WorldWideScience

Sample records for thick lithium coatings

  1. The effects of carbon distribution and thickness on the lithium storage properties of carbon-coated SnO_2 hollow nanofibers

    International Nuclear Information System (INIS)

    Zhou, Huimin; Li, Zhiyong; Qiu, Yiping; Xia, Xin

    2016-01-01

    To alleviate the enormous volume change problem of tin-based anodes for lithium ion batteries (LIBs), carbon-coated tin dioxide (SnO_2) hollow nanofibers were prepared by means of single-spinneret electrospinning followed by calcination and hydrothermal treatment. By varying the concentration of glucose and the reaction time during the hydrothermal coating process, the final product with different carbon distribution and thickness could be obtained. Galvanostatic charge/discharge was carried out to evaluate them as potential anode materials for LIBs. It was shown that the main effect of carbon distribution was to control the capacity retention rate, and the carbon thickness played the important role in lithium insertion/extraction properties. The optimum composite nanofibers could be prepared with glucose concentration of 10 mg/ml and hydrothermal time of 20 h, the carbon content and the specific surface area of which were 26.15% and 29.4 m"2/g, respectively. And this anode with both the carbon core and deposited thin carbon skin was able to deliver a high reversible capacity of 704.6 mAhg"−"1 and the capacity retention could retain 68.2% after 80 cycles. - Graphical abstract: Based on the electrochemical properties of carbon-coated hollow SnO2 anodes, how the carbon distribution and carbon thickness affect their performance are disscussed in groups. - Highlights: • The hollow SnO_2 nanofibers were carbon-coated by hydrothermal process. • The controlled distribution and thickness of carbon layer can be obtained. • The main effect of carbon distribution was to control the capacity retention rate. • The carbon thickness played the important role in lithium insertion/extraction properties.

  2. Lithium battery electrodes with ultra-thin alumina coatings

    Science.gov (United States)

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  3. Development of aluminide coatings on vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, D.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3/5 at.% dissolved aluminum in sealed V and V-20 wt.% Ti capsules at temperatures between 775 and 880 degrees C. After each test, the capsules were opened and the samples were examined by optical microscopy and scanning electron microscopy (SEM), and analyzed by electron-energy-dispersive spectroscopy (EDS) and X-ray diffraction. Hardness of the coating layers and bulk alloys was determined by microidentation techniques. The nature of the coatings, i.e., surface coverage, thickness, and composition, varied with exposure time and temperature, solute concentration in lithium, and alloy composition. Solute elements that yielded adherent coatings on various substrates can provide a means of developing in-situ electrical insulator coatings by reaction of the reactive layers with dissolved nitrogen in liquid lithium

  4. Enhanced Rate Capability of Oxide Coated Lithium Titanate within Extended Voltage Ranges

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Dongjoon [College of Engineering, University of Kentucky, Lexington, KY (United States); Xiao, Xingcheng, E-mail: xingcheng.xiao@gm.com [Chemical and Materials Systems Laboratory, General Motors R& D Center, Warren, MI (United States)

    2015-06-30

    Lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12} or LTO) is a promising negative electrode material of high-power lithium-ion batteries, due to its superior rate capability and excellent capacity retention. However, the specific capacity of LTO is less than one half of that of graphite electrode. In this work, we applied ultrathin oxide coating on LTO by the atomic layer deposition technique, aiming for increasing the energy density by extending the cell voltage window and specific capacity of LTO. We demonstrated that a few nanometer thick Al{sub 2}O{sub 3} coating can suppress the mechanical distortion of LTO cycled at low potential, which enable the higher specific capacity and excellent capacity retention. Furthermore, the surface coating can facilitate the charge transfer, leading to significantly improved rate capabilities, comparing with the uncoated LTO.

  5. Lithium Surface Coatings for Improved Plasma Performance in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

    2008-02-19

    NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  6. Application of Industrial XRF Coating Thickness Analyzer for Phosphate Coating Thickness on Steel

    Directory of Open Access Journals (Sweden)

    Aleksandr Sokolov

    2018-03-01

    Full Text Available The results of industrial application of an online X-ray fluorescence coating thickness analyzer for measuring the thickness of phosphate coatings on moving steel strips are considered in the article. The target range of coating thickness to be measured is from tens to hundreds of mg/m2 in a measurement time of 10 s. The measurement accuracy observed during long-duration factory acceptance test was 10–15%. The coating thickness analyzer consists of two XRF gauges, mounted above and below the steel strip and capable of moving across the moving strip system for their suspension and relocation and electronic control unit. Fully automated software was developed to automatically and continuously (24/7 control both gauges, scanning both sides of the steel strip, and develop and test methods for measuring new coatings. It allows performing offline storage and retrieval of the measurement results, remotely controlling the analyzer components and measurement modes from a control room. The developed XRF coating thickness analyzer can also be used for real-time measurement of other types of coatings, both metallic and non-metallic.

  7. CaO insulator coatings on a vanadium-base alloy in liquid 2 at.% calcium-lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Kassner, T.F.

    1996-01-01

    The electrical resistance of CaO coatings produced on V-4%Cr-4%Ti and V-15%Cr-5%Ti by exposure of the alloy (round bottom samples 6-in. long by 0.25-in. dia.) to liquid lithium that contained 2 at.% dissolved calcium was measured as a function of time at temperatures between 300-464 degrees C. The solute element, calcium in liquid lithium, reacted with the alloy substrate at these temperatures for 17 h to produce a calcium coating ∼7-8 μm thick. The calcium-coated vanadium alloy was oxidized to form a CaO coating. Resistance of the coating layer on V-15Cr-5Ti, measured in-situ in liquid lithium that contained 2 at.% calcium, was 1.0 x 10 10 Ω-cm 2 at 300 degrees C and 400 h, and 0.9 x 10 10 Ω-cm 2 at 464 degrees C and 300 h. Thermal cycling between 300 and 464 degrees C changed the resistance of the coating layer, which followed insulator behavior. Examination of the specimen after cooling to room temperature revealed no cracks in the CaO coating. The coatings were evaluated by optical microscopy, scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), and X-ray analysis. Adhesion between CaO and vanadium alloys was enhanced as exposure time increased

  8. Feasibility study of Boron Nitride coating on Lithium-ion battery casing

    International Nuclear Information System (INIS)

    Saw, L.H.; Ye, Y.; Tay, A.A.O.

    2014-01-01

    Increasing in public awareness about global warming and exhaustion of energy resources has led to a flourishing electric vehicle industry that would help realize a zero-emission society. The thermal management of battery packs, which is an essential issue closely linked to a number of challenges for electric vehicles including cost, safety, reliability and lifetime, has been extensively studied. However, relatively little is known about the thermal effect of polymer insulation on the Lithium-ion battery casing. This study investigates the feasibility of replacing the polymer insulation with a Boron Nitride coating on the battery casing using the Taguchi experimental method. The effect of casing surface roughness, coating thickness and their interaction were examined using orthogonal array L 9 (3 4 ). Nominal the best is chosen for the optimization process to achieve optimum adhesion strength. In addition, the thermal improvements of the coating as compared to conventional polymer insulator on the battery are further investigated. - Highlights: • We studied the Boron Nitride coating on battery casing using Taguchi method. • We investigated the effect of surface roughness and coating thickness on adhesion strength. • We compared the effect of coating and polymer insulator in heat transfer. • The Boron Nitride coating could enhance the thermal management of the battery

  9. Suppressing Lithium Dendrite Growth with a Single-Component Coating.

    Science.gov (United States)

    Liu, Haodong; Zhou, Hongyao; Lee, Byoung-Sun; Xing, Xing; Gonzalez, Matthew; Liu, Ping

    2017-09-13

    A single-component coating was formed on lithium (Li) metal in a lithium iodide/organic carbonate [dimethyl carbonate (DMC) and ethylene carbonate (EC)] electrolyte. LiI chemically reacts with DMC to form lithium methyl carbonate (LMC), which precipitates and forms the chemically homogeneous coating layer on the Li surface. This coating layer is shown to enable dendrite-free Li cycling in a symmetric Li∥Li cell even at a current density of 3 mA cm -2 . Adding EC to DMC modulates the formation of LMC, resulting in a stable coating layer that is essential for long-term Li cycling stability. Furthermore, the coating can enable dendrite-free cycling after being transferred to common LiPF 6 /carbonate electrolytes, which are compatible with metal oxide cathodes.

  10. Effect of lithium PFC coatings on NSTX density control

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Bell, R.; Bush, C.; Gates, D.; Gray, T.; Kaita, R.; Leblanc, B.; Maingi, R.; Majeski, R.; Mansfield, D.; Mueller, D.; Paul, S.; Raman, R.; Roquemore, A.L.; Sabbagh, S.; Skinner, C.H.; Soukhanovskii, V.; Stevenson, T.; Zakharov, L.

    2007-01-01

    Lithium coatings on the graphite plasma facing components (PFCs) in NSTX are being investigated as a tool for density profile control and reducing the recycling of hydrogen isotopes. Repeated lithium pellet injection into Center Stack Limited and Lower Single Null ohmic helium discharges were used to coat graphite surfaces that had been pre-conditioned with ohmic helium discharges of the same shape to reduce their contribution to hydrogen isotope recycling. The following deuterium NBI reference discharges exhibited a reduction in density by a factor of about 3 for limited and 2 for diverted plasmas, respectively, and peaked density profiles. Recently, a lithium evaporator has been used to apply thin coatings on conditioned and unconditioned PFCs. Effects on the plasma density and the impurities were obtained by pre-conditioning the PFCs with ohmic helium discharges, and performing the first deuterium NBI discharge as soon as possible after applying the lithium coating

  11. Effect of Porosity on the Thick Electrodes for High Energy Density Lithium Ion Batteries for Stationary Applications

    Directory of Open Access Journals (Sweden)

    Madhav Singh

    2016-11-01

    Full Text Available A series of 250–350 μ m-thick single-sided lithium ion cell graphite anodes and lithium nickel manganese cobalt oxide (NMC cathodes with constant area weight, but varying porosity were prepared. Over this wide thickness range, micron-sized carbon fibers were used to stabilize the electrode structure and to improve electrode kinetics. By choosing the proper porosities for the anode and cathode, kinetic limitations and aging losses during cell cycling could be minimized and energy density improved. The cell (C38%-A48% exhibits the highest energy density, 441 Wh/L at the C/10 rate, upon cycling at elevated temperature and different C-rates. The cell (C38%-A48% showed 9% higher gravimetric energy density at C/10 in comparison to the cell with as-coated electrodes.

  12. Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Zhao, Peng; Yang, Hui; Liu, Borui; Zhang, Jiguang; Cui, Yi; Yu, Guihua; Zhang, Sulin; Wang, Chong M.

    2015-10-01

    One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemo-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemo-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ~ 150 nm for bare SiNPs to ~ 380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.

  13. Improvement in Plasma Performance with Lithium Coatings in NSTX

    International Nuclear Information System (INIS)

    Kaita, R.

    2009-01-01

    Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFC's) have been demonstrated on many fusion devices, including TFTR, T-11M, and FT-U. Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

  14. Coating thickness measurement

    International Nuclear Information System (INIS)

    1976-12-01

    The standard specifies measurements of the coating thickness, which make use of beta backscattering and/or x-ray fluorescence. For commonly used combinations of coating material and base material the appropriate measuring ranges and radionuclides to be used are given for continuous as well as for discontinuous measurements

  15. Coating thickness measuring device

    International Nuclear Information System (INIS)

    Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.

    1984-01-01

    A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts

  16. Protective film formation on AA2024-T3 aluminum alloy by leaching of lithium carbonate from an organic coating

    NARCIS (Netherlands)

    Liu, Y.; Visser, P.; Zhou, X.; Lyon, S.B.; Hashimoto, T.; Curioni, M.; Gholinia, A.; Thompson, G.E.; Smyth, G.; Gibbon, S.R.; Graham, D.; Mol, J.M.C.; Terryn, H.A.

    2015-01-01

    An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted. It was found that, during neutral salt spray exposure, a protective film of about 0.2 to 1.5 ?m thickness formed within the

  17. Tungsten thick coatings for plasma facing components

    International Nuclear Information System (INIS)

    Riccardi, B.; Pizzuto, A.; Orsini, A.; Libera, S.; Visca, E.; Bertamini, L.; Casadei, F.; Severini, E.; Montanari, R.; Litunovsky, N.

    1998-01-01

    The aim of the R and D activity was to realize thick W coatings on CuCrZr hollow bars and to test the mock ups with respect to thermal fatigue. Eight mock ups provided of 4 mm thick W coating were finally manufactured. The bonding integrity between coating and substrate was checked by means of an Ultrasonic apparatus. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. Macroscopic residual strain measurements were performed by means of 'hole drilling' technique. The activities performed demonstrated the feasibility of thick Tungsten coatings on geometries with more complex residual strain distribution. These coatings are reliable armour of medium heat flux plasma facing component. (author)

  18. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery.

    Science.gov (United States)

    Assegie, Addisu Alemayehu; Cheng, Ju-Hsiang; Kuo, Li-Ming; Su, Wei-Nien; Hwang, Bing-Joe

    2018-03-29

    The practical implementation of an anode-free lithium-metal battery with promising high capacity is hampered by dendrite formation and low coulombic efficiency. Most notably, these challenges stem from non-uniform lithium plating and unstable SEI layer formation on the bare copper electrode. Herein, we revealed the homogeneous deposition of lithium and effective suppression of dendrite formation using a copper electrode coated with a polyethylene oxide (PEO) film in an electrolyte comprising 1 M LiTFSI, DME/DOL (1/1, v/v) and 2 wt% LiNO3. More importantly, the PEO film coating promoted the formation of a thin and robust SEI layer film by hosting lithium and regulating the inevitable reaction of lithium with the electrolyte. The modified electrode exhibited stable cycling of lithium with an average coulombic efficiency of ∼100% over 200 cycles and low voltage hysteresis (∼30 mV) at a current density of 0.5 mA cm-2. Moreover, we tested the anode-free battery experimentally by integrating it with an LiFePO4 cathode into a full-cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with an average coulombic efficiency of 98.6% and capacity retention of 30% in the 200th cycle at a rate of 0.2C. These impressive enhancements in cycle life and capacity retention result from the synergy of the PEO film coating, high electrode-electrolyte interface compatibility, stable polar oligomer formation from the reduction of 1,3-dioxolane and the generation of SEI-stabilizing nitrite and nitride upon lithium nitrate reduction. Our result opens up a new route to realize anode-free batteries by modifying the copper anode with PEO to achieve ever more demanding yet safe interfacial chemistry and control of dendrite formation.

  19. Development of electrically insulating self-healing coatings in vanadium alloys for lithium fusion reactor

    International Nuclear Information System (INIS)

    1999-01-01

    Problems on electrically insulating self-healing coatings (SHC) on vanadium alloys for lithium fusion reactor systems are considered. In particular, the SHC stability and radiation resistance in lithium and effect of magnetic field on the efficiency of the TNR lithium systems are studied. New technological methods for application of self-healing coatings and study on their properties are developed. The vanadium-lithium materials testing in pile loops for solution of the above problems under conditions of the lithium TNR is described [ru

  20. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    Science.gov (United States)

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-12-01

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO 2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm -2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. MoS2 coated hollow carbon spheres for anodes of lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Yufei; Wang, Ye; Shi, Wenhui; Yang, Huiying; Yang, Jun; Huang, Wei; Dong, Xiaochen

    2016-01-01

    With the assistance of resorcinol–formaldehyde, MoS 2 coated hollow carbon spheres (C@MoS 2 ) were synthesized through a facile hydrothermal route followed by heat and alkali treatments. The measurements indicate that the hollow carbon spheres with an average diameter of 300 nm and shell thickness of 20 nm. And the hollow core are uniformly covered by ultrathin MoS 2 nanosheets with a length increased to 400 nm. The unique hollow structure and the synergistic effect between carbon layer and MoS 2 nanosheets significantly enhance the rate capability and electrochemical stability of C@MoS 2 spheres as anode material of lithium-ion battery. The synthesized C@MoS 2 delivered a capacity of 750 mAh g −1 at a current density of 100 mA g −1 . More importantly, the C@MoS 2 maintained a reversible capacity of 533 mAh g −1 even at a high current density of 1000 mA g −1 . The study indicated that MoS 2 coated hollow carbon spheres can be promising anode material for next generation high-performance lithium-ion batteries. (paper)

  2. One-Pot Synthesis of Carbon-Coated SnO 2 Nanocolloids with Improved Reversible Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen

    2009-07-14

    We report a simple glucose-mediated hydrothermal method for gram-scale synthesis of nearly monodisperse hybrid SnO 2 nanoparticles. Glucose is found to play the dual role of facilitating rapid precipitation of polycrystalline SnO 2 nanocolloids and in creating a uniform, glucose-derived, carbon-rich polysaccharide (GCP) coating on the SnO 2 nanocores. The thickness of the GCP coating can be facilely manipulated by varying glucose concentration in the synthesis medium. Carbon-coated SnO 2 nanocolloids obtained after carbonization of the GCP coating exhibit significantly enhanced cycling performance for lithium storage. Specifically, we find that a capacity of ca. 440 mA h/g can be obtained after more than 100 charge/discharge cycles at a current density of 300 mA/g in hybrid SnO 2-carbon electrodes containing as much as 1/3 of their mass in the low-activity carbon shell. By reducing the SnO 2-carbon particles with H 2, we demonstrate a simple route to carbon-coated Sn nanospheres. Lithium storage properties of the latter materials are also reported. Our results suggest that large initial irreversible losses in these materials are caused not only by the initial, presumably irreversible, reduction of SnO 2 as generally perceived in the field, but also by the formation of the solid electrolyte interface (SEI). © 2009 American Chemical Society.

  3. Error Analysis of Ceramographic Sample Preparation for Coating Thickness Measurement of Coated Fuel Particles

    International Nuclear Information System (INIS)

    Liu Xiaoxue; Li Ziqiang; Zhao Hongsheng; Zhang Kaihong; Tang Chunhe

    2014-01-01

    The thicknesses of four coatings of HTR coated fuel particle are very important parameters. It is indispensable to control the thickness of four coatings of coated fuel particles for the safety of HTR. A measurement method, ceramographic sample-microanalysis method, to analyze the thickness of coatings was developed. During the process of ceramographic sample-microanalysis, there are two main errors, including ceramographic sample preparation error and thickness measurement error. With the development of microscopic techniques, thickness measurement error can be easily controlled to meet the design requirements. While, due to the coated particles are spherical particles of different diameters ranged from 850 to 1000μm, the sample preparation process will introduce an error. And this error is different from one sample to another. It’s also different from one particle to another in the same sample. In this article, the error of the ceramographic sample preparation was calculated and analyzed. Results show that the error introduced by sample preparation is minor. The minor error of sample preparation guarantees the high accuracy of the mentioned method, which indicates this method is a proper method to measure the thickness of four coatings of coated particles. (author)

  4. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  5. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness

    International Nuclear Information System (INIS)

    Dai Hui; Zhong Xinghua; Li Jiayan; Zhang Yanfei; Meng Jian; Cao Xueqiang

    2006-01-01

    Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y 2 O 3 + ZrO 2 ) and lanthanum zirconate (LZ, La 2 Zr 2 O 7 ) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 deg. C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 μm have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 μm, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 μm, the failure mainly occurs at the interface of the YSZ layer and the bond coat

  6. Determination of gold coating thickness measurement by using EDXRF

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaian; Masliana Muslimin; Fadlullah Jili Fursani

    2005-01-01

    The paper relates a study on the development of an analysis procedure for measuring the gold coating thickness using EDXRF technique. Gold coating thickness was measured by relating the counts under the Au L? peak its thickness value. In order to get a reasonably accurate result, a calibration graph was plotted using five gold-coated reference standards of different thickness. The calibration graph shows a straight line for thin coating measurement until 0.9 μm. Beyond this the relationship was not linear and this may be resulted from the self-absorption effect. Quantitative analysis was also performed on two different samples of gold coated jewelry and a phone connector. Result from the phone connector analysis seems to agree with the manufacturer gold coating value. From the analysis of gold-coated jewelry it had been able to differentiate the two articles as gold wash and gold electroplated. (Author)

  7. Versatile Coating of Lithium Conductive Li2TiF6 on Over-lithiated Layered Oxide in Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Choi, Wonchang; Benayard, Anass; Park, Jin-Hwan; Park, Junho; Doo, Seok-Gwang; Mun, Junyoung

    2014-01-01

    Highlights: • Li 2 TiF 6 coating was designed to grow surface lithium conductivity and stability. • We conducted an easy and versatile Li 2 TiF 6 lithium conductive coating on cathode. • The coating was performed very simply by ambient-temperature co-precipitation. • After the coating, rate capability, cycleability and thermal stability improved. - Abstract: We demonstrate an easy and versatile approach to modify a cathode-surface with a highly lithium–ion conductive layer by coating it with Li 2 TiF 6 . The thin and homogeneous Li 2 TiF 6 coating is introduced onto an over-lithiated layered oxide (OLO, namely Li 1.17 Ni 0.17 Co 0.1 Mn 0.56 O 2 ) surface via simple co-precipitation at ambient temperature by using Li 2 CO 3 and H 2 TiF 6 aqueous solutions. The lithium–conductive fluoride coating is expected to effectively suppress the undesired electrochemical and thermal interfacial reactions involving the OLO, which is critical in improving cycle performance and thermal stability. After Li 2 TiF 6 surface modification, the coated OLO materials showed high rate capability as well as long cyclability and improved thermal stability. The crystalline structure and surface microstructure of the prepared OLOs were investigated by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Ultimately, the performances of the assembled lithium ion batteries were thoroughly investigated by electrochemical methods and thermal analysis

  8. Multispectral UV imaging for determination of the tablet coating thickness

    DEFF Research Database (Denmark)

    Novikova, Anna; Carstensen, Jens Michael; Zeitler, J. Axel

    2017-01-01

    The applicability of off-line multispectral ultraviolet (UV) imaging in combination with multivariate data analysis was investigated to determine the coating thickness and its distribution on the tablet surface during lab scale coating. The UV imaging results were compared with the weight gain...... measured for each individual tablet and the corresponding coating thickness and its distribution measured by terahertz pulsed imaging (TPI). Three different tablet formulations were investigated, two of which contained UV active tablet cores. Three coating formulations were applied: Aquacoat® ECD (a mainly...... translucent coating) and Eudragit® NE (a turbid coating containing solid particles). It was shown that UV imaging is a fast and non-destructive method to predict individual tablet weight gain as well as coating thickness. The coating thickness distribution profiles determined by UV imaging correlated...

  9. On the electrochemistry of tin oxide coated tin electrodes in lithium-ion batteries

    International Nuclear Information System (INIS)

    Böhme, Solveig; Edström, Kristina; Nyholm, Leif

    2015-01-01

    As tin based electrodes are of significant interest in the development of improved lithium-ion batteries it is important to understand the associated electrochemical reactions. In this work it is shown that the electrochemical behavior of SnO_2 coated tin electrodes can be described based on the SnO_2 and SnO conversion reactions, the lithium tin alloy formation and the oxidation of tin generating SnF_2. The CV, XPS and SEM data, obtained for electrodeposited tin crystals on gold substrates, demonstrates that the capacity loss often observed for SnO_2 is caused by the reformed SnO_2 layer serving as a passivating layer protecting the remaining tin. Capacities corresponding up to about 80 % of the initial SnO_2 capacity could, however, be obtained by cycling to 3.5 V vs. Li"+/Li. It is also shown that the oxidation of the lithium tin alloy is hindered by the rate of the diffusion of lithium through a layer of tin with increasing thickness and that the irreversible oxidation of tin to SnF_2 at potentials larger than 2.8 V vs. Li"+/Li is due to the fact that SnF_2 is formed below the SnO_2 layer. This improved electrochemical understanding of the SnO_2/Sn system should be valuable in the development of tin based electrodes for lithium-ion batteries.

  10. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes.

    Science.gov (United States)

    Loftager, Simon; García-Lastra, Juan María; Vegge, Tejs

    2017-01-18

    Lithium iron borate (LiFeBO 3 ) is a promising cathode material due to its high theoretical specific capacity, inexpensive components and small volume change during operation. Yet, challenges related to severe air- and moisture-induced degradation have prompted the utilization of a protective coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating-electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO 3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO 3 and LiFeBO 3 electrode surfaces, large structural defects in the graphene coating are required for fast Li-ion diffusion. However, such defects are expected to exist only in small concentrations due to their high formation energies. Alternative coating geometries were therefore investigated, and the configuration in which the coating layers were anchored normal to the electrode surface at B and O atoms was found to be most stable. Nudged elastic band (NEB) calculations of the lithium diffusion barriers across the interface between the optimally oriented coating layers and the electrode show no kinetic limitations for lithium extraction and insertion. Additionally, this graphite-coating configuration showed partial blocking of electrode-degrading species.

  11. Formation of electrically insulating coatings on aluminided vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, G.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3-5 at.% dissolved aluminum in sealed capsules at temperatures between 775 and 880 degrees C. Reaction of the aluminide layer with dissolved nitrogen in liquid lithium provides a means of developing an in-situ electrical insulator coating on the surface of the alloys. The electrical resistivity of A1N coatings on aluminided V and V-20 wt.% Ti was determined in-situ

  12. The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Kugel, H.; Bell, M.; Ahn, J.W.; Bush, C.E.; Maingi, R.

    2008-01-01

    National Spherical Torus Experiment (which M. Ono, Nucl. Fusion 40, 557 (2000)) high-power divertor plasma experiments have shown, for the first time, that benefits from lithium coatings applied to plasma facing components found previously in limited plasmas can occur also in high-power diverted configurations. Lithium coatings were applied with pellets injected into helium discharges, and also with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium oven depositions from a few milligrams to 1 g have been applied between discharges. Benefits from the lithium coatings were sometimes, but not always, seen. These benefits sometimes included decreases in plasma density, inductive flux consumption, and edge-localized mode occurrence, and increases in electron temperature, ion temperature, energy confinement, and periods of edge and magnetohydrodynamic quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  13. Multispectral UV Imaging for Determination of the Tablet Coating Thickness.

    Science.gov (United States)

    Novikova, Anna; Carstensen, Jens M; Zeitler, J Axel; Rades, Thomas; Leopold, Claudia S

    2017-06-01

    The applicability of off-line multispectral UV imaging in combination with multivariate data analysis was investigated to determine the coating thickness and its distribution on the tablet surface during lab-scale coating. The UV imaging results were compared with the weight gain measured for each individual tablet and the corresponding coating thickness and its distribution measured by terahertz pulsed imaging (TPI). Three different tablet formulations were investigated, 2 of which contained UV-active tablet cores. Three coating formulations were applied: Aquacoat® ECD (a mainly translucent coating) and Eudragit® NE (a turbid coating containing solid particles). It was shown that UV imaging is a fast and nondestructive method to predict individual tablet weight gain as well as coating thickness. The coating thickness distribution profiles determined by UV imaging correlated to the results of the TPI measurements. UV imaging appears to hold a significant potential as a process analytical technology tool for determination of the tablet coating thickness and its distribution resulting from its high measurement speed, high molar absorptivity, and a high scattering coefficient, in addition to relatively low costs. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. The impact of lithium wall coatings on NSTX discharges and the engineering of the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Majeski, R.; Kugel, H.; Kaita, R.; Avasarala, S.; Bell, M.G.; Bell, R.E.; Berzak, L.; Beiersdorfer, P.; Gerhardt, S.P.; Gransted, E.; Gray, T.; Jacobson, C.; Kallman, J.; Kaye, S.; Kozub, T.; LeBlanc, B.P.; Lepson, J.; Lundberg, D.P.; Maingi, R.; Mansfield, D.; Paul, S.F.; Pereverzev, G.V.; Schneider, H.; Soukhanovskii, V.; Strickler, T.; Stotler, D.; Timberlake, J.; Zakharov, L.E.

    2010-01-01

    Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both L- and H-mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500-600 degrees C to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to Operate at reactor-relevant temperatures. The engineering of LTX will be discussed.

  15. A new measurement method of coatings thickness based on lock-in thermography

    Science.gov (United States)

    Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao

    2016-05-01

    Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.

  16. Vanadium—lithium in-pile loop for comprehensive tests of vanadium alloys and multipurpose coatings

    Science.gov (United States)

    Lyublinski, I. E.; Evtikhin, V. A.; Ivanov, V. B.; Kazakov, V. A.; Korjavin, V. M.; Markovchev, V. K.; Melder, R. R.; Revyakin, Y. L.; Shpolyanskiy, V. N.

    1996-10-01

    The reliable information on design and material properties of self-cooled Li sbnd Li blanket and liquid metal divertor under neutron radiation conditions can be obtained using the concept of combined technological and material in-pile tests in a vanadium—lithium loop. The method of in-pile loop tests includes studies of vanadium—base alloys resistance, weld resistance under mechanical stress, multipurpose coating formation processes and coatings' resistance under the following conditions: high temperature (600-700°C), lithium velocities up to 10 m/s, lithium with controlled concentration of impurities and technological additions, a neutron load of 0.4-0.5 MW/m 2 and level of irradiation doses up to 5 dpa. The design of such an in-pile loop is considered. The experimental data on corrosion and compatibility with lithium, mechanical properties and welding technology of the vanadium alloys, methods of coatings formation and its radiation tests in lithium environment in the BOR-60 reactor (fast neutron fluence up to 10 26 m -2, irradiation temperature range of 500-523°C) are presented and analyzed as a basis for such loop development.

  17. Enhancement of electron emission and long-term stability of tip-type carbon nanotube field emitters via lithium coating

    International Nuclear Information System (INIS)

    Kim, Jong-Pil; Chang, Han-Beet; Kim, Bu-Jong; Park, Jin-Seok

    2013-01-01

    Carbon nanotubes (CNTs) were deposited on conical tip-type substrates via electrophoresis and coated with lithium (Li) thin films with diverse thicknesses via electroplating. For the as-deposited (i.e., without Li coating) CNT, the turn-on (or triggering) electric field was 0.92 V/μm, and the emission current, which was generated at an applied field of 1.2 V/μm was 56 μA. In the case of the 4.7 nm-thick Li-coated CNT, the turn-on field decreased to 0.65 V/μm and the emission current at the same applied field increased more than ten times to 618 μA. The analysis based on the Kelvin probe measurement and Fowler–Nordheim theory indicated that the coating of Li caused a loss in the structural-aspect-ratio of the CNTs and it reduced their effective work functions from 5.36 eV to 4.90 eV, which led to a great improvement of their electron emission characteristics. The results obtained in this study also showed that the long-term emission stability could be enhanced by the coating of thin Li films on CNTs. - Highlights: ► CNTs are deposited via electrophoretic deposition (EPD). ► Thin films of Li are coated on CNTs via electroplating, without plasma damage. ► Li coating enhanced field emission properties and emission stability of CNTs. ► The effective work functions and field enhancement factors of CNTs are evaluated

  18. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes

    DEFF Research Database (Denmark)

    Loftager, Simon; García Lastra, Juan Maria; Vegge, Tejs

    2017-01-01

    a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO3 and LiFeBO3......Lithium iron borate (LiFeBO3) is a promising cathode material due to its high theoretical specific capacity, inexpensive components and a small volume change during operation. Yet, challenges relating to severe air- and moisture-induced degradation necessitate the application of a protective...... coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating–electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present...

  19. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer

    Science.gov (United States)

    Yang, G. Y.; Du, J. K.; Huang, B.; Jin, Y. A.; Xu, M. H.

    2017-04-01

    The effects of the waveguide layer on the band structure of Rayleigh waves are studied in this work based on a one-dimensional acoustic superlattice lithium niobate substrate coated with a waveguide layer. The present phononic structure is formed by the periodic domain-inverted single crystal that is the Z-cut lithium niobate substrate with a waveguide layer on the upper surface. The plane wave expansion method (PWE) is adopted to determine the band gap behavior of the phononic structure and validated by the finite element method (FEM). The FEM is also used to investigate the transmission of Rayleigh waves in the phononic structure with the interdigital transducers by means of the commercial package COMSOL. The results show that, although there is a homogeneous waveguide layer on the surface, the band gap of Rayleigh waves still exist. It is also found that increasing the thickness of the waveguide layer, the band width narrows and the band structure shifts to lower frequency. The present approach can be taken as an efficient tool in designing of phononic structures with waveguide layer.

  20. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer

    Directory of Open Access Journals (Sweden)

    G. Y. Yang

    2017-04-01

    Full Text Available The effects of the waveguide layer on the band structure of Rayleigh waves are studied in this work based on a one-dimensional acoustic superlattice lithium niobate substrate coated with a waveguide layer. The present phononic structure is formed by the periodic domain-inverted single crystal that is the Z-cut lithium niobate substrate with a waveguide layer on the upper surface. The plane wave expansion method (PWE is adopted to determine the band gap behavior of the phononic structure and validated by the finite element method (FEM. The FEM is also used to investigate the transmission of Rayleigh waves in the phononic structure with the interdigital transducers by means of the commercial package COMSOL. The results show that, although there is a homogeneous waveguide layer on the surface, the band gap of Rayleigh waves still exist. It is also found that increasing the thickness of the waveguide layer, the band width narrows and the band structure shifts to lower frequency. The present approach can be taken as an efficient tool in designing of phononic structures with waveguide layer.

  1. Thermal behavior variations in coating thickness using pulse phase thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Chung, Yoonjae; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)

    2016-08-15

    This paper presents a study on the use of pulsed phase thermography in the measurement of thermal barrier coating thickness with a numerical simulation. A multilayer heat transfer model was used to analyze the surface temperature response acquired from one-sided pulsed thermal imaging. The test sample comprised four layers: the metal substrate, bond coat, thermally grown oxide and the top coat. The finite element software, ANSYS, was used to model and predict the temperature distribution in the test sample under an imposed heat flux on the exterior of the TBC. The phase image was computed with the use of the software MATLAB and Thermofit Pro using a Fourier transform. The relationship between the coating thickness and the corresponding phase angle was then established with the coating thickness being expressed as a function of the phase angle. The method is successfully applied to measure the coating thickness that varied from 0.25 mm to 1.5 mm.

  2. Determination of the coating base thickness with beta backscattering gauges

    International Nuclear Information System (INIS)

    Krejndlin, I.I.; Novikov, V.S.; Pravikov, A.A.

    1976-01-01

    In using beta thickness meters for coating examination, it is necessary that the substrate thickness be greater or equal to the saturation thickness for which one can neglect a systematic error caused by substrate thickness variation. A formula is derived and nomograms are presented for the determination of the substrate saturation thickness with the account of factors affecting the results of coating thickness measurement. The results of saturation thickness calculation are tabulated for a number of substrate materials with using different β-sources ( 147 Pm, 85 Kr, 90 Sr+ 90 Y)

  3. Quantitative analysis and metallic coating thickness measurements by X-ray fluorescence

    International Nuclear Information System (INIS)

    Negrea, Denis; Ducu, Catalin; Malinovschi, Viorel; Moga, Sorin; Boicea, Niculae

    2009-01-01

    This work deals with the use of X-ray fluorescence (XRF) for determining the concentration and the coating thickness on metallic samples. The analysis method presented here may also be applicable to other coatings, providing that the elemental nature of the coating and substrate are compatible with the technical aspects of XRF, such as the absorption coefficient of the system, primary radiation, fluorescent radiation and type of detection. For the coating thickness measurement it was used the substrate-line attenuation method and an algorithm was developed. Its advantage relies in the fact that no special calibration with standard samples having different layer thickness is needed. The samples used for evaluation were metallic pieces of iron with zinc-nickel coatings of different thickness obtained by electrochemical deposition. (authors)

  4. Nondestructive testing technology for measurement coatings thickness on material

    International Nuclear Information System (INIS)

    Yang Mingtai; Wu Lunqiang; Zhang Lianping

    2008-01-01

    The principle, applicability range, advantage and disadvantage of electromagnetic, eddy current method, β backscatter method and XRF methods for nondestructive testing coating thickness of material have been reviewed. The relevant apparatus and manufacturers have been summarized. And the application and developmental direction of manufacturers for nondestructive testing coatings thickness has been foreshowed. (authors)

  5. Quantitative analysis and metallic coating thickness measurements by X-ray fluorescence

    International Nuclear Information System (INIS)

    Negrea, Denis; Ducu, Catalin; Malinovschi, Viorel; Moga, Sorin; Boicea, Niculae

    2009-01-01

    Full text: This paperwork covers the use of X-ray fluorescence (XRF) for determining the concentration and the coating thickness on metallic samples. The analysis method presented here may also be applicable to other coatings, providing that the elemental nature of the coating and substrate are compatible with the technical aspects of XRF, such as the absorption coefficient of the system, primary radiation, fluorescent radiation and type of detection. For the coating thickness measurement it was used the substrate-line attenuation method and a computing algorithm was developed. Its advantage relies in the fact that no special calibration with standard samples having different layer thickness is needed. The samples used for evaluation were metallic pieces of iron with zinc-nickel coatings of different thickness obtained by electrochemical deposition. (authors)

  6. Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries

    Science.gov (United States)

    Park, Sang-Jun; Kim, Young-Jun; Lee, Hyukjae

    Carbon-coated TiO 2 nanotubes are prepared by a simple one-step hydrothermal method with an addition of glucose in the starting powder, and are characterized by morphological analysis and electrochemical measurement. A thin carbon coating on the nanotube surface effectively suppresses severe agglomeration of TiO 2 nanotubes during hydrothermal reaction and post calcination. This action results in better ionic and electronic kinetics when applied to lithium-ion batteries. Consequently, carbon-coated TiO 2 nanotubes deliver a remarkable lithium-ion intercalation/deintercalation performance, such as reversible capacities of 286 and 150 mAh g -1 at 250 and 7500 mA g -1, respectively.

  7. Lithium salts as leachable corrosion inhibitors and potential replacement for hexavalent chromium in organic coatings for the protection of aluminum alloys

    NARCIS (Netherlands)

    Visser, P; Liu, Y; Terryn, H.A.; Mol, J.M.C.

    2016-01-01

    Lithium salts are being investigated as leachable corrosion inhibitor and potential replacement for hexavalent chromium in organic coatings. Model coatings loaded with lithium carbonate or lithium oxalate demonstrated active corrosion inhibition and the formation of a protective layer in a

  8. High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery

    International Nuclear Information System (INIS)

    Tang, Haoqing; Zan, Lingxing; Zhu, Jiangtao; Ma, Yiheng; Zhao, Naiqin; Tang, Zhiyuan

    2016-01-01

    Lithium zinc titanate (Li_2ZnTi_3O_8) is an important titanium material of promising candidates for anode materials with superior electrochemical performance and thus has attracted extensive attention. Herein, high capacity, stable Li_2ZnTi_3O_8/La_2O_3 nanocomposite for lithium-ion battery anode is prepared by a facile strategy. Compared to unmodified Li_2ZnTi_3O_8, the Li_2ZnTi_3O_8/La_2O_3 electrode display a high specific capacity of 188.6 mAh g"−"1 and remain as high as 147.7 mAh g"−"1 after 100 cycles at 2.0 A g"−"1. Moreover, a reversible capacity of 76.3 mAh g"−"1 can be obtained after 1000 cycles at 2.0 A g"−"1 and the retention is 42.7% for Li_2ZnTi_3O_8/La_2O_3, which is much higher than un-coated Li_2ZnTi_3O_8. The superior lithium storage performances of the Li_2ZnTi_3O_8/La_2O_3 can be ascribed to the stable layer of protection, small particle size and large surface area. Cyclic voltammograms result reveals that the La_2O_3 coating layer reduces the polarization and improves the electrochemical activity of anode. - Highlights: • Nano layer La_2O_3 coated Li_2ZnTi_3O_8 particles have been prepared via a suspension mixing process followed by heat treatment. • Coated Li_2ZnTi_3O_8 has enhanced high rate capability, cyclic stability and long lifespan performance. • Electrochemical properties were tested in a charge/discharge voltage range of 3.0–0.05 V (vs. Li/Li"+).

  9. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries

    International Nuclear Information System (INIS)

    Zhang, Zhiyong; Lai, Yanqing; Zhang, Zhian; Zhang, Kai; Li, Jie

    2014-01-01

    Graphical abstract: Al2O3-coated separator with developed porous channels is prepared by coating Al2O3 polymer solution on routine separator. The batteries with Al2O3-coated separator exhibited a reversible capacity of as high as 593 mAh g-1 at the rate of 0.2 C after 50th charge/discharge cycle. The enhancement in the electrochemical performance could be attributed to the reduced charge transfer resistance after the introduction of Al2O3 coating layer. Besides, the Al2O3 coating layer, acting as a physical barrier for polysulfides, can effectively prevent polysulfides shuttling between the cathode and the anode. We believe that the Al2O3-coated separator is promising in the lithium sulfur battery applications. - Highlights: • Al 2 O 3 -coated separator is used as the separator of lithium sulfur battery. • The cell with Al 2 O 3 -coated separator exhibits excellent cycling stability and high rate capability. • Al 2 O 3 -coated separator is promising in the lithium sulfur battery applications. - Abstract: In this paper, Al 2 O 3 -coated separator with developed porous channels is prepared to improve the electrochemical performance of lithium sulfur batteries. It is demonstrated that the Al 2 O 3 -coating layer is quite effective in reducing shuttle effect and enhancing the stability of the sulfur electrode. The initial discharge capacity of the cell with Al 2 O 3 -coated separator can reach 967 mAh g −1 at the rate of 0.2 C. After 50th charge/discharge cycle, this cell can also deliver a reversible capacity of as high as 593.4 mAh g −1 . Significantly, the charge-transfer resistance of the electrode tends to be reducing after using Al 2 O 3 -coated separator. The improved cell performance is attributed to the porous architecture of the Al 2 O 3 -coating layer, which serves as an ion-conducting skeleton for trapping and depositing dissolved sulfur-containing active materials, as confirmed by scanning electron microscopy (SEM) and energy-dispersive X

  10. Radioisotope albedo method for measuring thickness of polymers coatings on metal basis

    International Nuclear Information System (INIS)

    Kapranov, B.I.; Myakin'kova, L.V.; Shaverin, V.A.

    1986-01-01

    Theoretical analysis of albedo thickness measuring of polymer coating-metal composite has been made and experimental studies of the range of tested thicknesses of polymer coating when different metal bases and radiation sources are used have been conducted. It is shown that the thickness of polymer coating on metal can be measured using backscattered γ-radiation in the energy range of 20-120 keV at the error 0.15-0.8 mm, at that, for thickness up to 23 mm the use of 147 Pm isotope can be defined as the optimum one; for thicknesses up to 40 mm 241 Am should be used; at thicknesses up to 60 mm - 57 Co. The AGAT-1 albedo gamma thickness gage, designed for measuring thickness of fiber glass coating up to 20 mm on metal base, is described

  11. Use of buffy coat thick films in detecting malaria parasites in patients with negative conventional thick films.

    Science.gov (United States)

    Duangdee, Chatnapa; Tangpukdee, Noppadon; Krudsood, Srivicha; Wilairatana, Polrat

    2012-04-01

    To determine the frequency of malaria parasite detection from the buffy coat blood films by using capillary tube in falciparum malaria patients with negative conventional thick films. Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study. The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases, Bangkok, Thailand for 28 day. Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia, then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film. The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients (27.8%) with asexual forms of Plasmodium falciparum. The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8% of patients whose conventional thick films show negative parasitemia.

  12. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Science.gov (United States)

    Hwang, Jeongwoon; Ihm, Jisoon; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-01-01

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV). As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries. PMID:28347087

  13. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jeongwoon Hwang

    2015-10-01

    Full Text Available We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV. As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  14. A comparison between destructive and non-destructive techniques in determining coating thickness

    Science.gov (United States)

    Haider, F. I.; Suryanto; Ani, M. H.; Mahmood, M. H.

    2018-01-01

    Measuring coating thickness is an important part in research works related to coating applications. In general, techniques for measuring coating thickness may be divided into destructive and non-destructive methods which are commonly used depending on the applications. The objective of this study is to compare two methods measuring the coating thickness of electroplating copper coating on the austenitic stainless-steel substrate. The electroplating was carried out in a solution containing 200 g/L CuSO4, 100 g/L H2SO4 at room temperature and current of 40mA/cm2 during 20, 40, 60, 80 and 100 mins as coating periods. And the coating thickness was measured by two methods, cross sectional analysis as a destructive technique and weight gain as a non-destructive technique. The results show that at 20 mins coating time interval, the thickness measured by cross sectional method was 16.67 μm and by weight gain method was 17.37 μm, with difference of 0.7 μm and percentage error of 4.11%. This error increased to 5.27% at 100mins time interval, where the values of the thickness measured by cross sectional and weight gain were 86.33 μm and 81.9 μm respectively, and the difference was 4.43 μm. Moreover, though the weight gain method is fast and gives the indication for the termination of a coating process, information regarding the uniformity, porosity and the presence of cracks cannot be obtained. On the other hand, determining the coating thickness using destructive method will damage the sample.

  15. Biocompatible wear-resistant thick ceramic coating

    Directory of Open Access Journals (Sweden)

    Vogt Nicola

    2016-09-01

    Full Text Available Sensitisation to immunologically active elements like chromium, cobalt or nickel and debris particle due to wear are serious problems for patients with metallic implants. We tested the approach of using a hard and thick ceramic coating as a wear-resistant protection of titanium implants, avoiding those sensitisation and foreign body problems. We showed that the process parameters strongly influence the coating porosity and, as a consequence, also its hardness.

  16. A digital instrument for nondestructive measurements of coating thicknesses by beta backscattering

    Science.gov (United States)

    Farcasiu, D. M.; Apostolescu, T.; Bozdog, H.; Badescu, E.; Bohm, V.; Stanescu, S. P.; Jianu, A.; Bordeanu, C.; Cracium, M. V.

    1992-02-01

    The elements of nondestructive gauging of coatings applied on various metal bases are presented. The intensity of the backscattered beta radiations is related to the thickness of the coating. With a fixed measuring geometry and radioactive sources (147Pm, 204Tl, 90Sr+90Y) the intensity of the backscattered beta particles is dependent on the following parameters: coating thickness, atomic number of the coating material and of the base, the beta particle energy and the surface finish. It can be used for the measurement of a wide range of coating thicknesses provided that the difference between the coating and the support atomic numbers is at least 20%. Fields of application include electronics, electrotechnique and so on.

  17. A digital instrument for nondestructive measurements of coating thicknesses by beta backscattering

    International Nuclear Information System (INIS)

    Farcasiu, D.M.; Apostolescu, T.; Bozdog, H.; Badescu, E.; Bohm, V.; Stanescu, S.P.; Jianu, A.; Bordeanu, C.; Craciun, M.V.

    1992-01-01

    The elements of nondestructive gauging of coatings applied on various metal bases are presented. The intensity of the backscattered beta radiations is related to the thickness of the coating. With a fixed measuring geometry and radioactive sources ( 147 Pm, 204 Tl, 90 Sr+ 90 Y) the intensity of the backscattered beta particles is dependent on the following parameters: Coating thickness, atomic number of the coating material and of the base, the beta particle energy and the surface finish. It can be used for the measurement of a wide range of coating thicknesses provided that the difference between the coating and the support atomic numbers is at least 20%. Fields of application include electronics, electrotechnique and so on. (orig.)

  18. Absolute Thickness Measurements on Coatings Without Prior Knowledge of Material Properties Using Terahertz Energy

    Science.gov (United States)

    Roth, Don J.; Cosgriff, Laura M.; Harder, Bryan; Zhu, Dongming; Martin, Richard E.

    2013-01-01

    This study investigates the applicability of a novel noncontact single-sided terahertz electromagnetic measurement method for measuring thickness in dielectric coating systems having either dielectric or conductive substrate materials. The method does not require knowledge of the velocity of terahertz waves in the coating material. The dielectric coatings ranged from approximately 300 to 1400 m in thickness. First, the terahertz method was validated on a bulk dielectric sample to determine its ability to precisely measure thickness and density variation. Then, the method was studied on simulated coating systems. One simulated coating consisted of layered thin paper samples of varying thicknesses on a ceramic substrate. Another simulated coating system consisted of adhesive-backed Teflon adhered to conducting and dielectric substrates. Alumina samples that were coated with a ceramic adhesive layer were also investigated. Finally, the method was studied for thickness measurement of actual thermal barrier coatings (TBC) on ceramic substrates. The unique aspects and limitations of this method for thickness measurements are discussed.

  19. Coating Thickness Measurement of the Simulated TRISO-Coated Fuel Particles using an Image Plate and a High Resolution Scanner

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Kim, Yeon Ku; Jeong, Kyung Chai; Lee, Young Woo; Kim, Bong Goo; Eom, Sung Ho; Kim, Young Min; Yeo, Sung Hwan; Cho, Moon Sung

    2014-01-01

    In this study, the thickness of the coating layers of 196 coated particles was measured using an Image Plate detector, high resolution scanner and digital image processing techniques. The experimental results are as follows. - An X-ray image was acquired for 196 simulated TRISO-coated fuel particles with ZrO 2 kernel using an Image Plate with high resolution in a reduced amount of time. - We could observe clear boundaries between coating layers for 196 particles. - The geometric distortion error was compensated for the calculation. - The coating thickness of the TRISO-coated fuel particles can be nondestructively measured using X-ray radiography and digital image processing technology. - We can increase the number of TRISO-coated particles to be inspected by increasing the number of Image Plate detectors. A TRISO-coated fuel particle for an HTGR (high temperature gas-cooled reactor) is composed of a nuclear fuel kernel and outer coating layers. The coating layers consist of buffer PyC (pyrolytic carbon), inner PyC (I-PyC), SiC, and outer PyC (O-PyC) layer. The coating thickness is measured to evaluate the soundness of the coating layers. X-ray radiography is one of the nondestructive alternatives for measuring the coating thickness without generating a radioactive waste. Several billion particles are subject to be loaded in a reactor. A lot of sample particles should be tested as much as possible. The acquired X-ray images for the measurement of coating thickness have included a small number of particles because of the restricted resolution and size of the X-ray detector. We tried to test many particles for an X-ray exposure to reduce the measurement time. In this experiment, an X-ray image was acquired for 196 simulated TRISO-coated fuel particles using an image plate and high resolution scanner with a pixel size of 25Χ25 μm 2 . The coating thickness for the particles could be measured on the image

  20. A lithium deposition system for tokamak devices*

    Science.gov (United States)

    Graziul, Christopher; Majeski, Richard; Kaita, Robert; Hoffman, Daniel; Timberlake, John; Card, David

    2002-11-01

    The production of a lithium deposition system using commercially available components is discussed. This system is intended to provide a fresh lithium wall coating between discharges in a tokamak. For this purpose, a film 100-200 Å thick is sufficient to ensure that the plasma interacts solely with the lithium. A test system consisting of a lithium evaporator and a deposition monitor has been designed and constructed to investigate deposition rates and coverage. A Thermionics 3kW e-gun is used to rapidly evaporate small amounts of solid lithium. An Inficon XTM/2 quartz deposition monitor then measures deposition rate at varying distances, positions and angles relative to the e-gun crucible. Initial results from the test system will be presented. *Supported by US DOE contract #DE-AC02-76CH-03073

  1. Microstructure and Wear Resistance of TIG Remelted NiCrBSi Thick Coatings

    Directory of Open Access Journals (Sweden)

    Guo-lu Li

    2018-01-01

    Full Text Available The self-fluxing NiCrBSi coatings with 800 μm thickness were prepared on the surface of AISI1045 steel substrate by plasma spraying. And the remelted coating was obtained using by the tungsten inert gas (TIG arc process. The microstructure, surface roughness, hardness, phase composition, and wear resistance of the sprayed coating and remelted coating were systematically investigated. The results demonstrate that TIG remelted treatment can significantly eliminate the microscopic defects in thick coating and improve its density. The surface roughness (Ra of the remelted coating is only 18.9% of the sprayed coating. The hardness of the remelted coating is 26.8% higher than that of the sprayed coating. The main phases in the sprayed coating are changed from γ-Ni, Cr7C3, and Cr2B to γ-Ni, Cr23C6, CrB, Ni3B, and Fe3C. The wear mass loss of the remelted coating is only 17.1% of the sprayed coating. Therefore, a Ni-based thick coating with good wear resistance can be obtained by plasma spraying and remelted technique.

  2. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-01-01

    Highlights: • The thickness of carbon coating layers can be successfully controlled through varying molar concentration of aqueous glucose solution. • Coating carbon thickness and carbon content are two important factors on the electrochemical performances of CoSnO3@C. • CoSnO 3 @C under optimized conditions exhibits the optimal balance between the volume buffering effect and reversible capacity. • As-prepared CoSnO 3 @C under optimized conditions shows excellent electrochemical performances, whose reversible capacity could reach 491 mA h g −1 after 100 cycles. - Abstract: A series of core–shell carbon coated amorphous CoSnO 3 (CoSnO 3 @C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge–discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO 3 @C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g −1 after 100 cycles

  3. Vapor deposition on doublet airfoil substrates: Control of coating thickness and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)

    2015-11-15

    Gas jet assisted vapor deposition processes for depositing coatings are conducted at higher pressures than conventional physical vapor deposition methods, and have shown promise for coating complex shaped substrates including those with non-line-of-sight (NLS) regions on their surface. These regions typically receive vapor atoms at a lower rate and with a wider incident angular distribution than substrate regions in line-of-sight (LS) of the vapor source. To investigate the coating of such substrates, the thickness and microstructure variation along the inner (curved) surfaces of a model doublet airfoil containing both LS and NLS regions has been investigated. Results from atomistic simulations and experiments confirm that the coating's thickness is thinner in flux-shadowed regions than in other regions for all the coating processes investigated. They also indicated that the coatings columnar microstructure and pore volume fraction vary with surface location through the LS to NLS transition zone. A substrate rotation strategy for optimizing the thickness over the entire doublet airfoil surface was investigated, and led to the identification of a process that resulted in only small variation of coating thickness, columnar growth angle, and pore volume fraction on all doublet airfoil surfaces.

