivity.

  18. Apparent temperature versus true temperature of silicon crystals as a function of their thickness using infrared measurements

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-01-01

    The very high intensity x-ray beams that will be present at the Advanced Photon Source and other third generation synchrotron sources will require that the first optical element in the beamline and, possibly, the second optical element as well, be cooled to remove the heat deposited by the x-ray beam. In many of the beamlines this heat will be in the 1 to 5 kW range, and any failure of the cooling system will require a quick response from safety control circuits to shut off the beam before damage is done to the optical element. In many cases, this first optical element will be a silicon diffraction crystal. Viewing the surface of objects subjected to high heat fluxes with an infrared camera or infrared sensor has proved to be a very effective method for monitoring the magnitude and distribution of surface temperatures on the object. This approach has been quite useful in studies of cooling silicon crystals in monochromators subject to high heat loads. The main drawback to this method is that single crystals of silicon are partially transparent to the infrared radiation monitored in most infrared cameras. This means that the infrared radiation emitted from the surface contains a component that comes from the interior of the crystal and that the intensity of the emitted radiation and thus the apparent temperature of the surface of the crystal depends on the thickness of the crystal and the kind of coating on the back (and/or the front) of the crystal. The apparent temperature of the crystal increases as the crystal is made thicker. A series of experiments were performed at Argonne National Laboratory to calibrate the apparent surface temperature of the crystal as measured with an infrared camera as a function of the crystal thickness and the type of coating (if any) on the back side of the crystal. A number of examples are given for data taken in synchrotron experiments with high intensity x-ray beams

  19. Characterization of nanometer-thick polycrystalline silicon with phonon-boundary scattering enhanced thermoelectric properties and its application in infrared sensors.

    Science.gov (United States)

    Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo

    2015-01-14

    Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK(-1) which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 10(8) and 1.83 × 10(8) cm Hz(1/2) W(-1) for sensors of 52 nm thick poly-Si, and 5.75 × 10(7) and 3.95 × 10(7) cm Hz(1/2) W(-1) for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.

  20. Simulation of 1.5-mm-thick and 15-cm-diameter gated silicon drift X-ray detector operated with a single high-voltage source

    Science.gov (United States)

    Matsuura, Hideharu

    2015-04-01

    High-resolution silicon X-ray detectors with a large active area are required for effectively detecting traces of hazardous elements in food and soil through the measurement of the energies and counts of X-ray fluorescence photons radially emitted from these elements. The thicknesses and areas of commercial silicon drift detectors (SDDs) are up to 0.5 mm and 1.5 cm2, respectively. We describe 1.5-mm-thick gated SDDs (GSDDs) that can detect photons with energies up to 50 keV. We simulated the electric potential distributions in GSDDs with a Si thickness of 1.5 mm and areas from 0.18 to 168 cm2 at a single high reverse bias. The area of a GSDD could be enlarged simply by increasing all the gate widths by the same multiple, and the capacitance of the GSDD remained small and its X-ray count rate remained high.

  1. Study of thickness and uniformity of oxide passivation with DI-O3 on silicon substrate for electronic and photonic applications

    Science.gov (United States)

    Sharma, Mamta; Hazra, Purnima; Singh, Satyendra Kumar

    2018-05-01

    Since the beginning of semiconductor fabrication technology evolution, clean and passivated substrate surface is one of the prime requirements for fabrication of Electronic and optoelectronic device fabrication. However, as the scale of silicon circuits and device architectures are continuously decreased from micrometer to nanometer (from VLSI to ULSI technology), the cleaning methods to achieve better wafer surface qualities has raised research interests. The development of controlled and uniform silicon dioxide is the most effective and reliable way to achieve better wafer surface quality for fabrication of electronic devices. On the other hand, in order to meet the requirement of high environment safety/regulatory standards, the innovation of cleaning technology is also in demand. The controlled silicon dioxide layer formed by oxidant de-ionized ozonated water has better uniformity. As the uniformity of the controlled silicon dioxide layer is improved on the substrate, it enhances the performance of the devices. We can increase the thickness of oxide layer, by increasing the ozone time treatment. We reported first time to measurement of thickness of controlled silicon dioxide layer and obtained the uniform layer for same ozone time.

  2. Interfacial phonon scattering and transmission loss in >1 μm thick silicon-on-insulator thin films

    Science.gov (United States)

    Jiang, Puqing; Lindsay, Lucas; Huang, Xi; Koh, Yee Kan

    2018-05-01

    Scattering of phonons at boundaries of a crystal (grains, surfaces, or solid/solid interfaces) is characterized by the phonon wavelength, the angle of incidence, and the interface roughness, as historically evaluated using a specularity parameter p formulated by Ziman [Electrons and Phonons (Clarendon Press, Oxford, 1960)]. This parameter was initially defined to determine the probability of a phonon specularly reflecting or diffusely scattering from the rough surface of a material. The validity of Ziman's theory as extended to solid/solid interfaces has not been previously validated. To better understand the interfacial scattering of phonons and to test the validity of Ziman's theory, we precisely measured the in-plane thermal conductivity of a series of Si films in silicon-on-insulator (SOI) wafers by time-domain thermoreflectance (TDTR) for a Si film thickness range of 1-10 μm and a temperature range of 100-300 K. The Si /SiO2 interface roughness was determined to be 0.11 ±0.04 nm using transmission electron microscopy (TEM). Furthermore, we compared our in-plane thermal conductivity measurements to theoretical calculations that combine first-principles phonon transport with Ziman's theory. Calculations using Ziman's specularity parameter significantly overestimate values from the TDTR measurements. We attribute this discrepancy to phonon transmission through the solid/solid interface into the substrate, which is not accounted for by Ziman's theory for surfaces. The phonons that are specularly transmitted into an amorphous layer will be sufficiently randomized by the time they come back to the crystalline Si layer, the effect of which is practically equivalent to a diffuse reflection at the interface. We derive a simple expression for the specularity parameter at solid/amorphous interfaces and achieve good agreement between calculations and measurement values.

  3. Determining the thickness of aliphatic alcohol monolayers covalently attached to silicon oxide surfaces using angle-resolved X-ray photoelectron spectroscopy

    Science.gov (United States)

    Lee, Austin W. H.; Kim, Dongho; Gates, Byron D.

    2018-04-01

    The thickness of alcohol based monolayers on silicon oxide surfaces were investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS). Advantages of using alcohols as building blocks for the formation of monolayers include their widespread availability, ease of handling, and stability against side reactions. Recent progress in microwave assisted reactions demonstrated the ease of forming uniform monolayers with alcohol based reagents. The studies shown herein provide a detailed investigation of the thickness of monolayers prepared from a series of aliphatic alcohols of different chain lengths. Monolayers of 1-butanol, 1-hexanol, 1-octanol, 1-decanol, and 1-dodecanol were each successfully formed through microwave assisted reactions and characterized by ARXPS techniques. The thickness of these monolayers consistently increased by ∼1.0 Å for every additional methylene (CH2) within the hydrocarbon chain of the reagents. Tilt angles of the molecules covalently attached to silicon oxide surfaces were estimated to be ∼35° for each type of reagent. These results were consistent with the observations reported for thiol based or silane based monolayers on either gold or silicon oxide surfaces, respectively. The results of this study also suggest that the alcohol based monolayers are uniform at a molecular level.

  4. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films : Effects of environment and surface oxide thickness

    NARCIS (Netherlands)

    Alsem, D. H.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up

  5. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current

    Science.gov (United States)

    Assmy, Philipp; Smetacek, Victor; Montresor, Marina; Klaas, Christine; Henjes, Joachim; Strass, Volker H.; Arrieta, Jesús M.; Bathmann, Ulrich; Berg, Gry M.; Breitbarth, Eike; Cisewski, Boris; Friedrichs, Lars; Fuchs, Nike; Herndl, Gerhard J.; Jansen, Sandra; Krägefsky, Sören; Latasa, Mikel; Peeken, Ilka; Röttgers, Rüdiger; Scharek, Renate; Schüller, Susanne E.; Steigenberger, Sebastian; Webb, Adrian; Wolf-Gladrow, Dieter

    2013-01-01

    Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux. PMID:24248337

  6. Tensile test of a silicon microstructure fully coated with submicrometer-thick diamond like carbon film using plasma enhanced chemical vapor deposition method

    Science.gov (United States)

    Zhang, Wenlei; Uesugi, Akio; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    This paper reports the tensile properties of single-crystal silicon (SCS) microstructures fully coated with sub-micrometer thick diamond like carbon (DLC) film using plasma enhanced chemical vapor deposition (PECVD). To minimize the deformations or damages caused by non-uniform coating of DLC, which has high compression residual stress, released SCS specimens with the dimensions of 120 µm long, 4 µm wide, and 5 µm thick were coated from the top and bottom side simultaneously. The thickness of DLC coating is around 150 nm and three different bias voltages were used for deposition. The tensile strength improved from 13.4 to 53.5% with the increasing of negative bias voltage. In addition, the deviation in strength also reduced significantly compared to bare SCS sample.

  7. Characterization of 13 and 30 μm thick hydrogenated amorphous silicon diodes deposited over CMOS integrated circuits for particle detection application

    International Nuclear Information System (INIS)

    Despeisse, M.; Anelli, G.; Commichau, S.; Dissertori, G.; Garrigos, A.; Jarron, P.; Miazza, C.; Moraes, D.; Shah, A.; Wyrsch, N.; Viertel, G.

    2004-01-01

    We present the experimental results obtained with a novel monolithic silicon pixel detector which consists in depositing a n-i-p hydrogenated amorphous silicon (a-Si:H) diode straight above the readout ASIC (this technology is called Thin Film on ASIC, TFA). The characterization has been performed on 13 and 30 μm thick a-Si:H films deposited on top of an ASIC containing a linear array of high-speed low-noise transimpedance amplifiers designed in a 0.25 μm CMOS technology. Experimental results presented have been obtained with a 600 nm pulsed laser. The results of charge collection efficiency and charge collection speed of these structures are discussed

  8. Calibration of the apparent temperature of silicon single crystals as a function of their true temperature and their thickness as determined by infrared measurements

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    Viewing the surface of objects subjected to high heat fluxes with an infrared camera or infrared sensor has proved to be a very effective method for monitoring the magnitude and distribution of surface temperature on the object. This approach has been quite useful in studies of cooling silicon crystals in monochromators subject to high heat loads. The main drawback to this method is that single crystals of silicon are partially transparent to the infrared radiation monitored in most infrared cameras. This means that the infrared radiation emitted from the surface contains a component that comes from the interior of the crystal and that the intensity of the emitted radiation and thus the apparent temperature of the surface of the crystal depends on the thickness of the crystal and the kind of coating on the back (and/or the front) of the crystal. The apparent temperature of the crystal increases as the crystal is made thicker. A series of experiments were performed at Argonne National Laboratory to calibrate the apparent surface temperature of the crystal as measured with an infrared camera as a function of the crystal thickness and the type of coating (if any) on the back side of the crystal. A good reflecting surface on the back side of the crystal increases the apparent temperature of the crystal and simulates the response of a crystal twice the thickness. These measurements make it possible to interpret the infrared signals from cooled silicon crystals used in past high heat load experiments. A number of examples are given for data taken in synchrotron experiments with high intensity x-ray beams

  9. Full Thickness Macular Hole Closure after Exchanging Silicone-Oil Tamponade with C3F8 without Posturing

    Directory of Open Access Journals (Sweden)

    Tina Xirou

    2011-05-01

    Full Text Available Purpose: To report a case of macular hole closure after the exchange of a silicone-oil tamponade with gas C3F8 14%. Method: A 64-year-old female patient with a stage IV macular hole underwent a three-port pars-plana vitrectomy and internal limiting membrane peeling. Due to the patient’s chronic illness (respiratory problems, a silicone-oil tamponade was preferred. However, the macula hole was still flat opened four months postoperatively. Therefore, the patient underwent an exchange of silicone oil with gas C3F8 14%. No face-down position was advised postoperatively due to her health problems. Results: Macular hole closure was confirmed with optical coherence tomography six weeks after exchanging the silicone oil with gas. Conclusions: Macular hole surgery using a silicone-oil tamponade has been proposed as treatment of choice for patients unable to posture. In our case, the use of a long-acting gas (C3F8 14%, even without posturing, proved to be more effective.

  10. The dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the film thickness: αl Experimental limitations and the impact of curvature in the Tauc and Cody plots

    Science.gov (United States)

    Mok, Tat M.; O'Leary, Stephen K.

    2007-12-01

    Using a model for the optical spectrum associated with hydrogenated amorphous silicon, explicitly taking into account fundamental experimental limitations encountered, we theoretically determine the dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the thickness of the film. We compare these results with that obtained from experiment. We find that the curvature in the Tauc plot plays a significant role in influencing the determination of the Tauc optical gap associated with hydrogenated amorphous silicon, thus affirming an earlier hypothesis of Cody et al. We also find that the spectral dependence of the refractive index plays an important role in influencing the determination of the Cody optical gap. It is thus clear that care must be exercised when drawing conclusions from the dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the thickness of the film.

  11. Calculation of radiation loss of 1.2 GeV-electrons in a thick silicon monocrystal

    International Nuclear Information System (INIS)

    Keshtova, S.V.; Komarov, F.F.

    1988-01-01

    The angular distribution of radiation loss of different fractions of 1.2 GeV-electrons during axial channeling in a Si monocrystal of 1.6 mm thickness is discussed. The results of the numerical calculations are compared with the experimental data. (author)

  12. 10 μ m-thick four-quadrant transmissive silicon photodiodes for beam position monitor application: electrical characterization and gamma irradiation effects

    Science.gov (United States)

    Rafí, J. M.; Pellegrini, G.; Quirion, D.; Hidalgo, S.; Godignon, P.; Matilla, O.; Juanhuix, J.; Fontserè, A.; Molas, B.; Pothin, D.; Fajardo, P.

    2017-01-01

    Silicon photodiodes are very useful devices as X-ray beam monitors in synchrotron radiation beamlines. Owing to Si absorption, devices thinner than 10 μ m are needed to achieve transmission over 90% for energies above 10 keV . In this work, new segmented four-quadrant diodes for beam alignment purposes are fabricated on both ultrathin (10 μ m-thick) and bulk silicon substrates. Four-quadrant diodes implementing different design parameters as well as auxiliary test structures (single diodes and MOS capacitors) are studied. An extensive electrical characterization, including current-voltage (I-V) and capacitance-voltage (C-V) techniques, is carried out on non-irradiated and gamma-irradiated devices up to 100 Mrad doses. Special attention is devoted to the study of radiation-induced charge build-up in diode interquadrant isolation dielectric, as well as its impact on device interquadrant resistance. Finally, the devices have been characterized with an 8 keV laboratory X-ray source at 108 ph/s and in BL13-XALOC ALBA Synchroton beamline with 1011 ph/s and energies from 6 to 16 keV . Sensitivity, spatial resolution and uniformity of the devices have been evaluated.

  13. Effect of annealing and oxide layer thickness on doping profiles shape of ''through-oxide'' implanted P+ ions in textured silicon

    International Nuclear Information System (INIS)

    El-Dessouki, M.S.; Galloni, R.

    1987-10-01

    Phosphorous ions at energies of 60+100 KeV, and doses (4+5)x10 15 atom/cm 2 have been implanted randomly through SiO 2 layers into textured silicon crystals. The penetration profiles of the P + ions have been determined by means of differential sheet resistivity and Hall-effect, together with the anodic oxidation stripping technique. The effect of the oxide layer thickness, annealing temperature on the junction properties has been studied. The damage produced by implantation, has also been investigated using transmission electron microscope (TEM). From the mobility measurements of the free carriers as a function of depth through the junction, two minima have been observed in through oxide implanted samples. The one nearer to the Si-SiO 2 interface (at about 200A from the interface) was related to the damage produced by the recoil oxygen atoms from the oxide layer into silicon. The deeper minimum is lying at ∼ 0.2μm from the interface and was attributed to the damage produced by the implanted P + ions, which caused clusters and defect loops after annealing. This damage was observed through TEM photographs. The optimum conditions for producing shallow junction without losing much of the implanted P + ions through the oxide layer were estimated. (author). 22 refs, 7 figs, 1 tab

  14. Thermal analysis of silicon carbide coating on a nickel based superalloy substrate and thickness measurement of top layers by lock-in infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)

    2017-04-15

    In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

  15. High-current-density electrodeposition using pulsed and constant currents to produce thick CoPt magnetic films on silicon substrates

    Science.gov (United States)

    Ewing, Jacob; Wang, Yuzheng; Arnold, David P.

    2018-05-01

    This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.

  16. Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si

    International Nuclear Information System (INIS)

    Charitidis, C.A.; Skarmoutsou, A.; Nassiopoulou, A.G.; Dragoneas, A.

    2011-01-01

    Highlights: → The nanomechanical properties of bulk crystalline Si. → The nanomechanical properties of porous Si. → The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.

  17. Low temperature perovskite crystallization of highly tunable dielectric Ba0.7Sr0.3TiO3 thick films deposited by ion beam sputtering on platinized silicon substrates

    Science.gov (United States)

    Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.

    2009-02-01

    Ba0.7Sr0.3TiO3 (BST) thick films with thickness up to 1 μm were deposited on Pt-coated silicon substrates by ion beam sputtering, followed by an annealing treatment. It is demonstrated that pure well-crystallized perovskite phase could be obtained in thick BST films by a low temperature process (535 °C). The BST thick films show highly tunable dielectric properties with tunability (at 800 kV/cm) up to 51.0% and 66.2%, respectively, for the 0.5 and 1 μm thick films. The relationship between strains and dielectric properties was systematically investigated in the thick films. The results suggest that a comparatively larger tensile thermal in-plane strain (0.15%) leads to the degradation in dielectric properties of the 0.5 μm thick film; besides, strong defect-related inhomogeneous strains (˜0.3%) make the dielectric peaks smearing and broadening in the thick films, which, however, preferably results in high figure-of-merit factors over a wide operating temperature range. Moreover, the leakage current behavior in the BST thick films was found to be dominated by the space-charge-limited-current mechanism, irrespective of the film thickness.

  18. Low temperature perovskite crystallization of highly tunable dielectric Ba0.7Sr0.3TiO3 thick films deposited by ion beam sputtering on platinized silicon substrates

    International Nuclear Information System (INIS)

    Zhu, X. H.; Defaye, E.; Aied, M.; Guigues, B.; Dubarry, C.

    2009-01-01

    Ba 0.7 Sr 0.3 TiO 3 (BST) thick films with thickness up to 1 μm were deposited on Pt-coated silicon substrates by ion beam sputtering, followed by an annealing treatment. It is demonstrated that pure well-crystallized perovskite phase could be obtained in thick BST films by a low temperature process (535 deg. C). The BST thick films show highly tunable dielectric properties with tunability (at 800 kV/cm) up to 51.0% and 66.2%, respectively, for the 0.5 and 1 μm thick films. The relationship between strains and dielectric properties was systematically investigated in the thick films. The results suggest that a comparatively larger tensile thermal in-plane strain (0.15%) leads to the degradation in dielectric properties of the 0.5 μm thick film; besides, strong defect-related inhomogeneous strains (∼0.3%) make the dielectric peaks smearing and broadening in the thick films, which, however, preferably results in high figure-of-merit factors over a wide operating temperature range. Moreover, the leakage current behavior in the BST thick films was found to be dominated by the space-charge-limited-current mechanism, irrespective of the film thickness

  19. Lithium-drifted silicon detector with segmented contacts

    Science.gov (United States)

    Tindall, Craig S.; Luke, Paul N.

    2006-06-13

    A method and apparatus for creating both segmented and unsegmented radiation detectors which can operate at room temperature. The devices include a metal contact layer, and an n-type blocking contact formed from a thin layer of amorphous semiconductor. In one embodiment the material beneath the n-type contact is n-type material, such as lithium compensated silicon that forms the active region of the device. The active layer has been compensated to a degree at which the device may be fully depleted at low bias voltages. A p-type blocking contact layer, or a p-type donor material can be formed beneath a second metal contact layer to complete the device structure. When the contacts to the device are segmented, the device is capable of position sensitive detection and spectroscopy of ionizing radiation, such as photons, electrons, and ions.

  20. Effect of deposition distance on thickness and microstructure of silicon thin film produced by electron beam evaporation; Efeito da distancia de deposicao na espessura e microestrutura de filme fino obtido por evaporacao por feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, T.F.; Ramanery, F.P.; Branco, J.R.T. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte, MG (Brazil)], e-mail: thalitaqui@yahoo.com.br; Cunha, M.A. [Acos Especiais Itabira S.A. (Acesita), Belo Horizonte, MG (Brazil)

    2006-07-01

    The interest for materials with new characteristics and properties made thin films an area of highest research interest. Silicon thin films have been widely used in solar cells, being the main active layer. In this work, the effect of deposition distance on thickness and microstructure of silicon films was investigated. The electron beam evaporation technique with argon plasma assistance was used to obtain films on stainless steel 304, Fe-Si alloy and soda lime glass. The experiments were made varying electron beam current and deposition pressure. The results are discussed based on Hertz-Knudsen's law and thin films microstructure evolution models. The samples were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction and profilometer. (author)

  1. Special Cryostats for Lithium Compensated Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, A; Malmsten, B; Rosencrantz, B

    1968-05-15

    In many applications of Ge(Li) detectors an extreme design of the cryostat is desirable. One example is a coincidence or anticoincidence setup where the Ge(Li) detector is surrounded by one or several other detectors, usually Nal(Tl) crystals or plastic scintillators. To be usable in this arrangement the part of the cryostat containing the Ge(Li) detector should have the form of a long hood, with the detector placed at its very end. The diameter of the hood should be as small as detector dimensions permit. Excellent energy resolution and reasonably low liquid nitrogen consumption must be retained. Two cryostats fulfilling these conditions will be described. For the first cryostat emphasis lay on the reduction of the hood diameter to an absolute minimum; for the other incorporation of a device regulating the temperature of the cryostat surface was required. The difficulties encountered will be discussed; they were primarily connected with the necessity of combining minimum temperature loss at the detector position with extreme cryostat compactness and cold finger length. The incorporation of a cooled FET transistor in the cryostat will also be described. The gamma spectrometers using the cryostats gave resolutions down to 2.8 keV FWHM for the 1173 keV gamma line from Co 60 and 1.2 keV FWHM for the 122 keV line from Co 57.

  2. Lithium compensation of GaAs

    International Nuclear Information System (INIS)

    Alexiev, D.; Tavendale, A.J.

    1988-08-01

    Defects generated following Li diffusion into GaAs were studied by optical deep level transient spectroscopy (ODLTS) and deep level transient spectroscopy (DLTS). In an exploratory series of experiments, the effect of Li diffusion on existing trap spectra, defect generation and as a means for the compensation of GaAs was studied. The variables included diffusion temperature, initial trap spectra of GaAs and annealing periods. Detailed measurements of trap energies were made

  3. Temperature and thickness dependence of the grain boundary scattering in the Ni–Si silicide films formed on silicon substrate at 500 °C by RTA

    International Nuclear Information System (INIS)

    Utlu, G.; Artunç, N.; Selvi, S.

    2012-01-01

    Highlights: ► It is a systematic study of various thicknesses (18–290 nm) of Ni–Si silicide films. ► The temperature-dependent resistivity measurements of the films are studied. ► Resistivity variation of the films with temperature exhibits an unusual behavior. ► Parallel-resistor formula is reduced to Matthiessen's rule in this study. ► Reflection coefficients have been found in a wide temperature and thickness range. - Abstract: The temperature-dependent resistivity measurements of Ni–Si silicide films with 18–290 nm thicknesses are studied as a function of temperature and film thickness over the temperature range of 100–900 K. The most striking behavior is that the variation of the resistivity of the films with temperature exhibits an unusual behavior. The total resistivity of the Ni–Si silicide films in this work increases linearly with temperature up to a T m temperature, thereafter decreases rapidly and finally reaches zero. Our analyses have shown that in the temperature range of 100 to T m (K), parallel-resistor formula reduces to Matthiessen's rule and θ D Debye temperature becomes independent of the temperature for the given thickness range, whereas at high temperatures (above T m ) it increases slightly with thickness. θ D Debye temperature have been found to be about 400–430 K for the films. We have also shown that for temperature range of 100 to T m (K), linear variation of the resistivity of the silicide films with temperature has been caused from both grain-boundary scattering and electron–phonon scattering. That is why, resistivity data could have been analyzed in terms of the Mayadas–Schatzkes (M–S) model successfully. Theoretical and experimental values of reflection coefficients have been calculated by analyzing resistivity data using M–S model. According to our analysis, R increases with decreasing film thickness for a given temperature, while it is almost constant for the thickness range of 200–67 nm and 47

  4. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  5. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  6. Silicon vertex detector for superheavy elements identification

    Directory of Open Access Journals (Sweden)

    Bednarek A.

    2012-07-01

    Full Text Available Silicon vertex detector for superheavy elements (SHE identification has been proposed. It will be constructed using very thin silicon detectors about 5 μm thickness. Results of test of 7.3 μm four inch silicon strip detector (SSD with fission fragments and α particles emitted by 252Cf source are presented

  7. Thick Toenails

    Science.gov (United States)

    ... in individuals with nail fungus (onychomycosis), psoriasis and hypothyroidism. Those who have problems with the thickness of their toenails should consult a foot and ankle surgeon for proper diagnosis and treatment. Find an ACFAS Physician Search Search Tools Find ...

  8. Study of effects of radiation on silicone prostheses

    International Nuclear Information System (INIS)

    Shedbalkar, A.R.; Devata, A.; Padanilam, T.

    1980-01-01

    Radiation effects on silicone gel and dose distribution of radiation through mammary prostheses were studied. Silicone gel behaves like tissue. Half value thickness for silicone gel and water are almost the same. Linear absorption coefficient for silicone gel and water are comparable

  9. Inverted amorphous silicon solar cell utilizing cermet layers

    Science.gov (United States)

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  10. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  11. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    Science.gov (United States)

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  12. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  13. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Alvarez, F.; Reinoso, M.; Huck, H.; Rosenbusch, M.

    2010-01-01

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp 2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  14. Characterization of silicon oxynitride films prepared by the simultaneous implantation of oxygen and nitrogen ions into silicon

    International Nuclear Information System (INIS)

    Hezel, R.; Streb, W.

    1985-01-01

    Silicon oxynitride films about 5 nm in thickness were prepared by simultaneously implanting 5 keV oxygen and nitrogen ions into silicon at room temperature up to saturation. These films with concentrations ranging from pure silicon oxide to silicon nitride were characterized using Auger electron spectroscopy, electron energy loss spectroscopy and depth-concentration profiling. The different behaviour of the silicon oxynitride films compared with those of silicon oxide and silicon nitride with regard to thermal stability and hardness against electron and argon ion irradiation is pointed out. (Auth.)

  15. One-cm-thick Si detector at LHe temperature

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dipartimento di Fisica, Universita di Ferrara, Via Saragat 1, 44100 Ferrara (Italy)], E-mail: braggio@pd.infn.it; Bressi, G. [INFN, Sez. di Pavia, Via Bassi 6, 27100 Pavia (Italy); Carugno, G. [INFN, Sez. di Padova, Via Marzolo 8, 35131 Padova (Italy); Galeazzi, G. [Laboratori Nazionali di Legnaro, Via dell' Universita 1, 35020 Legnaro (Italy); Serafin, A. [Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2007-10-11

    A silicon p-i-n diode of thickness 1 cm has been studied experimentally at liquid helium temperature. This preliminary study is aimed at the construction of a much bigger detector to detect low energy neutrino events.

  16. One-cm-thick Si detector at LHe temperature

    International Nuclear Information System (INIS)

    Braggio, C.; Bressi, G.; Carugno, G.; Galeazzi, G.; Serafin, A.

    2007-01-01

    A silicon p-i-n diode of thickness 1 cm has been studied experimentally at liquid helium temperature. This preliminary study is aimed at the construction of a much bigger detector to detect low energy neutrino events

  17. Metrology of nanosize biopowders using porous silicon surface

    International Nuclear Information System (INIS)

    Zhuravel', L.V.; Latukhina, N.V.; Pisareva, E.V.; Vlasov, M.Yu.; Volkov, A.V.; Volodkin, B.O.

    2008-01-01

    Powders of hydroxyapatite deposited on porous silicon surface were investigated by TEM and STM methods. Thickness of porous lay was 1-100 micrometers; porous diameter was 0.01-10 micrometers. Images of porous silicon surface with deposited particles give possibility to estimate particles size and induce that only proportionate porous diameter particles have good adhesion to porous silicon surface.

  18. Seedless electroplating on patterned silicon

    NARCIS (Netherlands)

    Vargas Llona, Laura Dolores; Jansen, Henricus V.; Elwenspoek, Michael Curt

    2006-01-01

    Nickel thin films have been electrodeposited without the use of an additional seed layer, on highly doped silicon wafers. These substrates conduct sufficiently well to allow deposition using a peripherical electrical contact on the wafer. Films 2 μm thick have been deposited using a nickel sulfamate

  19. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-11-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart textile, wearable electronics and many other exciting applications. However, low thermal budget processing and fundamentally limited electron mobility hinders its potential to be competitive with well established and highly developed silicon technology. The use of silicon in flexible electronics involve expensive and abrasive materials and processes. In this work, high performance flexible thermoelectric energy harvesters are demonstrated from low cost bulk silicon (100) wafers. The fabrication of the micro- harvesters was done using existing silicon processes on silicon (100) and then peeled them off from the original substrate leaving it for reuse. Peeled off silicon has 3.6% thickness of bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. The demonstrated generic batch processing shows a pragmatic way of peeling off a whole silicon circuitry after conventional fabrication on bulk silicon wafers for extremely deformable high performance integrated electronics. In summary, by using a novel, low cost process, this work has successfully integrated existing and highly developed fabrication techniques to introduce a flexible energy harvester for sustainable applications.

  20. MEMS-based thick film PZT vibrational energy harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Thyssen, Anders

    2011-01-01

    We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using a mechan......We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using...... a mechanical front side protection of an SOI wafer with screen printed PZT thick film. The fabricated harvester device produces 14.0 μW with an optimal resistive load of 100 kΩ from 1g (g=9.81 m s-2) input acceleration at its resonant frequency of 235 Hz....

  1. Large volume cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Braggio, C.; Boscardin, M.; Bressi, G.; Carugno, G.; Corti, D.; Galeazzi, G.; Zorzi, N.

    2009-01-01

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm 3 , cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  2. Large volume cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35131 Padova (Italy); Boscardin, M. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy); Bressi, G. [INFN sez. di Pavia, via Bassi 6, 27100 Pavia (Italy); Carugno, G.; Corti, D. [INFN sez. di Padova, via Marzolo 8, 35131 Padova (Italy); Galeazzi, G. [INFN lab. naz. Legnaro, viale dell' Universita 2, 35020 Legnaro (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy)

    2009-12-15

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm{sup 3}, cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  3. Efficiency Enhancement of Silicon Solar Cells by Porous Silicon Technology

    Directory of Open Access Journals (Sweden)

    Eugenijus SHATKOVSKIS

    2012-09-01

    Full Text Available Silicon solar cells produced by a usual technology in p-type, crystalline silicon wafer were investigated. The manufactured solar cells were of total thickness 450 mm, the junction depth was of 0.5 mm – 0.7 mm. Porous silicon technologies were adapted to enhance cell efficiency. The production of porous silicon layer was carried out in HF: ethanol = 1 : 2 volume ratio electrolytes, illuminating by 50 W halogen lamps at the time of processing. The etching current was computer-controlled in the limits of (6 ÷ 14 mA/cm2, etching time was set in the interval of (10 ÷ 20 s. The characteristics and performance of the solar cells samples was carried out illuminating by Xenon 5000 K lamp light. Current-voltage characteristic studies have shown that porous silicon structures produced affect the extent of dark and lighting parameters of the samples. Exactly it affects current-voltage characteristic and serial resistance of the cells. It has shown, the formation of porous silicon structure causes an increase in the electric power created of solar cell. Conversion efficiency increases also respectively to the initial efficiency of cell. Increase of solar cell maximum power in 15 or even more percent is found. The highest increase in power have been observed in the spectral range of Dl @ (450 ÷ 850 nm, where ~ 60 % of the A1.5 spectra solar energy is located. It has been demonstrated that porous silicon technology is effective tool to improve the silicon solar cells performance.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2428

  4. Study on 150μm thick n- and p-type epitaxial silicon sensors irradiated with 24 GeV/c protons and 1 MeV neutrons

    International Nuclear Information System (INIS)

    Kaska, Katharina; Moll, Michael; Fahrer, Manuel

    2010-01-01

    A study on 150μm epitaxial (EPI) n- and p-type silicon diodes irradiated with neutrons up to 8x10 15 n/cm 2 and protons up to 1.7x10 15 p/cm 2 has been performed by means of CV/IV, charge collection efficiency (CCE) and transient current technique (TCT) measurements. It is found that the effective space charge density increases three times faster after proton than after neutron irradiation with a slightly higher effective space charge generation rate for n-type material compared to p-type material. A drop in charge collection efficiency already at fluences of 1x10 12 n eq /cm 2 can be seen in n-type material, but is absent in p-type material. TCT measurements show space charge sign inversion from positive to negative charge in n-type material after neutron irradiation and from negative to positive space charge in p-type material after proton irradiation. No difference was found in the response of diodes manufactured by different producers out of the same wafer material.

  5. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  6. Porous silicon technology for integrated microsystems

    Science.gov (United States)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially

  7. Laser wafering for silicon solar

    International Nuclear Information System (INIS)

    Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

    2011-01-01

    Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W p (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs (∼20%), embodied energy, and green-house gas GHG emissions (∼50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 (micro)m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

  8. Laser wafering for silicon solar.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

    2011-03-01

    Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

  9. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D.; Fujieda, I.; Street, R.A.

    1991-07-01

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  10. Stretchable and foldable silicon-based electronics

    KAUST Repository

    Cavazos Sepulveda, Adrian Cesar

    2017-03-30

    Flexible and stretchable semiconducting substrates provide the foundation for novel electronic applications. Usually, ultra-thin, flexible but often fragile substrates are used in such applications. Here, we describe flexible, stretchable, and foldable 500-μm-thick bulk mono-crystalline silicon (100) “islands” that are interconnected via extremely compliant 30-μm-thick connectors made of silicon. The thick mono-crystalline segments create a stand-alone silicon array that is capable of bending to a radius of 130 μm. The bending radius of the array does not depend on the overall substrate thickness because the ultra-flexible silicon connectors are patterned. We use fracture propagation to release the islands. Because they allow for three-dimensional monolithic stacking of integrated circuits or other electronics without any through-silicon vias, our mono-crystalline islands can be used as a “more-than-Moore” strategy and to develop wearable electronics that are sufficiently robust to be compatible with flip-chip bonding.

  11. Stretchable and foldable silicon-based electronics

    KAUST Repository

    Cavazos Sepulveda, Adrian Cesar; Diaz Cordero, M. S.; Carreno, Armando Arpys Arevalo; Nassar, Joanna M.; Hussain, Muhammad Mustafa

    2017-01-01

    Flexible and stretchable semiconducting substrates provide the foundation for novel electronic applications. Usually, ultra-thin, flexible but often fragile substrates are used in such applications. Here, we describe flexible, stretchable, and foldable 500-μm-thick bulk mono-crystalline silicon (100) “islands” that are interconnected via extremely compliant 30-μm-thick connectors made of silicon. The thick mono-crystalline segments create a stand-alone silicon array that is capable of bending to a radius of 130 μm. The bending radius of the array does not depend on the overall substrate thickness because the ultra-flexible silicon connectors are patterned. We use fracture propagation to release the islands. Because they allow for three-dimensional monolithic stacking of integrated circuits or other electronics without any through-silicon vias, our mono-crystalline islands can be used as a “more-than-Moore” strategy and to develop wearable electronics that are sufficiently robust to be compatible with flip-chip bonding.