  4. Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts. Final Technical Report

    International Nuclear Information System (INIS)

    Pigarov, Alexander

    2012-01-01

    This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings and non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.

  5. Influence of surface coating on structure and properties of metallic lithium anode for rechargeable Li-O2 battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Wang, Q.; Ma, Q.; Song, Q.; Chen, Q.

    2017-07-01

    Amorphous lithium phosphorous oxynitride film was coated directly on pre-treated lithium metal as anode of lithium air battery by radio-frequency sputtering technique from a Li3PO4 target. The structure and composition of modified anode was analyzed before and after charge/discharge test in a lithium-air battery, which comprises 0.5M LiNO3/TEGDME as the electrolyte and super P carbon as cathode. Batteries were galvanostatically discharged by an Arbin BT-2000 battery tester between open current voltage and 2.15V vs. Li+/Li at various current regimes ranging from 0.1–0.4mA/cm2. Compared with fresh lithium, LIPON-coated anode exhibited better electrochemical performance. Good charging efficiency of 90% at a narrower voltage gap with high ionic conductivity of 9.4×10−5S/cm was achieved through optimizing lithium pre-treated conditions, sputtering N2 flows and suitable solute for electrolyte. (Author)

  6. Compatibility of yttria (Y{sub 2}O{sub 3}) with liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuyama, Takaaki; Yoneoka, Toshiaki; Terai, Takayuki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Compatibility of Y{sub 2}O{sub 3} sintered specimens with liquid lithium was tested at 773K. No configuration change was observed with a slight increase of thickness for 1419 hr. Lithium-yttrium complex oxide (LiYO{sub 2}) was formed on the surface, and the inner part changed to gray or black nonstoichiometric Y{sub 2}O{sub 3-X} with lower electrical resistibility. It is concluded that Y{sub 2}O{sub 3} has a possibility as a ceramic coating material for liquid blankets if it can be made into a dense coating on the surface of piping materials. (author)

  7. Dynamic-speckle profilometer for online measurements of coating thickness

    Energy Technology Data Exchange (ETDEWEB)

    Kamshilin, A A [Laboratory of Optical Sensor Technology, Department of Physics, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Semenov, D V [Laboratory of Optical Sensor Technology, Department of Physics, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Nippolainen, E [Laboratory of Optical Sensor Technology, Department of Physics, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Miridonov, S [Optics Department, CICESE, Carr. Tijuana-Ensenada km 107, C.P. 22860, A.P. 360, Ensenada, B.C. (Mexico)

    2007-10-15

    Online control of thickness of as-deposited coatings is of great importance because it directly affects the quality of protective coatings. We present a novel approach that enables online, real-time and non-contact measurements thickness of thermally sprayed coatings. The proposed technique uses dynamic speckles generated by rapidly deflecting laser beam. Within 10 ms the system can scan 500 times a small area of the deposited layer thus resulting in measurement accuracy of 5 microns irrespectively of the layer roughness. In comparison with traditional optical triangulation technique of distance measurements, our system has following advantages: (i) much simpler optical scheme that includes conventional photodiode to measure the scattered light, (ii) much simpler electronics for real-time data processing, (iii) much higher speed of measurements.

  8. Dynamic-speckle profilometer for online measurements of coating thickness

    International Nuclear Information System (INIS)

    Kamshilin, A A; Semenov, D V; Nippolainen, E; Miridonov, S

    2007-01-01

    Online control of thickness of as-deposited coatings is of great importance because it directly affects the quality of protective coatings. We present a novel approach that enables online, real-time and non-contact measurements thickness of thermally sprayed coatings. The proposed technique uses dynamic speckles generated by rapidly deflecting laser beam. Within 10 ms the system can scan 500 times a small area of the deposited layer thus resulting in measurement accuracy of 5 microns irrespectively of the layer roughness. In comparison with traditional optical triangulation technique of distance measurements, our system has following advantages: (i) much simpler optical scheme that includes conventional photodiode to measure the scattered light, (ii) much simpler electronics for real-time data processing, (iii) much higher speed of measurements

  9. High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haoqing, E-mail: tanghaoqing@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zan, Lingxing [Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn 53117 (Germany); Zhu, Jiangtao; Ma, Yiheng [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhao, Naiqin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tang, Zhiyuan, E-mail: zytang46@163.com [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-05-15

    Lithium zinc titanate (Li{sub 2}ZnTi{sub 3}O{sub 8}) is an important titanium material of promising candidates for anode materials with superior electrochemical performance and thus has attracted extensive attention. Herein, high capacity, stable Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} nanocomposite for lithium-ion battery anode is prepared by a facile strategy. Compared to unmodified Li{sub 2}ZnTi{sub 3}O{sub 8}, the Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} electrode display a high specific capacity of 188.6 mAh g{sup −1} and remain as high as 147.7 mAh g{sup −1} after 100 cycles at 2.0 A g{sup −1}. Moreover, a reversible capacity of 76.3 mAh g{sup −1} can be obtained after 1000 cycles at 2.0 A g{sup −1} and the retention is 42.7% for Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3}, which is much higher than un-coated Li{sub 2}ZnTi{sub 3}O{sub 8}. The superior lithium storage performances of the Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} can be ascribed to the stable layer of protection, small particle size and large surface area. Cyclic voltammograms result reveals that the La{sub 2}O{sub 3} coating layer reduces the polarization and improves the electrochemical activity of anode. - Highlights: • Nano layer La{sub 2}O{sub 3} coated Li{sub 2}ZnTi{sub 3}O{sub 8} particles have been prepared via a suspension mixing process followed by heat treatment. • Coated Li{sub 2}ZnTi{sub 3}O{sub 8} has enhanced high rate capability, cyclic stability and long lifespan performance. • Electrochemical properties were tested in a charge/discharge voltage range of 3.0–0.05 V (vs. Li/Li{sup +}).

  10. Electrochemical Evaluation of Corrosion Inhibiting Layers Formed in a Defect from Lithium-Leaching Organic Coatings

    NARCIS (Netherlands)

    Visser, P.; Meeusen, M.; Gonzalez Garcia, Y.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    This work presents the electrochemical evaluation of protective layers generated in a coating defect from lithium-leaching organic coatings on AA2024-T3 aluminum alloys as a function of neutral salt spray exposure time. Electrochemical impedance spectroscopy was used to study the electrochemical

  11. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    Directory of Open Access Journals (Sweden)

    Saibabu Madas

    2018-03-01

    Full Text Available In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler’s mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K, whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  12. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    Science.gov (United States)

    Madas, Saibabu; Mishra, S. K.; Upadhyay Kahaly, Mousumi

    2018-03-01

    In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base) material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler's mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K), whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  13. Growth and characterization of thick cBN coatings on silicon and tool substrates

    International Nuclear Information System (INIS)

    Bewilogua, K.; Keunecke, M.; Weigel, K.; Wiemann, E.

    2004-01-01

    Recently some research groups have achieved progress in the deposition of cubic boron nitride (cBN) coatings with a thickness of 2 μm and more, which is necessary for cutting tool applications. In our laboratory, thick cBN coatings were sputter deposited on silicon substrates using a boron carbide target. Following a boron carbide interlayer (few 100 nm thick), a gradient layer with continuously increasing nitrogen content was prepared. After the cBN nucleation, the process parameters were modified for the cBN film growth to a thickness of more than 2 μm. However, the transfer of this technology to technically relevant substrates, like cemented carbide cutting inserts, required some further process modifications. At first, a titanium interlayer had to be deposited followed by a more than 1-μm-thick boron carbide layer. The next steps were identical to those on silicon substrates. The total coating thickness was in the range of 3 μm with a 0.5- to nearly 1-μm-thick cBN top layer. In spite of the enormous intrinsic stress, both the coatings on silicon and on cemented carbide exhibited a good adhesion and a prolonged stability in humid air. Oxidation experiments revealed a stability of the coating system on cemented carbide up to 700 deg. C and higher. Coated cutting inserts were tested in turning operations with different metallic workpiece materials. The test results will be compared to those of well-established cutting materials, like polycrystalline cubic boron nitride (PCBN) and oxide ceramics, considering the wear of coated tools

  14. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO{sub 3}@C composites as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Fuqiang [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Fang, Guoqing [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Changzhou Institute of Energy Storage Materials and Devices, Changzhou 213000 (China); Zhang, Ruixue [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Xu, Yanhui; Zheng, Junwei [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Li, Decheng, E-mail: lidecheng@suda.edu.cn [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2014-08-30

    Highlights: • The thickness of carbon coating layers can be successfully controlled through varying molar concentration of aqueous glucose solution. • Coating carbon thickness and carbon content are two important factors on the electrochemical performances of CoSnO3@C. • CoSnO{sub 3}@C under optimized conditions exhibits the optimal balance between the volume buffering effect and reversible capacity. • As-prepared CoSnO{sub 3}@C under optimized conditions shows excellent electrochemical performances, whose reversible capacity could reach 491 mA h g{sup −1} after 100 cycles. - Abstract: A series of core–shell carbon coated amorphous CoSnO{sub 3} (CoSnO{sub 3}@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge–discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO{sub 3}@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g{sup −1} after 100 cycles.

  15. EG-Assisted Synthesis and Electrochemical Performance of Ultrathin Carbon-Coated LiMnPO4 Nanoplates as Cathodes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Liwei Su

    2015-01-01

    Full Text Available Ultrathin carbon-coated LiMnPO4 (ULMP/C nanoplates were prepared through an ethylene glycol- (EG- assisted pyrolysis method. Different from most of LiMnPO4/C works, the obtained ULMP/C possessed relatively small particle size (less than 50 nm in thickness and preferable carbon coating (~1 nm in thickness, 2 wt.%. As a reference, LiMnPO4/C (LMP/C composites were also fabricated via the traditional hydrothermal method. X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, thermogravimetric analysis (TG, galvanostatic charge-discharge, and cyclic voltammetry (CV were performed to characterize the crystalline phase, morphology, structure, carbon content, and electrochemical behaviors of samples. The electrochemical performance of bare and carbon-coated LiMnPO4 was evaluated as cathodes in lithium ion batteries. As a result, the obtained ULMP/C nanoplates demonstrated much higher reversible capacities (110.9 mAh g−1 after 50 cycles at 0.1 C and rate performances than pure LMP and LMP/C composites. This facile and efficient EG-assisted pyrolysis method can enlighten us on exploiting advanced routes to modify active materials with ultrathin and homogeneous carbon layers.

  16. Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders

    Science.gov (United States)

    Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang

    2018-02-01

    In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.

  17. Simulation of the Impact of Si Shell Thickness on the Performance of Si-Coated Vertically Aligned Carbon Nanofiber as Li-Ion Battery Anode

    Science.gov (United States)

    Das, Susobhan; Li, Jun; Hui, Rongqing

    2015-01-01

    Micro- and nano-structured electrodes have the potential to improve the performance of Li-ion batteries by increasing the surface area of the electrode and reducing the diffusion distance required by the charged carriers. We report the numerical simulation of Lithium-ion batteries with the anode made of core-shell heterostructures of silicon-coated carbon nanofibers. We show that the energy capacity can be significantly improved by reducing the thickness of the silicon anode to the dimension comparable or less than the Li-ion diffusion length inside silicon. The results of simulation indicate that the contraction of the silicon electrode thickness during the battery discharge process commonly found in experiments also plays a major role in the increase of the energy capacity. PMID:28347120

  18. Method of accurate thickness measurement of boron carbide coating on copper foil

    Science.gov (United States)

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  19. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Obeidi, Ahmed, E-mail: alobeidi@mit.edu; Thompson, Carl V., E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Kramer, Dominik, E-mail: dominik.kramer@kit.edu; Mönig, Reiner, E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081 Ulm (Germany); Boles, Steven T., E-mail: steven.t.boles@polyu.edu.hk [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom (Hong Kong)

    2016-08-15

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  20. Effect of coating thickness on interfacial shear behavior of zirconia-coated sapphire fibers in a polycrystalline alumina matrix

    International Nuclear Information System (INIS)

    Hellmann, J.R.; Chou, Y.S.

    1995-01-01

    The effect of zirconia (ZrO 2 ) interfacial coatings on the interfacial shear behavior in sapphire reinforced alumina was examined in this study. Zirconia coatings of thicknesses ranging from 0.15 to 1.45 μm were applied to single crystal sapphire (Saphikon) fibers using a particulate loaded sol dipping technique. After calcining at 1,100 C in air, the coated fibers were incorporated into a polycrystalline alumina matrix via hot pressing. Interfacial shear strength and sliding behavior of the coated fibers was examined using thin-slice indentation fiber pushout and pushback techniques. In all cases, debonding and sliding occurred at the interface between the fibers and the coating. The coatings exhibited a dense microstructure and led to a higher interfacial shear strength (> 240 MPa) and interfacial sliding stress (> 75 MPa) relative to previous studies on the effect of a porous interphase on interfacial properties. The interfacial shear strength decreased with increasing fiber coating thickness (from 389 ± 59 to 241 ± 43 MPa for 0.15 to 1.45 microm thick coatings, respectively). Sliding behavior exhibited load modulation with increasing displacement during fiber sliding which is characteristic of fiber roughness-induced stick-slip. The high interfacial shear strengths and sliding stresses measured in this study, as well as the potentially strength degrading surface reconstruction observed on the coated fibers after hot pressing and heat treatment, indicate that dense zirconia coatings are not suitable candidates for optimizing composite toughness and strength in the sapphire fiber reinforced alumina system

  1. Persistent cyclestability of carbon coated Zn–Sn metal oxide/carbon microspheres as highly reversible anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fang, Guoqing; Kaneko, Shingo; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zhang, Ruixue; Zheng, Junwei; Li, Decheng

    2013-01-01

    Development of high-capacity anode materials equipped with strong cyclestability is a great challenge for use as practical electrode for high-performance lithium-ion rechargeable battery. In this study, we synthesized a carbon coated Zn–Sn metal nanocomposite oxide and carbon spheres (ZTO@C/CSs) via a simple glucose hydrothermal reaction and subsequent carbonization approach. The carbon coated ZTO/carbon microspheres composite maintained a reversible capacity of 680 mAh g −1 after 345 cycles at a current density of 100 mA g −1 , and furthermore the cell based on the composite exhibited an excellent rate capability of 470 mAh g −1 even when the cell was cycled at 2000 mA g –1 . The thick carbon layer formed on the ZTO nanoparticles and carbon spheres effectively buffered the volumetric change of the particles, which thus prolonged the cycling performance of the electrodes

  2. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    Science.gov (United States)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-08-01

    A series of core-shell carbon coated amorphous CoSnO3 (CoSnO3@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO3@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g-1 after 100 cycles.

  3. Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.

    Science.gov (United States)

    Zhao, Xiaoli; Gao, Weiwei; Yao, Weiquan; Jiang, Yanqiu; Xu, Zhen; Gao, Chao

    2017-10-24

    The layer-by-layer (LbL) assembly approach has been widely used to fabricate multilayer coatings on substrates with multiple cycles, whereas it is hard to access thick films efficiently. Here, we developed an ion diffusion-directed assembly (IDDA) strategy to rapidly make multilayer thick coatings in one step on arbitrary substrates. To achieve multifunctional coatings, graphene oxide (GO) and metallic ions were selected as the typical building blocks and diffusion director in IDDA, respectively. With diffusion of metallic ions from substrate to negatively charged GO dispersion spontaneously (i.e., from high-concentration region to low-concentration region), GO was assembled onto the substrate sheet-by-sheet via sol-gel transformation. Because metallic ions with size of subnanometers can diffuse directionally and freely in the aqueous dispersion, GO was coated on the substrate efficiently, giving rise to films with desired thickness up to 10 μm per cycle. The IDDA approach shows three main merits: (1) high efficiency with a μm-scale coating rate; (2) controllability over thickness and evenness; and (3) generality for substrates of plastics, metals and ceramics with any shapes and morphologies. With these merits, IDDA strategy was utilized in the efficient fabrication of functional graphene coatings that exhibit outstanding performance as supercapacitors, electromagnetic interference shielding textiles, and anticorrosion coatings. This IDDA approach can be extended to other building blocks including polymers and colloidal nanoparticles, promising for the scalable production and application of multifunctional coatings.

  4. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    International Nuclear Information System (INIS)

    Deng, Min-Jen; Tsai, Du-Cheng; Ho, Wen-Hsien; Li, Ching-Fei; Shieu, Fuh-Sheng

    2013-01-01

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO 4 solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  5. Thick sputtered tantalum coatings for high-temperature energy conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika, E-mail: stelmakh@mit.edu; Peykov, Daniel; Chan, Walker R.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castillo, Robert; Coulter, Kent; Wei, Ronghua [Materials Engineering Department, Southwest Research Institute, San Antonio, Texas 78238 (United States)

    2015-11-15

    Thick sputtered tantalum (Ta) coatings on polished Inconel were investigated as a potential replacement for bulk refractory metal substrates used for high-temperature emitters and absorbers in thermophotovoltaic energy conversion applications. In these applications, high-temperature stability and high reflectance of the surface in the infrared wavelength range are critical in order to sustain operational temperatures and reduce losses due to waste heat. The reflectance of the coatings (8 and 30 μm) was characterized with a conformal protective hafnia layer as-deposited and after one hour anneals at 700, 900, and 1100 °C. To further understand the high-temperature performance of the coatings, the microstructural evolution was investigated as a function of annealing temperature. X-ray diffraction was used to analyze the texture and residual stress in the coatings at four reflections (220, 310, 222, and 321), as-deposited and after anneal. No significant changes in roughness, reflectance, or stress were observed. No delamination or cracking occurred, even after annealing the coatings at 1100 °C. Overall, the results of this study suggest that the thick Ta coatings are a promising alternative to bulk substrates and pave the way for a relatively low-cost and easily integrated platform for nanostructured devices in high-temperature energy conversion applications.

  6. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Biao Li

    2017-01-01

    Full Text Available Thermal barrier coatings (TBCs are deposited on the turbine blade to reduce the temperature of underlying substrate, as well as providing protection against the oxidation and hot corrosion from high temperature gas. Optimal ceramic top-coat thickness distribution on the blade can improve the performance and efficiency of the coatings. Design of the coatings thickness is a multiobjective optimization problem due to the conflicts among objectives of high thermal insulation performance, long operation durability, and low fabrication cost. This work developed a procedure for designing the TBCs thickness distribution for the gas turbine blade. Three-dimensional finite element models were built and analyzed, and weighted-sum approach was employed to solve the multiobjective optimization problem herein. Suitable multiregion top-coat thickness distribution scheme was designed with the considerations of manufacturing accuracy, productivity, and fabrication cost.

  7. Influence of ceramic dental crown coating substrate thickness ratio on strain energy release rate

    Science.gov (United States)

    Khasnulhadi, K.; Daud, R.; Mat, F.; Noor, S. N. F. M.; Basaruddin, K. S.; Sulaiman, M. H.

    2017-10-01

    This paper presents the analysis of coating substrate thickness ratio effect on the crown coating fracture behaviour. The bi-layer material is examined under four point bending with pre-crack at the bottom of the core material by using finite element. Three different coating thickness of core/substrate was tested which is 1:1, 1:2 and 2:1. The fracture parameters are analysed based on bilayer and homogenous elastic interaction. The result shows that the ratio thickness of core/veneer provided a significant effect on energy release rate.

  8. Effect of Coating Thickness on the Properties of TiN Coatings Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    Science.gov (United States)

    Mubarak, A.; Akhter, Parvez; Hamzah, Esah; Mohd Toff, Mohd Radzi Hj.; Qazi, Ishtiaq A.

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.

  9. Radiographic detection of 100 A thickness variations in 1-μm-thick coatings applied to submillimeter-diameter laser fusion targets

    International Nuclear Information System (INIS)

    Stupin, D.M.

    1986-01-01

    We have developed x-ray radiography to measure thickness variations of coatings on laser fusion targets. Our technique is based on measuring the variation in x-ray transmission through the targets. The simplest targets are hollow glass microshells or microballoons 100 to 500 μm in diameter, that have several layers of metals or plastics, 1 to 100 μm thick. Our goal is to examine these opaque coatings for thickness variations as small as 1% or 0.1%, depending on the type of defect. Using contact radiography we have obtained the desired sensitivity for concentric and elliptical defects of 1%. This percentage corresponds to thickness variations as small as 100 A in a 1-μm-thick coating. For warts and dimples, the desired sensitivity is a function of the area of the defect, and we are developing a system to detect 0.1% thickness variations that cover an area 10 μm by 10 μm. We must use computer analysis of contact radiographs to measure 1% thickness variations in either concentricity or ellipticity. Because this analysis takes so long on our minicomputer, we preselect the radiographs by looking for defects at the 10% level on a video image analysis system

  10. In situ measurement of low-Z material coating thickness on high Z substrate for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D., E-mail: dmueller@pppl.gov; Roquemore, A. L.; Jaworski, M.; Skinner, C. H.; Miller, J.; Creely, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Raman, P.; Ruzic, D. [Department of Nuclear, Plasma, and Radiological Engineering, Center for Plasma Material Interaction, University of Illinois, Urbana, Illinois 61801 (United States)

    2014-11-15

    Rutherford backscattering of energetic particles can be used to determine the thickness of a coating of a low-Z material over a heavier substrate. Simulations indicate that 5 MeV alpha particles from an {sup 241}Am source can be used to measure the thickness of a Li coating on Mo tiles between 0.5 and 15 μm thick. Using a 0.1 mCi source, a thickness measurement can be accomplished in 2 h of counting. This technique could be used to measure any thin, low-Z material coating (up to 1 mg/cm{sup 2} thick) on a high-Z substrate, such as Be on W, B on Mo, or Li on Mo. By inserting a source and detector on a moveable probe, this technique could be used to provide an in situ measurement of the thickness of Li coating on NSTX-U Mo tiles. A test stand with an alpha source and an annular solid-state detector was used to investigate the measurable range of low-Z material thicknesses on Mo tiles.

  11. Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Kim, Jinwoo; Kim, Ji Yoon; Pham-Cong, De; Jeong, Se Young; Chang, Jinho; Choi, Jun Hee; Braun, Paul V.; Cho, Chae Ryong

    2016-01-01

    Highlights: • Li_4Ti_5O_1_2 nanofibers are fabricated by electrospinning and annealing process. • Carbon-coated Li_4Ti_5O_1_2 nanofibers are prepared by hydrothermal process. • Individually graphene-oxide-wrapped Li_4Ti_5O_1_2 nanofibers are prepared by electrostatic force. • Enhanced rate capability of carbon-coated and graphene-oxide-wrapped Li_4Ti_5O_1_2 nanofibers. - Abstract: The as-electrospun polymeric lithium titanate nanofibers are crystallized into Li_4Ti_5O_1_2 nanofibers (denoted as LTO NFs) via post-annealing. The LTO NFs are coated with a carbon layer using a glucose polymer via hydrothermal synthesis. The GO layer electrostatically attracts to the positively charged LTO NFs, resulting in the uniform wrapping of individual LTO NFs without aggregation. The introduction of uniformly coated carbon and GO double layers led to an enhanced rate capability (110 mAh g"−"1 at 20C) and over two orders of magnitude higher diffusion coefficient (D_L_i = ∼1.04 × 10"−"1"1 cm"2 s"−"1) of the tailored LTO NFs with carbon and GO network compared with those of the pristine LTO NFs. Extended testing for over 100 cycles demonstrates the cyclic stability and Coulombic efficiency of over 99% of this system. These results indicate that the interconnection and networks of LTO NFs through carbon coating and the individual GO wrapping, which facilitates the lithium ion and electron transportation, may show excellent electrochemical performance.

  12. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Min-Jen [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Jen-Teh Junior College of Medicine, Nursing and Management, Taiwan (China); Tsai, Du-Cheng [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Ho, Wen-Hsien [Taiwan Textile Research Institute, Taipei 23674, Taiwan (China); Li, Ching-Fei, E-mail: chingfei.li@gmail.com [Phoenix Silicon International Corporation, Hsinchu 30094, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2013-11-15

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO{sub 4} solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  13. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    Science.gov (United States)

    Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.

    2006-06-01

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.

  14. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    International Nuclear Information System (INIS)

    Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.

    2006-01-01

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component

  15. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, B. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, P.B. 65 00044 Frascati, Roma (Italy)]. E-mail: riccardi@frascati.enea.it; Montanari, R. [Dipartimento di Ingegneria Meccanica, Universita di Roma, Tor Vergata, 00133 Roma (Italy); Casadei, M. [Centro Sviluppo Materiali, 00100 Roma (Italy); Costanza, G. [Dipartimento di Ingegneria Meccanica, Universita di Roma, Tor Vergata, 00133 Roma (Italy); Filacchioni, G. [ENEA CR Casaccia, I-00060 S. M. di Galeria, Roma (Italy); Moriani, A. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, P.B. 65 00044 Frascati, Roma (Italy)

    2006-06-30

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.

  16. Optimum thickness evaluation of ZrO2 coating on type 304L stainless steel for corrosion protection

    International Nuclear Information System (INIS)

    Garg, Nidhi; Bera, Santanu; Velmurugan, S.; Tripathi, V.S.; Karki, Vijay

    2015-01-01

    Nano-crystalline ZrO 2 coatings of different thickness have been grown on pre-oxidized stainless steel (SS) surface by hydrothermal method in an autoclave. Thickness of the coating has been enhanced by repeating the deposition process several times using same precursor concentration. Several cycles of the deposition process lead to the increase of the coating thickness from 200 nm to ∼1 μm after the fourth round of deposition. The samples after different rounds of the coating have been extensively characterized by SEM-EDS technique to find the surface topography, coating thickness and composition. Corrosion resistance properties of the plain SS, pre-oxidized SS and all the ZrO 2 coated samples were studied by potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). Corrosion current densities (I corr /cm 2 ) of the coated samples are found to reduce significantly with the increase in thickness. After a certain critical thickness, the corrosion resistance properties found to deteriorate due to the formation of coating defects caused by lattice strain. The coating was found to be continuous but porous after the first cycle but porosity of zirconia coating have been reduced drastically after the second cycle itself. EIS analysis confirms that the zirconia coated samples show insulating, barrier like characteristics in terms of high charge transfer resistance after the second cycle of zirconia deposition. The role of pre-oxidized surface composition and the interface between the pre-oxidized surface and the coating has been discussed in details by showing the depth distribution of Zr in the coating. (author)

  17. Study on de-coating used beverage cans with thick sulfuric acid for recycle

    International Nuclear Information System (INIS)

    Wang, Minghua; Woo, Kee-Do; Kim, Dong-Keon; Ma, Lirong

    2007-01-01

    More than 1800 hundreds of millions of beverage cans are manufactured yearly over the world, which will pollute the globe environment without recycle. The recycle and regeneration estates of used beverage cans are highly profitable enterprises. Vacuum technologies are mature on a large scale today, and therefore, the re-melting process of used beverage cans (UBCs) does not have to use flux. Furthermore, the coating on UBCs becomes the key factor causing poor product quality. The present paper concerns removing the coating of UBCs and compares two different kinds of methods to remove the coating: a thermal method and a chemical reagent method. A new kind of reagent, thick sulfuric acid, was employed in the chemical reagent de-coating process. The de-coating ratio in the thermal method reached 93% at most, but the de-coating ratio reached 100% within 30 min in the chemical reagent method by using thick sulfuric acid. Recycling the used thick sulfuric acid was also supplied. A titanium yellow product can be simultaneously obtained. The experiments show that the chemical reagent method is more available than the thermal method, which will enhance the purity of the regeneration product enormously

  18. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis

    OpenAIRE

    Li, Biao; Fan, Xueling; Li, Dingjun; Jiang, Peng

    2017-01-01

    Thermal barrier coatings (TBCs) are deposited on the turbine blade to reduce the temperature of underlying substrate, as well as providing protection against the oxidation and hot corrosion from high temperature gas. Optimal ceramic top-coat thickness distribution on the blade can improve the performance and efficiency of the coatings. Design of the coatings thickness is a multiobjective optimization problem due to the conflicts among objectives of high thermal insulation performance, long op...

  19. Effect of thermophysical property and coating thickness on microstructure and characteristics of a casting

    Directory of Open Access Journals (Sweden)

    Ai-chao Cheng

    2017-01-01

    Full Text Available A new improved investment casting technology (IC has been presented and compared with the existing IC technology such as lost foam casting (LFC. The effect of thermophysical property and coating thickness on casting solidification temperature field, microstructure and hardness has been investigated. The results show that the solidification rate decreases inversely with the coating thickness when the coating contains silica sol, zircon powder, mullite powder and defoaming agent. In contrast, the solid cooling rate increases as the coating thickness increases. However, the solidification rate and solid cooling rate of the casting produced by the existing IC and the improved IC are very similar when the coating thickness is 5 mm, so the microstructure and hardness of a container corner fitting produced by the improved IC and the existing IC are similar. The linear regression equation for the grain size (d and cooling rate (v of the castings is d= –0.41v+206.1. The linear regression equation for the content of pearlite (w and solid cooling rate (t is w=1.79t + 6.71. The new improved IC can greatly simplify the process and decrease the cost of production compared with the existing IC. Contrasting with LFC, container corner fittings produced by the new improved IC have fewer defects and better properties. It was also found that the desired microstructure and properties can be obtained by changing the thermophysical property and thickness of the coating.

  20. Polypyrrole-coated α-LiFeO2 nanocomposite with enhanced electrochemical properties for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Zhi-jia; Wang, Jia-Zhao; Chou, Shu-Lei; Liu, Hua-Kun; Ozawa, Kiyoshi; Li, Hui-jun

    2013-01-01

    A conducting α-LiFeO 2 -polypyrrole (α-LiFeO 2 -PPy) nanocomposite material was prepared by the chemical polymerization method as a cathode material for lithium-ion batteries. The porous α-LiFeO 2 was prepared via the microwave hydrothermal method and a post-annealing. The X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy measurements showed that the α-LiFeO 2 nanoparticles were coated with PPy. The polypyrrole coating improves the reversible capacity and cycling stability (104 mAh g −1 at 0.1C after 100 cycles) for lithium-ion batteries. Even at the high rate of 10C, the electrode showed more than 40% of the capacity at low rate (0.1C)

  1. Calculation of neutron detection efficiency for the thick lithium glass using Monte Carlo method

    International Nuclear Information System (INIS)

    Tang Guoyou; Bao Shanglian; Li Yulin; Zhong Wenguan

    1989-08-01

    The neutron detector efficiencies of a NE912 (45mm in diameter, 9.55 mm in thickness) and 2 pieces of ST601 (40mm in diameter, 3 and 10 mm in thickness respectively) lithium glasses have been calculated with a Monte Carlo computer code. The energy range in the calculation is 10 keV to 2.0 MeV. The effect of time delayed caused by neutron multiple scattering in the detectors (prompt neutron detection efficiency) has been considered

  2. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Capece, A.; Koel, B.; Roszell, J. [Princeton University, Princeton, New Jersey 08544 (United States); Biewer, T. M.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  3. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    International Nuclear Information System (INIS)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.

    2015-01-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started

  4. Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Arumugam, D.; Kalaignan, G. Paruthimal

    2010-01-01

    LiMn 2 O 4 spinel cathode materials were coated with 0.5, 1.0, and 1.5 wt.% CeO 2 by a polymeric process, followed by calcination at 850 o C for 6 h in air. The surface-coated LiMn 2 O 4 cathode materials were physically characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron microscopy (XPS). XRD patterns of CeO 2 -coated LiMn 2 O 4 revealed that the coating did not affect the crystal structure or the Fd3m space group of the cathode materials compared to uncoated LiMn 2 O 4 . The surface morphology and particle agglomeration were investigated using SEM, TEM image showed a compact coating layer on the surface of the core materials that had average thickness of about 20 nm. The XPS data illustrated that the CeO 2 completely coated the surface of the LiMn 2 O 4 core cathode materials. The galvanostatic charge and discharge of the uncoated and CeO 2 -coated LiMn 2 O 4 cathode materials were measured in the potential range of 3.0-4.5 V (0.5 C rate) at 30 o C and 60 o C. Among them, the 1.0 wt.% of CeO 2 -coated spinel LiMn 2 O 4 cathode satisfies the structural stability, high reversible capacity and excellent electrochemical performances of rechargeable lithium batteries.

  5. Influence of SiC coating thickness on mechanical properties of SiCf/SiC composite

    Science.gov (United States)

    Yu, Haijiao; Zhou, Xingui; Zhang, Wei; Peng, Huaxin; Zhang, Changrui

    2013-11-01

    Silicon carbide (SiC) coatings with varying thickness (ranging from 0.14 μm to 2.67 μm) were deposited onto the surfaces of Type KD-I SiC fibres with native carbonaceous surface using chemical vapour deposition (CVD) process. Then, two dimensional SiC fibre reinforced SiC matrix (2D SiCf/SiC) composites were fabricated using polymer infiltration and pyrolysis (PIP) process. Influences of the fibre coating thickness on mechanical properties of SiC fibre and SiCf/SiC composite were investigated using single-filament test and three-point bending test. The results indicated that flexural strength of the composites initially increased with the increasing CVD SiC coating thickness and reached a peak value of 363 MPa at the coating thickness of 0.34 μm. Further increase in the coating thickness led to a rapid decrease in the flexural strength of the composites. The bending modulus of composites showed a monotonic increase with increasing coating thickness. A chemical attack of hydrogen or other ions (e.g. a C-H group) on the surface of SiC fibres during the coating process, owing to the formation of volatile hydrogen, lead to an increment of the surface defects of the fibres. This was confirmed by Wang et al. [35] in their work on the SiC coating of the carbon fibre. In the present study, the existing ˜30 nm carbon on the surface of KD-I fibre [36] made the fibre easy to be attacked. Deposition of non-stoichiometric SiC, causing a decrease in strength. During the CVD process, a small amount of free silicon or carbon always existed [35]. The existence of free silicon, either disordered the structure of SiC and formed a new source of cracks or attacked the carbon on fibre surface resulting in properties degeneration of the KD-I fibre. The effect of residual stress. The different thermal expansion coefficient between KD-I SiC fibre and CVD SiC coating, which are 3 × 10-6 K-1 (RT ˜ 1000 °C) and 4.6 × 10-6 K-1 (RT ˜ 1000 °C), respectively, could cause residual stress

  6. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sonmez, S. [Hakkari University, Dept. of Biomedical Eng., 30000 Hakkari (Turkey); Aksakal, B., E-mail: baksakal@yildiz.edu.tr [Yildiz Technical University, Chemical Metallurgy Faculty, Dept. of Metall and Mater Eng., Istanbul (Turkey); Dikici, B. [Yuzuncu Yil University, Dept. of Mechanical Eng., 65080 Van (Turkey)

    2014-05-01

    Graphical abstract: The corrosion resistance of magnesium alloys is the primary concern in biomedical applications. Micron and nano-scale hydroxyapatite (HA) was coated successfully on MA8M magnesium alloy substrates by using a sol–gel deposition. In this study, the effects of coating thicknesses and HA powder particle sizes on the adhesion strength and corrosion behavior were investigated. Potentiodynamic polarization tests were performed in a Ringer solution. The coatings before and after corrosion tests were characterized by adhesion tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. The anodic activity of the micro-scale-HA coatings increased with increased coating thickness and the corrosion resistance of Mg substrates decreased. Corrosion susceptibilities of the nano-scale-HA coated samples were affected inversely. The coated film provided good barrier characteristics and achieved good corrosion protection for Mg substrates when compared to substrates without coatings. For micro-scale-HA coatings, anodic and cathodic activities were more intense for thicker films. When HA coatings are compared to nano-scale HA coatings, the micro-scale-HA coatings produced better current density values. Overall, as shown in Fig. 1, the best corrosion behavior of the Mg alloys was achieved using micro-scale HA powders at 30 μm coating thickness. - Highlights: • Nano and micro-scale-HA coatings provided good anti-corrosion performance compared to the uncoated ones. • The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. • The best corrosion behavior was achieved for the micro-scale HA powders at 30 μm coating thickness. • Anodic activity decrease and cathodic activity increase with increasing film thickness. - Abstract: To improve the corrosion resistance of MA8M magnesium alloy, sol

  7. Reducing of internal resistance lithium ion battery using glucose addition

    Science.gov (United States)

    Salim, Andri Pratama; Hafidlullah, Noor; Purwanto, Agus

    2016-02-01

    There are two indicators of battery performance, i.e : capacity and the internal resistance of battery. In this research, the affect of glucose addition to decrease the internal resistance of lithium battery was investigated. The ratio of glucose addition were varied at weight ratio 1%, 3%, and 5% and one mixtures without glucose addition. Lithium ferri phosphate (LiFePO4), polyvinylidene fluoride (PVDF), acetylene black (AB) and glucose were materials that used in this study. Both of mixtures were mixed in the vacuum mixer until became homogeneous. The slurry was coated on an aluminium foil sheet and the coated thickness was 200 µm. The performance of battery lithium was examined by Eight Channel Battery Analyzer and the Internal resistance was examined by Internal Resistance of Battery Meter. The result from all analyzer were showed that the internal resistance reduced as well as the battery capacity. The best internal resistance value is owned by mixtures with 3wt% ratio glucose addition. It has an internal resistance value about 64 miliohm.

  8. Reducing of internal resistance lithium ion battery using glucose addition

    International Nuclear Information System (INIS)

    Salim, Andri Pratama; Hafidlullah, Noor; Purwanto, Agus

    2016-01-01

    There are two indicators of battery performance, i.e : capacity and the internal resistance of battery. In this research, the affect of glucose addition to decrease the internal resistance of lithium battery was investigated. The ratio of glucose addition were varied at weight ratio 1%, 3%, and 5% and one mixtures without glucose addition. Lithium ferri phosphate (LiFePO 4 ), polyvinylidene fluoride (PVDF), acetylene black (AB) and glucose were materials that used in this study. Both of mixtures were mixed in the vacuum mixer until became homogeneous. The slurry was coated on an aluminium foil sheet and the coated thickness was 200 µm. The performance of battery lithium was examined by Eight Channel Battery Analyzer and the Internal resistance was examined by Internal Resistance of Battery Meter. The result from all analyzer were showed that the internal resistance reduced as well as the battery capacity. The best internal resistance value is owned by mixtures with 3wt% ratio glucose addition. It has an internal resistance value about 64 miliohm

  9. Reducing of internal resistance lithium ion battery using glucose addition

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Andri Pratama; Hafidlullah, Noor; Purwanto, Agus, E-mail: aguspurw@gmail.com [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    There are two indicators of battery performance, i.e : capacity and the internal resistance of battery. In this research, the affect of glucose addition to decrease the internal resistance of lithium battery was investigated. The ratio of glucose addition were varied at weight ratio 1%, 3%, and 5% and one mixtures without glucose addition. Lithium ferri phosphate (LiFePO{sub 4}), polyvinylidene fluoride (PVDF), acetylene black (AB) and glucose were materials that used in this study. Both of mixtures were mixed in the vacuum mixer until became homogeneous. The slurry was coated on an aluminium foil sheet and the coated thickness was 200 µm. The performance of battery lithium was examined by Eight Channel Battery Analyzer and the Internal resistance was examined by Internal Resistance of Battery Meter. The result from all analyzer were showed that the internal resistance reduced as well as the battery capacity. The best internal resistance value is owned by mixtures with 3wt% ratio glucose addition. It has an internal resistance value about 64 miliohm.

  10. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  11. Measurements and 2-D Modeling of Recycling and Edge Transport in Discharges with Lithium-coated PFCs in NSTX

    International Nuclear Information System (INIS)

    Canik, John; Maingi, R.; Soukhanovskii, V.A.; Bell, R.E.; Kugel, H.; LeBlanc, B.; Osborne, T.H.

    2011-01-01

    The application of lithium coatings on plasma facing components has been shown to profoundly affect plasma performance in the National Spherical Torus Experiment, improving energy confinement and eliminating edge-localized modes. The edge particle balance during these ELM-free discharges has been studied through 2-D plasma-neutrals modeling, constrained by measurements of the upstream plasma density and temperature profiles and the divertor heat flux and D-alpha emission. The calculations indicate that the reduction in divertor D-alpha emission with lithium coatings applied is consistent with a drop in recycling coefficient from R similar to 0.98 to R similar to 0.9. The change in recycling is not sufficient to account for the change in edge density profiles: interpretive modeling indicates similar transport coefficients within the edge transport barrier (D/chi(e) similar to 0.2/1.0 m(2)/s), but a widening of the barrier with lithium.

  12. Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H.W., E-mail: hkugel@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Schneider, H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47907 (United States); Bell, R.E.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Mansfield, D. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Nygren, R.E. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Gerhardt, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Raman, R. [University of Washington, Seattle, WA 98195 (United States); Sabbagh, S. [Columbia University, New York, NY 10027 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2010-11-15

    NSTX high power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following the wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a liquid lithium divertor surface on the outer part of the lower divertor.

  13. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    Energy Technology Data Exchange (ETDEWEB)

    H.W.Kugel, M.G.Bell, H.Schneider, J.P.Allain, R.E.Bell, R Kaita, J.Kallman, S. Kaye, B.P. LeBlanc, D. Mansfield, R.E. Nygen, R. Maingi, J. Menard, D. Mueller, M. Ono, S. Paul, S.Gerhardt, R.Raman, S.Sabbagh, C.H.Skinner, V.Soukhanovskii, J.Timberlake, L.E.Zakharov, and the NSTX Research Team

    2010-01-25

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  14. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Schneider, H.; Allain, J.P.; Bell, R.E.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Mansfield, D.; Nygen, R.E.; Maingi, R.; Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Gerhardt, S.; Raman, R.; Sabbagh, S.; Skinner, C.H.; Soukhanovskii, V.; Timberlake, J.; Zakharov, L.E.; NSTX Research Team

    2010-01-01

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  15. Development and Implementation of Methods and Means for Achieving a Uniform Functional Coating Thickness

    Science.gov (United States)

    Shishlov, A. V.; Sagatelyan, G. R.; Shashurin, V. D.

    2017-12-01

    A mathematical model is proposed to calculate the growth rate of the thin-film coating thickness at various points in a flat substrate surface during planetary motion of the substrate, which makes it possible to calculate an expected coating thickness distribution. Proper software package is developed. The coefficients used for computer simulation are experimentally determined.

  16. Study on coated layer material performance of coated particle fuel FBR (2). High temperature property and capability of coating to thick layer of TiN

    International Nuclear Information System (INIS)

    Naganuma, Masayuki; Mizuno, Tomoyasu

    2002-08-01

    'Helium Gas Cooled Coated Particle Fuel FBR' is one of attractive core concepts in the Feasibility Study on Commercialized Fast Reactor Cycle System in Japan, and the design study is presently proceeded. As one of key technologies of this concept, the coated layer material is important, and ceramics is considered to be a candidate material because of the superior refractory. Based on existing knowledge, TiN is regarded to be a possible candidate material, to which some property tests and evaluations have been conducted. In this study, preliminary tests about the high temperature property and the capability of thick layer coating of TiN have been conducted. Results of these tests come to the following conclusions. Heating tests of two kinds of TiN layer specimens coated by PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) were conducted. As a result, as for CVD coating specimens, remarkable charge was not observed on the layer up to 2,000degC, therefore we concluded that the layer by CVD had applicability up to high temperature of actual operation level. On the other hand, as for PVD coating specimens, an unstable behavior that the layer changed to a mesh like texture was observed on a 2,000degC heated specimen, therefore the applied PVD method is not considered to be promising as the coating technique. The surface conditions of some parts inside CVD device were investigated in order to evaluate possibility of TiN thick coating (∼100 μm). As a result, around 500 μm of TiN coating layer was observed on the condition of multilayer. Therefore, we conclude that CVD has capability of coating up to thick layer in actual coated particle fuel fabrication. (author)

  17. Morphological and microstructural characterization of nanostructured pure α-phase W coatings on a wide thickness range

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, N., E-mail: nuri.gordillo@gmail.com [Instituto de Fusión Nuclear, ETSI de Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal, 2, E-28006 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, Madrid (Spain); Panizo-Laiz, M. [Instituto de Fusión Nuclear, ETSI de Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal, 2, E-28006 Madrid (Spain); Tejado, E. [Department of Materials Science, Research Centre on Safety and Durability of Structures and Materials (CISDEM), UPM-CSIC, C/Profesor Aranguren s/n, E-28040 Madrid (Spain); Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Madrid (Spain); Fernandez-Martinez, I. [Instituto de Energía Solar (IES), Universidad Politécnica de Madrid, Avenida Complutense s/n, E-28040 Madrid (Spain); Instituto de Microelectrónica de Madrid, IMM-CNM-CSIC, Isaac Newton 8 PTM, Tres Cantos, E-28760 Madrid (Spain); Rivera, A. [Instituto de Fusión Nuclear, ETSI de Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal, 2, E-28006 Madrid (Spain); Pastor, J.Y. [Department of Materials Science, Research Centre on Safety and Durability of Structures and Materials (CISDEM), UPM-CSIC, C/Profesor Aranguren s/n, E-28040 Madrid (Spain); Castro, C. Gómez de [Departamento de Física de Materiales, Facultad de CC. Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, E-28040 Madrid (Spain); and others

    2014-10-15

    Highlights: • Pure α-phase tungsten nanostructures were deposited by DC-magnetron sputtering. • Non-delaminated coatings were achieved at powers ≤50 W. • The coating thicknesses vary from 30 nm up to ∼4.0 μm. • The influence of the substrate on the coating properties was investigated. • We report on the morphological, microstructural and mechanical properties. - Abstract: Nanostructured tungsten (nanoW) coatings have been deposited by DC magnetron sputtering. First, the influence of the sputtering power on the adhesion of the coatings to the substrate was investigated by depositing coatings at powers varying from 30 up to 220 W. Non-delaminated coatings were achieved at powers ≤50 W. Second, the influence of coating thickness on the morphological, microstructural and mechanical properties was investigated for films deposited at 50 W with thicknesses varying from 30 nm up to ∼4.0 μm. SEM images reveal that all the films are highly compact, consisting of nanometer sized columns that grow perpendicular to the substrate. XRD data evidence that films are monophasic, being made of pure α-phase. All coatings show compressive stress and low micro-strain. Nanoindentation tests show that coatings have a hardness higher than that reported for coarse grained W. No significant dependence of the previous properties on coating thickness was observed. Finally, the influence of the substrate on coatings properties was studied, by depositing a W coating at a power of 50 W on a commercial steel substrate: no significant dependence was found.

  18. Preparation of PPy-Coated MnO2 Hybrid Micromaterials and Their Improved Cyclic Performance as Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Feng, Lili; Zhang, Yinyin; Wang, Rui; Zhang, Yanli; Bai, Wei; Ji, Siping; Xuan, Zhewen; Yang, Jianhua; Zheng, Ziguang; Guan, Hongjin

    2017-09-02

    MnO 2 @PPy core-shell micromaterials are prepared by chemical polymerization of pyrrole on the MnO 2 surface. The polypyrrole (PPy) is formed as a homogeneous organic shell on the MnO 2 surface. The thickness of PPy shell can be adjusted by the usage of pyrrole. The analysis of SEM, FT-IR, X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), and XRD are used to confirm the formation of PPy shell. Galvanostatic cell cycling and electrochemical impedance spectroscopy (EIS) are used to evaluate the electrochemical performance as anode for lithium-ion batteries. The results show that after formation of MnO 2 @PPy core-shell micromaterials, the cyclic performance as anode for lithium-ion batteries is improved. Fifty microliters of PPy-coated caddice-clew-like MnO 2 has the best cyclic performances as has 620 mAh g -1 discharge specific capacities after 300 cycles. As a comparison, the discharge specific capacity of bare MnO 2 materials falls to below 200 mAh g -1 after 10 cycles. The improved lithium-storage cyclic stability of the MnO 2 @PPy samples attributes to the core-shell hybrid structure which can buffer the structural expansion and contraction of MnO 2 caused by the repeated embedding and disengagement of Li ions and can prevent the pulverization of MnO 2 . This experiment provides an effective way to mitigate the problem of capacity fading of the transition metal oxide materials as anode materials for (lithium-ion batteries) LIBs.

  19. Thick CrN/NbN multilayer coating deposited by cathodic arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Juliano Avelar; Tschiptschin, Andre Paulo; Souza, Roberto Martins, E-mail: antschip@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Lima, Nelson Batista de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-01-15

    The production of tribological nanoscale multilayer CrN/NbN coatings up to 6 μm thick by Sputtering/HIPIMS has been reported in literature. However, high demanding applications, such as internal combustion engine parts, need thicker coatings (>30 μm). The production of such parts by sputtering would be economically restrictive due to low deposition rates. In this work, nanoscale multilayer CrN/NbN coatings were produced in a high-deposition rate, industrial-size, Cathodic Arc Physical Vapor Deposition (ARC-PVD) chamber, containing three cathodes in alternate positions (Cr/ Nb/Cr). Four 30 μm thick NbN/CrN multilayer coatings with different periodicities (20, 10, 7.5 and 4 nm) were produced. The coatings were characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The multilayer coating system was composed of alternate cubic rock salt CrN and NbN layers, coherently strained due to lattice mismatch. The film grew with columnar morphology through the entire stratified structure. The periodicities adopted were maintained throughout the entire coating. The 20 nm periodicity coating showed separate NbN and CrN peaks in the XRD patterns, while for the lower periodicity (≤10nm) coatings, just one intermediate lattice (d-spacing) was detected. An almost linear increase of hardness with decreasing bilayer period indicates that interfacial effects can dominate the hardening mechanisms. (author)

  20. Facial synthesis of carbon-coated ZnFe2O4/graphene and their enhanced lithium storage properties

    Science.gov (United States)

    Yao, Libing; Su, Qingmei; Xiao, Yanling; Huang, Min; Li, Haojie; Deng, Huihui; Du, Gaohui

    2017-07-01

    Carbon-coated ZnFe2O4 spheres with sizes of 110-180 nm anchored on graphene nanosheets (ZF@C/G) are successfully prepared and applied as anode materials for lithium ion batteries (LIBs). The obtained ZF@C/G presents an initial discharge capacity of 1235 mAh g-1 and maintains a reversible capacity of 775 mAh g-1 after 150 cycles at a current density of 500 mA g-1. After being tested at 2 A g-1 for 700 cycles, the capacity still retains 617 mAh g-1. The enhanced electrochemical performances can be attributed to the synergetic role of graphene and uniform carbon coating ( 3-6 nm), which can inhibit the volume expansion, prevent the pulverization/aggregation upon prolonged cycling, and facilitate the electron transfer between carbon-coated ZnFe2O4 spheres. The electrochemical results suggest that the synthesized ZF@C/G nanostructures are promising electrode materials for high-performance lithium ion batteries. [Figure not available: see fulltext.

  1. The Effect of Lithium Disilicate Ceramic Thickness and Translucency on Shear Bond Strength of Light-cured Resin Cement

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Moghaddas

    2017-09-01

    Full Text Available Introduction: To achieve acceptable clinical performance, a ceramic veneer must be bonded to enamel by well-polymerized resin cement. Among different factors, thickness and translucency of the ceramic may affect the resin cement polymerization. Thus, the current study evaluated the effect of the thickness and translucency of lithium disilicate ceramic on light-cured resin cement bond strength to enamel. Methods: In this laboratory study, 208 sound bovine incisors were equally divided into 16 groups (n = 13. The lithium disilicate ceramic cubes in four thicknesses (0.4, 0.6, 0.8 and 1 mm with four translucencies (high and medium opaque, high and low translucent were fabricated and bonded to prepared enamel surfaces using a light-cured translucent resin cement according to manufacturer recommendations. After 5000 cycles of thermocycling, the bonded specimens were placed in a universal testing machine and loaded to the point of fracture. To determine the mode of failure, each sample was observed under a stereomicroscope. Data were recorded and analyzed by Shapiro-Wilk test and two-way analysis of variance (ANOVA. Results: The ceramic thickness and translucency could not significantly affect shear bond strength (SBS of resin cement to enamel (p = 0.17 and p = 0.097, respectively.  The Adhesive and ceramic cohesive failures were reported as the maximum and minimum mode of failure, respectively. Conclusion: The SBS of the light-cured resin cement bonding to enamel and lithium disilicate ceramic was not affected by the translucency of ceramics having a thickness of less than 1 mm.

  2. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    International Nuclear Information System (INIS)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun

    2016-01-01

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively

  3. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun [Andong National Univ., Andong (Korea, Republic of)

    2016-07-15

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively.

  4. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    Science.gov (United States)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  5. Carbon-Coated SnO2 Nanorod Array for Lithium-Ion Battery Anode Material

    Directory of Open Access Journals (Sweden)

    Ji Xiaoxu

    2010-01-01

    Full Text Available Abstract Carbon-coated SnO2 nanorod array directly grown on the substrate has been prepared by a two-step hydrothermal method for anode material of lithium-ion batteries (LIBs. The structural, morphological and electrochemical properties were investigated by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and electrochemical measurement. When used as anodes for LIBs with high current density, as-obtained array reveals excellent cycling stability and rate capability. This straightforward approach can be extended to the synthesis of other carbon-coated metal oxides for application of LIBs.

  6. Non-destructive prediction of enteric coating layer thickness and drug dissolution rate by near-infrared spectroscopy and X-ray computed tomography.

    Science.gov (United States)

    Ariyasu, Aoi; Hattori, Yusuke; Otsuka, Makoto

    2017-06-15

    The coating layer thickness of enteric-coated tablets is a key factor that determines the drug dissolution rate from the tablet. Near-infrared spectroscopy (NIRS) enables non-destructive and quick measurement of the coating layer thickness, and thus allows the investigation of the relation between enteric coating layer thickness and drug dissolution rate. Two marketed products of aspirin enteric-coated tablets were used in this study, and the correlation between the predicted coating layer thickness and the obtained drug dissolution rate was investigated. Our results showed correlation for one product; the drug dissolution rate decreased with the increase in enteric coating layer thickness, whereas, there was no correlation for the other product. Additional examination of the distribution of coating layer thickness by X-ray computed tomography (CT) showed homogenous distribution of coating layer thickness for the former product, whereas the latter product exhibited heterogeneous distribution within the tablet, as well as inconsistent trend in the thickness distribution between the tablets. It was suggested that this heterogeneity and inconsistent trend in layer thickness distribution contributed to the absence of correlation between the layer thickness of the face and side regions of the tablets, which resulted in the loss of correlation between the coating layer thickness and drug dissolution rate. Therefore, the predictability of drug dissolution rate from enteric-coated tablets depended on the homogeneity of the coating layer thickness. In addition, the importance of micro analysis, X-ray CT in this study, was suggested even if the macro analysis, NIRS in this study, are finally applied for the measurement. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Performance of a fiber optic sensor for online measurement of coating thickness

    Science.gov (United States)

    D'Emilia, Giulio

    1999-01-01

    Some aspects concerning a methodology for the measurement of thickness of dry and wet coatings which is based on a fiber optic probe are discussed in order to verify the feasibility of this approach and the capability of such a probe of on- line measuring. In this preliminary step of the research some problems discussed mainly concerning the methodology which has been proposed and which is based on the measuring of the reflectance of the coating plated on thin steel sheets for use in the food industry. Furthermore the effect of the main interfering and modifying quantities is discussed both theoretically and experimentally when the measurement has to be carried out in order to allow on-line coating thickness measurements with satisfactory accuracy.

  8. Measurements and 2-D modeling of recycling and edge transport in discharges with lithium-coated PFCs in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Canik, J.M., E-mail: canikjm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Bell, R.E.; Kugel, H.W.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Osborne, T.H. [General Atomics, San Diego, CA (United States)

    2011-08-01

    The application of lithium coatings on plasma facing components has been shown to profoundly affect plasma performance in the National Spherical Torus Experiment, improving energy confinement and eliminating edge-localized modes. The edge particle balance during these ELM-free discharges has been studied through 2-D plasma-neutrals modeling, constrained by measurements of the upstream plasma density and temperature profiles and the divertor heat flux and D{sub {alpha}} emission. The calculations indicate that the reduction in divertor D{sub {alpha}} emission with lithium coatings applied is consistent with a drop in recycling coefficient from R {approx} 0.98 to R {approx} 0.9. The change in recycling is not sufficient to account for the change in edge density profiles: interpretive modeling indicates similar transport coefficients within the edge transport barrier (D/{chi}{sub e} {approx} 0.2/1.0 m{sup 2}/s), but a widening of the barrier with lithium.

  9. The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery

    International Nuclear Information System (INIS)

    Zhao, Rui; Liu, Jie; Gu, Junjie

    2015-01-01

    Highlights: • A coupling model is developed to study the behaviors of Li-ion batteries. • Thick electrode battery (CEB) has high temperature response during discharge. • Thin electrode battery has a relative lower capacity fading rate. • Less heat is generated in thin electrode battery with even heat distribution. • CEBs underutilize active materials and stop discharge early at high rates. - Abstract: Lithium ion (Li-ion) battery, consisting of multiple electrochemical cells, is a complex system whose high electrochemical and thermal stability is often critical to the well-being and functional capabilities of electric devices. Considering any change in the specifications may significantly affect the overall performance and life of a battery, an investigation on the impacts of electrode thickness on the electrochemical and thermal properties of lithium-ion battery cells based on experiments and a coupling model composed of a 1D electrochemical model and a 3D thermal model is conducted in this work. In-depth analyses on the basis of the experimental and simulated results are carried out for one cell of different depths of discharge as well as for a set of cells with different electrode thicknesses. Pertinent results have demonstrated that the electrode thickness can significantly influence the battery from many key aspects such as energy density, temperature response, capacity fading rate, overall heat generation, distribution and proportion of heat sources

  10. Tunable field emission characteristics of ZnO nanowires coated with varied thickness of lanthanum boride thin films

    International Nuclear Information System (INIS)

    Zhao, C.X.; Li, Y.F.; Chen, Jun; Deng, S.Z.; Xu, N.S.

    2013-01-01

    Lanthanum boride (LaB x ) thin films with various thicknesses were deposited on ZnO nanowire arrays by electron beam evaporation. Field emission characteristics of ZnO nanowires show close dependence on LaB x coating thickness. The turn-on field increases with increasing LaB x coating thickness from 10 nm to 50 nm. The observed phenomena were explained by a model that the tunneling at ZnO/LaB x interface dominates the emission process. - Highlights: ► Coating thickness dependence of field emission characteristics of ZnO nanowires was observed from LaB x coated ZnO nanowires. ► More stable field emission was observed from ZnO nanowires with LaB x coating. ► A model was proposed that the tunneling at ZnO/LaB x interface dominates the emission process

  11. Structure and corrosion behavior of sputter deposited cerium oxide based coatings with various thickness on Al 2024-T3 alloy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuanyuan [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Huang, Jiamu, E-mail: huangjiamu@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Claypool, James B.; Castano, Carlos E. [Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); O’Keefe, Matthew J., E-mail: mjokeefe@mst.edu [Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-11-15

    Highlights: • Crystalline CeO{sub 2} coatings are deposited on Al 2024-T3 alloys by magnetron sputtering. • The crystal size and internal stress both increased with the thickness of CeO{sub 2} coating. • The ∼210 nm thick coating has the highest adhesion strength to the Al alloy substrate. • The ∼900 nm thick coating increased the corrosion resistance two orders of magnitude. • CeO{sub 2} coatings provide good cathodic inhibition for Al alloys by acting as physical barriers. - Abstract: Cerium oxide based coatings from ∼100 to ∼1400 nm in thickness were deposited onto Al 2024-T3 alloy substrates by magnetron sputtering of a 99.99% pure CeO{sub 2} target. The crystallite size of CeO{sub 2} coatings increased from 15 nm to 46 nm as the coating thickness increased from ∼100 nm to ∼1400 nm. The inhomogeneous lattice strain increased from 0.36% to 0.91% for the ∼100 nm to ∼900 nm thick coatings and slightly decreased to 0.89% for the ∼1400 nm thick coating. The highest adhesion strength to Al alloy substrates was for the ∼210 nm thick coating, due to a continuous film coverage and low internal stress. Electrochemical measurements indicated that sputter deposited crystalline CeO{sub 2} coatings acted as physical barriers that provide good cathodic inhibition for Al alloys in saline solution. The ∼900 nm thick CeO{sub 2} coated sample had the best corrosion performance that increased the corrosion resistance by two orders magnitude and lowered the cathodic current density 30 times compared to bare Al 2024-T3 substrates. The reduced defects and exposed surface, along with suppressed charge mobility, likely accounts for the improved corrosion performance as coating thickness increased from ∼100 nm to ∼900 nm. The corrosion performance decreased for ∼1400 nm thick coatings due in part to an increase in coating defects and porosity along with a decrease in adhesion strength.

  12. Influence of thickness and coatings morphology in the antimicrobial performance of zinc oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, P. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal); Sampaio, P. [CBMA, University of Minho, Campus de Gualtar, 4700 Braga (Portugal); Azevedo, S. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal); Vaz, C. [CBMA, University of Minho, Campus de Gualtar, 4700 Braga (Portugal); Espinós, J.P. [Instituto de Ciencia de Materiales de Sevilla, CSIC-University of Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla (Spain); Teixeira, V., E-mail: vasco@fisica.uminho.pt [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal); Carneiro, J.O., E-mail: carneiro@fisica.uminho.pt [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal)

    2014-07-01

    In this research work, the production of undoped and silver (Ag) doped zinc oxide (ZnO) thin films for food-packaging applications were developed. The main goal was to determine the influence of coatings morphology and thickness on the antimicrobial performance of the produced samples. The ZnO based thin films were deposited on PET (Polyethylene terephthalate) substrates by means of DC reactive magnetron sputtering. The thin films were characterized by optical spectroscopy, X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Scanning Electron Microscopy (SEM). The antimicrobial performance of the undoped and Ag-doped ZnO thin films was also evaluated. The results attained have shown that all the deposited zinc oxide and Ag-doped ZnO coatings present columnar morphology with V-shaped columns. The increase of ZnO coatings thickness until 200 nm increases the active surface area of the columns. The thinner samples (50 and 100 nm) present a less pronounced antibacterial activity than the thickest ones (200–600 nm). Regarding Ag-doped ZnO thin films, it was verified that increasing the silver content decreases the growth rate of Escherichia coli and decreases the amount of bacteria cells present at the end of the experiment.

  13. Nondestructive method to coat thickness measurements through X-ray fluorescence

    International Nuclear Information System (INIS)

    Sanchez, F.

    1986-01-01

    It's described a system that permits thickness measurement and composition of Sn-Pb alloys to simultaneous measurement of Au over Ni over any base, beyond convestionals measurements, including flash coats or touch. (C.M.) [pt

  14. Automated computer analysis of x-ray radiographs greatly facilitates measurement of coating-thickness variations in laser-fusion targets

    International Nuclear Information System (INIS)

    Stupin, D.M.; Moore, K.R.; Thomas, G.D.; Whitman, R.L.

    1981-01-01

    An automated system was built to analyze x-ray radiographs of laser fusion targets which greatly facilitates the detection of coating thickness variations. Many laser fusion targets reqire opaque coatings 1 to 20 μm thick which have been deposited on small glass balloons 100 to 500 μm in diameter. These coatings must be uniformly thick to 1% for the targets to perform optimally. Our system is designed to detect variations as small as 100 A in 1-μm-thick coatings by converting the optical density variations of contact x-ray radiographs into coating thickness variations. Radiographic images are recorded in HRP emulsions and magnified by an optical microscope, imaged onto television camera, digitized and processed on a Data General S/230 computer with a code by Whitman. After an initial set-up by the operator, as many as 200 targets will be automatically characterized

  15. Polyaniline coated Fe3O4 hollow nanospheres as anode materials for lithium ion batteries

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Han, Hongyan

    2017-01-01

    Polyaniline (PANI) coated Fe3O4 hollow nanospheres (h-Fe3O4@ PANI) have been successfully synthesized and investigated as anode materials for lithium ion batteries (LIBs). The structure and composition analyses have been performed by employing X-ray diffraction (XRD), scanning electron microscopy...

  16. Analysis of different coating thickness on new type of planar interdigital sensors for endotoxin detection

    KAUST Repository

    Syaifudin, A. R Mohd

    2013-05-01

    New types of planar interdigital sensors have been fabricated on Silicon/Silicon Dioxide (Si/SiO2) wafers. The sensors were coated with pre-cursor silica functionalized with APTES (3-aminopropyltrietoxysilane) at different thicknesses. All sensors were then immobilized with Polymyxin, B (PmB). PmB is an antimicrobial peptide produced by the Gram-positive bacterium-Bacillus, has been immobilized on the coated sensors because of its specific binding properties to endotoxin. Studies were conducted to analyze the effect of different thicknesses of coatings on the sensitivity and selectivity of the sensors. It was observed sensors coated with 3 layers of coating has better sensitivity and selectivity to the target molecules (endotoxin) compared to sensors with 5 layers of coating. The repeatability and stability of the coated sensors were tested by multiple standard endotoxin measurement and it was observed that the sensors give a good reproducibility and stability up to six continuous measurements before the coating degrades. © 2013 IEEE.

  17. Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage

    Science.gov (United States)

    Xu, G. B.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K.

    2015-11-01

    Highly-crystalline gadolinium doped and carbon-coated ultrathin Li4Ti5O12 (LTO) nanosheets (denoted as LTO-Gd-C) as an anode material for Li-ion batteries (LIBs) are synthesized on large scale by controlling the amount of carbon precursor in the topotactic transformation of layered ultrathin Li1.81H0.19Ti2O5·xH2O (H-LTO) nanosheets at 700 °C. The characterizations of structure and morphology reveal that the gadolinium doped and carbon-coated ultrathin LTO nanosheets have high crystallinity with a thickness of about 10 nm. Gadolinium doping allows the spinel LTO products to be stabilized, thereby preserving the precursor's sheet morphology and single crystal structure. Carbon encapsulation serves dual functions by restraining crystal growth of the LTO primary nanoparticles in the LTO-Gd-C nanosheets and decreasing the external electron transport resistance. Owing to the synergistic effects rendered by ultrathin nanosheets with high crystallinity, gadolinium doping and carbon coating, the developed ultrathin LTO nanosheets possess excellent specific capacity, cycling performance, and rate capability compared with reference materials, when evaluated as an anode material for lithium ion batteries (LIBs). The simple and effective strategy encompassing nanoscale morphological engineering, surface modification, and doping improves the performance of LTO-based anode materials for high energy density and high power LIBs applied in large scale energy storage.

  18. Mechanical Design of the NSTX Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    R. Ellis, R. Kaita, H. Kugel, G. Paluzzi, M. Viola and R. Nygren

    2009-02-19

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuumcompatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  19. Mechanical Design of the NSTX Liquid Lithium Divertor

    International Nuclear Information System (INIS)

    Ellis, R.; Kaita, R.; Kugel, H.; Paluzzi, G.; Viola, M.; Nygren, R.

    2009-01-01

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuum compatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  20. Demonstration of Li-based alloy coatings as low-voltage stable electron-emission surfaces for field-emission devices

    International Nuclear Information System (INIS)

    Auciello, O.; Krauss, A.R.; Gruen, D.M.; Shah, P.; Corrigan, T.; Kordesch, M.E.; Chang, R.P.; Barr, T.L.

    1999-01-01

    Alkali metals have extremely low work functions and are, therefore, expected to result in significant enhancement of the electron emission if they are used as coatings on Mo or Si microtip field-emission arrays (FEAs). However, the alkali metals are physically and chemically unstable in layers exceeding a few Angstrom in thickness. Maximum enhancement of electron emission occurs for alkali - metal layers 0.5 - 1 ML thick, but it is extremely difficult to fabricate and maintain such a thin alkali - metal coating. We present here an alternative means of producing chemically and thermally stable, self-replenishing lithium coatings approximately 1 ML thick, which results in a 13-fold reduction in the threshold voltage for electron emission compared with uncoated Si FEAs. copyright 1999 American Institute of Physics

  1. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction.

    Science.gov (United States)

    Zhou, Sa; Simpson, Zachary I; Yang, Xiaogang; Wang, Dunwei

    2012-09-25

    The discovery of new materials has played an important role in battery technology development. Among the newly discovered materials, those with layered structures are often of particular interest because many have been found to permit highly repeatable ionic insertion and extraction. Examples include graphite and LiCoO(2) as anode and cathode materials, respectively. Here we report C49 titanium disilicide (TiSi(2)) as a new layered anode material, within which lithium ions can react with the Si-only layers. This result is enabled by the strategy of coating a thin (lithium-ion storage capacity of TiSi(2) is a result of its layered structure is expected to have major fundamental and practical implications.

  2. The role of surface preparation in corrosion protection of copper with nanometer-thick ALD alumina coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mirhashemihaghighi, Shadi; Światowska, Jolanta [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Maurice, Vincent, E-mail: vincent.maurice@chimie-paristech.fr [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Seyeux, Antoine; Klein, Lorena H. [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Salmi, Emma; Ritala, Mikko [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Marcus, Philippe [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-11-30

    Highlights: • 10–50 nm thick alumina coatings were grown on copper by atomic layer deposition. • Surface smoothening by substrate annealing was studied as pre-deposition treatment. • Corrosion protection is promoted by pre-treatment for 10 nm but not for thicker films. • Local adhesion failure is assigned to the stresses accumulated in the thicker films. • Surface smoothening decreases the interfacial strength bearing the film stresses. - Abstract: Surface smoothening by substrate annealing was studied as a pre-treatment for improving the corrosion protection provided to copper by 10, 20 and 50 nm thick alumina coatings deposited by atomic layer deposition. The interplay between substrate surface state and deposited film thickness for controlling the corrosion protection provided by ultrathin barrier films is demonstrated. Pre-annealing at 750 °C heals out the dispersed surface heterogeneities left by electropolishing and reduces the surface roughness to less than 2 nm independently of the deposited film thickness. For 10 nm coatings, substrate surface smoothening promotes the corrosion resistance. However, for 20 and 50 nm coatings, it is detrimental to the corrosion protection due to local detachment of the deposited films. The weaker adherence of the thicker coatings is assigned to the stresses accumulated in the films with increasing deposited thickness. Healing out the local heterogeneities on the substrate surface diminishes the interfacial strength that is bearing the stresses of the deposited films, thereby increasing adhesion failure for the thicker films. Pitting corrosion occurs at the local sites of adhesion failure. Intergranular corrosion occurs at the initially well coated substrate grain boundaries because of the growth of a more defective and permeable coating at grain boundaries.

  3. INFLUENCE OF THE THICKNESS OF Ni-P COATING APPLIED ON 7075 ALUMINUM ALLOY ON ITS HARDNESS

    Directory of Open Access Journals (Sweden)

    Kazimierz Czapczyk

    2016-12-01

    Full Text Available The paper presents the results of hardness tests of aluminum alloy AW-7075 (for plastic processing and Ni-P chemical coatings (nickel-phosphorus which had been applied by the no-current method. Coatings of various thickness have been made and their influence on the increase of the top layer hardness has been determined, as well as the increase of the hardness of the coating and substrate system after puncturing the coating with an indenter. The purpose of the investigation was to determine the possibility of applying the Ni-P coating for selected technical applications, among others, by the selection of its optimum thickness on the hard aluminum alloy and by the determination of the deformation resistance of the top layer if the given coating.

  4. High-rate and ultralong cycle-life LiFePO_4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Jinpeng; Wang, Youlan

    2016-01-01

    Highlights: • B-doped carbon decorated LiFePO_4 has been fabricated for the first time. • The LiFePO_4@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO_4@C. • The LiFePO_4@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO_4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO_4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO_4@B_0_._4-C can reach 164.1 mAh g"−"1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g"−"1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g"−"1 and can be maintained at 124.5 mAh g"−"1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO_4@B-C composite for high-performance lithium-ion batteries.

  5. Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium

    Directory of Open Access Journals (Sweden)

    Yanbin Li

    2017-12-01

    Full Text Available Lithium metal is the ultimate anode choice for high energy density rechargeable lithium batteries. However, it suffers from inferior electrochemical performance and safety issues due to its high reactivity and the growth of lithium dendrites. It has long been desired to develop a materials coating on Li metal, which is pinhole-free, mechanically robust without fracture during Li metal deposition and stripping, and chemically stable against Li metal and liquid electrolytes, all while maintaining adequate ionic conductivity. However, such an ideal material coating has yet to be found. Here we report a novel synthesis method by reacting clean molten lithium foil directly with pure nitrogen gas to generate instantaneously a pinhole-free and ionically conductive α-Li3N film directly bonded onto Li metal foil. The film consists of highly textured large Li3N grains (tens of μm with (001 crystalline planes parallel to the Li metal surface. The bonding between textured grains is strong, resulting in a mechanically robust film which does not crack even when bent to a 0.8 cm curvature radius and is found to maintain pinhole-free coverage during Li metal deposition and stripping. The measured ionic conductivity is up to 5.2 × 10–4 S cm–1, sufficient for maintaining regular current densities for controllable film thicknesses ranging from 2 to 30 μm. This Li3N coating is chemically stable, isolating the reactive metallic lithium from liquid electrolyte, prevents continuous electrolyte consumption during battery cycling, and promotes dendrite-free uniform lithium plating/stripping underneath. We demonstrated Li|Li4Ti5O12 cells with stable and flat potential profiles for 500 cycles without capacity decay or an increase in potential hysteresis.

  6. Effect of Nickel Coated Multi-Walled Carbon Nanotubes on Electrochemical Performance of Lithium-Sulfur Rechargeable Batteries.

    Science.gov (United States)

    Wu, Xiao; Yao, Shanshan; Hou, Jinli; Jing, Maoxiang; Qian, Xinye; Shen, Xiangqian; Xiang, Jun; Xi, Xiaoming

    2017-04-01

    Conventional lithium-sulfur batteries suffer from severe capacity fade, which is induced by low electron conductivity and high dissolution of intermediated polysulfides. Recent studies have shown the metal (Pt, Au, Ni) as electrocatalyst of lithium polysulfides and improved the performance for lithium sulfur batteries. In this work, we present the nickel coated multi-walled carbon nanotubes (Ni-MWNTs) as additive materials for elemental sulfur positive electrodes for lithium-sulfur rechargeable batteries. Compared with MWNTs, the obtained Ni-MWNTs/sulfur composite cathode demonstrate a reversible specific capacity approaching 545 mAh after 200 cycles at a rate of 0.5C as well as improved cycling stability and excellent rate capacity. The improved electrochemical performance can be attributed to the fact the MWNTs shows a vital role on polysulfides adsorption and nickel has a catalytic effect on the redox reactions during charge–discharge process. Meanwhile, the Ni-MWNTs is a good electric conductor for sulfur cathode.

  7. Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1998-01-01

    Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading

  8. Electrochemical characteristics of silver- and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries

    International Nuclear Information System (INIS)

    Choi, Won Chang; Byun, Dongjin; Lee, Joong Kee; Cho, Byung won

    2004-01-01

    Four kinds of synthetic graphite coated with silver and nickel for the anodes of lithium secondary batteries were prepared by a gas suspension spray coating method. The electrode coated with silver showed higher charge-discharge capacities due to a Ag-Li alloy, but rate capability decreased at higher charge-discharge rate. This result can be explained by the formation of an artificial Ag oxidation film with higher impedance, this lowered the rate capability at high charge-discharge rate due to its low electrical conductivity. Rate capability is improved, however, by coating nickel and silver together on the surface of synthetic graphite. The nickel which is inactive with oxidation reaction plays an important role as a conducting agent which enhanced the conductivity of the electrode

  9. Evaporated Lithium Surface Coatings in NSTX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Mansfield, D.; Maingi, R.; Bel, M.G.; Bell, R.E.; Allain, J.P.; Gates, D.; Gerhardt, S.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.

    2009-01-01

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges; (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density

  10. Evaporated Lithium Surface Coatings in NSTX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Mansfield, D.; Maingi, Rajesh; Bell, M.G.; Bell, R.E.; Allain, J.P.; Gates, D.; Gerhardt, S.P.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Raman, R.; Roquemore, A.L.; Ross, P.W.; Sabbagh, S.A.; Schneider, H.; Skinner, C.H.; Soukhanovskii, V.; Stevenson, T.; Timberlake, J.; Wampler, W.R.; Wilgen, John B.; Zakharov, L.E.

    2009-01-01

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges: (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density.

  11. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Science.gov (United States)

    Feng, Jinpeng; Wang, Youlan

    2016-12-01

    An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO4@B0.4-C can reach 164.1 mAh g-1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g-1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g-1 and can be maintained at 124.5 mAh g-1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO4@B-C composite for high-performance lithium-ion batteries.

  12. Results and future plans of the Lithium Tokamak eXperiment (LTX)

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J.C., E-mail: jschmitt@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Abrams, T. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Baylor, L.R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Berzak Hopkins, L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Biewer, T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bohler, D.; Boyle, D.; Granstedt, E. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Gray, T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hare, J.; Jacobson, C.M.; Jaworski, M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D.P.; Lucia, M. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Majeski, R.; Merino, E. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); and others

    2013-07-15

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with the unique capability of studying the low-recycling regime by coating nearly 90% of the first wall with lithium in either solid or liquid form. Several grams of lithium are evaporated onto the plasma-facing side of the first wall. Without lithium coatings, the plasma discharge is limited to less than 5 ms and only 10 kA of plasma current, and the first wall acts as a particle source. With cold lithium coatings, plasma discharges last up to 20 ms with plasma currents up to 70 kA. The lithium coating provides a low-recycling first wall condition for the plasma and higher fueling rates are required to realize plasma densities similar to that of pre-lithium walls. Traditional puff fueling, supersonic gas injection, and molecular cluster injection (MCI) are used. Liquid lithium experiments will begin in 2012.

  13. Results and future plans of the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Schmitt, J.C.; Abrams, T.; Baylor, L.R.; Berzak Hopkins, L.; Biewer, T.; Bohler, D.; Boyle, D.; Granstedt, E.; Gray, T.; Hare, J.; Jacobson, C.M.; Jaworski, M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D.P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.

    2013-01-01

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with the unique capability of studying the low-recycling regime by coating nearly 90% of the first wall with lithium in either solid or liquid form. Several grams of lithium are evaporated onto the plasma-facing side of the first wall. Without lithium coatings, the plasma discharge is limited to less than 5 ms and only 10 kA of plasma current, and the first wall acts as a particle source. With cold lithium coatings, plasma discharges last up to 20 ms with plasma currents up to 70 kA. The lithium coating provides a low-recycling first wall condition for the plasma and higher fueling rates are required to realize plasma densities similar to that of pre-lithium walls. Traditional puff fueling, supersonic gas injection, and molecular cluster injection (MCI) are used. Liquid lithium experiments will begin in 2012

  14. Activated Flake Graphite Coated with Pyrolysis Carbon as Promising Anode for Lithium Storage

    International Nuclear Information System (INIS)

    Chen, Jun; Zou, Guoqiang; Zhang, Yan; Song, Weixin; Hou, Hongshuai; Huang, Zhaodong; Liao, Hanxiao; Li, Simin; Ji, Xiaobo

    2016-01-01

    A facile route to improve the lithium-storage properties of flake graphite (FG) is proposed through coating pyrolysis carbon from polyvinylidene fluoride (PVDF) assisted by KOH activation. The interplanar distance between the graphene sheets of activated PVDF/FG is enlarged, effectively suppressing the electrode deformation during lithium (de)-intercalation. More edge and porous structures of PVDF/FG arising from KOH activation on graphite flakes contribute to improved electron and ion transport, leading to great improvement in its rate and cycling performances. The initial specific capacity of the activated PVDF/FG is 476.6 mAh g −1 at 50 mA g −1 and when the current increases to 1000 mA g −1 , the value still retains 142.6 mAh g −1 .

  15. Effect of Coating-thickness on the formability of hot dip aluminized steel

    International Nuclear Information System (INIS)

    Awan, G.H.; Ahmed, F.; Hasan, F.

    2008-01-01

    The influence of coating thickness on the formability and ductility of hot-dip-aluminized steel has been determined using a 3-point bend test and optical metallography. The ductility / formability was estimated from the 3-point bend test wherein the angle of bend at which the cracks start to appear on the surface of the aluminized sheet during bending, was taken as an index of the formability / ductility. It was observed that as the amount of silicon in the aluminising melt was gradually increased the measured ductility of the sheet sample also increased. Metallographic examination has shown that as the amount of silicon in the aluminising melt was increased the thickness of the intermediate compound layer, between the outer aluminum coat and the substrate steel, decreased. It was thus indicated from these experiments that the formability / ductility of the sheet was inversely related to the thickness of the interlayer. (author)

  16. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Zhong; Tian Wenhuai; Liu Xiaohe; Yang Rong; Li Xingguo

    2007-01-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles

  17. High-rate and ultralong cycle-life LiFePO{sub 4} nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jinpeng, E-mail: goldminer@sina.com; Wang, Youlan

    2016-12-30

    Highlights: • B-doped carbon decorated LiFePO{sub 4} has been fabricated for the first time. • The LiFePO{sub 4}@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO{sub 4}@C. • The LiFePO{sub 4}@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO{sub 4}. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO{sub 4} is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO{sub 4}@B{sub 0.4}-C can reach 164.1 mAh g{sup −1} at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g{sup −1}). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g{sup −1} and can be maintained at 124.5 mAh g{sup −1} after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO{sub 4}@B-C composite for high-performance lithium-ion batteries.

  18. Advanced Environmentally Resistant Lithium Fluoride Mirror Coatings for the Next Generation of Broadband Space Observatories

    Science.gov (United States)

    Fleming, Brian; Quijada, Manuel A.; Hennessy, John; Egan, Arika; Del Hoyo, Javier G.

    2017-01-01

    Recent advances in the physical vapor deposition (PVD) of protective fluoride films have raised the far-ultraviolet (FUV: 912-1600 A) reflectivity of aluminum-based mirrors closer to the theoretical limit. The greatest gains, at more than 20%, have come for lithium fluoride-protected aluminum, which has the shortest wavelength cutoff of any conventional overcoat. Despite the success of the NASA FUSE mission, the use of lithium fluoride (LiF)-based optics is rare, as LiF is hygroscopic and requires handling procedures that can drive risk. With NASA now studying two large mission concepts for astronomy, Large UV-Optical-IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HabEx), which mandate throughput down to 1000 , the development of LiF-based coatings becomes crucial. This paper discusses steps that are being taken to qualify these new enhanced LiF-protected aluminum (eLiF) mirror coatings for flight. In addition to quantifying the hygroscopic degradation, we have developed a new method of protecting eLiF with an ultrathin (10-20 A) capping layer of a nonhygroscopic material to increase durability. We report on the performance of eLiF-based optics and assess the steps that need to be taken to qualify such coatings for LUVOIR, HabEx, and other FUV-sensitive space missions.

  19. Technique for thick polymer coating of inertial-confinement-fusion targets

    International Nuclear Information System (INIS)

    Lee, M.C.; Feng, I.; Wang, T.G.; Kim, H.

    1983-01-01

    A novel technique has been developed to coat a thick layer (15--50 μm) of polymer materials on inertial-confinement-fusion (ICF) targets. In this technique, the target and the coating material are independently positioned and manipulated. The coating material is first dissolved in an appropriate solvent to form a polymer solution. The solution is then atomized, transported, and allowed to coalesce into a droplet in a stable acoustic levitating field. The ICF target mounted on a stalk is moved into the acoustic field by manipulating a three-dimensional (3-D) positioner to penetrate the surface membrane of the droplet and thus the target is immersed in the levitated coating solution. The 3-D coordinates of the target inside the droplet are obtained using two orthogonally placed television cameras. The target is positioned at the geometric center of the droplet and maintained at that location by continuously manipulating the 3-D device until the coating layer is dried. Tests of this technique using a polymer solution have been highly successful

  20. One-Pot Synthesis of Carbon-Coated SnO 2 Nanocolloids with Improved Reversible Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen; Chen, Jun Song; Chen, Peng; Archer, Lynden A.

    2009-01-01

    of 300 mA/g in hybrid SnO 2-carbon electrodes containing as much as 1/3 of their mass in the low-activity carbon shell. By reducing the SnO 2-carbon particles with H 2, we demonstrate a simple route to carbon-coated Sn nanospheres. Lithium storage

  1. Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2 as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Jung, Mi-Hee

    2017-11-01

    ZnO has had little consideration as an anode material in lithium-ion batteries compared with other transition-metal oxides due to its inherent poor electrical conductivity and large volume expansion upon cycling and pulverization of ZnO-based electrodes. A logical design and facile synthesis of ZnO with well-controlled particle sizes and a specific morphology is essential to improving the performance of ZnO in lithium-ion batteries. In this paper, a simple approach is reported that uses a cation surfactant and a chelating agent to synthesize three-dimensional hierarchical nanostructured carbon-coated ZnO mats, in which the ZnO mats are composed of stacked individual ZnO nanowires and form well-defined nanoporous structures with high surface areas. In order to improve the performance of lithium-ion batteries, HfO 2 is deposited on the carbon-coated ZnO mat electrode via atomic layer deposition. Lithium-ion battery devices based on the carbon-coated ZnO mat passivation by atomic layer deposited HfO 2 exhibit an excellent initial discharge and charge capacities of 2684.01 and 963.21mAhg -1 , respectively, at a current density of 100mAg -1 in the voltage range of 0.01-3V. They also exhibit cycle stability after 125 cycles with a capacity of 740mAhg -1 and a remarkable rate capability. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Alumina/Phenolphthalein Polyetherketone Ceramic Composite Polypropylene Separator Film for Lithium Ion Power Batteries

    International Nuclear Information System (INIS)

    Wang, Jing; Hu, Zhiyu; Yin, Xiunan; Li, Yunchao; Huo, Hong; Zhou, Jianjun; Li, Lin

    2015-01-01

    Highlights: • PEK-C (T g : ∼230 °C) was used as binder to prepare ceramic coated composite PP separator. • The composite PP separator was stable and showed low thermal shrinkage in the electrolyte solvent. • The composite PP separator was helpful for high current density discharge. • The composite PP separator improved the safety performance of the coin cells. - Abstract: One way to obtain the lithium ion power battery with better safety performance was to increase the thermal shrinkage resistance of the separator at higher temperature. Phenolphthalein polyetherketone (PEK-C) is a polymer that can withstand high temperature to about 230 °C. Here, we developed a new Al 2 O 3 coated composite polypropylene (PP) separator with PEK-C as binder. The coating layer was formed on the surface of the PP separator and both ceramic particles and binder did not infiltrated into the separator along the thickness direction. The composite separator with 4 μm coating layer provided balanced permeability and thermal shrinkage properties. The composite separator was stable at the electrochemical window for lithium ion battery. The coin cells with composite separator showed better charge/discharge performance than that of the cells with the PP separator. It seemed that the composite separator was helpful for high current density discharge. Also, the battery safety performance test had verified that the Al 2 O 3 coated composite separator with PEK-C as binder had truly improved the safety performance of the coin cells. So, the newly developed Al 2 O 3 coated composite PP separator was a promising safety product for lithium ion power batteries with high energy density

  3. Fracture Resistance of Lithium Disilicate Ceramics Bonded to Enamel or Dentin Using Different Resin Cement Types and Film Thicknesses.

    Science.gov (United States)

    Rojpaibool, Thitithorn; Leevailoj, Chalermpol

    2017-02-01

    To investigate the influence of cement film thickness, cement type, and substrate (enamel or dentin) on ceramic fracture resistance. One hundred extracted human third molars were polished to obtain 50 enamel and 50 dentin specimens. The specimens were cemented to 1-mm-thick lithium disilicate ceramic plates with different cement film thicknesses (100 and 300 μm) using metal strips as spacers. The cements used were etch-and-rinse (RelyX Ultimate) and self-adhesive (RelyX U200) resin cements. Compressive load was applied on the ceramic plates using a universal testing machine, and fracture loads were recorded in Newtons (N). Statistical analysis was performed by multiple regression (p enamel showed the highest mean fracture load (MFL; 1591 ± 172.59 N). The RelyX Ultimate groups MFLs were significantly higher than the corresponding RelyX U200 groups (p enamel (p enamel. Reduced resin film thickness could reduce lithium disilicate restoration fracture. Etch-and-rinse resin cements are recommended for cementing on either enamel or dentin, compared with self-adhesive resin cement, for improved fracture resistance. © 2015 by the American College of Prosthodontists.

  4. A general strategy toward graphitized carbon coating on iron oxides as advanced anodes for lithium-ion batteries.

    Science.gov (United States)

    Ding, Chunyan; Zhou, Weiwei; Wang, Bin; Li, Xin; Wang, Dong; Zhang, Yong; Wen, Guangwu

    2017-08-25

    Integration of carbon materials with benign iron oxides is blazing a trail in constructing high-performance anodes for lithium-ion batteries (LIBs). In this paper, a unique general, simple, and controllable strategy is developed toward in situ uniform coating of iron oxide nanostructures with graphitized carbon (GrC) layers. The basic synthetic procedure only involves a simple dip-coating process for the loading of Ni-containing seeds and a subsequent Ni-catalyzed chemical vapor deposition (CVD) process for the growth of GrC layers. More importantly, the CVD treatment is conducted at a quite low temperature (450 °C) and with extremely facile liquid carbon sources consisting of ethylene glycol (EG) and ethanol (EA). The GrC content of the resulting hybrids can be controllably regulated by altering the amount of carbon sources. The electrochemical results reveal remarkable performance enhancements of iron oxide@GrC hybrids compared with pristine iron oxides in terms of high specific capacity, excellent rate and cycling performance. This can be attributed to the network-like GrC coating, which can improve not only the electronic conductivity but also the structural integrity of iron oxides. Moreover, the lithium storage performance of samples with different GrC contents is measured, manifesting that optimized electrochemical property can be achieved with appropriate carbon content. Additionally, the superiority of GrC coating is demonstrated by the advanced performance of iron oxide@GrC compared with its corresponding counterpart, i.e., iron oxides with amorphous carbon (AmC) coating. All these results indicate the as-proposed protocol of GrC coating may pave the way for iron oxides to be promising anodes for LIBs.

  5. Optimal design of hollow core–shell structural active materials for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Wenjuan Jiang

    2015-01-01

    Full Text Available To mitigate mechanical and chemical degradation of active materials, hollow core–shell structures have been applied in lithium ion batteries. Without embedding of lithium ions, the rigid coating shell can constrain the inward volume deformation. In this paper, optimal conditions for the full use of inner hollow space are identified in terms of the critical ratio of shell thickness and inner size and the state of charge. It is shown that the critical ratios are 0.10 and 0.15 for Si particle and tube (0.12 and 0.18 for Sn particle and tube, and above which there is lack of space for further lithiation.

  6. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    International Nuclear Information System (INIS)

    Tang, Dapei

    2015-01-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained. (paper)

  7. Thickness and morphology of polyelectrolyte coatings on silica surfaces before and after protein exposure studied by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haselberg, Rob, E-mail: r.haselberg@vu.nl [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); AIMMS Division of BioMolecular Analysis, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Flesch, Frits M. [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); Boerke, Arjan [Department of Biochemistry and Cell Biology, Utrecht University, Yalelaan 2, 3508 TD Utrecht (Netherlands); Somsen, Govert W. [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); AIMMS Division of BioMolecular Analysis, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2013-05-24

    Graphical abstract: -- Highlights: •Atomic force microscopy is used to characterize polyelectrolyte coatings. •Coating procedure leads to nm-thick layers on a silica surface. •Polyelectrolyte coatings effectively prevent protein adsorption. •AFM provides the high resolution to investigate these thin films. •AFM results support earlier findings obtained with capillary electrophoresis. -- Abstract: Analyte–wall interaction is a significant problem in capillary electrophoresis (CE) as it may compromise separation efficiencies and migration time repeatability. In CE, self-assembled polyelectrolyte multilayer films of Polybrene (PB) and dextran sulfate (DS) or poly(vinylsulfonic acid) (PVS) have been used to coat the capillary inner wall and thereby prevent analyte adsorption. In this study, atomic force microscopy (AFM) was employed to investigate the layer thickness and surface morphology of monolayer (PB), bilayer, (PB-DS and PB-PVS), and trilayer (PB-DS-PB and PB-PVS-PB) coatings on glass surfaces. AFM nanoshaving experiments providing height distributions demonstrated that the coating procedures led to average layer thicknesses between 1 nm (PB) and 5 nm (PB-DS-PB), suggesting the individual polyelectrolytes adhere flat on the silica surface. Investigation of the surface morphology of the different coatings by AFM revealed that the PB coating does not completely cover the silica surface, whereas full coverage was observed for the trilayer coatings. The DS-containing coatings appeared on average 1 nm thicker than the corresponding PVS-containing coatings, which could be attributed to the molecular structure of the anionic polymers applied. Upon exposure to the basic protein cytochrome c, AFM measurements showed an increase of the layer thickness for bare (3.1 nm) and PB-DS-coated (4.6 nm) silica, indicating substantial protein adsorption. In contrast, a very small or no increase of the layer thickness was observed for the PB and PB-DS-PB coatings

  8. Thick boron carbide coatings for protection of tokamak first wall and divertor

    International Nuclear Information System (INIS)

    Buzhinskij, O.I.; Semenets, Yu.M.

    1999-01-01

    A review of characteristics of various types of boron carbide coatings considered as candidate materials for protection of tokamak inner surfaces against high energy heat fluxes is presented. Such coatings are produced by various methods: chemical vapor deposition by means of chloride and fluoride techniques, gas conversion, plasma spray and reaction-sintering. Contrary to pure carbon materials, B 4 C has much lower chemical and high-temperature sputtering, is capable to oxygen gettering and lower hydrogen recycling. In contrast to thin boronization films, the thick coatings can resist high heat fluxes such as in tokamak divertors. Comparative analysis shows that coatings produced by the diffusion methods, such as fluoride CVD and gas conversion, are more resistent to heat loads, and one of the most promising candidates are the fluoride CVD coatings. (orig.)

  9. Designed fabrication of fluorine-doped carbon coated mesoporous TiO2 hollow spheres for improved lithium storage

    International Nuclear Information System (INIS)

    Geng, Hongbo; Ming, Hai; Ge, Danhua; Zheng, Junwei; Gu, Hongwei

    2015-01-01

    Graphical abstract: Hollow TiO 2 with mesoporous shell (MHTO) was successfully fabricated by a novel and controllable route, followed by fluorine-doped carbon coating the MHTO (MHTO-C/F), with the aim of enhancing the conductivity and stability of structures. - Highlights: • Anatase TiO 2 hollow spheres with mesoporous shells (MHTO) was fabricated via a facile and controllable route, to improve the lithium ion mobility as well as the stability of the architecture. • Fluorine-doped carbon derived from polyvinylidene difluoride was further encapsulated onto TiO 2 hollow spheres to improve the conductivity. • The composites could provide excellent electrochemical performance, which was desirable for the application of TiO 2 as an anode material in lithium ion batteries. - Abstract: In this manuscript, we demonstrated a facile route for the controllable design of “Fluorine (F)-doped carbon” (C/F)-treated TiO 2 hollow spheres with mesoporous shells (MHTO-C/F). The fabrication of this distinct mesoporous hollow structures and the C/F coating could effectively improve the electrolyte permeability and architectural stability, as well as electrical conductivity and lithium ion mobility. As anticipated, MHTO-C/F has several remarkable electrochemical properties, such as a high specific reversible capacity of 252 mA h g −1 , outstanding cycling stability of more than 210 mA h g −1 after 100 cycles at 0.5 C, and good rate performance of around 123 mA h g −1 at 5 C (1 C = 168 mA g −1 ). These properties are highly beneficial for lithium storage

  10. Full and Partial Thickness Burns from Spontaneous Combustion of E-Cigarette Lithium-Ion Batteries with Review of Literature.

    Science.gov (United States)

    Treitl, Daniela; Solomon, Rachele; Davare, Dafney L; Sanchez, Rafael; Kiffin, Chauniqua

    2017-07-01

    In recent years, the use of electronic cigarettes (e-cigarettes) has increased worldwide. Most electronic nicotine delivery systems use rechargeable lithium-ion batteries, which are relatively safe, but in rare cases these batteries can spontaneously combust, leading to serious full and partial thickness burn injuries. Explosions from lithium-ion batteries can cause a flash fire and accelerant-related burn injuries. A retrospective chart review was conducted of 3 patients with lithium-ion battery burns seen at our Level I community-based trauma center. Clinical presentation, management, and outcome are presented. All 3 patients sustained burn injuries (total body surface area range 5-13%) from the spontaneous combustion of lithium-ion batteries used for e-cigarettes. All patients were treated with debridement and local wound care. All fully recovered without sequelae. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians can expect to treat burn cases due to spontaneous lithium-ion battery combustion as e-cigarette use continues to increase. The cases presented here are intended to bring attention to lithium-ion battery-related burns, prepare physicians for the clinical presentation of this burn mechanism, and facilitate patient education to minimize burn risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Solid solution lithium alloy cermet anodes

    Science.gov (United States)

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  12. The Gaia-ESO Survey: Lithium enrichment histories of the Galactic thick and thin disc

    Science.gov (United States)

    Fu, X.; Romano, D.; Bragaglia, A.; Mucciarelli, A.; Lind, K.; Delgado Mena, E.; Sousa, S. G.; Randich, S.; Bressan, A.; Sbordone, L.; Martell, S.; Korn, A. J.; Abia, C.; Smiljanic, R.; Jofré, P.; Pancino, E.; Tautvaišienė, G.; Tang, B.; Magrini, L.; Lanzafame, A. C.; Carraro, G.; Bensby, T.; Damiani, F.; Alfaro, E. J.; Flaccomio, E.; Morbidelli, L.; Zaggia, S.; Lardo, C.; Monaco, L.; Frasca, A.; Donati, P.; Drazdauskas, A.; Chorniy, Y.; Bayo, A.; Kordopatis, G.

    2018-02-01

    Lithium abundance in most of the warm metal-poor main sequence stars shows a constarnt plateau (A(Li) 2.2 dex) and then the upper envelope of the lithium vs. metallicity distribution increases as we approach solar metallicity. Meteorites, which carry information about the chemical composition of the interstellar medium (ISM) at the solar system formation time, show a lithium abundance A(Li) 3.26 dex. This pattern reflects the Li enrichment history of the ISM during the Galaxy lifetime. After the initial Li production in big bang nucleosynthesis, the sources of the enrichment include asymptotic giant branch (AGB) stars, low-mass red giants, novae, type II supernovae, and Galactic cosmic rays. The total amount of enriched Li is sensitive to the relative contribution of these sources. Thus different Li enrichment histories are expected in the Galactic thick and thin disc. We investigate the main sequence stars observed with UVES in Gaia-ESO Survey iDR4 catalogue and find a Li-anticorrelation independent of [Fe/H], Teff, and log(g). Since in stellar evolution different α enhancements at the same metallicity do not lead to a measurable Li abundance change, the anticorrelation indicates that more Li is produced during the Galactic thin disc phase than during the Galactic thick disc phase. We also find a correlation between the abundance of Li and s-process elements Ba and Y, and they both decrease above the solar metallicity, which can be explained in the framework of the adopted Galactic chemical evolution models. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A38

  13. Thin coating thickness determination using radioisotope-excited x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Del Castillo, Lorena A.; Calix, Virginia S.

    2001-01-01

    Three different approaches on thin coating thickness determination using a radioisotope-excited x-ray fluorescence spectrometry were demonstrated and results were compared. A standard of thin layer of gold (Au) on a nickel (Ni) substrate from the US National Bureau of Standards (with a nominal thickness of 0.300505 microns of at least 99.9% Au electrodeposited over 2 nils of Ni) on low carbon steel (1010) was analyzed using a Cd 109-excited XRF system. Au thickness computations were done using the (a) thin standard approach, (b) thick standard approach, and (c) x-ray absorption method (ASTM A754-79 1982). These three methods yielded results within the limit set by the American Society for Testing Materials (ASTM), which is +/-3%. Of the three methods, the thick standard yielded the best result with 0.124% error. (Author)

  14. Surface modification of spinel λ-MnO2 and its lithium adsorption properties from spent lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Li; Qu, Wenjie; Liu, Fang; Zhao, Taolin; Zhang, Xiaoxiao; Chen, Renjie; Wu, Feng

    2014-01-01

    Highlights: • A method is designed to synthesize a λ-MnO 2 ion-sieve for lithium ions adsorption. • Ultrasonic treatment with acid is highly efficient for lithium ions extraction. • Surface modification by CeO 2 is used to improve the adsorption capacity. • A 0.5 wt.% CeO 2 -coated ion-sieve shows the best adsorption properties. • λ-MnO 2 ion-sieves are promising for recovering scarce lithium resources. - Abstract: Spinel λ-MnO 2 ion-sieves are promising materials because of their high selectivity toward lithium ions, and this can be applied to the recovery of lithium from spent lithium ion batteries. However, manganese dissolution loss during the delithiation of LiMn 2 O 4 causes a decrease in adsorption capacity and poor cycling stability for these ion-sieves. To improve the lithium adsorption properties of λ-MnO 2 ion-sieves, surface modification with a CeO 2 coating was studied using hydrothermal-heterogeneous nucleation. The structure, morphology and composition of the synthesized materials were determined by XRD, SEM, TEM and EDS. The effect of hydrothermal synthesis conditions and the amount of CeO 2 coating on the adsorption performance of λ-MnO 2 were also investigated. A 0.5 wt.% CeO 2 -coated ion-sieve was synthesized by heating at 120 °C for 3 h and it had better adsorption properties than the bare samples. The effect of ultrasonic treatment on the lithium extraction ratio from LiMn 2 O 4 upon acid treatment at various temperatures was studied and the results were compared with conventional mechanical stirring. We found that ultrasonic treatment at lower temperature gave almost the same maximum lithium extraction ratio and was more efficient and economic

  15. Lithium Combustion: A Review

    Science.gov (United States)

    1990-12-01

    Rev. 2-89) Precribed by ANSI Std 239.18 298-102 UNCLASSIFIED SECURIT CLASSIRCTIO OF THIS PAGE (Whun Data Entered) Lade Form 296 ledk (Row. 2-49...did not burn spontaneously in water, and the hydrogen formed did not ignite in air. When a pea-sized piece of lithium was dropped into a container of...Lithium metal flowed through the cracks in the coating and started to burn brilliantly. The LiOH coating was initially protective; but, as it became

  16. A suggestion of a new method for the calculation of the coating thickness in continuous hot-dip galvanizing

    Energy Technology Data Exchange (ETDEWEB)

    Jo, C. M.; Kwon, Y. D.; Kwon, S. B. [Kyungpook National University, Daegu (Korea, Republic of); Kim, G. Y. [POSCO Technical Research laboratories, Gumgo-dong (Korea, Republic of)

    2011-11-15

    It is known that the distributions of the impinging pressure gradient and the shear stress at the strip surface play a decisive key role in the decision of the coating thickness in hot-dip galvanizing. So, to predict the exact coating thickness, it is essential that the distributions of the impinging wall jet pressure and the shear stress acting between the liquid film and jet stream are measured (or calculated) exactly for each specific coating condition. So far, to obtain the impinging wall jet pressure, it was assumed that the jet issuing from an air-knife is similar to the Hiemenz plane stagnation flow, and the wall shear stress could be predicted by an equation using the assumption of a non-negative Gaussian profile in impinging wall jet pressure in general, so that it cannot be reliable for some impinging wall jet regions and nozzle systems intrinsically. Nevertheless, one cannot find a suitable method to cope with the difficulties in measuring/calculating of the shear stress and the impinging wall jet pressure. Such a difficulty which will cause an inaccuracy in the coating thickness prediction. With these connections, in the present study, we suggest a new method named as a two-step calculation method to calculate the final coating thickness, which consists of the air jet analysis and coating thickness calculation. And, from the comparison of the results one may confirm the validation of the new suggested method.

  17. Density determination in the TEXTOR boundary layer by laser-ablated fast lithium atoms

    International Nuclear Information System (INIS)

    Pospieszczyk, A.; Ross, G.G.

    1988-01-01

    A method is presented which allows a determination of electron density profiles in the plasma boundary of a fusion device up to some 10 13 cm -3 within about 100 μs. For this purpose, the complete attenuation of an injected lithium beam is determined by measuring its optical emission profile. The beam is generated by a ruby laser, which ablates small portions of a LiF coating with a thickness of about 1000 A from the rear side of a glass substrate. The produced lithium atoms have velocities of 1 x 10 6 cm/s and can penetrate into the plasma until n/sub e/ x l ≅1 x 10 13 cm -2 . For the measurement of the optical emission profile of the excited lithium atoms, a silicon photodiode array camera is used. The emission profile is then converted into an electron density profile with the help of the ionization rate for lithium atoms by electron impact

  18. High capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  19. Alumina-coated and manganese monoxide embedded 3D carbon derived from avocado as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    rehman, Wasif ur; Xu, Youlong; Du, Xianfeng; Sun, Xiaofei; Ullah, Inam; Zhang, Yuan; Jin, Yanling; Zhang, Baofeng; Li, Xifei

    2018-07-01

    Derived from avocado fruit, a three dimension (3D) carbon is prepared via a hydrothermal/pyrolysis process followed by embedding with MnO nanoparticles by a wet chemical method and coating with Al2O3 through an atomic layer deposition technique. The obtained material presents a hierarchical structure that MnO nanocrystals wrapped in 3D carbon and then encapsulated in a uniform Al2O3 layer with a thickness of about 5 nm. Benefiting from this hierarchical structure in which 3D carbon offers numerous electronic pathways to enhance the conductivity and Al2O3 nanolayer provide a shelter to keep away from dissolution of Mn4+ and volume changes during charge/discharge process. This material (marked as C/MnO@Al2O3) has exhibited high rate performance and excellent cyclability as an anode for lithium ion batteries. A high specific capacity of about 600 mA h g-1 is achieved at a current density of 1000 mA g-1 and the electrode can still deliver a high specific capacity of about 1165 mA h g-1 at 150 mA g-1 after 100 cycles. These results facilitate a green and high potential of anode materials towards promising devices for advance performance of lithium-ion batteries.

  20. Particle control and plasma performance in the Lithium Tokamak eXperiment

    Energy Technology Data Exchange (ETDEWEB)

    Majeski, R.; Abrams, T.; Boyle, D.; Granstedt, E.; Hare, J.; Jacobson, C. M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D. P.; Lucia, M.; Merino, E.; Schmitt, J.; Stotler, D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Biewer, T. M.; Canik, J. M.; Gray, T. K.; Maingi, R.; McLean, A. G. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); and others

    2013-05-15

    The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.

  1. Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J.; Lee, Younghee; Liu, Nian; Piper, Daniela M.; Lee, Se-Hee; Zhao, Peng; George, Steven M.; Zhang, Jiguang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong M.

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (~5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a “V-shaped” lithiation front of the SiNWs , while the Al2O3 coating yields an “H-shaped” lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk diffusivity of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  2. Cutting Performance of Low Stress Thick TiAlN PVD Coatings during Machining of Compacted Graphite Cast Iron (CGI

    Directory of Open Access Journals (Sweden)

    Kenji Yamamoto

    2018-01-01

    Full Text Available A new family of physical vapor deposited (PVD coatings is presented in this paper. These coatings are deposited by a superfine cathode (SFC using the arc method. They combine a smooth surface, high hardness, and low residual stresses. This allows the production of PVD coatings as thick as 15 µm. In some applications, in particular for machining of such hard to cut material as compacted graphite iron (CGI, such coatings have shown better tool life compared to the conventional PVD coatings that have a lower thickness in the range of up to 5 μm. Finite element modeling of the temperature/stress profiles was done for the SFC coatings to present the temperature/stress profiles during cutting. Comprehensive characterization of the coatings was performed using XRD, TEM, SEM/EDS studies, nano-hardness, nano-impact measurements, and residual stress measurements. Application of the coating with this set of characteristics reduces the intensity of buildup edge formation during turning of CGI, leading to longer tool life. Optimization of the TiAlN-based coatings composition (Ti/Al ratio, architecture (mono vs. multilayer, and thickness were performed. Application of the optimized coating resulted in a 40–60% improvement in the cutting tool life under finishing turning of CGI.