  12. Morphological and optical properties of n-type porous silicon

    Indian Academy of Sciences (India)

    type silicon wafer have been reported in the present article. Method of PS fabrication is by photo-assisted electrochemical etching with different etching current densities ( J ). Porosity and PS layer thickness, obtained by the gravimetric method, ...

  13. CHARACTERIZATION OF THE ELECTROPHYSICAL PROPERTIES OF SILICON-SILICON DIOXIDE INTERFACE USING PROBE ELECTROMETRY METHODS

    Directory of Open Access Journals (Sweden)

    V. А. Pilipenko

    2017-01-01

    Full Text Available Introduction of submicron design standards into microelectronic industry and a decrease of the gate dielectric thickness raise the importance of the analysis of microinhomogeneities in the silicon-silicon dioxide system. However, there is very little to no information on practical implementation of probe electrometry methods, and particularly scanning Kelvin probe method, in the interoperational control of real semiconductor manufacturing process. The purpose of the study was the development of methods for nondestructive testing of semiconductor wafers based on the determination of electrophysical properties of the silicon-silicon dioxide interface and their spatial distribution over wafer’s surface using non-contact probe electrometry methods.Traditional C-V curve analysis and scanning Kelvin probe method were used to characterize silicon- silicon dioxide interface. The samples under testing were silicon wafers of KEF 4.5 and KDB 12 type (orientation <100>, diameter 100 mm.Probe electrometry results revealed uniform spatial distribution of wafer’s surface potential after its preliminary rapid thermal treatment. Silicon-silicon dioxide electric potential values were also higher after treatment than before it. This potential growth correlates with the drop in interface charge density. At the same time local changes in surface potential indicate changes in surface layer structure.Probe electrometry results qualitatively reflect changes of interface charge density in silicon-silicon dioxide structure during its technological treatment. Inhomogeneities of surface potential distribution reflect inhomogeneity of damaged layer thickness and can be used as a means for localization of interface treatment defects.

  14. Silicon Micromachined Microlens Array for THz Antennas

    Science.gov (United States)

    Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, IImran; Gill, John J.; Jung-Kubiak, Cecile D.; Llombart, Nuria

    2013-01-01

    5 5 silicon microlens array was developed using a silicon micromachining technique for a silicon-based THz antenna array. The feature of the silicon micromachining technique enables one to microfabricate an unlimited number of microlens arrays at one time with good uniformity on a silicon wafer. This technique will resolve one of the key issues in building a THz camera, which is to integrate antennas in a detector array. The conventional approach of building single-pixel receivers and stacking them to form a multi-pixel receiver is not suited at THz because a single-pixel receiver already has difficulty fitting into mass, volume, and power budgets, especially in space applications. In this proposed technique, one has controllability on both diameter and curvature of a silicon microlens. First of all, the diameter of microlens depends on how thick photoresist one could coat and pattern. So far, the diameter of a 6- mm photoresist microlens with 400 m in height has been successfully microfabricated. Based on current researchers experiences, a diameter larger than 1-cm photoresist microlens array would be feasible. In order to control the curvature of the microlens, the following process variables could be used: 1. Amount of photoresist: It determines the curvature of the photoresist microlens. Since the photoresist lens is transferred onto the silicon substrate, it will directly control the curvature of the silicon microlens. 2. Etching selectivity between photoresist and silicon: The photoresist microlens is formed by thermal reflow. In order to transfer the exact photoresist curvature onto silicon, there needs to be etching selectivity of 1:1 between silicon and photoresist. However, by varying the etching selectivity, one could control the curvature of the silicon microlens. The figure shows the microfabricated silicon microlens 5 x5 array. The diameter of the microlens located in the center is about 2.5 mm. The measured 3-D profile of the microlens surface has a

  15. Retinal Layers Measurements following Silicone Oil Tamponade for Retinal Detachment Surgery.

    Science.gov (United States)

    Jurišić, Darija; Geber, Mia Zorić; Ćavar, Ivan; Utrobičić, Dobrila Karlica

    2017-12-19

    This study aimed to investigate the influence of silicone oil on the retinal nerve fiber layer (RNFL) thickness in patients with primary rhegmatogenous retinal detachment who underwent vitreoretinal surgery. The study included 47 patients (eyes), who underwent a pars plana vitrectomy with the silicone oil tamponade. The control group included unoperated eye of all participants. Spectral-domain optical coherence tomography (SD-OCT) was used for the measurements of peripapilar and macular RNFL thickness. The average peripapillary RNFL thickness was significantly higher in the silicone oil filled eyes during endotamponade and after its removal. The eyes with elevated IOP had less thickening of the RNFL in comparison to the eyes with normal IOP. Central macular thickness and macular volume were decreased in the silicone oil filled eyes in comparison to the control eyes. In conclusion, silicone oil caused peripapilar RNFL thickening in the vitrectomized eyes during endotamponade and after silicone oil removal.

  16. Ion beam studied of silicon oxynitride and silicon nitroxide thin layers

    International Nuclear Information System (INIS)

    Oude Elferink, J.B.

    1989-01-01

    In this the processes occurring during high temperature treatments of silicon oxynitride and silicon oxide layers are described. Oxynitride layers with various atomic oxygen to nitrogen concentration ration (O/N) are considered. The high energy ion beam techniques Rutherford backscattering spectroscopy, elastic recoil detection and nuclear reaction analysis have been used to study the layer structures. A detailed discussion of these ion beam techniques is given. Numerical methods used to obtain quantitative data on elemental compositions and depth profiles are described. The electrical compositions and depth profiles are described. The electrical properties of silicon nitride films are known to be influenced by the behaviour of hydrogen in the film during high temperature anneling. Investigations of the behaviour of hydrogen are presented. Oxidation of silicon (oxy)nitride films in O 2 /H 2 0/HCl and nitridation of silicon dioxide films in NH 3 are considered since oxynitrides are applied as an oxidation mask in the LOCOS (Local oxidation of silicon) process. The nitridation of silicon oxide layers in an ammonia ambient is considered. The initial stage and the dependence on the oxide thickness of nitrogen and hydrogen incorporation are discussed. Finally, oxidation of silicon oxynitride layers and of silicon oxide layers are compared. (author). 76 refs.; 48 figs.; 1 tab

  17. Geochemistry of silicon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Tiping; Li, Yanhe; Gao, Jianfei; Hu, Bin [Chinese Academy of Geological Science, Beijing (China). Inst. of Mineral Resources; Jiang, Shaoyong [China Univ. of Geosciences, Wuhan (China).

    2018-04-01

    Silicon is one of the most abundant elements in the Earth and silicon isotope geochemistry is important in identifying the silicon source for various geological bodies and in studying the behavior of silicon in different geological processes. This book starts with an introduction on the development of silicon isotope geochemistry. Various analytical methods are described and compared with each other in detail. The mechanisms of silicon isotope fractionation are discussed, and silicon isotope distributions in various extraterrestrial and terrestrial reservoirs are updated. Besides, the applications of silicon isotopes in several important fields are presented.

  18. X-ray and scanning electron microscopic investigation of porous silicon and silicon epitaxial layers grown on porous silicon

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Pawlowska, M.; Nossarzewska-Orlowska, E.; Brzozowski, A.; Wieteska, K.; Graeff, W.

    1998-01-01

    The 1 to 5 μm thick layers of porous silicon and epitaxial layers grown on porous silicon were studied by means of X-ray diffraction methods, realised with a wide use of synchrotron source and scanning microscopy. The results of x-ray investigation pointed the difference of lateral periodicity between the porous layer and the substrate. It was also found that the deposition of epitaxial layer considerably reduced the coherence of porous fragments. A number of interface phenomena was also observed in section and plane wave topographs. The scanning electron microscopic investigation of cleavage faces enabled direct evaluation of porous layer thickness and revealed some details of their morphology. The scanning observation of etched surfaces of epitaxial layers deposited on porous silicon revealed dislocations and other defects not reasonable in the X-ray topographs. (author)

  19. "Silicon millefeuille": From a silicon wafer to multiple thin crystalline films in a single step

    Science.gov (United States)

    Hernández, David; Trifonov, Trifon; Garín, Moisés; Alcubilla, Ramon

    2013-04-01

    During the last years, many techniques have been developed to obtain thin crystalline films from commercial silicon ingots. Large market applications are foreseen in the photovoltaic field, where important cost reductions are predicted, and also in advanced microelectronics technologies as three-dimensional integration, system on foil, or silicon interposers [Dross et al., Prog. Photovoltaics 20, 770-784 (2012); R. Brendel, Thin Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany 2003); J. N. Burghartz, Ultra-Thin Chip Technology and Applications (Springer Science + Business Media, NY, USA, 2010)]. Existing methods produce "one at a time" silicon layers, once one thin film is obtained, the complete process is repeated to obtain the next layer. Here, we describe a technology that, from a single crystalline silicon wafer, produces a large number of crystalline films with controlled thickness in a single technological step.

  20. Ion beam heating of thin silicon membranes

    International Nuclear Information System (INIS)

    Tissot, P.E.; Hart, R.R.

    1993-01-01

    For silicon membranes irradiated by an ion beam in a vacuum environment, such as the masks used for ion beam lithography and the membranes used for thin film self-annealing, the heat transfer modes are radiation and limited conduction through the thin membrane. The radiation component depends on the total hemispherical emissivity which varies with the thickness and temperature of the membrane. A semiempirical correlation for the absorption coefficient of high resistivity silicon was derived and the variation of the total emissivity with temperature was computed for membranes with thicknesses between 0.1 and 10 μm. Based on this result, the temperatures reached during exposure to ion beams of varying intensities were computed. A proper modeling of the emissivity is shown to be important for beam heating of thin silicon membranes. (orig.)

  1. Lead Thickness Measurements

    International Nuclear Information System (INIS)

    Rucinski, R.

    1998-01-01

    The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in 3 , an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.

  2. Photo-Electrical Characterization of Silicon Micropillar Arrays with Radial p/n Junctions Containing Passivation and Anti-Reflection Coatings

    NARCIS (Netherlands)

    Vijselaar, Wouter; Elbersen, R.; Tiggelaar, Roald M.; Gardeniers, Han; Huskens, Jurriaan

    2017-01-01

    In order to assess the contributions of anti-reflective and passivation effects in microstructured silicon-based solar light harvesting devices, thin layers of aluminum oxide (Al2O3), silicon dioxide (SiO2), silicon-rich silicon nitride (SiNx), and indium tin oxide (ITO), with a thickness ranging

  3. Lithium ion batteries based on nanoporous silicon

    Science.gov (United States)

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  4. Triaxial MEMS accelerometer with screen printed PZT thick film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Almind, Ninia Sejersen; Brodersen, Simon Hedegaard

    2010-01-01

    . In this work integration of a screen printed piezoelectric PZT thick film with silicon MEMS technology is shown. A high bandwidth triaxial accelerometer has been designed, fabricated and characterized. The voltage sensitivity is 0.31 mV/g in the vertical direction, 0.062 mV/g in the horizontal direction...

  5. Screen printed thick film based pMUT arrays

    DEFF Research Database (Denmark)

    Hedegaard, Tobias; Pedersen, T; Thomsen, Erik Vilain

    2008-01-01

    This article reports on the fabrication and characterization of lambda-pitched piezoelectric micromachined ultrasound transducer (pMUT) arrays fabricated using a unique process combining conventional silicon technology and low cost screen printing of thick film PZT. The pMUTs are designed as 8...

  6. Presentation and characterization of novel thick-film PZT microactuators

    Energy Technology Data Exchange (ETDEWEB)

    Chalvet, Vincent; Habineza, Didace, E-mail: didace.habineza@femto-st.fr; Rakotondrabe, Micky; Clévy, Cédric

    2016-04-01

    We propose in this paper the characterization of a new generation of piezoelectric cantilevers called thick-films piezoelectric actuators. Based on the bonding and thinning process of a bulk PZT layer onto a silicon layer, these cantilevers can provide better static and dynamic performances compared to traditional piezocantilevers, additionally to the small dimensions.

  7. Education and "Thick" Epistemology

    Science.gov (United States)

    Kotzee, Ben

    2011-01-01

    In this essay Ben Kotzee addresses the implications of Bernard Williams's distinction between "thick" and "thin" concepts in ethics for epistemology and for education. Kotzee holds that, as in the case of ethics, one may distinguish between "thick" and "thin" concepts of epistemology and, further, that this distinction points to the importance of…

  8. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  9. An electromagnetic calorimeter for the silicon detector concept

    Indian Academy of Sciences (India)

    sampling layers – twenty of thickness 5/7X0, followed by ten of thickness 10/7X0. The silicon detectors dominate the cost of our design, so we use simple .... understanding of the cross talk, we are continuing to work on a quantitative model.

  10. Reactor Physics Assessment of Thick Silicon Carbide Clad PWR Fuels

    Science.gov (United States)

    2013-06-01

    approach is left to future investigators, in addition to analysis of the impact of axial power on DNB calculations. 2.5 Plutonium Vector The...H23 F06 H40 H75 G42 07 1 G13 H49 G84 H13 G66 H14 G29 H67 G21 H38 G57 H57 G74 H08 F08 08 1 F26 H80 H25 F25 H47 F11 H63...J52 H58 H73 H22 J74 H39 J24 H38 06 1 H16 J68 H15 H51 H81 G31 J48 G15 J06 G23 J23 G06 J40 J75 H42 07 1 H13 J49 H84 J13 H66

  11. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  12. Silicon-based metallic micro grid for electron field emission

    International Nuclear Information System (INIS)

    Kim, Jaehong; Jeon, Seok-Gy; Kim, Jung-Il; Kim, Geun-Ju; Heo, Duchang; Shin, Dong Hoon; Sun, Yuning; Lee, Cheol Jin

    2012-01-01

    A micro-scale metal grid based on a silicon frame for application to electron field emission devices is introduced and experimentally demonstrated. A silicon lattice containing aperture holes with an area of 80 × 80 µm 2 and a thickness of 10 µm is precisely manufactured by dry etching the silicon on one side of a double-polished silicon wafer and by wet etching the opposite side. Because a silicon lattice is more rigid than a pure metal lattice, a thin layer of Au/Ti deposited on the silicon lattice for voltage application can be more resistant to the geometric stress caused by the applied electric field. The micro-fabrication process, the images of the fabricated grid with 88% geometric transparency and the surface profile measurement after thermal feasibility testing up to 700 °C are presented. (paper)

  13. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  14. Electronic structure of silicon superlattices

    International Nuclear Information System (INIS)

    Krishnamurthy, S.; Moriarty, J.A.

    1984-01-01

    Utilizing a new complex-band-structure technique, the electronic structure of model Si-Si/sub 1-x/Ge/sub x/ and MOS superlattices has been obtained over a wide range of layer thickness d (11 less than or equal to d less than or equal to 110 A). For d greater than or equal to 44 A, it is found that these systems exhibit a direct fundamental band gap. Further calculations of band-edge effective masses and impurity scattering rates suggest the possibility of a band-structure-driven enhancement in electron mobility over bulk silicon

  15. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  16. Ocean Sediment Thickness Contours

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  17. The silicon-silicon oxide multilayers utilization as intrinsic layer on pin solar cells

    International Nuclear Information System (INIS)

    Colder, H.; Marie, P.; Gourbilleau, F.

    2008-01-01

    Silicon nanostructures are promising candidate for the intrinsic layer on pin solar cells. In this work we report on new material: silicon-rich silicon oxide (SRSO) deposited by reactive magnetron sputtering of a pure silica target and an interesting structure: multilayers consisting of a stack of SRSO and pure silicon oxide layers. Two thicknesses of the SRSO sublayer, t SRSO , are studied 3 nm and 5 nm whereas the thickness of silica sublayer is maintaining at 3 nm. The presence of nanocrystallites of silicon, evidenced by X-Ray diffraction (XRD), leads to photoluminescence (PL) emission at room temperature due to the quantum confinement of the carriers. The PL peak shifts from 1.3 eV to 1.5 eV is correlated to the decreasing of t SRSO from 5 nm down to 3 nm. In the purpose of their potential utilization for i-layer, the optical properties are studied by absorption spectroscopy. The achievement a such structures at promising absorption properties. Moreover by favouring the carriers injection by the tunnel effect between silicon nanograins and silica sublayers, the multilayers seem to be interesting for solar cells

  18. MOS structures containing silicon nanoparticles for memory device applications

    International Nuclear Information System (INIS)

    Nedev, N; Zlatev, R; Nesheva, D; Manolov, E; Levi, Z; Brueggemann, R; Meier, S

    2008-01-01

    Metal-oxide-silicon structures containing layers with amorphous or crystalline silicon nanoparticles in a silicon oxide matrix are fabricated by sequential physical vapour deposition of SiO x (x = 1.15) and RF sputtering of SiO 2 on n-type crystalline silicon, followed by high temperature annealing in an inert gas ambient. Depending on the annealing temperature, 700 deg. C or 1000 deg. C, amorphous or crystalline silicon nanoparticles are formed in the silicon oxide matrix. The annealing process is used not only for growing nanoparticles but also to form a dielectric layer with tunnelling thickness at the silicon/insulator interface. High frequency C-V measurements demonstrate that both types of structures can be charged negatively or positively by applying a positive or negative voltage on the gate. The structures with amorphous silicon nanoparticles show several important advantages compared to the nanocrystal ones, such as lower defect density at the interface between the crystalline silicon wafer and the tunnel silicon oxide, better retention characteristics and better reliability

  19. Attenuation of Thermal Neutrons by Crystalline Silicon

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M.

    2002-01-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross - section including the Bragg scattering from different (hkt) planes to the neutron * transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy .A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500μ eV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given

  20. High-density oxidized porous silicon

    International Nuclear Information System (INIS)

    Gharbi, Ahmed; Souifi, Abdelkader; Remaki, Boudjemaa; Halimaoui, Aomar; Bensahel, Daniel

    2012-01-01

    We have studied oxidized porous silicon (OPS) properties using Fourier transform infraRed (FTIR) spectroscopy and capacitance–voltage C–V measurements. We report the first experimental determination of the optimum porosity allowing the elaboration of high-density OPS insulators. This is an important contribution to the research of thick integrated electrical insulators on porous silicon based on an optimized process ensuring dielectric quality (complete oxidation) and mechanical and chemical reliability (no residual pores or silicon crystallites). Through the measurement of the refractive indexes of the porous silicon (PS) layer before and after oxidation, one can determine the structural composition of the OPS material in silicon, air and silica. We have experimentally demonstrated that a porosity approaching 56% of the as-prepared PS layer is required to ensure a complete oxidation of PS without residual silicon crystallites and with minimum porosity. The effective dielectric constant values of OPS materials determined from capacitance–voltage C–V measurements are discussed and compared to FTIR results predictions. (paper)

  1. Mechanically flexible optically transparent silicon fabric with high thermal budget devices from bulk silicon (100)

    KAUST Repository

    Hussain, Muhammad Mustafa

    2013-05-30

    Today’s information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor – heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon – industry’s darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 μm thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  2. Mechanically flexible optically transparent silicon fabric with high thermal budget devices from bulk silicon (100)

    KAUST Repository

    Hussain, Muhammad Mustafa; Rojas, Jhonathan Prieto; Sevilla, Galo T.

    2013-01-01

    Today’s information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor – heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon – industry’s darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 μm thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  3. Design and Fabrication of Silicon-on-Silicon-Carbide Substrates and Power Devices for Space Applications

    Directory of Open Access Journals (Sweden)

    Gammon P.M.

    2017-01-01

    Full Text Available A new generation of power electronic semiconductor devices are being developed for the benefit of space and terrestrial harsh-environment applications. 200-600 V lateral transistors and diodes are being fabricated in a thin layer of silicon (Si wafer bonded to silicon carbide (SiC. This novel silicon-on-silicon-carbide (Si/SiC substrate solution promises to combine the benefits of silicon-on-insulator (SOI technology (i.e device confinement, radiation tolerance, high and low temperature performance with that of SiC (i.e. high thermal conductivity, radiation hardness, high temperature performance. Details of a process are given that produces thin films of silicon 1, 2 and 5 μm thick on semi-insulating 4H-SiC. Simulations of the hybrid Si/SiC substrate show that the high thermal conductivity of the SiC offers a junction-to-case temperature ca. 4× less that an equivalent SOI device; reducing the effects of self-heating, and allowing much greater power density. Extensive electrical simulations are used to optimise a 600 V laterally diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET implemented entirely within the silicon thin film, and highlight the differences between Si/SiC and SOI solutions.

  4. Internal friction in irradiated silicon

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Pajzullakhanov, M.S.; Khajdarov, T.; Ummatov, Kh.

    1999-01-01

    The submicroscopic heterogeneities in mono- and polycrystal silicon and the influence of X-ray radiation on them were investigated using the ultrasound resonance method. Disk-shaped samples of 27.5 mm in diameter and 4 mm in thickness, with the flat surface parallel to crystallographic plane (111), were irradiated by X-ray beam of 1 Wt/cm 2 (50 KeV, Mo K α ) during 10 hours. Relations of internal frictions (Q -1 ) of samples and their relative attitude (ψ) - Q -1 (ψ) show that there is a presence of double-humped configuration for monocrystal silicon with the peaks at ψ=900 and 270 degrees. The relations Q -1 (ψ) remain the same after the irradiation. However, the peak width becomes larger. This data show that the configuration and attitude of the heterogeneities remain the same after the irradiation. The double-humped configuration was not discovered for the relations Q -1 (ψ) of polycrystal silicon. It is explained by the fact that there is an isotropic distribution in the content of many blocks and granules

  5. Monitoring production target thickness

    International Nuclear Information System (INIS)

    Oothoudt, M.A.

    1993-01-01

    Pion and muon production targets at the Clinton P. Anderson Meson Physics Facility consist of rotating graphite wheels. The previous target thickness monitoring Procedure scanned the target across a reduced intensity beam to determine beam center. The fractional loss in current across the centered target gave a measure of target thickness. This procedure, however, required interruption of beam delivery to experiments and frequently indicated a different fractional loss than at normal beam currents. The new monitoring Procedure compares integrated ups and downs toroid current monitor readings. The current monitors are read once per minute and the integral of readings are logged once per eight-hour shift. Changes in the upstream to downstream fractional difference provide a nonintrusive continuous measurement of target thickness under nominal operational conditions. Target scans are now done only when new targets are installed or when unexplained changes in the current monitor data are observed

  6. Formation and properties of porous silicon layers

    International Nuclear Information System (INIS)

    Vitanov, P.; Kamenova, M.; Dimova-Malinovska, D.

    1993-01-01

    Preparation, properties and application of porous silicon films are investigated. Porous silicon structures were formed by an electrochemical etching process resulting in selective dissolution of the silicon substrate. The silicon wafers used with a resistivity of 5-10Ω.cm were doped with B to concentrations 6x10 18 -1x10 19 Ω.cm -3 in the temperature region 950 o C-1050 o C. The density of each porous films was determined from the weight loss during the anodization and it depends on the surface resistivity of the Si wafer. The density decreases with decreasing of the surface resistivity. The surface of the porous silicon layers was studied by X-ray photoelectron spectroscopy which indicates the presence of SiF 4 . The kinetic dependence of the anode potential and the porous layer thickness on the time of anodization in a galvanostatic regime for the electrolytes with various HF concentration were studied. In order to compare the properties of the resulting porous layers and to establish the dependence of the porosity on the electrolyte, three types of electrolytes were used: concentrated HF, diluted HF:H 2 O=1:1 and ethanol-hydrofluoric solutions HF:C 2 H 5 OH:H 2 O=2:1:1. High quality uniform and reproducible layers were formed using aqueous-ethanol-hydrofluoric electrolyte. Both Kikuchi's line and ring patterns were observed by TEM. The porous silicon layer was single crystal with the same orientation as the substrate. The surface shows a polycrystalline structure only. The porous silicon layers exhibit visible photoluminescence (PL) at room temperature under 480 nm Ar + laser line excitation. The peak of PL was observed at about 730 nm with FWHM about 90 nm. Photodiodes was made with a W-porous silicon junction. The current voltage and capacity voltage characteristics were similar to those of an isotype heterojunction diode. (orig.)

  7. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  8. Introduction of high oxygen concentrations into silicon wafers by high-temperature diffusion

    International Nuclear Information System (INIS)

    Casse, G.; Glaser, M.; Lemeilleur, F.; Ruzin, A.; Wegrzecki, M.

    1999-01-01

    The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>10 17 atoms cm -3 ) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO 2 layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 μm thick silicon wafer

  9. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  10. Chemical polishing of epitoxial silicon wafer

    International Nuclear Information System (INIS)

    Osada, Shohei

    1978-01-01

    SSD telescopes are used for the determination of the kind and energy of charged particles produced by nuclear reactions, and are the equipments combining ΔE counters and E counters. The ΔE counter is a thin SSD which is required to be thin and homogeneous enough to get the high resolution of measurement. The SSDs for ΔE counters have so far been obtained by polishing silicon plates mechanically and chemically or by applying electrolytic polishing method on epitaxial silicon wafers, but it was very hard to obtain them. The creative etching equipment and technique developed this time make it possible to obtain thin SSDs for ΔE counters. The outline of the etching equipment and its technique are described in the report. The etching technique applied for the silicon films for ΔE counters with thickness of about 10 μm was able to be experimentally established in this study. (Kobatake, H.)

  11. Coating thickness measurement

    International Nuclear Information System (INIS)

    1976-12-01

    The standard specifies measurements of the coating thickness, which make use of beta backscattering and/or x-ray fluorescence. For commonly used combinations of coating material and base material the appropriate measuring ranges and radionuclides to be used are given for continuous as well as for discontinuous measurements

  12. High frequency guided wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Pizzolato, M.; Masserey, B.; Robyr, J. L.; Fromme, P.

    2017-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full...

  13. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  14. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  15. Silicon Microspheres Photonics

    International Nuclear Information System (INIS)

    Serpenguzel, A.

    2008-01-01

    Electrophotonic integrated circuits (EPICs), or alternatively, optoelectronic integrated circuit (OEICs) are the natural evolution of the microelectronic integrated circuit (IC) with the addition of photonic capabilities. Traditionally, the IC industry has been based on group IV silicon, whereas the photonics industry on group III-V semiconductors. However, silicon based photonic microdevices have been making strands in siliconizing photonics. Silicon microspheres with their high quality factor whispering gallery modes (WGMs), are ideal candidates for wavelength division multiplexing (WDM) applications in the standard near-infrared communication bands. In this work, we will discuss the possibility of using silicon microspheres for photonics applications in the near-infrared

  16. Application of porous silicon in solar cell

    Science.gov (United States)

    Maniya, Nalin H.; Ashokan, Jibinlal; Srivastava, Divesh N.

    2018-05-01

    Silicon is widely used in solar cell applications with over 95% of all solar cells produced worldwide composed of silicon. Nanostructured thin porous silicon (PSi) layer acting as anti-reflecting coating is used in photovoltaic solar cells due to its advantages including simple and low cost fabrication, highly textured surfaces enabling lowering of reflectance, controllability of thickness and porosity of layer, and high surface area. PSi layers have previously been reported to reduce the reflection of light and replaced the conventional anti-reflective coating layers on solar cells. This can essentially improve the efficiency and decrease the cost of silicon solar cells. Here, we investigate the reflectance of different PSi layers formed by varying current density and etching time. PSi layers were formed by a combination of current density including 60 and 80 mA/cm2 and time for fabrication as 2, 4, 6, and 8 seconds. The fabricated PSi layers were characterized using reflectance spectroscopy and field emission scanning electron microscopy. Thickness and pore size of PSi layer were increased with increase in etching time and current density, respectively. The reflectance of PSi layers was decreased with increase in etching time until 6 seconds and increased again after 6 seconds, which was observed across both the current density. Reduction in reflectance indicates the increase of absorption of light by silicon due to the thin PSi layer. In comparison with the reflectance of silicon wafer, PSi layer fabricated at 80 mA/cm2 for 6 seconds gave the best result with reduction in reflectance up to 57%. Thus, the application of PSi layer as an effective anti-reflecting coating for the fabrication of solar cell has been demonstrated.

  17. Thermal Oxidation of Structured Silicon Dioxide

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Hansen, Ole; Jensen, Jørgen Arendt

    2014-01-01

    The topography of thermally oxidized, structured silicon dioxide is investigated through simulations, atomic force microscopy, and a proposed analytical model. A 357 nm thick oxide is structured by removing regions of the oxide in a masked etch with either reactive ion etching or hydrofluoric acid....... Subsequent thermal oxidation is performed in both dry and wet ambients in the temperature range 950◦C to 1100◦C growing a 205 ± 12 nm thick oxide in the etched mask windows. Lifting of the original oxide near the edge of the mask in the range 6 nm to 37 nm is seen with increased lifting for increasing...

  18. Silicon (100)/SiO2 by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-25

    Silicon (100) wafers are ubiquitous in microfabrication and, accordingly, their surface characteristics are important. Herein, we report the analysis of Si (100) via X-ray photoelectron spectroscopy (XPS) using monochromatic Al K radiation. Survey scans show that the material is primarily silicon and oxygen, and the Si 2p region shows two peaks that correspond to elemental silicon and silicon dioxide. Using these peaks the thickness of the native oxide (SiO2) was estimated using the equation of Strohmeier.1 The oxygen peak is symmetric. The material shows small amounts of carbon, fluorine, and nitrogen contamination. These silicon wafers are used as the base material for subsequent growth of templated carbon nanotubes.

  19. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    CERN Document Server

    Bergmann, Benedikt; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-01-01

    In this study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. The data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  20. Light-Induced Degradation of Thin Film Silicon Solar Cells

    International Nuclear Information System (INIS)

    Hamelmann, F U; Weicht, J A; Behrens, G

    2016-01-01

    Silicon-wafer based solar cells are still domination the market for photovoltaic energy conversion. However, most of the silicon is used only for mechanical stability, while only a small percentage of the material is needed for the light absorption. Thin film silicon technology reduces the material demand to just some hundred nanometer thickness. But even in a tandem stack (amorphous and microcrystalline silicon) the efficiencies are lower, and light-induced degradation is an important issue. The established standard tests for characterisation are not precise enough to predict the performance of thin film silicon solar cells under real conditions, since many factors do have an influence on the degradation. We will show some results of laboratory and outdoor measurements that we are going to use as a base for advanced modelling and simulation methods. (paper)

  1. A radiation detector fabricated from silicon photodiode.

    Science.gov (United States)

    Yamamoto, H; Hatakeyama, S; Norimura, T; Tsuchiya, T

    1984-12-01

    A silicon photodiode is converted to a low energy charged particle radiation detector. The window thickness of the fabricated detector is evaluated to be 50 micrograms/cm2. The area of the depletion region is 13.2 mm2 and the depth of it is estimated to be about 100 microns. The energy resolution (FWHM) is 14.5 ke V for alpha-particles from 241Am and 2.5 ke V for conversion electrons from 109Cd, respectively.

  2. Silicon Quantum Dots for Quantum Information Processing

    Science.gov (United States)

    2013-11-01

    S. Lai, C. Tahan, A. Morello and A. S. Dzurak, Electron Spin lifetimes in multi-valley sil- icon quantum dots, S3NANO Winter School Few spin solid...lifetimes in multi-valley sil- icon quantum dots, International Workshop on Silicon Quantum Electronics, Grenoble, France, February 2012 (Poster). C...typically plunger gates), PMMA A5 is spun at 5000 rpm for 30 seconds, resulting in a 280 nm resist thickness. The resists are baked for 90 seconds at 180

  3. Coating thickness measuring device

    International Nuclear Information System (INIS)

    Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.

    1984-01-01

    A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts

  4. Engineering the size and density of silicon agglomerates by controlling the initial surface carbonated contamination

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł., E-mail: Lukasz.Borowik@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Chevalier, N.; Mariolle, D.; Martinez, E.; Bertin, F.; Chabli, A.; Barbé, J.-C. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-04-01

    Actually, thermally induced thin-films dewetting silicon in the silicon-on-insulator is a way to obtain silicon agglomerates with a size and a density fixed by the silicon film thickness. In this paper we report a new method to monitor both the size and the density of the Si agglomerates thanks to the deposition of a carbon-like layer. We show that using a 5-nm thick layer of silicon and additional ≤1-nm carbonated layer; we obtain agglomerates sizes ranging from 35 nm to 60 nm with respectively an agglomerate density ranging from 38 μm{sup −2} to 18 μm{sup −2}. Additionally, for the case of strained silicon films an alternative dewetting mechanism can be induced by monitoring the chemical composition of the sample surface.

  5. Thick melanoma in Tuscany.

    Science.gov (United States)

    Chiarugi, Alessandra; Nardini, Paolo; Borgognoni, Lorenzo; Brandani, Paola; Gerlini, Gianni; Rubegni, Pietro; Lamberti, Arianna; Salvini, Camilla; Lo Scocco, Giovanni; Cecchi, Roberto; Sirna, Riccardo; Lorenzi, Stefano; Gattai, Riccardo; Battistini, Silvio; Crocetti, Emanuele

    2017-03-14

    The epidemiologic trends of cutaneous melanoma are similar in several countries with a Western-type life style, where there is a progressive increasing incidence and a low but not decreasing mor- tality, or somewhere an increase too, especially in the older age groups. Also in Tuscany there is a steady rise in incidence with prevalence of in situ and invasive thin melanomas, with also an increase of thick melanomas. It is necessary to reduce the frequency of thick melanomas to reduce specific mortality. The objective of the current survey has been to compare, in the Tuscany population, by a case- case study, thin and thick melanoma cases, trying to find out those personal and tumour characteristics which may help to customize preventive interventions. RESULTS The results confirmed the age and the lower edu- cation level are associated with a later detection. The habit to perform skin self-examination is resulted protec- tive forward thick melanoma and also the diagnosis by a doctor. The elements emerging from the survey allow to hypothesize a group of subjects resulting at higher risk for a late diagnosis, aged over 50 and carrier of a fewer constitutional and environmental risk factors: few total and few atypical nevi, and lower sun exposure and burning. It is assumable that a part of people did not be reached from messages of prevention because does not recognize oneself in the categories of people at risk for skin cancers described in educational cam- paigns. If we want to obtain better results on diagnosis of skin melanoma we have to think a new strategy. At least to think over the educational messages discriminating people more at risk of incidence of melanoma from people more at risk to die from melanoma, and to renewed active involvement of the Gen- eral Practitioners .

  6. Niobium nitride Josephson junctions with silicon and germanium barriers

    International Nuclear Information System (INIS)

    Cukauskas, E.J.; Carter, W.L.