  3. Crack-resistant polyimide coating for high-capacity battery anodes

    Science.gov (United States)

    Li, Yingshun; Wang, Shuo; Lee, Pui-Kit; He, Jieqing; Yu, Denis Y. W.

    2017-10-01

    Electrode cracking is a serious problem that hinders the application of many next-generation high-capacity anode materials for lithium-ion batteries. Even though nano-sizing the material can reduce fracturing of individual particles, capacity fading is still observed due to large volume change and loss of contact in the electrode during lithium insertion and extraction. In this study, we design a crack-resistant high-modulus polyimide coating with high compressive strength which can hold multiple particles together during charge and discharge to maintain contact. The effectiveness of the coating is demonstrated on tin dioxide, a high-capacity large-volume-change material that undergoes both alloy and conversion reactions. The polyimide coating improves capacity retention of SnO2 from 80% to 100% after 80 cycles at 250 mA g-1. Stable capacity of 585 mAh g-1 can be obtained even at 500 mA g-1 after 300 cycles. Scanning electron microscopy and in-situ dilatometry confirm that electrode cracking is suppressed and thickness change is reduced with the coating. In addition, the chemically-stable polyimide film can separate the surface from direct contact with electrolyte, improving coulombic efficiency to ∼100%. We expect the novel strategy of suppressing electrode degradation with a crack-resistant coating can also be used for other alloy and conversion-based anodes.

  4. Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode

    Science.gov (United States)

    Tamirat, Andebet Gedamu; Hou, Mengyan; Liu, Yao; Bin, Duan; Sun, Yunhe; Fan, Long; Wang, Yonggang; Xia, Yongyao

    2018-04-01

    Silicon is an ideal candidate anode material for Li-ion batteries (LIBs). However, it suffers from rapid capacity fading due to large volume expansion upon lithium insertion. Herein, we design and fabricate highly stable carbon coated porous Mg2Si intermetallic anode material using facile mechano-thermal technique followed by carbon coating using thermal vapour deposition (TVD), toluene as carbon source. The electrode exhibits an excellent first reversible capacity of 726 mAh g-1 at a rate of 100 mA g-1. More importantly, the electrode demonstrates high rate capability (380 mAh g-1 at high rate of 2 A g-1) as well as high cycle stability, with capacity retentions of 65% over 500 cycles. These improvements are attributable to both Mg supporting medium and the uniform carbon coating, which can effectively increase the conductivity and electronic contact of the active material and protects large volume alterations during the electrochemical cycling process.

  5. Space- and time-resolved resistive measurements of liquid metal wall thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mirhoseini, S. M. H.; Volpe, F. A., E-mail: fvolpe@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2016-11-15

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially and temporally resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for m × n electrodes, and then it is experimentally demonstrated for 3 × 1 electrodes, as the liquid stands still or is agitated by means of a shaker. The experiments were carried out with Galinstan, but are easily extended to lithium or other liquid metals.

  6. Space- and time-resolved resistive measurements of liquid metal wall thickness

    International Nuclear Information System (INIS)

    Mirhoseini, S. M. H.; Volpe, F. A.

    2016-01-01

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially and temporally resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for m × n electrodes, and then it is experimentally demonstrated for 3 × 1 electrodes, as the liquid stands still or is agitated by means of a shaker. The experiments were carried out with Galinstan, but are easily extended to lithium or other liquid metals.

  7. Operational Characteristics of Liquid Lithium Divertor in NSTX

    Science.gov (United States)

    Kaita, R.; Kugel, H.; Abrams, T.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Jaworski, M. A.; Kallman, J.; Leblanc, B.; Mansfield, D.; Mueller, D.; Paul, S.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L.; Maingi, R.; Nygren, R.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2010-11-01

    Lithium coatings on plasma-facing components (PFC's) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating.^ Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC's and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.

  8. Influence of thickness of zinc coating on CMT welding-brazing with AlSi5 alloy wire

    Science.gov (United States)

    Jin, Pengli; Wang, Zhiping; Yang, Sinan; Jia, Peng

    2018-03-01

    Effect of thickness of zinc coating on Cold Mattel Transfer (CMT) brazing of aluminum and galvanized steel is investigated. The thickness of zinc coating is 10 μm, 30 μm, and 60 μm, respectively. A high-speed camera was used to capture images of welding process of different specimens; the microstructure and composition analyses of the welding seam were examined by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS); the mechanical properties were measured in the form of Nano-indentation experiments. The results showed that arc characteristics and metal transfer behavior were unsteady at the beginning of welding process and that became stable after two cycles of CMT. With the thickness of zinc coating thickening, arc characteristics and metal transfer behaviors were more deteriorated. Compared with 10 μm and 30 μm, clad appearance of 60 μm was straight seam edges and a smooth surface which wetting angle was 60°. Zinc-rich zone at the seam edges was formed by zinc dissolution and motel pool oscillating, and zinc content of 10 μm and 30 μm were 5.8% and 7.75%. Zinc content of 60 μm was 14.61%, and it was a belt between galvanized steel and welding seam. The thickness of intermetallic compounds layer was in the range of 1-8 μm, and it changed with the thickness of zinc coating. The average hardness of the reaction layer of 60 μm is 9.197 GPa.

  9. Time-dependent fracture probability of bilayer, lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation

    Science.gov (United States)

    Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine

    2013-01-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349

  10. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.

    Science.gov (United States)

    Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F

    2013-11-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  11. Investigation of DC magnetron-sputtered TiO2 coatings: Effect of coating thickness, structure, and morphology on photocatalytic activity

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Shabadi, Rajashekhara; Galca, Aurelian Catalin

    2014-01-01

    The photocatalytic performance of magnetron-sputtered titanium dioxide (TiO2) coatings of different thickness in anatase crystalline structure deposited on aluminium 1050 alloy substrates was investigated using a combination of photo-electrochemistry, methylene blue decomposition, and microscopic...

  12. Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Fei; Song, Xiaoping; Yao, Gang; Zhao, Mingshu; Liu, Rui; Xu, Minwei; Sun, Zhanbo

    2012-01-01

    In this paper mesoporous SnO 2 nanospheres with an average diameter of about 83 nm, composed of many tiny primary particles (∼10 nm) and holes, are synthesized on a large scale by a simple hydrothermal route. The as-prepared mesoporous SnO 2 nanospheres were uniformly coated with carbon by a further hydrothermal treatment in glucose aqueous solution. As anode materials for lithium-ion batteries, the core–shell SnO 2 /C nanocomposites exhibit a markedly improved cycling performance.

  13. Li_2ZrO_3-coated Li_4Ti_5O_1_2 with nanoscale interface for high performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Han; Liu, Yang; Wang, Ting; Yang, Yang; Shi, Shaojun; Yang, Gang

    2016-01-01

    Graphical abstract: - Highlights: • Zr doped and Li_2ZrO_3 coated Li_4Ti_5O_1_2 are prepared by a solid-state method. • Zr-doping and LZO coating are positive in improving lithium diffusion ability. • Li_2ZrO_3 coated Li_4Ti_5O_1_2 deliver 168.1 mAh g"−"1 higher than 150.2 mAh g"−"1 of Li_4Ti_5O_1_2. • Li_2ZrO_3 coated Li_4Ti_5O_1_2 remains 162 mAh g"−"1 after 100 cycles. • The lowest D_L_i"+ is 5.97 × 10"−"1"7 and 1.85 × 10"−"1"5 cm"2 s"−"1 of Li_4Ti_5O_1_2 before and after coating. - Abstract: Zr doped sample of Li_4Ti_4_._9_9Zr_0_._0_1O_1_2 (LZTO) and Li_2ZrO_3 (LZO) coated Li_4Ti_5O_1_2 (LTO) are prepared by a solid-state method. The lattice structure of LTO is remained after doping element of Zr and coating layer of LZO. The crystal structure and electrochemical performance of the material are investigated by X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT) and charge-discharge tests, respectively. Zr-doping and LZO coating play the positive role in improving the diffusion ability of lithium cations. LZTO and LZO-LTO show much improved specific capacity and rate capability compared with pristine sample of LTO. LZO-LTO has the smallest voltage differential (ΔV) of the redox peaks because the coating of Li_2ZrO_3 is helpful for the diffusion ability of lithium ions during charge/discharge processes. LZTO and LZO-LTO as electrode deliver the initial capacities of 164.8, 168.1 mAh g"−"1, respectively, which are much higher than 150.2 mAh g"−"1 of intrinsic sample of LTO. Even at the current density of 2 A g"−"1, LTZO and LZO-LTO offer capacity of 96 and 106 mAh g"−"1, which are much higher than 33 mAh g"−"1 of LTO. The improved electrochemical performance is attributed to the improved diffusion ability of lithium. During the whole discharge process, the lowest value of LTO is 5.97 × 10"−"1"7 cm"2 s"−"1 that is

  14. Ballistic Simulation Method for Lithium Ion Batteries (BASIMLIB) Using Thick Shell Composites (TSC) in LS-DYNA

    Science.gov (United States)

    2016-08-04

    BAllistic SImulation Method for Lithium Ion Batteries (BASIMLIB) using Thick Shell Composites (TSC) in LS-DYNA Venkatesh Babu, Dr. Matt Castanier, Dr...and behavior of the cells through experimental and modeling at their crash worthiness laboratory • Most of the simulation work on the batteries are...at a single cell level and gap exists to simulate the batteries at their full pack capacity - Firstly, requires an enormous amount of computational

  15. Investigation on feasibility and detection limits for determination of coating film thickness by neutron activation analysis

    International Nuclear Information System (INIS)

    Yao Maoying; Xu Jiayun; Zhang Dida; Yang Zunyong; Yao Zhenqiang; Wang Mingqiu; Gao Dangzhong

    2010-01-01

    A method for the determination of coating film thickness by neutron activation was proposed in this paper. After Au, Al and Cu et al.films were activated with a Am-Be neutron source, the characteristic γ-rays emitted by the activated nuclides in the films were counted with a HPGe γ spectrometer. The detection limits of film thickness by using a nuclear reactor neutron source were deduced on the basis of the γ-ray counts and the Monte-Carlo simulated detection efficiencies. The possible detection limits are typically 4-5 orders of magnitude better than those by fluorescent X-ray method, which is currently widely used to determine coating film thickness. (authors)

  16. Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS): A rapid test for enteric coating thickness and integrity of controlled release pellet formulations.

    Science.gov (United States)

    Alfarsi, Anas; Dillon, Amy; McSweeney, Seán; Krüse, Jacob; Griffin, Brendan; Devine, Ken; Sherry, Patricia; Henken, Stephan; Fitzpatrick, Stephen; Fitzpatrick, Dara

    2018-04-12

    There are no rapid dissolution based tests for determining coating thickness, integrity and drug concentration in controlled release pellets either during production or post-production. The manufacture of pellets requires several coating steps depending on the formulation. The sub-coating and enteric coating steps typically take up to six hours each followed by additional drying steps. Post production regulatory dissolution testing also takes up to six hours to determine if the batch can be released for commercial sale. The thickness of the enteric coating is a key factor that determines the release rate of the drug in the gastro-intestinal tract. Also, the amount of drug per unit mass decreases with increasing thickness of the enteric coating. In this study, the coating process is tracked from start to finish on an hourly basis by taking samples of pellets during production and testing those using BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy). BARDS offers a rapid approach to characterising enteric coatings with measurements based on reproducible changes in the compressibility of a solvent due to the evolution of air during dissolution. This is monitored acoustically via associated changes in the frequency of induced acoustic resonances. A steady state acoustic lag time is associated with the disintegration of the enteric coatings in basic solution. This lag time is pH dependent and is indicative of the rate at which the coating layer dissolves. BARDS represents a possible future surrogate test for conventional USP dissolution testing as its data correlates directly with the thickness of the enteric coating, its integrity and also with the drug loading as validated by HPLC. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. High performance sandwich structured Si thin film anodes with LiPON coating

    Science.gov (United States)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-04-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  18. Formation and investigation of multilayer nanostructured coatings TiN/MoN for different layers thicknesses with c-pvd

    International Nuclear Information System (INIS)

    Pogrebnyak, A.D.; Bondar, O.V.; Postol'nyj, B.A.; Andreev, A.A.; Abadias, G.; Beresnev, V.M.; Sobol', O.B.

    2013-01-01

    Multilayer coatings based on TiN/MoN were obtained using the vacuum arc evaporation cathode method (C-PVD). Multilayers thickness was in the range 6,7 ÷ 8,7 μm and monolayers thickness was 2, 10, 20 and 40 nm. Vacuum-arc unit Bulat 6 was used for depositions. For the analysis of multilayer structures and properties of nanostructured coatings XRD analysis method was used (D8 ADVANCE, Bruker). For elemental composition and morphology investigation of the surface layers and multilayered coatings SEM (JEOL-7001F) with EDX attachment was used. Also HRTEM method was used to analyze the phase composition. In addition, this article provides investigation of hardness by Micro-Hardness Tester CSM (Switzerland). AFM was used for additional analysis of the topography and surface roughness of these coatings. This investigation have revealed the relationship between the layers thicknesses, substrate potential, the annealing process, physical and mechanical properties of samples. (authors)

  19. Thickness-Dependent Bioelectrochemical and Energy Applications of Thickness-Controlled Meso-Macroporous Antimony-Doped Tin Oxide

    Directory of Open Access Journals (Sweden)

    Daniel Mieritz

    2018-04-01

    Full Text Available Coatings of hierarchically meso-macroporous antimony-doped tin oxide (ATO enable interfacing adsorbed species, such as biomacromolecules, with an electronic circuit. The coating thickness is a limiting factor for the surface coverage of adsorbates, that are electrochemically addressable. To overcome this challenge, a carbon black-based templating method was developed by studying the composition of the template system, and finding the right conditions for self-standing templates, preventing the reaction mixture from flowing out of the mask. The thicknesses of as-fabricated coatings were measured using stylus profilometry to establish a relationship between the mask thickness and the coating thickness. Cyclic voltammetry was performed on coatings with adsorbed cytochrome c to check whether the entire coating thickness was electrochemically addressable. Further, bacterial photosynthetic reaction centers were incorporated into the coatings, and photocurrent with respect to coating thickness was studied. The template mixture required enough of both carbon black and polymer, roughly 7% carbon black and 6% poly(ethylene glycol. Coatings were fabricated with thicknesses approaching 30 µm, and thickness was shown to be controllable up to at least 15 µm. Under the experimental conditions, photocurrent was found to increase linearly with the coating thickness, up to around 12 µm, above which were diminished gains.

  20. A novel multivariate approach using science-based calibration for direct coating thickness determination in real-time NIR process monitoring.

    Science.gov (United States)

    Möltgen, C-V; Herdling, T; Reich, G

    2013-11-01

    This study demonstrates an approach, using science-based calibration (SBC), for direct coating thickness determination on heart-shaped tablets in real-time. Near-Infrared (NIR) spectra were collected during four full industrial pan coating operations. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film up to a film thickness of 28 μm. The application of SBC permits the calibration of the NIR spectral data without using costly determined reference values. This is due to the fact that SBC combines classical methods to estimate the coating signal and statistical methods for the noise estimation. The approach enabled the use of NIR for the measurement of the film thickness increase from around 8 to 28 μm of four independent batches in real-time. The developed model provided a spectroscopic limit of detection for the coating thickness of 0.64 ± 0.03 μm root-mean square (RMS). In the commonly used statistical methods for calibration, such as Partial Least Squares (PLS), sufficiently varying reference values are needed for calibration. For thin non-functional coatings this is a challenge because the quality of the model depends on the accuracy of the selected calibration standards. The obvious and simple approach of SBC eliminates many of the problems associated with the conventional statistical methods and offers an alternative for multivariate calibration. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. LiFePO4 mesocrystals for lithium-ion batteries.

    Science.gov (United States)

    Popovic, Jelena; Demir-Cakan, Rezan; Tornow, Julian; Morcrette, Mathieu; Su, Dang Sheng; Schlögl, Robert; Antonietti, Markus; Titirici, Maria-Magdalena

    2011-04-18

    Olivine LiFePO(4) is considered one of the most promising cathode materials for Li-ion batteries. A simple one-step, template-free, low-temperature solvothermal method is developed for the synthesis of urchinlike hierarchical mesocrystals of pristine LiFePO(4) as well as carbon-coated LiFePO(4) composites. Each urchinlike mesocrystal consists of LiFePO(4) sheets self-assembled via a dipolar field in spheres during a solvothermal process under the influence of Cl(-) anions. The obtained primary sheets of LiFePO(4) are single crystalline in nature and can be coated in situ with an amorphous nitrogen-doped carbonaceous layer several nanometers in thickness. To increase the conductivity of the carbon coating, the materials are subjected to further temperature treatment (700 °C) under an inert atmosphere. The lithium storage performance of the pure LiFePO(4) is compared with that of its carbon-coated counterparts. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sol-gel/drop-coated micro-thick TiO{sub 2} memristors for γ-ray sensing

    Energy Technology Data Exchange (ETDEWEB)

    Abunahla, Heba [Department of Electrical and Computer Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Jaoude, Maguy Abi, E-mail: maguy.abijaoude@kustar.ac.ae [Department of Applied Mathematics and Sciences, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); O' Kelly, Curtis J.; Mohammad, Baker [Department of Electrical and Computer Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2016-12-01

    Sol-gel/drop-coated micro-thick TiO{sub 2} memristors were investigated and developed for low-power radiation sensing. Devices constructed with coated aluminum (Al) electrodes exhibited unipolar I-V characteristics with dynamic turn-on voltage, and progressive R{sub OFF}/R{sub ON} ratio loss under applied bias. Endurance failure of micro-thick Al/Al stacks is ascribed to gradual passivation of Al surface resulting from an electrically-enhanced oxygen-ion diffusion. By exchanging a single Al contact with higher work function copper (Cu) metal, two distinct superimposed TiO{sub 2} phases were formed. The TiO{sub 2} coating on Al surface was carbon-contaminated and amorphous, while that on Cu was found to be additionally doped with Cu{sup (I/II)} ions resulting from the corrosion of the surface of the electrode by the amine-based gelation agent. After initial forming, the hybrid stack could achieve a bipolar memristance, with high R{sub OFF}/R{sub ON} (up to 10{sup 6}), and over 10 switching cycles at low-operating voltages (±1 V). The enhanced memristive switching properties of Al/Cu devices are explained via cooperative valence-change/electrochemical-metallization processes, involving migration of oxygen and copper species. The advanced micro-thick TiO{sub 2} memristors were exposed to Cs-137 γ-rays, providing for the first time initial insights into their radiation detection capabilities. The sensing mechanism through these devices could be actuated by synergistic radiation-induced and field-driven photo-electric effects. - Highlights: • Micro-thick TiO{sub 2} memristors with Al or Cu electrodes are advanced via sol-gel drop-coating. • Memristive switching in Al/TiO{sub 2}/Al structure is not viable due to resistance build-up. • Drop-coated Cu electrode gets corroded by ethanolamine additive, introducing Cu{sup (I/II)} cations into bulk TiO{sub 2}. • Bipolar memristance in Al/TiO{sub 2}/Cu{sup (I/II)} doped-TiO{sub 2}/Cu structure is depicted for the

  3. Fabrication of tubed functionally graded material by slurry dipping process. Thickness control of dip-coated layer

    International Nuclear Information System (INIS)

    Watanabe, Ryuzo

    1997-03-01

    In order to obtain long life fuel cladding tubes for the fast breeder reactor, the concept of functionally graded material was applied for the material combination of Molybdenum/stainless steel/Titanium, in which Titanium and Molybdenum were placed at the inner and outer sides, respectively. Slurry dipping method was employed because of its capability of shape forming and microstructural control. We have hitherto reported the design criteria for the graded layers, preparation of the slurry, and microstructural control of the dip-coated layers. In the present report, the thickness control of the dip-coated layer is described in detail. The thickness of the dip-coated layer depends primarily on the viscosity of the slurry. Nevertheless, for the stable dispersion of the powder in the slurry, which dominates the microstructural homogeneity, an optimum viscosity value is present for the individual slurries. With stable slurries of Ti, Mo, stainless steel powders and their mixtures, the thicknesses of dip-coated layers were controlled in dependence of their viscosities and yield values. For Ti and stainless steel powders and their mixture a PAANa was used as a dispersing agent. A NaHMP was found to be effective for the dispersion of Mo powder and Mo/stainless steel powder mixture. For all slurries tested in the present investigation PVA addition was helpful for the viscosity control. Dip-coating maps have been drawn for the stabilization of the slurries and for the formation of films with a sufficient strength for further manipulation for the slurries with low viscosity (∼10 mPa s). The final film thickness for the low-viscosity slurry with the optimum condition was about 200 μm. The slurries with high viscosities of several hundreds mPa s had a good stability and the yield value was easy to be controlled. The film thickness was able to be adjusted in the size range between several tens and several hundreds μm. The final thickness of the graded layer was determined

  4. Thermal analysis of the effect of thick thermal barrier coatings on diesel engine performance

    International Nuclear Information System (INIS)

    Hoag, K.L.; Frisch, S.R.; Yonushonis, T.M.

    1986-01-01

    The reduction of heat rejection from the diesel engine combustion chamber has been the subject of a great deal of focus in recent years. In the pursuit of this goal, Cummins Engine Company has received a contract from the Department of Energy for the development of thick thermal barrier coatings for combustion chamber surfaces. This contract involves the analysis of the impact of coatings on diesel engine performance, bench test evaluation of various coating designs, and single cylinder engine tests. The efforts reported in this paper center on the analysis of the effects of coatings on engine performance and heat rejection. For this analysis the conventional water cooled engine was compared with an engine having limited oil cooling, and utilizing zirocnia coated cylinder had firedecks and piston crowns. The analysis showed little or no benefits of similarly coating the valves or cylinder liner

  5. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  6. NSTX plasma response to lithium coated divertor

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Allain, J.P.; Bell, R.E.; Ding, S.; Gerhardt, S.P.; Jaworski, M.A.; Kaita, R.; Kallman, J.; Kaye, S.M.; LeBlanc, B.P.; Maingi, Rajesh; Majeski, R.; Maqueda, R.J.; Mansfield, D.K.; Mueller, D.; Nygren, R.E.; Paul, S.F.; Raman, R.; Roquemore, A.L.; Sabbagh, S.A.; Schneider, H.; Skinner, C.H.; Soukhanovskii, V.A.; Taylor, C.N.; Timberlake, J.; Wampler, W.R.; Zakharov, L.E.; Zweben, S.J.

    2011-01-01

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma-facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Z(eff) and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, < 0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  7. CrN/AlN superlattice coatings synthesized by pulsed closed field unbalanced magnetron sputtering with different CrN layer thicknesses

    International Nuclear Information System (INIS)

    Lin Jianliang; Moore, John J.; Mishra, Brajendra; Pinkas, Malki; Zhang Xuhai; Sproul, William D.

    2009-01-01

    CrN/AlN superlattice coatings with different CrN layer thicknesses were prepared using a pulsed closed field unbalanced magnetron sputtering system. A decrease in the bilayer period from 12.4 to 3.0 nm and simultaneously an increase in the Al/(Cr + Al) ratio from 19.1 to 68.7 at.% were obtained in the CrN/AlN coatings when the Cr target power was decreased from 1200 to 200 W. The bilayer period and the structure of the coatings were characterized by means of low angle and high angle X-ray diffraction and transmission electron microscopy. The mechanical and tribological properties of the coatings were studied using the nanoindentation and ball-on-disc wear tests. It was found that CrN/AlN superlattice coatings synthesized in the current study exhibited a single phase face-centered cubic structure with well defined interfaces between CrN and AlN nanolayers. Decreases in the residual stress and the lattice parameter were identified with a decrease in the CrN layer thickness. The hardness of the coatings increased with a decrease in the bilayer period and the CrN layer thickness, and reached the highest value of 42 GPa at a bilayer period of 4.1 nm (CrN layer thickness of 1.5 nm, AlN layer thickness of 2.5 nm) and an Al/(Cr + Al) ratio of 59.3 at.% in the coatings. A low coefficient of friction of 0.35 and correspondingly low wear rate of 7 x 10 -7 mm 3 N -1 m -1 were also identified in this optimized CrN/AlN coating when sliding against a WC-6%Co ball.

  8. R\\&D results on a CsI-coated triple thick GEM-based photodetector

    CERN Document Server

    Martinengo, P; Paic, G; Paras, D M; Di Mauro, A; van Hoorne, J; Molnar, L; Peskov, V; Breskin, A

    2011-01-01

    The very high momentum particle identification detector proposed for the ALICE upgrade is a focusing RICH using a C(4)F(10) gaseous radiator. For the detection of Cherenkov photons, one of the options currently under investigation is to use a CsI-coated triple thick GEM with metallic or resistive electrodes. We will present results from the laboratory studies as well as preliminary results of beam tests of a RICH detector prototype consisting of a CaF(2) radiator coupled to a 10 x 10 cm(2) CsI-coated triple thick GEM equipped with a pad readout and GASSIPLEX-based front-end electronics. With such a prototype the detection of Cherenkov photons simultaneously with minimum ionizing particles has been achieved for the first time in a stable operation mode. (C) 2010 Elsevier B.V. All rights reserved.

  9. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage.

    Science.gov (United States)

    Liu, Yuxin; Liu, Ping; Wu, Dongqing; Huang, Yanshan; Tang, Yanping; Su, Yuezeng; Zhang, Fan; Feng, Xinliang

    2015-03-27

    Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron-doped, carbon-coated SnO2 /graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core-shell architecture and B-doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium-ion batteries with a highly stable capacity of 1165 mA h g(-1) at 0.1 A g(-1) after 360 cycles and an excellent rate capability of 600 mA h g(-1) at 3.2 A g(-1), and thus outperforms most of the previously reported SnO2-based anode materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hot corrosion behavior of plasma-sprayed partially stabilized zirconia coatings in a lithium molten salt

    International Nuclear Information System (INIS)

    Cho, Soo Haeng; Hong, Sun Seok; Kang, Dae Seong; Park, Byung Heong; Hur, Jin Mok; Lee, Han Soo

    2008-01-01

    The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, Yttria-Stabilized Zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at 675 .deg. C for 216 hours in the molten salt LiCl-Li 2 O under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of LiCl-Li 2 O molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts

  11. Effect of liquid oil additive on lithium-ion battery ceramic composite separator prepared with an aqueous coating solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Division of Advanced Materials Engineering, Kongju National University, 1223–24, Cheonan-daero, Cheonan, Chungnam, 31080 (Korea, Republic of); Ryou, Myung-Hyun [Department of Chemical & Biological Engineering, Hanbat National University, 125, Dongseodaero, Yuseong-gu, Daejeon, 34158 (Korea, Republic of); Lee, Yong Min, E-mail: yongmin.lee@hanbat.ac.kr [Department of Chemical & Biological Engineering, Hanbat National University, 125, Dongseodaero, Yuseong-gu, Daejeon, 34158 (Korea, Republic of); Cho, Kuk Young, E-mail: kycho@hanyang.ac.kr [Department of Materials Science and Chemical Engineering, Hanyang University, 55, Hanyangdaehak-ro, Sangrok-gu, Ansan, Gyeonggi-do, 15588 (Korea, Republic of)

    2016-08-05

    Ceramic composite separators (CCSs) play a critical role in ensuring safety for lithium-ion batteries (LIBs), especially for mid- and large-sized devices. However, production of CCSs using organic solvents has some cost and environmental concerns. An aqueous process for fabricating CCSs is attractive because of its cost-effectiveness and environmental-friendliness because organic solvents are not used. The success of an aqueous coating system for LIBs is dependent upon minimizing moisture content, as moisture has a negatively impact on LIB performance. In this study, CCSs were fabricated using an aqueous coating solution containing Al{sub 2}O{sub 3} and an acrylic binder. Compared with polyethylene (PE) separators, CCSs coated with an aqueous coating solution showed improved thermal stability, electrolyte uptake, puncture strength, ionic conductivity, and rate capability. In addition, our new approach of introducing a small amount of an oily liquid to the aqueous coating solution reduced the water adsorption by 11.7% compared with coatings that do not contain the oily liquid additive. - Highlights: • Ceramic composite separator is fabricated using aqueous coating process. • Coated separator showed enhanced mechanical and thermal stability. • Liquid oil additive in coating solution reduce moisture reabsorption of separator. • Oil additive in aqueous coating solution does not deteriorate LIB performance.

  12. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  13. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI

    Directory of Open Access Journals (Sweden)

    Farzaneh Hajesmaeelzadeh

    2016-02-01

    Full Text Available Objective(s:Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic size of iron oxide nanoparticles coated with Polyethylene  glycol (PEG on their relativities with 3 Tesla clinical MRI. Materials and Methods: We used three groups of nanoparticles with nominal sizes 20, 50 and 100 nm with a core size of 8.86 nm, 8.69 nm and 10.4 nm that they were covered with PEG 300 and 600 Da. A clinical magnetic resonance scanner determines the T1 and T2 relaxation times for various concentrations of PEG-coated nanoparticles. Results: The size measurement by photon correlation spectroscopy showed the hydrodynamic sizes of MNPs with nominal 20, 50 and 100 nm with 70, 82 and 116 nm for particles with PEG 600 coating and 74, 93 and 100 nm for  particles with PEG 300 coating, respectively. We foud that the relaxivity decreased with increasing overall particle size (via coating thickness. Magnetic resonance imaging showed that by increasing the size of the nanoparticles, r2/r1 increases linearly. Conclusion: According to the data obtained from this study it can be concluded that increments in coating thickness have more influence on relaxivities compared to the changes in core size of magnetic nanoparticles.

  14. Improved the lithium storage capability of BaLi2Ti6O14 by electroless silver coating

    International Nuclear Information System (INIS)

    Lin, Xiaoting; Wang, Pengfei; Li, Peng; Yu, Haoxiang; Qian, Shangshu; Shui, Miao; Wang, Dongjie; Long, Nengbing; Shu, Jie

    2015-01-01

    Highlights: • BaLi 2 Ti 6 O 14 /Ag is fabricated via a facile electroless deposition. • Highly dispersed Ag nanoparticles are successively coated on BaLi 2 Ti 6 O 14 . • BaLi 2 Ti 6 O 14 /Ag is used as anode material for lithium storage. • BaLi 2 Ti 6 O 14 /Ag exhibits improved lithium storage capability. - Abstract: To form BaLi 2 Ti 6 O 14 /Ag, highly dispersed Ag nanoparticles are successfully deposited on the surface of BaLi 2 Ti 6 O 14 by a simple chemical deposition method. The morphology, quantity and size of Ag nanoparticles in BaLi 2 Ti 6 O 14 /Ag composites are significantly influenced by the Ag coating contents. Electrochemical results show that Ag nanoparticles play a positive role in reducing redox polarization and improving electrical conductivity of BaLi 2 Ti 6 O 14 during lithiation/delithiation processes. Among all the as-obtained products, 6 wt.% Ag coated BaLi 2 Ti 6 O 14 shows the highest initial charge specific capacity of 160 mAh g −1 at the current density of 100 mA g −1 (1C), which is much higher than the 149.1 mAh g −1 for bare BaLi 2 Ti 6 O 14 . After 100 charge/discharge cycles, the reversible capacity can be maintained at 117.0 mAh g −1 . Moreover, this sample also shows excellent rate performance with high reversible charge capacities of 147.5, 139.7, 132.6, and 126.7 mAh g −1 at the rates of 2C, 3C, 4C and 5C, respectively. Compared with bare BaLi 2 Ti 6 O 14 , the superior electrochemical performance indicates that BaLi 2 Ti 6 O 14 /Ag can be a good anode material in lithium ion batteries.

  15. Numerical simulation of the internal stresses of thick tungsten coating deposited by vacuum plasma spraying on copper substrate

    International Nuclear Information System (INIS)

    Salito, A.; Tului, M.; Casadei, F.

    1998-01-01

    Several Divertor components in the new generation of nuclear fusion reactors need to be protected against ion sputtering. Particularly copper based (Cu) material is very sensitive to this sputtering process. A solution to overcome such component wear and plasma contamination is to protect the copper substrate with a thick tungsten (W) functional coating. The main difficulty to produce such components is the significant difference in the coating thermomechanical properties between W and Cu. The Vacuum Plasma Spraying coating process (VPS) is a very flexible new economical way to find a solution to the above problem. To optimise the adhesion and stress release properties between the Cu-alloy substrate and the W coating, it is possible to deposit an interlayer as a bond coat between both materials. The aim of this study is to determine the maximum of the residual stresses located between the Cu substrate and the W coating using finite element analysis. The results have been used to select different types of bond coat for the experimental development of thick W coating (>3 mm) on to mock-ups for the Divertor Channel of the ITER project. (author)

  16. Obtaining Thickness-Limited Electrospray Deposition for 3D Coating.

    Science.gov (United States)

    Lei, Lin; Kovacevich, Dylan A; Nitzsche, Michael P; Ryu, Jihyun; Al-Marzoki, Kutaiba; Rodriguez, Gabriela; Klein, Lisa C; Jitianu, Andrei; Singer, Jonathan P

    2018-04-04

    Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.

  17. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  18. Compatibility of dip-coated Er2O3 coating by MOD method with liquid Li

    International Nuclear Information System (INIS)

    Zhang Dongxun; Kondo, Masatoshi; Tanaka, Teruya; Muroga, Takeo; Valentyn, Tsisar

    2011-01-01

    An electrical insulating ceramic coating on the self-cooled lithium blanket is a promising technology for suppressing MHD pressure drop in the blanket system. Er 2 O 3 is thought to be one of the potential candidate materials for ceramic coatings because of their high electrical resistivity and high compatibility with liquid lithium. In this study, Er 2 O 3 coating was fabricated on the ferritic steels by dip-coating method with MOD (metal organic decomposition) liquid precursor followed by baking in different atmosphere. The coated specimens were immersed at 500 o C in the static liquid lithium to test the compatibility. It was shown that the compatibility of the coating was degraded when Fe 2 O 3 or Fe 3 O 4 was formed as the main composition of the substrate oxidation layer during the baking. On the other hand, thin Cr 2 O 3 layer in the substrate oxidation layer did not influence the stability of Er 2 O 3 coating. Atmosphere controlling for suppressing the substrate oxidation, especially Fe 2 O 3 or Fe 3 O 4 , during the baking is shown to be essential for the compatibility of MOD Er 2 O 3 coating on ferritic steels.

  19. Surface chemistry analysis of lithium conditioned NSTX graphite tiles correlated to plasma performance

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.N., E-mail: chase.taylor@inl.gov [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Luitjohan, K.E. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Heim, B. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Kollar, L. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Allain, J.P. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Skinner, C.H.; Kugel, H.W.; Kaita, R.; Roquemore, A.L. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-12-15

    Lithium wall conditioning in NSTX has resulted in reduced divertor recycling, improved energy confinement, and reduced frequency of edge-localized modes (ELMs), up to the point of complete ELM suppression. NSTX tiles were removed from the vessel following the 2008 campaign and subsequently analyzed using X-ray photoelectron spectroscopy as well as nuclear reaction ion beam analysis. In this paper we relate surface chemistry to deuterium retention/recycling, develop methods for cleaning of passivated NSTX tiles, and explore a method to effectively extract bound deuterium from lithiated graphite. Li–O–D and Li–C–D complexes characteristic of deuterium retention that form during NSTX operations are revealed by sputter cleaning and heating. Heating to ∼850 °C desorbed all deuterium complexes observed in the O 1s and C 1s photoelectron energy ranges. Tile locations within approximately ±2.5 cm of the lower vertical/horizontal divertor corner appear to have unused Li-O bonds that are not saturated with deuterium, whereas locations immediately outboard of this region indicate high deuterium recycling. X-ray photo electron spectra of a specific NSTX tile with wide ranging lithium coverage indicate that a minimum lithium dose, 100–500 nm equivalent thickness, is required for effective deuterium retention. This threshold is suspected to be highly sensitive to surface morphology. The present analysis may explain why plasma discharges in NSTX continue to benefit from lithium coating thickness beyond the divertor deuterium ion implantation depth, which is nominally <10 nm.

  20. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    Science.gov (United States)

    Abrams, T.; Jaworski, M. A.; Chen, M.; Carter, E. A.; Kaita, R.; Stotler, D. P.; De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.

    2016-01-01

    Lithium-coated high-Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>1023 m-2 s-1), typical for the divertor region. In this work, a realistic model for the compositional evolution of a Li/D layer is developed that incorporates first principles molecular dynamics (MD) simulations of D diffusion in liquid Li. Predictions of Li erosion from a mixed Li/D material are also developed that include formation of lithium deuteride (LiD). The erosion rate of Li from LiD is predicted to be significantly lower than from pure Li. This prediction is tested in the Magnum-PSI linear plasma device at ion fluxes of 1023-1024 m-2 s-1 and Li surface temperatures  ⩽800 °C. Li/LiD coatings ranging in thickness from 0.2 to 500 μm are studied. The dynamic D/Li concentrations are inferred via diffusion simulations. The pure Li erosion rate remains greater than Langmuir Law evaporation, as expected. For mixed-material Li/LiD surfaces, the erosion rates are reduced, in good agreement with modelling in almost all cases. These results imply that the temperature limit for a Li-coated PFC may be significantly higher than previously imagined.

  1. Structural and optical investigations of sol–gel derived lithium titanate thin films

    International Nuclear Information System (INIS)

    Łapiński, M.; Kościelska, B.; Sadowski, W.

    2012-01-01

    Highlights: ► Lithium titanate thin films were deposited on glass substrates by sol–gel method. ► After annealing at 550 °C samples had lithium titanate spinel structure. ► Above 80 h of annealing mixture of lithium titanate and titanium oxides was appeared. ► Optical transmittance decreased with increasing of annealing time. - Abstract: In this paper structural and optical studies of lithium titanate (LTO) thin films are presented. Nanocrystalline thin films with 800 nm thickness were prepared by sol–gel method. To examine the influence of the annealing time on as-prepared films crystallization, the coatings were heated at 550 °C for 10, 20 and 80 h. Structure of manufactured thin films was investigated using X-ray diffraction (XRD). The most visible lithium titanate phase was obtained after 20 h annealing. Increasing of annealing time over 20 h revealed appearance of titanium oxides phase. On the basis of transmission characteristic optical properties were calculated. It was found that transmission through the thin films was reduced and position of the fundamental absorption edge was shifted toward a longer wavelength with increasing of annealing time. The optical band gap was calculated for direct allowed and indirect allowed transitions from optical absorption spectra.

  2. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit

    Directory of Open Access Journals (Sweden)

    Peng Xi

    2018-05-01

    Full Text Available Objective: Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. Method: We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Result: Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits’ scalded skin crusting time (P < 0.01, significantly shortened the rabbit skin burns from the scab time (P < 0.01, and significantly improved the treatment of skin diseases in rabbits scald model change (P < 0.01, P < 0.05. Conclusion: The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing. Keywords: Nano-silver hydrogel coating film, Deep degree burns, Topical, Rabbits

  3. Electrode materials and lithium battery systems

    Science.gov (United States)

    Amine, Khalil [Downers Grove, IL; Belharouak, Ilias [Westmont, IL; Liu, Jun [Naperville, IL

    2011-06-28

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  4. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit.

    Science.gov (United States)

    Xi, Peng; Li, Yan; Ge, Xiaojin; Liu, Dandan; Miao, Mingsan

    2018-05-01

    Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value ( P  film group significantly decreased skin irritation, infection integral value ( P  film significantly reduced film rabbits' scalded skin crusting time ( P  film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing.

  5. Optical instrument for measurement of vaginal coating thickness by drug delivery formulations

    International Nuclear Information System (INIS)

    Henderson, Marcus H.; Peters, Jennifer J.; Walmer, David K.; Couchman, Grace M.; Katz, David F.

    2005-01-01

    An optical device has been developed for imaging the human vaginal epithelial surfaces, and quantitatively measuring distributions of coating thickness of drug delivery formulations - such as gels - applied for prophylaxis, contraception or therapy. The device consists of a rigid endoscope contained within a 27-mm-diam hollow, polished-transparent polycarbonate tube (150 mm long) with a hemispherical cap. Illumination is from a xenon arc. The device is inserted into, and remains stationary within the vagina. A custom gearing mechanism moves the endoscope relative to the tube, so that it views epithelial surfaces immediately apposing its outer surface (i.e., 150 mm long by 360 deg. azimuthal angle). Thus, with the tube fixed relative to the vagina, the endoscope sites local regions at distinct and measurable locations that span the vaginal epithelium. The returning light path is split between a video camera and photomultiplier. Excitation and emission filters in the light path enable measurement of fluorescence of the sited region. Thus, the instrument captures video images simultaneously with photometric measurement of fluorescence of each video field [∼10 mm diameter; formulations are labeled with 0.1% w/w United States Pharmacoepia (USP) injectable sodium fluorescein]. Position, time and fluorescence measurements are continuously displayed (on video) and recorded (to a computer database). The photomultiplier output is digitized to quantify fluorescence of the endoscope field of view. Quantification of the thickness of formulation coating of a surface sited by the device is achieved due to the linear relationship between thickness and fluorescence intensity for biologically relevant thin layers (of the order of 0.5 mm). Summary measures of coating have been developed, focusing upon extent, location and uniformity. The device has begun to be applied in human studies of model formulations for prophylaxis against infection with HIV and other sexually transmitted

  6. Investigation of cortical thickness abnormalities in lithium-free adults with bipolar type I disorder using cortical pattern matching

    Science.gov (United States)

    Foland-Ross, Lara C.; Thompson, Paul M.; Sugar, Catherine A.; Madsen, Sarah K.; Shen, Jim K.; Penfold, Conor; Ahlf, Kyle; Rasser, Paul E.; Fischer, Jeffrey; Yang, Yilan; Townsend, Jennifer; Bookheimer, Susan Y.; Altshuler, Lori L.

    2013-01-01

    Objective Several lines of evidence implicate gray matter abnormalities in the prefrontal cortex and anterior cingulate cortex in patients with bipolar disorder. Findings however, have been largely inconsistent across studies. Differences in patients’ medication status or mood state, or the application of traditional volumetric methods that are insensitive to subtle neuroanatomic differences may have contributed to these inconsistent findings. Given this, we used magnetic resonance imaging (MRI) in conjunction with cortical pattern matching methods to assess cortical thickness abnormalities in euthymic bipolar subjects who were not treated with lithium. Method Sixty-five subjects, including 34 lithium-free euthymic subjects with bipolar (type I) disorder and 31 healthy subjects were scanned using magnetic resonance imaging (MRI). Data were processed to measure cortical gray matter thickness. Cortical pattern matching methods associated homologous brain regions across subjects. Spatially normalized thickness maps were analyzed to assess illness effects and associations with clinical variables. Results Relative to healthy subjects, euthymic bipolar I subjects had significantly thinner gray matter in bilateral prefrontal cortex (Brodmann Areas 11, 10, 8 and 44) and left anterior cingulate cortex (Brodmann Areas 24/32). Additionally, thinning in these regions was more pronounced in patients with a history of psychosis. No areas of thicker cortex were detected in bipolar subjects versus healthy subjects. Conclusions Using a technique that is highly sensitive to subtle neuroanatomic differences, significant regional cortical thinning was found in euthymic subjects with bipolar disorder. Clinical implications are discussed. PMID:21285139

  7. Characteristics of Vanadium Doped And Bamboo Activated Carbon Coated LiFePO4 And Its Performance For Lithium Ion Battery Cathode

    Directory of Open Access Journals (Sweden)

    Nofrijon Sofyan

    2018-04-01

    Full Text Available Vanadium doped and bamboo activated carbon coated lithium iron phosphate (LiFePO4 used for lithium ion battery cathode has been successfully prepared. Lithium iron phosphate was prepared through a wet chemical method followed by a hydrothermal process from the starting materials of LiOH, NH4H2PO4, and FeSO4.7H2O. The dopant variations of 0 wt.%, 3 wt.%, 5 wt.%, and 7 wt.% of vanadium and a fixed 3 wt.% of bamboo activated carbon were carried out via a solid-state reaction process each by using NH4VO3 as a source of vanadium and carbon pyrolyzed from bamboo tree, respectively. The characterization was carried out using X-ray Diffraction (XRD for the phase formed and its crystal structure, Scanning Electron Microscope (SEM for the surface morphology, Electrochemical Impedance Spectroscopy (EIS for the conductivity, and battery analyzer for the performance of lithium ion battery cathode. The XRD results show that the phase formed has an olivine based structure with an orthorhombic space group. Morphology examination revealed that the particle agglomeration decreased with the increasing level of vanadium concentrations. Conductivity test showed that the impedance of solid electrolyte interface decreased with the increase of vanadium concentration indicated by increasing conductivity of 1.25 x 10-5 S/cm, 2.02 x 10-5 S/cm, 4.37 x 10-5 S/cm, and 5.69 x 10-5 S/cm, each for 0 wt.%, 3 wt.%, 5 wt.%, and 7 wt.% vanadium, respectively. Vanadium doping and bamboo activated carbon coating are promising candidate for improving lithium ion battery cathode as the initial charge and discharge capacity at 0.5C for LiFePO4/C at 7 wt.% vanadium is in the range of 8.0 mAh/g.

  8. Influence of the nitriding and TiAlN/TiN coating thickness in the mechanical properties of a duplex treated H13 steel

    International Nuclear Information System (INIS)

    Torres, Ricardo D.; Soares, Paulo; Suzuki, Luciane Y.; Lepienski, Carlos M.

    2010-01-01

    AISI H13 die steel substrates were low pressure gas nitrided in three different nitriding cases. In the nitriding case A, the surface hardness was around 12 GPa and the nitriding thickness was around 40 μm. In the nitriding case B, the hardness was the same as in case A, but the nitriding thickness was around 70 μm. Finally, in the nitriding case C, the nitriding thickness was the same as in case B, but hardness profile showed a different behavior. In case C, the surface hardness was the same as case A and B. But the hardness increases as one move away from the surface showing the highest hardness at 15 "m from the sample surface. The XRD results showed that the nitriding cases microstructure is composed mainly by the diffusion layer with small amount of Cr_2N precipitates. These nitrided samples were subsequently coated with TiAlN using cathodic arc evaporation in two thicknesses of 3 and 7 μm. These samples were characterized with respect to phase chemistry, adhesion, hardness, elastic modulus and scratch tests. The phase chemistry determined through XRD revealed that coating was mostly Ti_0_._7Al_0_._3N with some peaks of TiN which comes from the adhesion layer that was deposited prior to the deposition of TiAlN. The instrumented hardness performed in the coated samples showed that the coating system hardness changes with the nitriding cases when the coating thickness is 3 μm. On the other hand, the nitriding characteristics do not influence the coating hardness with thickness of 7 μm. In addition, the 7 μm thick coating is harder than the 3 μm thick coating. In the last part of this work, TiAlN was deposited in the AISI H13 substrate without nitriding; it was found that the hardness in this condition is higher than the nitrided/coated samples. The worn area, probed by the scratch test, was smaller for the TiAlN deposited over AISI H13 without the nitriding layer. (author)

  9. Thick metallic coatings produced by coaxial and side laser cladding : Processing and properties

    NARCIS (Netherlands)

    Ocelík, V.; De Hosson, J.T.M.

    2010-01-01

    Cobalt and iron-based, defect-free coatings with thicknesses from 1 to 3.3. mm were created by a laser cladding process on different steel substrates. Extensive laser cladding experiments with a gradual change of laser power were used to study relations between main processing parameters and

  10. The Analysis of Distribution of Thickness of ThinFilm Coating During the Magnetron Sputtering on Systems with Planetary Movement of Substrate

    Directory of Open Access Journals (Sweden)

    H. R. Sagatelyan

    2014-01-01

    Full Text Available The article subject is a thin-film coating process using ion-plasma sputter deposition systems with magnetron sputtering targets. To improve coating thickness evenness of parts various manufacturers equip their systems with mechanisms for moving the coating parts, and sometimes the magnetrons. More specifically, the article concerns the ion-plasma sputtering process using a system equipped with a mechanism for providing a planetary movement of the coating parts in the plane perpendicular to the planes of two sputtering targets.The purpose of this work was to improve a distribution of the coating thickness evenness on the sputtering surface of the part. It is achieved through selection of the best combinations of kinematic and geometric factors that characterize a particular sputtering operation, depending on the size and position of the surface to be coated. These factors include a ratio between directions and frequencies of the self-rotation of satellite planetary gear, which holds a work piecesubstrate, and the translational motion i.e. planetary carrier rotation to carry the satellite; the angles of planes of the right and left magnetrons with respect to the system frontal plane. Since there is, essentially, a lack of mathematical models to perform the appropriate calculations for the considered type of system designs, a more specific aim of the article is to develop a technique to evaluate the uneven thickness of coatings provided by the systems of this type.To achieve this more specific purpose the analytical technique had been used, applying the postulates of analytical geometry and theoretical mechanics. The main results of the research described in the article are as follows:- mathematical models of dependencies of geometric and kinematic parameters, changing during the sputtering process and characterizing each considered point on the surface of the work piece, on the current position of the work piece in the structure of the planetary

  11. Effects of Capacity Ratios between Anode and Cathode on Electrochemical Properties for Lithium Polymer Batteries

    International Nuclear Information System (INIS)

    Kim, Cheon-Soo; Jeong, Kyung Min; Kim, Keon; Yi, Cheol-Woo

    2015-01-01

    The areal capacity ratio of negative to positive electrodes (N/P ratio) is the most important factor to design the lithium ion batteries with high performance in the consideration of balanced electrochemical reactions. In this study, the effect of N/P ratio (1.10, 1.20, and 1.30) on electrochemical properties has been investigated with a lithium polymer battery with PVdF-coated separator and 1.40 Ah of capacity. The N/P ratio is controlled by adjusting the anode thickness with a fixed anode density. The cell with an N/P ratio higher than 1.10 effectively suppresses the lithium plating at the 0.85C-rate charging at 25 °C and the cell with 1.20 of N/P ratio shows the enhanced cycle performance in comparison with other cells. Among the cells with differently designed N/P ratios, significant difference was not observed in the aging test with fully charged batteries at 25 and 45 °C. The effect of N/P ratio on electrochemical properties of lithium batteries can help to design the safe full cell without lithium plating

  12. Cu2+1O coated polycrystalline Si nanoparticles as anode for lithium-ion battery.

    Science.gov (United States)

    Zhang, Junying; Zhang, Chunqian; Wu, Shouming; Liu, Zhi; Zheng, Jun; Zuo, Yuhua; Xue, Chunlai; Li, Chuanbo; Cheng, Buwen

    2016-12-01

    Cu2+1O coated Si nanoparticles were prepared by simple hydrolysis and were investigated as an anode material for lithium-ion battery. The coating of Cu2+1O on the surface of Si particles remarkably improves the cycle performance of the battery than that made by the pristine Si. The battery exhibits an initial reversible capacity of 3063 mAh/g and an initial coulombic efficiency (CE) of 82.9 %. With a current density of 300 mA/g, its reversible capacity can remains 1060 mAh/g after 350 cycles, corresponding to a CE ≥ 99.8 %. It is believed that the Cu2+1O coating enhances the electrical conductivity, and the elasticity of Cu2+1O further helps buffer the volume changes during lithiation/delithiation processes. Experiment results indicate that the electrode maintained a highly integrated structure after 100 cycles and it is in favour of the formation of stable solid electrolyte interface (SEI) on the Si surface to keep the extremely high CE during long charge and discharge cycles.

  13. Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance

    KAUST Repository

    Fang, Jason; Kelarakis, Antonios; Lin, Yueh-Wei; Kang, Chi-Yun; Yang, Ming-Huan; Cheng, Cheng-Liang; Wang, Yue; Giannelis, Emmanuel P.; Tsai, Li-Duan

    2011-01-01

    We report a simple, scalable approach to improve the interfacial characteristics and, thereby, the performance of commonly used polyolefin based battery separators. The nanoparticle-coated separators are synthesized by first plasma treating the membrane in oxygen to create surface anchoring groups followed by immersion into a dispersion of positively charged SiO 2 nanoparticles. The process leads to nanoparticles electrostatically adsorbed not only onto the exterior of the surface but also inside the pores of the membrane. The thickness and depth of the coatings can be fine-tuned by controlling the ζ-potential of the nanoparticles. The membranes show improved wetting to common battery electrolytes such as propylene carbonate. Cells based on the nanoparticle-coated membranes are operable even in a simple mixture of EC/PC. In contrast, an identical cell based on the pristine, untreated membrane fails to be charged even after addition of a surfactant to improve electrolyte wetting. When evaluated in a Li-ion cell using an EC/PC/DEC/VC electrolyte mixture, the nanoparticle-coated separator retains 92% of its charge capacity after 100 cycles compared to 80 and 77% for the plasma only treated and pristine membrane, respectively. © the Owner Societies 2011.

  14. Tensile test of a silicon microstructure fully coated with submicrometer-thick diamond like carbon film using plasma enhanced chemical vapor deposition method

    Science.gov (United States)

    Zhang, Wenlei; Uesugi, Akio; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    This paper reports the tensile properties of single-crystal silicon (SCS) microstructures fully coated with sub-micrometer thick diamond like carbon (DLC) film using plasma enhanced chemical vapor deposition (PECVD). To minimize the deformations or damages caused by non-uniform coating of DLC, which has high compression residual stress, released SCS specimens with the dimensions of 120 µm long, 4 µm wide, and 5 µm thick were coated from the top and bottom side simultaneously. The thickness of DLC coating is around 150 nm and three different bias voltages were used for deposition. The tensile strength improved from 13.4 to 53.5% with the increasing of negative bias voltage. In addition, the deviation in strength also reduced significantly compared to bare SCS sample.

  15. Influence of stabilizer thickness on over-current test of YBCO-coated conductors

    International Nuclear Information System (INIS)

    Kwon, N Y; Kim, H S; Kim, K L; Lee, H G; Yim, S W; Kim, H-R; Hyun, O-B; Kim, H M

    2009-01-01

    The increased use of distributed power generation has led to increasingly high fault current levels. A superconducting fault current limiter (SFCL) is a potential solution to prevent the problem of short-circuit currents. YBCO-coated conductors (CCs) are one of the most promising superconducting materials for SFCLs. Most YBCO CCs have stabilizers, which play a significant role in limiting the fault current in the SFCL. Therefore, the selection of the appropriate material and the thickness of the stabilizer of the CC used for the SFCL may affect its quench/recovery characteristics. In this paper, the quench/recovery characteristics of YBCO CC tapes having stabilizers with various thicknesses were investigated. The quench/recovery test results showed that, as the thickness of the stabilizer decreased, both the final approach temperature and the recovery time decreased.

  16. Effect of Interlayer Coating Thickness on the Hardness and Adhesion for the Tungsten Carbide Cutting Tool

    Directory of Open Access Journals (Sweden)

    Kamil Jawad Kadhim

    2017-12-01

    Full Text Available The thin film of the (Al,TiN coating is studied with the aid of two parameters: hardness and adhesion.  These parameters are very close to each other; however, in deposition field they could be interpreted differently.  Several coatings of (Al,TiN layers are developed on tungsten carbide insert using the standard commercial Al0.67Ti0.33 cathodes in cathodic arc plating system(PVD. The influence of coating layer thickness on the mechanical properties of the coatings was investigated via two parameters: hardness and adhesion are characterized by the Rockwell tester Vickers tester.  The measurements reveal that the highest hardness appears for the (Al,TiN thickness of 5.815 µm while the highest adhesion appears at a thickness of 3.089 µm.  At the opposite extreme, the lowest hardness appears at 2.717 µm and the lowest hardness at 5.815 µm. Overall, the (Al/Ti N coating of the thickness of 5.815 µm is controversial as it exhibits the highest hardness and the lowest adhesion. This result could be related to the effect of the formation of the micro-particle (MPs which has a direct effect on the hardness because these MPs appear mainly on the surface and their presence at the interface is very limited.  In addition, the creation of Ti buffering layer to reduce the delamination has its major effect on the adhesion but has no effect on the morphology of the surface.  For these two reasons and the effect of the bias voltage, the results presented in this paper might show slight differences with other published papers.  The composition of the (Al,TiN layer is characterized and, seemingly, it shows one important result which is showing that the ultimate composition of the (Al,TiN layer (Ti0.62Al0.38 is very close to the original target used in this study (Al0.67Ti0.33.

  17. Thickness measurement of Sn-Ag hot dip coatings on Large Hadron Collider Superconducting strands by coulometry

    CERN Document Server

    Arnau-Izquierdo, G; Oberli, L R; Scheuerlein, C; Taborelli, M; 10.1149/1.1715094

    2004-01-01

    Amperostatic coulometry is applied for the thickness measurement of Sn-Ag hot dip coatings, which comprise an extended Sn-Cu interdiffusion layer. Complementary measurements, notably weight loss, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), X-ray fluorescence (XRF) and dynamic secondary ion mass spectroscopy (DSIMS) have been performed in order to obtain a better interpretation of the coulometry results. Based on the experimental results presented in this article the three potential changes that are observed during coulometry measurements are ascribed to (1) the entire dissolution of pure Sn, (2) the formation of a CuCl salt layer and (3) the surface passivation. The measurement of the pure Sn mass is well reproducible despite of strong coating thickness variations that are detected by XRF. Several experimental problems, in particular a coating undercutting, hamper the determination of the Sn mass in the intermetallic Sn-Cu layer.

  18. The preparation and graphene surface coating NaTi_2(PO_4)_3 as cathode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Na; Wang, Yanping; Rao, Richuan; Dong, Xiongzi; Zhang, Xianwen; Zhu, Sane

    2017-01-01

    Graphical abstract: The NaTi_2(PO_4)_3/graphene composite is used directly as cathode electrode material for lithium-ion battery by using metal lithium as an anode electrode. Meanwhile, the electrochemical properties of the composite in this system is firstly studied in detail. The NaTi_2(PO_4)_3/graphene composite exhibits the better rate and cyclic performance than NaTi_2(PO_4)_3, which is ascribed to its stable 3-D framework and the enhanced electronic conduction resulting from the graphene sheets surface modification. - Highlights: • The graphene coated NaTi_2(PO_4)_3 was prepared by a simple sol-gel method followed by calcination. • The electrochemical properties of the NaTi_2(PO_4)_3/graphene composite was firstly studied in detail when used as cathode electrode material for lithium-ion batteries. • The electrochemical reaction mechanism of NaTi_2(PO_4)_3/graphene composite was investigated by ex situ XRD. - Abstract: The graphene coated NaTi_2(PO_4)_3 has been fabricated via a simple sol-gel process followed by calcination. The NaTi_2(PO_4)_3/graphene (NTP/G) composite is used directly as cathode electrode material for lithium-ion battery and the electrochemical properties of the composite in this system is firstly studied in detail. In the charge-discharge process, two Li"+ can occupy octahedral M (2) site and be reversibly intercalated into the 3D framework of NTP through the ion conduction channel where almost all of Na"+ are immobilized to sustain the framework. At 5C rate, the capacity retention of the NTP/G composite after 800 cycles is still up to 82.7%. The superior electrochemical properties of NTP/G is ascribed to its stable 3-D framework and the enhanced electronic conduction resulting from the graphene sheets surface modification.

  19. A three-dimensional finite element study on the effect of hydroxyapatite coating thickness on the stress distribution of the surrounding dental implant-bone interface

    Directory of Open Access Journals (Sweden)

    Hadi Asgharzadeh Shirazi

    2014-06-01

    Full Text Available   Background and Aims: Hydroxyapatite coating has allocated a special place in dentistry due to its biocompatibility and bioactivity. The purpose of this study was to evaluate the relation between the hydroxyapatite thickness and stress distribution by using finite element method.   Materials and Methods: In this paper, the effect of hydroxyapatite coating thickness on dental implants was studied using finite element method in the range between 0 to 200 microns. A 3D model including one section of mandible bone was modeled by a thick layer of cortical surrounding dense cancellous and a Nobel Biocare commercial brand dental implant was simulated and analyzed under static load in the Abaqus software.   Results The diagram of maximum von Mises stress versus coating thickness was plotted for the cancellous and cortical bones in the range between 0 to 200 microns. The obtained results showed that the magnitude of maximum von Mises stress of bone decreased as the hydroxyapatite coating thickness increased. Also, the thickness of coating exhibited smoother stress distribution and milder variations of maximum von Mises stress in a range between 60 to 120 microns.   Conclusion: In present study, the stress was decreased in the mandible bone where hydroxyapatite coating was used. This stress reduction leads to a faster stabilization and fixation of implant in the mandible bone. Using hydroxyapatite coating as a biocompatible and bioactive material could play an important role in bone formation of implant- bone interface.

  20. Photolithography of thick photoresist coating in anisotropically etched V-grooves for electrically controlled liquid crystal photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Wei, Lei; Khomtchenko, Elena; Alkeskjold, Thomas Tanggaard

    2009-01-01

    Thick photoresist coating for electrode patterning in anisotropically etched v-grooves is investigated. The photoresist coverage is compared with and without soft baking. Two-step exposure is applied for a complete exposure and minimizing the resolution loss.......Thick photoresist coating for electrode patterning in anisotropically etched v-grooves is investigated. The photoresist coverage is compared with and without soft baking. Two-step exposure is applied for a complete exposure and minimizing the resolution loss....

  1. Modeling FBG sensors sensitivity from cryogenic temperatures to room temperature as a function of metal coating thickness

    Science.gov (United States)

    Vendittozzi, Cristian; Felli, Ferdinando; Lupi, Carla

    2018-05-01

    Fiber optics with photo-imprinted Bragg grating have been studied in order to be used as temperature sensors in cryogenic applications. The main disadvantage presented by Fiber Bragg Grating (FBG) sensors is the significant drop in sensitivity as temperature decreases, mainly due to the critical lowering of the thermo-optic coefficient of the fiber and the very low thermal expansion coefficient (CTE) of fused silica at cryogenic temperatures. Thus, especially for the latter, it is important to enhance sensitivity to temperature by depositing a metal coating presenting higher CTE. In this work the thermal sensitivity of metal-coated FBG sensors has been evaluated by considering their elongation within temperature variations in the cryogenic range, as compared to bare fiber sensors. To this purpose, a theoretical model simulating elongation of metal-coated sensors has been developed. The model has been used to evaluate the behaviour of different metals which can be used as coating (Ni, Cu, Al, Zn, Pb and In). The optimal coating thickness has been calculated at different fixed temperature (from 5 K to 100 K) for each metal. It has been found that the metal coating effectiveness depends on thickness and operating temperature in accordance to our previous experimental work and theory suggest.

  2. Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fibre devices

    DEFF Research Database (Denmark)

    Wei, Lei; Khomtchenko, Elena; Alkeskjold, Thomas Tanggaard

    2009-01-01

    Thick photoresist coating for electrode patterning in an anisotropically etched V-groove is investigated for electrically controlled liquid crystal photonic bandgap fibre devices. The photoresist step coverage at the convex corners is compared with and without soft baking after photoresist spin...

  3. The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S-P2S5 glass-ceramics

    Science.gov (United States)

    Visbal, Heidy; Aihara, Yuichi; Ito, Seitaro; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang

    2016-05-01

    There have been several reports on improvements of the performance of all solid-state battery using lithium metal oxide coatings on the cathode active material. However, the mechanism of the performance improvement remains unclear. To better understand the effect of the surface coating, we studied the impact of diamond-like carbon (DLC) coating on LiNi0.8Co0.15Al0.05O2 (NCA) by chemical vapor deposition (CVD). The DLC coated NCA showed good cycle ability and rate performance. This result is further supported by reduction of the interfacial resistance of the cathode and electrolyte observed in impedance spectroscopy. The DLC layer was analyzed by transmission electron microscopy electron energy loss spectroscopy (TEM-EELS). After 100 cycles the sample was analyzed by X-ray photo spectroscopy (XPS), and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). These analyses showed that the thickness of the coating layer was around 4 nm on average, acting to hinder the side reactions between the cathode particle and the solid electrolyte. The results of this study will provide useful insights for understanding the nature of the buffer layer for the cathode materials.

  4. Adsorption of lithium on the (112) face of molybdenum crystal

    International Nuclear Information System (INIS)

    Gupalo, M.S.; Medvedev, V.K.; Palyukh, B.M.; Smereka, T.P.

    1979-01-01

    The structure, work function and heat resistance of lithium films on the (112) face of Mo are investigated by the slow electron diffraction method and the contact potential difference technique. The isles of the p(1x4) structure grow in lithium films in the area of coatings 0.6-0.7 14 cm -2 , type one phase transformation between the p(1x4) and p(1x2) structures takes places in the area of 2.1 14 cm -2 , and the phase transformation of the first type between the p(1x2) structure and one-dimensional incoherent structure with n=5.5x10 14 cm -2 occurs in the range of 4.2 14 cm -2 . At n>5.5x10 14 cm -2 the compression of lithium film occurs, which has a one-dimensional incoherent structure, along the direction of atomic lines of the (112) Mo face, leading at n=8.3x10 14 cm -2 to the formation of monolayer coating of the p(1x1) structure. The redistribution of atoms between the first and the second lithium layers is found at the formation of two-layer lithium film. Concentration dependences of work function and absorption heat of lithium are in good agreement with the structural transformations in lithium films taking place with variations in the coating. Investigated are order-disorder transformations in lithium films

  5. Novel surface coating strategies for better battery materials

    CSIR Research Space (South Africa)

    Wen, L

    2018-03-01

    Full Text Available . Surface-coated cathodes have been demonstrated to be effective in blocking these surface processes and enhancing the electrochemical performance of the materials. For example, the electron-insulating but ion-conducting lithium carbonate (Li2CO3) has been... noticed that most LIB electrode materials have very poor electrical conductivity (e.g. lithium iron phosphate and lithium titanate are almost insulators).22,23 In this regard, surface coating of the electrode active materials with a conductive layer...

  6. Measuring coating thicknesses on continuously moving material

    International Nuclear Information System (INIS)

    Holler, J.H.; Stanton, W.B.; Spongr, J.J.; Joffe, B.B.; Raffelsberger, P.W.; Tiebor, J.E.

    1982-01-01

    A method and apparatus using radiation techniques for measuring coating thicknesses on continuously moving strip material without altering a predetermined path along which it travels. A shuttle carrying a measuring probe having a radioactive isotope source and a detection device is provided for reciprocation along a preselected segment of the path of the strip. The shuttle and the probe are releasably engaged with the strip and carried thereby for synchronous movement therewith in the forward direction during a measurement cycle, and are disengaged from the strip when no measurement is being made, the movement of the shuttle then being controlled by an independent drive mechanism, shown as a belt drive, which reciprocates the shuttle along the rails. A belt drives it forward more slowly than the strip, which then engages the shuttle to pull it at strip speed, allowed by a pulley clutch. (author)

  7. The Surface Coating of Commercial LiFePO4 by Utilizing ZIF-8 for High Electrochemical Performance Lithium Ion Battery

    Science.gov (United States)

    Xu, XiaoLong; Qi, CongYu; Hao, ZhenDong; Wang, Hao; Jiu, JinTing; Liu, JingBing; Yan, Hui; Suganuma, Katsuaki

    2018-03-01

    The requirement of energy-storage equipment needs to develop the lithium ion battery (LIB) with high electrochemical performance. The surface modification of commercial LiFePO4 (LFP) by utilizing zeolitic imidazolate frameworks-8 (ZIF-8) offers new possibilities for commercial LFP with high electrochemical performances. In this work, the carbonized ZIF-8 (CZIF-8) was coated on the surface of LFP particles by the in situ growth and carbonization of ZIF-8. Transmission electron microscopy indicates that there is an approximate 10 nm coating layer with metal zinc and graphite-like carbon on the surface of LFP/CZIF-8 sample. The N2 adsorption and desorption isotherm suggests that the coating layer has uniform and simple connecting mesopores. As cathode material, LFP/CZIF-8 cathode-active material delivers a discharge specific capacity of 159.3 mAh g-1 at 0.1C and a discharge specific energy of 141.7 mWh g-1 after 200 cycles at 5.0C (the retention rate is approximate 99%). These results are attributed to the synergy improvement of the conductivity, the lithium ion diffusion coefficient, and the degree of freedom for volume change of LFP/CZIF-8 cathode. This work will contribute to the improvement of the cathode materials of commercial LIB.[Figure not available: see fulltext.

  8. Optical properties of Pyromark 2500 coatings of variable thicknesses on a range of materials for concentrating solar thermal applications

    Science.gov (United States)

    Coventry, Joe; Burge, Patrick

    2017-06-01

    In this paper we present the results of solar absorptance measurements of four metallic substrate materials, either coated with Pyromark 2500 at various thicknesses, or uncoated and oxidised. Absorptance is measured prior to aging, and during and after aging at three elevated temperatures. In many cases, thin coatings perform as well, or better than thick coatings and do not appear to have a higher rate of failure. However, a thicker coating did show an advantage after aging at the highest temperature tested (850°C), and it is expected that with longer exposure, similar trends may emerge for the 600°C and 750°C aging cases. Another finding is that the two nickel-based alloys tested, Haynes 230 and Inconel 625, both formed an oxide with very good absorptance, although durability requires further testing.

  9. Effect of interfacial oxide thickness on the photocatalytic activity of magnetron-sputtered TiO2coatings on aluminum substrate

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Petit, Jean-Pierre; Shabadi, Rajashekhara

    2015-01-01

    The influence of the coating/substrate interface on the photocatalytic behavior of Al-TiO2 coatings was investigated. The TiO2 coatings were prepared by magnetron sputtering. The nanoscale structure of the coating was analyzed using X-ray diffraction; atomic force microscopy; scanning electron...... transport between the coating and the metallic substrate. The highest photocurrents were indeed obtained when the thickness of interfacial aluminum oxide could be reduced by sputtering a thin Ti layer prior to TiO2 coating. Photocurrent plotted for different photon energy for a TiO2 coating on a Ti...

  10. Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries

    Science.gov (United States)

    Gao, Chao; Zhou, Jian; Liu, Guizhen; Wang, Lin

    2018-03-01

    Olivine structure LiFePO4/carbon nanoparticles are synthesized successfully using a microwave plasma chemical vapor deposition (MPCVD) method. Microwave is an effective method to synthesize nanomaterials, the LiFePO4/carbon nanoparticles with high crystallinity can shorten diffusion routes for ionic transfer and electron tunneling. Meanwhile, a high quality, complete and homogenous carbon layer with appropriate thickness coating on the surface of LiFePO4 particles during in situ chemical vapor deposition process, which can ensure that electrons are able to transfer fast enough from all sides. Electrochemical impedance spectroscopy (EIS) is carried out to collect information about the kinetic behavior of lithium diffusion in LiFePO4/carbon nanoparticles during the charging and discharging processes. The chemical diffusion coefficients of lithium ions, DLi, are calculated in the range of 10-15-10-9 cm2s-1. Nanoscale LiFePO4/carbon particles show the longer regions of the faster solid-solution diffusion, and corresponding to the narrower region of the slower two-phase diffusion during the insertion/exaction of lithium ions. The CV and galvanostatic charge-discharge measurements show that the LiFePO4/carbon nanoparticles perform an excellent electrochemical performance, especially the high rate capacity and cycle life.

  11. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries

    Science.gov (United States)

    Wu, Ping; Du, Ning; Zhang, Hui; Yu, Jingxue; Qi, Yue; Yang, Deren

    2011-02-01

    This paper reports the synthesis of carbon-coated SnO2 (SnO2-C) nanotubes through a simple glucose hydrothermal and subsequent carbonization approach by using Sn nanorods as sacrificial templates. The as-synthesized SnO2-C nanotubes have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure SnO2 nanotubes. The hollow nanostructure, together with the carbon matrix which has good buffering effect and high electronic conductivity, can be responsible for the improved cyclic performance.

  12. Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries.

    Science.gov (United States)

    Oschmann, Bernd; Tahir, Muhammad Nawaz; Mueller, Franziska; Bresser, Dominic; Lieberwirth, Ingo; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2015-06-01

    The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by Raman spectroscopy and energy-dispersive X-ray (EDX) spectroscopy. The benefit of the conformal carbon coating of the Au@ZnO multipods regarding its application as lithium-ion anode material is revealed by performing galvanostatic cycling, showing a highly enhanced and stabilized electrochemical performance of the carbon-coated particles (still 831 mAh g(-1) after 150 cycles) with respect to the uncoated ones (only 353 mAh g(-1) after 10 cycles). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit

    OpenAIRE

    Peng Xi; Yan Li; Xiaojin Ge; Dandan Liu; Mingsan Miao

    2018-01-01

    Objective: Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. Method: We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from th...

  14. Electrochemical study on PVDF-HFP/silylated AI2O3-coated PE separators using the electron beam irradiation for lithium secondary battery

    International Nuclear Information System (INIS)

    Sohn, Joon Yong; Shin, Jun Hwa; Nho, Young Chang

    2010-01-01

    PVDF-HFP (binder)/silylated alumina (inorganic particle)-coated PE (polyethylene)separators were with various compositions of binder and inorganic particle were prepared by a dip-coating process with humidity control (R.H. 25% and 50%) using electron beam irradiation. The morphology of the coated PVDF-HFP/AI 2 O 3 layer with various compositions of PVDF-HFP and AI 2 O 3 , and humidity condition was found to be an important factor in determining ionic conductivity of the prepared separators. The PVDF-HFP/AI 2 O 3 (5/5)-coated PE separator prepared at R.H. 50% followed by electron beam irradiation at 200 kGy was applied for lithium-ion polymer battery and cell test results showed improved high-rate discharge performance and better cyclic stability compared to the cells with the bare PE and the PVDF-HFP-coated PE separators

  15. Effect of porous titanium coating thickness on in vitro osteoblast phenotype expression

    Directory of Open Access Journals (Sweden)

    Antonio Canabarro

    2011-03-01

    Full Text Available Aim: This study aimed at determining the effect of different thickness of porous titanium (Ti coating, 0.5, 1.0 and 1.5 mm thick (PC-0.5, PC-1.0 and PC-1.5, on osteoblast phenotype expression. Materials and methods: Dense Ti discs coated with 0.5, 1.0 and 1.5 mm of porous Ti (PC-0.5, PC-1.0 and PC-1.5, respectively were fabricated by powder metallurgy process with pore size typically between 50 and 400 μm and porosity of 60%. Osteoblastic cells obtained from human alveolar bone were cultured on dense Ti (D-Ti and PC-Ti discs for periods of up to 17 days. Results: Cultures grown on PC-Ti exhibited higher cell proliferation rate than on D-Ti. By comparing PC-Ti groups, it was observed statistical differences on culture grown only at day 10 (PC-0.5coating (PC-1.5. Therefore, further in vivo evaluations should be done in order to investigate whether this structure should be considered for clinical implant applications.

  16. Thickness and microstructure characterization of TGO in thermal barrier coatings by 3D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xuemei; Meng, Fangli [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); Kong, Mingguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Yongzhe [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); Huang, Liping; Zheng, Xuebin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zeng, Yi, E-mail: zengyi@mail.sic.ac.cn [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050 (China)

    2016-10-15

    Yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are prepared by plasma spraying. Thermally grown oxide (TGO) would be formed between YSZ topcoat and bond coat after 50 h thermal service for YSZ TBCs. The electron back scattered diffraction (EBSD) results reveal that the TGO layer is composed of α-Al{sub 2}O{sub 3} and cubic Al{sub 2}NiO{sub 4} layers. Measured values of TGO thickness from the 2D-SEM image are greater than or equal to its real thickness due to the fact that the TGO layer is much rolling so that up and down surfaces of the TGO can't be completely perpendicular to the cross-section direction confirmed by 3D-SEM. Furthermore, 3D-SEM results reveal that the real thickness of TGO layer is 3.10 μm instead of 7.1 μm. In addition, 3D-EBSD confirmed that α-Al{sub 2}O{sub 3} layer in TGO is composed of single layer of grains and Al{sub 2}NiO{sub 4} layer consist of multilayer of grains while α-Al{sub 2}O{sub 3} layer is mixed with single layer and multilayer of α-Al{sub 2}O{sub 3} grains from observation of the 2D-EBSD image. It provides a new method to characterize real thickness and microstructure of TGO, which is also applied to other film materials. - Highlights: •This work provides a new method to measure the real thickness of TGO. •YSZ TBCs were prepared by plasma spraying. •TGO is formed in TBCs by simulating thermal service at 1100 °C for 50 h. •Real thickness and microstructure of TGO were investigated by 3D reconstruction.

  17. The preparation and role of Li_2ZrO_3 surface coating LiNi_0_._5Co_0_._2Mn_0_._3O_2 as cathode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Xu, Yue; Liu, Yang; Lu, Zhongpei; Wang, Haiying; Sun, Deqin; Yang, Gang

    2016-01-01

    Graphical abstract: LiNi_0_._5Co_0_._2Mn_0_._3O_2 is coated by Li_2ZrO_3 layer with the thickness about 20 nm. Li_2ZrO_3 coating effectively improves cycling performance and rate capability. LZO-LMO delivers 194 mAh g"−"1 at 0.2 C and presents improved cyclic performance at 55 °C. - Highlights: • LiNi_0_._5Co_0_._2Mn_0_._3O_2 is coated by Li_2ZrO_3 layer with the thickness about 20 nm. • Li_2ZrO_3 coating effectively improves cycling performance and rate capability. • LZO-LMO delivers 194 mAh g"−"1 at 0.2 C and presents improved cyclic performance at 55 °C. • Li_2ZrO_3 coating suppresses cation dissolution and enhances the structural stability. - Abstract: Li_2ZrO_3-coated LiNi_0_._5Co_0_._2Mn_0_._3O_2 (LZO-LMO) is successful synthesized by using a wet chemical method. Li_2ZrO_3 coating formed a uniform layer on LiNi_0_._5Co_0_._2Mn_0_._3O_2 particles (LMO) without changing the crystal structure. Cyclic voltammetry (CV) and charge–discharge tests show that the Li_2ZrO_3-modified layer can improve the cyclic and rate performance. In the cut-off voltage of 2.7–4.6 V, LZO-LMO maintains 86% of the initial capacity at the 50th cycle, which is much higher than LMO with the retention of 66% of the initial capacity. The coating layer of LZO plays the positive role in conductivity of lithium diffusion and improves rate performance of LMO. At 10 C rates, LZO-LMO delivers the initial capacity of 95 mAh g"−"1 which is much higher than 40 mAh g"−"1 delivered by LMO. At the environmental temperature of 55 °C, LZO-LMO delivers the initial capacity of 194 mAh g"−"1 at 0.2 C rate and presents an improved cyclic performance in comparison with LMO. The elemental analysis of electrodes carried out after 50 charge/discharge cycles shows minor Ni content deviation in LMO, but LZO-LMO still remains the stoichiometric ratio, because the Li_2ZrO_3 coating efficiently hinders the metal dissolution during charge/discharge.

  18. Verification of the hydraulic design of the FMIT liquid lithium target

    International Nuclear Information System (INIS)

    Miles, R.R.; Annese, C.E.; Ingham, J.G.

    1983-01-01

    A liquid lithium target is being developed to generate a neutron flux for material testing in a fusion-like environment. The target consists of a thin, high speed, curved wall jet of lithium which is formed by an asymmetric nozzle. A prototype target was designed using potential flow analysis and was tested in water. Measurements of jet thickness and velocity in water and thickness in lithium were compared with isothermal design predictions and were shown to match within 1% for thickness and 5% for jet velocity

  19. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin; Li, Chen; Qiu, Xiang-biao; Wu, Di; Lu, Yan-qing, E-mail: yqlu@nju.edu.cn [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Geng, De-qiang [Jinan Jingzheng Electronics Co., Ltd., Jinan 250100 (China)

    2016-07-15

    Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is taken to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.

  20. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    Science.gov (United States)

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  1. Effect of Thickness on the Morphology and Corrosion Behavior of Cerium-Based Conversion Coatings on AZ31B Magnesium Alloy

    Science.gov (United States)

    Castano, Carlos E.; Maddela, Surender; O'Keefe, Matthew J.; Wang, Yar-Ming

    Cerium-based conversion coatings (CeCCs) were deposited onto AZ31B magnesium alloy substrates using a spontaneous reaction of CeCl3, H2O2 and gelatin in a water-based solution. The coating thickness was adjusted by controlling the immersion time in the deposition solution. Prior to deposition, the AZ31B substrates were treated using an acid pickling in nitric acid and then an alkaline cleaning in sodium metasilicate pentahydrate. After deposition, the coated samples were immersed in a phosphate bath that converted cerium oxide/hydroxide into cerium phosphate. Electrochemical impedance spectroscopy, potentiodynamic polarization and neutral salt spray testing studies indicated that 100 nm thick CeCC had better corrosion performance than 400 nm coatings. Characterization of the CeCCs by transmission electron microscopy (TEM) revealed a three layer structure with different compositions.

  2. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Gunceler, Deniz; Sundararaman, Ravishankar; Archer, Lynden A.

    2017-01-01

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  3. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis

    2017-08-17

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  4. Extremely low recycling and high power density handling in CDX-U lithium experiments

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.; Gray, T.; Kugel, H.; Lynch, T.; Maingi, R.; Mansfield, D.; Soukhanovskii, V.; Spaleta, J.; Timberlake, J.; Zakharov, L.

    2007-01-01

    The mission of the Current Drive eXperiment-Upgrade (CDX-U) spherical tokamak is to investigate lithium as a plasma-facing component (PFC). The latest CDX-U experiments used a combination of a toroidal liquid lithium limiter and lithium wall coatings applied between plasma shots. Recycling coefficients for these plasmas were deduced to be 30% or below, and are the lowest ever observed in magnetically-confined plasmas. The corresponding energy confinement times showed nearly a factor of six improvement over discharges without lithium PFC's. An electron beam (e-beam) for evaporating lithium from the toroidal limiter was one of the techniques used to create lithium wall coatings in CDX-U. The evaporation was not localized to the e-beam spot, but occurred only after the entire volume of lithium in toroidal limiter was liquefied. This demonstration of the ability of lithium to handle high heat loads can have significant consequences for PFC's in future burning plasma devices

  5. Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver

    International Nuclear Information System (INIS)

    Gao, J.; Zhang, H.P.; Fu, L.J.; Zhang, T.; Wu, Y.P.; Takamura, T.; Wu, H.Q.; Holze, R.

    2007-01-01

    A method has been developed to suppress the decomposition of propylene carbonate (PC) by coating graphite electrode foil with a layer of silver. Results from electrochemical impedance measurements show that the Ag-coated graphite electrode presents lower charge transfer resistance and faster diffusion of lithium ions in comparison with the virginal one. Cyclic voltammograms and discharge-charge measurements suggest that the decomposition of propylene carbonate and co-intercalation of solvated lithium ions are prevented, and lithium ions can reversibly intercalate into and deintercalate from the Ag-coated graphite electrode. These results indicate that Ag-coating is a good way to improve the electrochemical performance of graphitic carbon in PC-based electrolyte solutions

  6. Li{sub 2}ZrO{sub 3}-coated Li{sub 4}Ti{sub 5}O{sub 12} with nanoscale interface for high performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han [Jiangsu Lab of Advanced Functional Material, Changshu Institute of Technology, Changshu, 215500 (China); School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Yang [School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116 (China); Wang, Ting; Yang, Yang [Jiangsu Lab of Advanced Functional Material, Changshu Institute of Technology, Changshu, 215500 (China); Shi, Shaojun [School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116 (China); Yang, Gang, E-mail: gyang@cslg.edu.cn [Jiangsu Lab of Advanced Functional Material, Changshu Institute of Technology, Changshu, 215500 (China); School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116 (China)

    2016-04-15

    Graphical abstract: - Highlights: • Zr doped and Li{sub 2}ZrO{sub 3} coated Li{sub 4}Ti{sub 5}O{sub 12} are prepared by a solid-state method. • Zr-doping and LZO coating are positive in improving lithium diffusion ability. • Li{sub 2}ZrO{sub 3} coated Li{sub 4}Ti{sub 5}O{sub 12} deliver 168.1 mAh g{sup −1} higher than 150.2 mAh g{sup −1} of Li{sub 4}Ti{sub 5}O{sub 12}. • Li{sub 2}ZrO{sub 3} coated Li{sub 4}Ti{sub 5}O{sub 12} remains 162 mAh g{sup −1} after 100 cycles. • The lowest D{sub Li}{sup +} is 5.97 × 10{sup −17} and 1.85 × 10{sup −15} cm{sup 2} s{sup −1} of Li{sub 4}Ti{sub 5}O{sub 12} before and after coating. - Abstract: Zr doped sample of Li{sub 4}Ti{sub 4.99}Zr{sub 0.01}O{sub 12} (LZTO) and Li{sub 2}ZrO{sub 3} (LZO) coated Li{sub 4}Ti{sub 5}O{sub 12} (LTO) are prepared by a solid-state method. The lattice structure of LTO is remained after doping element of Zr and coating layer of LZO. The crystal structure and electrochemical performance of the material are investigated by X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT) and charge-discharge tests, respectively. Zr-doping and LZO coating play the positive role in improving the diffusion ability of lithium cations. LZTO and LZO-LTO show much improved specific capacity and rate capability compared with pristine sample of LTO. LZO-LTO has the smallest voltage differential (ΔV) of the redox peaks because the coating of Li{sub 2}ZrO{sub 3} is helpful for the diffusion ability of lithium ions during charge/discharge processes. LZTO and LZO-LTO as electrode deliver the initial capacities of 164.8, 168.1 mAh g{sup −1}, respectively, which are much higher than 150.2 mAh g{sup −1} of intrinsic sample of LTO. Even at the current density of 2 A g{sup −1}, LTZO and LZO-LTO offer capacity of 96 and 106 mAh g{sup −1}, which are much higher than 33 mAh g{sup −1} of LTO

  7. CDX-U Operation with a Large Area Liquid Lithium Limiter

    International Nuclear Information System (INIS)

    R. Majeski; M. Boaz; D. Hoffman; B. Jones; R. Kaita; H. Kugel; T. Munsat; J. Spaleta; V. Soukhanovskii; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R.W. Conn; M. Finkenthal; D. Stutman; R. Maingi; M. Ulrickson

    2002-01-01

    The Current Drive experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory has begun experiments with a fully toroidal liquid lithium limiter. CDX-U is a compact [R = 34 cm, a = 22 cm, B(subscript)toroidal = 2 kG, I(subscript)P = 100 kA, T(subscript)e(0) ∼ 100 eV, n(subscript)e(0) ∼ 5 x 10 19 m -3 ] short-pulse (<25 msec) spherical torus with extensive diagnostics. The limiter, which consists of a shallow circular stainless steel tray of radius 34 cm and width 10 cm, can be filled with lithium to a depth of a few millimeters, and forms the lower limiting surface for the discharge. Heating elements beneath the tray are used to liquefy the lithium prior to the experiment. Surface coatings are evident on part of the lithium. Despite the surface coatings, tokamak discharges operated in contact with the lithium-filled tray show evidence of reduced impurities and recycling. The reduction in recycling is largest when the lithium is liquefied by heating to 250 degrees Celsius

  8. 3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam

    Science.gov (United States)

    Um, Ji Hyun; Choi, Myounggeun; Park, Hyeji; Cho, Yong-Hun; Dunand, David C.; Choe, Heeman; Sung, Yung-Eun

    2016-01-01

    A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer. With this anode, we achieve a high reversible capacity of 750 mAh g−1 at current rate of 0.5 C after 50 cycles and an excellent rate capability of 590 mAh g−1 at 2 C, which is close to the best performance of Sn-based nanoscale material so far. PMID:26725652

  9. Simulation and analysis of the residual stresses in functionally graded Al2O3 coatings on CLAM steel

    International Nuclear Information System (INIS)

    Yan Zilin; Huang Qunying; Song Yong; Guo Zhihui; Wu Yican

    2008-01-01

    Alumina coatings on CLAM steel substrate are proposed to serve as tritium, corrosion and electric insulation barriers in the design of Dual Functional Lithium Lead Test Blanket Module (DFLL-TBM) in China in the frame of ITER. In order to avoid the crack failure due to thermal expansion mismatch of the coating and the substrate, the functionally graded materials (FGM) concept was adopted. In this paper, the residual thermal stresses in the coatings were calculated with the commercial software ANSYS. It is recommended that the compositional factor, numbers of the gradient interlayers and the thickness of the FGM zone are p=0.8, N=8, H=0.6 mm, respectively, according to the simulation results. These results could be helpful and theoretical guidance to the preparation and optimization of the coatings in the future. (authors)

  10. Tritium permeation barriers in contact with liquid lithium-lead eutectic (Pb-17Li)

    International Nuclear Information System (INIS)

    Forcey, K.S.; Perujo, A.

    1995-01-01

    The permeation of deuterium through coated stainless steel tubes containing liquid lithium-lead eutectic (Pb-17Li) has been studied and compared to measurements through tubes without the lithium compound. The measurements form part of an investigation into the effect of a potential tritium breeder material on permeation barriers for fusion reactors. The coatings studied were CVD TiC and Al 2 O 3 and a pack aluminised layer. Without the lithium-lead, the CVD coatings reduced the permeation rate up to 1 order of magnitude, and the aluminised layer up to 2 orders of magnitude. A CVD layer was unaffected by Pb-17Li whilst in the case of the aluminised tube, the lithium-lead completely removed the permeation barrier, presumably by attacking the surface oxide. Furthermore, the aluminised sample presented a large number of cracks and poor adheren ce to the substrate. ((orig.))

  11. Investigation of lithium PFC surface characteristics and low recycling at LTX/LTX-Beta

    Science.gov (United States)

    Maan, Anurag; Kaita, Robert; Elliott, Drew; Boyle, Dennis; Majeski, Richard; Donovan, David; Buzi, Luxherta; Koel, Bruce E.; Biewer, Theodore M.

    2017-10-01

    Lithium coatings on high-Z PFCs at LTX have led to improved plasma performance. The initial hypothesis was that lithium retains hydrogen by forming lithium hydride and thereby enabling low recycling in LTX. However, recent in-vacuo measurements indicate the presence of lithium oxide in deposited lithium coatings. Improved plasma performance continued to be observed in the presence of lithium oxide. These observations raise questions like what is the nature of the lithium oxide surface, whether the PFC is an amorphous mixture of lithium and lithium oxide or something more ordered like a lithium oxide layer growing on top of lithium, and whether lithium oxide is responsible for any retention of hydrogen from the plasma. To investigate the mechanism by which the LTX PFC might be responsible for low recycling, we discuss the results of deuterium retention measurements using NRA/RBS and sample characterization using high resolution XPS (HR-XPS) in bulk lithium samples. Baseline HR-XPS scans indicate the presence of Lithium Oxide on sputtered lithium samples. Status of related planned experiments at LTX- β will also be discussed. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725 and DE-AC02-09CH11466. BEK acknowledges support of this work by the U.S. DOE, Office of Science/FES under Award Number DE-SC0012890.

  12. Coated particles for lithium battery cathodes

    Science.gov (United States)

    Singh, Mohit; Eitouni, Hany Basam; Pratt, Russell Clayton; Mullin, Scott Allen; Wang, Xiao-Liang

    2017-07-18

    Particles of cathodic materials are coated with polymer to prevent direct contact between the particles and the surrounding electrolyte. The polymers are held in place either by a) growing the polymers from initiators covalently bound to the particle, b) attachment of the already-formed polymers by covalently linking to functional groups attached to the particle, or c) electrostatic interactions resulting from incorporation of cationic or anionic groups in the polymer chain. Carbon or ceramic coatings may first be formed on the surfaces of the particles before the particles are coated with polymer. The polymer coating is both electronically and ionically conductive.

  13. Examination results on reaction of lithium

    International Nuclear Information System (INIS)

    Asada, Takashi

    2000-12-01

    Before the material corrosion tests in lithium, the reactions of lithium with air and ammonia that will be used for lithium cleaning were examined, and the results were as follows. 1. When lithium put into air, surface of lithium changes to black first but soon to white, and the white layer becomes gradually thick. The first black of lithium surface is nitride (Li 3 N) and it changes to white lithium hydroxide (LiOH) by reaction with water in air, and it grows. The growth rate of the lithium hydroxide is about 1/10 in the desiccator (humidity of about 10%) compare with in air. 2. When lithium put into nitrogen, surface of lithium changes to black, and soon changes to brown and cracks at surface. At the same time with this cracking, weight of lithium piece increases and nitridation progresses respectively rapidly. This nitridation completed during 1-2 days on lithium rod of 10 mm in diameter, and increase in weight stopped. 3. Lithium melts in liquid ammonia and its melting rate is about 2-3 hour to lithium of 1 g. The liquid ammonia after lithium melting showed dark brown. (author)

  14. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    Science.gov (United States)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  15. Deposition of lithium on a plasma edge probe in TFTR -- Behavior of lithium-painted walls interacting with edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y. [Univ. of California, San Diego, La Jolla, CA (United States); Ashida, K. [Toyama Univ. (Japan); Kugel, H. [Princeton Univ., NJ (United States)] [and others

    1998-05-01

    Recent observations have indicated that lithium pellet injection wall conditioning plays an important role in achieving the enhanced supershot regime in TFTR. However, little is understood about the behavior of lithium-coated limiter walls, interacting with edge plasmas. In the final campaign of TFTR, a cylindrical carbon fiber composite probe was inserted into the boundary plasma region and exposed to ohmically-heated deuterium discharges with lithium pellet injection. The ion-drift side probe surface exhibits a sign of codeposition of lithium, carbon, oxygen, and deuterium, whereas the electron side essentially indicates high-temperature erosion. It is found that lithium is incorporated in these codeposits in the form of oxide at the concentration of a few percent. In the electron side, lithium has been found to penetrate deeply into the probe material, presumably via rapid diffusion through interplane spaces in the graphite crystalline. Though it is not conclusive, materials mixing in the carbon and lithium system appears to be a key process in successful lithium wall conditioning.

  16. Electroless formation of hybrid lithium anodes for fast interfacial ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Snehashis; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Archer, Lynden A. [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY (United States); Tu, Zhengyuan [Department of Material Science and Engineering, Cornell University, Ithaca, NY (United States); Gunceler, Deniz [Department of Physics, Cornell University, Ithaca, NY (United States); Sundararaman, Ravishankar [Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2017-10-09

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. VUV/XUV measurements of impurity emission in plasmas with liquid lithium surfaces on LTX

    International Nuclear Information System (INIS)

    Tritz, Kevin; Finkenthal, Michael; Stutman, Dan; Bell, Ronald E; Boyle, Dennis; Kaita, Robert; Kozub, Tom; Lucia, Matthew; Majeski, Richard; Merino, Enrique; Schmitt, John; Beiersdorfer, Peter; Clementson, Joel; Kubota, Shigeyuki

    2014-01-01

    The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in the form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. These new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments. (paper)

  18. Residual stress in thick low-pressure chemical-vapor deposited polycrystalline SiC coatings on Si substrates

    Science.gov (United States)

    Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.

    2005-04-01

    Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.

  19. Insulating Coating Development for Vanadium Alloys. Phase I Technical Report

    International Nuclear Information System (INIS)

    Gunda, N.; Sastri, S.; Jayaraman, M.; Karandikar, P.

    2000-01-01

    Self-cooled liquid-lithium/vanadium blanket offers many advantages for fusion power systems. Liquid metals moving through a magnetic field are subjected to magnetohydrodynamic (MHD) effects that can increase the pressure drop and affect the flow profiles and heat transfer. Insulating coatings are required to eliminate this effect. Based on the thermodynamic stability data five different coatings were selected PVD and CVD processes were developed to deposit these coatings. All coatings have resistivities much higher than the minimum required. Liquid lithium testing at Argonne National Laboratory indicates that one of the coatings showed only partial spalling. Thus, further refinement of this coating has significant potential to satisfy the requirements for Li/V blanket technology

  20. A comparison of Zircaloy oxide thicknesses on Millstone-3 and North Anna-1 PWR fuel cladding

    International Nuclear Information System (INIS)

    Polley, M.V.; Evans, H.E.

    1993-08-01

    High concentrations of lithium in the coolant may enhance the corrosion rate of Zircaloy fuel cladding. In the present work, oxide thicknesses on fuel cladding from the Millstone 3 PWR were compared with those from the North Anna 1 PWR. The intention was to identify whether the higher lithium levels (up to 3.5 ppM) in the Millstone 3 primary coolant during cycles 2 and 3 led to significantly greater oxidation rates than in North Anna 1 which operated generally with lithium levels lower than 2.2 ppM. The comparisons were made by comparing the measurements with code predictions of Zircaloy oxidation in order to factor out the effect of operational variables on the oxide thicknesses achieved. Overall, Millstone 3 oxide thicknesses were found to be approximately 14% greater than North Anna 1 values. However, approximately 29% lower oxide thicknesses were found on reload Millstone 3 rods exposed to one cycle of elevated lithium chemistry than on Millstone 3 initial fuel exposed to one cycle of normal lithium chemistry during cycle 1. Furthermore, oxide thicknesses on Millstone 3 rods exposed to two cycles of elevated lithium chemistry were approximately 36% lower than on Millstone 3 rods exposed to one cycle of normal lithium chemistry plus one cycle of elevated lithium chemistry. Therefore, it cannot be concluded that elevated lithium operation in Millstone 3 led to enhanced Zircaloy fuel clad corrosion

  1. Card controlled beta backscatter thickness measuring instrument

    International Nuclear Information System (INIS)

    Schlesinger, J.

    1978-01-01

    An improved beta backscatter instrument for the nondestructive measurement of the thickness of thin coatings on a substrate is described. Included therein is the utilization of a bank of memory stored data representative of isotope, substrate, coating material and thickness range characteristics in association with a control card having predetermined indicia thereon selectively representative of a particular isotope, substrate material, coating material and thickness range for conditioning electronic circuit means by memory stored data selected in accord with the predetermined indicia on a control card for converting backscattered beta particle counts into indicia of coating thickness

  2. Effect of the polymeric coating thickness on the photocurrent performance of titanium dioxide nanorod arrays-polyaniline composite-based UV photosensor

    Science.gov (United States)

    Yusoff, M. M.; Mamat, M. H.; Malek, M. F.; Othman, , N.; Ismail, A. S.; Saidi, S. A.; Mohamed, R.; Suriani, A. B.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a one-step immersion method in a glass container. The effect of the polymeric coating thickness of p-type polyaniline (PANI) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated photosensor demonstrated an increased photocurrent under UV irradiation in correlation with the thickness layer of PANI. The measured UV response showed the highest photocurrent of 0.014 µA at 1.0 V of reverse bias with low dark current under the UV radiation (365 nm, 750 µW/cm2). The thickness of the PANI film improved the photocurrent of the fabricated TNAs/PANI composite-based UV photosensor.

  3. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  4. Joint absorption of lithium and oxygen on the tungsten (100) face

    International Nuclear Information System (INIS)

    Gupalo, M.S.; Smereka, T.P.; Babkin, G.V.; Palyukh, B.M.

    1981-01-01

    The paper deals with studying the effect of oxygen on emission-adsorption properties of metal-film Li-W system. Data on work of phi yield and adsorption heat q of lithium on tungsten face (100), preliminarily coated with different quantity of oxygen, are obtained. The method of contact potential difference was used. Strong decrease of yield work with the increase of oxygen coatings, as well as essential growth of initial adsorption heat are observed. Temperature dependence of phi is not practically observed. The data obtained point out, that oxygen presence on the surface causes increase of dipole momentum of lithium adatoms, which results in bond energy growth and reduction phi minimal value of lithium in the presence of oxygen phi=2 eV, q=2.2 eV is obtained at optimal compositions of oxygen-lithium layers on W (100) [ru

  5. Enhanced cycling stability of microsized LiCoO2 cathode by Li4Ti5O12 coating for lithium ion battery

    International Nuclear Information System (INIS)

    Yi, Ting-Feng; Shu, J.; Yue, Cai-Bo; Zhu, Xiao-Dong; Zhou, An-Na; Zhu, Yan-Rong; Zhu, Rong-Sun

    2010-01-01

    The effect of Li 4 Ti 5 O 12 (LTO) coating amount on the electrochemical cycling behavior of the LiCoO 2 cathode was investigated at the high upper voltage limit of 4.5 V. Li 4 Ti 5 O 12 (≤5 wt.%) is not incorporated into the host structure and leads to formation of uniform coating. The cycling performance of LiCoO 2 cathode is related with the amount of Li 4 Ti 5 O 12 coating. The initial capacity of the LTO-coated LiCoO 2 decreased with increasing Li 4 Ti 5 O 12 coating amount but showed enhanced cycling properties, compared to those of pristine material. The 3 wt.% LTO-coated LiCoO 2 has the best electrochemical performance, showing capacity retention of 97.3% between 2.5 V and 4.3 V and 85.1% between 2.5 V and 4.5 V after 40 cycles. The coulomb efficiency shows that the surface coating of Li 4 Ti 5 O 12 is beneficial to the reversible intercalation/de-intercalation of Li + . LTO-coated LiCoO 2 provides good prospects for practical application of lithium secondary batteries free from safety issues.

  6. Lithium adsorption by the first wall of fusion reactor-tokamak

    International Nuclear Information System (INIS)

    Bakunin, O.G.

    1989-01-01

    Lithium adsorption by the first wall of fusion reactor under stationary conditions and in the absence of chemical reactions is considered. Possibility of achieving 70% coating of the wall with lithium which can lead to sufficient decrease of sputtering is shown. 5 refs.; 5 figs

  7. Preparation and characterization of conducting polyaniline-coated LiVPO4F nanocrystals with core-shell structure and its application in lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan, Haiyan; Wu, Xinming; Li, Yongfei

    2015-01-01

    Highlights: • Conducting PANI-coated LiVPO 4 F has been firstly prepared and investigated. • The unique core-shell structure is helpful for the performance of LiVPO 4 F/PANI. • PANI can enhance the electronic conductivity and increase the lithium diffusion coefficient. • LiVPO 4 F/PANI nanocomposite exhibits superior capacity and cycle stability. - Abstract: In this paper, the electrochemical performance of the pure LiVPO 4 F electrode is significantly improved by coating it with the conducting polyaniline via sol-gel method followed by a self-assembly process. X-ray diffraction (XRD) results indicate that the as-prepared sample crystallized in a triclinic LiVPO 4 F phase. Scanning and transmission electron microscopy images show that the particle size of the composite is about hundreds of nanometer and the conducting layer of polyaniline is uniformly coated on the surface of LiVPO 4 F particles. Electrochemical tests reveal that the polyaniline-coated LiVPO 4 F composite exhibits superior capacity and cycle stability, delivering an initial discharge capacity of 149.3 mAh g −1 at 0.1 C in the voltage range of 3.0–4.5 V. Even at high current rates, it can still present discharge capacities of 146.7, 140.1, 131.9 and 121.5 mAh g −1 at 0.2, 1, 2 and 5 C, respectively. The superior electrochemical performance of the electrode could be attributed to the uniform conducting polymer layer, which improves the electronic conductivity and Li-ions diffusion of LiVPO 4 F. Therefore, it can be drawn a conclusion that the remarkable electrochemical performance of the polyaniline-coated LiVPO 4 F makes this 4 V-class electrode a promising alternative for next-generation lithium-ion batteries.

  8. Interface and thickness tuning for blade coated small-molecule organic light-emitting diodes with high power efficiency

    Science.gov (United States)

    Chang, Yu-Fan; Chiu, Yu-Chian; Chang, Hao-Wen; Wang, Yi-Siang; Shih, Yi-Lun; Wu, Chih-Hao; Liu, Yi-Lun; Lin, Yu-Sheng; Meng, Hsin-Fei; Chi, Yun; Huang, Heh-Lung; Tseng, Mei-Rurng; Lin, Hao-Wu; Zan, Hsiao-Wen; Horng, Sheng-Fu; Juang, Jenh-Yih

    2013-09-01

    We developed a general method based on fluorescence microscopy to characterize the interface dissolution in multi-layer organic light-emitting diodes (OLEDs) by blade coating. A sharp bi-layer edge was created before blade coating, with the bottom layer being insoluble and top layer soluble. After blade coating, fluorescence images showed that the edge of the top layer shifted when the layer dissolved completely, whereas the bottom layer's edge remained in place as a positioning mark. The dissolution depth was determined to be 15-20 nm when the emissive-layer host of 2,6-bis (3-(9H-carbazol-9-yl)phenyl) pyridine (26DCzPPy) was coated on the hole-transport layer of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine(NPB), which was consistent with a sudden drop in efficiency of orange OLEDs with layer thickness below 20 nm. Thus, the layer thickness of OLEDs was optimized to stay more than 20 nm for blade coating. For a two-color white OLED with the structure TCTA/26DCzPPy:PO-01-TB:FIrpic/TPBI, efficiency was 24 cd/A and 8.5 lm/W at 1000 cd/m2. For a three-color white OLED with Os(fptz)2(dhpm) added as the emitter, the efficiency was 12.3 cd/A and 3.7 lm/W at 1000 cd/m2. For a green device with the structure TCTA/26DCzPPy:Ir(mppy)3/TPBI, the efficiency was 41.9 cd/A and 23.4 lm/W at 1000 cd/m2.

  9. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength

    Directory of Open Access Journals (Sweden)

    Kaishi Wang

    2018-03-01

    Full Text Available The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS, a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.

  10. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength.

    Science.gov (United States)

    Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K

    2018-03-27

    The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.

  11. Enhancement of Lithium Niobate nanophotonic structures via spin-coating technique for optical waveguides application

    Directory of Open Access Journals (Sweden)

    Fakhri Makram A.

    2017-01-01

    Full Text Available This work is dedicated to investigation of temperature effects in Lithium Niobate (LiNbO3 nanostructures. The LiNbO3 nanostructures were deposited on glass substrate by spin-coating technique. LiNbO3 was set down at 3000 rpm for 30 sec and annealed from 100 to 600 °C. The structures were characterized and analyzed by scanning electron microscopy (SEM and ultra-violet visible (UV-vis spectrophotometer. The measured results have showed that by increasing annealing temperatures, the structures start to be more crystallized and be more homogenized until the optimum arrangement was achieved. Once this was accomplished, it's applicable for optical waveguides development. Eventually, it starts to be less crystallization and non-homogeneous. Energy gap was recorded to be at average value of 3.9 eV.

  12. High Rate Deposition of Thick CrN and Cr2N Coatings Using Modulated Pulse Power (MPP) Magnetron Sputtering

    Science.gov (United States)

    2010-12-01

    AISI 440C steel using a microtribometer (Center for Tribology , Inc) in an ambient air atmosphere without a lubricant (a relative humidity of 251...that the CTE for the 440 C stainless steel substrate is 10.2x10 -6 o C -1 [37],while the CTE values for the CrN and Cr2N coatings are 2.3x10 -6...increased scratch critical load (Fig. 12) as the coating thickness was increased. Since the coating is much harder than the stainless steel substrate

  13. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    International Nuclear Information System (INIS)

    Allain, J.P.; Rokusek, D.L.; Harilal, S.S.; Nieto-Perez, M.; Skinner, C.H.; Kugel, H.W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-01-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  14. Investigations on interactions between the flowing liquid lithium limiter and plasmas

    International Nuclear Information System (INIS)

    Ren, J.; Zuo, G.Z.; Hu, J.S.; Sun, Z.; Li, J.G.; Zakharov, L.E.; Ruzic, D.N.; Xu, W.Y.