    1988-01-01

    Niobium nitride based junctions with silicon, germanium, and composite silicon/germanium barriers were fabricated and characterized for several barrier compositions. The current-voltage characteristics were analyzed at several temperatures using the Simmons model and numerical integration of the WKB approximation for the average barrier height and effective thickness. The zero voltage conductance was measured from 1.5 K to 300 K and compared to the Mott hopping conductivity model and the Stratton tunneling temperature dependence. Conductivity followed Mott conductivity at temperatures above 60 K for junctions with less than 100 angstrom thick barriers

  7. Thick brane solutions

    International Nuclear Information System (INIS)

    Dzhunushaliev, Vladimir; Minamitsuji, Masato; Folomeev, Vladimir

    2010-01-01

    This paper gives a comprehensive review on thick brane solutions and related topics. Such models have attracted much attention from many aspects since the birth of the brane world scenario. In many works, it has been usually assumed that a brane is an infinitely thin object; however, in more general situations, one can no longer assume this. It is also widely considered that more fundamental theories such as string theory would have a minimal length scale. Many multidimensional field theories coupled to gravitation have exact solutions of gravitating topological defects, which can represent our brane world. The inclusion of brane thickness can realize a variety of possible brane world models. Given our understanding, the known solutions can be classified into topologically non-trivial solutions and trivial ones. The former class contains solutions of a single scalar (domain walls), multi-scalar, gauge-Higgs (vortices), Weyl gravity and so on. As an example of the latter class, we consider solutions of two interacting scalar fields. Approaches to obtain cosmological equations in the thick brane world are reviewed. Solutions with spatially extended branes (S-branes) and those with an extra time-like direction are also discussed.

  8. Metallization of DNA on silicon surface

    International Nuclear Information System (INIS)

    Puchkova, Anastasiya Olegovna; Sokolov, Petr; Petrov, Yuri Vladimirovich; Kasyanenko, Nina Anatolievna

    2011-01-01

    New simple way for silver deoxyribonucleic acid (DNA)-based nanowires preparation on silicon surface was developed. The electrochemical reduction of silver ions fixed on DNA molecule provides the forming of tightly matched zonate silver clusters. Highly homogeneous metallic clusters have a size about 30 nm. So the thickness of nanowires does not exceed 30–50 nm. The surface of n-type silicon monocrystal is the most convenient substrate for this procedure. The comparative analysis of DNA metallization on of n-type silicon with a similar way for nanowires fabrication on p-type silicon, freshly cleaved mica, and glass surface shows the advantage of n-type silicon, which is not only the substrate for DNA fixation but also the source of electrons for silver reduction. Images of bound DNA molecules and fabricated nanowires have been obtained using an atomic force microscope and a scanning ion helium microscope. DNA interaction with silver ions in a solution was examined by the methods of ultraviolet spectroscopy and circular dichroism.

  9. Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass.

    Science.gov (United States)

    Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger

    2015-09-02

    In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.

  10. Micro filtration membrane sieve with silicon micro machining for industrial and biomedical applications

    NARCIS (Netherlands)

    van Rijn, C.J.M.; Elwenspoek, Michael Curt

    1995-01-01

    With the use of silicon micromachining an inorganic membrane sieve for microfiltration is constructed, having a siliconnitride membrane layer with thickness typically 1 pm and perforations typically between 0.5 pm and 10 pm in diameter. As a support a -silicon wafer with openings of loo0 pm in

  11. Operation of a high-purity silicon diode alpha particle detector at 1.4 K

    International Nuclear Information System (INIS)

    Martoff, C.J.; Kaczanowicz, E.; Neuhauser, B.J.; Lopez, E.; Zhang, Y.; Ziemba, F.P.

    1991-01-01

    Detection of alpha particles at temperatures as low as 1.4 K was demonstrated using a specially fabricated Si diode. The diode was 475 mm 2 by 0.280 mm thick, fabricated from high-purity silicon with degenerately doped contacts. This is an important step toward development of dual-mode (ionization plus phonon) silicon detectors for low energy radiation. (orig.)

  12. Full reflector thickness and isolation thickness on neutron transport

    International Nuclear Information System (INIS)

    Sakai, Tomohiro; Naito, Yoshitaka; Komuro, Yuichi.

    1988-08-01

    A method to determine ''full reflector thickness'' and ''isolation thickness'', which is utilized for criticality safety evaluation on nuclear fuel facilities, was proposed in this paper. Firstly, a calculation was tryed to obtain the two kinds of thicknesses from the result of criticality calculations for a specific case. Then, two simple equations which calculates the two kinds of thicknesses were made from the relation between reflector (or isolator) thickness and k eff , and one-group diffusion theory. Finally, we proposed a new method to determine the thicknesses. From the method we proposed, ''full reflector thickness'' and ''isolation thickness'' can be obtain using the equations and migration length of the reflector (or isolator) and infinite and effective multiplication factor of the fuel. (author)

  13. Chiral silicon nanostructures

    International Nuclear Information System (INIS)

    Schubert, E.; Fahlteich, J.; Hoeche, Th.; Wagner, G.; Rauschenbach, B.

    2006-01-01

    Glancing angle ion beam assisted deposition is used for the growth of amorphous silicon nanospirals onto [0 0 1] silicon substrates in a temperature range from room temperature to 475 deg. C. The nanostructures are post-growth annealed in an argon atmosphere at various temperatures ranging from 400 deg. C to 800 deg. C. Recrystallization of silicon within the persisting nanospiral configuration is demonstrated for annealing temperatures above 800 deg. C. Transmission electron microscopy and Raman spectroscopy are used to characterize the silicon samples prior and after temperature treatment

  14. Silicon web process development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  15. Comparative study of the biodegradability of porous silicon films in simulated body fluid.

    Science.gov (United States)

    Peckham, J; Andrews, G T

    2015-01-01

    The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.

  16. SONOS memories with embedded silicon nanocrystals in nitride

    International Nuclear Information System (INIS)

    Liu, Mei-Chun; Chiang, Tsung-Yu; Chao, Tien-Sheng; Kuo, Po-Yi; Lei, Tan-Fu; Chou, Ming-Hong; Wu, Yi-Hong; Cheng, Ching-Hwa; Liu, Sheng-Hsien; Yang, Wen-Luh; You, Hsin-Chiang

    2008-01-01

    We have successfully demonstrated SONOS memories with embedded Si-NCs in silicon nitride. This new structure exhibits excellent characteristics in terms of larger memory windows and longer retention time compared to control devices. Using the same thickness 2.5 nm of the bottom tunneling oxide, we found that N 2 O is better than O 2 oxide. Retention property is improved when the thickness of N 2 O is increased to 3.0 nm

  17. Determination of accurate metal silicide layer thickness by RBS

    International Nuclear Information System (INIS)

    Kirchhoff, J.F.; Baumann, S.M.; Evans, C.; Ward, I.; Coveney, P.

    1995-01-01

    Rutherford Backscattering Spectrometry (RBS) is a proven useful analytical tool for determining compositional information of a wide variety of materials. One of the most widely utilized applications of RBS is the study of the composition of metal silicides (MSi x ), also referred to as polycides. A key quantity obtained from an analysis of a metal silicide is the ratio of silicon to metal (Si/M). Although compositional information is very reliable in these applications, determination of metal silicide layer thickness by RBS techniques can differ from true layer thicknesses by more than 40%. The cause of these differences lies in how the densities utilized in the RBS analysis are calculated. The standard RBS analysis software packages calculate layer densities by assuming each element's bulk densities weighted by the fractional atomic presence. This calculation causes large thickness discrepancies in metal silicide thicknesses because most films form into crystal structures with distinct densities. Assuming a constant layer density for a full spectrum of Si/M values for metal silicide samples improves layer thickness determination but ignores the underlying physics of the films. We will present results of RBS determination of the thickness various metal silicide films with a range of Si/M values using a physically accurate model for the calculation of layer densities. The thicknesses are compared to scanning electron microscopy (SEM) cross-section micrographs. We have also developed supporting software that incorporates these calculations into routine analyses. (orig.)

  18. Crystalline silicon films sputtered on molybdenum A study of the silicon-molybdenum interface

    Energy Technology Data Exchange (ETDEWEB)

    Reinig, P.; Fenske, F.; Fuhs, W.; Schoepke, A.; Selle, B

    2003-04-15

    Polycrystalline silicon films were grown on molybdenum (Mo)-coated substrates at high deposition rate using the pulsed magnetron sputtering technique. Our study investigates the silicon-molybdenum interface of these films to elucidate stimulating mechanisms for an ordered crystalline silicon thin film growth. Both Auger electron spectroscopy and Rutherford backscattering reveal that at a substrate temperature as low as T{sub S}=450 deg. C during the deposition process intermixing of Si and Mo at the Si-Mo interface takes place leading to a compositional ratio Mo:Si of about 1:2. By Raman spectroscopy hexagonal {beta}-MoSi{sub 2} could be identified as the dominant phase in this intermixed region. The dependence of the resulting thickness of the reacted interface layer on the deposition conditions is not fully understood yet.

  19. Crystalline silicon films sputtered on molybdenum A study of the silicon-molybdenum interface

    International Nuclear Information System (INIS)

    Reinig, P.; Fenske, F.; Fuhs, W.; Schoepke, A.; Selle, B.

    2003-01-01

    Polycrystalline silicon films were grown on molybdenum (Mo)-coated substrates at high deposition rate using the pulsed magnetron sputtering technique. Our study investigates the silicon-molybdenum interface of these films to elucidate stimulating mechanisms for an ordered crystalline silicon thin film growth. Both Auger electron spectroscopy and Rutherford backscattering reveal that at a substrate temperature as low as T S =450 deg. C during the deposition process intermixing of Si and Mo at the Si-Mo interface takes place leading to a compositional ratio Mo:Si of about 1:2. By Raman spectroscopy hexagonal β-MoSi 2 could be identified as the dominant phase in this intermixed region. The dependence of the resulting thickness of the reacted interface layer on the deposition conditions is not fully understood yet

  20. Passivation mechanism in silicon heterojunction solar cells with intrinsic hydrogenated amorphous silicon oxide layers

    Science.gov (United States)

    Deligiannis, Dimitrios; van Vliet, Jeroen; Vasudevan, Ravi; van Swaaij, René A. C. M. M.; Zeman, Miro

    2017-02-01

    In this work, we use intrinsic hydrogenated amorphous silicon oxide layers (a-SiOx:H) with varying oxygen content (cO) but similar hydrogen content to passivate the crystalline silicon wafers. Using our deposition conditions, we obtain an effective lifetime (τeff) above 5 ms for cO ≤ 6 at. % for passivation layers with a thickness of 36 ± 2 nm. We subsequently reduce the thickness of the layers using an accurate wet etching method to ˜7 nm and deposit p- and n-type doped layers fabricating a device structure. After the deposition of the doped layers, τeff appears to be predominantly determined by the doped layers themselves and is less dependent on the cO of the a-SiOx:H layers. The results suggest that τeff is determined by the field-effect rather than by chemical passivation.

  1. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  2. Radioactive thickness gauge (1962)

    International Nuclear Information System (INIS)

    Guizerix, J.

    1962-01-01

    The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I 1 /I 2 ) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author) [fr

  3. Thick-Big Descriptions

    DEFF Research Database (Denmark)

    Lai, Signe Sophus

    The paper discusses the rewards and challenges of employing commercial audience measurements data – gathered by media industries for profitmaking purposes – in ethnographic research on the Internet in everyday life. It questions claims to the objectivity of big data (Anderson 2008), the assumption...... communication systems, language and behavior appear as texts, outputs, and discourses (data to be ‘found’) – big data then documents things that in earlier research required interviews and observations (data to be ‘made’) (Jensen 2014). However, web-measurement enterprises build audiences according...... to a commercial logic (boyd & Crawford 2011) and is as such directed by motives that call for specific types of sellable user data and specific segmentation strategies. In combining big data and ‘thick descriptions’ (Geertz 1973) scholars need to question how ethnographic fieldwork might map the ‘data not seen...

  4. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gagorowska, B; Dus-Sitek, M [Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland)

    2007-08-15

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d{sub Cu} = 2 nm) and the thickness of Ni layer - variable (1 nm {<=} d{sub Ni} {<=} 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent.

  5. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Gagorowska, B; Dus-Sitek, M

    2007-01-01

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d Cu = 2 nm) and the thickness of Ni layer - variable (1 nm ≤ d Ni ≤ 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent

  6. Effects of pore design on mechanical properties of nanoporous silicon

    International Nuclear Information System (INIS)

    Winter, Nicholas; Becton, Matthew; Zhang, Liuyang; Wang, Xianqiao

    2017-01-01

    Nanoporous silicon has been emerging as a powerful building block for next-generation sensors, catalysts, transistors, and tissue scaffolds. The capability to design novel devices with desired mechanical properties is paramount to their reliability and serviceability. In order to bring further resolution to the highly variable mechanical characteristics of nanoporous silicon, here we perform molecular dynamics simulations to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling laws versus the features of interior ligaments. Results show that pore shape and pattern dictate stress accumulation inside the designed structure, leading to the corresponding failure signature, such as stretching-dominated, bending-dominated, or stochastic failure signatures, in nanoporous silicon. The nanostructure of the material is also seen to drive or mute size effects such as “smaller is stronger” and “smaller is ductile”. This investigation provides useful insight into the behavior of nanoporous silicon and how one might leverage its promising applications. - Graphical abstract: Molecular dynamics simulations are performed to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling trends versus the features of interior ligaments.

  7. Disentangling The Thick Concept Argument

    DEFF Research Database (Denmark)

    Blomberg, Olle

    2007-01-01

    Critics argue that non-cognitivism cannot adequately account for the existence and nature of some thick moral concepts. They use the existence of thick concepts as a lever in an argument against non-cognitivism, here called the Thick Concept Argument (TCA). While TCA is frequently invoked...

  8. Electrical transport in transverse direction through silicon carbon alloy multilayers containing regular size silicon quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Aparajita [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Kole, Arindam, E-mail: erak@iacs.res.in [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Dasgupta, Arup [Microscopy and Thermophysical Property Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chaudhuri, Partha [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2016-11-30

    Highlights: • Low temperature columnar growth of regular sized Si-quantum dots (Si-QDs) within a-SiC:H/μc-SiC:H multilayer structure by tuning the a-SiC:H layer thickness. • Thickness optimization of the a-SiC:H layers resulted in a sharp increase of the transverse current and a decrease of the trap concentrations. • The arrangements of the Si-QDs favor percolation paths for the transverse current. - Abstract: Electrical transport in the transverse direction has been studied through a series of hydrogenated silicon carbon alloy multilayers (SiC-MLs) deposited by plasma enhanced chemical vapor deposition method. Each SiC-ML consists of 30 cycles of the alternating layers of a nearly amorphous silicon carbide (a-SiC:H) and a microcrystalline silicon carbide (μc-SiC:H) that contains high density of silicon quantum dots (Si-QDs). A detailed investigation by cross sectional TEM reveals preferential growth of densely packed Si-QDs of regular sizes ∼4.8 nm in diameter in a vertically aligned columnar structure within the SiC-ML. More than six orders of magnitude increase in transverse current through the SiC-ML structure were observed for decrease in the a-SiC:H layer thickness from 13 nm to 2 nm. The electrical transport mechanism was established to be a combination of grain boundary or band tail hopping and Frenkel–Poole (F-P) type conduction depending on the temperature and externally applied voltage ranges. Evaluation of trap concentration within the multilayer structures from the fitted room temperature current voltage characteristics by F-P function shows reduction up-to two orders of magnitude indicating an improvement in the short range order in the a-SiC:H matrix for decrease in the thickness of a-SiC:H layer.

  9. Periodically poled silicon

    Science.gov (United States)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  10. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  11. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  12. Functionalization of 2D macroporous silicon under the high-pressure oxidation

    Science.gov (United States)

    Karachevtseva, L.; Kartel, M.; Kladko, V.; Gudymenko, O.; Bo, Wang; Bratus, V.; Lytvynenko, O.; Onyshchenko, V.; Stronska, O.

    2018-03-01

    Addition functionalization after high-pressure oxidation of 2D macroporous silicon structures is evaluated. X-ray diffractometry indicates formation of orthorhombic SiO2 phase on macroporous silicon at oxide thickness of 800-1200 nm due to cylindrical symmetry of macropores and high thermal expansion coefficient of SiO2. Pb center concentration grows with the splitting energy of LO- and TO-phonons and SiO2 thickness in oxidized macroporous silicon structures. This increase EPR signal amplitude and GHz radiation absorption and is promising for development of high-frequency devices and electronically controlled elements.

  13. A parametric study of laser induced ablation-oxidation on porous silicon surfaces

    International Nuclear Information System (INIS)

    De Stefano, Luca; Rea, Ilaria; Nigro, M Arcangela; Della Corte, Francesco G; Rendina, Ivo

    2008-01-01

    We have investigated the laser induced ablation-oxidation process on porous silicon layers having different porosities and thicknesses by non-destructive optical techniques. In particular, the interaction between a low power blue light laser and the porous silicon surfaces has been characterized by variable angle spectroscopic ellipsometry and Fourier transform infrared spectroscopy. The oxidation profiles etched on the porous samples can be tuned as functions of the layer porosity and laser fluence. Oxide stripes of width less than 2 μm and with thicknesses between 100 nm and 5 μm have been produced, depending on the porosity of the porous silicon, by using a 40 x focusing objective

  14. Suppressing segregation in highly phosphorus doped silicon monolayers

    NARCIS (Netherlands)

    Keizer, Joris; Kölling, Sebastian; Koenraad, Paul; Simmons, Michelle Y.

    2015-01-01

    Sharply defined dopant profiles and low resistivity are highly desired qualities in the microelectronic industry, and more recently, in the development of an all epitaxial Si:P based quantum computer. In this work, we use thin (monolayers thick) room temperature grown silicon layers, so-called

  15. Microstructure and Mechanical Aspects of Multicrystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Popovich, V.A.

    2013-01-01

    Due to pressure from the photovoltaic industry to decrease the cost of solar cell production, there is a tendency to reduce the thickness of silicon wafers. Unfortunately, wafers contain defects created by the various processing steps involved in solar cell production, which significantly reduce the

  16. Modular design of AFM probe with sputtered silicon tip

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, Jacob; Bouwstra, Siebe

    2001-01-01

    of the thin films constituting the cantilever. The AFM probe has an integrated tip made of a thick sputtered silicon layer, which is deposited after the probe has been defined and just before the cantilevers are released. The tips are so-called rocket tips made by reactive ion etching. We present probes...

  17. Y-Ba-Cu-O superconducting film on oxidized silicon

    International Nuclear Information System (INIS)

    Gupta, R.P.; Khokle, W.S.; Dubey, R.C.; Singhal, S.; Nagpal, K.C.; Rao, G.S.T.; Jain, J.D.

    1988-01-01

    We report thick superconducting films of Y-Ba-Cu-O on oxidized silicon substrates. The critical temperatures for onset and zero resistance are 96 and 77 K, respectively. X-ray diffraction analysis predicts 1, 2, 3 composition and orthorhombic phase of the film

  18. Polarization effects in silicon-clad optical waveguides

    Science.gov (United States)

    Carson, R. F.; Batchman, T. E.

    1984-01-01

    By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.

  19. Direct Electroplating on Highly Doped Patterned Silicon Wafers

    NARCIS (Netherlands)

    Vargas Llona, Laura Dolores; Jansen, Henricus V.; Elwenspoek, Michael Curt

    Nickel thin films have been electrodeposited directly on highly doped silicon wafers after removal of the native oxide layer. These substrates conduct sufficiently well to allow deposition using a periferical electrical contact on the wafer. Films 2 μm thick were deposited using a nickel sulfamate

  20. ULTRATHIN SILICON MEMBRANES TO STUDY SUPERCURRENT TRANSPORT IN CRYSTALLINE SEMICONDUCTORS

    NARCIS (Netherlands)

    VANHUFFELEN, WM; DEBOER, MJ; KLAPWIJK, TM

    1991-01-01

    We have developed a two-step anisotropic etching process to fabricate thin silicon membranes, used to study supercurrent transport in semiconductor coupled weak links. The process uses a shallow BF2+ implantation, and permits easy control of membrane thickness less-than-or-equal-to 100 nm.

  1. Light propagation in one-dimensional porous silicon complex systems

    NARCIS (Netherlands)

    Oton, C.J.; Dal Negro, L.; Gaburro, Z.; Pavesi, L.; Johnson, P.J.; Lagendijk, Aart; Wiersma, D.S.

    2003-01-01

    We discuss the optical properties of one-dimensional complex dielectric systems, in particular the time-resolved transmission through thick porous silicon quasiperiodic multi-layers. Both in numerical calculations and experiments we find dramatic distortion effects, i.e. pulse stretching and

  2. Electrochemical impedance spectroscopy of oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Guido, E-mail: guido.mula@unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Tiddia, Maria V. [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Falqui, Andrea [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Palmas, Simonetta; Mascia, Michele [Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza d' Armi, 09126 Cagliari (Italy)

    2014-04-01

    We present a study of the electrochemical oxidation process of porous silicon. We analyze the effect of the layer thickness (1.25–22 μm) and of the applied current density (1.1–11.1 mA/cm{sup 2}, values calculated with reference to the external samples surface) on the oxidation process by comparing the galvanostatic electrochemical impedance spectroscopy (EIS) measurements and the optical specular reflectivity of the samples. The results of EIS were interpreted using an equivalent circuit to separate the contribution of different sample parts. A different behavior of the electrochemical oxidation process has been found for thin and thick samples: whereas for thin samples the oxidation process is univocally related to current density and thickness, for thicker samples this is no more true. Measurements by Energy Dispersive Spectroscopy using a Scanning Electron Microscopy confirmed that the inhomogeneity of the electrochemical oxidation process is increased by higher thicknesses and higher currents. A possible explanation is proposed to justify the different behavior of thin and thick samples during the electrochemical process. - Highlights: • A multidisciplinary approach on porous Si electrochemical oxidation is proposed. • Electrochemical, optical, and structural characterizations are used. • Layer thickness and oxidation current effects are shown. • An explanation of the observed behavior is proposed.

  3. Low temperature spalling of silicon: A crack propagation study

    Energy Technology Data Exchange (ETDEWEB)

    Bertoni, Mariana; Uberg Naerland, Tine; Stoddard, Nathan; Guimera Coll, Pablo

    2017-06-08

    Spalling is a promising kerfless method for cutting thin silicon wafers while doubling the yield of a silicon ingot. The main obstacle in this technology is the high total thickness variation of the spalled wafers, often as high as 100% of the wafer thickness. It has been suggested before that a strong correlation exists between low crack velocities and a smooth surface, but this correlation has never been shown during a spalling process in silicon. The reason lies in the challenge associated to measuring such velocities. In this contribution, we present a new approach to assess, in real time, the crack velocity as it propagates during a low temperature spalling process. Understanding the relationship between crack velocity and surface roughness during spalling can pave the way to attain full control on the surface quality of the spalled wafer.

  4. Photoconduction in silicon rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Lopez, J A; Carrillo-Lopez, J; Flores-Gracia, F J; Garcia-Salgado, G [CIDS-ICUAP, Benemerita Universidad Autonoma de Puebla. Ed. 103 D and C, col. San Manuel, Puebla, Pue. Mexico 72570 (Mexico); Aceves-Mijares, M; Morales-Sanchez, A, E-mail: jluna@buap.siu.m, E-mail: jluna@inaoep.m [INAOE, Luis Enrique Erro No. 1, Apdo. 51, Tonantzintla, Puebla, Mexico 72000 (Mexico)

    2009-05-01

    Photoconduction of silicon rich oxide (SRO) thin films were studied by current-voltage (I-V) measurements, where ultraviolet (UV) and white (Vis) light illumination were applied. SRO thin films were deposited by low pressure chemical vapour deposition (LPCVD) technique, using SiH{sub 4} (silane) and N{sub 2}O (nitrous oxide) as reactive gases at 700 {sup 0}. The gas flow ratio, Ro = [N{sub 2}O]/[SiH{sub 4}] was used to control the silicon excess. The thickness and refractive index of the SRO films were 72.0 nm, 75.5 nm, 59.1 nm, 73.4 nm and 1.7, 1.5, 1.46, 1.45, corresponding to R{sub o} = 10, 20, 30 and 50, respectively. These results were obtained by null ellipsometry. Si nanoparticles (Si-nps) and defects within SRO films permit to obtain interesting photoelectric properties as a high photocurrent and photoconduction. These effects strongly depend on the silicon excess, thickness and structure type. Two different structures (Al/SRO/Si and Al/SRO/SRO/Si metal-oxide-semiconductor (MOS)-like structures) were fabricated and used as devices. The photocurrent in these structures is dominated by the generation of carriers due to the incident photon energies ({approx}3.0-1.6 eV and 5 eV). These structures showed large photoconductive response at room temperature. Therefore, these structures have potential applications in optoelectronics devices.

  5. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  6. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed; Rubin, Andrew; Refaat, Mohamed; Sedky, Sherif; Abdo, Mohammad

    2014-01-01

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  7. Model for thickness dependence of radiation charging in MOS structures

    Science.gov (United States)

    Viswanathan, C. R.; Maserjian, J.

    1976-01-01

    The model considers charge buildup in MOS structures due to hole trapping in the oxide and the creation of sheet charge at the silicon interface. The contribution of hole trapping causes the flatband voltage to increase with thickness in a manner in which square and cube dependences are limiting cases. Experimental measurements on samples covering a 200 - 1000 A range of oxide thickness are consistent with the model, using independently obtained values of hole-trapping parameters. An important finding of our experimental results is that a negative interface charge contribution due to surface states created during irradiation compensates most of the positive charge in the oxide at flatband. The tendency of the surface states to 'track' the positive charge buildup in the oxide, for all thicknesses, applies both in creation during irradiation and in annihilation during annealing. An explanation is proposed based on the common defect origin of hole traps and potential surface states.

  8. Rapid microcantilever-thickness determination by optical interferometry

    International Nuclear Information System (INIS)

    Salmon, Andrew R; Capener, Matthew J; Elliott, Stephen R; Baumberg, Jeremy J

    2014-01-01

    Silicon microcantilevers are widely used in scanning-probe microscopy and in cantilever-sensing applications. However, the cantilever thickness is not well controlled in conventional lithography and, since it is also difficult to measure, it is the most important undefined factor in mechanical variability. An accurate method to measure this parameter is thus essential. We demonstrate the capability to measure microcantilever thicknesses rapidly (>1 Hz) and accurately (±2 nm) by optical interferometry. This is achieved with standard microscopy equipment and so can be implemented as a standard technique in both research and in batch control for commercial microfabrication. In addition, we show how spatial variations in the thickness of individual microcantilevers can be mapped, which has applications in the precise mechanical calibration of cantilevers for force spectroscopy. (paper)

  9. Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100)

    KAUST Repository

    Sevilla, Galo T.

    2013-07-09

    Flexible and semi-transparent high performance thermoelectric energy harvesters are fabricated on low cost bulk mono-crystalline silicon (100) wafers. The released silicon is only 3.6% as thick as bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. This generic batch processing is a pragmatic way of transforming traditional silicon circuitry for extremely deformable high-performance integrated electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100)

    KAUST Repository

    Sevilla, Galo T.; Inayat, Salman Bin; Rojas, Jhonathan Prieto; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2013-01-01

    Flexible and semi-transparent high performance thermoelectric energy harvesters are fabricated on low cost bulk mono-crystalline silicon (100) wafers. The released silicon is only 3.6% as thick as bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. This generic batch processing is a pragmatic way of transforming traditional silicon circuitry for extremely deformable high-performance integrated electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of ion implantation on charges in the silicon--silicon dioxide system

    International Nuclear Information System (INIS)

    Learn, A.J.; Hess, D.W.

    1977-01-01

    Structures consisting of thermally grown oxide on silicon were implanted with boron, arsenic, or argon ions. For argon implantation through oxides, an increased fixed oxide charge (Q/sub ss/) was observed with the increase being greater for than for silicon. This effect is attributed to oxygen recoil which produces additional excess ionized silicon in the oxide of a type similar to that arising in thermal oxidation. Fast surface state (N/sub st/) generation was also noted which in most cases obscured the Q/sub ss/ increase. Of various heat treatments tested, only a 900 degreeC anneal in hydrogen annihilated N/sub st/ and allowed Q/sub ss/ measurement. Such N/sub st/ apparently arises as a consequence of implantation damage at the silicon--silicon dioxide interface. With the exception of boron implantations into thick oxides or through aluminum electrodes, reduction of the mobile ionic charge (Q/sub o/) was achieved by implantation. The reduction again is presumably damage related and is not negated by high-temperature annealing but may be counterbalanced by aluminum incorporation in the oxide

  12. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martini, R., E-mail: roberto.martini@imec.be [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Kepa, J.; Stesmans, A. [Department of Physics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Poortmans, J. [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt (Belgium)

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  13. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    International Nuclear Information System (INIS)

    Martini, R.; Kepa, J.; Stesmans, A.; Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I.; Poortmans, J.

    2014-01-01

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  14. Sunlight-thin nanophotonic monocrystalline silicon solar cells

    Science.gov (United States)

    Depauw, Valérie; Trompoukis, Christos; Massiot, Inès; Chen, Wanghua; Dmitriev, Alexandre; Cabarrocas, Pere Roca i.; Gordon, Ivan; Poortmans, Jef

    2017-09-01

    Introducing nanophotonics into photovoltaics sets the path for scaling down the surface texture of crystalline-silicon solar cells from the micro- to the nanoscale, allowing to further boost the photon absorption while reducing silicon material loss. However, keeping excellent electrical performance has proven to be very challenging, as the absorber is damaged by the nanotexturing and the sensitivity to the surface recombination is dramatically increased. Here we realize a light-wavelength-scale nanotextured monocrystalline silicon cell with the confirmed efficiency of 8.6% and an effective thickness of only 830 nm. For this we adopt a self-assembled large-area and industry-compatible amorphous ordered nanopatterning, combined with an advanced surface passivation, earning strongly enhanced solar light absorption while retaining efficient electron collection. This prompts the development of highly efficient flexible and semitransparent photovoltaics, based on the industrially mature monocrystalline silicon technology.

  15. Electroless siliconizing Fe-3% Cr-3% Si alloy

    International Nuclear Information System (INIS)

    Nurlina, Enung; Darmono, Budy; Purwadaria, Sunara

    2000-01-01

    In this research Fe-3%Cr-3%Mo-3%Si and Fe-3%Cr-3%Cu-3%Si alloys had been coated by silicon metal without electricity current which knows as electroless siliconizing. Coating was conducted by immersed sampler into melt fluoride-chloride salt bath at temperature of 750 o C for certain period. The layer consisted of Fe3Si phase. Observation by microscope optic and EDAX showed that the silicide layer were thick enough, adherent, free for crack and had silicon content on the surface more than 15%. The growth rate of silicide layer followed parabolic rate law, where the process predominantly controlled by interdiffusion rate in the solid phase. Key words : electroless siliconizing, the melt fluoride- chloride salt mix, silicide layer

  16. Amorphous silicon as high index photonic material

    Science.gov (United States)

    Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.

    2009-05-01

    Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.

  17. Electroplated thick-film cobalt platinum permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Oniku, Ololade D.; Qi, Bin; Arnold, David P., E-mail: darnold@ufl.edu

    2016-10-15

    The material and magnetic properties of multi-micron-thick (up to 6 μm) L1{sub 0} CoPt magnetic films electroplated onto silicon substrates are investigated as candidate materials for integration in silicon-based microsystems. The influence of various process conditions on the structure and magnetic properties of electroplated CoPt thick-films is studied in order to better understand the complex process/structure/property relationships associated with the electroplated films. Process variables studied here include different seed layers, electroplating current densities (ranging from 25–200 mA/cm{sup 2}), deposition times (up to 60 min), and post-deposition annealing times and temperatures. Analyses include film morphology, film thickness, composition, surface roughness, grain size, phase volume fractions, and L1{sub 0} ordering parameter. Key correlations are found relating process and structure variations to the extrinsic magnetic properties (remanence, coercivity, squareness, and energy product). Strong hard magnetic properties (B{sub r} ~0.8 T, H{sub ci} ~800 kA/m, squareness close to 0.9, and BH{sub max} of 100 kJ/m{sup 3}) are obtained for films deposited on Si/TiN/Ti/Cu at current densities of 100 mA/cm{sup 2}, pH of 7, and subsequently annealed at 675 °C for 30 min. - Highlights: • CoPt films plated up to 6 μm thick on silicon substrates. • A1 to L1{sub 0} phase transformation by annealing in forming gas. • Various process–structure–property relationships explored. • Key results: B{sub r} ~0.8 T, H{sub ci} ~800 kA/m, squareness 0.9, and BH{sub max} ~100 kJ/m{sup 3}.

  18. Electroplated thick-film cobalt platinum permanent magnets

    International Nuclear Information System (INIS)

    Oniku, Ololade D.; Qi, Bin; Arnold, David P.

    2016-01-01

    The material and magnetic properties of multi-micron-thick (up to 6 μm) L1 0 CoPt magnetic films electroplated onto silicon substrates are investigated as candidate materials for integration in silicon-based microsystems. The influence of various process conditions on the structure and magnetic properties of electroplated CoPt thick-films is studied in order to better understand the complex process/structure/property relationships associated with the electroplated films. Process variables studied here include different seed layers, electroplating current densities (ranging from 25–200 mA/cm 2 ), deposition times (up to 60 min), and post-deposition annealing times and temperatures. Analyses include film morphology, film thickness, composition, surface roughness, grain size, phase volume fractions, and L1 0 ordering parameter. Key correlations are found relating process and structure variations to the extrinsic magnetic properties (remanence, coercivity, squareness, and energy product). Strong hard magnetic properties (B r ~0.8 T, H ci ~800 kA/m, squareness close to 0.9, and BH max of 100 kJ/m 3 ) are obtained for films deposited on Si/TiN/Ti/Cu at current densities of 100 mA/cm 2 , pH of 7, and subsequently annealed at 675 °C for 30 min. - Highlights: • CoPt films plated up to 6 μm thick on silicon substrates. • A1 to L1 0 phase transformation by annealing in forming gas. • Various process–structure–property relationships explored. • Key results: B r ~0.8 T, H ci ~800 kA/m, squareness 0.9, and BH max ~100 kJ/m 3 .

  19. Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite

    Science.gov (United States)

    Rogers, D. C.; Shuford, D. M.; Mueller, J. I.

    1975-01-01

    Results are presented for a study to determine the mechanisms involved in a high-temperature pack cementation process which provides a silicon carbide coating on a carbon-carbon composite. The process and materials used are physically and chemically analyzed. Possible reactions are evaluated using the results of these analytical data. The coating is believed to develop in two stages. The first is a liquid controlled phase process in which silicon carbide is formed due to reactions between molten silicon metal and the carbon. The second stage is a vapor transport controlled reaction in which silicon vapors react with the carbon. There is very little volume change associated with the coating process. The original thickness changes by less than 0.7%. This indicates that the coating process is one of reactive penetration. The coating thickness can be increased or decreased by varying the furnace cycle process time and/or temperature to provide a wide range of coating thicknesses.

  20. The role of extra-atomic relaxation in determining Si2p binding energy shifts at silicon/silicon oxide interfaces

    International Nuclear Information System (INIS)

    Zhang, K.Z.; Greeley, J.N.; Banaszak Holl, M.M.; McFeely, F.R.