    2016-01-01

    Two different designs of flowing liquid lithium limiter were first tested for power exhaust and particle removal in HT-7 in 2012 autumn campaign. During the experiments, the reliability and compatibility of the limiters within Tokamak were experimentally demonstrated, and some positive results were achieved. It was found that the flowing liquid lithium limiter was effective for suppressing H concentration and led to a low ratio of H/(H + D). O impurity was slightly decreased by using limiters as well as when using a Li coating. A significant increase of the wall retention ratio was also observed which resulted from the outstanding D particles pumping ability of flowing liquid lithium limiters. The strong interaction between plasma and lithium surface could cause lithium ejection into plasma and lead to disruptions. The stable plasmas produced by uniform Li flow were in favor of lithium control. While the limiters were applied with a uniform Li flow, the normal plasma was easy to be obtained, and the energy confinement time increased from ∼0.025 s to 0.04 s. Furthermore, it was encouraging to note that the application of flowing liquid lithium limiters could further improve the confinement of plasma by ∼10% on the basis of Li coating. These remarkable results will help for the following design of flowing liquid lithium limiter in EAST to improve the plasma operation.

  15. Conformal Coating Strategy Comprising N-doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO4.

    Science.gov (United States)

    Zhang, Kan; Lee, Jeong-Taik; Li, Ping; Kang, Byoungwoo; Kim, Jung Hyun; Yi, Gi-Ra; Park, Jong Hyeok

    2015-10-14

    Surface carbon coating to improve the inherent poor electrical conductivity of lithium iron phosphate (LiFePO4, LFP) has been considered as most efficient strategy. Here, we also report one of the conventional methods for LFP but exhibiting a specific capacity beyond the theoretical value, ultrahigh rate performance, and excellent long-term cyclability: the specific capacity is 171.9 mAh/g (70 μm-thick electrode with ∼10 mg/cm(2) loading mass) at 0.1 C (17 mA/g) and retains 143.7 mAh/g at 10 C (1.7 A/g) and 95.8% of initial capacity at 10 C after 1000 cycles. It was found that the interior conformal N-C coating enhances the intrinsic conductivity of LFP nanorods (LFP NR) and the exterior reduced graphene oxide coating acts as an electrically conducting secondary network to electrically connect the entire electrode. The great electron transport mutually promoted with shorten Li diffusion length on (010) facet exposed LFP NR represents the highest specific capacity value recorded to date at 10 C and ultralong-term cyclability. This conformal carbon coating approach can be a promising strategy for the commercialization of LFP cathode in lithium ion batteries.

  16. Iron oxide shell coating on nano silicon prepared from the sand for lithium-ion battery application

    Science.gov (United States)

    Furquan, Mohammad; Vijayalakshmi, S.; Mitra, Sagar

    2018-05-01

    Elemental silicon, due to its high specific capacity (4200 mAh g-1) and non-toxicity is expected to be an attractive anode material for Li-ion battery. But its huge expansion volume (> 300 %) during charging of battery, leads to pulverization and cracking in the silicon particles and causes sudden failure of the Li-ion battery. In this work, we have designed yolk-shell type morphology of silicon, prepared from carbon coated silicon nanoparticles soaked in aqueous solution of ferric nitrate and potassium hydroxide. The soaked silicon particles were dried and finally calcined at 800 °C for 30 minutes. The product obtained is deprived of carbon and has a kind of yolk-shell morphology of nano silicon with iron oxide coating (Si@Iron oxide). This material has been tested for half-cell lithium-ion battery configuration. The discharge capacity is found to be ≈ 600 mAh g-1 at a current rate of 1.0 A g-1 for 200 cycles. It has shown a stable performance as anode for Li-ion battery application.

  17. Adsorption of lithium-lanthanum films on the (100) tungsten face

    International Nuclear Information System (INIS)

    Gupalo, M.S.; Smereka, T.P.; Babkin, G.V.; Palyukh, B.M.

    1982-01-01

    The method of contact potential difference is used to investigate combined adsorption of lithium-lanthanum on the (100) tungsten face. The data on work functions and thermal stability of mixed lithium-lanthanum films are obtained. The presence of lanthanum on the W(100) surface leads to appearance of minimum of work functions unobserved for the Li-W(100) system, minimum work functions and optimum lithium concentration in a mixed film are decreased at initial lanthanum coating increase. The presence of lanthanum on the W(100) face leads to lithium adsorption heat decrease

  18. Scalable Production of the Silicon-Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Jin, Yan; Tan, Yingling; Hu, Xiaozhen; Zhu, Bin; Zheng, Qinghui; Zhang, Zijiao; Zhu, Guoying; Yu, Qian; Jin, Zhong; Zhu, Jia

    2017-05-10

    Alloy anodes possessed of high theoretical capacity show great potential for next-generation advanced lithium-ion battery. Even though huge volume change during lithium insertion and extraction leads to severe problems, such as pulverization and an unstable solid-electrolyte interphase (SEI), various nanostructures including nanoparticles, nanowires, and porous networks can address related challenges to improve electrochemical performance. However, the complex and expensive fabrication process hinders the widespread application of nanostructured alloy anodes, which generate an urgent demand of low-cost and scalable processes to fabricate building blocks with fine controls of size, morphology, and porosity. Here, we demonstrate a scalable and low-cost process to produce a porous yin-yang hybrid composite anode with graphene coating through high energy ball-milling and selective chemical etching. With void space to buffer the expansion, the produced functional electrodes demonstrate stable cycling performance of 910 mAh g -1 over 600 cycles at a rate of 0.5C for Si-graphene "yin" particles and 750 mAh g -1 over 300 cycles at 0.2C for Sn-graphene "yang" particles. Therefore, we open up a new approach to fabricate alloy anode materials at low-cost, low-energy consumption, and large scale. This type of porous silicon or tin composite with graphene coating can also potentially play a significant role in thermoelectrics and optoelectronics applications.

  19. Synthesis and performances of Li-Rich@AlF3@Graphene as cathode of lithium ion battery

    International Nuclear Information System (INIS)

    Chen, Dongrui; Tu, Wenqiang; Chen, Min; Hong, Pengbo; Zhong, Xiaoxin; Zhu, Yunmin; Yu, Qipeng; Li, Weishan

    2016-01-01

    Highlights: • Li-Rich@AlF 3 @Graphene was developed as cathode of lithium ion battery. • Coating of 2 nm AlF 3 does not cause capacity loss but is beneficial to rate capability. • Concurrent AlF 3 coating and graphene wrapping significantly improve Li-Rich performance. - Abstract: A novel composite of layered lithium-rich oxide with AlF 3 and graphene, Li-Rich@AlF 3 @Graphene, is synthesized as high performance cathode of lithium ion battery in terms of rate capability and cyclic stability. Physical characterizations from X-ray diffraction, scanning electron microscope and transmission electron microscope, demonstrate that the layered lithium-rich oxide in Li-Rich@AlF 3 @Graphene is composed of uniform nanoparticles of 100 nm, which are coated with a layer of 2 nm AlF 3 and wrapped with graphene sheets. Charge/discharge tests indicate that the naked lithium-rich oxide exhibits poor cyclic stability and rate capability as cathode of lithium ion battery, which can be improved to some extent by the only contribution of AlF 3 but significantly by the concurrent contribution of AlF 3 and graphene.

  20. Novel sensing approach for LPG leakage detection: Part II: Effects of particle size, composition and coating layer thickness

    KAUST Repository

    Mukhopadhyay, Subhas; Nag, Anindya; Zia, Asif; Li, Xie; Kosel, Jü rgen

    2015-01-01

    exhibits the optimization of the response time of the sensor by inhabiting characteristic changes like variation in the concentration of the dispersion medium, thickness of the coating and the size of the dispersed medium. Different concentrations

  1. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    Energy Technology Data Exchange (ETDEWEB)

    Dyartanti, Endah Retno; Jumari, Arif, E-mail: arifjumari@yahoo.com; Nur, Adrian; Purwanto, Agus [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  2. Electrochemical performance of mixed crystallographic phase nanotubes and nanosheets of titania and titania-carbon/silver composites for lithium-ion batteries

    International Nuclear Information System (INIS)

    Das, Shyamal K.; Bhattacharyya, Aninda J.

    2011-01-01

    Highlights: → Carbon wired TiO 2 nanotubes as anode for lithium ion batteries. → Mixed phase nanotubes show higher energy and power density than titania nanosheets. → Lithium storage and phase stabilization influenced by morphology of carbon coating. - Abstract: The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO 2 is discussed here. TiO 2 nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO 2 (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO 2 nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g -1 ) for TiO 2 nanotube and nanosheet were 355 mAh g -1 and 225 mAh g -1 , respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g -1 for TiO 2 nanotubes to 96 mAh g -1 and 57 mAh g -1 respectively for Ag and carbon modified TiO 2 nanotubes. The homogeneously coated amorphous carbon over TiO 2 renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO 2 due to efficient hopping of electrons.

  3. Characterization of lithium evaporators for LTX

    Science.gov (United States)

    Nieto-Perez, M.; Majeski, R.; Timberlake, J.; Lundberg, D.; Kaita, R.; Arevalo-Torres, B.

    2010-11-01

    The presence of lithium on the internal components of fusion devices has proven to be beneficial for reactor performance. The Lithium Tokamak Experiment (LTX) will be the first experimental fusion device operating with a significant portion of its internal surface coated with lithium. One of the key capabilities in the device is the reliable production of lithium films inside the reactor. This task is accomplished with the use of lithium evaporators, specially designed for LTX using resistively heated yttria crucibles. In the present work, results from the operation of one of these evaporators on a separate test stand are presented. Deposition measurements at different power levels were performed using a quartz crystal deposition monitor, and temperature distributions in the evaporator crucible and its content were obtained using an infrared camera and a dip-in thermocouple probe. Modeling of the evaporation cloud was done with the raytracing software OptiCAD, and comparisons between the computations and the temperature and flux measurements were performed, in order to accurately predict spatial lithium deposition rates in different locations of the LTX device.

  4. Versailles Project on Advanced Materials and Standards Interlaboratory Study on Measuring the Thickness and Chemistry of Nanoparticle Coatings Using XPS and LEIS

    NARCIS (Netherlands)

    Belsey, N.A.; Cant, D.J.H.; Minelli, C.; Araujo, J.R.; Bock, B.; Brüner, P.; Castner, D.G.; Ceccone, C.; Counsell, J.D.P.; Dietrich, P.M.; Engelhard, M.H.; Fearn, S.; Galhardo, C.E.; Kalbe, H.; Kim, J.W.; Lartundo-Rojas, L.; Luftman, H.S.; Nunney, T.S.; Pseiner, J.; Smith, E.F.; Spampinato, V.; Sturm, Jacobus Marinus; Thomas, A.G.; Treacy, J.P.W.; Veith, L.; Wagstaffe, M.; Wang, H.; Wang, M..; Wang, Y.C.; Werner, W.; Yang, L.; Shard, A.G.

    2016-01-01

    We report the results of a Versailles Project on Advanced Materials and Standards (VAMAS) interlaboratory study on the measurement of the shell thickness and chemistry of nanoparticle coatings. Peptide-coated gold particles were supplied to laboratories in two forms: a colloidal suspension in pure

  5. Lithium ion batteries based on nanoporous silicon

    Science.gov (United States)

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  6. Recent progress of NSTX lithium program and opportunities for magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Kaita, R.; Kugel, H.W. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Ahn, J.-W. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Allain, J.P.; Battaglia, D. [Purdue University, West Lafayette, IN 47907 (United States); Bell, R.E. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Ding, S. [Academy of Science Institute of Plasma Physics, Hefei (China); Gerhardt, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Guttenfelder, W.; Hosea, J.; Jaworski, M.A.; Kallman, J.; Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Mansfield, D.K. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer In this paper, we review the recent progress on the NSTX lithium research. Black-Right-Pointing-Pointer We summarize positive features of lithium effects on plasma. Black-Right-Pointing-Pointer We also point out unresolved issues and unanswered questions on the lithium research. Black-Right-Pointing-Pointer We describe a possible closed liquid lithium divertor tray concept. Black-Right-Pointing-Pointer We note opportunities and challenges of lithium applications for magnetic fusion. - Abstract: Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last six years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a dual lithium evaporation system which can evaporate up to {approx}160 g of lithium onto the lower divertor plates between re-loadings. The unique feature of the NSTX lithium research program is that it can investigate the effects of lithium coated plasma-facing components in H-mode divertor plasmas. This lithium evaporation system has produced many intriguing and potentially important results. In 2010, the NSTX lithium program has focused on the effects of liquid lithium divertor (LLD) surfaces including the divertor heat load, deuterium pumping, impurity control, electron thermal confinement, H-mode pedestal physics, and enhanced plasma performance. To fill the LLD with lithium, 1300 g of lithium was evaporated into the NSTX vacuum vessel during the 2010 operations. The routine use of lithium in 2010 has significantly improved the plasma shot availability resulting in a record number of plasma shots in any given year. In this paper, as a follow-on paper from the 1st lithium symposium [1], we review the recent progress toward developing fundamental understanding of the NSTX lithium experimental observations as well as the opportunities and associated R and D required

  7. The preparation and graphene surface coating NaTi{sub 2}(PO{sub 4}){sub 3} as cathode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na; Wang, Yanping; Rao, Richuan; Dong, Xiongzi [Department of Chemical and Chemical Engineering, Hefei normal University, Hefei, Anhui 230601 (China); Zhang, Xianwen, E-mail: 18326056237@163.com [Institute of Advanced Energy Technology & Equipment, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009 (China); Zhu, Sane, E-mail: sdjnlina@163.com [Department of Chemistry and Materials Engineering, Hefei University, Hefei, Anhui 230601 (China)

    2017-03-31

    Graphical abstract: The NaTi{sub 2}(PO{sub 4}){sub 3}/graphene composite is used directly as cathode electrode material for lithium-ion battery by using metal lithium as an anode electrode. Meanwhile, the electrochemical properties of the composite in this system is firstly studied in detail. The NaTi{sub 2}(PO{sub 4}){sub 3}/graphene composite exhibits the better rate and cyclic performance than NaTi{sub 2}(PO{sub 4}){sub 3}, which is ascribed to its stable 3-D framework and the enhanced electronic conduction resulting from the graphene sheets surface modification. - Highlights: • The graphene coated NaTi{sub 2}(PO{sub 4}){sub 3} was prepared by a simple sol-gel method followed by calcination. • The electrochemical properties of the NaTi{sub 2}(PO{sub 4}){sub 3}/graphene composite was firstly studied in detail when used as cathode electrode material for lithium-ion batteries. • The electrochemical reaction mechanism of NaTi{sub 2}(PO{sub 4}){sub 3}/graphene composite was investigated by ex situ XRD. - Abstract: The graphene coated NaTi{sub 2}(PO{sub 4}){sub 3} has been fabricated via a simple sol-gel process followed by calcination. The NaTi{sub 2}(PO{sub 4}){sub 3}/graphene (NTP/G) composite is used directly as cathode electrode material for lithium-ion battery and the electrochemical properties of the composite in this system is firstly studied in detail. In the charge-discharge process, two Li{sup +} can occupy octahedral M (2) site and be reversibly intercalated into the 3D framework of NTP through the ion conduction channel where almost all of Na{sup +} are immobilized to sustain the framework. At 5C rate, the capacity retention of the NTP/G composite after 800 cycles is still up to 82.7%. The superior electrochemical properties of NTP/G is ascribed to its stable 3-D framework and the enhanced electronic conduction resulting from the graphene sheets surface modification.

  8. Conductive Carbon Coatings for Electrode Materials

    International Nuclear Information System (INIS)

    Doeff, Marca M.; Kostecki, Robert; Wilcox, James; Lau, Grace

    2007-01-01

    A simple method for optimizing the carbon coatings on non-conductive battery cathode material powders has been developed at Lawrence Berkeley National Laboratory. The enhancement of the electronic conductivity of carbon coating enables minimization of the amount of carbon in the composites, allowing improvements in battery rate capability without compromising energy density. The invention is applicable to LiFePO 4 and other cathode materials used in lithium ion or lithium metal batteries for high power applications such as power tools and hybrid or plug-in hybrid electric vehicles. The market for lithium ion batteries in consumer applications is currently $5 billion/year. Additionally, lithium ion battery sales for vehicular applications are projected to capture 5% of the hybrid and electric vehicle market by 2010, and 36% by 2015 (http://www.greencarcongress.com). LiFePO 4 suffers from low intrinsic rate capability, which has been ascribed to the low electronic conductivity (10 -9 S cm -1 ). One of the most promising approaches to overcome this problem is the addition of conductive carbon. Co-synthesis methods are generally the most practical route for carbon coating particles. At the relatively low temperatures ( 4 , however, only poorly conductive disordered carbons are produced from organic precursors. Thus, the carbon content has to be high to produce the desired enhancement in rate capability, which decreases the cathode energy density

  9. Reactivity of lithium exposed graphite surface

    International Nuclear Information System (INIS)

    Harilal, S.S.; Allain, J.P.; Hassanein, A.; Hendricks, M.R.; Nieto-Perez, M.

    2009-01-01

    Lithium as a plasma-facing component has many attractive features in fusion devices. We investigated chemical properties of the lithiated graphite surfaces during deposition using X-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy. In this study we try to address some of the known issues during lithium deposition, viz., the chemical state of lithium on graphite substrate, oxide layer formation mechanisms, Li passivation effects over time, and chemical change during exposure of the sample to ambient air. X-ray photoelectron studies indicate changes in the chemical composition with various thickness of lithium on graphite during deposition. An oxide layer formation is noticed during lithium deposition even though all the experiments were performed in ultrahigh vacuum. The metal oxide is immediately transformed into carbonate when the deposited sample is exposed to air.

  10. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries

    Science.gov (United States)

    Yang, Qi; Huang, Jie; Li, Yejing; Wang, Yi; Qiu, Jiliang; Zhang, Jienan; Yu, Huigen; Yu, Xiqian; Li, Hong; Chen, Liquan

    2018-06-01

    Surface modification of LiCoO2 with the ultrathin film of solid state electrolyte of Li1.4Al0.4Ti1.6(PO4)3 (LATP) has been realized by a new and facile solution-based method. The coated LiCoO2 reveals enhanced structural and electrochemical stability at high voltage (4.5 V vs Li+/Li) in half-cell with liquid electrolyte. Transmission electron microscopy (TEM) images show that a dense LATP coating layer is covered on the surface of LiCoO2 uniformly with thickness of less than 20 nm. The LATP coating layer is proven to be able to prevent the direct contact between the cathode and the electrolyte effectively and thus to suppress the side reactions of liquid electrolyte with LiCoO2 surface at high charging voltage. As a result, dissolution of Co3+ has been largely suppressed over prolonged cycling as indicated by the X-ray photoelectron spectroscopy (XPS) measurements. Due to this surface passivating feature, the electrochemical performance of 0.5 wt% LATP modified LiCoO2 has also been evaluated in an all solid lithium battery with poly(ethylene oxide)-based polymer electrolyte. The cell exhibits 93% discharge capacity retention of the initial discharge capacity after 50 cycles at the charging cut-off voltage of 4.2 V, suggesting that the LATP coating layer is effective to suppress the oxidation of PEO at high voltage.

  11. Directly Formed Alucone on Lithium Metal for High-Performance Li Batteries and Li-S Batteries with High Sulfur Mass Loading.

    Science.gov (United States)

    Chen, Lin; Huang, Zhennan; Shahbazian-Yassar, Reza; Libera, Joseph A; Klavetter, Kyle C; Zavadil, Kevin R; Elam, Jeffrey W

    2018-02-28

    Lithium metal is considered the "holy grail" of next-generation battery anodes. However, severe parasitic reactions at the lithium-electrolyte interface deplete the liquid electrolyte and the uncontrolled formation of high surface area and dendritic lithium during cycling causes rapid capacity fading and battery failure. Engineering a dendrite-free lithium metal anode is therefore critical for the development of long-life batteries using lithium anodes. In this study, we deposit a conformal, organic/inorganic hybrid coating, for the first time, directly on lithium metal using molecular layer deposition (MLD) to alleviate these problems. This hybrid organic/inorganic film with high cross-linking structure can stabilize lithium against dendrite growth and minimize side reactions, as indicated by scanning electron microscopy. We discovered that the alucone coating yielded several times longer cycle life at high current rates compared to the uncoated lithium and achieved a steady Coulombic efficiency of 99.5%, demonstrating that the highly cross-linking structured material with great mechanical properties and good flexibility can effectively suppress dendrite formation. The protected Li was further evaluated in lithium-sulfur (Li-S) batteries with a high sulfur mass loading of ∼5 mg/cm 2 . After 140 cycles at a high current rate of ∼1 mA/cm 2 , alucone-coated Li-S batteries delivered a capacity of 657.7 mAh/g, 39.5% better than that of a bare lithium-sulfur battery. These findings suggest that flexible coating with high cross-linking structure by MLD is effective to enable lithium protection and offers a very promising avenue for improved performance in the real applications of Li-S batteries.

  12. Study on the L–H transition power threshold with RF heating and lithium-wall coating on EAST

    DEFF Research Database (Denmark)

    Chen, Leifeng; Xu, G.S.; Nielsen, Anders Henry

    2016-01-01

    The power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency (RF) heating and lithium-wall coating is investigated experimentally on EAST for two sets of walls: an all carbon wall (C) and molybdenum chamber and a carbon divertor (Mo/C). For both sets of walls...... Ploss increases with neutral density near the lower X-point in EAST with the Mo/C wall, consistent with previous results in the C wall (Xu et al 2011 Nucl. Fusion 51 072001). These findings suggest that the edge neutral density, the ion ∇B drift as well as the divertor pumping capability play important...

  13. How a gel polymer electrolyte affects performance of lithium/sulfur batteries

    International Nuclear Information System (INIS)

    Zhang, Sheng S.; Tran, Dat T.

    2013-01-01

    Highlights: •Conventional separator is coated with a 50PEO-50SiO 2 (wt.%) composite layer. •Composite coating increases tensile strength and electrolyte wettability. •Coated separator offers an alternative approach for making gel polymer Li/S battery. •Li/S battery takes benefits of gel polymer electrolyte at the expense of capacity. -- Abstract: Gel polymer electrolyte (GPE) and composite gel polymer electrolyte (CGPE) have been widely employed to improve the safety and cycling performance of rechargeable lithium and lithium-ion batteries. In order to determine whether this approach is applicable to lithium/sulfur (Li/S) battery, we examine the effect of CGPE on the cycling and storage performances of Li/S cells by comparing a 50PEO-50SiO 2 (wt.%) composite coated separator (C-separator) with a pristine separator (P-separator). Results show that the composite coating significantly enhances the wettability of liquid electrolyte on the separator and that resulting CGPE can tightly glue the separator and electrode together. In comparison with the P-separator, the C-separator offers Li/S cells similar capacity retention and rate capability; however it greatly affects the specific capacity of sulfur. The analysis on the impedance spectrum of a lithium polysulfide (PS) solution reveal that the reduction of sulfur specific capacity is due to the high viscosity of the CGPE and the strong adsorption of SiO 2 filler to the PS species, which trap PS species in the separator and hence reduce the utilization of sulfur active material. Therefore, the benefits of the GPE and CGPE to the Li/S batteries can be taken only at the expense of sulfur specific capacity

  14. Implications of NSTX lithium results for magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Canik, J.M.; Diem, S. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Menard, J.; Paul, S.F. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Raman, R. [University of Washington at Seattle, Seattle, WA (United States); Sabbagh, S.A. [Columbia University, New York, NY (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Soukhanovskii, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Taylor, G. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2010-11-15

    Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to {approx}100 g of lithium onto the lower divertor plates between lithium re-loadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, edge localized mode (ELM) control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  15. Implications of NSTX Lithium Results for Magnetic Fusion Research

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P.; Canik, J.M.; Diem, S.; Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D.; Maingi, R.; Menard, J.; Paul, S.F.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.; Taylor, G.

    2010-01-01

    Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ∼ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  16. Implications of NSTX lithium results for magnetic fusion research

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P.; Canik, J.M.; Diem, S.; Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D.; Maingi, R.; Menard, J.; Paul, S.F.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.; Taylor, G.

    2010-01-01

    Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ∼100 g of lithium onto the lower divertor plates between lithium re-loadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, edge localized mode (ELM) control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  17. Li3V2(PO4)3-coated Li1.17Ni0.2Co0.05Mn0.58O2 as the cathode materials with high rate capability for Lithium ion batteries

    International Nuclear Information System (INIS)

    Liu, Yi; Huang, Xiao; Qiao, Qiqi; Wang, Yonglong; Ye, Shihai; Gao, Xueping

    2014-01-01

    In this work, Lithium rich layered oxide Li 1.17 Ni 0.2 Co 0.05 Mn 0.58 O 2 (LNCMO) is prepared and coated with Li 3 V 2 (PO 4 ) 3 (LVP) by a chemical deposition method. The surface modification with LVP is introduced into Li-rich layered oxides LNCMO for the first time. After 100 cycles of charging and discharging at various rates, the Li 3 V 2 (PO 4 ) 3 -coated Li 1.17 Ni 0.2 Co 0.05 Mn 0.58 O 2 (LVP-coated LNCMO) (5 wt%) still provides a large capacity of 261.4 mAh g -1 , much higher than the pristine LNCMO (211.5 mAh g -1 ). At 5 C rate, the LVP-coated LNCMO exhibits a stable cyclic capacity of 153.4 mAh g -1 , higher than 114.1 mAh g -1 of the pristine LNCMO. The electrochemical impedance spectroscopy (EIS) analysis demonstrates the LVP coating layer can suppress interaction between the cathode surface and the electrolyte and enhance the kinetics of lithium-ion diffusion, contributing to the stable cyclic performance with more cyclic capacity as well as at the high current density

  18. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness.

    Science.gov (United States)

    Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe

    2018-06-01

    To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  19. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  20. Cathodic protection beneath thick external coating on flexible pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Festy, Dominique; Choqueuse, Dominique; Leflour, Denise; Lepage, Vincent [Ifremer - Centre de Brest, BP 70 29280 Plouzane (France); Condat, Carol Taravel; Desamais, Nicolas [Technip- FLEXIFRANCE - PED/PEC - Rue Jean Hure, 76580 Le Trait (France); Tribollet, Bernard [UPR 15 du CNRS, Laboratoire LISE, 4 Place Jussieu, 75252 Paris Cedex (France)

    2004-07-01

    Flexible offshore pipelines possess an external polymer sheath to protect the structure against seawater. In case of an accidental damage of the outer sheath, the annulus of the flexible pipe is flooded with seawater. Far from the damage, corrosion and/or corrosion fatigue of armour steel wires in the annulus occur in a strictly deaerated environment; this has been studied for a few years. At the damage location, the steel wires are in direct contact with renewed seawater. In order to protect them against corrosion, a cathodic protection is applied using sacrificial anodes located at the end fittings. The goal of this work is to evaluate the extent of the cathodic protection as well as the electrolyte oxygen concentration beneath the coating around the damage, to know whether or not there is a non protected area with enough oxygen where corrosion and corrosion fatigue can occur. The experimental work was performed with a model cell (2000 x 200 mm{sup 2}), composed of a mild steel plate and a PMMA coat (transparent poly-methyl-methacrylate). The thickness of the gap between the steel plate and the PMMA coat was 0.5 mm. The potential and current density were monitored all along the cell (70 sensors). The oxygen concentration was also recorded. The experiments were performed with natural sea water, and cathodic protection was applied in a reservoir at one extremity of the cell. Another reservoir at the other cell extremity enabled carbon dioxide bubbling to simulate pipeline annular conditions. PROCOR software was used to simulate potential and current density within the gap and a mathematical model was developed to model oxygen concentration evolution. Both model and experimental results show that the extent of the cathodic protection is much greater than that of oxygen. Oxygen depletion is very quick within the gap when seawater fills it and the oxygen concentration is close to zero a few milli-metres from the gap opening. On the other hand, the cathodic protection

  1. Innovative manufacturing and materials for low cost lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Steven [Optodot Corporation, Woburn, MA (United States)

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator and any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability

  2. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Strelcov, Evgheni; Kravchenko, Ivan I.; Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Manzo, Michele; Gallo, Katia [Department of Applied Physics, KTH - Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro, Portugal and Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-12-28

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity.

  3. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    International Nuclear Information System (INIS)

    Neumayer, Sabine M.; Rodriguez, Brian J.; Strelcov, Evgheni; Kravchenko, Ivan I.; Kalinin, Sergei V.; Manzo, Michele; Gallo, Katia; Kholkin, Andrei L.

    2015-01-01

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity

  4. Dependence of the optical constants and the performance in the SPREE gas measurement on the thickness of doped tin oxide over coatings

    Science.gov (United States)

    Fischer, D.; Hertwig, A.; Beck, U.; Negendank, D.; Lohse, V.; Kormunda, M.; Esser, N.

    2017-11-01

    In this study, thickness related changes of the optical properties of doped tin oxide were studied. Two different sets of samples were prepared. The first set was doped with iron or nickel on silicon substrate with thicknesses of 29-56 nm, the second was iron doped on gold/glass substrate with 1.6-6.3 nm. The optical constants were determined by using spectral ellipsometry (SE) followed by modelling of the dielectric function with an oscillator model using Gaussian peaks. The analysis of the optical constants shows a dependence of the refraction and the absorption on the thickness of the doped tin oxide coating. In addition to the tin oxide absorption in the UV, one additional absorption peak was found in the near-IR/red which is related to plasmonic effects due to the doping. This peak shifts from the near-IR to the red part of the visible spectrum and becomes stronger by reducing the thickness, probably due to the formation of metal nanoparticles in this layer. These results were found for two different sets of samples by using the same optical model. Afterwards the second sample set was tested in the Surface Plasmon Resonance Enhanced Ellipsometric (SPREE) gas measurement with CO gas. It was found that the thickness has significant influence on the sensitivity and thus the adsorption of the CO gas. By increasing the thickness from 1.6 nm to 5.1 nm, the sensing ability is enhanced due to a higher coverage of the surface with the over coating. This is explained by the high affinity of CO molecules to the incorporated Fe-nanoparticles in the tin oxide coating. By increasing the thickness further to 6.3 nm, the sensing ability drops because the layer disturbs the SPR sensing effect too much.

  5. Microprocessor isotope gauges for measurement of coating thickness and of air dust pollution

    International Nuclear Information System (INIS)

    Machaj, B.; Zrudelny, F.; Sikora, A.; Jaszczuk, J.

    1986-01-01

    The article describes a coating thickness gauge based on measurement of backscattered beta particles, and an air dust pollution gauge based on measurement of dust deposited from known volume of ambient air passed through a filter, by attenuation of beta radiation. In both cases to control the gauges and to process head signals microcomputer system based on Intel 8080 microprocessor is employed. Algorithms for processing and control of the gauges and corresponding flow charts are presented. Block diagram of microcomputer system used is presented, as well as the manner of operation of the gauges. (author)

  6. Ultra-thin lithium micro-batteries. Performances and applications; Microaccumulateurs ultra minces au lithium. Performances et applications

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.; Terrat, J.P. [Hydromecanique et frottement (HEF), 42 - Andrezieux Boutheon (France); Levasseur, A.; Vinatier, P.; Meunier, G. [Centre National de la Recherche Scientifique (CNRS), 33 - Talence (France). Institut de Chimie de la Matiere Condensee et Physique de Bordeaux

    1996-12-31

    This short paper (abstract) describes the characteristics and performances of prototypes of ultra-thin lithium micro-batteries (thickness < 0.2 mm) which can be incorporated into microelectronic circuits. (J.S.)

  7. Ultra-thin lithium micro-batteries. Performances and applications; Microaccumulateurs ultra minces au lithium. Performances et applications

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M; Terrat, J P [Hydromecanique et frottement (HEF), 42 - Andrezieux Boutheon (France); Levasseur, A; Vinatier, P; Meunier, G [Centre National de la Recherche Scientifique (CNRS), 33 - Talence (France). Institut de Chimie de la Matiere Condensee et Physique de Bordeaux

    1997-12-31

    This short paper (abstract) describes the characteristics and performances of prototypes of ultra-thin lithium micro-batteries (thickness < 0.2 mm) which can be incorporated into microelectronic circuits. (J.S.)

  8. Biocarbon-coated LiFePO4 nucleus nanoparticles enhancing electrochemical performances

    DEFF Research Database (Denmark)

    Zhang, X.G.; Zhang, X.D.; He, W.

    2012-01-01

    We report a green biomimetic method to synthesize biocarbon-coated LiFePO4 nucleus nanoparticles using yeast cells as both a structural template and a biocarbon source for high-power lithium-ion batteries.......We report a green biomimetic method to synthesize biocarbon-coated LiFePO4 nucleus nanoparticles using yeast cells as both a structural template and a biocarbon source for high-power lithium-ion batteries....

  9. Combined adsorption of lithium and oxygen on (111) face of tungsten

    International Nuclear Information System (INIS)

    Lozovoj, Ya.B.; Smereka, T.P.; Babkin, G.V.; Payukh, B.M.

    1986-01-01

    A contact potential difference technique has been employed to study the electron-adsorption properties of lithium films on a (111) face of tungsten, preliminary coated with different doses of oxygen. At all the lithium coverages studied the presence of oxygen on the surface leads to a significant decrease of the work function φ min and an increase of the thermal stability of lithium films. For optimal coverage φ=1.8 eV, q=2.2 eV

  10. Effect of Calendering on Electrode Wettability in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yangping eSheng

    2014-12-01

    Full Text Available Controlling the wettability between the porous electrode and the electrolyte in lithium ion batteries can improve both the manufacturing process and the electrochemical performance of the cell. The wetting rate, which is the electrolyte transport rate in the porous electrode, can be quantified using the wetting balance. The effect of the calendering process on the wettability of anode electrodes was investigated. A graphite anode film with an as-coated thickness of 59 μm was used as baseline electrode film and was calendered to produce films with thickness ranging from 55 to 41 µm. Results show that wettability is improved by light calendering from an initial thickness of 59 μm to a calendered thickness of 53 μm where the wetting rate increased from 0.375 to 0.589 mm/s0.5. Further calendering below 53 µm resulted in a decrease in wetting rates to a minimum observed value of 0.206 mm/s0.5 at a calendered thickness of 41 μm. Under the same electrolyte, wettability of the electrode is controlled to a great extent by the pore structure in the electrode film which includes parameters such as porosity, pore size distribution, pore geometry and topology. Relations between the wetting behavior and the pore structure as characterized by mercury intrusion and electron microscopy exist and can be used to manipulate the wetting behavior of electrodes.

  11. The fabrication of a vanadium-stainless steel test section for MHD testing of insulator coatings in flowing lithium

    International Nuclear Information System (INIS)

    Reed, C.B.; Mattas, R.F.; Smith, D.L.; Chung, H.; Tsai, H.-C.; Morgan, G.D.; Wille, G.W.; Young, C.

    1996-01-01

    To test the magnetohydrodynamic (MHD) pressure drop reduction performance of candidate insulator coatings for the ITER Vanadium/Lithium Breeding Blanket, a test section comprised of a V- 4Cr-4Ti liner inside a stainless steel pipe was designed and fabricated. Theoretically, the MHD pressure drop reduction benefit resulting, from an electrically insulating coating on a vanadium- lined pipe is identical to the benefit derived from an insulated pipe fabricated of vanadium alone. A duplex test section design consisting of a V alloy liner encased in a SS pressure boundary provided protection for vanadium from atmospheric contamination during operation at high temperature and obviated any potential problems with vanadium welding while also minimizing the amount of V alloy material required. From the MHD and insulator coating- point of view, the test section outer SS wall and inner V alloy liner can be modeled simply as a wall having a sandwich construction. Two 52.3 mm OD x 2.9 m long V-alloy tubes were fabricated by Century Tubes from 64 mm x 200 mm x 1245 mm extrusions produced by Teledyne Wah Chang. The test section's duplex structure was subsequently fabricated at Century Tubes by drawing down a SS pipe (2 inch schedule 10) over one of the 53.2 mm diameter V tubes

  12. Corrosion inhibition by lithium zinc phosphate pigment

    International Nuclear Information System (INIS)

    Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.

    2013-01-01

    Highlights: •Synthesis of lithium zinc phosphate (LZP) by chemical co-precipitation method. •Corrosion inhibition activity of pigments compare with zinc phosphate (ZP). •LZP showed superior corrosion inhibition effect in EIS measurements. •Evaluation of adhesion strength and dispersion stability. -- Abstract: Lithium zinc phosphate (LZP) has been synthesized through a co-precipitation process and characterized by XRD and IR spectroscopy. The inhibitive performances of this pigment for corrosion of mild steel have been discussed in comparison with the zinc phosphate (ZP) in the pigment extract solution by means of EIS and in the epoxy coating by means of salt spray. The EIS and salt spray results revealed the superior corrosion inhibitive effect of LZP compared to ZP. Moreover, adhesion strength and dispersion stability of the pigmented epoxy coating showed the advantage of LZP compared to ZP

  13. Thermal analysis of silicon carbide coating on a nickel based superalloy substrate and thickness measurement of top layers by lock-in infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)

    2017-04-15

    In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

  14. Development of intermetallic coatings for fusion power applications

    International Nuclear Information System (INIS)

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.

    1994-03-01

    In the design of liquid-metal cooling systems, corrosion resistance of structural materials and magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys are potential materials for structural applications in a fusion reactor. Insulator coatings inside the tubing are required when the system is cooled by liquid metals. Various intermetallic films were produced on V, V-t, and V-20 Ti, V-5Cr-t and V-15Cr-t, and Ti, and Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid lithium of 3--5 at.% and containing dissolved metallic solutes at temperatures of 416--880 degrees C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved nitrogen in liquid lithium or by air oxidation under controlled conditions at 600--1000 degrees C. These reactions converted the intermetallic layers to electrically insulating oxide/nitride or oxy-nitride layers. This coating method could be applied to a commercial product. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes because the coating is formed by liquid-phase reaction. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid lithium at high temperatures

  15. Novel sensing approach for LPG leakage detection: Part II: Effects of particle size, composition and coating layer thickness

    KAUST Repository

    Mukhopadhyay, Subhas

    2015-10-30

    Prominent research has been going on to develop a low-cost, efficient gas sensing system. The paper presents a continuation of our earlier research work done to develop a new sensing approach for gas detection at ambient conditions. The work exhibits the optimization of the response time of the sensor by inhabiting characteristic changes like variation in the concentration of the dispersion medium, thickness of the coating and the size of the dispersed medium. Different concentrations of the dispersion medium in the coated suspension were tested to determine the optimal composition required to achieve the highest sensitivity of the tin oxide (SnO2) layer towards the tested gas. The control over adsorption and desorption of the gas molecules in the coated layer was achieved by investigating the particle size of the dispersed medium. The response time of the coated sensor was encouraging and owns a promising potential to the development of a more efficient gas sensing system.

  16. Improving the performance of soft carbon for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen Zonghai; Wang Qingzheng; Amine, K.

    2006-01-01

    A novel technique for designing a robust solid electrolyte interface (SEI) on the negative electrodes of lithium-ion batteries has been developed using a silane coating. Two silane compounds, 3,3,3-trifluoropropyltrimethoxysilane (TFPTMS) and dimethoxybis(2-(2-(2-mothoxyethoxy)ethoxy)ethoxy)silane (1ND3(MeO)), have been investigated with respect to improving the capacity retention of lithium manganese oxide spinel/soft carbon cells. The impact of the silane coating on the soft carbon electrode will be attributed to (1) changes in surface functional groups (2) compositional change of the SEI, and (3) changes in the kinetics of manganese deposition. The impact of the upper cutoff voltage on the capacity retention of the cell was also discussed

  17. Preparation of aluminide coatings on the inner surface of tubes by heat treatment of Al coatings electrodeposited from an ionic liquid

    International Nuclear Information System (INIS)

    Xue, Dongpeng; Chen, Yimin; Ling, Guoping; Liu, Kezhao; Chen, Chang’an; Zhang, Guikai

    2015-01-01

    Highlights: • Al coating is prepared on the inner surface of one-meter tube. • Al coating shows good adherence to the substrate. • The thickness of Al coating is uniform along the tube. • Aluminide coating is obtained by heat treating Al coating. • Structure of aluminide coating is regulated by different thickness of Al coating. - Abstract: Aluminide coatings were prepared on the inner surface of 316L stainless steel tubes with size of Ø 12 mm × 1000 mm by heat-treating Al coatings electrodeposited from AlCl 3 -1-ethyl-3-methyl-imidazolium chloride (AlCl 3 –EMIC) ionic liquid at room temperature. Studies on the electrolytic etching pretreatment of stainless tubes before Al coating electrodeposition were carried out. The Al coating showed good adherence to the substrate after electrolytic etching at 10 mA/cm 2 for 10 min. The thickness of Al coatings was uniform along the tube. The structure of prepared aluminide coatings can be regulated by different thickness of Al coating. The outer layer of aluminide coatings was FeAl, Fe 2 Al 5 and FeAl 3 for the samples of 1-μm, 5-μm and 10-μm thick Al coatings, respectively.

  18. Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Ivanov, Ilia N. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Manzo, Michele; Gallo, Katia, E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie [Department of Applied Physics, KTH-Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-12-14

    Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the “up” to the “down” state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original “up” state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.

  19. Development of Electrochemical Processes for Aluminium-Based Coatings for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Konys, J. [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-12-15

    Reduced activation ferritic-martensitic steels (RAFM) are envisaged in future fusion technology as structural material which will be in direct contact with a flowing liquid lead-lithium melt, serving as breeder material. Aluminium-based coatings had proven their ability to protect the structural material from corrosion attack in flowing Pb-15.7Li and to reduce tritium permeation into the coolant, significantly. Coming from scales produced by hot dipping aluminization (HDA), the development of electrochemical-based processes to produce well-defined aluminium-based coatings on RAFM steels gained increased attention in research during the last years. Two different electrochemical processes are described in this paper: The first one, referred to as ECA, is based on the electrodeposition of aluminium from volatile, metal-organic electrolytes. The other process called ECX is based on ionic liquids. All three processes exhibit specific characteristics, for example in the field of processability, control of coating thicknesses (low activation criteria) and heat treatment behavior. The aim of this article is to compare these different coating processes critically, whereby the focus is on the comparison of ECA and ECX processes. New results for ECX will be presented and occurring development needs for the future will be discussed.

  20. Development of Electrochemical Processes for Aluminium-Based Coatings for Fusion Applications

    International Nuclear Information System (INIS)

    Konys, J.

    2016-01-01

    Reduced activation ferritic-martensitic steels (RAFM) are envisaged in future fusion technology as structural material which will be in direct contact with a flowing liquid lead-lithium melt, serving as breeder material. Aluminium-based coatings had proven their ability to protect the structural material from corrosion attack in flowing Pb-15.7Li and to reduce tritium permeation into the coolant, significantly. Coming from scales produced by hot dipping aluminization (HDA), the development of electrochemical-based processes to produce well-defined aluminium-based coatings on RAFM steels gained increased attention in research during the last years. Two different electrochemical processes are described in this paper: The first one, referred to as ECA, is based on the electrodeposition of aluminium from volatile, metal-organic electrolytes. The other process called ECX is based on ionic liquids. All three processes exhibit specific characteristics, for example in the field of processability, control of coating thicknesses (low activation criteria) and heat treatment behavior. The aim of this article is to compare these different coating processes critically, whereby the focus is on the comparison of ECA and ECX processes. New results for ECX will be presented and occurring development needs for the future will be discussed.

  1. Laser melting treatment of Ni-P surface alloys on mild steel. Influence of initial coating thickness and laser scanning rate

    Directory of Open Access Journals (Sweden)

    García-Alonso, M. C.

    1997-08-01

    Full Text Available Different thickness Ni-P coatings deposited on mild steel are submitted to laser surface melting at different scanning rates. The microstructure of the alloys is characterized by optical and scanning electron microscopy and microprobe analysis. It is shown that both the initial coating thickness and the laser scanning rate have an influence on the shape, extent and size of the different structures resulting from the solidification process. Thus, when the laser scanning rate increases a progressive refinement of the structure takes place that could even totally block the dendritic growth produced during solidification for a high initial coating thickness.

    Recubrimientos de Ni-P, con distinto espesor, depositados sobre un acero microaleado fueron tratados con láser a diferentes velocidades de barrido. La microestructura, tanto del recubrimiento como del acero base, ha sido caracterizada por microscopía óptica y electrónica y por microanálisis. En el proceso de solidificación se han obtenido distintas estructuras que varían en cuanto a la forma, extensión y tamaño dependiendo del espesor inicial de recubrimiento y de la velocidad de barrido del haz láser. A medida que la velocidad del haz aumenta, se produce un refinamiento progresivo de la microestructura dendrítica y, en casos extremos de alto espesor de recubrimiento y velocidades grandes, este crecimiento dendrítico se bloquea.

  2. Tuning the shell thickness-dependent plasmonic absorption of Ag coated Au nanocubes: The effect of synthesis temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jian, E-mail: jianzhusummer@163.com; Zhang, Fan; Chen, Bei-Bei; Li, Jian-Jun; Zhao, Jun-Wu, E-mail: nanoptzhao@163.com

    2015-09-15

    Graphical abstract: Ag coating leads to great enhancement of SPR absorbance of Au nanocubes, and the Ag coating-dependent non-monotonous SPR shift is greater at lower temperature. - Highlights: • Au nanocubes with more uniform shape can be obtained at lower growth temperature. • Ag coating leads to great enhancement of SPR absorption intensity. • The Ag coating dependent non-monotonous SPR shift is greater at lower temperature. - Abstract: The temperature dependent synthesis and plasmonic optical properties of Ag coated Au nanocubes have been investigated experimentally. It has been found that the Au nanocubes with more uniform morphology and higher yield could be obtained by decreasing the growth temperature. Because of the non-spherical symmetry of the particles shape and the plasmon coupling between Au–Ag interface and outer Ag surface, four absorption peaks at most have been observed. As the Ag coating thickness is increased, the absorbance intensity of these plasmon peaks gets intense greatly, and the absorption peak at longest wavelength blue shifts firstly and then red shifts. The non-monotonous plasmonic shift has been attributed to the competition between the increase of Ag composition and the enlargement of the particle size. What's more, the wavelength region of both blue shift and red shift could also be enhanced by decreasing the temperature.

  3. Tuning the shell thickness-dependent plasmonic absorption of Ag coated Au nanocubes: The effect of synthesis temperature

    International Nuclear Information System (INIS)

    Zhu, Jian; Zhang, Fan; Chen, Bei-Bei; Li, Jian-Jun; Zhao, Jun-Wu

    2015-01-01

    Graphical abstract: Ag coating leads to great enhancement of SPR absorbance of Au nanocubes, and the Ag coating-dependent non-monotonous SPR shift is greater at lower temperature. - Highlights: • Au nanocubes with more uniform shape can be obtained at lower growth temperature. • Ag coating leads to great enhancement of SPR absorption intensity. • The Ag coating dependent non-monotonous SPR shift is greater at lower temperature. - Abstract: The temperature dependent synthesis and plasmonic optical properties of Ag coated Au nanocubes have been investigated experimentally. It has been found that the Au nanocubes with more uniform morphology and higher yield could be obtained by decreasing the growth temperature. Because of the non-spherical symmetry of the particles shape and the plasmon coupling between Au–Ag interface and outer Ag surface, four absorption peaks at most have been observed. As the Ag coating thickness is increased, the absorbance intensity of these plasmon peaks gets intense greatly, and the absorption peak at longest wavelength blue shifts firstly and then red shifts. The non-monotonous plasmonic shift has been attributed to the competition between the increase of Ag composition and the enlargement of the particle size. What's more, the wavelength region of both blue shift and red shift could also be enhanced by decreasing the temperature

  4. Electrical properties of silver and lithium sulphate

    International Nuclear Information System (INIS)

    Teterycz, H.; Nitsch, K.; Wisniewski, K.

    2000-01-01

    Silver based superionic conductors are very interesting materials. They have high conductivity at much lower temperatures than their melting points. The possibilities of application of a thick film technology in the fabrication of a solid electrolyte sensors were investigated. In this article, an examination od electrical parameters of superionic conductor based on silver and lithium sulfates are shown in a wide range of temperatures. The measurements were made in order to define physic-chemical properties of these materials. Ag 2 SO 4 /Li 2 SO 4 solid state electrolytes could be used in the potentiometric thick film SO 2 /SO 3 sensor. Double electrode and complete three electrode sensor were made in the thick film technology. AC measurements were applied to estimate the conductance and activation energy of different solid state electrolytes. The value of activation energy is the same for all investigated compositions apart from pure lithium sulfate. The electric parameters of the presented thick film structure of galvanic cell were stable during the reported measurements. (author)

  5. Analysis of pellet coating uniformity using a computer scanner.

    Science.gov (United States)

    Šibanc, Rok; Luštrik, Matevž; Dreu, Rok

    2017-11-30

    A fast method for pellet coating uniformity analysis, using a commercial computer scanner was developed. The analysis of the individual particle coating thicknesses was based on using a transparent orange colored coating layer deposited on white pellet cores. Besides the analysis of the coating thickness the information of pellet size and shape was obtained as well. Particle size dependent coating thickness and particle size independent coating variability was calculated by combining the information of coating thickness and pellet size. Decoupling coating thickness variation sources is unique to presented method. For each coating experiment around 10000 pellets were analyzed, giving results with a high statistical confidence. Proposed method was employed for the performance evaluation of classical Wurster and swirl enhanced Wurster coater operated at different gap settings and air flow rates. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of layer thickness on the properties of nickel thermal sprayed steel

    Energy Technology Data Exchange (ETDEWEB)

    Nurisna, Zuhri, E-mail: zuhri-nurisna@yahoo.co.id; Triyono,, E-mail: triyonomesin@uns.ac.id; Muhayat, Nurul, E-mail: nurulmuhayat@staff.uns.ac.id; Wijayanta, Agung Tri, E-mail: agungtw@uns.ac.id [Department of Mechanical Engineering, Sebelas Maret University, Jl. Jr. Sutami 36 A, Surakarta (Indonesia)

    2016-03-29

    Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni–5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers were conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.

  7. Carbon-Coated Fe3O4/VOx Hollow Microboxes Derived from Metal-Organic Frameworks as a High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhao, Zhi-Wei; Wen, Tao; Liang, Kuang; Jiang, Yi-Fan; Zhou, Xiao; Shen, Cong-Cong; Xu, An-Wu

    2017-02-01

    As the ever-growing demand for high-performance power sources, lithium-ion batteries with high storage capacities and outstanding rate performance have been widely considered as a promising storage device. In this work, starting with metal-organic frameworks, we have developed a facile approach to the synthesis of hybrid Fe 3 O 4 /VO x hollow microboxes via the process of hydrolysis and ion exchange and subsequent calcination. In the constructed architecture, the hollow structure provides an efficient lithium ion diffusion pathway and extra space to accommodate the volume expansion during the insertion and extraction of Li + . With the assistance of carbon coating, the obtained Fe 3 O 4 /VO x @C microboxes exhibit excellent cyclability and enhanced rate performance when employed as an anode material for lithium-ion batteries. As a result, the obtained Fe 3 O 4 /VO x @C delivers a high Coulombic efficiency (near 100%) and outstanding reversible specific capacity of 742 mAh g -1 after 400 cycles at a current density of 0.5 A g -1 . Moreover, a remarkable reversible capacity of 556 mAh g -1 could be retained even at a current density of 2 A g -1 . This study provides a fundamental understanding for the rational design of other composite oxides as high-performance electrode materials for lithium-ion batteries.

  8. Electrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries

    International Nuclear Information System (INIS)

    Halim, Martin; Kim, Jung Sub; Choi, Jeong-Gil; Lee, Joong Kee

    2015-01-01

    Highlights: • Bundle-type silicon nanorods (BSNR) were synthesized by metal assisted chemical etching. • Novel bundle-type nanorods electrode showed self-relaxant characteristics. • The self-relaxant property was enhanced by increasing the silver concentration. • PAA binder enhanced the self-relaxant property of the silicon material. • Carbon coated BSNR (BSNR@C) has evidently provided better cycle performance. - Abstract: Nanostructured silicon synthesis by surface modification of commercial micro-powder silicon was investigated in order to reduce the maximum volume change over cycle. The surface of micro-powder silicon was modified using an Ag metal-assisted chemical etching technique to produce nanostructured material in the form of bundle-type silicon nanorods. The volume change of the electrode using the nanostructured silicon during cycle was investigated using an in-situ dilatometer. Our result shows that nanostructured silicon synthesized using this method showed a self-relaxant characteristic as an anode material for lithium ion battery application. Moreover, binder selection plays a role in enhancing self-relaxant properties during delithiation via strong hydrogen interaction on the surface of the silicon material. The nanostructured silicon was then coated with carbon from propylene gas and showed higher capacity retention with the use of polyacrylic acid (PAA) binder. While the nano-size of the pore diameter control may significantly affect the capacity fading of nanostructured silicon, it can be mitigated via carbon coating, probably due to the prevention of Li ion penetration into 10 nano-meter sized pores

  9. Electrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Martin [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Energy and Environmental Engineering, Korea University of Science and Technology, Gwahangno, Yuseong-gu, Daejeon, 305-333 (Korea, Republic of); Kim, Jung Sub [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Material Science & Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Choi, Jeong-Gil [Department of Chemical Engineering, Hannam University, 461-1 Junmin-dong, Yusung-gu, Taejon 305-811 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Energy and Environmental Engineering, Korea University of Science and Technology, Gwahangno, Yuseong-gu, Daejeon, 305-333 (Korea, Republic of)

    2015-04-15

    Highlights: • Bundle-type silicon nanorods (BSNR) were synthesized by metal assisted chemical etching. • Novel bundle-type nanorods electrode showed self-relaxant characteristics. • The self-relaxant property was enhanced by increasing the silver concentration. • PAA binder enhanced the self-relaxant property of the silicon material. • Carbon coated BSNR (BSNR@C) has evidently provided better cycle performance. - Abstract: Nanostructured silicon synthesis by surface modification of commercial micro-powder silicon was investigated in order to reduce the maximum volume change over cycle. The surface of micro-powder silicon was modified using an Ag metal-assisted chemical etching technique to produce nanostructured material in the form of bundle-type silicon nanorods. The volume change of the electrode using the nanostructured silicon during cycle was investigated using an in-situ dilatometer. Our result shows that nanostructured silicon synthesized using this method showed a self-relaxant characteristic as an anode material for lithium ion battery application. Moreover, binder selection plays a role in enhancing self-relaxant properties during delithiation via strong hydrogen interaction on the surface of the silicon material. The nanostructured silicon was then coated with carbon from propylene gas and showed higher capacity retention with the use of polyacrylic acid (PAA) binder. While the nano-size of the pore diameter control may significantly affect the capacity fading of nanostructured silicon, it can be mitigated via carbon coating, probably due to the prevention of Li ion penetration into 10 nano-meter sized pores.

  10. Effect of Thickness on Oxidation Behavior of Cr coated Zircaloy-4 using Arc Ion Plating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Jung; Kim, Sun Jin [Hanyang University, Seoul (Korea, Republic of); Park, Jung Hwan; Kim, Hyun Gil; Jung, Yang Il; Park, Dong Jun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Ever since the Fukushima accident, accident tolerant fuel (ATF) has been widely studied. To increase the life time and safety of nuclear claddings, there are increasing demands for protective coatings exhibiting excellent oxidation resistance. Many metal and oxide films are produced by using this method because of the high kinetic energy of the ions, ionization efficiency and deposition rate. Candidate materials for a protective layer have higher thermal neutron absorption cross sections than Zr. However, there is no systematic study of thickness effect on oxidation resistance of protective layer. In this study, Cr films with different thickness (from 1 μm to 50 μm) were deposited on the cladding surfaces by AIP. The high temperature oxidation resistance of Cr films with different thicknesses has been investigated. Uniform oxide layer with nanoporous structures have been fabricated on the surface of Zr-Nb-Sn alloy. Oxidation behavior of the pristine Zr-Nb-Sn alloy and the Zr-Nb-Sn alloy with nanostructured oxide layer evaluated by measuring weight gain (TGA).

  11. Measurement of the thickness of the sprayed nickel coatings on large-sized cast iron products

    Directory of Open Access Journals (Sweden)

    В. А. Сясько

    2016-11-01

    Full Text Available Modern industries increasingly use automatic spraying of heat-resistant Nickel  coating with a thickness  of      T = 1-3 mm for large-size parts made of cast iron with nodular graphite. The process of coating application is characterized by time-dependent behavior of its relative magnetic permeability, μс , that is a function of relaxation time, which can be as long as 24 hours, and by μс deviation from point to point on the surface. Aspects of eddy-current phase method for measuring the T value are considered. The structure of four- winding eddy current transformer transducers is described and results of calculation and optimization of their parameters are presented. The influence of controlled and interfering parameters is considered. Based  on the above results, a two-channel combined transducer is developed  providing measurement  error  of ΔТ ≤ ±(0.03T + 0.02 mm  in the shop environment in the process of coating application and in the final product check. Results of tests on reference specimens and of application in production processes are presented.

  12. Influence of Thickness of Multilayered Nano-Structured Coatings Ti-TiN-(TiCrAlN and Zr-ZrN-(ZrCrNbAlN on Tool Life of Metal Cutting Tools at Various Cutting Speeds

    Directory of Open Access Journals (Sweden)

    Alexey Vereschaka

    2018-01-01

    Full Text Available This paper considers the influence of thickness of multilayered nano-structured coatings Ti-TiN-(TiCrAlN and Zr-ZrN-(ZrCrNbAlN on tool life of metal cutting tools at various cutting speeds (vc = 250, 300, 350 and 400 m·min−1. The paper investigates the basic mechanical parameters of coatings and the mechanism of coating failure in scratch testing depending on thickness of coating. Cutting tests were conducted in longitudinal turning of steel C45 with tools with the coatings under study of various thicknesses (3, 5, and 7 µm, with an uncoated tool and with a tool with a “reference” coating of TiAlN. The relationship of “cutting speed vc—tool life T” was built and investigated; and the mechanisms were found to determine the selection of the optimum coating thickness at various cutting speeds. Advantages of cutting tools with these coatings are especially obvious at high cutting speeds (in particular, vc = 400 m·min−1. If at lower cutting speeds, the longest tool life is shown by tools with thicker coatings (of about 7 μm, then with an increase in cutting speed (especially at vc = 400 m·min−1 the longest tool life is shown by tools with thinner coating (of about 3 μm.

  13. Carbon-based coating containing ultrafine MoO2 nanoparticles as an integrated anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Li, Quanyi; Yang, Qi; Zhao, Yanhong; Wan, Bin

    2017-10-01

    Copper-supported MoO2-C composite as an integrated anode with excellent battery performance was synthesized by a facile knife coating technique followed by heat treatment in a vacuum. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal analysis, nitrogen adsorption and desorption analysis, field emission scanning microscopy (FESEM), and transmission electron microscopy (TEM). The results show the MoO2-C composite coating is comprised of a porous carbon matrix with a pore size of 1-3 nm and ultrafine MoO2 nanoparticles with a size of 5-10 nm encapsulated inside, the coating is tightly attached on the surface of copper foil, and the interface between them is free of cracks. Stable PAN-DMF-H2O system containing ammonium molybdate suitable for knife coating technique and the MoO2-C composite with ultrafine MoO2 nanoparticles encapsulated in the carbon matrix can be prepared through controlling amount of added ammonium molybdate solution. The copper-supported MoO2-C composite coating can be directly utilized as the integrated anode for lithium-ion batteries (LIBs). It delivers a capacity of 814 mA h g-1 at a current density of 100 mA g-1 after 100 cycles without apparent capacity fading. Furthermore, with increase of current densities to 200, 500, 1000, 2000, and 5000 mA g-1, it exhibits average capacities of 809, 697, 568, 383, and 188 mA h g-1. Its outstanding electrochemical performance is attributed to combined merits of integrated anode and structure with ultrafine MoO2 nanoparticles embedded in the porous carbon matrix.

  14. Evaluation of the gold leaf thickness in the coating of the imperial horse-drawn carriage emperor D. Pedro II

    Energy Technology Data Exchange (ETDEWEB)

    Nardes, R.C.; Sanches, F.A.C.R.A.; Gama Filho, H.S.; Santos, R.S.; Oliveira, D.F.; Anjos, M.J.; Assis, J.T. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil); Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Laboratório de Instrumentação Nuclear; Carvalho, M.L. [Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Lisboa (Portugal); Zanatta, E.M. [Museu Imperial, Petropolis, RJ (Brazil). Laboratório de Conservação e Restauração; Cesareo, R., E-mail: rc.nardes@gmail.com [Instituto de Matemática e Física, Universidade de Sassari (Italy)

    2017-07-01

    In this study, the presence of gold in the coatings of the emperor D. Pedro’s II Berlin device, part of the Imperial Museum of Petropolis, Brazil, was verified. Then perform was evaluation of the thickness of the gold leaf, using the technique of X-Ray Fluorescence, measuring peak intensities (Kα / Kβ or Lα / Lβ) of the elements of interest in the layer. It was possible to verify in the XRF spectra the presence of four elements: Ti, Fe, Au and Pb. The Pb was present at all sampling points, which indicates the presence of lead carbonate (lead-white) as preparation layer. The presence of Au at some sampling points indicates that several parts of the Berlin devices were covered with gold leaf. The presence of Ti and Fe is due to the application of golden mica over the entire length of the berlin device during the process of last restoration. The presence of the mica layer on the gold covering was relevant for gold thickness determination. The average value of the gold thickness obtained was 0.62 ± 0.51 μm, with a coefficient of variation of 83% and a confidence interval of 0.49-0.75 μm (α = 0.05). The values are compatible with the thickness of gold foil normally found in the coating of pieces of wood from the same period that the Berlin device was built. (author)

  15. Evaluation of the gold leaf thickness in the coating of the imperial horse-drawn carriage emperor D. Pedro II

    International Nuclear Information System (INIS)

    Nardes, R.C.; Sanches, F.A.C.R.A.; Gama Filho, H.S.; Santos, R.S.; Oliveira, D.F.; Anjos, M.J.; Assis, J.T.; Lopes, R.T.; Zanatta, E.M.

    2017-01-01

    In this study, the presence of gold in the coatings of the emperor D. Pedro’s II Berlin device, part of the Imperial Museum of Petropolis, Brazil, was verified. Then perform was evaluation of the thickness of the gold leaf, using the technique of X-Ray Fluorescence, measuring peak intensities (Kα / Kβ or Lα / Lβ) of the elements of interest in the layer. It was possible to verify in the XRF spectra the presence of four elements: Ti, Fe, Au and Pb. The Pb was present at all sampling points, which indicates the presence of lead carbonate (lead-white) as preparation layer. The presence of Au at some sampling points indicates that several parts of the Berlin devices were covered with gold leaf. The presence of Ti and Fe is due to the application of golden mica over the entire length of the berlin device during the process of last restoration. The presence of the mica layer on the gold covering was relevant for gold thickness determination. The average value of the gold thickness obtained was 0.62 ± 0.51 μm, with a coefficient of variation of 83% and a confidence interval of 0.49-0.75 μm (α = 0.05). The values are compatible with the thickness of gold foil normally found in the coating of pieces of wood from the same period that the Berlin device was built. (author)

  16. Response of NSTX liquid lithium divertor to high heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, T., E-mail: tabrams@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaworski, M.A. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Kallman, J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Foley, E.L. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kugel, H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Levinton, F. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2013-07-15

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ∼1.5 MW/m{sup 2} for 1–3 s. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the “bare” sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface.

  17. Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes

    Directory of Open Access Journals (Sweden)

    Tuğrul Çetinkaya

    2017-06-01

    Full Text Available Surface of nano silicon powders were coated with amorphous carbon by pyrolysis of polyacronitrile (PAN polymer. Microstructural characterization of amorphous carbon coated silicon powders (Si-C were carried out using scanning electron microscopy (SEM and thickness of carbon coating is defined by transmission electron microscopy (TEM. Elemental analyses of Si-C powders were performed using energy dispersive X-ray spectroscopy (EDS. Structural and phase characterization of Si-C composite powders were investigated using X-ray diffractometer (XRD and Raman spectroscopy. Produced Si-C powders were prepared as an electrode on the copper current collector and electrochemical tests were carried out using CR2016 button cells at 200 mA/g constant current density. According to electrochemical test results, carbon coating process enhanced the electrochemical performance by reducing the problems stem from volume change and showed 770 mAh/g discharge capacity after 30 cycles.

  18. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  19. Prototype of a fiber optic sensor for online measurement of coating thickness

    Science.gov (United States)

    D'Emilia, Giulio

    1999-09-01

    In this paper the experimental characterization of a transducer for on line measurement of coating thickness in food industry applications is described, which is composed by a fiber optic probe and by an eddy-current proximity one. The method is based on measuring reflectance by a fiber optic probe of the coating plated on thin steel sheets. The eddy current proximity probe should be used to measure the substrate position. In order to evaluate the feasibility of this approach, a particular attention has been paid to the accuracy of the method, since an accuracy in the order of plus or minus 1 micrometer should be achieved for practical interest. With this aim, the effect of the main interfering and modifying quantities of geometrical (sensor size, probe head angle of incidence, working distance, ...) and optical (light source and photo-detector behavior stability, ...) type has been evaluated both theoretically and experimentally by using a calibration test bench in stationary working conditions. Furthermore, a calibration test bench has been built, where a translating and vibrating steel plate is realized, in order to evaluate the effect of translation velocity of the plate and also of cross vibrations. Results of dynamic calibration are also described and discussed, in order to get information about the final sensor configuration.

  20. Ultrasonic tests on materials with protective coatings

    International Nuclear Information System (INIS)

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  1. Improvement of the cycling performance of LiCoO2 with assistance of cross-linked PAN for lithium ion batteries

    International Nuclear Information System (INIS)

    Yang, Xinhe; Shen, Lanyao; Wu, Bin; Zuo, Zicheng; Mu, Daobin; Wu, Borong; Zhou, Henghui

    2015-01-01

    Highlights: • Cross-linked PAN coating was prepared without damaging the surface of LiCoO 2 . • The coating layer owns good electronic conductivity and mechanical strength. • The cross-linked PAN coating layer is more sufficient than Al 2 O 3 coating. • It shows much improved cyclability than that of bare and Al 2 O 3 coated LiCoO 2 . - Abstract: LiCoO 2 has been widely used in lithium ion batteries for digital electronic products. However, the limited cycling performance under high cut-off voltage hinders its commercial application. Many metal oxides and/or phosphorus coating have been reported to improve the cycling performance of LiCoO 2 . In this paper, we report on cross-linked PAN coated LiCoO 2 composite as a cathode material for lithium ion batteries. The coating layer was obtained by intermolecular crosslinking of PAN polymer chain by heat treatment at high temperature in air. The air heating process avoids the possible damage arising from the carbon thermal reduction to the surface structure of LiCoO 2 . Electrochemical test indicates that the LiCoO 2 with the cross-linked PAN coating layer shows much improved cycle performance compared with that of bare and Al 2 O 3 coated LiCoO 2 . These findings might also open new avenues to explore polymer coating for other cathode materials of lithium ion batteries

  2. Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery

    Science.gov (United States)

    Furquan, Mohammad; Raj Khatribail, Anish; Vijayalakshmi, Savithri; Mitra, Sagar

    2018-04-01

    Silicon is an attractive anode material for Li-ion cells, which can provide energy density 30% higher than any of the today's commercial Li-ion cells. In the current study, environmentally benign, high abundant, and low cost sand (SiO2) source has been used to prepare nano-silicon via scalable metallothermic reduction method using micro wave heating. In this research, we have developed and optimized a method to synthesis high purity nano silicon powder that takes only 5 min microwave heating of sand and magnesium mixture at 800 °C. Carbon coated nano-silicon electrode material is prepared by a unique method of coating, polymerization and finally in-situ carbonization of furfuryl alcohol on to the high purity nano-silicon. The electrochemical performance of a half cell using the carbon coated high purity Si is showed a stable capacity of 1500 mAh g-1 at 6 A g-1 for over 200 cycles. A full cell is fabricated using lithium cobalt oxide having thickness ≈56 μm as cathode and carbon coated silicon thin anode of thickness ≈9 μm. The fabricated full cell of compact size exhibits excellent volumetric capacity retention of 1649 mAh cm-3 at 0.5 C rate (C = 4200 mAh g-1) and extended cycle life (600 cycles). The full cell is demonstrated on an LED lantern and LED display board.

  3. Application of process analytical technology in tablet process development using NIR spectroscopy : Blend uniformity, content uniformity and coating thickness measurements

    NARCIS (Netherlands)

    Moes, Johannes J; Ruijken, Marco M; Gout, Erik; Frijlink, Henderik W; Ugwoke, Michael I

    2008-01-01

    Near-infrared (NIR)spectroscopy was employed as a process analytical technique in three steps of tabletting process: to monitor the blend homogeneity, evaluate the content uniformity of tablets and determine the tablets coating thickness. A diode-array spectrometer mounted on a lab blender (SP15 NIR

  4. Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries

    International Nuclear Information System (INIS)

    Luo, Hongjun; Shen, Laifa; Rui, Kun; Li, Hongsen; Zhang, Xiaogang

    2013-01-01

    Highlights: •A novel approach has been developed to fabricate 1D Li 4 Ti 5 O 12 /C nanorods by a wet-chemical route. •Carbon coating layer effectively restrict the particle growth and enhance electronic conductivity. •The Li 4 Ti 5 O 12 /C nanorods exhibit remarkable rate capability and long cycle life. -- Abstract: We describe a novel approach for the synthesis of carbon coated Li 4 Ti 5 O 12 (Li 4 Ti 5 O 12 /C) nanorods for high rate lithium ion batteries. The carbon coated TiO 2 nanotubes using the glucose as carbon source are first synthesized by hydrothermal treatment. The commercial anatase TiO 2 powder is immersed in KOH sulotion and subsequently transforms into Li 4 Ti 5 O 12 /C in LiOH solution under hydrothermal condition. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption/desorption and Raman spectra are performed to characterize their morphologies and structures. Compared with the pristine Li 4 Ti 5 O 12 , one-dimensional (1D) Li 4 Ti 5 O 12 /C nanostructures show much better rate capability and cycling stability. The 1D Li 4 Ti 5 O 12 /C architectures effectively restrict the particle growth and enhance their electronic conductivity, enabling fast ion and electron transport

  5. Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery.

    Science.gov (United States)

    Wang, Yuhang; Zeng, Jiren; Cui, Xiaoqi; Zhang, Lijuan; Zheng, Gengfeng

    2016-02-24

    A separator-integrated, reversely connectable, symmetric lithium-ion battery is developed based on carbon-coated Li3V2(PO4)3 nanoparticles and polyvinylidene fluoride-treated separators. The Li3V2(PO4)3 nanoparticles are synthesized via a facile solution route followed by calcination in Ar/H2 atmosphere. Sucrose solution is used as the carbon source for uniform carbon coating on the Li3V2(PO4)3 nanoparticles. Both the carbon and the polyvinylidene fluoride treatments substantially improve the cycling life of the symmetric battery by preventing the dissolution and shuttle of the electroactive Li3V2(PO4)3. The obtained symmetric full cell exhibits a reversible capacity of ≈ 87 mA h g(-1), good cycling stability, and capacity retention of ≈ 70% after 70 cycles. In addition, this type of symmetric full cell can be operated in both forward and reverse connection modes, without any influence on the cycling of the battery. Furthermore, a new separator integration approach is demonstrated, which enables the direct deposition of electroactive materials for the battery assembly and does not affect the electrochemical performance. A 10-tandem-cell battery assembled without differentiating the electrode polarity exhibits a low thickness of ≈ 4.8 mm and a high output voltage of 20.8 V. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Microstructure and properties of thick nanocomposite TiN/Si{sub 3}N{sub 4} coatings on Vanadis 23 HS steel

    Energy Technology Data Exchange (ETDEWEB)

    Moskalewicz, Tomasz; Czyrska-Filemonowicz, Aleksandra [AGH Univ. of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow (Poland); Zimowski, Slawomir [AGH Univ. of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow (Poland); Wendler, Bogdan; Progalskiy, Ivan [Lodz Univ. of Technology (Poland). Inst. of Materials Science and Engineering

    2015-07-15

    The microstructure and selected micro-mechanical properties of a 13.4 μm thick nanocomposite TiN/Si{sub 3}N{sub 4} coating deposited onto Vanadis 23 HS steel by a new gas pulsed magnetron sputtering technique were investigated. Scanning and transmission electron microscopy were employed to investigate the detailed microstructure of the coating. It was found that the coating exhibited a fully nanocrystalline structure and was composed of two zones: the outer zone with columnar structure and the inner one with equiaxed, fine columnar structure. Both zones consisted mainly of the δ-TiN nanocrystallites with a small amount of α-Si{sub 3}N{sub 4} and β-Si{sub 3}N{sub 4}. In order to increase coating adhesion to the substrate, a graded intermediate layer consisting of three different phases (pure Cr, CrN and Cr2N) was applied. The hardness of the as-deposited TiN/Si{sub 3}N{sub 4} coating was equal to 48 GPa, whereas it was equal to 40 GPa after annealing. The coatings exhibited very good adhesion to the underlying steel substrate.

  7. A study of the influence of air-knife tilting on coating thickness in hot-dip galvanizing

    Science.gov (United States)

    Cho, Tae-Seok; Kwon, Young-Doo; Kwon, Soon-Bum

    2009-09-01

    Gas wiping is a decisive operation in hot-dip galvanizing process. In special, it has a crucial influence on the thickness and uniformity in coating film, but may be subsequently responsible for the problem of splashing. The progress of industry demands continuously the reduction of production costs which may relate directly with the increase of coating speed, and the speed up of coating results in the increase of stagnation pressure in gas wiping system in final. It is known that the increase of stagnation pressure may accompany a harmful problem of splashing in general. Together with these, also, from the view point of energy consumption, it is necessary to design a nozzle optimally. And there is known that the downward tilting of nozzle using in air knife system is effective to prevent in somewhat the harmful problem of splashing. In these connections, first, we design a nozzle with constant expansion rate. Next, for the case of actual coating conditions in field, the effects of tilting of the constant expansion rate nozzle are investigated by numerical analysis. Under the present numerical conditions, it was turned out that the nozzle of constant expansion rate of p = having a downward jet angle of 5° is the most effective to diminish the onset of splashing, while the influence of small tilting of the nozzle on impinging wall pressure itself is not so large.

  8. Real-time measurement system for tracking birefringence, weight, thickness, and surface temperature during drying of solution cast coatings and films

    Science.gov (United States)

    Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.

    2012-02-01

    This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.

  9. Selective paint coatings for coloured solar absorbers: Polyurethane thickness insensitive spectrally selective (TISS) paints (Part II)

    Energy Technology Data Exchange (ETDEWEB)

    Orel, B.; Spreizer, H.; Surca Vuk, A.; Fir, M. [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Merlini, D.; Vodlan, M. [Color d.d., Cesta komandanta Staneta 4, SI-1230 Medvode (Slovenia); Koehl, M. [Fraunhofer-Institute for Solar Energy Systems ISE, Heidenhofstr. 2, D-79110 Freiburg (Germany)

    2007-01-23

    Red, green and blue paints were prepared for use as thickness insensitive spectrally selective (TISS) paint coatings for solar facade absorbers. The paints were composed of a polyurethane resin binder in which various pigments were incorporated in such a way that they formed stable paint dispersions, satisfying stability criteria for facade coatings. A low emittance of the paints was achieved by using low-emittance aluminium flake pigments combined with iron oxide (red coloured paints). Black pigment was added to adjust solar absorptance. Blue and green paints were made by the addition of coloured aluminium flake pigment and the solar absorptance was also adjusted by the addition of black pigment. Efficiency for photo-thermal conversion of solar radiation was assessed by evaluation of the corresponding performance criteria, which enabled the selection of paints whose performance criteria values were higher than 0 (spectrally non-selective black coating). The results confirmed that blue and green paints and to minor extent red ones, combined selectivity with colour. The morphology of the paints was assessed, revealing that the colours originated from the deposition of finely dispersed colour and/or black pigment on the surface of the aluminium flakes during paint preparation. (author)

  10. Method for coating substrates and mask holder

    NARCIS (Netherlands)

    Bijkerk, Frederik; Yakshin, Andrey; Louis, Eric; Kessels, M.J.H.; Maas, Edward Lambertus Gerardus; Bruineman, Caspar

    2004-01-01

    When coating substrates it is frequently desired that the layer thickness should be a certain function of the position on the substrate to be coated. To control the layer thickness a mask is conventionally arranged between the coating particle source and the substrate. This leads to undesirable

  11. Preparation of thermal resistant-enhanced separators for lithium ion battery by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Joon Yong; Shin, Junhwa; Nho, Youngchang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Micro-porous membrane made of polyethylene (PE) or polypropylene (PP) is most widely used as physical separators between the cathode and anode in lithium secondary batteries. However, the polymer membranes so soften or melt when the temperature reaches 130 .deg. C or higher because of thermal shrinkage of the polyolefin separators, and thaw low thermal stability may cause internal short circuiting or lead to thermal runaway. In this study, to realize a highly safe battery, we prepared three type separators as crosslinked PE separator, polymer-coated PE separator, and ceramic-coated PE separators, for lithium secondary battery by electron beam irradiation. We prepared crosslinked PE separators with the improved thermal stability by irradiating a commercial PE separator with an electron beam. A polymer-coated PE separator was prepared by a dip-coating of PVDF-HFP/PEGDMA on both sides of a PE separator followed by an electron beam irradiation. Ceramic-coated PE separator was prepared by coating ceramic particles on a PE separator followed by an electron beam irradiation. The prepared separators were characterized with FT-IR, SEM, electrolyte uptake, ion conductivity, thermal shrinkage and battery performance test.

  12. Pixelated coatings and advanced IR coatings

    Science.gov (United States)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  13. Coating Strategies to Improve Lithium-ion Battery Safety

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Jonathan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Orendorff, Christopher J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This work investigated the effects of Al2O3 ALD coatings on the performance and thermal abuse tolerance of graphite based anodes and Li(NixMnyCoz)O2 (NMC) based cathodes. It was found that 5 cycles of Al2O3 ALD on the graphite anode increased the onset temperature of thermal runaway by approximately 20 °C and drastically reduced the anode’s contribution to the overall amount of heat released during thermal runaway. Although Al2O3 ALD improves the cycling stability of NMC based cathodes, the thermal abuse tolerance was not greatly improved. A series of conductive aluminum oxide/carbon composites were created and characterized as potential thicker protective coatings for use on NMC based cathode materials. A series of electrodes were coated with manganese monoxide ALD to test the efficacy of an oxygen scavenging coating on NMC based cathodes.

  14. Thick resist for MEMS processing

    Science.gov (United States)

    Brown, Joe; Hamel, Clifford

    2001-11-01

    The need for technical innovation is always present in today's economy. Microfabrication methods have evolved in support of the demand for smaller and faster integrated circuits with price performance improvements always in the scope of the manufacturing design engineer. The dispersion of processing technology spans well beyond IC fabrication today with batch fabrication and wafer scale processing lending advantages to MEMES applications from biotechnology to consumer electronics from oil exploration to aerospace. Today the demand for innovative processing techniques that enable technology is apparent where only a few years ago appeared too costly or not reliable. In high volume applications where yield and cost improvements are measured in fractions of a percent it is imperative to have process technologies that produce consistent results. Only a few years ago thick resist coatings were limited to thickness less than 20 microns. Factors such as uniformity, edge bead and multiple coatings made high volume production impossible. New developments in photoresist formulation combined with advanced coating equipment techniques that closely controls process parameters have enable thick photoresist coatings of 70 microns with acceptable uniformity and edge bead in one pass. Packaging of microelectronic and micromechanical devices is often a significant cost factor and a reliability issue for high volume low cost production. Technologies such as flip- chip assembly provide a solution for cost and reliability improvements over wire bond techniques. The processing for such technology demands dimensional control and presents a significant cost savings if it were compatible with mainstream technologies. Thick photoresist layers, with good sidewall control would allow wafer-bumping technologies to penetrate the barriers to yield and production where costs for technology are the overriding issue. Single pass processing is paramount to the manufacturability of packaging

  15. Pd nanoparticles immobilized on carbon nanotubes with a polyaniline coaxial coating for the Heck reaction: coating thickness as the key factor influencing the efficiency and stability of the catalyst

    KAUST Repository

    Yu, Rui

    2018-02-12

    Pd nanoparticles (NPs) supported on polyaniline (PANI)-coated carbon nanotubes (CNTs) were synthesized using a low-cost and simple method for application in the Heck reaction. The effects of the PANI/CNT coating weight ratio on the catalytic stability and recyclability of the composite were determined by using a combination of experimental and computational methods. The results show that through coordination of the N-species in PANI with the Pd NPs, the nitrogen-rich PANI@CNT provides a strong support for the Pd NPs. The thickness of the PANI layer is the key in determining the stability of the catalyst. PANI becomes protonated in the presence of CNTs, as electron transfer from the former to the latter creates strong interactions between the two. Thus, PANI becomes more stable in nanocomposites with a higher CNT content, e.g., PANI/CNT = 0.5 : 1. The catalyst with a PANI/CNT ratio of 0.5 : 1 exhibited the best recycling performance, and only a small loss of activity was observed after 10 cycles. However, upon increasing the PANI content (e.g., PANI/CNT = 4 : 1), the PANI units tend to form bulk structures that are less stable than those that wrap around the CNTs. Such a structure is unstable; therefore, the PANI layers can easily deform or break away from the CNT backbones. Hence, these catalysts deactivate during recycling. Thus, our study demonstrates that the assembly of noble-metal NPs on CNTs bearing a thin coaxial PANI coating is a powerful technique to prepare reusable catalysts for the Heck reaction. Coating thickness is also a key factor affecting the efficiency and stability of the catalyst.

  16. Pd nanoparticles immobilized on carbon nanotubes with a polyaniline coaxial coating for the Heck reaction: coating thickness as the key factor influencing the efficiency and stability of the catalyst

    KAUST Repository

    Yu, Rui; Liu, Rui; Deng, Jie; Ran, Maofei; Wang, Ning; Chu, Wei; He, Zhiwei; Du, Zheng; Jiang, Chengfa; Sun, Wenjing

    2018-01-01

    Pd nanoparticles (NPs) supported on polyaniline (PANI)-coated carbon nanotubes (CNTs) were synthesized using a low-cost and simple method for application in the Heck reaction. The effects of the PANI/CNT coating weight ratio on the catalytic stability and recyclability of the composite were determined by using a combination of experimental and computational methods. The results show that through coordination of the N-species in PANI with the Pd NPs, the nitrogen-rich PANI@CNT provides a strong support for the Pd NPs. The thickness of the PANI layer is the key in determining the stability of the catalyst. PANI becomes protonated in the presence of CNTs, as electron transfer from the former to the latter creates strong interactions between the two. Thus, PANI becomes more stable in nanocomposites with a higher CNT content, e.g., PANI/CNT = 0.5 : 1. The catalyst with a PANI/CNT ratio of 0.5 : 1 exhibited the best recycling performance, and only a small loss of activity was observed after 10 cycles. However, upon increasing the PANI content (e.g., PANI/CNT = 4 : 1), the PANI units tend to form bulk structures that are less stable than those that wrap around the CNTs. Such a structure is unstable; therefore, the PANI layers can easily deform or break away from the CNT backbones. Hence, these catalysts deactivate during recycling. Thus, our study demonstrates that the assembly of noble-metal NPs on CNTs bearing a thin coaxial PANI coating is a powerful technique to prepare reusable catalysts for the Heck reaction. Coating thickness is also a key factor affecting the efficiency and stability of the catalyst.

  17. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F.L.; Van Vliet, L.J.; Hartman Kok, P.J.A.; Vromans, H.; Frijlink, H.W.; Van der Voort Maarschalk, K.

    2008-01-01

    Purpose This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. Methods The method applies the MATLAB image processing toolbox to images of coated

  18. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken

  19. Preparation and electrochemical properties of core-shell carbon coated Mn–Sn complex metal oxide as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruixue [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Fang, Guoqing; Liu, Weiwei [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Changzhou Institute of Energy Storage Materials and Devices, Changzhou 213000 (China); Xia, Bingbo; Sun, Hongdan; Zheng, Junwei [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Li, Decheng, E-mail: lidecheng@suda.edu.cn [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China)

    2014-02-15

    In this study, we synthesized a carbon coated Mn–Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g{sup −1} after 200 cycles at a current density of 100 mA g{sup −1}. The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  20. Preparation and electrochemical properties of core-shell carbon coated Mn–Sn complex metal oxide as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Ruixue; Fang, Guoqing; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zheng, Junwei; Li, Decheng

    2014-01-01

    In this study, we synthesized a carbon coated Mn–Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g −1 after 200 cycles at a current density of 100 mA g −1 . The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  1. Preparation and electrochemical properties of core-shell carbon coated Mn-Sn complex metal oxide as anode materials for lithium-ion batteries

    Science.gov (United States)

    Zhang, Ruixue; Fang, Guoqing; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zheng, Junwei; Li, Decheng

    2014-02-01

    In this study, we synthesized a carbon coated Mn-Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g-1 after 200 cycles at a current density of 100 mA g-1. The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  2. Thickness measurement instrument with memory storage of multiple calibrations

    International Nuclear Information System (INIS)

    Lieber, S.; Schlesinger, J.; Lieber, D.; Baker, A.

    1979-01-01

    An improved backscatter instrument for the nondestructive measurement of coatings on a substrate is described. A memory having selectable memory areas, each area having stored intelligence available which is determinative of the shape of a functional plot of coating thickness versus backscatter counts per minute unique for each particular combination of emitting isotope, substrate material, coating material and physical characteristics of the measuring instrument. A memory selector switch connects a selected area of memory to a microprocessor operating under program control whereby the microprocessor reads the intelligence stored at the selected area and converts the backscattered count of the coating being measured into indicia of coating thickness

  3. Synthesis of lithium mangan dioxide (LiMn2O4) for lithium-ion battery cathode from various lithium sources

    Science.gov (United States)

    Priyono, S.; Ginting, N. R.; Humaidi, S.; Subhan, A.; Prihandoko, B.

    2018-03-01

    LiMn2O4 as a cathode material has been synthesized via solid state reaction. The synthesis has been done by varying lithium sources such as LiOH.H2O and Li2CO3 while MnO2 was used as Mn sources. All raw materials were mixed stoichiometrically to be the precursors of LiMn2O4. The precursors were sintered using high temperature furnace at 800 °C for 4 hours in atmospheric condition to form final product. The final products were sieved to separate the finer and smoother particles from the coarse ones. The products were characterized by X-Ray Diffractometer (XRD) to identify phases and crystal structure. The peak wave number was also determined using Fourier Transform Infra Red (FTIR) to find functional group. LiMn2O4 sheets were prepared by mixing active material with polyvinylidene fluoride (PVdF) and acetylene black (AB) in mass ratio of 85:10:5 wt.% in N,N-Dimethylacetamide (DMAc) solvents to form slurry. The slurry was then coated onto Al foil with thickness of about 0.15 mm and dried in an oven. LiMn2O4 sheet was cut into circular discs and arranged with separator, metallic lithium, and electrolyte in a coin cell. Automatic battery cycler was used to measure electrochemical performance and specific capacity of the cell. XRD analysis showed that sample synthesized with Li2CO3 has higher crystallinity and more pristine than sample synthesized with LiOH.H2O. FTIR analysis revealed that both of samples have identical functional group but sample with Li2CO3 source tend to degrade. Cyclic voltammetry data gave information that sample with LiOH.H2O source has better electrochemical performance. It showed double oxidation/reduction peaks more clearly but sample with Li2CO3 source has higher specific capacity (64.78 mAh/g) than sample with LiOH.H2O (50 mAh/g).

  4. Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode

    International Nuclear Information System (INIS)

    Chen, Hedong; Wang, Zhoulu; Hou, Xianhua; Fu, Lijun; Wang, Shaofeng; Hu, Xiaoqiao; Qin, Haiqing; Wu, Yuping

    2017-01-01

    Carbon-coated core-shell structure artificial graphite@plasma nano-silicon@carbon (AG@PNSi@C) composite, applying as lithium ion battery anode material, has been prepared via spray drying method. The plasma nano-silicon (<100 nm), which contained amorphous silicon, was synthesized by radio frequency induction plasma system with the high temperatures processing capability and high quench rates. The artificial graphite in the composite acts as the core which supports the particle and provides electroconductivity, while PNSi attached on the surface of the core, enhances the specific capacity of the composite. The as prepared composite shows superior performance as anode in lithium-ion batteries, regarding to the initial Coulombic efficiency and cycle life. The initial Coulombic efficiency of AG@PNSi@C electrode is 81.0% with a discharge capacity of 553 mAh g −1 and a recharge capacity of 448 mAh g −1 . During cycling, AG@PNSi@C exhibits excellent performance with a very low capacity fading that the discharge capacity maintains 498.2 mAh g −1 and 449.4 mAh g −1 after 250 cycles and 500 cycles. AG@PNSi@C also shows enhanced resistance against high current density. Besides the remarkable electrochemical performances, the facile and mass-producible synthesis process makes the AG@PNSi@C composite very promising for its application in lithium-ion batteries.

  5. Reflection/suppression coatings for 900 - 1200 A radiation

    Science.gov (United States)

    Edelstein, Jerry

    1989-01-01

    The design and performance of multiple-layer, selective-reflection, selective-suppression coatings for the 900 - 1200 A band are described. These coatings are designed to optimize both high reflectivity at a desirable wavelength and low reflectivity at an undesirable wavelength. The minimum structure for a selective coating consists of a thin metal or metal oxide layer (50 - 150 A thickness) over an aluminum substrate protected with a semi-transparent dielectric (100 - 1000 A thickness). Predicted coating performance is strongly effected by varying the layer combination and thickness. A graphical method of optimizing the coating layer structure is developed. Aluminum, silicon, their oxides, and gold have been investigated as coating layer materials. A very simple coating with a 1026 to 1216 A reflectivity ratio greater than 100 was fabricated. Such reflection/suppression coatings may be of great utility to spaceborne EUV spectrographs.

  6. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    Science.gov (United States)

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  7. Development of windowless liquid lithium targets for fragmentation and fission of 400-kW uranium beams

    CERN Document Server

    Nolen, J A; Hassanein, A; Novick, V J; Plotkin, P; Specht, J R

    2003-01-01

    The driver linac of the proposed rare isotope accelerator facility is designed to deliver 2x10 sup 1 sup 3 uranium ions per second at 400 MeV/u on target for radionuclide production via the fission and fragmentation mechanisms. The ion optics of the large acceptance, high-resolution fragment separators that follow the production target require primary beam spot widths of 1 mm. To cope with the resulting high power densities, windowless liquid lithium targets are being developed. The present designs build on existing experience with liquid lithium and liquid sodium systems that have been used for fusion and fission applications. However, no completely windowless systems have been developed or tested to date. For the beam power indicated above (400 kW), the flow requirements are up to about 20 m/s and 10 l/s linear and volume flow rates, respectively. The required target thickness is 1-1.5 g/cm sup 2 (2-3 cm lithium thickness). At this time a prototype windowless system with a lithium thickness of 1-2 cm is und...

  8. Comparative metallurgical study of thick hard coatings without cobalt

    International Nuclear Information System (INIS)

    Clemendot, F.; Van Duysen, J.C.; Champredonde, J.

    1992-07-01

    Wear and corrosion of stellite type hard coatings for valves of the PWR primary system raise important problems of contamination. Substitution of these alloys by cobalt-free hard coatings (Colmonoy 4 and 4.26, Cenium 36) should allow to reduce this contamination. A comparative study (chemical, mechanical, thermal, metallurgical), as well as a corrosion study of these coatings were carried out. The results of this characterization show that none of the studied products has globally characteristics as good as those of grade 6 Stellite currently in service

  9. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes

    International Nuclear Information System (INIS)

    Arora, P.; Doyle, M.; White, R.E.

    1999-01-01

    Two major issues facing lithium-ion battery technology are safety and capacity grade during cycling. A significant amount of work has been done to improve the cycle life and to reduce the safety problems associated with these cells. This includes newer and better electrode materials, lower-temperature shutdown separators, nonflammable or self-extinguishing electrolytes, and improved cell designs. The goal of this work is to predict the conditions for the lithium deposition overcharge reaction on the negative electrode (graphite and coke) and to investigate the effect of various operating conditions, cell designs and charging protocols on the lithium deposition side reaction. The processes that lead to capacity fading affect severely the cycle life and rate behavior of lithium-ion cells. One such process is the overcharge of the negative electrode causing lithium deposition, which can lead to capacity losses including a loss of active lithium and electrolyte and represents a potential safety hazard. A mathematical model is presented to predict lithium deposition on the negative electrode under a variety of operating conditions. The Li x C 6 vertical bar 1 M LiPF 6 , 2:1 ethylene carbonate/dimethyl carbonate, poly(vinylidene fluoride-hexafluoropropylene) vert b ar LiMn 2 O 4 cell is simulated to investigate the influence of lithium deposition on the charging behavior of intercalation electrodes. The model is used to study the effect of key design parameters (particle size, electrode thickness, and mass ratio) on the lithium deposition overcharge reaction. The model predictions are compared for coke and graphite-based negative electrodes. The cycling behavior of these cells is simulated before and after overcharge to understand the hazards and capacity fade problems, inherent in these cells, can be minimized

  10. Fabrication and performance of AIN insulator coatings for application in fusion reactor blankets

    International Nuclear Information System (INIS)

    Natesan, K.

    1995-09-01

    The liquid-metal blanket concept for fusion reactors requires an coating on the first-wall structural material to minimize the magnetohydrodynamic pressure drop that occurs during the flow of liquid metal in a magnetic field. Based on the thermodynamics of interactions betwen the coating and the liquid lithium on one side and the structural V-base alloy on the other side, an AIN coating was selected as a candidate. Detailed investigations were conducted on the fabrication, metallurgical microstructure, compatibility in liquid Li, and electrical characteristics of AIN material obtained from several sources. Lithium compatibility was studied in static systems by exposing AIN-coated specimens to liquid Li for several time periods. Electrical resistance was measured at room temperature on the specimens before and after exposure to liquid Li. The results obtained in this study indicate that AIN is a viable coating from the standpoint of chemical compatibility in Li, electrical insulation, and ease of fabrication; for these reasons, the coating should be examined further for fusion reactor applications

  11. Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Deshpande, Anirudh; Banerjee, Soumik; Dutta, Prashanta

    2015-01-01

    ABSTRACT: Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the transport of lithium ions in lithium battery. In this study, a mathematical model is developed for transport of ionic components to study the performance of ionic liquid based lithium batteries. The mathematical model is based on a univalent ternary electrolyte frequently encountered in ionic liquid electrolytes of lithium batteries. Owing to the very high concentration of components in ionic liquid, the transport of lithium ions is described by the mutual diffusion phenomena using Maxwell-Stefan diffusivities, which are obtained from atomistic simulation. The model is employed to study a lithium-ion battery where the electrolyte comprises ionic liquid with mppy + (N-methyl-N-propyl pyrrolidinium) cation and TFSI − (bis trifluoromethanesulfonyl imide) anion. For a moderate value of reaction rate constant, the electric performance results predicted by the model are in good agreement with experimental data. We also studied the effect of porosity and thickness of separator on the performance of lithium-ion battery using this model. Numerical results indicate that low rate of lithium ion transport causes lithium depleted zone in the porous cathode regions as the porosity decreases or the length of the separator increases. The lithium depleted region is responsible for lower specific capacity in lithium-ion cells. The model presented in this study can be used for design of optimal ionic liquid electrolytes for lithium-ion and lithium-air batteries

  12. Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images

    International Nuclear Information System (INIS)

    Markl, Daniel; Sacher, Stephan; Khinast, Johannes G; Hannesschläger, Günther; Leitner, Michael; Buchsbaum, Andreas

    2015-01-01

    Film coating of pharmaceutical tablets is often applied to influence the drug release behaviour. The coating characteristics such as thickness and uniformity are critical quality parameters, which need to be precisely controlled. Optical coherence tomography (OCT) shows not only high potential for off-line quality control of film-coated tablets but also for in-line monitoring of coating processes. However, an in-line quality control tool must be able to determine coating thickness measurements automatically and in real-time. This study proposes an automatic thickness evaluation algorithm for bi-convex tables, which provides about 1000 thickness measurements within 1 s. Beside the segmentation of the coating layer, optical distortions due to refraction of the beam by the air/coating interface are corrected. Moreover, during in-line monitoring the tablets might be in oblique orientation, which needs to be considered in the algorithm design. Experiments were conducted where the tablet was rotated to specified angles. Manual and automatic thickness measurements were compared for varying coating thicknesses, angles of rotations, and beam displacements (i.e. lateral displacement between successive depth scans). The automatic thickness determination algorithm provides highly accurate results up to an angle of rotation of 30°. The computation time was reduced to 0.53 s for 700 thickness measurements by introducing feasibility constraints in the algorithm. (paper)

  13. Tunable thick porous silica coating fabricated by multilayer-by-multilayer bonding of silica nanoparticles for open-tubular capillary chromatographic separation.

    Science.gov (United States)

    Qu, Qishu; Liu, Yuanyuan; Shi, Wenjun; Yan, Chao; Tang, Xiaoqing

    2015-06-19

    A simple coating procedure employing a multilayer-by-multilayer process to modify the inner surface of bare fused-silica capillaries with silica nanoparticles was established. The silica nanoparticles were adsorbed onto the capillary wall via a strong electrostatic interaction between amino functional groups and silica particles. The thickness of the coating could be tuned from 130 to 600 nm by increasing the coating cycles from one to three. Both the retention factor and the resolution were greatly increased with increasing coating cycles. The loading capacity determined by naphthalene in the column with three coating cycles is 152.1 pmol. The effects of buffer concentration and pH value on the stability of the coating were evaluated. The retention reproducibility of the separation of toluene was 0.8, 1.2, 2.3, and 4.5%, respectively, for run-to-run, day-to-day, column-to-column, and batch-to-batch, respectively. The chromatographic performance of these columns was evaluated by both capillary liquid chromatography and open-tubular capillary electrochromatography (OT-CEC). Separation of aromatic hydrocarbons in the column with three coating cycles provided high theoretical plate numbers (up to 269,280 plates m(-1) for toluene) and short separation time (<15 min) by using OT-CEC mode. The method was also used to separate egg white proteins. Both acidic and basic proteins as well as four glycoisoforms were separated in a single run. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. NSTX plasma operation with a Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H.W., E-mail: hkugel@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, West Lafayette, IN 47907 (United States); Bell, M.G.; Bell, R.E.; Diallo, A.; Ellis, R.; Gerhardt, S.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, IN 47907 (United States); Jaworski, M.A.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Maingi, R.; McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nygren, R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Ono, M.; Paul, S.F. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer NSTX 2010 experiments tested the effectiveness of maintaining the deuterium retention properties of a static liquid lithium molybdenum divertor surface when refreshed by lithium evaporation as an approximation to a flowing liquid lithium surface. Black-Right-Pointing-Pointer Noteworthy improvements in plasma performance with the plasma strike point on the liquid lithium molybdenum divertor were obtained similar to those obtained previously with lithiated graphite. The role of lithium impurities in this result is discussed. Black-Right-Pointing-Pointer Inspection of the liquid lithium molybdenum divertor after the Campaign indicated mechanical damage to supports, and other hardware resulting from forces following plasma current disruptions. - Abstract: NSTX 2010 experiments were conducted using a molybdenum Liquid Lithium Divertor (LLD) surface installed on the outer part of the lower divertor. This tested the effectiveness of maintaining the deuterium retention properties of a static liquid lithium surface when refreshed by lithium evaporation as an approximation to a flowing liquid lithium surface. The LLD molybdenum front face has a 45% porosity to provide sufficient wetting to spread 37 g of lithium, and to retain it in the presence of magnetic forces. Lithium Evaporators were used to deposit lithium on the LLD surface. At the beginning of discharges, the LLD lithium surface ranged from solid to liquefied depending on the amount of applied and plasma heating. Noteworthy improvements in plasma performance were obtained similar to those obtained previously with lithiated graphite, e.g., ELM-free, quiescent edge, H-modes. During these experiments with the plasma outer strike point on the LLD, the rate of deuterium retention in the LLD, as indicated by the fueling needed to achieve and maintain stable plasma conditions, was the about the same as that for solid lithium coatings on the graphite prior to the installation of the

  15. PBFA II lithium beam characterization from inner-shell x-ray images

    International Nuclear Information System (INIS)

    Moats, A.R.; Derzon, M.S.; Chandler, G.A.; Dukart, R.J.; Haill, T.A.

    1994-01-01

    The Particle Beam Fusion Accelerator (PBFA II) is not driving targets with ICF-relevant lithium ion beams. During the most recent lithium beam target series, time-integrated x-ray pinhole cameras viewed the ion-induced inner-shell x-ray fluorescence from the central gold cone target and a titanium-coated strip. Ion beam profiles at a nominal 10 mm radius and fixed azimuthal direction were obtained from images of the Ti K α , fluorescence of a Ti-coated Al diagnostic wire. The gold cone gave us beam profiles at a nominal 3 mm radius and at all azimuthal angles from the Au L α fluorescence. From these profiles, we obtained the ion beam vertical focus position, full-width-at-half-maximum, and the degree of azimuthal uniformity for the lithium target shots. For these initial results, beam steering problems were evident. Azimuthal uniformity was measured from the ion beam footprint on the outer Au case (predominantly Au L α ) of the hohlraum target and were found to be in the same range (up to 30%) as for previous proton beam target series. We then present plans for Li beam diagnostics for an upcoming target experimental series

  16. Residual stress analysis in thick uranium films

    International Nuclear Information System (INIS)

    Hodge, A.M.; Foreman, R.J.; Gallegos, G.F.

    2005-01-01

    Residual stress analysis was performed on thick, 1-25 μm, depleted uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0, -200, -300 V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses

  17. Electroless silver coating of rod-like glass particles.

    Science.gov (United States)

    Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon

    2008-09-01

    An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.

  18. Double Carbon Nano Coating of LiFePO4 Cathode Material for High Performance of Lithium Ion Batteries.

    Science.gov (United States)

    Ding, Yan-Hong; Huang, Guo-Long; Li, Huan-Huan; Xie, Hai-Ming; Sun, Hai-Zhu; Zhang, Jing-Ping

    2015-12-01

    Double carbon-coated LiFePO4 (D-LiFePO4/C) composite with sphere-like structure was synthesized through combination of co-precipitation and solid-state methods. Cetyl-trimethyl-ammonium bromide (CTAB) and citric acid served as two kinds of carbon sources in sequence. SEM images demonstrated that double carbon coating had certain influence on the morphology. The thickness of carbon coating on D-LiFePO4/C was about 1.7 nm and the content of carbon was 2.48 wt%, according to HRTEM and TG analysis. The electrochemical impedance spectroscopy analysis indicated that the D-LiFePO4/C composite presented the charge-transfer resistance of 68 Ω and Li ion diffusion coefficient of 2.68 x 10(-13) cm2 S(-1), while the single carbon-coated LiFePO4 (S-LiFePO4/C) exhibited 135.5Ω and 4.03 x 10(-14) cm2 S(-1). Especially, the prepared D-LiFePO4/C electrode showed discharge capacities of 102.9 (10C) and 87.1 (20C) mA h g(-1), respectively, with almost no capacity lost after 400 cycles at 10C, which were much better than those of S-LiFePO4/C composite.

  19. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage.

    Science.gov (United States)

    Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan

    2017-12-01

    Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  1. Fabrication of lithium/C-103 alloy heat pipes for sharp leading edge cooling

    Science.gov (United States)

    Ai, Bangcheng; Chen, Siyuan; Yu, Jijun; Lu, Qin; Han, Hantao; Hu, Longfei

    2018-05-01

    In this study, lithium/C-103 alloys heat pipes are proposed for sharp leading edge cooling. Three models of lithium/C-103 alloy heat pipes were fabricated. And their startup properties were tested by radiant heat tests and aerothermal tests. It is found that the startup temperature of lithium heat pipe was about 860 °C. At 1000 °C radiant heat tests, the operating temperature of lithium/C-103 alloy heat pipe is lower than 860 °C. Thus, startup failure occurs. At 1100 °C radiant heat tests and aerothermal tests, the operating temperature of lithium/C-103 alloy heat pipe is higher than 860 °C, and the heat pipe starts up successfully. The startup of lithium/C-103 alloy heat pipe decreases the leading edge temperature effectively, which endows itself good ablation resistance. After radiant heat tests and aerothermal tests, all the heat pipe models are severely oxidized because of the C-103 poor oxidation resistance. Therefore, protective coatings are required for further applications of lithium/C-103 alloy heat pipes.

  2. Synthesis and electrochemical performance of ruthenium oxide-coated carbon nanofibers as anode materials for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Yura; Choi, Jin-Yeong [Department of Chemistry, Keimyung University (Korea, Republic of); Park, Heai-Ku [Department of Chemical Engineering, Keimyung University (Korea, Republic of); Lee, Chang-Seop, E-mail: surfkm@kmu.ac.kr [Department of Chemistry, Keimyung University (Korea, Republic of)

    2016-12-01

    Highlights: • Ruthenium oxide (RuO{sub 2}) coated carbon nanofibers (CNFs) on Ni foam were synthesized by chemical vapor deposition method and applied as anode materials of Li secondary batteries. • When RuO{sub 2}/CNFs/Ni foam was used as the anode material, initial capacity was improved from 276 mAh/g to 494 mAh/g with retention rate of 47.4% after 30 cycles. - Abstract: In this study, ruthenium oxide (RuO{sub 2}) coated carbon nanofibers (CNFs) were synthesized and applied as anode materials of Li secondary batteries. The CNFs were grown on Ni foam via chemical vapor deposition (CVD) method after CNFs/Ni foam was put into the 0.01 M RuCl{sub 3} solution. The ruthenium oxide-coated CNFs/Ni foam was dried in a dryer at 80 °C. The morphologies, compositions, and crystal quality of RuO{sub 2}/CNFs/Ni foam were characterized by SEM, EDS, XRD, Raman spectroscopy, and XPS. The electrochemical characteristics of RuO{sub 2}/CNFs/Ni foam as anode of Li secondary batteries were investigated using three-electrode cell. The RuO{sub 2}/CNFs/Ni foam was directly employed as a working electrode without any binder, and lithium foil was used as the counter and reference electrodes. LiClO{sub 4} (1 M) was employed as electrolyte and dissolved in a mixture of propylene carbonate (PC): ethylene carbonate (EC) in a 1:1 volume ratio. The galvanostatic charge/discharge cycling and cyclic voltammetry measurements were carried out at room temperature by using a battery tester. In particular, synthesized RuO{sub 2}/CNFs/Ni foam showed the highest retention rate (47.4%). The initial capacity (494 mAh/g) was reduced to 234 mAh/g after 30 cycles.

  3. Synthesis and electrochemical performance of ruthenium oxide-coated carbon nanofibers as anode materials for lithium secondary batteries

    International Nuclear Information System (INIS)

    Hyun, Yura; Choi, Jin-Yeong; Park, Heai-Ku; Lee, Chang-Seop

    2016-01-01

    Highlights: • Ruthenium oxide (RuO_2) coated carbon nanofibers (CNFs) on Ni foam were synthesized by chemical vapor deposition method and applied as anode materials of Li secondary batteries. • When RuO_2/CNFs/Ni foam was used as the anode material, initial capacity was improved from 276 mAh/g to 494 mAh/g with retention rate of 47.4% after 30 cycles. - Abstract: In this study, ruthenium oxide (RuO_2) coated carbon nanofibers (CNFs) were synthesized and applied as anode materials of Li secondary batteries. The CNFs were grown on Ni foam via chemical vapor deposition (CVD) method after CNFs/Ni foam was put into the 0.01 M RuCl_3 solution. The ruthenium oxide-coated CNFs/Ni foam was dried in a dryer at 80 °C. The morphologies, compositions, and crystal quality of RuO_2/CNFs/Ni foam were characterized by SEM, EDS, XRD, Raman spectroscopy, and XPS. The electrochemical characteristics of RuO_2/CNFs/Ni foam as anode of Li secondary batteries were investigated using three-electrode cell. The RuO_2/CNFs/Ni foam was directly employed as a working electrode without any binder, and lithium foil was used as the counter and reference electrodes. LiClO_4 (1 M) was employed as electrolyte and dissolved in a mixture of propylene carbonate (PC): ethylene carbonate (EC) in a 1:1 volume ratio. The galvanostatic charge/discharge cycling and cyclic voltammetry measurements were carried out at room temperature by using a battery tester. In particular, synthesized RuO_2/CNFs/Ni foam showed the highest retention rate (47.4%). The initial capacity (494 mAh/g) was reduced to 234 mAh/g after 30 cycles.