    1997-01-01

    The observed binding energy shift for silicon oxide films grown on crystalline silicon varies as a function of film thickness. The physical basis of this shift has previously been ascribed to a variety of initial state effects (Si endash O ring size, strain, stoichiometry, and crystallinity), final state effects (a variety of screening mechanisms), and extrinsic effects (charging). By constructing a structurally homogeneous silicon oxide film on silicon, initial state effects have been minimized and the magnitude of final state stabilization as a function of film thickness has been directly measured. In addition, questions regarding the charging of thin silicon oxide films on silicon have been addressed. From these studies, it is concluded that initial state effects play a negligible role in the thickness-dependent binding energy shift. For the first ∼30 Angstrom of oxide film, the thickness-dependent binding energy shift can be attributed to final state effects in the form of image charge induced stabilization. Beyond about 30 Angstrom, charging of the film occurs. copyright 1997 American Institute of Physics

  1. Systematic characterization and quality assurance of silicon micro-strip sensors for the Silicon Tracking System of the CBM experiment

    Science.gov (United States)

    Ghosh, P.

    2014-07-01

    The Silicon Tracking System (STS) is the central detector of the Compressed Baryonic Matter (CBM) experiment at future Facility for Anti-proton and Ion Research (FAIR) at Darmstadt. The task of the STS is to reconstruct trajectories of charged particles originating at relatively high multiplicities from the high rate beam-target interactions. The tracker comprises of 300 μm thick silicon double-sided micro-strip sensors. These sensors should be radiation hard in order to reconstruct charged particles up to a maximum radiation dose of 1 × 1014neqcm-2. Systematic characterization allows us to investigate the sensor response and perform quality assurance (QA) tests. In this paper, systematic characterization of prototype double-sided silicon micro-strip sensors will be discussed. This procedure includes visual, passive electrical, and radiation hardness test. Presented results include tests on three different prototypes of silicon micro-strip sensors.

  2. Systematic characterization and quality assurance of silicon micro-strip sensors for the Silicon Tracking System of the CBM experiment

    International Nuclear Information System (INIS)

    Ghosh, P

    2014-01-01

    The Silicon Tracking System (STS) is the central detector of the Compressed Baryonic Matter (CBM) experiment at future Facility for Anti-proton and Ion Research (FAIR) at Darmstadt. The task of the STS is to reconstruct trajectories of charged particles originating at relatively high multiplicities from the high rate beam-target interactions. The tracker comprises of 300 μm thick silicon double-sided micro-strip sensors. These sensors should be radiation hard in order to reconstruct charged particles up to a maximum radiation dose of 1 × 10 14 n eq cm −2 . Systematic characterization allows us to investigate the sensor response and perform quality assurance (QA) tests. In this paper, systematic characterization of prototype double-sided silicon micro-strip sensors will be discussed. This procedure includes visual, passive electrical, and radiation hardness test. Presented results include tests on three different prototypes of silicon micro-strip sensors

  3. Fabrication of a novel silicon single electron transistor for Si:P quantum computer devices

    International Nuclear Information System (INIS)

    Angus, S.J.; Smith, C.E.A.; Gauja, E.; Dzurak, A.S.; Clark, R.G.; Snider, G.L.

    2004-01-01

    Full text: Quantum computation relies on the successful measurement of quantum states. Single electron transistors (SETs) are known to be able to perform fast and sensitive charge measurements of solid state qubits. However, due to their sensitivity, SETs are also very susceptible to random charge fluctuations in a solid-state materials environment. In previous dc transport measurements, silicon-based SETs have demonstrated greater charge stability than A1/A1 2 O 3 SETs. We have designed and fabricated a novel silicon SET architecture for a comparison of the noise characteristics of silicon and aluminium based devices. The silicon SET described here is designed for controllable and reproducible low temperature operation. It is fabricated using a novel dual gate structure on a silicon-on-insulator substrate. A silicon quantum wire is formed in a 100nm thick high-resistivity superficial silicon layer using reactive ion etching. Carriers are induced in the silicon wire by a back gate in the silicon substrate. The tunnel barriers are created electrostatically, using lithographically defined metallic electrodes (∼40nm width). These tunnel barriers surround the surface of the quantum wire, thus producing excellent electrostatic confinement. This architecture provides independent control of tunnel barrier height and island occupancy, thus promising better control of Coulomb blockade oscillations than in previously investigated silicon SETs. The use of a near intrinsic silicon substrate offers compatibility with Si:P qubits in the longer term

  4. Process for making silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  5. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  6. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-02-25

    In today\\'s traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry\\'s most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. © 2014 American Chemical Society.

  7. SOI silicon on glass for optical MEMS

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Ravnkilde, Jan Tue; Hansen, Ole

    2003-01-01

    and a final sealing at the interconnects can be performed using a suitable polymer. Packaged MEMS on glass are advantageous within Optical MEMS and for sensitive capacitive devices. We report on experiences with bonding SOI to Pyrex. Uniform DRIE shallow and deep etching was achieved by a combination......A newly developed fabrication method for fabrication of single crystalline Si (SCS) components on glass, utilizing Deep Reactive Ion Etching (DRIE) of a Silicon On Insulator (SOI) wafer is presented. The devices are packaged at wafer level in a glass-silicon-glass (GSG) stack by anodic bonding...... of an optimized device layout and an optimized process recipe. The behavior of the buried oxide membrane when used as an etch stop for the through-hole etch is described. No harmful buckling or fracture of the membrane is observed for an oxide thickness below 1 μm, but larger and more fragile released structures...

  8. Amorphous silicon-based microchannel plates

    International Nuclear Information System (INIS)

    Franco, Andrea; Riesen, Yannick; Wyrsch, Nicolas; Dunand, Sylvain; Powolny, François; Jarron, Pierre; Ballif, Christophe

    2012-01-01

    Microchannel plates (MCP) based on hydrogenated amorphous silicon (a-Si:H) were recently introduced to overcome some of the limitations of crystalline silicon and glass MCP. The typical thickness of a-Si:H based MCPs (AMCP) ranges between 80 and 100 μm and the micromachining of the channels is realized by deep reactive ion etching (DRIE). Advantages and issues regarding the fabrication process are presented and discussed. Electron amplification is demonstrated and analyzed using Electron Beam Induced Current (EBIC) technique. The gain increases as a function of the bias voltage, limited to −340 V on account of high leakage currents across the structure. EBIC maps on 10° tilted samples confirm that the device active area extend to the entire channel opening. AMCP characterization with the electron beam shows gain saturation and signal quenching which depends on the effectiveness of the charge replenishment in the channel walls.

  9. Neutron spectrometry with a monolithic silicon telescope.

    Science.gov (United States)

    Agosteo, S; D'Angelo, G; Fazzi, A; Para, A Foglio; Pola, A; Zotto, P

    2007-01-01

    A neutron spectrometer was set-up by coupling a polyethylene converter with a monolithic silicon telescope, consisting of a DeltaE and an E stage-detector (about 2 and 500 microm thick, respectively). The detection system was irradiated with monoenergetic neutrons at INFN-Laboratori Nazionali di Legnaro (Legnaro, Italy). The maximum detectable energy, imposed by the thickness of the E stage, is about 8 MeV for the present detector. The scatter plots of the energy deposited in the two stages were acquired using two independent electronic chains. The distributions of the recoil-protons are well-discriminated from those due to secondary electrons for energies above 0.350 MeV. The experimental spectra of the recoil-protons were compared with the results of Monte Carlo simulations using the FLUKA code. An analytical model that takes into account the geometrical structure of the silicon telescope was developed, validated and implemented in an unfolding code. The capability of reproducing continuous neutron spectra was investigated by irradiating the detector with neutrons from a thick beryllium target bombarded with protons. The measured spectra were compared with data taken from the literature. Satisfactory agreement was found.

  10. Silicon micromachined vibrating gyroscopes

    Science.gov (United States)

    Voss, Ralf

    1997-09-01

    This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.

  11. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  12. Silicon etch process

    International Nuclear Information System (INIS)

    Day, D.J.; White, J.C.

    1984-01-01

    A silicon etch process wherein an area of silicon crystal surface is passivated by radiation damage and non-planar structure produced by subsequent anisotropic etching. The surface may be passivated by exposure to an energetic particle flux - for example an ion beam from an arsenic, boron, phosphorus, silicon or hydrogen source, or an electron beam. Radiation damage may be used for pattern definition and/or as an etch stop. Ethylenediamine pyrocatechol or aqueous potassium hydroxide anisotropic etchants may be used. The radiation damage may be removed after etching by thermal annealing. (author)

  13. Silicon integrated circuit process

    International Nuclear Information System (INIS)

    Lee, Jong Duck

    1985-12-01

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  14. Silicon integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Duck

    1985-12-15

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  15. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.; Peters, Craig; Brongersma, Mark; Cui, Yi; McGehee, Mike

    2010-01-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  16. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  17. Joining elements of silicon carbide

    International Nuclear Information System (INIS)

    Olson, B.A.

    1979-01-01

    A method of joining together at least two silicon carbide elements (e.g.in forming a heat exchanger) is described, comprising subjecting to sufficiently non-oxidizing atmosphere and sufficiently high temperature, material placed in space between the elements. The material consists of silicon carbide particles, carbon and/or a precursor of carbon, and silicon, such that it forms a joint joining together at least two silicon carbide elements. At least one of the elements may contain silicon. (author)

  18. Static and dynamic through thickness lamina properties of thick laminates

    NARCIS (Netherlands)

    Lahuerta, F.; Nijssen, R.P.L.; Van der Meer, F.P.; Sluys, L.J.

    2015-01-01

    Thick laminates are increasingly present in large composites structures such as wind turbine blades. Different factors are suspected to be involved in the decreased static and dynamic performance of thick laminates. These include the effect of self-heating, the scaling effect, and the manufacturing

  19. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  20. Advances in silicon nanophotonics

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Pu, Minhao

    Silicon has long been established as an ideal material for passive integrated optical circuitry due to its high refractive index, with corresponding strong optical confinement ability, and its low-cost CMOS-compatible manufacturability. However, the inversion symmetry of the silicon crystal lattice.......g. in high-bit-rate optical communication circuits and networks, it is vital that the nonlinear optical effects of silicon are being strongly enhanced. This can among others be achieved in photonic-crystal slow-light waveguides and in nano-engineered photonic-wires (Fig. 1). In this talk I shall present some...... recent advances in this direction. The efficient coupling of light between optical fibers and the planar silicon devices and circuits is of crucial importance. Both end-coupling (Fig. 1) and grating-coupling solutions will be discussed along with polarization issues. A new scheme for a hybrid III...

  1. Integrated silicon optoelectronics

    CERN Document Server

    Zimmermann, Horst

    2000-01-01

    'Integrated Silicon Optoelectronics'assembles optoelectronics and microelectronics The book concentrates on silicon as the major basis of modern semiconductor devices and circuits Starting from the basics of optical emission and absorption and from the device physics of photodetectors, the aspects of the integration of photodetectors in modern bipolar, CMOS, and BiCMOS technologies are discussed Detailed descriptions of fabrication technologies and applications of optoelectronic integrated circuits are included The book, furthermore, contains a review of the state of research on eagerly expected silicon light emitters In order to cover the topic of the book comprehensively, integrated waveguides, gratings, and optoelectronic power devices are included in addition Numerous elaborate illustrations promote an easy comprehension 'Integrated Silicon Optoelectronics'will be of value to engineers, physicists, and scientists in industry and at universities The book is also recommendable for graduate students speciali...

  2. Silicon microfabricated beam expander

    International Nuclear Information System (INIS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-01-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed

  3. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  4. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  5. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  6. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    International Nuclear Information System (INIS)

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-01-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing, between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection

  7. Electroless porous silicon formation applied to fabrication of boron-silica-glass cantilevers

    DEFF Research Database (Denmark)

    Teva, Jordi; Davis, Zachary James; Hansen, Ole

    2010-01-01

    This work describes the characterization and optimization of anisotropic formation of porous silicon in large volumes (0.5-1 mm3) of silicon by an electroless wet etching technique. The main goal is to use porous silicon as a sacrificial volume for bulk micromachining processes, especially in cases...... where etching of the full wafer thickness is needed. The porous silicon volume is formed by a metal-assisted etching in a wet chemical solution composed of hydrogen peroxide (30%), hydrofluoric acid (40%) and ethanol. This paper focuses on optimizing the etching conditions in terms of maximizing...... for bio-chemical sensors. The porous silicon volume is formed in an early step of the fabrication process, allowing easy handling of the wafer during all of the micromachining processes in the process flow. In the final process step, the porous silicon is quickly etched by immersing the wafer in a KOH...

  8. Nanostructured silicon for thermoelectric

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2011-06-01

    Thermoelectric modules convert thermal energy into electrical energy and vice versa. At present bismuth telluride is the most widely commercial used material for thermoelectric energy conversion. There are many applications where bismuth telluride modules are installed, mainly for refrigeration. However, bismuth telluride as material for energy generation in large scale has some disadvantages. Its availability is limited, it is hot stable at higher temperatures (>250°C) and manufacturing cost is relatively high. An alternative material for energy conversion in the future could be silicon. The technological processing of silicon is well advanced due to the rapid development of microelectronics in recent years. Silicon is largely available and environmentally friendly. The operating temperature of silicon thermoelectric generators can be much higher than of bismuth telluride. Today silicon is rarely used as a thermoelectric material because of its high thermal conductivity. In order to use silicon as an efficient thermoelectric material, it is necessary to reduce its thermal conductivity, while maintaining high electrical conductivity and high Seebeck coefficient. This can be done by nanostructuring into arrays of pillars. Fabrication of silicon pillars using ICP-cryogenic dry etching (Inductive Coupled Plasma) will be described. Their uniform height of the pillars allows simultaneous connecting of all pillars of an array. The pillars have diameters down to 180 nm and their height was selected between 1 micron and 10 microns. Measurement of electrical resistance of single silicon pillars will be presented which is done in a scanning electron microscope (SEM) equipped with nanomanipulators. Furthermore, measurement of thermal conductivity of single pillars with different diameters using the 3ω method will be shown.

  9. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  10. Lighting emitting microstructures in porous silicon

    International Nuclear Information System (INIS)

    Squire, E.

    1999-01-01

    Experimental and theoretical techniques are used to examine microstructuring effects on the optical properties of single layer, multilayer, single and multiple microcavity structures fabricated from porous silicon. Two important issues regarding the effects of the periodic structuring of this material are discussed. Firstly, the precise role played by this microstructuring, given that the luminescence is distributed throughout the entire structure and the low porosity layers are highly absorbing at short wavelengths. The second issue examined concerns the observed effects on the optical spectra of the samples owing to the emission bandwidth of the material being greater than the optical stopband of the structure. Measurements of the reflectivity and photoluminescence spectra of different porous silicon microstructures are presented and discussed. The results are modelled using a transfer matrix technique. The matrix method has been modified to calculate the optical spectra of porous silicon specifically by accounting for the effects of dispersion, absorption and emission within the material. Layer thickness and porosity gradients have also been included in the model. The dielectric function of the two component layers (i.e. silicon and air) is calculated using the Looyenga formula. This approach can be adapted to suit other porous semiconductors if required. Examination of the experimental results have shown that the emitted light is strongly controlled by the optical modes of the structures. Furthermore, the data display an interplay of a wide variety of effects dependent upon the structural composition. Comparisons made between the experimental and calculated reflectivity and photoluminescence spectra of many different porous silicon microstructures show very good agreement. (author)

  11. Subwavelength silicon photonics

    International Nuclear Information System (INIS)

    Cheben, P.; Bock, P.J.; Schmid, J.H.; Lapointe, J.; Janz, S.; Xu, D.-X.; Densmore, A.; Delage, A.; Lamontagne, B.; Florjanczyk, M.; Ma, R.

    2011-01-01

    With the goal of developing photonic components that are compatible with silicon microelectronic integrated circuits, silicon photonics has been the subject of intense research activity. Silicon is an excellent material for confining and manipulating light at the submicrometer scale. Silicon optoelectronic integrated devices have the potential to be miniaturized and mass-produced at affordable cost for many applications, including telecommunications, optical interconnects, medical screening, and biological and chemical sensing. We review recent advances in silicon photonics research at the National Research Council Canada. A new type of optical waveguide is presented, exploiting subwavelength grating (SWG) effect. We demonstrate subwavelength grating waveguides made of silicon, including practical components operating at telecom wavelengths: input couplers, waveguide crossings and spectrometer chips. SWG technique avoids loss and wavelength resonances due to diffraction effects and allows for single-mode operation with direct control of the mode confinement by changing the refractive index of a waveguide core over a range as broad as 1.6 - 3.5 simply by lithographic patterning. The light can be launched to these waveguides with a coupling loss as small as 0.5 dB and with minimal wavelength dependence, using coupling structures similar to that shown in Fig. 1. The subwavelength grating waveguides can cross each other with minimal loss and negligible crosstalk which allows massive photonic circuit connectivity to overcome the limits of electrical interconnects. These results suggest that the SWG waveguides could become key elements for future integrated photonic circuits. (authors)

  12. Silicon microphotonic waveguides

    International Nuclear Information System (INIS)

    Ta'eed, V.; Steel, M.J.; Grillet, C.; Eggleton, B.; Du, J.; Glasscock, J.; Savvides, N.

    2004-01-01

    Full text: Silicon microphotonic devices have been drawing increasing attention in the past few years. The high index-difference between silicon and its oxide (Δn = 2) suggests a potential for high-density integration of optical functions on to a photonic chip. Additionally, it has been shown that silicon exhibits strong Raman nonlinearity, a necessary property as light interaction can occur only by means of nonlinearities in the propagation medium. The small dimensions of silicon waveguides require the design of efficient tapers to couple light to them. We have used the beam propagation method (RSoft BeamPROP) to understand the principles and design of an inverse-taper mode-converter as implemented in several recent papers. We report on progress in the design and fabrication of silicon-based waveguides. Preliminary work has been conducted by patterning silicon-on-insulator (SOI) wafers using optical lithography and reactive ion etching. Thus far, only rib waveguides have been designed, as single-mode ridge-waveguides are beyond the capabilities of conventional optical lithography. We have recently moved to electron beam lithography as the higher resolutions permitted will provide the flexibility to begin fabricating sub-micron waveguides

  13. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, R.; Lei, A.; Christiansen, T. L.

    2011-01-01

    We present a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The most common piezoelectric energy harvesting devices utilize a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric material...

  14. Homogeneity Analysis of a MEMS-based PZT Thick Film Vibration Energy Harvester Manufacturing Process

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Borregaard, Louise M.

    2012-01-01

    This paper presents a homogeneity analysis of a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibration energy harvesters aimed towards vibration sources with peak vibrations in the range of around 300Hz. A wafer with a yield of 91% (41/45 devices) has been...

  15. Soft chemical synthesis of silicon nanosheets and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Hideyuki; Ikuno, Takashi [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2016-12-15

    Two-dimensional silicon nanomaterials are expected to show different properties from those of bulk silicon materials by virtue of surface functionalization and quantum size effects. Since facile fabrication processes of large area silicon nanosheets (SiNSs) are required for practical applications, a development of soft chemical synthesis route without using conventional vacuum processes is a challenging issue. We have recently succeeded to prepare SiNSs with sub-nanometer thicknesses by exfoliating layered silicon compounds, and they are found to be composed of crystalline single-atom-thick silicon layers. In this review, we present the synthesis and modification methods of SiNSs. These SiNSs have atomically flat and smooth surfaces due to dense coverage of organic moieties, and they are easily self-assembled in a concentrated state to form a regularly stacked structure. We have also characterized the electron transport properties and the electronic structures of SiNSs. Finally, the potential applications of these SiNSs and organic modified SiNSs are also reviewed.

  16. X-ray and synchrotron studies of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sivkov, V. N., E-mail: svn@dm.komisc.ru [Russian Academy of Sciences, Komi Scientific Center, Ural Branch (Russian Federation); Lomov, A. A. [Russian Academy of Sciences, Physical-Technological Institute (Russian Federation); Vasil' ev, A. L. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Nekipelov, S. V. [Komi State Pedagogical Institute (Russian Federation); Petrova, O. V. [Russian Academy of Sciences, Komi Scientific Center, Ural Branch (Russian Federation)

    2013-08-15

    The results of comprehensive studies of layers of porous silicon of different conductivity types, grown by anodizing standard Si(111) substrates in an electrolyte based on fluoric acid and ethanol with the addition of 5% of iodine and kept in air for a long time, are discussed. Measurements are performed by scanning electron microscopy, high-resolution X-ray diffraction, and ultrasoft X-ray spectroscopy using synchrotron radiation. The structural parameters of the layers (thickness, strain, and porosity) and atomic and chemical composition of the porous-silicon surface are determined. It is found that an oxide layer 1.5-2.3-nm thick is formed on the surface of the silicon skeleton. The near-edge fine structure of the Si 2p absorption spectrum of this layer corresponds to the fine structure of the 2p spectrum of well coordinated SiO{sub 2}. In this case, the fine structure in the Si 2p-edge absorption region of the silicon skeleton is identical to that of the 2p absorption spectrum of crystalline silicon.

  17. Apparatus and method of manufacture for depositing a composite anti-reflection layer on a silicon surface

    Science.gov (United States)

    Pain, Bedabrata (Inventor)

    2012-01-01

    An apparatus and associated method are provided. A first silicon layer having at least one of an associated passivation layer and barrier is included. Also included is a composite anti-reflection layer including a stack of layers each with a different thickness and refractive index. Such composite anti-reflection layer is disposed adjacent to the first silicon layer.

  18. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  19. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlö gl, Udo

    2015-01-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  20. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  1. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  2. Optimum target thickness for polarimeters

    International Nuclear Information System (INIS)

    Sitnik, I.M.

    2003-01-01

    Polarimeters with thick targets are a tool to measure the proton polarization. But the question about the optimum target thickness is still the subject of discussion. An attempt to calculate the most common parameters concerning this problem, in a few GeV region, is made

  3. Thin dielectric film thickness determination by advanced transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, A.C.; Foran, B.; Kisielowski, C.; Muller, D.; Pennycook, S.; Principe, E.; Stemmer, S.

    2003-09-01

    High Resolution Transmission Electron Microscopy (HR-TEM) has been used as the ultimate method of thickness measurement for thin films. The appearance of phase contrast interference patterns in HR-TEM images has long been confused as the appearance of a crystal lattice by non-specialists. Relatively easy to interpret crystal lattice images are now directly observed with the introduction of annular dark field detectors for scanning TEM (STEM). With the recent development of reliable lattice image processing software that creates crystal structure images from phase contrast data, HR-TEM can also provide crystal lattice images. The resolution of both methods was steadily improved reaching now into the sub Angstrom region. Improvements in electron lens and image analysis software are increasing the spatial resolution of both methods. Optimum resolution for STEM requires that the probe beam be highly localized. In STEM, beam localization is enhanced by selection of the correct aperture. When STEM measurement is done using a highly localized probe beam, HR-TEM and STEM measurement of the thickness of silicon oxynitride films agree within experimental error. In this paper, the optimum conditions for HR-TEM and STEM measurement are discussed along with a method for repeatable film thickness determination. The impact of sample thickness is also discussed. The key result in this paper is the proposal of a reproducible method for film thickness determination.

  4. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  5. TXRF analysis of trace metals in thin silicon nitride films

    International Nuclear Information System (INIS)

    Vereecke, G.; Arnauts, S.; Verstraeten, K.; Schaekers, M.; Heyrts, M.M.

    2000-01-01

    As critical dimensions of integrated circuits continue to decrease, high dielectric constant materials such as silicon nitride are being considered to replace silicon dioxide in capacitors and transistors. The achievement of low levels of metal contamination in these layers is critical for high performance and reliability. Existing methods of quantitative analysis of trace metals in silicon nitride require high amounts of sample (from about 0.1 to 1 g, compared to a mass of 0.2 mg for a 2 nm thick film on a 8'' silicon wafer), and involve digestion steps not applicable to films on wafers or non-standard techniques such as neutron activation analysis. A novel approach has recently been developed to analyze trace metals in thin films with analytical techniques currently used in the semiconductor industry. Sample preparation consists of three steps: (1) decomposition of the silicon nitride matrix by moist HF condensed at the wafer surface to form ammonium fluosilicate. (2) vaporization of the fluosilicate by a short heat treatment at 300 o C. (3) collection of contaminants by scanning the wafer surface with a solution droplet (VPD-DSC procedure). The determination of trace metals is performed by drying the droplet on the wafer and by analyzing the residue by TXRF, as it offers the advantages of multi-elemental analysis with no dilution of the sample. The lower limits of detection for metals in 2 nm thick films on 8'' silicon wafers range from about 10 to 200 ng/g. The present study will focus on the matrix effects and the possible loss of analyte associated with the evaporation of the fluosilicate salt, in relation with the accuracy and the reproducibility of the method. The benefits of using an internal standard will be assessed. Results will be presented from both model samples (ammonium fluoride contaminated with metallic salts) and real samples (silicon nitride films from a production tool). (author)

  6. Dose measurement of ion implanted silicon by RBS technique

    International Nuclear Information System (INIS)

    Kamawanna, Teerasak; Intarasiri, Saweat; Prapunsri, Chowunchun; Thongleurm, Chome; Maleepatra, Saenee; Singkarat, Somsorn

    2003-10-01

    Surface modification can be achieved by ion implantation. This study used a 1 mm thick silicon wafer as a target which was implanted with Ar+ at 80 keV. The degree of the modification depends on both the ion energy and the implanted dose. The distribution of argon in the silicon substrate and the absolute implanted dose can be measured by using Rutherford Backscattering Spectrometry (RBS). These investigations utilized a 1.7 MV Tandetron accelerator system at Chiang Mai University. The dose determination by a direct calculation is in agreement with the simulation by the SIMNRA code

  7. Morphology of the porous silicon obtained by electrochemical anodization method

    Science.gov (United States)

    Bertel H, S. D.; Dussán C, A.; Diaz P, J. M.

    2018-04-01

    In this report, the dependence of porous silicon with the synthesis parameters and their correlation with the optical and morphological properties is studied. The P-type silicon-crystalline samples and orientation were prepared by electrochemical anodization and were characterized using SEM in order to know the evolution of the pore morphology. It was observed that the porosity and thickness of the samples increased with the increase of the concentration in the solution and a high pore density (70%) with a pore size between 40nm and 1.5μm.

  8. High-performance piezoelectric thick film based energy harvesting micro-generators for MEMS

    DEFF Research Database (Denmark)

    Zawada, Tomasz; Hansen, Karsten; Lou-Moeller, Rasmus

    2010-01-01

    and are transformed by the energy harvesting micro-generator into usable electrical signal. The micro-generator comprises a silicon cantilever with integrated InSensor® TF2100 PZT thick film deposited using screen-printing. The output power versus frequency and electrical load has been investigated. Furthermore......, devices based on modified, pressure treated thick film materials have been tested and compared with the commercial InSensor® TF2100 PZT thick films. It has been found that the structures based on the pressure treated materials exhibit superior properties in terms of energy output....

  9. Investigation of Top/Bottom electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Thomsen, Erik Vilain

    2008-01-01

    Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(ZrxTi1 - x)O3 (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process...... with a line width down to 3 μ m. A 700 nm thick ZrO2 layer as insolating diffusion barrier layer is found to be insufficient as barrier layer for PZT on a silicon substrate sintered at 850°C. EDX shows diffusion of Si into the PZT layer....

  10. On the use of silicon as thermal neutron filter

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M.

    2003-01-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross-section including the Bragg scattering from different (hkl) planes to the neutron transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy. A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500 μeV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given

  11. On the use of silicon as thermal neutron filter

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M. E-mail: mohamedfathalla@hotmail.com

    2003-12-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross-section including the Bragg scattering from different (hkl) planes to the neutron transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy. A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500 {mu}eV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given.

  12. Enamel thickness after preparation of tooth for porcelain laminate.

    Science.gov (United States)

    Pahlevan, Ayoub; Mirzaee, Mansoreh; Yassine, Esmaeil; Ranjbar Omrany, Ladan; Hasani Tabatabaee, Masumeh; Kermanshah, Hamid; Arami, Sakineh; Abbasi, Mehdy

    2014-07-01

    In this investigation the thickness of enamel in the gingival, middle, and incisal thirds of the labial surface of the anterior teeth were measured regarding preparation of the teeth for porcelain laminate veneers. Part one, 20 extracted intact human maxillary central and lateral incisors ten of each were selected. The teeth were imbedded in autopolimerize acrylic resin. Cross section was preformed through the midline of the incisal, middle and cervical one-third of the labial surface of the teeth. The samples were observed under reflected stereomicroscope and the thickness of enamel was recorded. Part II, the effect of different types of preparation on dentin exposure was evaluated. Thirty maxillary central incisor teeth were randomly divided into two groups: A: Knife-edge preparation. B: Chamfer preparation. All samples were embedded in autopolimerize acrylic resin using a silicon mold. The samples were cut through the midline of the teeth. The surface of the samples were polished and enamel and dentin were observed under the stereomicroscope. Data were analyzed by ANOVA-one way test. The results of this study showed that the least enamel thickness in the central incisor was 345 and in lateral incisor is 235 μ this thickness is related to the one-third labial cervical area. Maximum thickness in maxillary central and lateral incisors in the one-third labial incisal surface was 1260 μ and 1220μ, respectively. In the second part of the study, the tendency of dentinal exposure was shown with the chamfer preparation, but no dentinal exposure was found in the knife-edge preparation. The differences between groups were significant (p<0.05). The knowledge of enamel thickness in different part of labial surface is very important. The thickness of enamel in the gingival area does not permit a chamfer preparation. The knife edge preparation is preferable in gingival area.

  13. Enamel thickness after preparation of tooth for porcelain laminate.

    Directory of Open Access Journals (Sweden)

    Ayoub Pahlevan

    2014-08-01

    Full Text Available In this investigation the thickness of enamel in the gingival, middle, and incisal thirds of the labial surface of the anterior teeth were measured regarding preparation of the teeth for porcelain laminate veneers.Part one, 20 extracted intact human maxillary central and lateral incisors ten of each were selected. The teeth were imbedded in autopolimerize acrylic resin. Cross section was preformed through the midline of the incisal, middle and cervical one-third of the labial surface of the teeth. The samples were observed under reflected stereomicroscope and the thickness of enamel was recorded. Part II, the effect of different types of preparation on dentin exposure was evaluated. Thirty maxillary central incisor teeth were randomly divided into two groups: A: Knife-edge preparation. B: Chamfer preparation. All samples were embedded in autopolimerize acrylic resin using a silicon mold. The samples were cut through the midline of the teeth. The surface of the samples were polished and enamel and dentin were observed under the stereomicroscope.Data were analyzed by ANOVA-one way test. The results of this study showed that the least enamel thickness in the central incisor was 345 and in lateral incisor is 235 μ this thickness is related to the one-third labial cervical area. Maximum thickness in maxillary central and lateral incisors in the one-third labial incisal surface was 1260 μ and 1220μ, respectively. In the second part of the study, the tendency of dentinal exposure was shown with the chamfer preparation, but no dentinal exposure was found in the knife-edge preparation. The differences between groups were significant (p<0.05.The knowledge of enamel thickness in different part of labial surface is very important. The thickness of enamel in the gingival area does not permit a chamfer preparation. The knife edge preparation is preferable in gingival area.

  14. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  15. Effect of Coating-thickness on the formability of hot dip aluminized steel

    International Nuclear Information System (INIS)

    Awan, G.H.; Ahmed, F.; Hasan, F.

    2008-01-01

    The influence of coating thickness on the formability and ductility of hot-dip-aluminized steel has been determined using a 3-point bend test and optical metallography. The ductility / formability was estimated from the 3-point bend test wherein the angle of bend at which the cracks start to appear on the surface of the aluminized sheet during bending, was taken as an index of the formability / ductility. It was observed that as the amount of silicon in the aluminising melt was gradually increased the measured ductility of the sheet sample also increased. Metallographic examination has shown that as the amount of silicon in the aluminising melt was increased the thickness of the intermediate compound layer, between the outer aluminum coat and the substrate steel, decreased. It was thus indicated from these experiments that the formability / ductility of the sheet was inversely related to the thickness of the interlayer. (author)

  16. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  17. Homogeneity analysis of high yield manufacturing process of mems-based pzt thick film vibrational energy harvesters

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Pedersen, C.M.

    2011-01-01

    This work presents a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibrational energy harvesters aimed towards vibration sources with peak frequencies in the range of a few hundred Hz. By combining KOH etching with mechanical front side protection, SOI wafer...... to accurately define the thickness of the silicon part of the harvester and a silicon compatible PZT thick film screen-printing technique, we are able to fabricate energy harvesters on wafer scale with a yield higher than 90%. The characterization of the fabricated harvesters is focused towards the full wafer....../mass-production aspect; hence the analysis of uniformity in harvested power and resonant frequency....

  18. Vacuum-plasma-sprayed silicon coatings

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Herman, H.; Bancke, G.A.; Burchell, T.D.; Romanoski, G.R.

    1991-01-01

    Vacuum plasma spraying produces well-bonded dense stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries for the excellent wear, corrosion resistance and high temperature behavior of the fabricated coatings. In this study, silicon metal was deposited on graphite to study the feasibility of preventing corrosion and oxidation of graphite components for nuclear reactors. Operating parameters were varied in a Taguchi design of experiments to display the range of the plasma processing conditions and their effect on the measured coating characteristics. The coating attributes evaluated were thickness, porosity, microhardness and phase content. This paper discusses the influence of the processing parameters on as-sprayed coating qualities. The paper also discusses the effect of thermal cycling on silicon samples in an inert helium atmosphere. The diffraction spectrum for a sample that experienced a 1600degC temperature cycle indicated that more than 99% of the coating transformed to β-SiC. The silicon coatings protected the graphite substrates from oxidation in one experiment. (orig.)

  19. Chemistry of the copper silicon interface

    International Nuclear Information System (INIS)

    Ford, M.J.; Sashin, V.A.; Nixon, K.

    2002-01-01

    Full text: Copper and silicon readily interdiffuse, even at room temperature, to form an interface which can be several nanometers thick. Over the years considerable effort has gone into investigating the diffusion process and chemical nature of the interface formed. Photoemission measurements give evidence for the formation of a stable suicide with a definite stoichiometry, Cu 3 Si. This is evidenced by splitting of the Si LVV Auger line and slight shifts and change in shape of the copper valence band density of states as measured by ultra-violet photoemission. In this paper we present calculations of the electronic structure of copper suicide, bulk copper and silicon, and preliminary measurements of the interface by electron momentum spectroscopy. Densities of states for copper and copper suicide are dominated by the copper 3d bands, and difference between the two compounds are relatively small. By contrast, the full band structures are quite distinct. Hence, experimental measurements of the full band structure of the copper on silicon interface, for example by EMS, have the potential to reveal the chemistry of the interface in a detailed way

  20. Neuromorphic Silicon Neuron Circuits

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  1. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  2. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  3. Floating Silicon Method

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  4. The LHCb Silicon Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Mark, E-mail: Mark.Tobin@epfl.ch

    2016-09-21

    The LHCb experiment is dedicated to the study of heavy flavour physics at the Large Hadron Collider (LHC). The primary goal of the experiment is to search for indirect evidence of new physics via measurements of CP violation and rare decays of beauty and charm hadrons. The LHCb detector has a large-area silicon micro-strip detector located upstream of a dipole magnet, and three tracking stations with silicon micro-strip detectors in the innermost region downstream of the magnet. These two sub-detectors form the LHCb Silicon Tracker (ST). This paper gives an overview of the performance and operation of the ST during LHC Run 1. Measurements of the observed radiation damage are shown and compared to the expectation from simulation.

  5. Silicon sensor probing and radiation studies for the LHCb silicon tracker

    International Nuclear Information System (INIS)

    Lois, Cristina

    2006-01-01

    The LHCb Silicon Tracker (ST) will be built using silicon micro-strip technology. A total of 1400 sensors, with strip pitches of approximately 200μm and three different substrate thicknesses, will be used to cover the sensitive area with readout strips up to 38cm in length. We present the quality assurance program followed by the ST group together with the results obtained for the first batches of sensors from the main production. In addition, we report on an investigation of the radiation hardness of the sensors. Prototype sensors were irradiated with 24GeV/c protons up to fluences equivalent to 20 years of LHCb operation. The damage coefficient for the leakage current was studied, and full depletion voltages were determined

  6. Removal of inclusions from silicon

    Science.gov (United States)

    Ciftja, Arjan; Engh, Thorvald Abel; Tangstad, Merete; Kvithyld, Anne; Øvrelid, Eivind Johannes

    2009-11-01

    The removal of inclusions from molten silicon is necessary to satisfy the purity requirements for solar grade silicon. This paper summarizes two methods that are investigated: (i) settling of the inclusions followed by subsequent directional solidification and (infiltration by ceramic foam filters. Settling of inclusions followed by directional solidification is of industrial importance for production of low-cost solar grade silicon. Filtration is reported as the most efficient method for removal of inclusions from the top-cut silicon scrap.

  7. Silicon photonic integration in telecommunications

    Directory of Open Access Journals (Sweden)

    Christopher Richard Doerr

    2015-08-01

    Full Text Available Silicon photonics is the guiding of light in a planar arrangement of silicon-based materials to perform various functions. We focus here on the use of silicon photonics to create transmitters and receivers for fiber-optic telecommunications. As the need to squeeze more transmission into a given bandwidth, a given footprint, and a given cost increases, silicon photonics makes more and more economic sense.

  8. Silicon Tracking Upgrade at CDF

    International Nuclear Information System (INIS)

    Kruse, M.C.

    1998-04-01

    The Collider Detector at Fermilab (CDF) is scheduled to begin recording data from Run II of the Fermilab Tevatron in early 2000. The silicon tracking upgrade constitutes both the upgrade to the CDF silicon vertex detector (SVX II) and the new Intermediate Silicon Layers (ISL) located at radii just beyond the SVX II. Here we review the design and prototyping of all aspects of these detectors including mechanical design, data acquisition, and a trigger based on silicon tracking

  9. Silicon microphones - a Danish perspective

    DEFF Research Database (Denmark)

    Bouwstra, Siebe; Storgaard-Larsen, Torben; Scheeper, Patrick

    1998-01-01

    Two application areas of microphones are discussed, those for precision measurement and those for hearing instruments. Silicon microphones are under investigation for both areas, and Danish industry plays a key role in both. The opportunities of silicon, as well as the challenges and expectations......, are discussed. For precision measurement the challenge for silicon is large, while for hearing instruments silicon seems to be very promising....

  10. Corneal thickness: measurement and implications.

    Science.gov (United States)

    Ehlers, Niels; Hjortdal, Jesper

    2004-03-01

    The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.

  11. Effect of starting point formation on the crystallization of amorphous silicon films by flash lamp annealing

    Science.gov (United States)

    Sato, Daiki; Ohdaira, Keisuke

    2018-04-01

    We succeed in the crystallization of hydrogenated amorphous silicon (a-Si:H) films by flash lamp annealing (FLA) at a low fluence by intentionally creating starting points for the trigger of explosive crystallization (EC). We confirm that a partly thick a-Si part can induce the crystallization of a-Si films. A periodic wavy structure is observed on the surface of polycrystalline silicon (poly-Si) on and near the thick parts, which is a clear indication of the emergence of EC. Creating partly thick a-Si parts can thus be effective for the control of the starting point of crystallization by FLA and can realize the crystallization of a-Si with high reproducibility. We also compare the effects of creating thick parts at the center and along the edge of the substrates, and a thick part along the edge of the substrates leads to the initiation of crystallization at a lower fluence.

  12. CMS silicon tracker developments

    International Nuclear Information System (INIS)

    Civinini, C.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.D.R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2002-01-01

    The CMS Silicon tracker consists of 70 m 2 of microstrip sensors which design will be finalized at the end of 1999 on the basis of systematic studies of device characteristics as function of the most important parameters. A fundamental constraint comes from the fact that the detector has to be operated in a very hostile radiation environment with full efficiency. We present an overview of the current results and prospects for converging on a final set of parameters for the silicon tracker sensors

  13. Silicon hybrid integration

    International Nuclear Information System (INIS)

    Li Xianyao; Yuan Taonu; Shao Shiqian; Shi Zujun; Wang Yi; Yu Yude; Yu Jinzhong

    2011-01-01

    Recently,much attention has concentrated on silicon based photonic integrated circuits (PICs), which provide a cost-effective solution for high speed, wide bandwidth optical interconnection and optical communication.To integrate III-V compounds and germanium semiconductors on silicon substrates,at present there are two kinds of manufacturing methods, i.e., heteroepitaxy and bonding. Low-temperature wafer bonding which can overcome the high growth temperature, lattice mismatch,and incompatibility of thermal expansion coefficients during heteroepitaxy, has offered the possibility for large-scale heterogeneous integration. In this paper, several commonly used bonding methods are reviewed, and the future trends of low temperature wafer bonding envisaged. (authors)

  14. Strained Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2012-05-01

    Full Text Available A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.

  15. Graphene as a transparent electrode for amorphous silicon-based solar cells

    International Nuclear Information System (INIS)

    Vaianella, F.; Rosolen, G.; Maes, B.

    2015-01-01

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles

  16. Helium ion beam induced electron emission from insulating silicon nitride films under charging conditions

    Science.gov (United States)

    Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.

    2018-06-01

    Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.

  17. Graphene as a transparent electrode for amorphous silicon-based solar cells

    Science.gov (United States)

    Vaianella, F.; Rosolen, G.; Maes, B.

    2015-06-01

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  18. Graphene as a transparent electrode for amorphous silicon-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vaianella, F., E-mail: Fabio.Vaianella@umons.ac.be; Rosolen, G.; Maes, B. [Micro- and Nanophotonic Materials Group, Faculty of Science, University of Mons, 20 place du Parc, B-7000 Mons (Belgium)

    2015-06-28

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  19. Elite silicon and solar power

    International Nuclear Information System (INIS)

    Yasamanov, N.A.

    2000-01-01

    The article is of popular character, the following issues being considered: conversion of solar energy into electric one, solar batteries in space and on the Earth, growing of silicon large-size crystals, source material problems relating to silicon monocrystals production, outlooks of solar silicon batteries production [ru

  20. Wavelength tuning of porous silicon microcavities

    International Nuclear Information System (INIS)

    Mulders, J.; Reece, P.; Zheng, W.H.; Lerondel, G.; Sun, B.; Gal, M.

    2002-01-01

    Full text: In the last decade much attention has been given to porous silicon (PS) for optoelectronic applications, which include efficient room temperature light emission as well as microcavity formation. Due to the large specific surface area, the use of porous silicon microcavities (PSMs) has been proposed for chemical sensing. Large wavelength shifts have indicated that the optical properties of PSMs are indeed strongly dependent on the environment. In this paper, we report the shifting of the resonance frequency of high quality PSMs, with the aim of tuning a future PS device to a certain required wavelength. The PSM samples were prepared by anodically etching p + -doped (5mΩcm) bulk silicon wafer in a solution (25%) of aqueous HF and ethanol. The device structure consisted of a PS layer sandwiched between 2 stacks of thin PS layers with alternating high and low effective refractive indices (RI), i.e. distributed Bragg mirrors (DBM). The layer thickness depends on the etch time while the porosity and hence refractive index is determined by the current density as the Si is etched. The position and the width of the stop-band can be fully controlled by the design of the DBMs, with the microcavity resonance mode sitting within the stop-band. We achieved tuning of the microcavity resonance by a number of methods, including temperature dependent tuning. The temperature induced wavelength shift was found to be of the order of 10 -15 nm. Computer modeling of these changes in the reflectivity spectra allowed us to quantify the changes of the effective refractive index and the respective layer thicknesses

  1. Energy straggling determination for charged particles in thick targets

    International Nuclear Information System (INIS)

    Lopez M, J.

    1980-01-01

    Energy straggling is reported for deuterons in carbon and protons in silicon, and the data obtained is compared with predictions of Bohr and Bethe. The experimental method used is based on a reaction resonance widening, observed at backward angles in the thick targets. The incident energy determines the depth at which the resonant scattering occurs and the energy straggling can be measured from the backscattering spectra. The data obtained for the energy straggling of deuterons are approximately two times bigger than those predicted by Bohr's theory; nevertheless, the values found for the energy straggling of protons in silicon are in agreement with the values predicted by the aforesaid theory. This disagreement was explained by the fact that carbon targets used were amorphous and porous, in contrast with those of cristal silicon, (it is an experimental fact that porous materials are expected to give higher stragglings than non-porous ones). Thus, the method reviewed in this work is valid, but the porosity effects should be taken into account in comparing results among materials with different densities. (author)

  2. Electroless deposition of Ni-P on a silicon surface

    Directory of Open Access Journals (Sweden)

    hassan El Grini

    2017-06-01

    Full Text Available The present article concerns the metallization of silicon substrates by deposition of the nickel-phosphorus alloy produced by an autocatalytic chemical process. The deposition electrolyte is composed of a metal salt, a reducing agent (sodium hypophosphite, a complexing agent (sodium citrate and a buffer (ammonium acetate. The deposition could only be carried out after activation of the silicon by fixing catalytic species on its surface. The immersion of the silicon samples in palladium chloride made it possible to produce relatively thick and regular Ni-P coatings. The immersion time was optimized. The activation of Si was characterized by XPS and the Ni-P coating by XPS and M.E.B. The electrochemical study did not show any real mechanism changes compared to the Ni-P deposition on a conductive surface. 

  3. Microstructure and nanomechanical properties of Fe+ implanted silicon

    International Nuclear Information System (INIS)

    Nunes, B.; Magalhães, S.; Franco, N.; Alves, E.; Colaço, R.

    2013-01-01

    Silicon wafers were implanted with iron ions at different fluences (from 5 × 10 15 up to 2 × 10 17 cm −2 ), followed by annealing treatments at temperatures from 550 °C to 1000 °C, aiming at evaluating the nanomechanical response of the samples and its relation with the microstructural features and characteristics of the modified layer. After implantation, a homogeneous amorphous layer with a thickness between 200 nm and 270 nm is formed, without damaging the surface smoothness neither introducing surface defects. After annealing, recrystallization and formation of nanometric precipitates of iron silicides is observed, with the corresponding changes in the hardness and stiffness of the modified layer. These results indicate that ion implantation of silicon followed by annealing at proper temperatures, can be an alternative route to be deeper explored in what concerns the precise control of the microstructure and, thus, the improvement of nanomechanical properties of silicon.

  4. Small area silicon diffused junction X-ray detectors

    Science.gov (United States)

    Walton, J. T.; Pehl, R. H.; Larsh, A. E.

    1982-01-01

    The low-temperature performance of silicon diffused junction detectors in the measurement of low energy X-rays is reported. The detectors have an area of 0.04 sq cm and a thickness of 100 microns. The spectral resolutions of these detectors were found to be in close agreement with expected values, indicating that the defects introduced by the high-temperature processing required in the device fabrication were not deleteriously affecting the detection of low-energy X-rays. Device performance over a temperature range of 77 K to 150 K is given. These detectors were designed to detect low-energy X-rays in the presence of minimum ionizing electrons. The successful application of silicon-diffused junction technology to X-ray detector fabrication may facilitate the development of other novel silicon X-ray detector designs.

  5. Small area silicon diffused junction x-ray detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm 2 and a thickness of 100 μm. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150 0 K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs

  6. TCAD analysis of graphene silicon Schottky junction solar cell

    Science.gov (United States)

    Kuang, Yawei; Liu, Yushen; Ma, Yulong; Xu, Jing; Yang, Xifeng; Feng, Jinfu

    2015-08-01

    The performance of graphene based Schottky junction solar cell on silicon substrate is studied theoretically by TCAD Silvaco tools. We calculate the current-voltage curves and internal quantum efficiency of this device at different conditions using tow dimensional model. The results show that the power conversion efficiency of Schottky solar cell dependents on the work function of graphene and the physical properties of silicon such as thickness and doping concentration. At higher concentration of 1e17cm-3 for n-type silicon, the dark current got a sharp rise compared with lower doping concentration which implies a convert of electron emission mechanism. The biggest fill factor got at higher phos doping predicts a new direction for higher performance graphene Schottky solar cell design.

  7. A theoretical approach to photosynthetically active radiation silicon sensor

    International Nuclear Information System (INIS)

    Tamasi, M.J.L.; Martínez Bogado, M.G.

    2013-01-01

    This paper presents a theoretical approach for the development of low cost radiometers to measure photosynthetically active radiation (PAR). Two alternatives are considered: a) glass optical filters attached to a silicon sensor, and b) dielectric coating on a silicon sensor. The devices proposed are based on radiometers previously developed by the Argentine National Atomic Energy Commission. The objective of this work is to adapt these low cost radiometers to construct reliable instruments for measuring PAR. The transmittance of optical filters and sensor response have been analyzed for different dielectric materials, number of layers deposited, and incidence angles. Uncertainties in thickness of layer deposition were evaluated. - Highlights: • Design of radiometers to measure photosynthetically active radiation • The study has used a filter and a Si sensor to modify spectral response. • Dielectric multilayers on glass and silicon sensor • Spectral response related to different incidence angles, materials and spectra

  8. Catalytic oxidation of silicon by cesium ion bombardment

    International Nuclear Information System (INIS)

    Souzis, A.E.; Huang, H.; Carr, W.E.; Seidl, M.

    1991-01-01

    Results for room-temperature oxidation of silicon using cesium ion bombardment and low oxygen exposure are presented. Bombardment with cesium ions is shown to allow oxidation at O 2 pressures orders of magnitude smaller than with noble gas ion bombardment. Oxide layers of up to 30 A in thickness are grown with beam energies ranging from 20--2000 eV, O 2 pressures from 10 -9 to 10 -6 Torr, and total O 2 exposures of 10 0 to 10 4 L. Results are shown to be consistent with models indicating that initial oxidation of silicon is via dissociative chemisorption of O 2 , and that the low work function of the cesium- and oxygen-coated silicon plays the primary role in promoting the oxidation process

  9. Fabrication and characterization of porous silicon for photonic applications

    Directory of Open Access Journals (Sweden)

    Arvin I. Mabilangan

    2013-06-01

    Full Text Available Porous silicon (PSi thin films from p-type silicon (100 substrates were fabricated using a simple table top electrochemical etching setup with a 1:1 HF:EtOh electrolyte solution. Porous silicon f ilms with different morphologies and optical properties were achieved by varying the etching parameters, such as HF concentration, etching time andanodization current. It was observed that the f ilm thickness of the fabricated PSi increased with etch time and HF concentration. The etch rate increased with the applied anodization current. Reflection spectroscopy at normal incidence was used to determine the refractive indices of the fabricated f ilms. Using the Sellmeier equation, the chromatic dispersion of the f ilms was obtained for different HF concentrations and anodization currents.

  10. Luminescence and optical absorption determination in porous silicon

    International Nuclear Information System (INIS)

    Nogal, U.; Calderon, A.; Marin, E.; Rojas T, J. B.; Juarez, A. G.

    2012-10-01

    We applied the photoacoustic spectroscopy technique in order to obtain the optical absorption spectrum in porous silicon samples prepared by electrochemical anodic etching on n-type, phosphorous doped, (100)-oriented crystal-line silicon wafer with thickness of 300 μm and 1-5 ωcm resistivity. The porous layers were prepared with etching times of 13, 20, 30, 40 and 60 minutes. Also, we realized a comparison among the optical absorption spectrum with the photoluminescence and photo reflectance ones, both obtained at room temperature. Our results show that the absorption spectrum of the samples of porous silicon depends notably of the etching time an it consist of two distinguishable absorption bands, one in the Vis region and the other one in the UV region. (Author)

  11. Detection of Human Ig G Using Photoluminescent Porous Silicon Interferometer.

    Science.gov (United States)

    Cho, Bomin; Kim, Seongwoong; Woo, Hee-Gweon; Kim, Sungsoo; Sohn, Honglae

    2015-02-01

    Photoluminescent porous silicon (PSi) interferometers having dual optical properties, both Fabry-Pérot fringe and photolumincence (PL), have been developed and used as biosensors for detection of Human Immunoglobin G (Ig G). PSi samples were prepared by electrochemical etching of p-type silicon under white light exposure. The surface of PSi was characterized using a cold field emission scanning electron microscope. The sensor system studied consisted of a single layer of porous silicon modified with Protein A. The system was probed with various fragments of aqueous human immunoglobin G (Ig G) analyte. Both reflectivity and PL were simultaneously measured under the exposure of human Ig G. An increase of optical thickness and decrease of PL were obtained under the exposure of human Ig G. Detection limit of 500 fM was observed for the human Ig G.

  12. Operation of a high-purity silicon diode alpha particle detector at 1. 4 K

    Energy Technology Data Exchange (ETDEWEB)

    Martoff, C.J.; Kaczanowicz, E. (Temple Univ., Philadelphia, PA (USA)); Neuhauser, B.J.; Lopez, E.; Zhang, Y. (San Francisco State Univ., CA (USA)); Ziemba, F.P. (Quantrad Corp. (USA))

    1991-03-01

    Detection of alpha particles at temperatures as low as 1.4 K was demonstrated using a specially fabricated Si diode. The diode was 475 mm{sup 2} by 0.280 mm thick, fabricated from high-purity silicon with degenerately doped contacts. This is an important step toward development of dual-mode (ionization plus phonon) silicon detectors for low energy radiation. (orig.).

  13. Keratopathy and pachymetric changes after photorefractive keratectomy and vitrectomy with silicone oil injection

    DEFF Research Database (Denmark)

    Buch, H; Vesti Nielsen, N

    2000-01-01

    We present a man who, after bilateral excimer laser photorefractive keratectomy (PRK) for high myopia in the right eye, had repeated retinal detachment surgery with lensectomy and injection of silicone oil. Visual acuity fluctuated in accordance with significant central corneal thickness diurnal...... variation. The case illustrates the possibility of PRK as a predisposing factor for keratopathy after retinal detachment surgery with silicone injection in an aphakic eye....

  14. Portable triple silicon detector telescope spectrometer for skin dosimetry

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Larsen, H.E.; Christensen, P.

    1999-01-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 mu m/150 mu m/7000 mu m covered by a 2 mu m thick titanium window. Rejection of photon contributions from mixed beta/photon exposures...... is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact...... detectors. The LabVIEW(TM) software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer...

  15. Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells

    International Nuclear Information System (INIS)

    Badawy, Waheed A.

    2008-01-01

    Photovoltaic and photoelectrochemical systems were prepared by the formation of a thin porous film on silicon. The porous silicon layer was formed on the top of a clean oxide free silicon wafer surface by anodic etching in HF/H 2 O/C 2 H 5 OH mixture (2:1:1). The silicon was then covered by an oxide film (tin oxide, ITO or titanium oxide). The oxide films were prepared by the spray/pyrolysis technique which enables doping of the oxide film by different atoms like In, Ru or Sb during the spray process. Doping of SnO 2 or TiO 2 films with Ru atoms improves the surface characteristics of the oxide film which improves the solar conversion efficiency. The prepared solar cells are stable against environmental attack due to the presence of the stable oxide film. It gives relatively high short circuit currents (I sc ), due to the presence of the porous silicon layer, which leads to the recorded high conversion efficiency. Although the open-circuit potential (V oc ) and fill factor (FF) were not affected by the thickness of the porous silicon film, the short circuit current was found to be sensitive to this thickness. An optimum thickness of the porous film and also the oxide layer is required to optimize the solar cell efficiency. The results represent a promising system for the application of porous silicon layers in solar energy converters. The use of porous silicon instead of silicon single crystals in solar cell fabrication and the optimization of the solar conversion efficiency will lead to the reduction of the cost as an important factor and also the increase of the solar cell efficiency making use of the large area of the porous structures

  16. Selective formation of porous silicon

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  17. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto; Sevilla, Galo T.; Ghoneim, Mohamed T.; Inayat, Salman Bin; Ahmed, Sally; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2014-01-01

    In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100

  18. Silicon nitride nanosieve membrane

    NARCIS (Netherlands)

    Tong, D.H.; Jansen, Henricus V.; Gadgil, V.J.; Bostan, C.G.; Berenschot, Johan W.; van Rijn, C.J.M.; Elwenspoek, Michael Curt

    2004-01-01

    An array of very uniform cylindrical nanopores with a pore diameter as small as 25 nm has been fabricated in an ultrathin micromachined silicon nitride membrane using focused ion beam (FIB) etching. The pore size of this nanosieve membrane was further reduced to below 10 nm by coating it with

  19. OPAL Silicon Tungsten Luminometer

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The Silicon Tungsten Luminometer was part of OPAL's calorimeter which was used to measure the energy of particles. Most particles end their journey in calorimeters. These detectors measure the energy deposited when particles are slowed down and stopped.

  20. Silicon graphene Bragg gratings.

    Science.gov (United States)

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-03-10

    We propose the use of interleaved graphene sections on top of a silicon waveguide to implement tunable Bragg gratings. The filter central wavelength and bandwidth can be controlled changing the chemical potential of the graphene sections. Apodization techniques are also presented.

  1. On nanostructured silicon success

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard; Frandsen, Lars Hagedorn

    2016-01-01

    Recent Letters by Piggott et al. 1 and Shen et al. 2 claim the smallest ever dielectric wave length and polarization splitters. The associated News & Views article by Aydin3 states that these works “are the first experimental demonstration of on-chip, silicon photonic components based on complex...

  2. Silicon oxynitride based photonics

    NARCIS (Netherlands)

    Worhoff, Kerstin; Klein, E.J.; Hussein, M.G.; Driessen, A.; Marciniak, M.; Jaworski, M.; Zdanowicz, M.

    2008-01-01

    Silicon oxynitride is a very attractive material for integrated optics. Besides possessing excellent optical properties it can be deposited with refractive indices varying over a wide range by tuning the material composition. In this contribution we will summarize the key properties of this material

  3. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  4. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  5. DELPHI Silicon Tracker

    CERN Multimedia

    DELPHI was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The silicon tracking detector was nearest to the collision point in the centre of the detector. It was used to pinpoint the collision and catch short-lived particles.

  6. Low atomic number coating for XEUS silicon pore optics

    DEFF Research Database (Denmark)

    Lumb, D.H.; Cooper-Jensen, Carsten P.; Krumrey, M.

    2008-01-01

    We describe a set of measurements on coated silicon substrates that are representative of the material to be used for the XEUS High Performance Pore Optics (HPO) technology. X-ray angular reflectance measurements at 2.8 and 8 keV, and energy scans of reflectance at a fixed angle representative...... of XEUS graze angles are presented. Reflectance is significantly enhanced for low energies when a low atomic number over-coating is applied. Modeling of the layer thicknesses and roughness is used to investigate the dependence on the layer thicknesses, metal and over coat material choices. We compare...

  7. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  8. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-01-01

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles

  9. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    Science.gov (United States)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  10. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin, E-mail: mohajer@ut.ac.ir [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of)

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  11. INFLUENCE OF THE SILICON INTERLAYER ON DIAMOND-LIKE CARBON FILMS DEPOSITED ON GLASS SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Deiler Antonio Lima Oliveira

    2012-06-01

    Full Text Available Diamond-like carbon (DLC films as a hard protective coating have achieved great success in a diversity of technological applications. However, adhesion of DLC films to substrates can restrict their applications. The influence of a silicon interlayer in order to improve DLC adhesion on glass substrates was investigated. Amorphous silicon interlayer and DLC films were deposited using plasma enhanced chemical vapor deposition from silane and methane, respectively. The bonding structure, transmittance, refraction index, and adherence of the films were also evaluated regarding the thickness of the silicon interlayer. Raman scattering spectroscopy did not show any substantial difference in DLC structure due to the interlayer thickness of the silicon. Optical measurements showed a sharp decrease of transmittance in the ultra-violet region caused by the fundamental absorption of the light. In addition, the absorption edge of transmittance shifted toward longer wavelength side in the ultra-violet region as the thickness of the silicon interlayer increased. The tribological results showed an increase of DLC adherence as the silicon interlayer increased, which was characterized by less cracks around the grooves.

  12. Minimum ionizing particle detection using amorphous silicon diodes

    Energy Technology Data Exchange (ETDEWEB)

    Xi, J.; Hollingsworth, R.E.; Buitrago, R.H. (Glasstech Solar, Inc., Wheat Ridge, CO (USA)); Oakley, D.; Cumalat, J.P.; Nauenberg, U. (Colorado Univ., Boulder (USA). Dept. of Physics); McNeil, J.A. (Colorado School of Mines, Golden (USA). Dept. of Physics); Anderson, D.F. (Fermi National Accelerator Lab., Batavia, IL (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1991-03-01

    Hydrogenated amorphous silicon pin diodes have been used to detect minimum ionizing electrons with a pulse height signal-to-noise ratio exceeding 3. A distinct signal was seen for shaping times from 100 to 3000 ns. The devices used had a 54 {mu}m thick intrinsic layer and an active area of 0.1 cm{sup 2}. The maximum signal was 3200 electrons with a noise width of 950 electrons for a shaping time of 250 ns. (orig.).

  13. Electrochemical deposition of Prussian blue on hydrogen terminated silicon(111)

    International Nuclear Information System (INIS)

    Zhao Jianwei; Zhang Yan; Shi Chuanguo; Chen, Hongyuan; Tong Lianming; Zhu Tao; Liu Zhongfan

    2006-01-01

    Electrochemical deposition of Prussian blue (PB) was performed by cyclic voltammetry on hydrogen terminated n-type Si(111) surface. The characterization of the samples based on atomic force microscopy and X-ray diffraction spectroscopy showed a nanocrystal form of the PB films on the silicon surface. The thickness of PB films as a function of the potential cycling number was monitored simultaneously by Raman spectroscopy, proving that the growth of the films is in a good controllable manner

  14. Activation of boron and phosphorus atoms implanted in polycrystalline silicon films at low temperatures

    International Nuclear Information System (INIS)

    Andoh, Nobuyuki; Sameshima, Toshiyuki; Andoh, Yasunori

    2005-01-01

    Phosphorus atoms implanted in laser crystallized polycrystalline silicon films were activated by a heat treatment in air at 260 deg. C for 1, 3 and 24 h. Analysis of ultraviolet reflectivity of phosphorus-doped silicon films implanted by ion doping method at 4 keV revealed that the thickness of the top disordered layer formed by ion bombardment was 6 nm. It is reduced to 4 nm by a 3 h heat treatment at 260 deg. C by recrystallization of disordered region. The electrical conductance of silicon films implanted increased to 1.7x10 5 S/sq after 3 h heat treatment

  15. Micropore x-ray optics using anisotropic wet etching of (110) silicon wafers.

    Science.gov (United States)

    Ezoe, Yuichiro; Koshiishi, Masaki; Mita, Makoto; Mitsuda, Kazuhisa; Hoshino, Akio; Ishisaki, Yoshitaka; Yang, Zhen; Takano, Takayuki; Maeda, Ryutaro

    2006-12-10

    To develop x-ray mirrors for micropore optics, smooth silicon (111) sidewalls obtained after anisotropic wet etching of a silicon (110) wafer were studied. A sample device with 19 microm wide (111) sidewalls was fabricated using a 220 microm thick silicon (110) wafer and potassium hydroxide solution. For what we believe to be the first time, x-ray reflection on the (111) sidewalls was detected in the angular response measurement. Compared to ray-tracing simulations, the surface roughness of the sidewalls was estimated to be 3-5 nm, which is consistent with the atomic force microscope and the surface profiler measurements.

  16. Probing the phase composition of silicon films in situ by etch product detection

    International Nuclear Information System (INIS)

    Dingemans, G.; Donker, M. N. van den; Gordijn, A.; Kessels, W. M. M.; Sanden, M. C. M. van de

    2007-01-01

    Exploiting the higher etch probability for amorphous silicon relative to crystalline silicon, the transiently evolving phase composition of silicon films in the microcrystalline growth regime was probed in situ by monitoring the etch product (SiH 4 ) gas density during a short H 2 plasma treatment step. Etch product detection took place by the easy-to-implement techniques of optical emission spectroscopy and infrared absorption spectroscopy. The phase composition of the films was probed as a function of the SiH 4 concentration during deposition and as a function of the film thickness. The in situ results were corroborated by Raman spectroscopy and solar cell analysis

  17. Role of masking oxide on silicon in processes of defect generation at formation of SIMOX structures

    CERN Document Server

    Askinazi, A Y; Miloglyadova, L V

    2002-01-01

    One investigated into Si-SiO sub 2 structures formed by implantation of oxygen ions into silicon (SIMOX-technology) by means of techniques based on measuring of high-frequency volt-farad characteristics and by means of electroluminescence. One determined existence of electrically active centres and of luminescence centres in the formed oxide layer near boundary with silicon. One clarified the role SiO sub 2 masking layer in silicon in defect generation under formation of the masked oxide layer. One established dependence of concentration of electrically active and luminescence centres on thickness of masking layer

  18. Micropore x-ray optics using anisotropic wet etching of (110) silicon wafers

    International Nuclear Information System (INIS)

    Ezoe, Yuichiro; Koshiishi, Masaki; Mita, Makoto; Mitsuda, Kazuhisa; Hoshino, Akio; Ishisaki, Yoshitaka; Yang Zhen; Takano, Takayuki; Maeda, Ryutaro

    2006-01-01

    To develop x-ray mirrors for micropore optics, smooth silicon (111)sidewalls obtained after anisotropic wet etching of a silicon (110) wafer were studied. A sample device with 19 μm wide (111) sidewalls was fabricated using a 220 μm thick silicon (110) wafer and potassium hydroxide solution. For what we believe to be the first time,x-ray reflection on the (111) sidewalls was detected in the angular response measurement. Compared to ray-tracing simulations, the surface roughness of the sidewalls was estimated to be 3-5 nm, which is consistent with the atomic force microscope and the surface profiler measurements

  19. Spectroscopic evidence of resonance energy transfer mechanism from PbS QDs to bulk silicon

    Directory of Open Access Journals (Sweden)

    Bernechea M.

    2013-06-01

    Full Text Available In this work, we study the efficiency of the resonance energy transfer from PbS quantum dots to bulk silicon. We present spectroscopic evidence that resonance energy transfer from PbS quantum dots to bulk silicon can be an efficient process for separation distances below 12 nm. Temperature measurements are also presented for PbS quantum dots deposited on glass and silicon with 5 nm and 20nm spacer thicknesses substrates. Our findings show that the resonance energy transfer efficiency remains constant over the 50K to 300K temperature range.

  20. Broadband antireflective silicon carbide surface produced by cost-effective method

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Ou, Yiyu; Ou, Haiyan

    2013-01-01

    A cost-effective method for fabricating antireflective subwavelength structures on silicon carbide is demonstrated. The nanopatterning is performed in a 2-step process: aluminum deposition and reactive ion etching. The effect, of the deposited aluminum film thickness and the reactive ion etching...... conditions, on the average surface reflectance and nanostructure landscape have been investigated systematically. The average reflectance of silicon carbide surface is significantly suppressed from 25.4% to 0.05%, under the optimal experimental conditions, in the wavelength range of 390-784 nm. The presence...... of stochastic nanostructures also changes the wetting properties of silicon carbide surface from hydrophilic (47°) to hydrophobic (108°)....

  1. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Prathap Pathi

    2017-01-01

    Full Text Available Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm and is slightly lower (by ~5% at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm silicon and just 1%–2% for thicker (>100 μm cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  2. Optimization of intrinsic layer thickness, dopant layer thickness and concentration for a-SiC/a-SiGe multilayer solar cell efficiency performance using Silvaco software

    Directory of Open Access Journals (Sweden)

    Wei Yuan Wong

    2017-01-01

    Full Text Available Solar cell is expanding as green renewable alternative to conventional fossil fuel electricity generation, but compared to other land-used electrical generators, it is a comparative beginner. Many applications covered by solar cells starting from low power mobile devices, terrestrial, satellites and many more. To date, the highest efficiency solar cell is given by GaAs based multilayer solar cell. However, this material is very expensive in fabrication and material costs compared to silicon which is cheaper due to the abundance of supply. Thus, this research is devoted to develop multilayer solar cell by combining two different layers of P-I-N structures with silicon carbide and silicon germanium. This research focused on optimising the intrinsic layer thickness, p-doped layer thickness and concentration, n-doped layer thickness and concentration in achieving the highest efficiency. As a result, both single layer a-SiC and a-SiGe showed positive efficiency improvement with the record of 27.19% and 9.07% respectively via parametric optimization. The optimized parameters is then applied on both SiC and SiGe P-I-N layers and resulted the convincing efficiency of 33.80%.

  3. Optimization of intrinsic layer thickness, dopant layer thickness and concentration for a-SiC/a-SiGe multilayer solar cell efficiency performance using Silvaco software

    Science.gov (United States)

    Yuan, Wong Wei; Natashah Norizan, Mohd; Salwani Mohamad, Ili; Jamalullail, Nurnaeimah; Hidayah Saad, Nor

    2017-11-01

    Solar cell is expanding as green renewable alternative to conventional fossil fuel electricity generation, but compared to other land-used electrical generators, it is a comparative beginner. Many applications covered by solar cells starting from low power mobile devices, terrestrial, satellites and many more. To date, the highest efficiency solar cell is given by GaAs based multilayer solar cell. However, this material is very expensive in fabrication and material costs compared to silicon which is cheaper due to the abundance of supply. Thus, this research is devoted to develop multilayer solar cell by combining two different layers of P-I-N structures with silicon carbide and silicon germanium. This research focused on optimising the intrinsic layer thickness, p-doped layer thickness and concentration, n-doped layer thickness and concentration in achieving the highest efficiency. As a result, both single layer a-SiC and a-SiGe showed positive efficiency improvement with the record of 27.19% and 9.07% respectively via parametric optimization. The optimized parameters is then applied on both SiC and SiGe P-I-N layers and resulted the convincing efficiency of 33.80%.

  4. Arsenic implantation into polycrystalline silicon and diffusion to silicon substrate

    International Nuclear Information System (INIS)

    Tsukamoto, K.; Akasaka, Y.; Horie, K.

    1977-01-01

    Arsenic implantation into polycrystalline silicon and drive-in diffusion to silicon substrate have been investigated by MeV He + backscattering analysis and also by electrical measurements. The range distributions of arsenic implanted into polycrystalline silicon are well fitted to Gaussian distributions over the energy range 60--350 keV. The measured values of R/sub P/ and ΔR/sub P/ are about 10 and 20% larger than the theoretical predictions, respectively. The effective diffusion coefficient of arsenic implanted into polycrystalline silicon is expressed as D=0.63 exp[(-3.22 eV/kT)] and is independent of the arsenic concentration. The drive-in diffusion of arsenic from the implanted polycrystalline silicon layer into the silicon substrate is significantly affected by the diffusion atmosphere. In the N 2 atmosphere, a considerable amount of arsenic atoms diffuses outward to the ambient. The outdiffusion can be suppressed by encapsulation with Si 3 N 4 . In the oxidizing atmosphere, arsenic atoms are driven inward by growing SiO 2 due to the segregation between SiO 2 and polycrystalline silicon, and consequently the drive-in diffusion of arsenic is enhanced. At the interface between the polycrystalline silicon layer and the silicon substrate, arsenic atoms are likely to segregate at the polycrystalline silicon side

  5. Silicon epitaxy on textured double layer porous silicon by LPCVD

    International Nuclear Information System (INIS)

    Cai Hong; Shen Honglie; Zhang Lei; Huang Haibin; Lu Linfeng; Tang Zhengxia; Shen Jiancang

    2010-01-01

    Epitaxial silicon thin film on textured double layer porous silicon (DLPS) was demonstrated. The textured DLPS was formed by electrochemical etching using two different current densities on the silicon wafer that are randomly textured with upright pyramids. Silicon thin films were then grown on the annealed DLPS, using low-pressure chemical vapor deposition (LPCVD). The reflectance of the DLPS and the grown silicon thin films were studied by a spectrophotometer. The crystallinity and topography of the grown silicon thin films were studied by Raman spectroscopy and SEM. The reflectance results show that the reflectance of the silicon wafer decreases from 24.7% to 11.7% after texturing, and after the deposition of silicon thin film the surface reflectance is about 13.8%. SEM images show that the epitaxial silicon film on textured DLPS exhibits random pyramids. The Raman spectrum peaks near 521 cm -1 have a width of 7.8 cm -1 , which reveals the high crystalline quality of the silicon epitaxy.

  6. Tunnel Oxides Formed by Field-Induced Anodisation for Passivated Contacts of Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Jingnan Tong

    2018-02-01

    Full Text Available Tunnel silicon oxides form a critical component for passivated contacts for silicon solar cells. They need to be sufficiently thin to allow carriers to tunnel through and to be uniform both in thickness and stoichiometry across the silicon wafer surface, to ensure uniform and low recombination velocities if high conversion efficiencies are to be achieved. This paper reports on the formation of ultra-thin silicon oxide layers by field-induced anodisation (FIA, a process that ensures uniform oxide thickness by passing the anodisation current perpendicularly through the wafer to the silicon surface that is anodised. Spectroscopical analyses show that the FIA oxides contain a lower fraction of Si-rich sub-oxides compared to wet-chemical oxides, resulting in lower recombination velocities at the silicon and oxide interface. This property along with its low temperature formation highlights the potential for FIA to be used to form low-cost tunnel oxide layers for passivated contacts of silicon solar cells.

  7. Are galaxy discs optically thick?

    International Nuclear Information System (INIS)

    Disney, Michael; Davies, Jonathan; Phillipps, Steven

    1989-01-01

    We re-examine the classical optical evidence for the low optical depths traditionally assigned to spiral discs and argue that it is highly model-dependent and unconvincing. In particular, layered models with a physically thin but optically thick dust layer behave like optically thin discs. The opposite hypotheses, that such discs are optically thick is then examined in the light of modern evidence. We find it to be consistent with the near-infrared and IRAS observations, with the surface brightnesses, with the HI and CO column densities and with the Hα measurements. (author)

  8. Transmission electron microscopy of bulk specimens over 10 µm in thickness

    Energy Technology Data Exchange (ETDEWEB)

    Sadamatsu, Sunao, E-mail: sadamatsu@mech.kagoshima-u.ac.jp [Department of Mechanical Engineering, Kagoshima University, Korimoto, Kagoshima 890-0065 (Japan); Tanaka, Masaki; Higashida, Kenji [Department of Materials Science and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Matsumura, Syo [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Ultramicroscopy Research Center, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan)

    2016-03-15

    We succeeded the observation of microstructures in bulk-sized specimens of over 10 µm in thickness by employing a technique that combines transmission electron microscopy (TEM) with energy-filtered imaging based on electron energy-loss spectroscopy (EELS). This method is unique in that it incorporates the inelastically scattered electrons into the imaging process. Using this technique, bright and sharp images of dislocations in crystalline silicon specimens as thick as 10 µm were obtained. A calibration curve to determine foil thickness of such a thick specimen was also derived. This method simply extends the observable thickness range in TEM. If combined with tilt series of observation over a significant range of angle, it will disclose three dimensional nanostructures in a µm-order block of a specimen, promoting our understanding of the controlling mechanisms behind various bulky material properties. - Highlights: • We developed a method which enables thick specimens to be observed using EF-TEM. • The effects of energy filter width and position on images were determined. • We suggested a method to determine the thickness of a thick film sample. • We achieved observation of microstructures in specimens with a thickness of 10 µm.

  9. A Silicon SPECT System for Molecular Imaging of the Mouse Brain

    OpenAIRE

    Shokouhi, Sepideh; Fritz, Mark A.; McDonald, Benjamin S.; Durko, Heather L.; Furenlid, Lars R.; Wilson, Donald W.; Peterson, Todd E.

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 102...

  10. Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon

    International Nuclear Information System (INIS)

    Wang, J.Y.; He, D.; Zhao, Y.H.; Mittemeijer, E.J.

    2006-01-01

    It has been shown experimentally that the grain boundaries in aluminium in contact with amorphous silicon are the necessary agents for initiation of the crystallization of silicon upon annealing temperatures as low as 438 K. Thermodynamic analysis has shown (i) that Si can 'wet' the Al grain boundaries due to the favorable Si/Al interface energy as compared to the Al grain-boundary energy and (ii) that Si at the Al grain boundaries can maintain its amorphous state up to a thickness of about 1.0 nm. Beyond that thickness crystalline Si develops at the Al grain boundaries

  11. Effect of Etching Parameter on Pore Size and Porosity of Electrochemically Formed Nanoporous Silicon

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar

    2007-01-01

    Full Text Available The most common fabrication technique of porous silicon (PS is electrochemical etching of a crystalline silicon wafer in a hydrofluoric (HF acid-based solution. The electrochemical process allows for precise control of the properties of PS such as thickness of the porous layer, porosity, and average pore diameter. The control of these properties of PS was shown to depend on the HF concentration in the used electrolyte, the applied current density, and the thickness of PS. The change in pore diameter, porosity, and specific surface area of PS was investigated by measuring nitrogen sorption isotherms.

  12. Using a colorimeter to develop an intrinsic silicone shade guide for facial prostheses.

    Science.gov (United States)

    Over, L M; Andres, C J; Moore, B K; Goodacre, C J; Muñoz, C A

    1998-12-01

    To determine if using CIE L*a*b* color measurements of white facial skin could be correlated to those of silicone shade samples that visually matched the skin. Secondly, to see if a correlation in color measurements could be achieved between the silicone shade samples and duplicated silicone samples made using a shade-guide color formula. A color booth was designed according to ASTM specifications, and painted using a Munsell Value 8 gray. A Minolta colorimeter was used to make facial skin measurements on 15 white adults. The skin color was duplicated using custom-shaded silicone samples. A 7-step wedge silicone shade guide was then fabricated, representing the commonly encountered thicknesses when fabricating facial prostheses. The silicone samples were then measured with the Minolta colorimeter. The readings were compared with the previous L*a*b* readings from the corresponding patient's skin measurements, and the relative color difference was then calculated. Silicone samples were fabricated and analyzed for three of the patients to determine if duplication of the visually matched silicone specimen was possible using the silicone color formula, and if the duplicates were visually and colorimetrically equivalent to each other. The color difference Delta E and chromaticity was calculated, and the data were analyzed using a coefficient-of-variation formula expressed by percent. A Pearson Product Moment Correlation Coefficient was performed to determine if a correlation existed between the skin and the silicone samples at the p 0), but only the 1-mm and 4-mm b* readings were very strong. Patient and silicone L*a*b* measurement results showed very little change in the a* axis, while the L* and b* measurements showed more change in their numbers, with changes in depth for all patient silicone samples. Delta E numbers indicated the lowest Delta E at the 1-mm depth and the highest Delta E at the 10-mm depth. All duplicated samples matched their original silicone samples

  13. Doping of silicon by laser-induced diffusion

    International Nuclear Information System (INIS)

    Pretorius, R.; Allie, M.S.

    1986-01-01

    This report gives information on the doping of silicon by laser-induced diffusion, modelling and heat-flow calculation, doping from evaporated layers and silicon self-diffusion during pulsed laser irradiation. In order to tailor dopant profiles accurately a knowledge of the heat flow and the melt depths attained as a function of laser energy and material type is crucial. The heat flow calculations described can be used in conjuntion with most diffusion equations in order to predict the redistribution of the deposited dopant which occurs as a result of liquid phase diffusion during the melting period. Doping of Si was carried out by evaporating this films of Sb, In and Bi 10 to 300 A thick, onto the substrates. During pulsed laser irradiation the dopant film and underlying silicon substrate is melted and the dopant incorporated into the crystal lattice during recrystallization. Radioactive 31 Si(T1/2=2,62h) was used as a tracer to measure the self-diffusion of silicon in silicon during pulsed laser (pulsewidth = 30ns, wavelength = 694nm) irradiation

  14. Synthesis, Characterization and Optical Constants of Silicon Oxycarbide

    Directory of Open Access Journals (Sweden)

    Memon Faisal Ahmed

    2017-01-01

    Full Text Available High refractive index glasses are preferred in integrated photonics applications to realize higher integration scale of passive devices. With a refractive index that can be tuned between SiO2 (1.45 and a-SiC (3.2, silicon oxycarbide SiOC offers this flexibility. In the present work, silicon oxycarbide thin films from 0.1 – 2.0 μm thickness are synthesized by reactive radio frequency magnetron sputtering a silicon carbide SiC target in a controlled argon and oxygen environment. The refractive index n and material extinction coefficient k of the silicon oxycarbide films are acquired with variable angle spectroscopic ellipsometry over the UV-Vis-NIR wavelength range. Keeping argon and oxygen gases in the constant ratio, the refractive index n is found in the range from 1.41 to 1.93 at 600 nm which is almost linearly dependent on RF power of sputtering. The material extinction coefficient k has been estimated to be less than 10-4 for the deposited silicon oxycarbide films in the visible and near-infrared wavelength regions. Morphological and structural characterizations with SEM and XRD confirms the amorphous phase of the SiOC films.

  15. Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM membranes

    Directory of Open Access Journals (Sweden)

    Sebastian Gutsch

    2015-04-01

    Full Text Available We use high-temperature-stable silicon nitride membranes to investigate single layers of silicon nanocrystal ensembles by energy filtered transmission electron microscopy. The silicon nanocrystals are prepared from the precipitation of a silicon-rich oxynitride layer sandwiched between two SiO2 diffusion barriers and subjected to a high-temperature annealing. We find that such single layers are very sensitive to the annealing parameters and may lead to a significant loss of excess silicon. In addition, these ultrathin layers suffer from significant electron beam damage that needs to be minimized in order to image the pristine sample morphology. Finally we demonstrate how the silicon nanocrystal size distribution develops from a broad to a narrow log-normal distribution, when the initial precipitation layer thickness and stoichiometry are below a critical value.

  16. Analysis of borophosphosilicate glass layers on silicon wafers by X-ray emission from photon and electron excitation

    International Nuclear Information System (INIS)

    Elgersma, O.; Borstrok, J.J.M.

    1989-01-01

    Phosphorus and oxygen concentrations in the homogeneous layer of borosilicate glass (BPSG) deposited on Si-integrated circuits are determined by X-ray fluorescence from photon excitation. The X-ray emission from electron excitation in an open X-ray tube instrument yields a sufficiently precise determination of the boron content. The thickness of the layer can be derived from silicon Kα-fluorescence. A calibration model is proposed for photon as well as for electron excitation. The experimentally determined parameters in this model well agree with those derived from fundamental parameters for X-ray absorption and emission. The chemical surrounding of silicon affects strongly the peak profile of the silicon Kβ-emission. This enables to distinguish emission from the silicon atoms in the wafer and from the silicon atoms in the silicon oxide complexes of the BPSG-layer. (author)

  17. Fabricating 40 µm-thin silicon solar cells with different orientations by using SLiM-cut method

    Science.gov (United States)

    Wang, Teng-Yu; Chen, Chien-Hsun; Shiao, Jui-Chung; Chen, Sung-Yu; Du, Chen-Hsun

    2017-10-01

    Thin silicon foils with different crystal orientations were fabricated using the stress induced lift-off (SLiM-cut) method. The thickness of the silicon foils was approximately 40 µm. The ≤ft foil had a smoother surface than the ≤ft foil. With surface passivation, the minority carrier lifetimes of the ≤ft and ≤ft silicon foil were 1.0 µs and 1.6 µs, respectively. In this study, 4 cm2-thin silicon solar cells with heterojunction structures were fabricated. The energy conversion efficiencies were determined to be 10.74% and 14.74% for the ≤ft and ≤ft solar cells, respectively. The surface quality of the silicon foils was determined to affect the solar cell character. This study demonstrated that fabricating the solar cell by using silicon foil obtained from the SLiM-cut method is feasible.

  18. Influence of substrate and film thickness on polymer LIPSS formation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jing; Nogales, Aurora; Ezquerra, Tiberio A. [Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, Madrid 28006 (Spain); Rebollar, Esther, E-mail: e.rebollar@csic.es [Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, Madrid 28006 (Spain)

    2017-02-01

    Highlights: • The estimation of temperature upon pulse accumulation shows that a small positive offset is caused by each individual pulse. • Number of pulses needed for LIPSS formation in PS thin films depends on polymer thickness. • Thermal conductivity and diffusivity of supporting substrate influence the onset for LIPSS formation and their quality. • Quality of LIPSS is affected by the substrate optical properties. - Abstract: Here we focus on the influence of both, substrate and film thickness on polymer Laser Induced Periodic Surface Structures (LIPSS) formation in polymer films. For this aim a morphological description of ripples structures generated on spin-coated polystyrene (PS) films by a linearly polarized laser beam with a wavelength of 266 nm is presented. The influence of different parameters on the quality and characteristics of the formed laser-induced periodic surface structures (LIPSS) was investigated. We found that well-ordered LIPSS are formed either on PS films thinner than 200 nm or thicker than 400 nm supported on silicon substrates as well as on thicker free standing films. However less-ordered ripples are formed on silicon supported films with intermediate thicknesses in the range of 200–380 nm. The effect of the thermal and optical properties of the substrate on the quality of LIPSS was analyzed. Differences observed in the fluence and number of pulses needed for the onset of surface morphological modifications is explained considering two main effects which are: (1) The temperature increase on polymer surface induced by the action of cumulative laser irradiation and (2) The differences in thermal conductivity between the polymer and the substrate which strongly affect the heat dissipation generated by irradiation.

  19. [Endoscopic full-thickness resection].

    Science.gov (United States)

    Meier, B; Schmidt, A; Caca, K

    2016-08-01

    Conventional endoscopic resection techniques such as endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD) are powerful tools for the treatment of gastrointestinal (GI) neoplasms. However, those techniques are limited to the superficial layers of the GI wall (mucosa and submucosa). Lesions without lifting sign (usually arising from deeper layers) or lesions in difficult anatomic positions (appendix, diverticulum) are difficult - if not impossible - to resect using conventional techniques, due to the increased risk of complications. For larger lesions (>2 cm), ESD appears to be superior to the conventional techniques because of the en bloc resection, but the procedure is technically challenging, time consuming, and associated with complications even in experienced hands. Since the development of the over-the-scope clips (OTSC), complications like bleeding or perforation can be endoscopically better managed. In recent years, different endoscopic full-thickness resection techniques came to the focus of interventional endoscopy. Since September 2014, the full-thickness resection device (FTRD) has the CE marking in Europe for full-thickness resection in the lower GI tract. Technically the device is based on the OTSC system and combines OTSC application and snare polypectomy in one step. This study shows all full-thickness resection techniques currently available, but clearly focuses on the experience with the FTRD in the lower GI tract.

  20. Fluorescence and thermoluminescence in silicon oxide films rich in silicon

    International Nuclear Information System (INIS)

    Berman M, D.; Piters, T. M.; Aceves M, M.; Berriel V, L. R.; Luna L, J. A.

    2009-10-01

    In this work we determined the fluorescence and thermoluminescence (TL) creation spectra of silicon rich oxide films (SRO) with three different silicon excesses. To study the TL of SRO, 550 nm of SRO film were deposited by Low Pressure Chemical Vapor Deposition technique on N-type silicon substrates with resistivity in the order of 3 to 5 Ω-cm with silicon excess controlled by the ratio of the gases used in the process, SRO films with Ro= 10, 20 and 30 (12-6% silicon excess) were obtained. Then, they were thermally treated in N 2 at high temperatures to diffuse and homogenize the silicon excess. In the fluorescence spectra two main emission regions are observed, one around 400 nm and one around 800 nm. TL creation spectra were determined by plotting the integrated TL intensity as function of the excitation wavelength. (Author)

  1. Gammatography of thick lead vessels

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Sundaram, V.M.

    1979-01-01

    Radiography, scintillation and GM counting and dose measurements using ionisation chamber equipment are commonly used for detecting flaws/voids in materials. The first method is mostly used for steel vessels and to a lesser extent thin lead vessels also and is essentially qualitative. Dose measuring techniques are used for very thick and large lead vessels for which high strength radioactive sources are required, with its inherent handling problems. For vessels of intermediate thicknesses, it is ideal to use a small strength source and a GM or scintillation counter assembly. At the Reactor Research Centre, Kalpakkam, such a system was used for checking three lead vessels of thicknesses varying from 38mm to 65mm. The tolerances specified were +- 4% variation in lead thickness. The measurements also revealed the non concentricity of one vessel which had a thickness varying from 38mm to 44mm. The second vessel was patently non-concentric and the dimensional variation was truly reproduced in the measurements. A third vessel was fabricated with careful control of dimensions and the measurements exhibited good concentricity. Small deviations were observed, attributable to imperfect bondings between steel and lead. This technique has the following advantages: (a) weaker sources used result in less handling problems reducing the personnel exposures considerably; (b) the sensitivity of the instrument is quite good because of better statistics; (c) the time required for scanning a small vessel is more, but a judicious use of a scintillometer for initial fast scan will help in reducing the total scanning time; (d) this method can take advantage of the dimensional variations themselves to get the calibration and to estimate the deviations from specified tolerances. (auth.)

  2. Thick resist for MEMS processing

    Science.gov (United States)

    Brown, Joe; Hamel, Clifford

    2001-11-01

    The need for technical innovation is always present in today's economy. Microfabrication methods have evolved in support of the demand for smaller and faster integrated circuits with price performance improvements always in the scope of the manufacturing design engineer. The dispersion of processing technology spans well beyond IC fabrication today with batch fabrication and wafer scale processing lending advantages to MEMES applications from biotechnology to consumer electronics from oil exploration to aerospace. Today the demand for innovative processing techniques that enable technology is apparent where only a few years ago appeared too costly or not reliable. In high volume applications where yield and cost improvements are measured in fractions of a percent it is imperative to have process technologies that produce consistent results. Only a few years ago thick resist coatings were limited to thickness less than 20 microns. Factors such as uniformity, edge bead and multiple coatings made high volume production impossible. New developments in photoresist formulation combined with advanced coating equipment techniques that closely controls process parameters have enable thick photoresist coatings of 70 microns with acceptable uniformity and edge bead in one pass. Packaging of microelectronic and micromechanical devices is often a significant cost factor and a reliability issue for high volume low cost production. Technologies such as flip- chip assembly provide a solution for cost and reliability improvements over wire bond techniques. The processing for such technology demands dimensional control and presents a significant cost savings if it were compatible with mainstream technologies. Thick photoresist layers, with good sidewall control would allow wafer-bumping technologies to penetrate the barriers to yield and production where costs for technology are the overriding issue. Single pass processing is paramount to the manufacturability of packaging

  3. Electromechanical response of silicone dielectric elastomers

    Science.gov (United States)

    Cârlescu, V.; Prisăcaru, G.; Olaru, D.

    2016-08-01

    This paper presents an experimental technique to investigate the electromechanical properties of silicone dielectric elastomers actuated with high DC electric fields. A non-contact measurement technique is used to capture and monitor the thickness strain (contraction) of a circular film placed between two metallic disks electrodes. Two active fillers such as silica (10, 15 and 30 wt%) and barium titanate (5 and 15 wt%) were incorporated in order to increase the actuation performance. Thickness strain was measured at HV stimuli up to 4.5 kV and showed a quadratic dependence against applied electric field indicating that the induced strain is triggered by the Maxwell effect and/or electrostriction phenomenon as reported in literature. The actuation process evidences a rapid contraction upon HV activation and a slowly relaxation when the electrodes are short-circuit due to visco-elastic nature of elastomers. A maximum of 1.22 % thickness strain was obtained at low actuating field intensity (1.5 V/pm) comparable with those reported in literature for similar dielectric elastomer materials.

  4. The CMS silicon tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Leubelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B.Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Rizzo, F.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2000-01-01

    This paper describes the Silicon microstrip Tracker of the CMS experiment at LHC. It consists of a barrel part with 5 layers and two endcaps with 10 disks each. About 10 000 single-sided equivalent modules have to be built, each one carrying two daisy-chained silicon detectors and their front-end electronics. Back-to-back modules are used to read-out the radial coordinate. The tracker will be operated in an environment kept at a temperature of T=-10 deg. C to minimize the Si sensors radiation damage. Heavily irradiated detectors will be safely operated due to the high-voltage capability of the sensors. Full-size mechanical prototypes have been built to check the system aspects before starting the construction

  5. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  6. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  7. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  8. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Electrometallurgy of Silicon

    Science.gov (United States)

    1988-01-01

    wind, plants, and water impounded in elevated reservoirs. Photovoltaic or solar cells, which convert sunlight directly to electricity, belongs tc, the...on record is that of St. Claire DeVille, who claimed that silicon was produced by electrolysing an impure melt of NaAlC14, but his material did not...this composition and purified melts were electrolysed at about 14500C in graphite crucible and using graphite electrodes. Applied potentials were

  10. Liquid Silicon Pouch Anode

    Science.gov (United States)

    2017-09-06

    Number 15/696,426 Filing Date 6 September 2017 Inventor Charles J. Patrissi et al Address any questions concerning this matter to the...silicon-based anodes during cycling, lithium insertion and deinsertion. Mitigation of this problem has long been sought and will result in improved...design shown. [0032] It will be understood that many additional changes in the details, materials, steps and arrangement of parts, which have been

  11. The CMS silicon tracker

    International Nuclear Information System (INIS)

    D'Alessandro, R.; Biggeri, U.; Bruzzi, M.; Catacchini, E.; Civinini, C.; Focardi, E.; Lenzi, M.; Loreti, M.; Meschini, M.; Parrini, G.; Pieri, M.; Albergo, S.; Boemi, D.; Potenza, R.; Tricomi, A.; Angarano, M.; Creanza, D.; Palma, M. de; Fiore, L.; Maggi, G.; My, S.; Raso, G.; Selvaggi, G.; Tempesta, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Candelori, A.; Castro, A.; Da Rold, M.; Giraldo, A.; Martignon, G.; Paccagnella, A.; Stavitsky, I.; Babucci, E.; Bartalini, P.; Bilei, G.M.; Checcucci, B.; Ciampolini, P.; Lariccia, P.; Mantovani, G.; Passeri, D.; Santocchia, A.; Servoli, L.; Wang, Y.; Bagliesi, G.; Basti, A.; Bosi, F.; Borello, L.; Bozzi, C.; Castaldi, R.; Dell'Orso, R.; Giassi, A.; Messineo, A.; Palla, F.; Raffaelli, F.; Sguazzoni, G.; Starodumov, A.; Tonelli, G.; Vannini, C.; Verdini, P.G.; Xie, Z.; Breuker, H.; Caner, A.; Elliott-Peisert, A.; Feld, L.; Glessing, B.; Hammerstrom, R.; Huhtinen, M.; Mannelli, M.; Marchioro, A.; Schmitt, B.; Stefanini, G.; Connotte, J.; Gu, W.H.; Luebelsmeyer, K.; Pandoulas, D.; Siedling, R.; Wittmer, B.; Della Marina, R.; Freudenreich, K.; Lustermann, W.; Viertel, G.; Eklund, C.; Karimaeki, V.; Skog, K.; French, M.; Hall, G.; Mc Evoy, B.; Raymond, M.; Hrubec, J.; Krammer, M.; Piperov, S.; Tuuva, T.; Watts, S.; Silvestris, L.

    1998-01-01

    The new silicon tracker layout (V4) is presented. The system aspects of the construction are discussed together with the expected tracking performance. Because of the high radiation environment in which the detectors will operate, particular care has been devoted to the study of the characteristics of heavily irradiated detectors. This includes studies on performance (charge collection, cluster size, resolution, efficiency) as a function of the bias voltage, integrated fluence, incidence angle and temperature. (author)

  12. Selfsupported epitaxial silicon films

    International Nuclear Information System (INIS)

    Lazarovici, D.; Popescu, A.

    1975-01-01

    The methods of removing the p or p + support of an n-type epitaxial silicon layer using electrochemical etching are described. So far, only n + -n junctions have been processed. The condition of anodic dissolution for some values of the support and layer resistivity are given. By this method very thin single crystal selfsupported targets of convenient areas can be obtained for channeling - blocking experiments

  13. Silicon and Civilization,

    Science.gov (United States)

    1980-11-04

    of a diamond. 7. The particular physical and chemical properties of silicon resulted in the fact that in the periodic system it was found in the III...small quantities. Silica is found in blades of grass and grain, in reed and bamboo shoots, where it serves to stiffen the stalk. 2. Diatomite ... properties desired in technology. Quartz glass is very resistant to temperature change since it has a very small coefficient of thermal expansion, is

  14. Porous silicon: silicon quantum dots for photonic applications

    International Nuclear Information System (INIS)

    Pavesi, L.; Guardini, R.

    1996-01-01

    Porous silicon formation and structure characterization are briefly illustrated. Its luminescence properties rae presented and interpreted on the basis of exciton recombination in quantum dot structures: the trap-controlled hopping mechanism is used to describe the recombination dynamics. Porous silicon application to photonic devices is considered: porous silicon multilayer in general, and micro cavities in particular are described. The present situation in the realization of porous silicon LEDs is considered, and future developments in this field of research are suggested. (author). 30 refs., 30 figs., 13 tabs

  15. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  16. Electroplated contacts and porous silicon for silicon based solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Kholostov, Konstantin, E-mail: kholostov@diet.uniroma1.it [Department of information engineering, electronics and telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome (Italy); Serenelli, Luca; Izzi, Massimo; Tucci, Mario [Enea Casaccia Research Centre Rome, via Anguillarese 301, 00123 Rome (Italy); Balucani, Marco [Department of information engineering, electronics and telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome (Italy); Rise Technology S.r.l., Lungomare Paolo Toscanelli 170, 00121 Rome (Italy)

    2015-04-15

    Highlights: • Uniformity of the Ni–Si interface is crucial for performance of Cu–Ni contacts on Si. • Uniformly filled PS is the key to obtain the best performance of Cu–Ni contacts on Si. • Optimization of anodization and electroplating allows complete filling of PS layer. • Highly adhesive and low contact resistance Cu–Ni contacts are obtained on Si. - Abstract: In this paper, a two-layer metallization for silicon based solar cells is presented. The metallization consists of thin nickel barrier and thick copper conductive layers, both obtained by electrodeposition technique suitable for phosphorus-doped 70–90 Ω/sq solar cell emitter formed on p-type silicon substrate. To ensure the adhesion between metal contact and emitter a very thin layer of mesoporous silicon is introduced on the emitter surface before metal deposition. This approach allows metal anchoring inside pores and improves silicon–nickel interface uniformity. Optimization of metal contact parameters is achieved varying the anodization and electrodeposition conditions. Characterization of contacts between metal and emitter is carried out by scanning electron microscopy, specific contact resistance and current–voltage measurements. Mechanical strength of nickel–copper contacts is evaluated by the peel test. Adhesion strength of more than 4.5 N/mm and contact resistance of 350 μΩ cm{sup 2} on 80 Ω/sq emitter are achieved.

  17. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  18. Development of AC-coupled, poly-silicon biased, p-on-n silicon strip detectors in India for HEP experiments

    Science.gov (United States)

    Jain, Geetika; Dalal, Ranjeet; Bhardwaj, Ashutosh; Ranjan, Kirti; Dierlamm, Alexander; Hartmann, Frank; Eber, Robert; Demarteau, Marcel

    2018-02-01

    P-on-n silicon strip sensors having multiple guard-ring structures have been developed for High Energy Physics applications. The study constitutes the optimization of the sensor design, and fabrication of AC-coupled, poly-silicon biased sensors of strip width of 30 μm and strip pitch of 55 μm. The silicon wafers used for the fabrication are of 4 inch n-type, having an average resistivity of 2-5 k Ω cm, with a thickness of 300 μm. The electrical characterization of these detectors comprises of: (a) global measurements of total leakage current, and backplane capacitance; (b) strip and voltage scans of strip leakage current, poly-silicon resistance, interstrip capacitance, interstrip resistance, coupling capacitance, and dielectric current; and (c) charge collection measurements using ALiBaVa setup. The results of the same are reported here.

  19. Characterization of Czochralski Silicon Detectors

    OpenAIRE

    Luukka, Panja-Riina; Haerkoenen, Jaakko

    2012-01-01

    This thesis describes the characterization of irradiated and non-irradiated segmenteddetectors made of high-resistivity (>1 kΩcm) magnetic Czochralski (MCZ) silicon. It isshown that the radiation hardness (RH) of the protons of these detectors is higher thanthat of devices made of traditional materials such as Float Zone (FZ) silicon or DiffusionOxygenated Float Zone (DOFZ) silicon due to the presence of intrinsic oxygen (> 5 x1017 cm-3). The MCZ devices therefore present an interesting alter...

  20. Characterization of electrical and optical properties of silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Guobin

    2009-12-04

    characteristic DRL lines D1 to D4 has been detected, indicating the dislocations in the Alile sample are relatively clean. Test p-n junction diodes with dislocation networks (DNs) produced by silicon wafer direct bonding have been investigated by EBIC technique. Charge carriers collection and electrical conduction phenomena by the DNs were observed. Inhomogeneities in the charge collection were detected in n- and p-type samples under appropriate beam energy. The diffusion lengths in the thin top layer of silicon-on-insulator (SOI) have been measured by EBIC with full suppression of the surface recombination at the buried oxide (BOX) layer and at surface of the top layer by biasing method. The measured diffusion length is several times larger than the layer thickness. Silicon nanostructures are another important subject of this work. Electrical and optical properties of various silicon based materials like silicon nanowires, silicon nano rods, porous silicon, and Si/SiO{sub 2} multi quantum wells (MQWs) samples were investigated in this work. Silicon sub-bandgap infrared (IR) luminescence around 1570 nm was found in silicon nanowires, nano rods and porous silicon. PL measurements with samples immersed in different liquid media, for example, in aqueous HF (50%), concentrated H{sub 2}SO{sub 4} (98%) and H{sub 2}O{sub 2} established that the subbandgap IR luminescence originated from the Si/SiO{sub x} interface. EL in the sub-bandgap IR range has been observed in simple devices prepared on porous silicon and MQWs at room temperature. (orig.)

  1. Drift mechanism of mass transfer on heterogeneous reaction in crystalline silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, S.A. [Institute of Problems of Mechanical Engineering, Russian Academy of Science, St Petersburg, 199178 (Russian Federation); St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 (Russian Federation); Osipov, A.V., E-mail: Andrey.V.Osipov@gmail.com [Institute of Problems of Mechanical Engineering, Russian Academy of Science, St Petersburg, 199178 (Russian Federation); St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 (Russian Federation)

    2017-05-01

    This work aims to study the pressure dependence of the thickness of the epitaxial silicon carbide film growing from crystalline silicon due to the heterogeneous reaction with gaseous carbon monoxide. It turned out that this dependence exhibits the clear maximum. On further pressure increasing the film thickness decreases. The theoretical model has been developed which explains such a character of the dependence by the fact that the gaseous silicon monoxide reaction product inhibits the drift of the gaseous reagent through the channels of a crystal lattice, thus decreasing their hydraulic diameter. In the proposed hydraulic model, the dependences of the film thickness both on the gas pressure and time have been calculated. It was shown that not only the qualitative but also quantitative correspondence between theoretical and experimental results takes place. As one would expect, due to the Einstein relation, at short growth times the drift model coincides with the diffusion one. Consequences of this drift mechanism of epitaxial film growing are discussed. - Graphical abstract: This work aims to study the pressure dependence of the thickness of the epitaxial silicon carbide film growing from crystalline silicon due to the heterogeneous reaction with gaseous carbon monoxide. It turned out that this dependence exhibits the clear maximum. On further pressure increasing the film thickness decreases. The theoretical model has been developed which explains such a character of the dependence by the fact that the gaseous silicon monoxide reaction product inhibits the drift of the gaseous reagent through the channels of a crystal lattice, thus decreasing their hydraulic diameter. - Highlights: • It is established that the greater pressure, the smaller is the reaction rate. • The reaction product prevents penetration of the reagent into a reaction zone. • For description the hydraulic model of crystal lattice channels is developed. • Theoretical results for polytropic

  2. Performance Test Results of a Single-sided Silicon Strip Detector with a Radioactive Source and a Proton Beam

    International Nuclear Information System (INIS)

    Ki, Y. I.; Kah, D. H.; Son, D. H.; Kang, H. D.; Kim, H. J.; Kim, H. O.; Bae, J. B.; Ryu, S.; Park, H.; Kim, K. R.

    2007-01-01

    Due to high intrinsic precision and high speed properties of a silicon material, the silicon detector has been used in various applications such as medical imaging detector, radiation detector, positioning detectors in space science and experimental particle physics. High technology, modern equipment, and deep expertise are required to design and fabricate good quality of silicon sensors. Only few facilities in the world can develop silicon sensors which meet requirements of sensor performances. That is one of main reasons that the silicon sensor is so expensive and it takes time to purchase the silicon sensor once it is ordered. We designed and fabricated AC-coupled single-sided silicon strip sensors and developed front-end electronics and DAQ system to read out sensor signals. The silicon strip sensors were fabricated on a 5-in. n-type silicon wafer which has an orientation, high resistivity (>5 kΩ · cm) and a thickness of 380 μm. We measured the signal-to-noise ratio (SNR) of each channel by using a radioactive source and a 45 MeV proton beam from the MC-50 cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS) in Seoul. We present the measurement results of the SNRs of the silicon strip sensor with a proton beam and radioactive sources

  3. Laboratory course on silicon sensors

    CERN Document Server

    Crescio, E; Roe, S; Rudge, A

    2003-01-01

    The laboratory course consisted of four different mini sessions, in order to give the student some hands-on experience on various aspects of silicon sensors and related integrated electronics. The four experiments were. 1. Characterisation of silicon diodes for particle detection 2. Study of noise performance of the Viking readout circuit 3. Study of the position resolution of a silicon microstrip sensor 4. Study of charge transport in silicon with a fast amplifier The data in the following were obtained during the ICFA school by the students.

  4. Silicon processing for photovoltaics II

    CERN Document Server

    Khattak, CP

    2012-01-01

    The processing of semiconductor silicon for manufacturing low cost photovoltaic products has been a field of increasing activity over the past decade and a number of papers have been published in the technical literature. This volume presents comprehensive, in-depth reviews on some of the key technologies developed for processing silicon for photovoltaic applications. It is complementary to Volume 5 in this series and together they provide the only collection of reviews in silicon photovoltaics available.The volume contains papers on: the effect of introducing grain boundaries in silicon; the

  5. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    For the thin polycrystalline Si films fabricated with the aluminium-induced-layer-exchange (ALILE) process a good structural quality up to a layer-thickness value of 10 nm was determined. For 5 nm thick layers however after the layer exchange no closes poly-silicon film was present. In this case the substrate was covered with spherically arranged semiconductor material. Furthermore amorphous contributions in the layer could be determined. The electrical characterization of the samples at room temperature proved a high hole concentration in the range 10{sup 18} cm{sup -3} up to 9.10{sup 19} cm{sup -3}, which is influenced by the process temperature and the layer thickness. Hereby higher hole concentrations at higher process temperatures and thinner films were observed. Furthermore above 150-200 K a thermically activated behaviour of the electrical conductivity was observed. At lower temperatures a deviation of the measured characteristic from the exponential Arrhenius behaviour was determined. For low temperatures (below 20 K) the conductivity follows the behaviour {sigma}{proportional_to}[-(T{sub 0}/T){sup 1/4}]. The hole mobility in the layers was lowered by a passivation step, which can be explained by defect states at the grain boundaries. The for these very thin layers present situation was simulated in the framework of the model of Seto, whereby both the defect states at the grain boundaries (with an area density Q{sub t}) and the defect states at the interfaces (with an area density Q{sub it}) were regarded. By this the values Q{sub t}{approx}(3-4).10{sup 12} cm{sup -2} and Q{sub it}{approx}(2-5).10{sup 12} cm{sup -2} could be determined for these thin ALILE layers on quartz substrates. Additionally th R-ALILE process was studied, which uses the reverse precursor-layer sequence substrate/amorphous silicon/oxide/aluminium. Hereby two steps in the crystallization process of the R-ALILE process were found. First a substrate/Al-Si mixture/poly-Si layer structure

  6. Phase and thickness dependence of thermal diffusivity in a-SiCxNy and a-BCxNy

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Chen, L.C.; Chien, S.C.; Lin, S.T.; Wu, C.T.; Chen, K.H.

    2002-01-01

    Thermal diffusivity (α) and bonding configuration of amorphous silicon carbon nitride (a-SiC x N y ) and boron carbon nitride (a-BC x N y ) films on silicon substrates were studied. Measurement of α by the traveling wave technique and bonding characterisation through X-ray photoelectron spectroscopy in a-SiC x N y and a-BC x N y films having different carbon concentrations revealed that lower coordinated bonds were detrimental to the thermal diffusivity of these films. Furthermore, α was found to depend on the thickness of these films deposited on silicon. This was attributed to the interface thermal resistance between two thermally different materials, the film and the substrate, although other factors such as film microstructure could also play a role. An empirical relation for the variation of thermal diffusivity with thickness is proposed

  7. Accurate thickness measurement of graphene

    International Nuclear Information System (INIS)

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-01-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. (paper)

  8. Soliton models for thick branes

    International Nuclear Information System (INIS)

    Peyravi, Marzieh; Riazi, Nematollah; Lobo, Francisco S.N.

    2016-01-01

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ 4 and φ 6 scalar fields, which have broken Z 2 symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w 2 term in the expansion of the potential for the resulting Schroedinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ 4 brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ 6 branes. (orig.)

  9. Soliton models for thick branes

    Energy Technology Data Exchange (ETDEWEB)

    Peyravi, Marzieh [Ferdowsi University of Mashhad, Department of Physics, School of Sciences, Mashhad (Iran, Islamic Republic of); Riazi, Nematollah [Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of); Lobo, Francisco S.N. [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal)

    2016-05-15

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ{sup 4} and φ{sup 6} scalar fields, which have broken Z{sub 2} symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w{sup 2} term in the expansion of the potential for the resulting Schroedinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ{sup 4} brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ{sup 6} branes. (orig.)

  10. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  11. Second Harmonic Generation characterization of SOI wafers: Impact of layer thickness and interface electric field

    Science.gov (United States)

    Damianos, D.; Vitrant, G.; Lei, M.; Changala, J.; Kaminski-Cachopo, A.; Blanc-Pelissier, D.; Cristoloveanu, S.; Ionica, I.

    2018-05-01

    In this work, we investigate Second Harmonic Generation (SHG) as a non-destructive characterization method for Silicon-On-Insulator (SOI) materials. For thick SOI stacks, the SHG signal is related to the thickness variations of the different layers. However, in thin SOI films, the comparison between measurements and optical modeling suggests a supplementary SHG contribution attributed to the electric fields at the SiO2/Si interfaces. The impact of the electric field at each interface of the SOI on the SHG is assessed. The SHG technique can be used to evaluate interfacial electric fields and consequently interface charge density in SOI materials.

  12. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We present a microelectromechanical system (MEMS) based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. Most piezoelectric energy harvesting devices use a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric...... elements. We show experimental results from two types PZT/PZT harvesting devices, one where the Pb(ZrxTi1−x)O3 (PZT) thick films are high pressure treated during the fabrication and the other where the treatment is omitted. We find that with the high pressure treatment prior to PZT sintering, the films...

  13. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  14. Alpha spectrometry of thick sources. I. Application to alpha emitters determination

    International Nuclear Information System (INIS)

    Acena, M.L.; Garcia-Torano, E.; Rivero, M.C.

    1977-01-01

    A method for determining alpha emitters by silicon surface barrier detector spectroscopy using thick sources is studied. Two types of spectra have been obtained. They have different shapes of line according to the procedure used for preparing the sources. For both spectra a computing least square programme has been developed. In this way it is possible to calculate line intensities with accuracy better than 20 percent. (author) [es

  15. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  16. Light emitting structures porous silicon-silicon substrate

    International Nuclear Information System (INIS)

    Monastyrskii, L.S.; Olenych, I.B.; Panasjuk, M.R.; Savchyn, V.P.

    1999-01-01

    The research of spectroscopic properties of porous silicon has been done. Complex of photoluminescence, electroluminescence, cathodoluminescence, thermostimulated depolarisation current analyte methods have been applied to study of geterostructures and free layers of porous silicon. Light emitting processes had tendency to decrease. The character of decay for all kinds of luminescence were different

  17. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  18. Experimental study of liquid-immersion III–V multi-junction solar cells with dimethyl silicon oil under high concentrations

    International Nuclear Information System (INIS)

    Xin, Ganchao; Wang, Yiping; Sun, Yong; Huang, Qunwu; Zhu, Li

    2015-01-01

    Highlights: • Electrical performance of MJ solar cells immersed by silicon oil was studied under 500×. • Theoretical cell photocurrent losses caused by silicon oil absorption were estimated. • Cell performance changes operated in silicon oil (1.0–30.0 mm) were analyzed. • Critical silicon oil thickness on top of MJ solar cells was estimated to be 6.3 mm. - Abstract: In order to better apply direct liquid-immersion cooling (LIC) method in temperature control of solar cells in high concentrating photovoltaic (CPV) systems, electrical characteristics of GaInP/GaInAs/Ge triple-junction solar cells immersed in dimethyl silicon oil of 1.0–30.0 mm thickness were studied experimentally under 500 suns and 25 °C. Theoretical photocurrent losses caused by spectrum transmittance decrease from spectral absorption of silicon oil were estimated for three series sub-cells, and an in-depth analysis of the electrical performances changes of the operated cell in silicon oil was performed. Compared with cell performances without liquid-immersion, the conversion efficiency and the maximum output power of the immersed solar cell in silicon oil of 1.0 mm thickness has increased from 39.567% and 19.556 W to 40.572% and 20.083 W respectively. However, the cell electrical performances decrease with increasing silicon oil thickness in the range of 1.0–30.0 mm, and the efficiency and the maximum output power of the cell have become less than those without liquid-immersion when the silicon oil thickness exceeds 6.3 mm

  19. Ballistic phonon transport in holey silicon.

    Science.gov (United States)

    Lee, Jaeho; Lim, Jongwoo; Yang, Peidong

    2015-05-13

    When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments demonstrate room-temperature evidence of ballistic phonon transport in various nanomaterials, the thermal conductivity data for silicon in the length scale of 10-100 nm is still not available due to experimental challenges. Here we show ballistic phonon transport prevails in the cross-plane direction of holey silicon from 35 to 200 nm. The thermal conductivity scales linearly with the length (thickness) even though the lateral dimension (neck) is as narrow as 20 nm. We assess the impact of long-wavelength phonons and predict a transition from ballistic to diffusive regime using scaling models. Our results support strong persistence of long-wavelength phonons in nanostructures and are useful for controlling phonon transport for thermoelectrics and potential phononic applications.

  20. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  1. Erbium doped stain etched porous silicon

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, B.; Diaz-Herrera, B.; Guerrero-Lemus, R.; Mendez-Ramos, J.; Rodriguez, V.D.; Hernandez-Rodriguez, C.; Martinez-Duart, J.M.

    2008-01-01

    In this work a simple erbium doping process applied to stain etched porous silicon layers (PSLs) is proposed. This doping process has been developed for application in porous silicon solar cells, where conventional erbium doping processes are not affordable because of the high processing cost and technical difficulties. The PSLs were formed by immersion in a HF/HNO 3 solution to properly adjust the porosity and pore thickness to an optimal doping of the porous structure. After the formation of the porous structure, the PSLs were analyzed by means of nitrogen BET (Brunauer, Emmett and Teller) area measurements and scanning electron microscopy. Subsequently, the PSLs were immersed in a saturated erbium nitrate solution in order to cover the porous surface. Then, the samples were subjected to a thermal process to activate the Er 3+ ions. Different temperatures and annealing times were used in this process. The photoluminescence of the PSLs was evaluated before and after the doping processes and the composition was analyzed by Fourier transform IR spectroscopy

  2. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Youngseok Lee

    2012-01-01

    Full Text Available It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0 which improves the efficiency of HIT solar cell. The ultrathin thermal passivation silicon oxide (SiO2 layer was deposited by RTO system in the temperature range 500–950°C for 2 to 6 minutes. The thickness of the silicon oxide layer was affected by RTO annealing temperature and treatment time. The best value of surface recombination velocity was recorded for the sample treated at a temperature of 850°C for 6 minutes at O2 flow rate of 3 Lpm. A surface recombination velocity below 25 cm/s was obtained for the silicon oxide layer of 4 nm thickness. This ultrathin SiO2 layer was employed for the fabrication of HIT solar cell structure instead of a-Si:H, (i layer and the passivation and tunneling effects of the silicon oxide layer were exploited. The photocurrent was decreased with the increase of illumination intensity and SiO2 thickness.

  3. Electrochemical and hydrothermal deposition of ZnO on silicon: from continuous films to nanocrystals

    International Nuclear Information System (INIS)

    Balucani, M.; Nenzi, P.; Chubenko, E.; Klyshko, A.; Bondarenko, V.

    2011-01-01

    This article presents the study of the electrochemical deposition of zinc oxide from the non-aqueous solution based on dimethyl sulfoxide and zinc chloride into the porous silicon matrix. The features of the deposition process depending on the thickness of the porous silicon layer are presented. It is shown that after deposition process the porous silicon matrix is filled with zinc oxide nanocrystals with a diameter of 10–50 nm. The electrochemically deposited zinc oxide layers on top of porous silicon are shown to have a crystalline structure. It is also shown that zinc oxide crystals formed by hydrothermal method on the surface of electrochemically deposited zinc oxide film demonstrate ultra-violet luminescence. The effect of the porous silicon layer thickness on the morphology of the zinc oxide is shown. The structures obtained demonstrated two luminescence bands peaking at the 375 and 600 nm wavelengths. Possible applications of ZnO nanostructures, porous and continuous polycrystalline ZnO films such as gas sensors, light-emitting diodes, photovoltaic devices, and nanopiezo energy generators are considered. Aspects of integration with conventional silicon technology are also discussed.

  4. Simulation of the Impact of Si Shell Thickness on the Performance of Si-Coated Vertically Aligned Carbon Nanofiber as Li-Ion Battery Anode

    Science.gov (United States)

    Das, Susobhan; Li, Jun; Hui, Rongqing

    2015-01-01

    Micro- and nano-structured electrodes have the potential to improve the performance of Li-ion batteries by increasing the surface area of the electrode and reducing the diffusion distance required by the charged carriers. We report the numerical simulation of Lithium-ion batteries with the anode made of core-shell heterostructures of silicon-coated carbon nanofibers. We show that the energy capacity can be significantly improved by reducing the thickness of the silicon anode to the dimension comparable or less than the Li-ion diffusion length inside silicon. The results of simulation indicate that the contraction of the silicon electrode thickness during the battery discharge process commonly found in experiments also plays a major role in the increase of the energy capacity. PMID:28347120

  5. The LHCb Silicon Tracker

    CERN Document Server

    Elsasser, Ch; Gallas Torreira, A; Pérez Trigo, A; Rodríguez Pérez, P; Bay, A; Blanc, F; Dupertuis, F; Haefeli, G; Komarov, I; Märki, R; Muster, B; Nakada, T; Schneider, O; Tobin, M; Tran, M T; Anderson, J; Bursche, A; Chiapolini, N; Saornil, S; Steiner, S; Steinkamp, O; Straumann, U; Vollhardt, A; Britsch, M; Schmelling, M; Voss, H; Okhrimenko, O; Pugatch, V

    2013-01-01

    The aim of the LHCb experiment is to study rare heavy quark decays and CP vio- lation with the high rate of beauty and charmed hadrons produced in $pp$ collisions at the LHC. The detector is designed as a single-arm forward spectrometer with excellent tracking and particle identification performance. The Silicon Tracker is a key part of the tracking system to measure the particle trajectories to high precision. This paper reports the performance as well as the results of the radiation damage monitoring based on leakage currents and on charge collection efficiency scans during the data taking in the LHC Run I.

  6. Photovoltaics: sunshine and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Stirzaker, Mike

    2006-05-15

    Spain's photovoltaic sector grew rapidly in 2004 only to slow down in 2005. While a State-guaranteed feed-in tariff is in place to drive a take-off, some of the smaller administrative cogs are buckling under the pressure. Projects are being further slowed by soaring world silicon prices and module shortages. Nevertheless, market volume is higher than ever before, and bio capital from both home and abroad is betting that the Spanish take-off is around the corner. (Author)

  7. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    International Nuclear Information System (INIS)

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C.

    1995-01-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0 degrees C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0 degrees C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length

  8. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C. [and others

    1995-02-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

  9. Magnetically retained silicone facial prosthesis

    African Journals Online (AJOL)

    2013-06-09

    Jun 9, 2013 ... Prosthetic camouflaging of facial defects and use of silicone maxillofacial material are the alternatives to the surgical retreatment. Silicone elastomers provide more options to clinician for customization of the facial prosthesis which is simple, esthetically good when coupled with bio magnets for retention.

  10. Impurity doping processes in silicon

    CERN Document Server

    Wang, FFY

    1981-01-01

    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  11. Radiation hard cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Casagrande, L.; Abreu, M.C.; Bell, W.H.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chapuy, S.; Cindro, V.; Collins, P.; D'Ambrosio, N.; Da Via, C.; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieuri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M.

    2002-01-01

    It has been recently observed that heavily irradiated silicon detectors, no longer functional at room temperature, 'resuscitate' when operated at temperatures below 130 K. This is often referred to as the 'Lazarus effect'. The results presented here show that cryogenic operation represents a new and reliable solution to the problem of radiation tolerance of silicon detectors

  12. Recent developments in silicon calorimetry

    International Nuclear Information System (INIS)

    Brau, J.E.

    1990-11-01

    We present a survey of some of the recent calorimeter applications of silicon detectors. The numerous attractive features of silicon detectors are summarized, with an emphasis on those aspects important to calorimetry. Several of the uses of this technology are summarized and referenced. We consider applications for electromagnetic calorimetry, hadronic calorimetry, and proposals for the SSC

  13. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  14. Flowmeter with silicon flow tube

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Marcel; Haneveld, J.; Lötters, Joost Conrad

    2009-01-01

    A flowmeter comprising a system chip with a silicon substrate provided on a carrier, in an opening whereof at least one silicon flow tube is provided for transporting a medium whose flow rate is to be measured, said tube having two ends that issue via a wall of the opening into channels coated with

  15. Luneburg lens in silicon photonics.

    Science.gov (United States)

    Di Falco, Andrea; Kehr, Susanne C; Leonhardt, Ulf

    2011-03-14

    The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms.

  16. The crustal thickness of Australia

    Science.gov (United States)

    Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.

    2000-01-01

    We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.

  17. Size-dependent effective Young’s modulus of silicon nitride cantilevers

    NARCIS (Netherlands)

    Babaei Gavan, K.; Westra, H.J.R.; Van der Drift, E.W.J.M.; Venstra, W.J.; Van der Zant, H.S.J.

    2009-01-01

    The effective Young’s modulus of silicon nitride cantilevers is determined for thicknesses in the range of 20–684 nm by measuring resonance frequencies from thermal noise spectra. A significant deviation from the bulk value is observed for cantilevers thinner than 150 nm. To explain the observations

  18. Characterisation of nuclear dispersion fuels. The non-destructive examination of silicon carbide by selenium immersion

    Energy Technology Data Exchange (ETDEWEB)

    Ambler, J.F.R.; Ferguson, I.F.

    1974-07-15

    The non-destructive microscopic examination of silicon-carbide-coated spheres containing uranium carbide, which involves immersing the coated spheres in selenium, is particularly suited for the examination of flaws in the coats but it is not possible to measure coating thicknesses by this method. Some coats are found to be opaque and this is related to their porosity. (auth)

  19. Experimentally validated dispersion tailoring in a silicon strip waveguide with alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper Bjerge; Shi, Xiaodong

    2018-01-01

    We propose a silicon strip waveguide structure with alumina thin-film coating in-between the core and the cladding for group-velocity dispersion tailoring. By carefully designing the core dimension and the coating thickness, a spectrally-flattened near-zero anomalous group-velocity dispersion...

  20. Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide

    DEFF Research Database (Denmark)

    Sun, Jie; Lindvall, Niclas; Cole, Matthew T.

    2012-01-01

    Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes...

  1. Progress in thin-film silicon solar cells based on photonic-crystal structures

    Science.gov (United States)

    Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu

    2018-06-01

    We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.

  2. Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells.

    Science.gov (United States)

    Lin, Chenxi; Martínez, Luis Javier; Povinelli, Michelle L

    2013-09-09

    We design silicon membranes with nanohole structures with optimized complex unit cells that maximize broadband absorption. We fabricate the optimized design and measure the optical absorption. We demonstrate an experimental broadband absorption about 3.5 times higher than an equally-thick thin film.

  3. Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics

    NARCIS (Netherlands)

    Worhoff, Kerstin; Driessen, A.; Lambeck, Paul; Hilderink, L.T.H.; Linders, Petrus W.C.; Popma, T.J.A.

    1999-01-01

    Silicon Oxynitride layers are grown from SiH4/N2, NH3 and N2O by Plasma Enhanced Chemical Vapor Deposition. The process is optimized with respect to deposition of layers with excellent uniformity in the layer thickness, high homogeneity of the refractive index and good reproducibility of the layer

  4. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    Science.gov (United States)

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Photoluminescence at room temperature of liquid-phase crystallized silicon on glass

    Directory of Open Access Journals (Sweden)

    Michael Vetter

    2016-12-01

    Full Text Available The room temperature photoluminescence (PL spectrum due band-to-band recombination in an only 8 μm thick liquid-phase crystallized silicon on glass solar cell absorber is measured over 3 orders of magnitude with a thin 400 μm thick optical fiber directly coupled to the spectrometer. High PL signal is achieved by the possibility to capture the PL spectrum very near to the silicon surface. The spectra measured within microcrystals of the absorber present the same features as spectra of crystalline silicon wafers without showing defect luminescence indicating the high electronic material quality of the liquid-phase multi-crystalline layer after hydrogen plasma treatment.

  6. Orientationally ordered ridge structures of aluminum films on hydrogen terminated silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Pantleon, Karen

    2006-01-01

    Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the < 110 > direct......Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the ... > directions on the silicon substrate. The ridge structure appears when the film thickness is above 500 nm, and increasing the film thickness makes the structure more distinct. Anodic oxidation enhances the structure even further. X-ray diffraction indicates that grains in the film have mostly (110) facets...

  7. Silicon-micromachined microchannel plates

    CERN Document Server

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  8. Characterization of Si pixel detectors of different thickness

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, M.G.; Boscardin, M.; Dalla Betta, G.F.; Delogu, P.; Fantacci, M.E.; Gregori, P.; Linsalata, S.; Novelli, M. E-mail: marzia.novelli@pi.infn.it; Piemonte, C.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Zorzi, N.; Zucca, S

    2004-02-01

    Tests on silicon pixel detector in the mammographic energy range have shown good imaging performances so, in order to improve the efficiency in this energy range, we have designed thicker detectors of the p{sup +}/n type. The detectors have been fabricated by ITC-IRST (Trento, Italy) in high resistivity silicon substrates (300 and 525 {mu}m thick). A TCAD simulation work has been carried out to optimize the electric field distribution and to enhance the breakdown voltage. Very low leakage current and high breakdown voltage characteristics have been measured on detectors in preliminary on-wafer tests. After that, detectors have been bump-bonded to a dedicated VLSI electronic chips, realizing an assembly. Choosing the best set-up condition and using a standard mammographic tube, we have acquired a large area image (8x8 cm{sup 2}) of the RMI 156 phantom, recommended for mammographic quality checks. In order to cover the whole surface, we have acquired different images translating the phantom over the assembly. We present some selected results for these assemblies both for the electrical characteristics and for the imaging performances.

  9. Characterization of Si pixel detectors of different thickness

    International Nuclear Information System (INIS)

    Bisogni, M.G.; Boscardin, M.; Dalla Betta, G.F.; Delogu, P.; Fantacci, M.E.; Gregori, P.; Linsalata, S.; Novelli, M.; Piemonte, C.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Zorzi, N.; Zucca, S.

    2004-01-01

    Tests on silicon pixel detector in the mammographic energy range have shown good imaging performances so, in order to improve the efficiency in this energy range, we have designed thicker detectors of the p + /n type. The detectors have been fabricated by ITC-IRST (Trento, Italy) in high resistivity silicon substrates (300 and 525 μm thick). A TCAD simulation work has been carried out to optimize the electric field distribution and to enhance the breakdown voltage. Very low leakage current and high breakdown voltage characteristics have been measured on detectors in preliminary on-wafer tests. After that, detectors have been bump-bonded to a dedicated VLSI electronic chips, realizing an assembly. Choosing the best set-up condition and using a standard mammographic tube, we have acquired a large area image (8x8 cm 2 ) of the RMI 156 phantom, recommended for mammographic quality checks. In order to cover the whole surface, we have acquired different images translating the phantom over the assembly. We present some selected results for these assemblies both for the electrical characteristics and for the imaging performances

  10. GigaTracker, a Thin and Fast Silicon Pixels Tracker

    CERN Document Server

    Velghe, Bob; Bonacini, Sandro; Ceccucci, Augusto; Kaplon, Jan; Kluge, Alexander; Mapelli, Alessandro; Morel, Michel; Noël, Jérôme; Noy, Matthew; Perktold, Lukas; Petagna, Paolo; Poltorak, Karolina; Riedler, Petra; Romagnoli, Giulia; Chiozzi, Stefano; Cotta Ramusino, Angelo; Fiorini, Massimiliano; Gianoli, Alberto; Petrucci, Ferruccio; Wahl, Heinrich; Arcidiacono, Roberta; Jarron, Pierre; Marchetto, Flavio; Gil, Eduardo Cortina; Nuessle, Georg; Szilasi, Nicolas

    2014-01-01

    GigaTracker, the NA62’s upstream spectrometer, plays a key role in the kinematically constrained background suppression for the study of the K + ! p + n ̄ n decay. It is made of three independent stations, each of which is a six by three cm 2 hybrid silicon pixels detector. To meet the NA62 physics goals, GigaTracker has to address challenging requirements. The hit time resolution must be better than 200 ps while keeping the total thickness of the sensor to less than 0.5 mm silicon equivalent. The 200 μm thick sensor is divided into 18000 300 μm 300 μm pixels bump-bounded to ten independent read-out chips. The chips use an end-of-column architecture and rely on time-over- threshold discriminators. A station can handle a crossing rate of 750 MHz. Microchannel cooling technology will be used to cool the assembly. It allows us to keep the sensor close to 0 C with 130 μm of silicon in the beam area. The sensor and read-out chip performance were validated using a 45 pixel demonstrator with a laser test setu...

  11. Chalcogen donnors in silicon

    International Nuclear Information System (INIS)

    Scolfaro, L.M.R.

    1985-01-01

    The electronic stucture of chalcogen impurities in silicon which give rise to deep levels in the forbidden band gap of that semiconductor is studied. The molecular cluster model within the formalism of the multiple scattering method in the Xα local density approximation was used . The surface orbitals were treated by using the Watson sphere model. Studies were carried out for the isolated substitutional sulfur and selenium impurities (Si:S and Si:Se). A pioneer investigation was performed for the nearest-neighbor impurity pairs of sulfur and selenium (Si:S 2 and Si:Se 2 ). All the systems were also analysed in the positive charge states (Si:S + , Si:Se + and Si:Se 2 + ) and for the isolated impurities the calculations were carried out to the spin polarized limit. The obtained results were used to interpret recent photoconductivity, photocapitance, EPR and DLTS data on these centers. It was observed that the adopted model is able to provide a satisfactory description of the electronic structure of the chalcogen impurity centers in silicon. (autor) [pt

  12. Flexible silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Blakers, A.W.; Armour, T. [Centre for Sustainable Energy Systems, The Australian National University, Canberra ACT 0200 (Australia)

    2009-08-15

    In order to be useful for certain niche applications, crystalline silicon solar cells must be able to sustain either one-time flexure or multiple non-critical flexures without significant loss of strength or efficiency. This paper describes experimental characterisation of the behaviour of thin crystalline silicon solar cells, under either static or repeated flexure, by flexing samples and recording any resulting changes in performance. Thin SLIVER cells were used for the experiment. Mechanical strength was found to be unaffected after 100,000 flexures. Solar conversion efficiency remained at greater than 95% of the initial value after 100,000 flexures. Prolonged one-time flexure close to, but not below, the fracture radius resulted in no significant change of properties. For every sample, fracture occurred either on the first flexure to a given radius of curvature, or not at all when using that radius. In summary, for a given radius of curvature, either the flexed solar cells broke immediately, or they were essentially unaffected by prolonged or multiple flexing. (author)

  13. ATLAS Silicon Microstrip Tracker

    CERN Document Server

    Haefner, Petra; The ATLAS collaboration

    2010-01-01

    The SemiConductor Tracker (SCT), made up from silicon micro-strip detectors is the key precision tracking device in ATLAS, one of the experiments at CERN LHC. The completed SCT is in very good shape: 99.3% of the SCT strips are operational, noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector and observed problems, with stress on the sensor and electronics performance. TWEPP Summary In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton- proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The SemiConductor Tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The signal from the strips is processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data i...

  14. Evaluation of Silicone as an Endovascular Stent Membrane: In Vivo Canine Studies

    International Nuclear Information System (INIS)

    Fontaine, Arthur B.; Borsa, John J.; Hoffer, Eric; Bloch, Robert; So, Corali

    2001-01-01

    Purpose: Comparative evaluation of the biological effects of a silicone-covered stent versus a bare-metal stent, in an animal model.Methods: Twelve stent implants were placed in the iliac arteries of six adult dogs. Each animal received one 8-mm x 20-mm silicone-covered stent (Permalume; Boston Scientific Vascular, Watertown, MA, USA), in the right iliac artery and one Wallstent (Boston Scientific Vascular) of the same diameter and length in the left iliac artery, during systemic anticoagulation. Angiography was performed before and after implantations. Animals were then allowed to recover and no platelet suppression was given during a 6-week interval, after which the animals were euthanized. The stented arteries were isolated and pressure-fixed in situ with 10% buffered formalin at a pressure of approximately 100 mmHg for a period of 1 hr. Two of 12 stented specimens were opened lengthwise and the luminal surfaces were photographed. Ten of 12 stented arterial segments were encased in methacrylate, then stained with hematoxylin and eosin. Neointimal thickness was quantified on histologic cross-section, for both bare and covered stents. The mean neointimal thicknesses were compared for significant difference using a student t-test.Results: All implants were widely patent at 6-week follow-up angiography. Histologic analysis showed bare metal stents covered by a thin uniform lining of neointima composed of smooth muscle cells in a hyaline matrix (mean thickness of 189 ± 47 μm). Silicone covered stents were devoid of neointima. There was no chronic thrombus or mature endothelium noted anywhere upon the internal silicone surfaces of any of the specimens. There was no foreign body reaction to the silicone cover.Conclusion: Short-term implantation of a silicone-lined Wallstent in canine iliac arteries is well tolerated. Silicone appears to be inert at 6 weeks in this experimental application

  15. Effect of silicon solar cell processing parameters and crystallinity on mechanical strength

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, V.A.; Yunus, A.; Janssen, M.; Richardson, I.M. [Delft University of Technology, Department of Materials Science and Engineering, Delft (Netherlands); Bennett, I.J. [Energy Research Centre of the Netherlands, Solar Energy, PV Module Technology, Petten (Netherlands)

    2011-01-15

    Silicon wafer thickness reduction without increasing the wafer strength leads to a high breakage rate during subsequent handling and processing steps. Cracking of solar cells has become one of the major sources of solar module failure and rejection. Hence, it is important to evaluate the mechanical strength of solar cells and influencing factors. The purpose of this work is to understand the fracture behavior of silicon solar cells and to provide information regarding the bending strength of the cells. Triple junctions, grain size and grain boundaries are considered to investigate the effect of crystallinity features on silicon wafer strength. Significant changes in fracture strength are found as a result of metallization morphology and crystallinity of silicon solar cells. It is observed that aluminum paste type influences the strength of the solar cells. (author)

  16. Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers

    Science.gov (United States)

    Wang, Wei; Yang, Dongxiao; Qian, Zhenhai

    2018-05-01

    An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.

  17. A CMOS-compatible silicon substrate optimization technique and its application in radio frequency crosstalk isolation

    International Nuclear Information System (INIS)

    Li Chen; Liao Huailin; Huang Ru; Wang Yangyuan

    2008-01-01

    In this paper, a complementary metal-oxide semiconductor (CMOS)-compatible silicon substrate optimization technique is proposed to achieve effective isolation. The selective growth of porous silicon is used to effectively suppress the substrate crosstalk. The isolation structures are fabricated in standard CMOS process and then this post-CMOS substrate optimization technique is carried out to greatly improve the performances of crosstalk isolation. Three-dimensional electro-magnetic simulation is implemented to verify the obvious effect of our substrate optimization technique. The morphologies and growth condition of porous silicon fabricated have been investigated in detail. Furthermore, a thick selectively grown porous silicon (SGPS) trench for crosstalk isolation has been formed and about 20dB improvement in substrate isolation is achieved. These results demonstrate that our post-CMOS SGPS technique is very promising for RF IC applications. (cross-disciplinary physics and related areas of science and technology)

  18. Controlled localised melting in silicon by high dose germanium implantation and flash lamp annealing

    International Nuclear Information System (INIS)

    Voelskow, Matthias; Skorupa, Wolfgang; Pezoldt, Joerg; Kups, Thomas

    2009-01-01

    High intensity light pulse irradiation of monocrystalline silicon wafers is usually accompanied by inhomogeneous surface melting. The aim of the present work is to induce homogeneous buried melting in silicon by germanium implantation and subsequent flash lamp annealing. For this purpose high dose, high energy germanium implantation has been employed to lower the melting temperature of silicon in a predetermined depth region. Subsequent flash lamp irradiation at high energy densities leads to local melting of the germanium rich buried layer, whereby the thickness of the molten layer depends on the irradiation energy density. During the cooling down epitaxial crystallization takes place resulting in a largely defect-free layer. The combination of buried melting and dopant segregation has the potential to produce unusually buried doping profiles or to create strained silicon structures.

  19. Pulsed Laser Interactions with Silicon Nano structures in Emitter Formation

    International Nuclear Information System (INIS)

    Huat, V.L.C.; Leong, C.S.; Kamaruzzaman Sopian, Saleem Hussain Zaidi

    2015-01-01

    Silicon wafer thinning is now approaching fundamental limits for wafer thickness owing to thermal expansion mismatch between Al and Si, reduced yields in wet-chemical processing as a result of fragility, and reduced optical absorption. An alternate manufacturing approach is needed to eliminate current manufacturing issues. In recent years, pulsed lasers have become readily available and costs have been significantly reduced. Pulsed laser interactions with silicon, in terms of micromachining, diffusions, and edge isolation, are well known, and have become industrial manufacturing tools. In this paper, pulsed laser interactions with silicon nano structures were identified as the most desirable solution for the fundamental limitations discussed above. Silicon nano structures have the capability for extremely high absorption that significantly reduces requirements for laser power, as well as thermal shock to the thinner wafer. Laser-assisted crystallization, in the presence of doping materials, leads to nano structure profiles that are highly desirable for sunlight absorption. The objective of this paper is the replacement of high temperature POCl_3 diffusion by laser-assisted phosphorus layers. With these improvements, complete low-temperature processing of thinner wafers was achievable with 3.7 % efficiency. Two-dimensional laser scanning was proved to be able to form uniformly annealed surfaces with higher fill factor and open-circuit voltage. (author)

  20. Silicone Resin Applications for Ceramic Precursors and Composites

    Directory of Open Access Journals (Sweden)

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  1. Fluorescence studies of Rhodamine 6G functionalized silicon oxide nanostructures

    International Nuclear Information System (INIS)

    Baumgaertel, Thomas; Borczyskowski, Christian von; Graaf, Harald

    2010-01-01

    Selective anchoring of optically active molecules on nanostructured surfaces is a promising step towards the creation of nanoscale devices with new functionalities. Recently we have demonstrated the electrostatic attachment of charged fluorescent molecules on silicon oxide nanostructures prepared by atomic force microscopy (AFM) nanolithography via local anodic oxidation (LAO) of dodecyl-terminated silicon. In this paper we report on our findings from a more detailed optical investigation of the bound dye Rhodamine 6G. High sensitivity optical wide field microscopy as well as confocal laser microscopy have been used to characterize the Rhodamine fluorescence emission. A highly interesting question concerns the interaction between an emitter close to a silicon surface because mechanisms such as energy transfer and fluorescence quenching will occur which are still not fully understood. Since the oxide thickness can be varied during preparation continuously from 1 to ∼ 5 nm, it is possible to investigate the fluorescence of the bound dye in close proximity to the underlying silicon. Using confocal laser microscopy we were also able to obtain optical spectra from the bound molecules. Together with the results from an analysis of their photochemical bleaching behaviour, we conjecture that some of the Rhodamine 6G molecules on the structure are interacting with the oxide, causing a spectral shift and differences in their photochemical properties.

  2. Room-temperature operation of a 2.25 μm electrically pumped laser fabricated on a silicon substrate

    International Nuclear Information System (INIS)

    Rodriguez, J. B.; Cerutti, L.; Grech, P.; Tournie, E.

    2009-01-01

    We report on a GaSb-based type-I laser structure grown by molecular beam epitaxy on a (001) silicon substrate. A thin AlSb nucleation layer followed by a 1 μm thick GaSb buffer layer was used to accommodate the very large lattice mismatch existing with the silicon substrate. Processed devices with mesa geometry exhibited laser operation in pulsed mode with a duty cycle up to 10% at room temperature

  3. Thickly Syndetical Sensitivity of Topological Dynamical System

    Directory of Open Access Journals (Sweden)

    Heng Liu

    2014-01-01

    Full Text Available Consider the surjective continuous map f:X→X, where X is a compact metric space. In this paper we give several stronger versions of sensitivity, such as thick sensitivity, syndetic sensitivity, thickly syndetic sensitivity, and strong sensitivity. We establish the following. (1 If (X,f is minimal and sensitive, then (X,f is syndetically sensitive. (2 Weak mixing implies thick sensitivity. (3 If (X,f is minimal and weakly mixing, then it is thickly syndetically sensitive. (4 If (X,f is a nonminimal M-system, then it is thickly syndetically sensitive. Devaney chaos implies thickly periodic sensitivity. (5 We give a syndetically sensitive system which is not thickly sensitive. (6 We give thickly syndetically sensitive examples but not cofinitely sensitive ones.

  4. three dimensional photoelastic investigations on thick rectangular

    African Journals Online (AJOL)

    user

    1983-09-01

    Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.

  5. Non-contact radiation thickness gauge

    International Nuclear Information System (INIS)

    Tsujii, T.; Okino, T.

    1983-01-01

    A noncontact thickness gauge system for measuring the thickness of a material comprising a source of radiation, a detector for detecting the amount of radiation transmitted through the material which is a function of the absorptance and thickness of the material, a memory for storing the output signals of the detector and curve-defining parameters for a plurality of quadratic calibration curves which correspond to respective thickness ranges, and a processor for processing the signals and curve defining parameters to determine the thickness of the material. Measurements are made after precalibration to obtain calibration curves and these are stored in the memory, providing signals representative of a nominal thickness and an alloy compensation coefficient for the material. The calibration curve corresponding to a particular thickness range is selected and the curve compensated for drift; the material is inserted into the radiation path and the detector output signal processed with the compensated calibration curve to determine the thickness of the material. (author)

  6. Development of deep silicon plasma etching for 3D integration technology

    Directory of Open Access Journals (Sweden)

    Golishnikov А. А.

    2014-02-01

    Full Text Available Plasma etch process for thought-silicon via (TSV formation is one of the most important technological operations in the field of metal connections creation between stacked circuits in 3D assemble technology. TSV formation strongly depends on parameters such as Si-wafer thickness, aspect ratio, type of metallization material, etc. The authors investigate deep silicon plasma etch process for formation of TSV with controllable profile. The influence of process parameters on plasma etch rate, silicon etch selectivity to photoresist and the structure profile are researched in this paper. Technology with etch and passivation steps alternation was used as a method of deep silicon plasma etching. Experimental tool «Platrane-100» with high-density plasma reactor based on high-frequency ion source with transformer coupled plasma was used for deep silicon plasma etching. As actuation gases for deep silicon etching were chosen the following gases: SF6 was used for the etch stage and CHF3 was applied on the polymerization stage. As a result of research, the deep plasma etch process has been developed with the following parameters: silicon etch rate 6 µm/min, selectivity to photoresist 60 and structure profile 90±2°. This process provides formation of TSV 370 µm deep and about 120 µm in diameter.

  7. Surface evolution and stability transition of silicon wafer subjected to nano-diamond grinding

    Directory of Open Access Journals (Sweden)

    Shisheng Cai

    2017-03-01

    Full Text Available In order to obtain excellent physical properties and ultrathin devices, thinning technique plays an important role in semiconductor industry with the rapid development of wearable electronic devices. This study presents a physical nano-diamond grinding technique without any chemistry to obtain ultrathin silicon substrate. The nano-diamond with spherical shape repeats nano-cutting and penetrating surface to physically etch silicon wafer during grinding process. Nano-diamond grinding induces an ultrathin “amorphous layer” on silicon wafer and thus the mismatch strain between the amorphous layer and substrate leads to stability transition from the spherical to non-spherical deformation of the wafer. Theoretical model is proposed to predict and analyze the deformation of amorphous layer/silicon substrate system. Furthermore, the deformation bifurcation behavior of amorphous layer/silicon substrate system is analyzed. As the mismatch strain increases or thickness decreases, the amorphous layer/silicon substrate system may transit to non-spherical deformation, which is consistent to the experimental results. The amorphous layer stresses are also obtained to predict the damage of silicon wafer.

  8. Performance tests of developed silicon strip detector by using a 150 GeV electron beam

    International Nuclear Information System (INIS)

    Hyun, Hyojung; Jung, Sunwoo; Kah, Dongha; Kang, Heedong; Kim, Hongjoo; Park, Hwanbae

    2008-01-01

    We manufactured and characterized a silicon micro-strip detector to be used in a beam tracker. A silicon detector features a DC-coupled silicon strip sensor with VA1 Prime2 analog readout chips. The silicon strip sensors have been fabricated on 5-in. wafers at Electronics and Telecommunications Research Institute (Daejeon, Korea). The silicon strip sensor is single-sided and has 32 channels with a 1 mm pitch, and its active area is 3.2 by 3.2 cm 2 with 380 μm thickness. The readout electronics consists of VA hybrid, VA Interface, and FlashADC and Control boards. Analog signals from the silicon strip sensor were being processed by the analog readout chips on the VA hybrid board. Analog signals were then changed into digital signals by a 12 bit 25 MHz FlashADC. The digital signals were read out by the Linux-operating PC through the FlashADC-USB2 interface. The DAQ system and analysis programs were written in the framework of ROOT package. The beam test with the silicon detector had been performed at CERN beam facility. We used a 150 GeV electron beam out of the SPS(Super Proton Synchrotron) H2 beam line. We present beam test setup and measurement result of signal-to-noise ratio of each strip channel. (author)

  9. SEM and HRTEM study of porous silicon--relationship between fabrication, morphology and optical properties

    International Nuclear Information System (INIS)

    Dian, J.; Macek, A.; Niznansky, D.; Nemec, I.; Vrkoslav, V.; Chvojka, T.; Jelinek, I.

    2004-01-01

    We studied the dependence of porous silicon (PS) morphology on fabrication conditions and the link between morphology, porosity and optical properties. P-type (1 0 0) silicon wafers with resistivity of 10 Ω cm were electrochemically etched in a HF:ethanol:water mixture at various HF concentrations and current densities. Porosity and thickness of the samples were determined gravimetrically. Detailed information about evolution of porous silicon layer morphology with variation of preparation conditions was obtained by scanning electron microscope (SEM), the presence of silicon nanoparticles was confirmed by high resolution transmission electron microscopy. Decrease of the mean size of silicon nanoparticles with increasing porous silicon porosity was revealed in a monotonous blue shift of photoluminescence (PL) maximum in room temperature photoluminescence spectra of studied samples. This blue shift is consistent with quantum confinement model of photoluminescence mechanism. We observed that total porosity of porous films cannot fully explain observed photoluminescence behavior and correct interpretation of the blue shift of photoluminescence spectra requires detailed knowledge of porous silicon morphology

  10. The influence of diffusion of fluorine compounds for silicon lateral etching

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, Patrick; Goodyear, Alec; Braithwaite, Nicholas St.John

    2004-07-01

    In an earlier study, it was proposed that long-range surface transport of fluorine atoms could precede the eventual binding to a silicon atom. The rate of binding increases if the silicon is bombarded with high energy ions. In this study, the lateral etching of a silicon layer, sandwiched between two silicon dioxide layers, was studied in order to investigate and extend these hypotheses. The under etching of the silicon layer was higher for wafers which suffered ion bombardment, showing that this mechanism is important even for horizontal etching. At the same time, the thickness of the silicon layer was varied. In all cases, the thinner silicon layer etched much faster then the thicker layer, indicating that fluorine surface transport is much more important than re-emission for these processes. The etch rate increase with ion bombardment can be explained by the fact that part of the energy of the incoming ions is transferred to the fluorine compounds which are on the horizontal surfaces and that ion bombardment enhances the fluorine surface transport.

  11. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    International Nuclear Information System (INIS)

    Li, Da; Kunz, Thomas; Wolf, Nadine; Liebig, Jan Philipp; Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard; Göken, Mathias; Brabec, Christoph J.

    2015-01-01

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm 2 aperture area on the graphite substrate. The optical properties of the SiN x /a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN x /a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN x /a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance

  12. Relationship between silicon concentration and creatinine clearance

    International Nuclear Information System (INIS)

    Miura, Y.; Nakai, K.; Itoh, C.; Horikiri, J.; Sera, K.; Sato, M.

    1998-01-01

    Silicon levels in dialysis patients are markedly increasing. Using PIXE we determined the relationship between silicon concentration and creatinine clearance in 30 samples. Urine silicon concentration were significantly correlated to creatinine clearance (p<0.001). And also serum silicon concentration were significantly correlated to creatinine clearance (p<0.0001). (author)

  13. Luminescence of porous silicon doped by erbium

    International Nuclear Information System (INIS)

    Bondarenko, V.P.; Vorozov, N.N.; Dolgij, L.N.; Dorofeev, A.M.; Kazyuchits, N.M.; Leshok, A.A.; Troyanova, G.N.

    1996-01-01

    The possibility of the 1.54 μm intensive luminescence in the silicon dense porous layers, doped by erbium, with various structures is shown. Low-porous materials of both porous type on the p-type silicon and porous silicon with wood-like structure on the n + type silicon may be used for formation of light-emitting structures

  14. Apparatus for making molten silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  15. Autonomous Sea-Ice Thickness Survey

    Science.gov (United States)

    2016-06-01

    the conductivity of an infinitely thick slab of sea ice. Ice thickness, Hice, is then obtained by subtracting the height of the ...Thickness Survey of Sea Ice Runway” ERDC/CRREL SR-16-4 ii Abstract We conducted an autonomous survey of sea -ice thickness using the Polar rover Yeti...efficiency relative to manual surveys routinely con- ducted to assess the safety of roads and runways constructed on the sea ice. Yeti executed the

  16. Morphological and optical properties of silicon thin films by PLD

    International Nuclear Information System (INIS)

    Ayouchi, R.; Schwarz, R.; Melo, L.V.; Ramalho, R.; Alves, E.; Marques, C.P.; Santos, L.; Almeida, R.; Conde, O.

    2009-01-01

    Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10 -6 mbar in the temperature range from 400 to 800 deg. C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J x cm -2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated. Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature

  17. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M J; Wielunski, L S; Netterfield, R P; Martin, P J; Leistner, A [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1997-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  18. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M.J.; Wielunski, L.S.; Netterfield, R.P.; Martin, P.J.; Leistner, A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  19. New results on silicon microstrip detectors of CMS tracker

    International Nuclear Information System (INIS)

    Demaria, N.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bolla, G.; Bosi, F.; Borrello, L.; Bortoletto, D.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; De Palma, M.; Dell'Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Favro, G.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Li Yahong; Watts, S.; Wittmer, B.

    2000-01-01

    Interstrip and backplane capacitances on silicon microstrip detectors with p + strip on n substrate of 320 μm thickness were measured for pitches between 60 and 240 μm and width over pitch ratios between 0.13 and 0.5. Parametrisations of capacitance w.r.t. pitch and width were compared with data. The detectors were measured before and after being irradiated to a fluence of 4x10 14 protons/cm 2 of 24 GeV/c momentum. The effect of the crystal orientation of the silicon has been found to have a relevant influence on the surface radiation damage, favouring the choice of a substrate. Working at high bias (up to 500 V in CMS) might be critical for the stability of detector, for a small width over pitch ratio. The influence found to enhance the stability

  20. The silicon vertex locator for the LHCb upgrade

    CERN Document Server

    Head, Tim

    2014-01-01

    The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a triggerless system being read out at 40 MHz. The upgraded silicon vertex detector (VELO) must be light weight, radiation hard, and compatible with LHC vacuum requirements. It must be capable of fast pattern recognition, fast track reconstruction and high precision vertexing. This challenge is being met with a new VELO design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The detector will be shielded from the beam by a View the MathML source~300μm thick aluminium foil. Evaporative CO2 coolant circulating in micro-channels embedded in a thin silicon substrate will be used for cooling.

  1. doped ZnO thick film resistors

    Indian Academy of Sciences (India)

    The characterization and ethanol gas sensing properties of pure and doped ZnO thick films were investigated. Thick films of pure zinc oxide were prepared by the screen printing technique. Pure zinc oxide was almost insensitive to ethanol. Thick films of Al2O3 (1 wt%) doped ZnO were observed to be highly sensitive to ...

  2. Macular thickness and volume in the elderly

    DEFF Research Database (Denmark)

    Subhi, Yousif; Forshaw, Thomas; Sørensen, Torben Lykke

    2016-01-01

    manifests in the macula of the elderly focusing on clinical relevant measures that are thicknesses and volumes of different macular areas. Ageing seems to increase center point foveal thickness. Ageing does not seem to change the center subfield thickness significantly. Ageing decreases the inner and outer...

  3. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  4. Silicon radiation detector

    International Nuclear Information System (INIS)

    Benc, I.; Kerhart, J.; Kopecky, J.; Krca, P.; Veverka, V.; Weidner, M.; Weinova, H.

    1992-01-01

    The silicon radiation detector, which is designed for the detection of electrons with energies above 500 eV and of radiation within the region of 200 to 1100 nm, comprises a PIN or PNN + type photodiode. The active acceptor photodiode is formed by a detector surface of shallow acceptor diffusion surrounded by a collector band of deep acceptor diffusion. The detector surface of shallow P-type diffusion with an acceptor concentration of 10 15 to 10 17 atoms/cm 3 reaches a depth of 40 to 100 nm. One sixth to one eighth of the collector band width is overlapped by the P + collector band at a width of 150 to 300 μm with an acceptor concentration of 10 20 to 10 21 atoms/cm 3 down a depth of 0.5 to 3 μm. This band is covered with a conductive layer, of NiCr for instance. (Z.S.)

  5. Zirconates heteroepitaxy on silicon

    Science.gov (United States)

    Fompeyrine, Jean; Seo, Jin Won; Seigwart, Heinz; Rossel, Christophe; Locquet, Jean-Pierre

    2002-03-01

    In the coming years, agressive scaling in CMOS technology will probably trigger the transition to more advanced materials, for example alternate gate dielectrics. Epitaxial thin films are attractive candidates, as long as the difficult chemical and structural issues can be solved, and superior properties can be obtained. Since very few binary oxides can match the electrical, physical and structural requirements which are needed, a combination of those binaries are used here to investigate other lattice matched oxides. We will report on the growth of crystalline zirconium oxide thin films stabilized with different cationic substitutions. All films have been grown in an oxide-MBE system by direct evaporation of the elements on silicon substrates and exposure to molecular or atomic oxygen. The conditions required to obtain epitaxial thin films will be discussed, and successful examples will be presented.

  6. Silicon in cereal straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko

    Silicon (Si) is known to be a beneficial element for plants. However, when plant residues are to be used as feedstock for second generation bioenergy, Si may reduce the suitability of the biomass for biochemical or thermal conversion technologies. The objective of this PhD study was to investigate......, a mutant in Si influx transporter BdLsi1 was identified. BdLsi1 belongs to the major intrinsic protein family. The mutant BdLsi1 protein had an amino acid change from proline to serine in the highly conserved NPA motif. The mutation caused a defect in channeling of Si as well as other substrates...... such as germanium and arsenite. The Si concentration in the mutant plant was significantly reduced by more than 80 %. Rice mutants defective in Si transporters OsLsi1 and OsLsi2 also showed significantly lower straw Si concentration. It is concluded that the quality of straw biomass for bioenergy purposes can...

  7. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    Science.gov (United States)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  8. Muonium states in silicon carbide

    International Nuclear Information System (INIS)

    Patterson, B.D.; Baumeler, H.; Keller, H.; Kiefl, R.F.; Kuendig, W.; Odermatt, W.; Schneider, J.W.; Estle, T.L.; Spencer, D.P.; Savic, I.M.

    1986-01-01

    Implanted muons in samples of silicon carbide have been observed to form paramagnetic muonium centers (μ + e - ). Muonium precession signals in low applied magnetic fields have been observed at 22 K in a granular sample of cubic β-SiC, however it was not possible to determine the hyperfine frequency. In a signal crystal sample of hexagonal 6H-SiC, three apparently isotropic muonium states were observed at 20 K and two at 300 K, all with hyperfine frequencies intermediate between those of the isotropic muonium centers in diamond and silicon. No evidence was seen of an anisotropic muonium state analogous to the Mu * state in diamond and silicon. (orig.)

  9. Characterization of Czochralski silicon detectors

    OpenAIRE

    Luukka, Panja-Riina

    2006-01-01

    This thesis describes the characterization of irradiated and non-irradiated segmented detectors made of high-resistivity (>1 kΩcm) magnetic Czochralski (MCZ) silicon. It is shown that the radiation hardness (RH) of the protons of these detectors is higher than that of devices made of traditional materials such as Float Zone (FZ) silicon or Diffusion Oxygenated Float Zone (DOFZ) silicon due to the presence of intrinsic oxygen (> 5 × 1017 cm−3). The MCZ devices therefore present an interesting ...

  10. Polycrystalline Silicon Gettered by Porous Silicon and Heavy Phosphorous Diffusion

    Institute of Scientific and Technical Information of China (English)

    LIU Zuming(刘祖明); Souleymane K Traore; ZHANG Zhongwen(张忠文); LUO Yi(罗毅)

    2004-01-01

    The biggest barrier for photovoltaic (PV) utilization is its high cost, so the key for scale PV utilization is to further decrease the cost of solar cells. One way to improve the efficiency, and therefore lower the cost, is to increase the minority carrier lifetime by controlling the material defects. The main defects in grain boundaries of polycrystalline silicon gettered by porous silicon and heavy phosphorous diffusion have been studied. The porous silicon was formed on the two surfaces of wafers by chemical etching. Phosphorous was then diffused into the wafers at high temperature (900℃). After the porous silicon and diffusion layers were removed, the minority carrier lifetime was measured by photo-conductor decay. The results show that the lifetime's minority carriers are increased greatly after such treatment.

  11. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Boudot, Cécile, E-mail: cecile.boudot@tum.de [Technical University of Munich, Department of Mechanical Engineering, Boltzmannstraße 15, D-85748 Garching bei München (Germany); Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen [Institute for Plasma Technology and Mathematics, University of Federal Armed Forces Munich, Werner-Heisenberg-Weg 39, D-85577 Neubiberg (Germany)

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO{sub 2}) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150 nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO{sub 2} layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO{sub 2}-coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68 days and the coating's resistance to several sterilization methods. - Highlights: • Vacuum arc plasma was applied to deposit titanium dioxide films onto silicone. • Thickness, roughness and composition of the films were determined. • Cytocompatibility of coated silicone elastomer is greatly improved. • Films have good adhesion to the substrate and are stable, non-toxic and sterilizable.

  12. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  13. Monolithically interconnected Silicon-Film{trademark} module technology: Annual technical report, 25 November 1997--24 November 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.B.; Ford, D.H.; Rand, J.A.; Ingram, A.E.

    1999-11-11

    AstroPower continued its development of an advanced thin-silicon-based photovoltaic module product. This module combines the performance advantages of thin, light-trapped silicon layers with the capability of integration into a low-cost, monolithically interconnected array. This report summarizes the work carried out over the first year of a three-year, cost-shared contract, which has yielded the following results: Development of a low-cost, insulating, ceramic substrate that provides mechanical support at silicon growth temperatures, is matched to the thermal expansion of silicon, provides the optical properties required for light trapping through random texturing, and can be formed in large areas on a continuous basis. Different deposition techniques have been investigated, and AstroPower has developed deposition processes for the back conductive layer, the p-type silicon layer, and the mechanical/chemical barrier layer. Polycrystalline films of silicon have been grown on ceramics using AstroPower's Silicon-Film{trademark} process. These films are from 50 to 75 {micro}m thick, with columnar grains extending through the thickness of the film. Aspect ratios from 5:1 to 20:1 have been observed in these films.

  14. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Mireshghi, A.; Wildermuth, D.; Goodman, C.; Fujieda, I.

    1992-07-01

    We describe the characteristics of thin (1 μm) and thick (> 30 μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-ray, γ rays and thermal neutrons. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For thermal neutron detection we use thin (2∼5 μm) gadolinium converters on 30 μm thick a-Si:H diodes. For direct detection of minimum ionizing particles and others with high resistance to radiation damage, we use the thick p-i-n diode arrays. Diode and amorphous silicon readouts as well as polysilicon pixel amplifiers are described

  15. Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

    OpenAIRE

    Zahra Ostadmahmoodi Do; Tahereh Fanaei Sheikholeslami; Hassan Azarkish

    2016-01-01

    Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are prepared using wet chemical etching method which is commonly used as a simple and low cost method fo...

  16. Timing performance of the silicon PET insert probe.

    Science.gov (United States)

    Studen, A; Burdette, D; Chesi, E; Cindro, V; Clinthorne, N H; Cochran, E; Grosicar, B; Kagan, H; Lacasta, C; Linhart, V; Mikuz, M; Stankova, V; Weilhammer, P; Zontar, D

    2010-01-01

    Simulation indicates that PET image could be improved by upgrading a conventional ring with a probe placed close to the imaged object. In this paper, timing issues related to a PET probe using high-resistivity silicon as a detector material are addressed. The final probe will consist of several (four to eight) 1-mm thick layers of silicon detectors, segmented into 1 x 1 mm(2) pads, each pad equivalent to an independent p + nn+ diode. A proper matching of events in silicon with events of the external ring can be achieved with a good timing resolution. To estimate the timing performance, measurements were performed on a simplified model probe, consisting of a single 1-mm thick detector with 256 square pads (1.4 mm side), coupled with two VATAGP7s, application-specific integrated circuits. The detector material and electronics are the same that will be used for the final probe. The model was exposed to 511 keV annihilation photons from an (22)Na source, and a scintillator (LYSO)-PMT assembly was used as a timing reference. Results were compared with the simulation, consisting of four parts: (i) GEANT4 implemented realistic tracking of electrons excited by annihilation photon interactions in silicon, (ii) calculation of propagation of secondary ionisation (electron-hole pairs) in the sensor, (iii) estimation of the shape of the current pulse induced on surface electrodes and (iv) simulation of the first electronics stage. A very good agreement between the simulation and the measurements were found. Both indicate reliable performance of the final probe at timing windows down to 20 ns.

  17. Towards nanometer-spaced silicon contacts to proteins

    Science.gov (United States)

    Schukfeh, Muhammed I.; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.

  18. Towards nanometer-spaced silicon contacts to proteins

    International Nuclear Information System (INIS)

    Schukfeh, Muhammed I; Behr, Pascal; Tornow, Marc; Sepunaru, Lior; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2016-01-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO_2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p"+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current–voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si–protein–Si configuration. (paper)

  19. Radiation resistant passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Swanson, R.M.; Gan, J.Y.; Gruenbaum, P.E.

    1991-01-01

    This patent describes a silicon solar cell having improved stability when exposed to concentrated solar radiation. It comprises a body of silicon material having a major surface for receiving radiation, a plurality of p and n conductivity regions in the body for collecting electrons and holes created by impinging radiation, and a passivation layer on the major surface including a first layer of silicon oxide in contact with the body and a polycrystalline silicon layer on the first layer of silicon oxide

  20. Study of 50 GeV proton ionization loss by semiconductor detector with smoothly tunable thickness

    Energy Technology Data Exchange (ETDEWEB)

    Nazhmudinov, R.M.; Kubankin, A.S. [Belgorod National Research University, Belgorod (Russian Federation); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Shchagin, A.V., E-mail: shchagin@kipt.kharkov.ua [Belgorod National Research University, Belgorod (Russian Federation); Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Shul' ga, N.F.; Trofymenko, S.V. [Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Kharkov National University, Kharkov (Ukraine); Britvich, G.I.; Durum, A.A.; Kostin, M. Yu.; Maisheev, V.A.; Chesnokov, Yu.A.; Yanovich, A.A. [Institute for High Energy Physics in National Research Centre Kurchatov Institute, Protvino (Russian Federation)

    2017-01-15

    The possibility of the measurement of proton ionization loss in the Silicon (Si) layer of smoothly tunable thickness was demonstrated in an experiment with a 50-GeV proton beam. The Si surface-barrier detector with the depleted layer thickness controlled by the value of high-voltage power supply was used in the experiment. The measured spectra of ionization loss are discussed and compared with the calculated spectra. The possibilities of research of the evolution of electromagnetic field of ultrarelativistic particles traversing the media interface and the study of dynamics of particles moving in the channeling regime or the volume reflection regime with the use of detectors with smoothly tunable thickness are indicated.

  1. Film thickness dependence of phase separation and dewetting behaviors in PMMA/SAN blend films.

    Science.gov (United States)

    You, Jichun; Liao, Yonggui; Men, Yongfeng; Shi, Tongfei; An, Lijia

    2010-09-21

    Film thickness dependence of complex behaviors coupled by phase separation and dewetting in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on silicon oxide substrate at 175 °C was investigated by grazing incidence ultrasmall-angle X-ray scattering (GIUSAX) and in situ atomic force microscopy (AFM). It was found that the dewetting pathway was under the control of the parameter U(q0)/E, which described the initial amplitude of the surface undulation and original thickness of film, respectively. Furthermore, our results showed that interplay between phase separation and dewetting depended crucially on film thickness. Three mechanisms including dewetting-phase separation/wetting, dewetting/wetting-phase separation, and phase separation/wetting-pseudodewetting were discussed in detail. In conclusion, it is relative rates of phase separation and dewetting that dominate the interplay between them.

  2. Thickness-dependence of optical constants for Ta2O5 ultrathin films

    International Nuclear Information System (INIS)

    Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao

    2012-01-01

    An effective method for determining the optical constants of Ta 2 O 5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta 2 O 5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta 2 O 5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta 2 O 5 . This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices. (orig.)

  3. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...... support materials since only PZT is strained, and thus it has a potential for significantly higher output power. An improved process scheme for the energy harvester resulted in a robust fabrication process with a record high fabrication yield of 98.6%. Moreover, the robust fabrication process allowed...... a high pressure treatment of the screen printed PZT thick films prior to sintering, improving the PZT thick film performance and harvester power output reaches 37.1 μW at 1 g....

  4. Thickness-dependence of optical constants for Ta2O5 ultrathin films

    Science.gov (United States)

    Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao

    2012-09-01

    An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.

  5. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We describe the fabrication and characterization of a significantly improved version of a microelectromechanical system-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass; the harvester is fabricated in a fully monolithic process. The main advantage...... yield of 98%. The robust fabrication process allowed a high pressure treatment of the screen printed PZT thick films prior to sintering. The high pressure treatment improved the PZT thick film performance and increased the harvester power output to 37.1 μW at 1 g root mean square acceleration. We also...... characterize the harvester performance when only one of the PZT layers is used while the other is left open or short circuit....

  6. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    2015-01-01

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  7. Imprinted silicon-based nanophotonics

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Olsen, Brian Bilenberg; Frandsen, Lars Hagedorn

    2007-01-01

    We demonstrate and optically characterize silicon-on-insulator based nanophotonic devices fabricated by nanoimprint lithography. In our demonstration, we have realized ordinary and topology-optimized photonic crystal waveguide structures. The topology-optimized structures require lateral pattern ...

  8. Ultra-fast silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H. F.-W., E-mail: hartmut@scipp.ucsc.edu [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Petersen, B.; Seiden, A.; Zatserklyaniy, A. [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Cartiglia, N.; Marchetto, F. [INFN Torino, Torino (Italy); Bruzzi, M.; Mori, R.; Scaringella, M.; Vinattieri, A. [University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, Firenze (Italy)

    2013-12-01

    We propose to develop a fast, thin silicon sensor with gain capable to concurrently measure with high precision the space (∼10 μm) and time (∼10 ps) coordinates of a particle. This will open up new application of silicon detector systems in many fields. Our analysis of detector properties indicates that it is possible to improve the timing characteristics of silicon-based tracking sensors, which already have sufficient position resolution, to achieve four-dimensional high-precision measurements. The basic sensor characteristics and the expected performance are listed, the wide field of applications are mentioned and the required R and D topics are discussed. -- Highlights: •We are proposing thin pixel silicon sensors with 10's of picoseconds time resolution. •Fast charge collection is coupled with internal charge multiplication. •The truly 4-D sensors will revolutionize imaging and particle counting in many applications.

  9. Vibrational modes of porous silicon

    International Nuclear Information System (INIS)

    Sabra, M.; Naddaf, M.

    2012-01-01

    On the basis of theoretical and experimental investigations, the origin of room temperature photoluminescence (PL) from porous silicon is found to related to chemical complexes constituted the surface, in particular, SiHx, SiOx and SiOH groups. Ab initio atomic and molecular electronic structure calculations on select siloxane compounds were used for imitation of infrared (IR) spectra of porous silicon. These are compared to the IR spectra of porous silicon recorded by using Fourier Transform Infrared Spectroscopy (FTIR). In contrast to linear siloxane, the suggested circular siloxane terminated with linear siloxane structure is found to well-imitate the experimental spectra. These results are augmented with EDX (energy dispersive x-ray spectroscopy) measurements, which showed that the increase of SiOx content in porous silicon due to rapid oxidation process results in considerable decrease in PL peak intensity and a blue shift in the peak position. (author)

  10. Silicon pressure transducers: a review

    International Nuclear Information System (INIS)

    Aceves M, M.; Sandoval I, F.

    1994-01-01

    We present a review of the pressure sensors, which use the silicon piezo resistive effect and micro machining technique. Typical pressure sensors, applications, design and other different structures are presented. (Author)

  11. Scattering characteristics from porous silicon

    Directory of Open Access Journals (Sweden)

    R. Sabet-Dariani

    2000-12-01

    Full Text Available   Porous silicon (PS layers come into existance as a result of electrochemical anodization on silicon. Although a great deal of research has been done on the formation and optical properties of this material, the exact mechanism involved is not well-understood yet.   In this article, first, the optical properties of silicon and porous silicon are described. Then, previous research and the proposed models about reflection from PS and the origin of its photoluminescence are reveiwed. The reflecting and scattering, absorption and transmission of light from this material, are then investigated. These experiments include,different methods of PS sample preparation their photoluminescence, reflecting and scattering of light determining different characteristics with respect to Si bulk.

  12. Silicon Solar Cell Turns 50

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, J.

    2004-08-01

    This short brochure describes a milestone in solar (or photovoltaic, PV) research-namely, the 50th anniversary of the invention of the first viable silicon solar cell by three researchers at Bell Laboratories.

  13. Single crystalline silicon solar cells with rib structure

    Directory of Open Access Journals (Sweden)

    Shuhei Yoshiba

    2017-02-01

    Full Text Available To improve the conversion efficiency of Si solar cells, we have developed a thin Si wafer-based solar cell that uses a rib structure. The open-circuit voltage of a solar cell is known to increase with deceasing wafer thickness if the cell is adequately passivated. However, it is not easy to handle very thin wafers because they are brittle and are subject to warpage. We fabricated a lattice-shaped rib structure on the rear side of a thin Si wafer to improve the wafer’s strength. A silicon nitride film was deposited on the Si wafer surface and patterned to form a mask to fabricate the lattice-shaped rib, and the wafer was then etched using KOH to reduce the thickness of the active area, except for the rib region. Using this structure in a Si heterojunction cell, we demonstrated that a high open-circuit voltage (VOC could be obtained by thinning the wafer without sacrificing its strength. A wafer with thickness of 30 μm was prepared easily using this structure. We then fabricated Si heterojunction solar cells using these rib wafers, and measured their implied VOC as a function of wafer thickness. The measured values were compared with device simulation results, and we found that the measured VOC agrees well with the simulated results. To optimize the rib and cell design, we also performed device simulations using various wafer thicknesses and rib dimensions.

  14. Intelligent processing for thick composites

    Science.gov (United States)

    Shin, Daniel Dong-Ok

    2000-10-01

    Manufacturing thick composite parts are associated with adverse curing conditions such as large in-plane temperature gradient and exotherms. The condition is further aggravated because the manufacturer's cycle and the existing cure control systems do not adequately counter such affects. In response, the forecast-based thermal control system is developed to have better cure control for thick composites. Accurate cure kinetic model is crucial for correctly identifying the amount of heat generated for composite process simulation. A new technique for identifying cure parameters for Hercules AS4/3502 prepreg is presented by normalizing the DSC data. The cure kinetics is based on an autocatalytic model for the proposed method, which uses dynamic and isothermal DSC data to determine its parameters. Existing models are also used to determine kinetic parameters but rendered inadequate because of the material's temperature dependent final degree of cure. The model predictions determined from the new technique showed good agreement to both isothermal and dynamic DSC data. The final degree of cure was also in good agreement with experimental data. A realistic cure simulation model including bleeder ply analysis and compaction is validated with Hercules AS4/3501-6 based laminates. The nonsymmetrical temperature distribution resulting from the presence of bleeder plies agreed well to the model prediction. Some of the discrepancies in the predicted compaction behavior were attributed to inaccurate viscosity and permeability models. The temperature prediction was quite good for the 3cm laminate. The validated process simulation model along with cure kinetics model for AS4/3502 prepreg were integrated into the thermal control system. The 3cm Hercules AS4/3501-6 and AS4/3502 laminate were fabricated. The resulting cure cycles satisfied all imposed requirements by minimizing exotherms and temperature gradient. Although the duration of the cure cycles increased, such phenomena was

  15. Method of forming buried oxide layers in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  16. Silicone nanocomposite coatings for fabrics

    Science.gov (United States)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  17. Quasimetallic silicon micromachined photonic crystals

    International Nuclear Information System (INIS)

    Temelkuran, B.; Bayindir, Mehmet; Ozbay, E.; Kavanaugh, J. P.; Sigalas, M. M.; Tuttle, G.

    2001-01-01

    We report on fabrication of a layer-by-layer photonic crystal using highly doped silicon wafers processed by semiconductor micromachining techniques. The crystals, built using (100) silicon wafers, resulted in an upper stop band edge at 100 GHz. The transmission and defect characteristics of these structures were found to be analogous to metallic photonic crystals. We also investigated the effect of doping concentration on the defect characteristics. The experimental results agree well with predictions of the transfer matrix method simulations

  18. Industrial Silicon Wafer Solar Cells

    OpenAIRE

    Neuhaus, Dirk-Holger; Münzer, Adolf

    2007-01-01

    In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future e...

  19. Silicon nanowires: structure and properties

    International Nuclear Information System (INIS)

    Nezhdanov, A.V.; Mashin, A.I.; Razuvaev, A.G.; Ershov, A.V.; Ignatov, S.K.

    2006-01-01

    An attempt to grow silicon nanowires has been made by electron beam evaporation on highly oriented pyrolytic substrate. Needle-like objects are located along the normal to a substrate (density 2 x 10 11 cm -2 ). For modeling quasi-one-dimensional objects calculations of nuclear structure and energy spectra have been accomplished. A fullerene-like structure Si 24 is proposed as a basic atomic configuration of silicon nanowires [ru

  20. Laser tests of silicon detectors

    International Nuclear Information System (INIS)

    Dolezal, Zdenek; Escobar, Carlos; Gadomski, Szymon; Garcia, Carmen; Gonzalez, Sergio; Kodys, Peter; Kubik, Petr; Lacasta, Carlos; Marti, Salvador; Mitsou, Vasiliki A.; Moorhead, Gareth F.; Phillips, Peter W.; Reznicek, Pavel; Slavik, Radan

    2007-01-01

    This paper collects experiences from the development of a silicon sensor laser testing setup and from tests of silicon strip modules (ATLAS End-cap SCT), pixel modules (DEPFET) and large-area diodes using semiconductor lasers. Lasers of 1060 and 680 nm wavelengths were used. A sophisticated method of focusing the laser was developed. Timing and interstrip properties of modules were measured. Analysis of optical effects involved and detailed discussion about the usability of laser testing for particle detectors are presented