  4. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method

    Directory of Open Access Journals (Sweden)

    Chien-Chen Diao

    2014-01-01

    Full Text Available In this study, a new thin-film deposition process, spray coating method (SPM, was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method.

  5. The Effects of Perlite Concentration and Coating Thickness of the Polyester Nonwoven Structures on Thermal and Acoustic Insulation and Also Electromagnetic Radiation Properties

    Directory of Open Access Journals (Sweden)

    Seyda EYUPOGLU

    2018-02-01

    Full Text Available In this study, the improvement of the thermal and acoustic insulation and also electromagnetic radiation properties of polyester (PET nonwoven fabric (NWF with 180 g/m2 weight was investigated. For this purpose, PET NWF was coated with perlite stone powder having 210 – 590 µm particle size using polyurethane (PU based coating. Five different concentrations from 1 to 5 % of perlite stone powder were applied to the surface of PET NWF having five different thicknesses. And then the effect of perlite concentration and its thickness to thermal, acoustic and electromagnetic radiation properties were studied. It was found that the addition of perlite stone powder increased the thermal and acoustic insulation properties of PET NWF. Furthermore, the addition of perlite stone powder does not affect the electromagnetic radiation properties of samples.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17562

  6. A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte

    Science.gov (United States)

    Ito, Seitaro; Fujiki, Satoshi; Yamada, Takanobu; Aihara, Yuichi; Park, Youngsin; Kim, Tae Young; Baek, Seung-Wook; Lee, Jae-Myung; Doo, Seokgwang; Machida, Nobuya

    2014-02-01

    An all-solid-state lithium-ion battery (ASSB) using non-flammable solid electrolytes is a candidate for a next-generation battery. Although the excellent cycle performance and its high energy density are suggested in the literature, a practical size battery has not been appeared yet. In this paper, we have adopted a sulfide based electrolyte, Li2S-P2S5 (80:20 mol%) to a rocking chair type lithium ion battery. The electrochemical cell consists of a Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 (NCA) cathode, an artificial graphite anode and the sulfide based electrolyte without any organic and inorganic liquids. The cathode charge transfer resistance is significantly reduced by the Li2O-ZrO2 coating. The total cell resistance of the Li2O-ZrO2 (LZO) coated NCA adopted cell is approximately one quarter of non-treated one. A standard type single cell with the nominal capacity of 100 mAh at 25 °C is fabricated by wet printing process, and its capacity retention is approximately 80% at 100 cycles. Also, a 1 Ah class battery was constructed by stacking the single cells, and demonstrated.

  7. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    Science.gov (United States)

    Woolley, Robert D.

    2002-01-01

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  8. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  9. Core-shell LiFePO4 /carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes.

    Science.gov (United States)

    Ha, Sung Hoon; Lee, Yun Jung

    2015-01-26

    Core-shell carbon-coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high-power lithium-ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon-coated LiFePO4 -rGO (LFP/C-rGO) hybrids were ascribed to three factors: 1) In-situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4 , 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C-rGO hybrids with LFP/C-rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li(+) ion and electron transport for high power applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  11. Structural ceramic coatings in composite microtruss cellular materials

    International Nuclear Information System (INIS)

    Bele, E.; Bouwhuis, B.A.; Codd, C.; Hibbard, G.D.

    2011-01-01

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al 2 O 3 sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al 2 O 3 coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: → A new type of metal/ceramic microtruss cellular composite has been created. → Reinforcing sleeves of Al 2 O 3 were deposited on low density Al microtruss cores. → Significant compressive strength increases were seen at virtually no weight penalty. → Failure mechanisms were studied by electron microscopy and finite element analysis. → Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al 2 O 3 coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 μm thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  12. Flexural testing of weld site and HVOF coating characteristics

    CERN Document Server

    Yilbas, Bekir Sami; Sahin, Ahmet

    2014-01-01

    This book provides fundamental understanding and practical application of characteristics of flexural motion in the assessment of the weld size and coating thickness. Some formulations of heat transfer and flexural motion are introduced while displacement and load correlation are used to estimate elastic modules and the size of the heat affected zone as well as the coating thickness. The case studies presented give a practical understanding of weld size and coating thickness characterizations.

  13. Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries

    Science.gov (United States)

    Sha, Yujing; Xu, Xiaomin; Li, Li; Cai, Rui; Shao, Zongping

    2016-05-01

    In this work, carbon-coated hierarchical acanthosphere-like Li4Ti5O12 microspheres (denoted as AM-LTO) were prepared via a two-step hydrothermal process with low-cost glucose as the organic carbon source. The hierarchical porous microspheres had open structures with diameters of 4-6 μm, which consisted of a bunch of willow leaf-like nanosheets. Each nanosheet was comprised of Li4Ti5O12 nanoparticles that are 20 nm in size and coated by a thin carbon layer. When applied as the anode material for lithium-ion batteries (LIBs), the AM-LTO presented outstanding rate and cycling performance due to its unique morphologies. A high capacity of 145.6 mAh g-1 was achieved for AM-LTO at a rate of 40C (1C = 175 mAh g-1). In contrast, the sample synthesized without glucose as carbon source (denoted as S-LTO) experienced an obvious structural collapse during the hydrothermal reaction and presented a specific capacity of only 67 mAh g-1 at 1C, which further decreased to 14 mAh g-1 at 40C. Further morphological growth of the acanthosphere-like Li4Ti5O12 microspheres and their excellent performance as an anode in LIBs were also discussed in this work.

  14. Zeolitic imidazolate framework-8-derived N-doped porous carbon coated olive-shaped FeOx nanoparticles for lithium storage

    Science.gov (United States)

    Gan, Qingmeng; Zhao, Kuangmin; He, Zhen; Liu, Suqin; Li, Aikui

    2018-04-01

    We propose a new strategy to uniformly coat zeolitic imidazolate framework-8 (ZIF-8) on iron oxides containing no Zn to obtain an α-Fe2O3@ZIF-8 composite. After carbonization, the α-Fe2O3@ZIF-8 transforms into iron oxides@N-doped porous carbon (FeOx@NC). The uniform N-doped porous carbon layer gives rise to a superior electrical conductivity, highly-increased specific BET surface area (179.2 m2 g-1), and abundant mesopores for the FeOx@NC composite. When served as the LIB anode, the FeOx@NC shows a high reversible capacity (of 1064 mA h g-1 at 200 mA g-1), excellent rate performance (of 198.1 mA h g-1 at 10000 mA g-1) as well as brilliant long-term cyclability (with a capacity retention of 93.3% after 800 cycles), which are much better than those of the FeOx@C and pristine FeOx anodes. Specifically, the Li-ion intercalation pseudocapacitive behavior of the FeOx@NC anode is improved by this N-doped porous carbon coating, which is beneficial for rapid Li-ion insertion/extraction processes. The excellent electrochemical performance of FeOx@NC should be ascribed to the increased electrolyte penetration areas, improved electrical conductivity, boosted lithium storage kinetics, and shortened Li-ion transport length.

  15. Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhengjiao; Guo, Pengqian; Liu, Boli; Xie, Wenhe; Liu, Dequan; He, Deyan, E-mail: hedy@lzu.edu.cn

    2017-02-28

    Silicon is the most promising anode material for the next-generation lithium-ion batteries (LIBs). However, the large volume change during lithiation/delithiation and low intrinsic conductivity hamper its electrochemical performance. Here we report a well-designed LIB anode in which carbon-coated Si nanoparticles/reduced graphene oxide (Si/rGO) multilayer was anchored to nanostructured current collector with stable mechanical support and rapid electron conduction. Furthermore, we improved the integral stability of the electrode through introducing amorphous carbon. The designed anode exhibits superior cyclability, its specific capacity remains above 800 mAh g{sup −1} after 350 cycles at a current density of 2.0 A g{sup −1}. The excellent electrochemical performance can be attributed to the fact that the Si/rGO multilayer is reinforced by the nanostructured current collector and the formed amorphous carbon, which can maintain the structural and electrical integrities of the electrode.

  16. Oxidation and thermal shock behavior of thermal barrier coated 18/10CrNi alloy with coating modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guergen, Selim [Vocational School of Transportation, Anadolu University, Eskisehir (Turkmenistan); Diltemiz, Seyid Fehmi [Turkish Air Force1st Air Supply and Maintenance Center Command, Eskisehir (Turkmenistan); Kushan, Melih Cemal [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2017-01-15

    In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.

  17. Nano-MnO2@TiO2 microspheres: A novel structure and excellent performance as anode of lithium-ion batteries

    Science.gov (United States)

    Cao, Zhiguang; Chen, Xiaoqiao; Xing, Lidang; Liao, Youhao; Xu, Mengqing; Li, Xiaoping; Liu, Xiang; Li, Weishan

    2018-03-01

    A structurally hierarchical MnO2/TiO2 composite (Nano-MnO2@TiO2) is fabricated by calcining MnCO3 microspheres and coating a thin layer of TiO2 through the heat decomposition of tetrabutyl titanate, and evaluated as anode of gravimetrically and volumetrically high energy density lithium ion battery. The characterizations from FESEM, TEM, HRTEM and XRD, indicate that the resulting Nano-MnO2@TiO2 takes a spherical morphology with a core of about 2 μm in diameter, consisting of compact MnO2 nanoparticles, and a shell of 60 nm thick, consisting of smaller TiO2 nanoparticles. The charge/discharge tests demonstrate that Nano-MnO2@TiO2 exhibits excellent performance as anode of lithium ion battery, delivering a capacity of 938 mAh g-1 at 300 mA g-1 after 200 cycles, compared to the 103 mAh g-1 of the uncoated sample. The microsphere consisting of compact nanoparticles provides Nano-MnO2@TiO2 with high specific gravity. The dimensionally and structurally stable TiO2 maintains the integrity of MnO2 microspheres and facilitates lithium insertion/extraction. This unique structure yields the excellent cyclic stability and rate capability of Nano-MnO2@TiO2.

  18. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  19. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-12-26

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  20. Enhanced high temperature performance of LiMn2O4 coated with ...

    Indian Academy of Sciences (India)

    Cathode material, LiMn2O4, was synthesized by solid-state reaction followed by surface coating of. Li3BO3 solid ... date material for lithium ion battery due to its high voltage, ... coating of LiMn2O4 with various protective layers as Cr2O3.

  1. Sorption of atmospheric gases by bulk lithium metal

    Energy Technology Data Exchange (ETDEWEB)

    Hart, C.A. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Skinner, C.H., E-mail: cskinner@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Capece, A.M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Koel, B.E. [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2016-01-15

    Lithium conditioning of plasma facing components has enhanced the performance of several fusion devices. Elemental lithium will react with air during maintenance activities and with residual gases (H{sub 2}O, CO, CO{sub 2}) in the vacuum vessel during operations. We have used a mass balance (microgram sensitivity) to measure the mass gain of lithium samples during exposure of a ∼1 cm{sup 2} surface to ambient and dry synthetic air. For ambient air, we found an initial mass gain of several mg/h declining to less than 1 mg/h after an hour and decreasing by an order of magnitude after 24 h. A 9 mg sample achieved a final mass gain corresponding to complete conversion to Li{sub 2}CO{sub 3} after 5 days. Exposure to dry air resulted in a 30 times lower initial rate of mass gain. The results have implications for the chemical state of lithium plasma facing surfaces and for safe handling of lithium coated components. - Highlights: • Li in tokamaks will react with air during maintenance and exposure to residual gases in the vacuum vessel. • The mass gain of Li samples upon exposure to ambient air indicates conversion to Li{sub 2}CO{sub 3.} • Exposure to dry air resulted in a 30 times lower rate of mass gain. • A rule of thumb for lithium passivation at 26 °C and 45% relative humidity is proposed.

  2. Synthesis of Li{sub 2}Si{sub 2}O{sub 5}-coated LiNi{sub 0.6}Co{sub 0.2}Mn{sub 0.2}O{sub 2} cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengjie; Wu, Hao; Huang, Ling; Xiang, Mingwu; Liu, Heng; Zhang, Yun, E-mail: y_zhang@scu.edu.cn

    2016-07-25

    Ni-rich ternary layered oxides, (LiNi{sub x} [M]{sub 1−x}O{sub 2}, x ≥ 0.5, M = Co and Mn), have become one of the mainstream cathode materials for next-generation lithium-ion batteries due to their high capacity and cost efficiency compared with LiCoO{sub 2}. However, the high-voltage operation of the Ni-rich oxides (>4.3 V) required for high capacity is inevitably accompanied with a rapid capacity decay over numerous cycles. In this work, we reported a surface coating of LiNi{sub 0.6}Co{sub 0.2}Mn{sub 0.2}O{sub 2} with Li{sub 2}Si{sub 2}O{sub 5}via a facile and efficient synthetic approach, which involves the employment of silicic acid (H{sub 2}SiO{sub 3}) as remover to react with the surface residual lithium compounds (e.g. Li{sub 2}CO{sub 3} and LiOH) of LiNi{sub 0.6}Co{sub 0.2}Mn{sub 0.2}O{sub 2} and consequent formation of a robust and complete Li{sup +}-conductive Li{sub 2}Si{sub 2}O{sub 5} protective coating layer. The structure and morphology of the coated cathode materials are fully characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Compared with the pristine LiNi{sub 0.6}Co{sub 0.2}Mn{sub 0.2}O{sub 2}, coating with the Li{sup +}-conductive Li{sub 2}Si{sub 2}O{sub 5} is found to be very effective for improving the rate capability of the LiNi{sub 0.6}Co{sub 0.2}Mn{sub 0.2}O{sub 2} when evaluated at a high cut-off voltage up to 4.5 V. Specifically, 1 wt. % H{sub 2}SiO{sub 3}-treated LiNi{sub 0.6}Co{sub 0.2}Mn{sub 0.2}O{sub 2} electrode exhibits high discharge specific capacities of 213.9 and 121.6 mAh g{sup −1} at 0.1 and 10 C, respectively, whereas the pristine electrode only shows 196.8 and 92.1 mAh g{sup −1}. Besides, the surface-modified LiNi{sub 0.6}Co{sub 0.2}Mn{sub 0.2}O{sub 2} electrode also manifests an enhanced long-term cycling stability (67% capacity retention after 200 cycles at 5 C), much better than the pristine

  3. Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-rate lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Liu, Minglong; Wang, Jianquan; Li, Pengfa; Zhao, Ming

    2014-02-15

    New cellulose derivative CMC-Li was synthesized, and nanometer CMC-Li fiber was applied to lithium-ion battery and coated with AQ by electrospinning. Under the protection of inert gas, modified AQ/carbon nanofibers (CNF)/Li nanometer composite material was obtained by carbonization in 280 °C as lithium battery anode materials for the first time. The morphologies and structures performance of materials were characterized by using IR, (1)H NMR, SEM, CV and EIS, respectively. Specific capacity was increased from 197 to 226.4 mAhg(-1) after modification for the first discharge at the rate of 2C. Irreversible reduction reaction peaks of modified material appeared between 1.5 and 1.7 V and the lowest oxidation reduction peak of the difference were 0.42 V, the polarization was weaker. Performance of cell with CMC-Li with the high degree of substitution (DS) was superior to that with low DS. Cellulose materials were applied to lithium battery to improve battery performance by electrospinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    OpenAIRE

    DU Ji-yu; LI Fang-yi; LU Hai-yang; SHANG Jian-tong; LI Zhen

    2017-01-01

    Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is p...

  5. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Kim, Eui Hyun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Lee, Jung Hyuk [Korea Plant Service and Engineering Co. Ltd., Incheon (Korea, Republic of)

    2008-06-15

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 {mu}m respectively. The thickness of top coat was about 700 {mu}m in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

  6. In-situ generation of Li2FeSiO4/C nanocomposite as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Yi, Jin; Hou, Meng-yan; Bao, Hong-liang; Wang, Cong-xiao; Wang, Jian-qiang; Xia, Yong-yao

    2014-01-01

    Highlights: • A Li 2 FeSiO 4 /C nanocomposite is prepared via thermal vapor deposition technology. • The Li 2 FeSiO 4 /C nanocomposite is free from impurity and coated with carbon layer. • The Li 2 FeSiO 4 /C nanocomposite exhibits good rate capability and cycling stability. • Lithium benzoate serves as both lithium and carbon sources. - Abstract: A Li 2 FeSiO 4 /C nanocomposite is prepared via solvothermal method in combination with carbon coating technology. The as-prepared Li 2 FeSiO 4 /C nanocomposite is a single phase Li 2 FeSiO 4 with nano-tickness coated carbon layer and connected by the mutual cross-linked carbon conductive matrix. As cathode material for lithium ion battery, the composite delivers a discharge capacity of 154 mAh g −1 at 1 C and exhibits good rate capability with a discharge capacity of 106 mAh g −1 at the rate of 10 C, which is ascribed to the small particle size and enhanced electronic conductivity using carbon coating technology. The as-prepared Li 2 FeSiO 4 /C nanocomposite also behaves a good cycling stability with capacity retention of over 100 cycles

  7. Glue Film Thickness Measurements by Spectral Reflectance

    International Nuclear Information System (INIS)

    Marshall, B.R.

    2010-01-01

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 (micro)m, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  8. Glue Film Thickness Measurements by Spectral Reflectance

    Energy Technology Data Exchange (ETDEWEB)

    B. R. Marshall

    2010-09-20

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 μm, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  9. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    Science.gov (United States)

    Hong, Jian

    Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20

  10. Enhancing Near Zero Volt Storage Tolerance of Lithium-ion Batteries

    Science.gov (United States)

    Crompton, Kyle R.

    discharge measurements were performed and show that double layer capacitance likely plays a major role in determining the behavior of electrode potentials during near zero volt storage. To further the viability of the anode pre-lithiation method in LiCoO2/MCMB cells, stabilization coatings on the cathode materials are being investigated to increase the tolerance of the cathode to the low potentials it may experience during near zero volt storage of an RLE lithium ion cell. Results show that an AlPO4 coating prevents cation exhange in the cathode crystal structure and substantially increases the cathode's resilience to low electrochemical potentials. Investigations into applying anode pre-lithiation to cells utilizing LiNiCoAlO2 (NCA) cathodes have also been initiated and found to maintain the anode potential below the copper dissolution potential during near zero volt storage. RLE NCA/MCMB cells showed strong recharge performance and improved rate capability retention over a conventional NCA/MCMB cell after ten, 3-day near zero volt storage periods. Scale up of reversible lithium management to NCA/MCMB x3450 pouch cells was achieved using bath lithium addition and rendered a cell that retained 100% of its discharge performance after a 14 day period at near zero volts under fixed load. The near zero volt storage tolerance of lithium ion cells utilizing an advanced, high energy density lithium rich cathode material (0.49Li2MnO3˙0.51LiNi 0.37Co0.24Mn0.39O2 or HE5050) has also been studied and found to be high at room temperature without the need for anode pre-lithiation. HE5050/MCMB cells maintained 100% of their discharge capacity after five, 3-day and five, 7-day near zero volt storage periods at room temperature. HE5050/MCMB also maintained 99% of their discharge capacity after two, 3-day near zero volt storage periods at 40°C. The high first cycle loss and lower intercalation potential of the HE5050 cathode lead to the anode potential remaining <2.8 V vs. Li/Li+ during

  11. Structural ceramic coatings in composite microtruss cellular materials

    Energy Technology Data Exchange (ETDEWEB)

    Bele, E.; Bouwhuis, B.A.; Codd, C. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada); Hibbard, G.D., E-mail: glenn.hibbard@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada)

    2011-09-15

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al{sub 2}O{sub 3} sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al{sub 2}O{sub 3} coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: {yields} A new type of metal/ceramic microtruss cellular composite has been created. {yields} Reinforcing sleeves of Al{sub 2}O{sub 3} were deposited on low density Al microtruss cores. {yields} Significant compressive strength increases were seen at virtually no weight penalty. {yields} Failure mechanisms were studied by electron microscopy and finite element analysis. {yields} Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al{sub 2}O{sub 3} coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 {mu}m thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  12. Preparation of selenium coatings onto beryllium foils

    International Nuclear Information System (INIS)

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-09-01

    A technique for preparing selenium films onto 50.8 microns thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. Profilometry measurements of the coatings indicate deposit thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 microns. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable thin film controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV. 15 references, 3 figures

  13. Room temperature H{sub 2}S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) thick films

    Energy Technology Data Exchange (ETDEWEB)

    More, P.S., E-mail: p_smore@yahoo.co.in [Department of Physics, Institute of Science, Mumbai 400 032 (India); Raut, R.W. [Department of Botany, Institute of Science, Mumbai 400 032 (India); Ghuge, C.S. [Department of Physics, Institute of Science, Mumbai 400 032 (India)

    2014-02-14

    The study reports H{sub 2}S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) films. The porous alumina (PoAl) thick layers were formed in the dark on aluminum substrates using an electrochemical anodization method. Thin semitransparent platinum (Pt) films were deposited on PoAl samples using chemical bath deposition (CBD) method. The films were characterized using energy dispersive X-ray analysis (EDAX) and scanning electron microscopy (SEM). The thicknesses of coated and bare films were measured using ellipsometry. The sensing properties such as sensitivity factor (S.F.), response time, recovery time and repeatability were measured using a static gas sensing system for H{sub 2}S gas. The EDAX studies confirmed the purity of Pt–PoAl film and indicated the formation of pure platinum (Pt) phase. The ellipsometry studies revealed the thickness of PoAl layer of about 15–17 μm on aluminum substrates. The SEM studies demonstrated uniform distribution of spherical pores with a size between 0.250 and 0.500 μm for PoAl film and nearly spherical platinum particles with average particle size ∼100 nm for Pt–PoAl film. The gas-sensing properties of these samples were studied in a home-built static gas characterization system. The H{sub 2}S gas sensing properties of Pt–PoAl at 1000 ppm of H{sub 2}S gave maximum sensitivity factor (S.F.) = 1200. The response time and recovery time were found to be 2–3 min and ∼1 min respectively. Further, the measurement of H{sub 2}S gas sensing properties clearly indicated the repeatability of gas sensing response of Pt–PoAl film. The present study indicated the significant potential of Pt coated PoAl films for H{sub 2}S gas sensing applications in diverse areas. - Highlights: • Electrochemical anodization, cheap and effective method for fabrication of PoAl. • Chemical bath deposition, a simple and effective method for deposition of Pt on PoAl. • A nano-composite film sensor with high sensitivity

  14. European coatings conference - Marine coatings. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This volume contains 13 lectures (manuscripts or powerpoint foils) with the following topics: 1. Impact of containerization on polyurethane and polyurea in marine and protective coatings (Malte Homann); 2. The application of combinatorial/high-throughput methods to the development of marine coatings (Bret Chisholm); 3. Progress and perspectives in the AMBIO (advanced nanostructured surfaces for the control of biofouling) Project (James Callow); 4. Release behaviour due to shear and pull-off of silicone coatings with a thickness gradient (James G. Kohl); 5. New liquid rheology additives for high build marine coatings (Andreas Freytag); 6. Effective corrosion protection with polyaniline, polpyrrole and polythiophene as anticorrosice additives for marine paints (Carlos Aleman); 7. Potential applications of sol gel technology for marine applications (Robert Akid); 8: Performance of biocide-free Antifouling Coatings for leisure boats (Bernd Daehne); 9. Novel biocidefree nanostructured antifouling coatings - can nano do the job? (Corne Rentrop); 10. One component high solids, VOC compliant high durability finish technology (Adrian Andrews); 11. High solid coatings - the hybrid solution (Luca Prezzi); 12. Unique organofunctional silicone resins for environmentally friendly high-performance coatings (Dieter Heldmann); 13. Silicone-alkyd paints for marine applications: from battleship-grey to green (Thomas Easton).

  15. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...... trifluoromethanesulfonate (LiCF3SO3 – LiTF). The polymer electrode material was polypyrrole (PPy) doped with dodecyl benzene sulfonate (DBS). The cells were of the form, Li / PAN : EC : PC : LiCF3SO3 / PPy : DBS. Polymer electrodes of three different thicknesses were studied using cycling at different scan rates. All cells...

  16. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    Science.gov (United States)

    McLean, A. G.; Gan, K. F.; Ahn, J.-W.; Gray, T. K.; Maingi, R.; Abrams, T.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Nygren, R. E.; Skinner, C. H.; Soukhanovskii, V. A.

    2013-07-01

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of Tsurface near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q⊥,peak = 5 MW/m2 inter-ELM and up to 10 MW/m2 during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  17. A new coating material for reducing indoor radon level

    International Nuclear Information System (INIS)

    Zhuo, W.; Tokonami, S.; Ichitsubo, H.; Yamada, Y.; Yamada, Y.

    2002-01-01

    In order to mitigate indoor radon level, a new fast-setting, solvent-free, polyurethane-based coating material was developed. The permeability of radon gas in the new material was estimated with a simple radon permeation test system set up in this study. It was found that the permeation velocity depended on the thickness of the coating material, and a thickness of 2.0 mm of the coating material seems sufficient for preventing radon permeation. The permeability of radon in the coating material was estimated to be (2.2± 0.8)x10 -10 m 2 ·s -1 for a thickness of about 1.0 mm. The value is much lower than those reported for membrane materials and caulking compounds. For its performance test, the coating material was used in an existing room with high radon level. By spraying a thickness of 1.5 mm of the material, the indoor radon level reduced by about 80%

  18. Mathematical Model of a Lithium/Thionyl Chloride Battery

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.; Jungst, R.G.; Nagasubramanian, G.; Weidner, J.W.

    1998-11-24

    A mathematical model of a spirally wound lithium/thionyl chloride primary battery has been developed ~d used for parameter estimation and design studies. The model formulation is based on the fimdarnental Consemation laws using porous electrode theory and concentrated solution theory. The model is used to estimate the difision coefficient and the kinetic parameters for the reactions at the anode and the cathode as a function of temperature. These parameters are obtained by fitting the simulated capacity and average cell voltage to experimental data over a wide range of temperatures (-55 to 49"C) and discharge loads (10 to 250 ohms). The experiments were performed on D-sized, cathode-limited, spirally wound lithium/thionyl chloride cells. The model is also used to study the effkct of cathode thickness on the cell capacity as a finction of temperature, and it was found that the optimum thickness for the cathode- limited design is temperature and load dependent.

  19. Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by spin coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Junaid Ali; Lu, Hongbin; Tang, Shaochun; Meng, Xiangkang, E-mail: mengxk@nju.edu.cn

    2015-01-15

    Highlights: • PANI-PAA/PEI multilayers with controllable thickness were fabricated by spin assembly. • PAA matrix results in the homogeneous dispersion of PANI in the composite coatings. • Spin coating combined with heating assures the linear increase in thickness with n. • The corrosion protection property of PANI-PAA/PEI coatings were optimized at n = 20. • Enhanced protection owing to multilayer structure that lengthens the diffusion pathway of ions. - Abstract: In the present study, polyaniline-polyacrylic acid/polyethyleneimine (PANI-PAA/PEI) composite coatings with a multilayer structure for corrosion protection of 316 stainless steels (316SS) were prepared by an alternate deposition. Spin coating combined with heating assists removal of residual water that result in a linear increase in thickness with layer number (n). The combination of PANI-PAA composite with PEI and their multilayer structure provides a synergistic enhancement of corrosion resistance properties as determined by electrochemical measurements in 3.5% NaCl solution. Importantly, the PANI-PAA/PEI coating with an optimized layer number of n = 20 shows improved corrosion protection. The superior performance was attributed to the formation of an interfacial oxide layer as well as the multilayer structure that extend the diffusion pathway of corrosive ions.

  20. Radon prevention coating in hot and humid environment

    International Nuclear Information System (INIS)

    Yang Yushan; Dong Faqin; Deng Yuequan; Qu Ruixue

    2013-01-01

    The radon prevention performance of a new self-made radon prevention coating was researched in the radon contamination provided by the releasing radon modules. With coating thickness of 0.8 mm, the radon mitigation efficiency in 1 # radon module concentration is optimal when the addition of defoaming agent is 0.3% (mass fraction). The radon mitigation efficiency increases with the coating thickness when the defoaming agent of 0.3% is added, but the radon mitigation efficiency tends to be stable as the coating thickness is more than 2.0 mm. The radon mitigation efficiency of radon prevention coating appended precipitated barium sulphate decreases obviously, and the addition of ash calcium, white cement and gesso don't decrease radon mitigation efficiency. The addition of white cement and gesso addition affects the radon prevention stability, while radon mitigation efficiency of radon prevention coating with ash calcium keeps a good performance. Under the hot and humid environment, the radon prevention coating still has good radon mitigation efficiency in 2 # radon module concentration. (authors)

  1. The effect of nanocrystalline Ni-W coating on the tensile properties of copper

    Directory of Open Access Journals (Sweden)

    E. P. Georgiou

    2016-03-01

    Full Text Available Nanostructured Ni-W alloy coatings containing approximately 40 wt.% tungsten were electrodeposited onto copper substrates. The effect of the coatings thickness on the surface topography, microstructure and grain size was investigated with the aid of Atomic Force Microscopy (AFM, Scanning Electron Microscopy (SEM and X-ray Diffraction (XRD techniques respectively. In addition, this research work aims in understanding the influence and correlation between microstructure and thickness of these Ni-W coatings with the bulk mechanical properties of coated specimens. The experimental results indicated that the micro-hardness and Ultimate Tensile Strength (UTS of the Ni-W coated copper were higher than that of bare copper, whereas both slightly increased with increasing coating thickness up to 21 μm. On the other hand, the ductility of Ni-W coated copper decreased significantly with increasing coating thickness. Thus it could be said that when applying Ni-W coatings there are certain limitations not only in terms of their composition, but their thickness, grain size and coating structure should be also taken into consideration, in order to obtain an understanding of their mechanical behavior.

  2. Suppression of interfacial reactions between Li4Ti5O12 electrode and electrolyte solution via zinc oxide coating

    International Nuclear Information System (INIS)

    Han, Cuiping; He, Yan-Bing; Li, Hongfei; Li, Baohua; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-01-01

    Graphical abstract: The Li 4 Ti 5 O 12 (LTO) based batteries have severe gassing behavior due to the strong interfacial reactions between LTO and the electrolyte solution, which hampers the practical application of LTO in high power LIBs. The ZnO coating on LTO particles as a barrier layer can effectively suppress the interfacial reactions between LTO and the electrolyte solution. Simultaneously, the ZnO coating significantly reduces the charge-transfer resistance and increases the lithium ion diffusion coefficient, which leads to great improvement of rate and cyclic performance of LTO electrode. - Highlights: • A ZnO coating layer was constructed on the LTO particles by a chemical process as a barrier layer between LTO and surrounding electrolyte solution. • The ZnO coating can effectively stabilize the electrode/electrolyte interface and suppress interfacial reactions between LTO and electrolyte solution. • The ZnO coating can improve the electronic conductivity and lithium ion diffusion coefficient, which contributes to a great improvement in cyclic and high rate capabilities of LTO electrode. • The ZnO coating on LTO may be an effective method to solve the gassing behavior of LTO based battery and promote its wide application in lithium ion power battery. - Abstract: Li 4 Ti 5 O 12 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process. The interfacial reactions between LTO and electrolyte solution may be the main reason. In this work, the LTO spinel particles are modified with ZnO coating using a chemical process to reduce the surface reactivity of LTO particles. Results show that the ZnO coating can effectively stabilize the electrode/electrolyte interface and suppress the formation of a solid electrolyte interface (SEI) film. Simultaneously, this ZnO modification can improve the electronic conductivity and lithium ion diffusion coefficient, which contributes to a great improvement in cyclic and high rate

  3. Development of electrically insulating coatings for service in a lithium environment

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.; Wieder, S.

    2000-01-01

    Several experiments were conducted to develop electrically insulating CaO coatings on a V-4Cr-4Ti alloy for application in an Li environment. The coatings were developed by vapor phase transport external to Li, and also in-situ in an Li-Ca environment at elevated temperature. In the vapor phase study, several geometrical arrangements were examined to obtain a uniform coating of Ca on the specimens, which were typically coupons measuring 5 to 10 x 5 x 1 mm. After Ca deposition from the vapor phase, the specimens were oxidized in a high-purity argon environment at 600 C to convert the deposited metal into oxide. The specimens exhibited insulating characteristics after this oxidation step. Several promising coated specimens were then exposed to high-purity Li at 500 C for 48--68 h to determine coating integrity. Microstructural characteristics of the coatings were evaluated by scanning electron microscopy and energy-dispersive X-ray analysis. Electrical resistances of the coatings were measured by a two-probe method between room temperature and 700 C before and after exposure to Li

  4. Lithium ion intercalation into thin film anatase

    International Nuclear Information System (INIS)

    Kundrata, I.; Froehlich, K.; Ballo, P.

    2015-01-01

    The aim of this work is to find the optimal parameters for thin film TiO 2 anatase grown by Atomic layer deposition (ALD) for use as electrode in lithium ion batteries. Two parameters, the optimal film thickness and growth conditions are aimed for. Optimal film thickness for achieving optimum between capacity gained from volume and capacity gained by changing of the intercalation constant and optimal growth conditions for film conformity on structured substrates with high aspect ratio. Here we presents first results from this ongoing research and discuss future outlooks. (authors)

  5. Influence of operational condition on lithium plating for commercial lithium-ion batteries – Electrochemical experiments and post-mortem-analysis

    International Nuclear Information System (INIS)

    Ecker, Madeleine; Shafiei Sabet, Pouyan; Sauer, Dirk Uwe

    2017-01-01

    Highlights: •Investigation of lithium plating to support reliable system integration. •Influence of operational conditions at low temperature on lithium plating. •Comparison of different lithium-ion battery technologies. •Large differences in low-temperature behaviour for different technologies. •Post-mortem analysis reveals inhomogeneous deposition of metallic lithium. -- Abstract: The lifetime and safety of lithium-ion batteries are key requirements for successful market introduction of electro mobility. Especially charging at low temperature and fast charging, known to provoke lithium plating, is an important issue for automotive engineers. Lithium plating, leading both to ageing as well as safety risks, is known to play a crucial role in system design of the application. To gain knowledge of different influence factors on lithium plating, low-temperature ageing tests are performed in this work. Commercial lithium-ion batteries of various types are tested under various operational conditions such as temperature, current, state of charge, charging strategy as well as state of health. To analyse the ageing behaviour, capacity fade and resistance increase are tracked over lifetime. The results of this large experimental survey on lithium plating provide support for the design of operation strategies for the implementation in battery management systems. To further investigate the underlying degradation mechanisms, differential voltage curves and impedance spectra are analysed and a post-mortem analysis of anode degradation is performed for a selected technology. The results confirm the deposition of metallic lithium or lithium compounds in the porous structure and suggest a strongly inhomogeneous deposition over the electrode thickness with a dense deposition layer close to the separator for the considered cell. It is shown that this inhomogeneous deposition can even lead to loss of active material. The plurality of the investigated technologies

  6. Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars

    Science.gov (United States)

    Johnson, J. R.; Christensen, P.R.; Lucey, P.G.

    2002-01-01

    Thin coatings of atmospherically deposited dust can mask the spectral characteristics of underlying surfaces on Mars from the visible to thermal infrared wavelengths, making identification of substrate and coating mineralogy difficult from lander and orbiter spectrometer data. To study the spectral effects of dust coatings, we acquired thermal emission and hemispherical reflectance spectra (5-25 μm; 2000-400 cm-1) of basaltic andesite coated with different thicknesses of air fall-deposited palagonitic soils, fine-grained ceramic clay powders, and terrestrial loess. The results show that thin coatings (10-20 μm) reduce the spectral contrast of the rock substrate substantially, consistent with previous work. This contrast reduction continues linearly with increasing coating thickness until a "saturation thickness" is reached, after which little further change is observed. The saturation thickness of the spectrally flat palagonite coatings is ~100-120 μm, whereas that for coatings with higher spectral contrast is only ~50-75 μm. Spectral differences among coated and uncoated samples correlate with measured coating thicknesses in a quadratic manner, whereas correlations with estimated surface area coverage are better fit by linear functions. Linear mixture modeling of coated samples using the rock substrate and coating materials as end-members is also consistent with their measured coating thicknesses and areal coverage. A comparison of ratios of Thermal Emission Spectrometer (TES) spectra of dark and bright intracrater and windstreak deposits associated with Radau crater suggests that the dark windstreak material may be coated with as much as 90% areal coverage of palagonitic dust. The data presented here also will help improve interpretations of upcoming mini-TES and Thermal Emission Imaging System (THEMIS) observations of coated Mars surface materials.

  7. Novel lithium iron phosphate materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Jelena

    2011-06-15

    Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to deliver a stable 94% of the theoretically known capacity.

  8. Tritium breeders and tritium permeation barrier coatings for fusion reactor

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Kawamura, Hiroshi; Tsuchiya, Kunihiko

    2004-01-01

    A state of R and D of tritium breeders and tritium permeation barrier coatings for fusion reactor is explained. A list of candidate for tritium breeders consists of ceramics containing lithium, for examples, Li 2 O, Li 2 TiO 3 , Li 2 ZrO 3 , Li 4 SiO 4 and LiAlO 2 . The characteristics and form are described. The optimum particle size is from 1 to 10 μm. The production technologies of tritium breeders in the world are stated. Characteristics of ceramics with lithium as tritium breeders are compared. TiC, TiN/TiC, Al 2 O 3 and Cr 2 O 3 -SiO 2 -P 2 O 5 are tritium permeation barrier coating materials. These production methods and evaluation of characteristics are explained. (S.Y.)

  9. Microstructure of vapor deposited coatings on curved substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)

    2015-09-15

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness.

  10. Microstructure of vapor deposited coatings on curved substrates

    International Nuclear Information System (INIS)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G.

    2015-01-01

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness

  11. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei; Cui, Yi

    2009-01-01

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires

  12. Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder

    International Nuclear Information System (INIS)

    Li, Chunli; Zhang, Ping; Jiang, Zhiyu

    2015-01-01

    As a promising anode material for lithium ion battery, nano-Cu coated porous Si powder was fabricated through two stages: first, preparation of porous nano Si fibers by acid-etching Al-Si alloy powder; second, modified by nano-Cu particles using an electroless plating method. The nano-Cu particles on the surface of nano-Si fibers, not only increase the conductivity of material, but also inhibit the fuse process between nano Si fibers during charge/discharge cycling process, resulting in increased cycling stability of the material. In 1 M LiPF 6 /EC: DMC (1:1) + 1.5 wt% VC solution at current density of 200 mA g −1 , the 150th discharge capacity of nano-Cu coated porous Si electrode was 1651 mAh g −1 with coulombic efficiency of 99%. As anode material for lithium ion battery, nano-Cu coated porous Si nano fiber material is easier to prepare, costs less, and produces higher performance, representing a promising approach for high energy lithium ion battery application

  13. Lithium titanate hybridized with trace amount of graphene used as an anode for a high rate lithium ion battery

    International Nuclear Information System (INIS)

    Dong, Hai-Yong; He, Yan-Bing; Li, Baohua; Zhang, Chen; Liu, Ming; Su, Fangyuan; Lv, Wei; Kang, Feiyu; Yang, Quan-Hong

    2014-01-01

    A novel Li 4 Ti 5 O 12 (LTO) electrode with a hierarchical carbon-based conducting network has been developed for high rate lithium ion battery. The unique network is constructed by graphene sheets (GS) that are not only dispersed among (inter-) but also inside (intra-) LTO particles, together with a thin carbon layer wrapping around the LTO particles. The intraparticle GS promotes the electron transfer inside LTO particles while the interparticle GS together with carbon coating bridges the particles guaranteeing fast electron transfer among LTO particles, which construct a highway throughout the whole electrode sheet. Quantitatively, only a trace amount of GS (∼ 0.4 wt%) synergistic with carbon coating (∼0.8 wt%) contributes to a more effective conducting network in the produced LTO electrode and as a result much better performance as compared to the LTO case with similar carbon coating but free of GS. Due to the effectiveness of the conducting network, even with a tap density as high as ∼1.0 g cm −3 , the novel LTO possesses both excellent rate performance and cycling behaviors. The capacity of 123.5 mA h g −1 is obtained at a charge/discharge rate as high as 30 C and a very high capacity of 144.8 mAh g −1 is maintained even after 100 cycles at 10 C. Due to such a low fraction of carbon and a high tape density, the novel LTO electrode has a great practical application value in both the power and energy storage lithium ion batteries

  14. Fabrication of yttrium-doped barium zirconate thin films with sub-micrometer thickness by a sol–gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hanlin; Su, Pei-Chen, E-mail: peichensu@ntu.edu.sg

    2015-06-01

    A modified sol–gel process was developed for the fabrication of sub-micrometer scale yttrium-doped barium zirconate (BZY) thin film at much lower processing temperatures. The film was fabricated by direct spin-coating of the sol on a Si{sub 3}N{sub 4} passivated Si substrate, followed by low temperature thermal annealing at 1000 °C, and single BZY phase without barium carbonate residue was obtained. A 200 nm-thick thin film without obvious through-film cracks was fabricated with optimized process parameters of sol concentration and heating rate. The stoichiometry of the BZY thin film was well-controlled and no Ba evaporation was observed due to the low processing temperature. The combination of sol–gel and spin coating method can be a promising alternative to vacuum-based thin film deposition techniques for the fabrication of sub-micrometer scale BZY thin film. - Highlights: • A sol–gel spin coating method was developed for the fabrication of BZY thin films. • The processing temperature was much lower compared to powder-based sintering. • Sub-micrometer scale BZY thin film with well-controlled stoichiometry was obtained.

  15. Comparison of coating processes in the development of aluminum-based barriers for blanket applications

    International Nuclear Information System (INIS)

    Wulf, Sven-Erik; Krauss, Wolfgang; Konys, Jürgen

    2014-01-01

    Highlights: •Electrochemical processes ECA and ECX are suitable for Al deposition on RAFM steels. •ECA and ECX are able to produce thin Al layers with adjustable thicknesses. •All aluminization processes need a subsequent heat treatment. •Scales made by ECA or ECX exhibit reduced thicknesses compared to HDA. •ECX provides higher flexibility compared to ECA to produce scales on RAFM steels. -- Abstract: Reduced activation ferritic-martensitic steels (RAFM), e.g. Eurofer 97, are envisaged in future fusion technology as structural material, which will be in direct contact with a flowing liquid lead–lithium melt serving as breeder material. Aluminum-based barrier layers had proven their ability to protect the structural material from corrosion attack in flowing Pb–15.7Li and to reduce tritium permeation into the coolant. Coming from scales produced by hot dipping aluminization (HDA), the development of processes based on electrochemical methods to produce defined aluminum-based scales on RAFM steels gained attention in research during the last years. Two different electrochemical processes are proposed: The first one, referred to as ECA process, is based on the electrodeposition of aluminum from volatile, metal-organic electrolytes. The other process called ECX is based on ionic liquids. All three processes exhibit specific characteristics, for example in the field of processability, control of coating thicknesses (low activation criteria) and heat treatment behavior. The aim of this article is to compare these different coating processes critically, whereby the focus is on the comparison of ECA and ECX processes. New results for ECX-process will be presented and occurring development needs for the future will be discussed

  16. Comparison of coating processes in the development of aluminum-based barriers for blanket applications

    Energy Technology Data Exchange (ETDEWEB)

    Wulf, Sven-Erik, E-mail: sven-erik.wulf@kit.edu; Krauss, Wolfgang; Konys, Jürgen

    2014-10-15

    Highlights: •Electrochemical processes ECA and ECX are suitable for Al deposition on RAFM steels. •ECA and ECX are able to produce thin Al layers with adjustable thicknesses. •All aluminization processes need a subsequent heat treatment. •Scales made by ECA or ECX exhibit reduced thicknesses compared to HDA. •ECX provides higher flexibility compared to ECA to produce scales on RAFM steels. -- Abstract: Reduced activation ferritic-martensitic steels (RAFM), e.g. Eurofer 97, are envisaged in future fusion technology as structural material, which will be in direct contact with a flowing liquid lead–lithium melt serving as breeder material. Aluminum-based barrier layers had proven their ability to protect the structural material from corrosion attack in flowing Pb–15.7Li and to reduce tritium permeation into the coolant. Coming from scales produced by hot dipping aluminization (HDA), the development of processes based on electrochemical methods to produce defined aluminum-based scales on RAFM steels gained attention in research during the last years. Two different electrochemical processes are proposed: The first one, referred to as ECA process, is based on the electrodeposition of aluminum from volatile, metal-organic electrolytes. The other process called ECX is based on ionic liquids. All three processes exhibit specific characteristics, for example in the field of processability, control of coating thicknesses (low activation criteria) and heat treatment behavior. The aim of this article is to compare these different coating processes critically, whereby the focus is on the comparison of ECA and ECX processes. New results for ECX-process will be presented and occurring development needs for the future will be discussed.

  17. The Thomson Scattering System on the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Strickler, T.; Majeski, R.; Kaita, R.; LeBlanc, B.

    2008-01-01

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with R0 = 0.4m, a = 0.26m, BTF ∼ 3.4kG, IP ∼ 400kA, and pulse length ∼ 0.25s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface. Based on previous experimental results and simulation, it is expected that the low-recycling liquid lithium surfaces will result in higher temperatures at the plasma edge, flatter overall temperature profiles, centrally-peaked density profiles, and an increased confinement time. To test these predictions, the electron temperature and density profiles in LTX will be measured by a multi-point Thomson scattering system (TVTS). Initially, TS measurements will be made at up to 12 simultaneous points between the plasma center and plasma edge. Later, high resolution edge measurements will be deployed to study the lithium edge physics in greater detail. Technical challenges to implementing the TS system included limited 'line of sight' access to the plasma due to the plasma-facing shell and problems associated with the presence of liquid lithium.

  18. Status of National Spherical Torus Experiment Liquid Lithium Divertor

    Science.gov (United States)

    Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.

    2009-11-01

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  19. Metal hydride compositions and lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Nei, Jean

    2018-04-24

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  20. Preparation of Ti-coated diamond particles by microwave heating

    International Nuclear Information System (INIS)

    Gu, Quanchao; Peng, Jinghui; Xu, Lei; Srinivasakannan, C.

    2016-01-01

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  1. Preparation of Ti-coated diamond particles by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Quanchao [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yunnan Copper Smelting and Processing Complex, Yunnan Copper (Group) CO., LTD., Kunming 650102 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Peng, Jinghui [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Xu, Lei, E-mail: xulei_kmust@aliyun.com [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Srinivasakannan, C. [Chemical Engineering Department, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); and others

    2016-12-30

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  2. Performance of ceramic coatings on diesel engines

    International Nuclear Information System (INIS)

    MacAdam, S.; Levy, A.

    1986-01-01

    Partially stabilized zirconia ceramic thermal barrier coatings were plasma sprayed on the valve faces and tulips and the piston crowns and cylinder heads of a locomotive size diesel engine at a designated thickness of 375μm (0.015''). They were tested over a range of throttle settings for 500 hours using No. 2 diesel oil fuel. Properly applied coatings performed with no change in composition, morphology or thickness. Improperly applied coatings underwent spalling durability was dependent on quality control of the plasma spray process

  3. Production of lithium positive ions from LiF thin films on the anode in PBFA II

    International Nuclear Information System (INIS)

    Green, T.A.; Stinnett, R.W.; Gerber, R.A.

    1995-09-01

    The production of positive lithium ions using a lithium-fluoride-coated stainless steel anode in the particle beam fusion accelerator PBFA II is considered from both the experimental and theoretical points of view. It is concluded that the mechanism of Li + ion production is electric field desorption from the tenth-micron-scale crystallites which compose the columnar growth of the LiF thin film. The required electric field is estimated to be of the order of 5 MV/cm. An essential feature of the mechanism is that the crystallites are rendered electronically conducting through electron-hole pair generation by MeV electron bombardment of the thin film during the operation of the diode. It is proposed that the ion emission mechanism is an electronic conductivity analogue to that discovered by Rollgen for lithium halide crystallites which were rendered ionically conducting by heating to several hundred degrees Celsius. Since an electric field desorption mechanism cannot operate if a surface flashover plasma has formed and reduced the anode electric field to low values, the possibility of flashover on the lithium fluoride coated anode of the PBFA II Li + ion source is studied theoretically. It is concluded with near certainty that flashover does not occur

  4. Carbon coated Li{sub 4}Ti{sub 5}O{sub 12} nanorods as superior anode material for high rate lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongjun; Shen, Laifa; Rui, Kun; Li, Hongsen; Zhang, Xiaogang, E-mail: azhangxg@nuaa.edu.cn

    2013-09-25

    Highlights: •A novel approach has been developed to fabricate 1D Li{sub 4}Ti{sub 5}O{sub 12}/C nanorods by a wet-chemical route. •Carbon coating layer effectively restrict the particle growth and enhance electronic conductivity. •The Li{sub 4}Ti{sub 5}O{sub 12}/C nanorods exhibit remarkable rate capability and long cycle life. -- Abstract: We describe a novel approach for the synthesis of carbon coated Li{sub 4}Ti{sub 5}O{sub 12} (Li{sub 4}Ti{sub 5}O{sub 12}/C) nanorods for high rate lithium ion batteries. The carbon coated TiO{sub 2} nanotubes using the glucose as carbon source are first synthesized by hydrothermal treatment. The commercial anatase TiO{sub 2} powder is immersed in KOH sulotion and subsequently transforms into Li{sub 4}Ti{sub 5}O{sub 12}/C in LiOH solution under hydrothermal condition. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption/desorption and Raman spectra are performed to characterize their morphologies and structures. Compared with the pristine Li{sub 4}Ti{sub 5}O{sub 12}, one-dimensional (1D) Li{sub 4}Ti{sub 5}O{sub 12}/C nanostructures show much better rate capability and cycling stability. The 1D Li{sub 4}Ti{sub 5}O{sub 12}/C architectures effectively restrict the particle growth and enhance their electronic conductivity, enabling fast ion and electron transport.

  5. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes

    KAUST Repository

    Ruffo, Riccardo

    2009-07-02

    The impedance behavior of silicon nanowire electrodes has been investigated to understand the electrochemical process kinetics that influences the performance when used as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance spectroscopy in equilibrium conditions at different lithium compositions and during several cycles of charge and discharge in a half cell vs. metallic lithium. The impedance analysis shows the contribution of both surface resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominated by a solid electrolyte layer (SEI) consisting of an inner, inorganic insoluble part and several organic compounds at the outer interface, as seen by XPS analysis. The surface resistivity, which seems to be correlated with the Coulombic efficiency of the electrode, grows at very high lithium contents due to an increase in the inorganic SEI thickness. We estimate the diffusion coefficient of about 2 × 10 -10 cm 2/s for lithium diffusion in silicon. A large increase in the electrode impedance was observed at very low lithium compositions, probably due to a different mechanism for lithium diffusion inside the wires. Restricting the discharge voltage to 0.7 V prevents this large impedance and improves the electrode lifetime. Cells cycled between 0.07 and 0.70 V vs. metallic lithium at a current density of 0.84 A/g (C/5) showed good Coulombic efficiency (about 99%) and maintained a capacity of about 2000 mAh/g after 80 cycles. © 2009 American Chemical Society.

  6. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  7. Self-sealing multilayer coating for SiC/SiC composites

    International Nuclear Information System (INIS)

    Ferraris, M.; Appendino Montorsi, M.; Salvo, M.; Isola, C.; Kohyama, A.

    1997-01-01

    A double layer coating for SiC/SiC for fusion applications is proposed: the first layer consists in a homogeneous, crack free, glass-ceramic with high characteristic temperatures and thermal expansion coefficient compatible to the composite one; the second layer is amorphous and shows self-sealing properties above 700degC. The glass and the glass-ceramic materials used for this double layer coating do not contain lithium and boron oxide, making them particularly interesting for thermonuclear fusion applications. The self-sealing property of the double layer coating was valued by inducing cracks on the coatings and observing their reparation after heating. (author)

  8. Effect of the Die Temperature and Blank Thickness on the Formability of a Laser-Welded Blank of a Boron Steel Sheet with Removing Al-Si Coating Layer

    Directory of Open Access Journals (Sweden)

    M. S. Lee

    2014-05-01

    Full Text Available Reducing carbon emissions has been a major focus in the automobile industry to address various environmental issues. In particular, studies on parts comprised of high strength sheets and light car bodies are ongoing. Accordingly, this study examined the use of boron steel, which is commonly used in high strength sheets. Boron steel is a type of sheet used for hot stamping parts. Although it has high strength, the elongation is inferior, which reduces its crash energy absorption capacity. To solve this problem, two sheets of different thickness were welded so the thin sheet would absorb crash energy and the thick sheet would work as a support. Boron steel, however, may show weakening at the welding spot due to the Al-Si coating layer used to prevent oxidation from occurring during the welding process. Therefore, a certain part of the coating layer of a double-thickness boron steel sheet that is welded in the hot stamping process is removed through laser ablation, and the formability of the hot-work was examined.

  9. The liquid lithium limiter control system on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A. [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)], E-mail: bertocchi@frascati.enea.it; Di Donna, M [Department of Informatics, Systems and Productions, University of Rome Tor Vergata, Rome (Italy); Panella, M; Vitale, V [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)

    2007-10-15

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary po