WorldWideScience

Sample records for thick gold targets

  1. Determination of gold coating thickness measurement by using EDXRF

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaian; Masliana Muslimin; Fadlullah Jili Fursani

    2005-01-01

    The paper relates a study on the development of an analysis procedure for measuring the gold coating thickness using EDXRF technique. Gold coating thickness was measured by relating the counts under the Au L? peak its thickness value. In order to get a reasonably accurate result, a calibration graph was plotted using five gold-coated reference standards of different thickness. The calibration graph shows a straight line for thin coating measurement until 0.9 μm. Beyond this the relationship was not linear and this may be resulted from the self-absorption effect. Quantitative analysis was also performed on two different samples of gold coated jewelry and a phone connector. Result from the phone connector analysis seems to agree with the manufacturer gold coating value. From the analysis of gold-coated jewelry it had been able to differentiate the two articles as gold wash and gold electroplated. (Author)

  2. Comparison of gold leaf thickness in Namban folding screens using X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Pessanha, Sofia; Madeira, Teresa I.; Manso, Marta [Centro de Fisica Atomica da Universidade de Lisboa, Lisbon (Portugal); Guerra, Mauro; Carvalho, Maria Luisa [Centro de Fisica Atomica da Universidade de Lisboa, Lisbon (Portugal); Universidade Nova de Lisboa, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Caparica (Portugal); Gac, Agnes le [Centro de Fisica Atomica da Universidade de Lisboa, Lisbon (Portugal); Universidade Nova de Lisboa, Departamento de Conservacao e Restauro, Faculdade de Ciencias e Tecnologia, Caparica (Portugal)

    2014-09-15

    In this work, the thickness of the gold leaf applied in six Japanese folding screens is compared using a nondestructive approach. Four screens belonging to the Momoyama period (∝1573-1603) and two screens belonging to the early Edo period (∝1603-1868) were analyzed in situ using energy dispersive X-ray fluorescence, and the thickness of the applied gold leaf was evaluated using a methodology based on the attenuation of the different characteristic lines of gold in the gold leaf layer. Considering that the leaf may well not be made of pure gold, we established that, for the purpose of comparing the intensity ratios of the Au lines, layers made with gold leaf of high grade can be considered identical. The gold leaf applied in one of the screens from the Edo period was found to be thinner than the gold leaf applied in the other ones. This is consistent with the development of the beating technology to obtain ever more thin gold leafs. (orig.)

  3. Comparison of gold leaf thickness in Namban folding screens using X-ray fluorescence

    International Nuclear Information System (INIS)

    Pessanha, Sofia; Madeira, Teresa I.; Manso, Marta; Guerra, Mauro; Carvalho, Maria Luisa; Gac, Agnes le

    2014-01-01

    In this work, the thickness of the gold leaf applied in six Japanese folding screens is compared using a nondestructive approach. Four screens belonging to the Momoyama period (∝1573-1603) and two screens belonging to the early Edo period (∝1603-1868) were analyzed in situ using energy dispersive X-ray fluorescence, and the thickness of the applied gold leaf was evaluated using a methodology based on the attenuation of the different characteristic lines of gold in the gold leaf layer. Considering that the leaf may well not be made of pure gold, we established that, for the purpose of comparing the intensity ratios of the Au lines, layers made with gold leaf of high grade can be considered identical. The gold leaf applied in one of the screens from the Edo period was found to be thinner than the gold leaf applied in the other ones. This is consistent with the development of the beating technology to obtain ever more thin gold leafs. (orig.)

  4. Monitoring production target thickness

    International Nuclear Information System (INIS)

    Oothoudt, M.A.

    1993-01-01

    Pion and muon production targets at the Clinton P. Anderson Meson Physics Facility consist of rotating graphite wheels. The previous target thickness monitoring Procedure scanned the target across a reduced intensity beam to determine beam center. The fractional loss in current across the centered target gave a measure of target thickness. This procedure, however, required interruption of beam delivery to experiments and frequently indicated a different fractional loss than at normal beam currents. The new monitoring Procedure compares integrated ups and downs toroid current monitor readings. The current monitors are read once per minute and the integral of readings are logged once per eight-hour shift. Changes in the upstream to downstream fractional difference provide a nonintrusive continuous measurement of target thickness under nominal operational conditions. Target scans are now done only when new targets are installed or when unexplained changes in the current monitor data are observed

  5. Observation of enhanced infrared absorption in silicon supersaturated with gold by pulsed laser melting of nanometer-thick gold films

    Science.gov (United States)

    Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.

    2018-04-01

    We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.

  6. Uncertainties in thick-target PIXE analysis

    International Nuclear Information System (INIS)

    Campbell, J.L.; Cookson, J.A.; Paul, H.

    1983-01-01

    Thick-target PIXE analysis insolves uncertainties arising from the calculation of thick-target X-ray production in addition to the usual PIXE uncertainties. The calculation demands knowledge of ionization cross-sections, stopping powers and photon attenuation coefficients. Information on these is reviewed critically and a computational method is used to estimate the uncertainties transmitted from this data base into results of thick-target PIXE analyses with reference to particular specimen types using beams of 2-3 MeV protons. A detailed assessment of the accuracy of thick-target PIXE is presented. (orig.)

  7. In situ production of microporous foams in sub-millimeter cylindrical gold targets

    International Nuclear Information System (INIS)

    Fan Yongheng; Luo Xuan; Fang Yu; Ren Hongbo; Yuan Guanghui; Wang Honglian; Zhou Lan; Zhang Lin; Du Kai

    2009-01-01

    The preparation of microcellular foam in sub-millimeter cylindrical gold targets is described. Small, open-ended, gold cylinders of 400 μm diameter, 700 μm length, and 20 μm wall thickness were fabricated by electroplating gold onto a silicon bronze mandrel and leaching the mandrel with concentrated nitric acid. After several rinsing and cleaning steps, the cylinders were filled with a solution containing acrylate monomers. The solution was polymerized in situ with ultraviolet light to produce a gel. Precipitation of these gels in a non-solvent such as methanol and subsequent drying by means of a critical point drying apparatus produced cylinders filled with microporous foams. The foams have densities of 50 mg · cm -3 and cell sizes on more than 1 μm. They fill the cylinders completely without shrinkage during the drying process, and need no subsequent machining. (authors)

  8. Effects of the thickness of gold deposited on a source backing film in the 4πβ-counting

    International Nuclear Information System (INIS)

    Miyahara, Hiroshi; Yoshida, Makoto; Watanabe, Tamaki

    1976-01-01

    A gold deposited VYNS film as a source backing in the 4πβ-counting has generally been used for reducing the absorption of β-rays. The thickness of the film with the gold is usually a few times thicker than the VYNS film itself. However, Because the appropriate thickness of gold has not yet been determined, the effects of gold thickness on electrical resistivity, plateau characteristics and β-ray counting efficiency were studied. 198 Au (960 keV), 60 Co(315 keV), 59 Fe(273 keV) and 95 Nb(160 keV), which were prepared as sources by the aluminium chloride treatment method, were used. Gold was evaporated under a deposition rate of 1 - 5 μg/cm 2 /min at a pressure less than 1 x 10 -5 Torr. Results show that the gold deposition on the side opposite the source after source preparation is essential. In this case, a maximum counting efficiency is obtained at the mean thickness of 2 μg/cm 2 . When gold is deposited only on the same side as the source, a maximum counting efficiency, which is less than that in the former case, is obtained at the mean thickness of 20 μg/cm 2 . (Evans, J.)

  9. Optimum target thickness for polarimeters

    International Nuclear Information System (INIS)

    Sitnik, I.M.

    2003-01-01

    Polarimeters with thick targets are a tool to measure the proton polarization. But the question about the optimum target thickness is still the subject of discussion. An attempt to calculate the most common parameters concerning this problem, in a few GeV region, is made

  10. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dan [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Fan, Ya-Xian, E-mail: yxfan@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Tao, Zhi-Yong, E-mail: zytao@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China)

    2016-03-11

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  11. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    International Nuclear Information System (INIS)

    Xu, Dan; Fan, Ya-Xian; Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha; Tao, Zhi-Yong

    2016-01-01

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  12. Evaluation of the gold leaf thickness in the coating of the imperial horse-drawn carriage emperor D. Pedro II

    Energy Technology Data Exchange (ETDEWEB)

    Nardes, R.C.; Sanches, F.A.C.R.A.; Gama Filho, H.S.; Santos, R.S.; Oliveira, D.F.; Anjos, M.J.; Assis, J.T. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil); Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Laboratório de Instrumentação Nuclear; Carvalho, M.L. [Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Lisboa (Portugal); Zanatta, E.M. [Museu Imperial, Petropolis, RJ (Brazil). Laboratório de Conservação e Restauração; Cesareo, R., E-mail: rc.nardes@gmail.com [Instituto de Matemática e Física, Universidade de Sassari (Italy)

    2017-07-01

    In this study, the presence of gold in the coatings of the emperor D. Pedro’s II Berlin device, part of the Imperial Museum of Petropolis, Brazil, was verified. Then perform was evaluation of the thickness of the gold leaf, using the technique of X-Ray Fluorescence, measuring peak intensities (Kα / Kβ or Lα / Lβ) of the elements of interest in the layer. It was possible to verify in the XRF spectra the presence of four elements: Ti, Fe, Au and Pb. The Pb was present at all sampling points, which indicates the presence of lead carbonate (lead-white) as preparation layer. The presence of Au at some sampling points indicates that several parts of the Berlin devices were covered with gold leaf. The presence of Ti and Fe is due to the application of golden mica over the entire length of the berlin device during the process of last restoration. The presence of the mica layer on the gold covering was relevant for gold thickness determination. The average value of the gold thickness obtained was 0.62 ± 0.51 μm, with a coefficient of variation of 83% and a confidence interval of 0.49-0.75 μm (α = 0.05). The values are compatible with the thickness of gold foil normally found in the coating of pieces of wood from the same period that the Berlin device was built. (author)

  13. Evaluation of the gold leaf thickness in the coating of the imperial horse-drawn carriage emperor D. Pedro II

    International Nuclear Information System (INIS)

    Nardes, R.C.; Sanches, F.A.C.R.A.; Gama Filho, H.S.; Santos, R.S.; Oliveira, D.F.; Anjos, M.J.; Assis, J.T.; Lopes, R.T.; Zanatta, E.M.

    2017-01-01

    In this study, the presence of gold in the coatings of the emperor D. Pedro’s II Berlin device, part of the Imperial Museum of Petropolis, Brazil, was verified. Then perform was evaluation of the thickness of the gold leaf, using the technique of X-Ray Fluorescence, measuring peak intensities (Kα / Kβ or Lα / Lβ) of the elements of interest in the layer. It was possible to verify in the XRF spectra the presence of four elements: Ti, Fe, Au and Pb. The Pb was present at all sampling points, which indicates the presence of lead carbonate (lead-white) as preparation layer. The presence of Au at some sampling points indicates that several parts of the Berlin devices were covered with gold leaf. The presence of Ti and Fe is due to the application of golden mica over the entire length of the berlin device during the process of last restoration. The presence of the mica layer on the gold covering was relevant for gold thickness determination. The average value of the gold thickness obtained was 0.62 ± 0.51 μm, with a coefficient of variation of 83% and a confidence interval of 0.49-0.75 μm (α = 0.05). The values are compatible with the thickness of gold foil normally found in the coating of pieces of wood from the same period that the Berlin device was built. (author)

  14. Preparation of tantalum targets of known thicknesses

    International Nuclear Information System (INIS)

    Alexander, J.R.; Wirth, H.L.

    1985-01-01

    A series of carbon-backed tantalum targets were produced in a heavy ion sputtering system with a Penning ion source. The target thicknesses were then measured using the alpha-ray energy loss method. The resulting tabulated measurements were reproducible and make possible the production of carbon-backed tantalum targets with pre-determined thicknesses ranging from 20 μg/cm 2 to 1 mg/cm 2 . (orig.)

  15. Targeting of Pancreatic Cancer with Magneto-Fluorescent Theranostic Gold Nanoshells

    Science.gov (United States)

    Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C.; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V.; Guha, Sushovan; Pautler, Robia G.; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit

    2014-01-01

    Aim We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Materials and Methods Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the NIR dye ICG, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Results AntiNGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2 weighted MR imaging with higher tumor contrast than can be obtained using long-circulating but non-targeted PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. Conclusions Theranostic gold nanoshells with embedded NIR and MR contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy. PMID:24063415

  16. Effects of rework on adhesion of Pb-In soldered gold thick films

    International Nuclear Information System (INIS)

    Gehman, R.W.; Becka, G.A.; Losure, J.A.

    1982-02-01

    The feasibility of repeatedly reworking Pb-In soldered joints on gold thick films was evaluated. Nailhead adhesion tests on soldered thick films typically resulted in failure within the bulk solder (50 In-50 Pb). Average strengths increased with each rework, and the failure mode changed. An increase in metalization lift-off occurred with successive reworks. An investigation was initiated to determine why these changes occurred. Based on this work, the thick film adhesion to the substrate appeared to be lowered by indium reduction of cadmium oxide and by formation of a weak, brittle intermetallic compound, Au 9 In 4 . It was concluded that two solder reworks could be conducted without significant amounts of metallization lift-off during nailhead testing

  17. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project

    Science.gov (United States)

    Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.

    2009-09-01

    The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.

  18. Manual for target thickness measurement by alpha particle irradiation

    International Nuclear Information System (INIS)

    Dias, J.F.; Martins, M.N.

    1990-04-01

    A system is described for thin-target thickness measurement through the alpha particle energy loss when them traverse the target. It is also described the program used in the analysis of the target thickness. (L.C.) [pt

  19. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells.

    Science.gov (United States)

    Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V; Guha, Sushovan; Pautler, Robia G; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit

    2014-01-01

    We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase-associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the near-infrared (NIR) dye indocyanine green, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Anti-NGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2-weighted MRI with higher tumor contrast than can be obtained using long-circulating, but nontargeted, PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. TGNS with embedded NIR and magnetic resonance contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy.

  20. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Sun, G. M. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected.

  1. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    International Nuclear Information System (INIS)

    Lee, K. M.; Sun, G. M.

    2016-01-01

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected

  2. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    Science.gov (United States)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-12-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (˜1×105 to 1×1010 W/m2). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5×102 W/m2 being sufficient, provided that a total fluence of ˜30 J/cm2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  3. NON-INVASIVE RADIOFREQUENCY ABLATION OF CANCER TARGETED BY GOLD NANOPARTICLES

    Science.gov (United States)

    Cardinal, Jon; Klune, John Robert; Chory, Eamon; Jeyabalan, Geetha; Kanzius, John S.; Nalesnik, Michael; Geller, David A.

    2008-01-01

    Introduction Current radiofrequency ablation (RFA) techniques require invasive needle placement and are limited by accuracy of targeting. The purpose of this study was to test a novel non-invasive radiowave machine that uses RF energy to thermally destroy tissue. Gold nanoparticles were designed and produced to facilitate tissue heating by the radiowaves. Methods A solid state radiowave machine consisting of a power generator and transmitting/receiving couplers which transmit radiowaves at 13.56 MHz was used. Gold nanoparticles were produced by citrate reduction and exposed to the RF field either in solutions testing or after incubation with HepG2 cells. A rat hepatoma model using JM-1 cells and Fisher rats was employed using direct injection of nanoparticles into the tumor to focus the radiowaves for select heating. Temperatures were measured using a fiber-optic thermometer for real-time data. Results Solutions containing gold nanoparticles heated in a time- and power-dependent manner. HepG2 liver cancer cells cultured in the presence of gold nanoparticles achieved adequate heating to cause cell death upon exposure to the RF field with no cytotoxicity attributable to the gold nanoparticles themselves. In vivo rat exposures at 35W using gold nanoparticles for tissue injection resulted in significant temperature increases and thermal injury at subcutaneous injection sites as compared to vehicle (water) injected controls. Discussion These data show that non-invasive radiowave thermal ablation of cancer cells is feasible when facilitated by gold nanoparticles. Future studies will focus on tumor selective targeting of nanoparticles for in vivo tumor destruction. PMID:18656617

  4. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Pissuwan, Dakrong [University of Technology Sydney, Institute for Nanoscale Technology (Australia); Valenzuela, Stella M. [University of Technology Sydney, Department of Medical and Molecular Biosciences (Australia)], E-mail: stella.valenzuela@uts.edu.au; Killingsworth, Murray C. [Sydney South West Pathology Service (Australia)], E-mail: murray.killingsworth@swsahs.nsw.gov.au; Xu, Xiaoda; Cortie, Michael B. [University of Technology Sydney, Institute for Nanoscale Technology (Australia)], E-mail: michael.cortie@uts.edu.au

    2007-12-15

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation ({approx}1x10{sup 5} to 1x10{sup 10} W/m{sup 2}). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5x10{sup 2} W/m{sup 2} being sufficient, provided that a total fluence of {approx}30 J/cm{sup 2} is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm{sup 2} resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  5. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    International Nuclear Information System (INIS)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-01-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (∼1x10 5 to 1x10 10 W/m 2 ). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5x10 2 W/m 2 being sufficient, provided that a total fluence of ∼30 J/cm 2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm 2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells

  6. Penetration of gold nanoparticles across the stratum corneum layer of thick-Skin.

    Science.gov (United States)

    Raju, Gayathri; Katiyar, Neeraj; Vadukumpully, Sajini; Shankarappa, Sahadev A

    2018-02-01

    Transdermal particulate penetration across thick-skin, such as that of palms and sole, is particularly important for drug delivery for disorders such as small fiber neuropathies. Nanoparticle-based drug delivery across skin is believed to have much translational applications, but their penetration especially through thick-skin, is not clear. This study specifically investigates the effectiveness of gold nanoparticles (AuNPs) for thick-skin penetration, especially across the stratum corneum (SC) as a function of particle size. The thick-skinned hind-paw of rat was used to characterize depth and distribution of AuNPs of varying sizes, namely, 22±3, 105±11, and 186±20nm. Epidermal penetration of AuNPs was characterized both, in harvested skin from the hind-paw using a diffusion chamber, as well as in vivo. Harvested skin segments exposed to 22nm AuNPs for only 3h demonstrated higher penetration (pthick-skin allows nanoparticle penetration and acts as a depot for release of AuNPs into circulation long after the initial exposure has ceased. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  7. Measurement of Li target thickness in the EVEDA Li Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Kanemura, Takuji, E-mail: kanemura.takuji@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan); Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan); Hoashi, Eiji; Yoshihashi, Sachiko; Horiike, Hiroshi [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Wakai, Eiichi [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2015-10-15

    Highlights: • The objective is to validate stability of the IFMIF liquid Li target flowing at 15 m/s. • Design requirement of target thickness fluctuation is ±1 mm. • Mean and maximum wave amplitude are 0.26 and 1.46 mm, respectively. • Average thickness can be well predicted with developed analytical model. • Li target was adequately stable and satisfied design requirement. - Abstract: A high-speed (nominal: 15 m/s, range: 10–16 m/s) liquid lithium wall jet is planned to serve as the target for two 40 MeV and 125 mA deuteron beams in the International Fusion Materials Irradiation Facility (IFMIF). The design requirement of target thickness stability is 25 ± 1 mm under a vacuum of 10{sup −3} Pa. This paper presents the results of the target thickness measurement conducted in the EVEDA Li Test Loop under a wide range of conditions including the IFMIF condition (target speed of 10, 15, and 20 m/s; vacuum pressure of 10{sup −3} Pa; and Li temperature of 250 °C). For measurement, we use a laser probe method that we developed in advance; this method generates statistical measurements method using a laser distance meter. The measurement results obtained under the IFMIF nominal condition (15 m/s, 10{sup −3} Pa, 250 °C) at the IFMIF beam center are as follows: average target thickness = 26.08 ± 0.09 mm (2σ), mean wave amplitude = 0.26 ± 0.01 mm (2σ), and maximum wave amplitude = 1.46 ± 0.25 mm (2σ). Of the total wave components, 99.7% are within the design requirement. The analytically predicted target thickness is in excellent agreement with the experimental data, resulting in successful characterization of the Li target thickness.

  8. Kinematics and simulation methods to determine the target thickness

    International Nuclear Information System (INIS)

    Rosales, P.; Aguilar, E.F.; Martinez Q, E.

    2001-01-01

    Making use of the kinematics and of the particles energy loss two methods for calculating the thickness of a target are described. Through a computer program and other of simulation in which parameters obtained experimentally are used. Several values for a 12 C target thickness were obtained. It is presented a comparison of the obtained values with each one of the used programs. (Author)

  9. A new method to determine the skin thickness of asymmetric UF-membranes using colloidal gold particles

    NARCIS (Netherlands)

    Cuperus, Folkert Petrus; Bargeman, Derk; Smolders, C.A.

    1990-01-01

    In this paper a new method is presented for the determination of the skin thickness of asymmetric ultrafiltration membranes. The method is based on the use of well-defined, uniformly sized colloidal gold particles, permeated from the sublayer side of the membrane, combined with electron microscopic

  10. Control of surface quality of sub-millimeter cylindrical gold targets

    International Nuclear Information System (INIS)

    Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zheng Wei; Zhang Lin; Sun Jingyuan; Chen Jing

    2010-01-01

    The morphology, composition and causes of defects are analyzed to reduce defects on the gold layer prepared by electrochemical deposition from sulfite solution, and to improve the surface quality of sub-millimeter cylindrical gold targets, by means of SEM and EDS. The effects of current density, metallic impurity, organic pollution, pre-deposition parameters and mandrel quality on the quality of the gold plating are discussed, along with their mechanisms. The result indicates that the current density must be controlled strictly. The optimal current density ranges from 2.4 to 3.2 mA/cm 2 when the concentration of gold ranges from 13 to 22 g/L, and from 2.0 to 2.6 mA/ cm 2 when the concentration of gold ranges from 5 to 13 g/L. The parameters of predeposition must be optimized and the predeposition time should be no longer than 1 minute to improve the surface quality. In addition, organic pollution should be removed from the bath, and the mandrels should be of good quality without oxide on their surfaces. (authors)

  11. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  12. Preparation of 199Tl using the electroplating gold targets on the internal target installation of cyclotron

    International Nuclear Information System (INIS)

    Zhou Dehai; Xie Degao; Chao Yangshu; Liao Fuquan; Zhang Youfa; Wang Zefu

    1992-01-01

    The separative conditions of 199 Tl from Cu, Au and Ga by reaction 197 Au(α, 2n) 199 Tl on the internal target installation of cyclotron is studied. The α-particle energy is selected in the range of 24-15 MeV. The cumulative current intensities of such α-particle beams bombarding the gold target at 150-200 μA are 1200 μA · h and 1500 μA · h respectively. The radiochemical separation of 199 Tl is carried out with isopropyl ether extraction and anions exchange from the irradiated gold targets. The radioactivities of 199 Tl and 200 Tl are 2.3 x 10 5 Bq and 7.1 x 10 2 Bq, and 200 Tl makes up 0.29% of the total radioactivity. The impurity elements contained 1 ml of 199 TlCl injection solution are Au 199 TlCl has been used in clinical experiments in vivo and relatively good results have been obtained

  13. A thin gold coated hydrogen heat pipe -cryogenic target for external experiments at cosy

    International Nuclear Information System (INIS)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G.A.; Kilian, K.; Ritman, J.

    2008-01-01

    A gravity assisted Gold Coated Heat Pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a polished gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers super isolation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super isolation and without. The operating characteristics for both conditions were compared to show the advantages and disadvantages

  14. A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.

    2009-05-01

    A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.

  15. Proteinticle/gold core/shell nanoparticles for targeted cancer therapy without nanotoxicity.

    Science.gov (United States)

    Kwon, Koo Chul; Ryu, Ju Hee; Lee, Jong-Hwan; Lee, Eun Jung; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Jeewon

    2014-10-08

    PGCS-NPs (40 nm) with excellent photo-thermal activity are developed, on the surface of which affibody peptides with specific affinity for EGFR and many small gold dots (1-3 nm) are densely presented. The IV-injected PGCS-NPs into EGFR-expressing tumor-bearing mice successfully perform targeted and photothermal therapy of cancer. It seems that the small gold dots released from disassembled PGCS-NPs are easily removed and never cause in vivo toxicity problems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.

    Science.gov (United States)

    Puvanakrishnan, Priyaveena; Park, Jaesook; Chatterjee, Deyali; Krishnan, Sunil; Tunnell, James W

    2012-01-01

    Gold nanoparticles (GNPs) have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle's geometric properties (eg, size) and dosing strategy (eg, number and amount of injections). The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs) and gold nanorods (GNRs) for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.

  17. Gold markers for tumor localization and target volume delineation in radiotherapy for rectal cancer

    International Nuclear Information System (INIS)

    Vorwerk, Hilke; Christiansen, Hans; Hess, Clemens Friedrich; Hermann, Robert Michael; Liersch, Thorsten; Ghadimi, Michael; Rothe, Hilka

    2009-01-01

    In locally advanced rectal cancer, neoadjuvant radiochemotherapy is indicated. To improve target volume definition for radiotherapy planning, the potential of implanted gold markers in the tumor region was evaluated. In nine consecutive patients, two to three gold markers were implanted in the tumor region during rigid rectoscopy. Computed tomography scans were performed during treatment planning. All electronic portal imaging devices (EPIDs) recorded during treatment series were analyzed. All patients underwent complete tumor resection with meticulous histopathologic examination. The gold markers could easily be implanted into the mesorectal tissue at the caudal tumor border without any complications. They were helpful in identifying the inferior border of the planning target volume in order to spare normal tissue (in particular anal structures). No significant shift of the markers was found during the course of therapy. Marker matching of the EPIDs did not improve patient positioning in comparison to bone structure matching. The former position of at least one marker could be identified in all patients during histopathologic examination. The use of gold marker enables a more precise definition of the target volume for radiotherapy in patients with rectal cancer. This could eventually allow a better protection of anal structures of patients with a tumor localization = 5 cm cranial of the anal sphincter. The implantation of the gold markers improved communication between the surgeon, the radiooncologist and the pathologist resulting in intensified exchange of relevant informations. (orig.)

  18. Radiographic detection of 100 A thickness variations in 1-μm-thick coatings applied to submillimeter-diameter laser fusion targets

    International Nuclear Information System (INIS)

    Stupin, D.M.

    1986-01-01

    We have developed x-ray radiography to measure thickness variations of coatings on laser fusion targets. Our technique is based on measuring the variation in x-ray transmission through the targets. The simplest targets are hollow glass microshells or microballoons 100 to 500 μm in diameter, that have several layers of metals or plastics, 1 to 100 μm thick. Our goal is to examine these opaque coatings for thickness variations as small as 1% or 0.1%, depending on the type of defect. Using contact radiography we have obtained the desired sensitivity for concentric and elliptical defects of 1%. This percentage corresponds to thickness variations as small as 100 A in a 1-μm-thick coating. For warts and dimples, the desired sensitivity is a function of the area of the defect, and we are developing a system to detect 0.1% thickness variations that cover an area 10 μm by 10 μm. We must use computer analysis of contact radiographs to measure 1% thickness variations in either concentricity or ellipticity. Because this analysis takes so long on our minicomputer, we preselect the radiographs by looking for defects at the 10% level on a video image analysis system

  19. Alteration zones: are they a good target for gold deposits in Egypt

    International Nuclear Information System (INIS)

    Botros, N.S.

    2002-01-01

    Extensive rock alterations are a clearly visible characteristic of most Egyptian gold deposits and occurrences. The alterations occur either surrounding the auriferous quartz veins and/or structurally controlled by specific structural features, such as fractures and shear surfaces. Some samples of these alteration zones have proved to be anomalously enriched in gold while others are completely barren. Accordingly there is a controversy on the merit of alteration zones as good lead to gold. Here, the various types of wall rocks wall-rock alteration are reviewed with a discussion on the possible reaction that could have generated them. It is concluded that two main styles of alterations could be recognized in the field. The first results during the liberation of gold from the source rocks, and is characterized by being widely distributed and spatial relation to major structures. The second style, however, is related to the deposition of gold and is recognizable only within a few meters of the auriferous quartz veins. The potentiality of each style is discussed and applications of concept are offered. In general, alterations accompanying the liberation of gold are not completely devoid of gold, but may still retain some gold depending on the mineralogical siting of gold in the source rocks. Moreover, this type of alteration is a good criterion for the presence of gold in the nearby sites. Alterations accompanying deposition of gold, on the other hand, constitute a good target for gold particularly the portions that are dissected by minor quartz veins, veinlets and stockworks (silicification) where gold is believed to migrate to such sites with silica liberated during the different types of alterations. The presence of some efficient precipitants, such as sulphides, carbonates, clay minerals, sericites, iron oxides, chlorite and graphite in the alteration zones is a good indicator of the alteration zone. (author)

  20. Spallation neutron production on thick target at saturne

    International Nuclear Information System (INIS)

    David, J.C.; David, J.C.; Varignon, C.; Borne, F.; Boudard, A.; Brochard, F.; Crespin, S.; Duchazeaubeneix, J.C.; Durand, D.; Durand, J.M.; Frehaut, J.; Hannappe, F.; Lebrun, C.; Lecolley, J.F.; Ledoux, X.; Lefebvres, F.; Legrain, R.; Leray, S.; Louvel, M.; Martinez, E.; Menard, S.; Milleret, G.; Patin, Y.; Petitbon, E.; Plouin, F.; Schapira, J.P.; Stugge, L.; Terrien, Y.; Thun, J.; Volant, C.; Whittal, D.M.

    2003-01-01

    In view of the new spallation neutron source projects, we discuss the characteristics of the neutron spectra on thick targets measured at SATURNE. Some comparisons to spallation models, and especially INCL4/ABLA implemented in the LAHET code, are done. (orig.)

  1. 2-D simulation of hohlraum targets for HIDIF: gold vs. beryllium converters

    International Nuclear Information System (INIS)

    Honrubia, J.J.; Meyer-ter-Vehn, J.

    2000-01-01

    Two cylindrical hohlraum targets for heavy-ion-fusion are compared from the point of view of total ion-energy required to ignite a specified capsule. Target a, a simple bare gold cylindrical cavity behaves much more efficiently than Target b, the former one internally cladded with solid beryllium where convenient, to ensure ion energy conversion to X-rays mainly in this cladding. A discussion of the problem is provided. (authors)

  2. Measured radionuclide production from copper, gold and lead spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.; Belian, A.P. [Texas A & M Univ., College Station, TX (United States)

    1995-10-01

    Spallation target materials are chosen so as to produce large numbers of neutrons while at the same time avoiding the creation of long-lived radioactive wastes. While there has been considerable research to determine the number of neutrons produced per incident particle for various target materials, there has been less effort to precisely quantify the types and amounts of radionuclides produced. Accurate knowledge of the radioactive species produced by spallation reactions is important for specifying waste disposal criteria for targets. In order to verify the production rates calculated by LAHET, a study has been conducted using the Texas A&M University (TAMU) Cyclotron to measure radionuclide yields from copper, gold, and lead targets.

  3. Calculated /alpha/-induced thick target neutron yields and spectra, with comparison to measured data

    International Nuclear Information System (INIS)

    Wilson, W.B.; Bozoian, M.; Perry, R.T.

    1988-01-01

    One component of the neutron source associated with the decay of actinide nuclides in many environments is due to the interaction of decay /alpha/ particles in (/alpha/,n) reactions on low Z nuclides. Measurements of (/alpha/,n) thick target neutron yields and associated neutron spectra have been made for only a few combinations of /alpha/ energy and target nuclide or mixtures of actinide and target nuclides. Calculations of thick target neutron yields and spectra with the SOURCES code require /alpha/-energy-dependent cross sections for (/alpha/,n) reactions, as well as branching fractions leading to the energetically possible levels of the product nuclides. A library of these data has been accumulated for target nuclides of Z /le/ 15 using that available from measurements and from recent GNASH code calculations. SOURCES, assuming neutrons to be emitted isotopically in the center-of-mass system, uses libraries of /alpha/ stopping cross sections, (/alpha/,n) reaction cross reactions, product nuclide level branching fractions, and actinide decay /alpha/ spectra to calculate thick target (/alpha/,n) yields and neutron spectra for homogeneous combinations of nuclides. The code also calculates the thick target yield and angle intergrated neutron spectrum produced by /alpha/-particle beams on targets of homogeneous mixtures of nuclides. Illustrative calculated results are given and comparisons are made with measured thick target yields and spectra. 50 refs., 1 fig., 2 tabs

  4. Neutron yield from thick lead target by the action of high-energy electrons

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.; Sorokin, P.V.

    1978-01-01

    The results are presented of studying the complete neutron yield from a lead target bombarded by high-energy electrons. Neutrons were recorded by the method of radio-active indicators. The dependence of the neutron yield on the target thickness varying from 0.2 to 8 cm was obtained at the energies of electrons of 230 and 1200 MeV. The neutron yield for the given energies with the target of 6 cm in thickness is in the range of saturation and is 0.1 +-0.03 and 0.65+-0.22 (neutr./MeV.el.), respectively. The neutron angular distributions were measured for different thicknesses of targets at the 201, 230 and 1200 MeV electrons. Within the error limits the angular distributions are isotropic. The dependence of neutron yield on the electron energy was examined for a 3 cm thick target. In the energy range of 100-1200 MeV these values are related by a linear dependence with the proportionality coefficient C=3x10 -4 (neutr./MeV.el.)

  5. The effect of target thickness on x-ray production by FXR [Flash X-Ray Machine

    International Nuclear Information System (INIS)

    Back, N.L.

    1986-01-01

    The electron-photon transport code SANDYL has been used to calculate the x-ray flux for a simplified Flash X-Ray Machine (FXR) bullnose geometry. Four different thicknesses (24.5, 36.75, 49, and 61.25 mils) were used for the tantalum bremsstrahlung target in order to study the effect of target thickness on the FXR output. The calculations were performed for a parallel 17 MeV electron beam, and the resulting angular distributions were then used to compute the forward flux for the more realistic case of a converging beam. Over the range of thicknesses studied, the x-ray energy content per steradian on axis was essentially independent of target thickness. The main reason for this is that, while the total x-ray flux coming out of the target increases with increasing target thickness, the angular width of that flux also increases. The implications for target wheel design are discussed. 3 refs., 7 figs

  6. Thick target spallation product yields from 800 MeV protons on tungsten

    International Nuclear Information System (INIS)

    Ullmann, J.L.; Staples, P.; Butler, G.

    1994-01-01

    A number of newly-conceived accelerator based technologies will employ medium-energy particles stopping in thick targets to produce large numbers of neutrons. It is important to quantify the residual radionuclides in the target because one must understand what nuclei and decay gammas are produced in order to design adequate shielding, to estimate ultimate waste disposal problems, and to predict possible effects of accidental dispersion during operation. Because stopping-length targets are considered, radionuclide production must be known as a function of energy. Moreover, secondary particle production, mostly neutrons, implies a need to be able to calculate particle transport. To test the overall ability to calculate radionuclide yields, a thick-target measurement was carried out and the results compared to detailed calculations. Although numerous measurements of thin-target spallation yields have been made, there have been only a few measurements on thick systems. The most complete study showed results for Pb and U systems. In this contribution, the authors report on measurements made for a stopping-length W target. Special efforts were made to measure short-lived isotopes, and reliable data on isotopes with two or three minute half-lives were obtained

  7. Gold-manganese nanoparticles for targeted diagnostic and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-10

    Imagine the possibility of non-invasive, non-radiation based Magnetic resonance imaging (MRI) in combating cardiac disease. Researchers at the Savannah River National Laboratory (SRNL) are developing a process that would use nanotechnology in a novel, targeted approach that would allow MRIs to be more descriptive and brighter, and to target specific organs. Researchers at SRNL have discovered a way to use multifunctional metallic gold-manganese nanoparticles to create a unique, targeted positive contrast agent. SRNL Senior Scientist Dr. Simona Hunyadi Murph says she first thought of using the nanoparticles for cardiac disease applications after learning that people who survive an infarct exhibit up to 15 times higher rate of developing chronic heart failure, arrhythmias and/or sudden death compared to the general population. Without question, nanotechnology will revolutionize the future of technology. The development of functional nanomaterials with multi-detection modalities opens up new avenues for creating multi-purpose technologies for biomedical applications.

  8. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study

    Directory of Open Access Journals (Sweden)

    Reuveni T

    2011-11-01

    Full Text Available Tobi Reuveni1, Menachem Motiei1, Zimam Romman2, Aron Popovtzer3, Rachela Popovtzer11Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-ilan University, Ramat Gan, 2GE HealthCare, Tirat Hacarmel, 3Department of Otorhinolaryngology, Head and Neck Surgery and Onology, Davidoff Center, Rabin Medical Center, Beilinson Campus, Petah Tiqwa, IsraelAbstract: In recent years, advances in molecular biology and cancer research have led to the identification of sensitive and specific biomarkers that associate with various types of cancer. However, in vivo cancer detection methods with computed tomography, based on tracing and detection of these molecular cancer markers, are unavailable today. This paper demonstrates in vivo the feasibility of cancer diagnosis based on molecular markers rather than on anatomical structures, using clinical computed tomography. Anti-epidermal growth factor receptor conjugated gold nanoparticles (30 nm were intravenously injected into nude mice implanted with human squamous cell carcinoma head and neck cancer. The results clearly demonstrate that a small tumor, which is currently undetectable through anatomical computed tomography, is enhanced and becomes clearly visible by the molecularly-targeted gold nanoparticles. It is further shown that active tumor targeting is more efficient and specific than passive targeting. This noninvasive and nonionizing molecular cancer imaging tool can facilitate early cancer detection and can provide researchers with a new technique to investigate in vivo the expression and activity of cancer-related biomarkers and molecular processes.Keywords: functional computed tomography, molecular imaging, gold nanoparticles, biologically targeted in vivo imaging, contrast agents

  9. Rational Design of Multifunctional Gold Nanoparticles via Host-Guest Interaction for Cancer-Targeted Therapy.

    Science.gov (United States)

    Chen, Wei-Hai; Lei, Qi; Luo, Guo-Feng; Jia, Hui-Zhen; Hong, Sheng; Liu, Yu-Xin; Cheng, Yin-Jia; Zhang, Xian-Zheng

    2015-08-12

    A versatile gold nanoparticle-based multifunctional nanocomposite AuNP@CD-AD-DOX/RGD was constructed flexibly via host-guest interaction for targeted cancer chemotherapy. The pH-sensitive anticancer prodrug AD-Hyd-DOX and the cancer-targeted peptide AD-PEG8-GRGDS were modified on the surface of AuNP@CD simultaneously, which endowed the resultant nanocomposite with the capability to selectively eliminate cancer cells. In vitro studies indicated that the AuNP@CD-AD-DOX/RGD nanocomposite was preferentially uptaken by cancer cells via receptor-mediated endocytosis. Subsequently, anticancer drug DOX was released rapidly upon the intracellular trigger of the acid microenvirenment of endo/lysosomes, inducing apoptosis in cancer cells. As the ideal drug nanocarrier, the multifunctional gold nanoparticles with the active targeting and controllable intracellular release ability hold the great potential in cancer therapy.

  10. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy

    Science.gov (United States)

    Zhu, Dao-Ming; Xie, Wei; Xiao, Yu-Sha; Suo, Meng; Zan, Ming-Hui; Liao, Qing-Quan; Hu, Xue-Jia; Chen, Li-Ben; Chen, Bei; Wu, Wen-Tao; Ji, Li-Wei; Huang, Hui-Ming; Guo, Shi-Shang; Zhao, Xing-Zhong; Liu, Quan-Yan; Liu, Wei

    2018-02-01

    Recently, red blood cell (RBC) membrane-coated nanoparticles have attracted much attention because of their excellent immune escapability; meanwhile, gold nanocages (AuNs) have been extensively used for cancer therapy due to their photothermal effect and drug delivery capability. The combination of the RBC membrane coating and AuNs may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we design erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. First, anti-EpCam antibodies were used to modify the RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel (PTX) was encapsulated into AuNs. Then, the AuNs were coated with the modified RBC membranes. These new nanoparticles were termed EpCam-RPAuNs. We characterized the capability of the EpCam-RPAuNs for selective tumor targeting via exposure to near-infrared irradiation. The experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validated the biocompatibility of the EpCam-RAuNs in vitro. By combining the molecularly modified targeting RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.

  11. Characterization of a material by probability of linear scattering using effect of target thickness

    International Nuclear Information System (INIS)

    Nghiep, T.D.; Khai, N.T.; Cong, N.T.; Minh, D.T.N.

    2013-01-01

    We report on an experimental test with 662 keV gamma photons scattered from a set of samples from 6 C, 13 Al, 26 Fe, 29 Cu, 47 Ag, 82 Pb and stainless steel for determination of probability of linear scattering, which can be used for characterization of a material. The results show that for the given target and scattering angle, the effect of target thickness in gamma photons scattering relates to single and multiple scattering and that the scattered events exponentially increase with an increase in target thickness and saturation at some values of thickness. The experimental results correlate with the typical function of energy transfer model. (author)

  12. Quantification of Functionalised Gold Nanoparticle-Targeted Knockdown of Gene Expression in HeLa Cells

    Science.gov (United States)

    Jiwaji, Meesbah; Sandison, Mairi E.; Reboud, Julien; Stevenson, Ross; Daly, Rónán; Barkess, Gráinne; Faulds, Karen; Kolch, Walter; Graham, Duncan; Girolami, Mark A.; Cooper, Jonathan M.; Pitt, Andrew R.

    2014-01-01

    Introduction Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. Methods In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. Findings We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. Conclusions The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein. PMID:24926959

  13. Morphology dependent electrical transport behavior in gold nanostructures

    International Nuclear Information System (INIS)

    Alkhatib, A.; Souier, T.; Chiesa, M.

    2011-01-01

    The mechanism of electron transport in ultra-thin gold films is investigated and its dependence on the gold islands size is reported. For gold films of thickness below 38 nm, the electrical transport occurs by tunneling within electrically discontinuous islands of gold. Simmons model for metal-insulator-metal junction describes the non-ohmic experimental current-voltage curves obtained by means of conductive atomic force microscopy. Field emission is the predominant transport for thicknesses below 23 nm while direct tunneling occurs in thicker films. The transition between the two regimes is controlled by the gold islands size and their inter-distance.

  14. Backscattered electron emission after proton impact on carbon and gold films: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hespeels, F.; Heuskin, A.C. [University of Namur, PMR, 61 rue de Bruxelles, B-5000 Namur (Belgium); Scifoni, E. [TIFPA-INFN, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento (Italy); GSI-Helmholtzzentrum für Schwerionenforschung, Biophysik, Max Planck-Strasse 1, D-64291 Darmstadt (Germany); Kraemer, M. [GSI-Helmholtzzentrum für Schwerionenforschung, Biophysik, Max Planck-Strasse 1, D-64291 Darmstadt (Germany); Lucas, S., E-mail: stephane.lucas@unamur.be [University of Namur, PMR, 61 rue de Bruxelles, B-5000 Namur (Belgium)

    2017-06-15

    This work aims at measuring the proton induced secondary electron energy spectra from nanometer thin films. Backscattered electron energy spectra were measured within an energy range from 0 to 600 eV using a Retarding Field Analyser (RFA). This paper presents energy spectra obtained for proton (0.5 MeV; 1 MeV; 1.5 MeV; 2 MeV) irradiation of thin carbon films (50 and 100 nm thick) and thin gold film (200 nm). These experimental spectra were compared with Monte Carlo simulations based on TRAX code and Geant4 simulation toolkit. Good agreement between experimental, TRAX and Geant4 results were observed for the carbon target. For the gold target, we report major differences between both Monte Carlo environments. Limitation of Geant4 models for low energy electron emission was highlighted. On the contrary, TRAX simulations present encouraging results for the modeling of low-energy electron emission from gold target.

  15. Targeting dendritic cells through gold nanoparticles: A review on the cellular uptake and subsequent immunological properties.

    Science.gov (United States)

    Ahmad, Suhana; Zamry, Anes Ateqah; Tan, Hern-Tze Tina; Wong, Kah Keng; Lim, JitKang; Mohamud, Rohimah

    2017-11-01

    Gold nanoparticles (NPs) have been proposed as a highly potential tool in immunotherapies due to its advantageous properties including customizable size and shapes, surface functionality and biocompatibility. Dendritic cells (DCs), the sentinels of immune response, have been of interest to be manipulated by using gold NPs for targeted delivery of immunotherapeutic agent. Researches done especially in human DCs showed a variation of gold NPs effects on cellular uptake and internalization, DC maturation and subsequent T cells priming as well as cytotoxicity. In this review, we describe the synthesis and physiochemical properties of gold NPs as well as the importance of gold NPs in immunotherapies through their actions on human DCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Interactions of relativistic heavy ions in thick heavy element targets and some unresolved problems

    International Nuclear Information System (INIS)

    Brandt, R.; Ditlov, V.A.; Pozharova, E.A.; Smirnitskij, V.A.

    2005-01-01

    Interactions of relativistic heavy ions with total energies above 30 GeV in thick Cu and Pb targets (≥2 cm) have been studied with various techniques. Radiochemical irradiation experiments using thick Cu targets, both in a compact form or as diluted '2π-Cu targets' have been carried out with several relativistic heavy ions, such as 44 GeV 12 C (JINR, Dubna) and 72 GeV 40 Ar (LBL, Berkeley, USA). Neutron measuring experiments using thick targets irradiated with various relativistic heavy ions up to 44 GeV 12 C have been performed at JINR. In addition, the number of 'black prongs' in nuclear interactions (due to protons with energies less than 30 MeV and emitted from the target-like interaction partner at rest) produced with 72 GeV 22 Ne ions in nuclear emulsion plates has been measured in the first nuclear interaction of the primary 22 Ne ion and in the following second nuclear interaction of the secondary heavy (Z>1) ion. Some essential results have been obtained. 1) Spallation products produced by relativistic secondary fragments in interactions ([44 GeV 12 C or 72 GeV 40 Ar]+Cu) within thick copper yield less products close to the target and much more products far away from the target as compared to primary beam interactions. This applies also to secondary particles emitted into large angles (Θ>10deg). 2) The neutron production of 44 GeV 12 C within thick Cu and Pb targets is beyond the estimated yield as based on experiments with 12 GeV 12 C. These rather independent experimental results cannot be understood with well-accepted nuclear reaction models. They appear to present unresolved problems

  17. Targeting of Gold Deposits in Amazonian Exploration Frontiers using Knowledge- and Data-Driven Spatial Modeling of Geophysical, Geochemical, and Geological Data

    Science.gov (United States)

    Magalhães, Lucíola Alves; Souza Filho, Carlos Roberto

    2012-03-01

    This paper reports the application of weights-of-evidence, artificial neural networks, and fuzzy logic spatial modeling techniques to generate prospectivity maps for gold mineralization in the neighborhood of the Amapari Au mine, Brazil. The study area comprises one of the last Brazilian mineral exploration frontiers. The Amapari mine is located in the Maroni-Itaicaiúnas Province, which regionally hosts important gold, iron, manganese, chromite, diamond, bauxite, kaolinite, and cassiterite deposits. The Amapari Au mine is characterized as of the orogenic gold deposit type. The highest gold grades are associated with highly deformed rocks and are concentrated in sulfide-rich veins mainly composed of pyrrhotite. The data used for the generation of gold prospectivity models include aerogeophysical and geological maps as well as the gold content of stream sediment samples. The prospectivity maps provided by these three methods showed that the Amapari mine stands out as an area of high potential for gold mineralization. The prospectivity maps also highlight new targets for gold exploration. These new targets were validated by means of detailed maps of gold geochemical anomalies in soil and by fieldwork. The identified target areas exhibit good spatial coincidence with the main soil geochemical anomalies and prospects, thus demonstrating that the delineation of exploration targets by analysis and integration of indirect datasets in a geographic information system (GIS) is consistent with direct prospecting. Considering that work of this nature has never been developed in the Amazonian region, this is an important example of the applicability and functionality of geophysical data and prospectivity analysis in regions where geologic and metallogenetic information is scarce.

  18. Interactions of 10.6 GeV/n gold nuclei with light and heavy target nuclei in nuclear emulsion

    International Nuclear Information System (INIS)

    Cherry, M.L.; Denes-Jones, P.

    1994-03-01

    We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criteria has been developed to distinguish between the interactions of these gold nuclei with the light (H, C, N, O) and heavy (Ag, Br) target nuclei in the emulsion. This has allowed separate analyzes of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H, C, N, O) and Au-(Ag, Br) interactions, as well as of the models of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei. (author). 14 refs, 11 figs, 1 tab

  19. Assembler absolute forward thick-target bremsstrahlung spectra program

    International Nuclear Information System (INIS)

    Niculescu, V.I.R.; Baciu, G.; Ionescu-Bujor, M.

    1981-12-01

    The program is intended to compute the absolute forward thick-target bremsstrahlung spectrum for electrons in the energy range 1-24 MeV. The program takes into account the following phenomena: multiple scattering, energy loss and the attenuation of the emitted gamma rays. The computer program is written in Assembler having a higher degree of generality and is more performant than the FORTRAN version. (authors)

  20. Impact of Different CT Slice Thickness on Clinical Target Volume for 3D Conformal Radiation Therapy

    International Nuclear Information System (INIS)

    Prabhakar, Ramachandran; Ganesh, Tharmar; Rath, Goura K.; Julka, Pramod K.; Sridhar, Pappiah S.; Joshi, Rakesh C.; Thulkar, Sanjay

    2009-01-01

    The purpose of this study was to present the variation of clinical target volume (CTV) with different computed tomography (CT) slice thicknesses and the impact of CT slice thickness on 3-dimensional (3D) conformal radiotherapy treatment planning. Fifty patients with brain tumors were selected and CT scans with 2.5-, 5-, and 10-mm slice thicknesses were performed with non-ionic contrast enhancement. The patients were selected with tumor volume ranging from 2.54 cc to 222 cc. Three-dimensional treatment planning was performed for all three CT datasets. The target coverage and the isocenter shift between the treatment plans for different slice thickness were correlated with the tumor volume. An important observation from our study revealed that for volume 25 cc, the target underdosage was less than 6.7% for 5-mm slice thickness and 8% for 10-mm slice thickness. For 3D conformal radiotherapy treatment planning (3DCRT), a CT slice thickness of 2.5 mm is optimum for tumor volume 25 cc

  1. Preparation of air-settled, roll-thinned phosphorus targets

    CERN Document Server

    Lozowski, W R

    1999-01-01

    Red sup 3 sup 1 P targets of 2.6 and 2.9 mg/cm sup 2+-0.1 mg/cm sup 2 with 1-cmx2-cm side dimensions were prepared for a nuclear mass measurement which required good thickness uniformity. The thinner target, with 50 mu g/cm sup 2 of gold flashed on both surfaces, withstood a 173-MeV alpha beam of 175 nA for 18 h. Adaptations will be described for an Indiana University Cyclotron Facility air-settling method used to distribute phosphorus powder, as well as the methods developed for subsequent pressing, roll thinning, and dry release to obtain self-supporting targets. An envelope of gold foil, in contact with the phosphorus during each step, was instrumental in the process.

  2. A study of prostate delineation referenced against a gold standard created from the visible human data

    International Nuclear Information System (INIS)

    Gao Zhanrong; Wilkins, David; Eapen, Libni; Morash, Christopher; Wassef, Youssef; Gerig, Lee

    2007-01-01

    Purpose: To measure inter- and intra-observer variation and systematic error in CT based prostate delineation, where individual delineations are referenced against a gold standard produced from photographic anatomical images from the Visible Human Project (VHP). Materials and methods: The CT and anatomical images of the VHP male form the basic data set for this study. The gold standard was established based on 1 mm thick anatomical photographic images. These were registered against the 3 mm thick CT images that were used for target delineation. A total of 120 organ delineations were performed by six radiation oncologists. Results: The physician delineated prostate volume was on average 30% larger than the 'true' prostate volume, but on average included only 84% of the gold standard volume. Our study found a systematic delineation error such that posterior portions of the prostate were always missed while anteriorly some normal tissue was always defined as target. Conclusions: Our data suggest that radiation oncologists are more concerned with the unintentional inclusion of rectal tissue than they are in missing prostate volume. In contrast, they are likely to overextend the anterior boundary of the prostate to encompass normal tissue such as the bladder

  3. A bench-top K X-ray fluorescence system for quantitative measurement of gold nanoparticles for biological sample diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ricketts, K., E-mail: k.ricketts@ucl.ac.uk [Division of Surgery and Interventional Sciences, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF (United Kingdom); Guazzoni, C.; Castoldi, A. [Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano and INFN, Sezione di Milano P.za Leonardo da Vinci, 32-20133 Milano (Italy); Royle, G. [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT (United Kingdom)

    2016-04-21

    Gold nanoparticles can be targeted to biomarkers to give functional information on a range of tumour characteristics. X-ray fluorescence (XRF) techniques offer potential quantitative measurement of the distribution of such heavy metal nanoparticles. Biologists are developing 3D tissue engineered cellular models on the centimetre scale to optimise targeting techniques of nanoparticles to a range of tumour characteristics. Here we present a high energy bench-top K-X-ray fluorescence system designed for sensitivity to bulk measurement of gold nanoparticle concentration for intended use in such thick biological samples. Previous work has demonstrated use of a L-XRF system in measuring gold concentrations but being a low energy technique it is restricted to thin samples or superficial tumours. The presented system comprised a high purity germanium detector and filtered tungsten X-ray source, capable of quantitative measurement of gold nanoparticle concentration of thicker samples. The developed system achieved a measured detection limit of between 0.2 and 0.6 mgAu/ml, meeting specifications of biologists and being approximately one order of magnitude better than the detection limit of alternative K-XRF nanoparticle detection techniques. The scatter-corrected K-XRF signal of gold was linear with GNP concentrations down to the detection limit, thus demonstrating potential in GNP concentration quantification. The K-XRF system demonstrated between 5 and 9 times less sensitivity than a previous L-XRF bench-top system, due to a fundamental limitation of lower photoelectric interaction probabilities at higher K-edge energies. Importantly, the K-XRF technique is however less affected by overlying thickness, and so offers future potential in interrogating thick biological samples.

  4. Colorimetric detection of Ehrlichia canis via nucleic acid hybridization in gold nano-colloids.

    Science.gov (United States)

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-08-08

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease.

  5. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Subhra [Department of Tumor Immunology, Radboud University Nijmegen Medical Centre (Netherlands); Bakeine, Gerald J., E-mail: Jamesbakeine1@yahoo.com [Department of Internal Medicine and Therapeutics-Section of Clinical Toxicology, University of Pavia, Piazza Botta 10, 27100 Pavia (Italy); Krol, Silke [Institute of Neurology, Fondazione IRCCS Carlo Besta, Milan (Italy); Ferrari, Cinzia; Clerici, Anna M.; Zonta, Cecilia; Cansolino, Laura [Department of Surgery, Laboratory of Experimental Surgery, University of Pavia (Italy); Ballarini, Francesca [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bortolussi, Silva [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Stella, Subrina; Protti, Nicoletta [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bruschi, Piero [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Altieri, Saverio [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy)

    2011-12-15

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coated with multilayers of polyelectrolytes functionalized with the fluorescent dye (FITC), boronophenylalanine and folic acid. In vitro confocal fluorescence microscopy demonstrated significant uptake of the nanoparticles in cancer cells that are known to overexpress folate receptors. - Highlights: Black-Right-Pointing-Pointer Synthesis of multi-labeled gold nanoparticles for selective boron delivery to tumor cells. Black-Right-Pointing-Pointer Tumor selectivity is achieved through folic acid receptor targeting. Black-Right-Pointing-Pointer Optical fluorescent microscopy allows tracking of cellular uptake of the gold nanoparticle. Black-Right-Pointing-Pointer In vitro tests demonstrate selective nanoparticle up in folate receptor positive tumor cells.

  6. Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications

    Science.gov (United States)

    Kopwitthaya, Atcha; Yong, Ken-Tye; Hu, Rui; Roy, Indrajit; Ding, Hong; Vathy, Lisa A.; Bergey, Earl J.; Prasad, Paras N.

    2010-08-01

    In this contribution, we report the use of a PEGylated gold nanorods formulation as a colored dye for tumor labeling in vivo. We have demonstrated that the nanorod-targeted tumor site can be easily differentiated from the background tissues by the 'naked eye' without the need of sophisticated imaging instruments. In addition to tumor labeling, we have also performed in vivo toxicity and biodistribution studies of PEGylated gold nanorods in vivo by using BALB/c mice as the model. In vivo toxicity studies indicated no mortality or adverse effects or weight changes in BALB/c mice treated with PEGylated gold nanorods. This finding will provide useful guidelines in the future development of diagnostic probes for cancer diagnosis, optically guided tumor surgery, and lymph node mapping applications.

  7. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    Directory of Open Access Journals (Sweden)

    Saibabu Madas

    2018-03-01

    Full Text Available In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler’s mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K, whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  8. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    Science.gov (United States)

    Madas, Saibabu; Mishra, S. K.; Upadhyay Kahaly, Mousumi

    2018-03-01

    In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base) material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler's mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K), whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  9. Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase.

    Science.gov (United States)

    Gandin, Valentina; Fernandes, Aristi Potamitou; Rigobello, Maria Pia; Dani, Barbara; Sorrentino, Francesca; Tisato, Francesco; Björnstedt, Mikael; Bindoli, Alberto; Sturaro, Alberto; Rella, Rocco; Marzano, Cristina

    2010-01-15

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (nicotinamide adenine dinucleotide phosphate), plays a central role in regulating cellular redox homeostasis and signaling pathways. TrxR, overexpressed in many tumor cells and contributing to drug resistance, has emerged as a new target for anticancer drugs. Gold complexes have been validated as potent TrxR inhibitors in vitro in the nanomolar range. In order to obtain potent and selective TrxR inhibitors, we have synthesized a series of linear, 'auranofin-like' gold(I) complexes all containing the [Au(PEt(3))](+) synthon and the ligands: Cl(-), Br(-), cyanate, thiocyanate, ethylxanthate, diethyldithiocarbamate and thiourea. Phosphine gold(I) complexes efficiently inhibited cytosolic and mitochondrial TrxR at concentrations that did not affect the two related oxidoreductases glutathione reductase (GR) and glutathione peroxidase (GPx). The inhibitory effect of the redox proteins was also observed intracellularly in cancer cells pretreated with gold(I) complexes. Gold(I) compounds were found to induce antiproliferative effects towards several human cancer cells some of which endowed with cisplatin or multidrug resistance. In addition, they were able to activate caspase-3 and induce apoptosis observed as nucleosome formation and sub-G1 cell accumulation. The complexes with thiocyanate and xanthate ligands were particularly effective in inhibiting thioredoxin reductase and inducing apoptosis. Pharmacodynamic studies in human ovarian cancer cells allowed for the correlation of intracellular drug accumulation with TrxR inhibition that leads to the induction of apoptosis via the mitochondrial pathway.

  10. Fabrication of laser-target components by semiconductor technology

    International Nuclear Information System (INIS)

    Tindall, W.E.

    1979-01-01

    This paper describes the design and fabrication of a unique silicon substrate with which laser-target components can be mass produced. Different sizes and shapes of gold foils from 50 to 3000 microns in diameter and up to 25 microns thick have been produced with this process since 1976

  11. Stimuli-Responsive Polyelectrolyte Brushes As a Matrix for the Attachment of Gold Nanoparticles: The Effect of Brush Thickness on Particle Distribution

    Directory of Open Access Journals (Sweden)

    Stephanie Christau

    2014-06-01

    Full Text Available The effect of brush thickness on the loading of gold nanoparticles (AuNPs within stimuli-responsive poly-(N,N-(dimethylamino ethyl methacrylate (PDMAEMA polyelectrolyte brushes is reported. Atom transfer radical polymerization (ATRP was used to grow polymer brushes via a “grafting from” approach. The brush thickness was tuned by varying the polymerization time. Using a new type of sealed reactor, thick brushes were synthesized. A systematic study was performed by varying a single parameter (brush thickness, while keeping all other parameters constant. AuNPs of 13 nm in diameter were attached by incubation. X-ray reflectivity, electron scanning microscopy and ellipsometry were used to study the particle loading, particle distribution and interpenetration of the particles within the brush matrix. A model for the structure of the brush/particle hybrids was derived. The particle number densities of attached AuNPs depend on the brush thickness, as do the optical properties of the hybrids. An increasing particle number density was found for increasing brush thickness, due to an increased surface roughness.

  12. Optical constant of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, D. I.; Fedyanin, D. Yu; Arsenin, A. V.

    2017-01-01

    The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability...... and spectroscopic ellipsometry, the structural morphology and optical properties of polycrystalline gold thin films (fabricated by e-beam deposition at a low sputtering rate smooth gold) in the thickness range of 20 - 200 nm. By extracting the real and imaginary dielectric function and the Drude parameter...... of the device. At the same time, metal films of different thicknesses are needed for different applications and, since these films are polycrystalline, their internal properties and surface roughness can greatly vary from one thickness to another. In this work, we study, using atomic force microscopy...

  13. Influence of target thickness on the release of radioactive atoms

    Energy Technology Data Exchange (ETDEWEB)

    Guillot, Julien, E-mail: guillotjulien@ipno.in2p3.fr [Institut de Physique Nucléaire CNRS/IN2P3 UMR 8608 – Université Paris Sud – Université Paris Saclay, F-91406 Orsay Cedex (France); Roussière, Brigitte [Institut de Physique Nucléaire CNRS/IN2P3 UMR 8608 – Université Paris Sud – Université Paris Saclay, F-91406 Orsay Cedex (France); Tusseau-Nenez, Sandrine [Physique de la Matière Condensée Ecole Polytechnique/CNRS UMR 7643 – Université Paris Saclay, F-91128 Palaiseau Cedex (France); Barré-Boscher, Nicole; Borg, Elie; Martin, Julien [Institut de Physique Nucléaire CNRS/IN2P3 UMR 8608 – Université Paris Sud – Université Paris Saclay, F-91406 Orsay Cedex (France)

    2017-03-01

    Nowadays, intense exotic beams are needed in order to study nuclei with very short half-life. To increase the release efficiency of the fission products, all the target characteristics involved must be improved (e.g. chemical composition, dimensions, physicochemical properties such as grain size, porosity, density…). In this article, we study the impact of the target thickness. Released fractions measured from graphite and uranium carbide pellets are presented as well as Monte-Carlo simulations of the Brownian motion.

  14. Gold Nanorods Targeted to Delta Opioid Receptor: Plasmon-Resonant Contrast and Photothermal Agents

    Directory of Open Access Journals (Sweden)

    Kvar C. Black

    2008-01-01

    Full Text Available Molecularly targeted gold nanorods were investigated for applications in both diagnostic imaging and disease treatment with cellular resolution. The nanorods were tested in two genetically engineered cell lines derived from the human colon carcinoma HCT-116, a model for studying ligand-receptor interactions. One of these lines was modified to express delta opioid receptor (δOR and green fluorescent protein, whereas the other was receptor free and expressed a red fluorescent protein, to serve as the control. Deltorphin, a high-affinity ligand for δOR, was stably attached to the gold nanorods through a thiol-terminated linker. In a mixed population of cells, we demonstrated selective imaging and destruction of receptor-expressing cells while sparing those cells that did not express the receptor. The molecularly targeted nanorods can be used as an in vitro ligand-binding and cytotoxic treatment assay platform and could potentially be applied in vivo for diagnostic and therapeutic purposes with endoscopic technology.

  15. Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications

    Energy Technology Data Exchange (ETDEWEB)

    Kopwitthaya, Atcha; Hu Rui; Roy, Indrajit; Ding Hong; Vathy, Lisa A; Bergey, Earl J; Prasad, Paras N [Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260-4200 (United States); Yong, Ken-Tye, E-mail: ktyong@ntu.edu.sg, E-mail: pnprasad@buffalo.edu [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2010-08-06

    In this contribution, we report the use of a PEGylated gold nanorods formulation as a colored dye for tumor labeling in vivo. We have demonstrated that the nanorod-targeted tumor site can be easily differentiated from the background tissues by the 'naked eye' without the need of sophisticated imaging instruments. In addition to tumor labeling, we have also performed in vivo toxicity and biodistribution studies of PEGylated gold nanorods in vivo by using BALB/c mice as the model. In vivo toxicity studies indicated no mortality or adverse effects or weight changes in BALB/c mice treated with PEGylated gold nanorods. This finding will provide useful guidelines in the future development of diagnostic probes for cancer diagnosis, optically guided tumor surgery, and lymph node mapping applications.

  16. Ion acceleration by radiation pressure in thin and thick targets

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, Andrea, E-mail: macchi@df.unipi.i [CNR/INFM/polyLAB, Pisa (Italy); Dipartimento di Fisica ' Enrico Fermi' , Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Benedetti, Carlo, E-mail: Carlo.Benedetti@bo.infn.i [Dipartimento di Fisica, Universita di Bologna and INFN, Via Irnerio 46, I-40126 Bologna (Italy)

    2010-08-01

    Radiation Pressure Acceleration (RPA) by circularly polarized laser pulses is emerging as a promising way to obtain efficient acceleration of ions. We briefly review theoretical work on the topic, aiming at characterizing suitable experimental scenarios. We discuss the two reference cases of RPA, namely the thick target ('Hole Boring') and the (ultra)thin target ('Light Sail') regimes. The different scaling laws of the two regimes, the related experimental challenges and their suitability for foreseen applications are discussed.

  17. Investigations of effect of target thickness and detector collimation on 662 keV multiply backscattered gamma photons

    International Nuclear Information System (INIS)

    Sabharwal, Arvind D.; Sandhu, B.S.; Singh, Bhajan

    2009-01-01

    The present studies aimed to investigate the effects of detector collimation and target thickness on multiply backscattered gamma photons. The numbers of multiply backscattered events, having energy the same as in singly scattered distribution, are found to be increasing with target thickness, and saturate for a particular thickness known as saturation thickness. The saturation thickness is not altered by the variation in the collimator opening. The number and energy albedos, characterizing the reflection probability of a material, are also evaluated. Monte Carlo calculations support the present experimental work.

  18. Design, construction and performance evaluation of the target tissue thickness measurement system in intraoperative radiotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Mohammad Reza, E-mail: myazdani@aut.ac.ir [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Arabalibeik, Hossein, E-mail: arabalibeik@tums.ac.ir [Research Center for Biomedical Technology and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Akbari, Mohammad Esmaeil [Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2017-05-21

    Intraoperative electron radiation therapy (IOERT), which uses electron beams for irradiating the target directly during the surgery, has the advantage of delivering a homogeneous dose to a controlled layer of tissue. Since the dose falls off quickly below the target thickness, the underlying normal tissues are spared. In selecting the appropriate electron energy, the accuracy of the target tissue thickness measurement is critical. In contrast to other procedures applied in IOERT, the routine measurement method is considered to be completely traditional and approximate. In this work, a novel mechanism is proposed for measuring the target tissue thickness with an acceptable level of accuracy. An electronic system has been designed and manufactured with the capability of measuring the tissue thickness based on the recorded electron density under the target. The results indicated the possibility of thickness measurement with a maximum error of 2 mm for 91.35% of data. Aside from system limitation in estimating the thickness of 5 mm phantom, for 88.94% of data, maximum error is 1 mm.

  19. Thick-target method in the measurement of inner-shell ionization cross-sections by low-energy electron impact

    International Nuclear Information System (INIS)

    An, Z.; Wu, Y.; Liu, M.T.; Duan, Y.M.; Tang, C.H.

    2006-01-01

    In this paper, we have studied the thick-target method for the measurements of atomic inner-shell ionization cross-section or X-ray production cross-section by keV electron impact. We find that in the processes of electron impact on the thick targets, the ratios of the characteristic X-ray yields of photoelectric ionization by bremsstrahlung to the total characteristic X-ray yields are Z-dependent and shell-dependent, and the ratios also show the weak energy-dependence. In addition, in the lower incident energy region (i.e. U < 5-6), the contribution from the rediffusion effect and the secondary electrons can be negligible. In general, the thick-target method can be appropriately applied to the measurements of atomic inner-shell ionization cross-sections or X-ray production cross-sections by electron impact for low and medium Z elements in the lower incident electron energy (i.e. U < 5-6). The experimental accuracies by the thick-target method can reach to the level equivalent or superior to the accuracies of experimental data based on the thin-target method. This thick-target method has been applied to the measurement of K-shell ionization cross-sections of Ni element by electron impact in this paper

  20. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    Rathinaraj, Pierson; Lee, Kyubae; Choi, Yuri; Park, Soo-Young; Kwon, Oh Hyeong; Kang, Inn-Kyu

    2015-01-01

    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL)

  1. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rathinaraj, Pierson [Auckland University of Technology, Institute of Biomedical Technologies (New Zealand); Lee, Kyubae; Choi, Yuri; Park, Soo-Young [Kyungpook National University, School of Applied Chemical Engineering, Graduate School (Korea, Republic of); Kwon, Oh Hyeong [Kumoh National Institute of Technology, Department of Polymer Science and Engineering (Korea, Republic of); Kang, Inn-Kyu, E-mail: ikkang@knu.ac.kr [Kyungpook National University, School of Applied Chemical Engineering, Graduate School (Korea, Republic of)

    2015-07-15

    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL)

  2. A windowless frozen hydrogen target system

    International Nuclear Information System (INIS)

    Knowles, P.E.; Beer, G.A.; Beveridge, J.L.

    1995-06-01

    A cryogenic target system has been constructed in which gaseous mixtures of all three hydrogen isotopes have been frozen onto a thin, 65 mm diameter gold foil. The foil is cooled to 3 K while inside a 70 K radiation shield, all of which is mounted in a vacuum system maintained at 10 -9 torr. Stable multi-layer hydrogen targets of known uniformity and thickness have been maintained for required measurement times of up to several days. To date, hundreds of targets have been successfully used in muon-catalyzed fusion experiments at TRIUMF. (author). 12 refs., 6 figs

  3. Multi-technique characterization of gold electroplating on silver substrates for cultural heritage applications

    Science.gov (United States)

    Ortega-Feliu, I.; Ager, F. J.; Roldán, C.; Ferretti, M.; Juanes, D.; Scrivano, S.; Respaldiza, M. A.; Ferrazza, L.; Traver, I.; Grilli, M. L.

    2017-09-01

    This work presents a detailed study of a series of silver plates gilded via electroplating techniques in which the characteristics of the coating gold layers are investigated as a function of the electroplating variables (voltage, time, anode surface and temperature). Some reference samples were coated by radio frequency sputtering in order to compare gold layer homogeneity and effective density. Surface analysis was performed by means of atomic and nuclear techniques (SEM-EDX, EDXRF, PIXE and RBS) to obtain information about thickness, homogeneity, effective density, profile concentration of the gold layers and Au-Ag diffusion profiles. The gold layer thickness obtained by PIXE and EDXRF is consistent with the thickness obtained by means of RBS depth profiling. Electroplated gold mass thickness increases with electroplating time, anode area and voltage. However, electrodeposited samples present rough interfaces and gold layer effective densities lower than the nominal density of Au (19.3 g/cm3), whereas sputtering produces uniform layers with nominal density. These analyses provide valuable information to historians and curators and can help the restoration process of gold-plated silver objects.

  4. Automated computer analysis of x-ray radiographs greatly facilitates measurement of coating-thickness variations in laser-fusion targets

    International Nuclear Information System (INIS)

    Stupin, D.M.; Moore, K.R.; Thomas, G.D.; Whitman, R.L.

    1981-01-01

    An automated system was built to analyze x-ray radiographs of laser fusion targets which greatly facilitates the detection of coating thickness variations. Many laser fusion targets reqire opaque coatings 1 to 20 μm thick which have been deposited on small glass balloons 100 to 500 μm in diameter. These coatings must be uniformly thick to 1% for the targets to perform optimally. Our system is designed to detect variations as small as 100 A in 1-μm-thick coatings by converting the optical density variations of contact x-ray radiographs into coating thickness variations. Radiographic images are recorded in HRP emulsions and magnified by an optical microscope, imaged onto television camera, digitized and processed on a Data General S/230 computer with a code by Whitman. After an initial set-up by the operator, as many as 200 targets will be automatically characterized

  5. Preparation of barium and uranium targets on thick backings

    International Nuclear Information System (INIS)

    Sletten, G.

    1982-01-01

    Targets of 135 Ba and 235 U have been prepared by the technique of heavy ion sputtering. Rolled foils of 208 Pb and 197 Au were used to support 250-500 μg/cm 2 layers of barium. Uranium films have been prepared by sputtering UO 2 onto 1 mg/cm 2 titanium foils. Uranium deposit thicknesses of 300 to 1800 μg/cm 2 have been prepared. (orig.)

  6. Extended methods using thick-targets for nuclear reaction data of radioactive isotopes

    Science.gov (United States)

    Ebata, Shuichiro; Aikawa, Masayuki; Imai, Shotaro

    2017-09-01

    The nuclear transmutation is a technology to dispose of radioactive wastes. However, we do not have enough basic data for its developments, such as thick-target yields (TTY) and the interaction cross sections for radioactive material. We suggest two methods to estimate the TTY using inverse kinematics and to obtain the excitation function of the interaction cross sections which is named the thick-target transmission (T3) method. We deduce the energy-dependent conversion relation between the TTYs of the original system and its inverse kinematics, which can be replaced to a constant coefficient in the high energy region. Furthermore we show the usefulness of the T3 method to investigate the excitation function of the 12C + 27Al reaction in the simulation.

  7. Experimental results on 2-30 keV bremsstrahlung from thick and thin targets

    Energy Technology Data Exchange (ETDEWEB)

    Shanker, R. [Atomic Physics Laboratory, Physics Department, Banaras Hindu University, Varanasi 221005 (India)]. E-mail: rshanker@bhu.ac.in

    2006-10-15

    The recent experimental investigations on electron bremsstrahlung produced from impact of 2-30 keV electrons with thick solid and thin gaseous targets are reviewed. The theoretical models describing the energy and angular distributions of bremsstrahlung photons are discussed with their brief outlines and formulations to explain the experimental data. The results on thick target bremsstrahlung (TTB) spectra produced by keV electrons have suggested that there is a need to develop a comprehensive theory for accounting the solid state effects. It is further noted that the prediction of the modified KKD formula gives a reasonable agreement with the TTB data, whereas a semi-empirical formula gives a better fit to the data for thick targets. The available experimental data for dependence of double differential cross-sections of emitted photons on impact energy and their emission angles for gaseous atoms and molecules exhibit a good agreement with the theoretical calculations of Kissel et al., [1983. Shape functions for atomic-field bremsstrahlung from electrons of kinetic energy 1-500 keV on selected neutral atoms 1

  8. Targeted Therapy Combined with Immune Modulation Using Gold Nanoparticles for Treating Metastatic Colorectal Cancer

    Science.gov (United States)

    2017-09-01

    stimulate the body’s immune system to target and attack cancer cells. Another part of our research includes coating these gold nanoparticles with...change in animal care is the introduction of doxycycline through food chow in addition to drinking water. The dose of doxycycline from the drinking water

  9. Sandwiched gold/PNIPAm/gold microstructures for smart plasmonics application: towards the high detection limit and Raman quantitative measurements.

    Science.gov (United States)

    Elashnikov, R; Mares, D; Podzimek, T; Švorčík, V; Lyutakov, O

    2017-08-07

    A smart plasmonic sensor, comprising a layer of a stimuli-responsive polymer sandwiched between two gold layers, is reported. As a stimuli-responsive material, a monolayer of poly(N-isopropylacrylamide) (PNIPAm) crosslinked globules is used. A quasi-periodic structure of the top gold layer facilitates efficient excitation and serves as a support for plasmon excitation and propagation. The intermediate layer of PNIPAm efficiently entraps targeted molecules from solutions. The sensor structure was optimized for efficient light focusing in the "active" PNIPAm layer. The optimization was based on the time-resolved finite-element simulations, which take into account the thickness of gold layers, size of PNIPAm globules and Raman excitation wavelength (780 nm). The prepared structures were characterized using SEM, AFM, UV-Vis refractometry and goniometry. Additional AFM scans were performed in water at two temperatures corresponding to the collapsed and swollen PNIPAm states. The Raman measurements demonstrate a high detection limit and perfect reproducibility of the Raman scattering signal for the prepared sensor. In addition, the use of created SERS structures for the detection of relevant molecules in the medical, biological and safety fields was demonstrated.

  10. Technique for thick polymer coating of inertial-confinement-fusion targets

    International Nuclear Information System (INIS)

    Lee, M.C.; Feng, I.; Wang, T.G.; Kim, H.

    1983-01-01

    A novel technique has been developed to coat a thick layer (15--50 μm) of polymer materials on inertial-confinement-fusion (ICF) targets. In this technique, the target and the coating material are independently positioned and manipulated. The coating material is first dissolved in an appropriate solvent to form a polymer solution. The solution is then atomized, transported, and allowed to coalesce into a droplet in a stable acoustic levitating field. The ICF target mounted on a stalk is moved into the acoustic field by manipulating a three-dimensional (3-D) positioner to penetrate the surface membrane of the droplet and thus the target is immersed in the levitated coating solution. The 3-D coordinates of the target inside the droplet are obtained using two orthogonally placed television cameras. The target is positioned at the geometric center of the droplet and maintained at that location by continuously manipulating the 3-D device until the coating layer is dried. Tests of this technique using a polymer solution have been highly successful

  11. Thin-thick hydrogen target for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Gheller, J.-M.; Juster, F.-P.; Authelet, G. [CEA Saclay, Irfu/SACM, F-91191 Gif-Sur-Yvette cedex (France); Vinyar, I. [PELIN Limited Liability Company 27 A, Gzhatskaya Str, office 103 St. Petersbourg 195220 (Russian Federation); Relland, J. [CEA Saclay, Irfu/SIS, F-91191 Gif-Sur-Yvette cedex (France); Commeaux, C. [Institut de Physique Nucléaire, campus Universitaire-Bat 103, 91406 Orsay cedex (France)

    2014-01-29

    In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a width of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.

  12. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-01-01

    Graphical abstract: - Highlights: • ITO nanowires were grown by the sputtering method using a new synthesis procedure. • By changing the deposition parameters the morphology and dimensions of the nanostructures were modified. • Seed layer thickness was an important factor for obtaining branched nanowires. • SERS substrates having good performance and a high application potential were produced. • The first Raman results for our substrates are already comparable to commercial substrates. - Abstract: Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor–liquid–solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets

  13. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Setti, Grazielle O. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Renato Archer Information Technology Center, Rodovia Dom Pedro I (SP-65), Km 143,6 – Amarais, 13069-901 Campinas, SP (Brazil); Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Joanni, Ednan, E-mail: ednan.joanni@cti.gov.br [Renato Archer Information Technology Center, Rodovia Dom Pedro I (SP-65), Km 143,6 – Amarais, 13069-901 Campinas, SP (Brazil); Jesus, Dosil P. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil)

    2015-08-30

    Graphical abstract: - Highlights: • ITO nanowires were grown by the sputtering method using a new synthesis procedure. • By changing the deposition parameters the morphology and dimensions of the nanostructures were modified. • Seed layer thickness was an important factor for obtaining branched nanowires. • SERS substrates having good performance and a high application potential were produced. • The first Raman results for our substrates are already comparable to commercial substrates. - Abstract: Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor–liquid–solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  14. Photo-neutron yields from thin and thick targets irradiated by 2.0 GeV electrons

    International Nuclear Information System (INIS)

    Hee-Seock, Lee; Syuichi, Ban; Toshiya, Sanami; Kazutoshi, Takahashi; Tatsuhiko, Sato; Kazuo, Shin

    2005-01-01

    The photo-neutron yields from thin and thick targets irradiated by high energy electrons were studied. The photo-neutron spectra at 90 deg C relative to the incident 2.0 GeV electrons were measured by the pulsed beam time-of-flight technique using the Pilot-U plastic scintillator and the NE213 liquid scintillator with 2 inches in length and 2 inches in diameter. Targets, from low-Z element (carbon) to high-Z element (bismuth) and with thin (0.5 Xo) and thick (10 Xo) thickness, were used in this study. The differential photo-neutron yields between 2 MeV (mainly 8 MeV) and 400 MeV were obtained. The systematics was studied to make empirical yield terms for shielding application. Recently, the study of the angular distributed yields was conducted at two other observing angles, 48 deg C and 140 deg C. The photo-neutron yields between 8 MeV and 250 MeV were obtained for thick targets. The experimental data were compared with results calculated using the EGS4+PICA3 or the MCNPX 2.5d code. (authors)

  15. TU-F-CAMPUS-T-03: Enhancing the Tumor Specific Radiosensitization Using Molecular Targeted Gold Nanorods

    International Nuclear Information System (INIS)

    Diagaradjane, P; Deorukhkar, A; Sankaranarayanapillai, M; Singh, P; Manohar, N; Tailor, R; Cho, S; Goodrich, G; Krishnan, S

    2015-01-01

    Purpose: Gold nanoparticle (GNP) mediated radiosensitization has gained significant attention in recent years. However, the widely used passive targeting strategy requires high concentration of GNPs to induce the desired therapeutic effect, thus dampening the enthusiasm for clinical translation. The purpose of this study is to utilize a molecular targeting strategy to minimize the concentration of GNPs injected while simultaneously enhancing the tumor specific radiosensitization for an improved therapeutic outcome. Methods: Cetuximab (antibody specific to the epidermal growth factor receptor that is over-expressed in tumors) conjugated gold nanorods (cGNRs) was used for the tumor targeting. The binding affinity, internalization, and in vitro radiosensitization were evaluated using dark field microscopy, transmission electron microscopy, and clonogenic cell survival assay, respectively. In vivo biodistribution in tumor (HCT116-colorectal cancer cells) bearing mice were quantified using inductively coupled plasma mass spectrometry. In vivo radiosensitization potential was tested using 250-kVp x-rays and clinically relevant 6-MV radiation beams. Results: cGNRs displayed excellent cell-surface binding and internalization (∼31,000 vs 12,000/cell) when compared to unconjugated GNRs (pGNRs). In vitro, the dose enhancement factor at 10% survival (DEF10) was estimated as 1.06 and 1.17, respectively for both 250-kVp and 6-MV beams. In vivo biodistribution analysis revealed enhanced uptake of cGNRs in tumor (1.3 µg/g of tumor tissue), which is ∼1000-fold less than the reported values using passive targeting strategy. Nonetheless, significant radiosensitization was observed in vivo with cGNRs when compared to pGNRs, when irradiated with 250-kVp (tumor volume doubling time 35 days vs 25 days; p=0.002) and 6 MV (17 days vs 13 days; p=0.0052) beams. Conclusion: The enhanced radiosensitization effect observed with very low intratumoral concentrations of gold and megavoltage x

  16. TU-F-CAMPUS-T-03: Enhancing the Tumor Specific Radiosensitization Using Molecular Targeted Gold Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Diagaradjane, P [M.D. Anderson Cancer Center, Houston, TX (United States); Deorukhkar, A; Sankaranarayanapillai, M; Singh, P [The UT MD Anderson Cancer Center, Houston, TX (United States); Manohar, N; Tailor, R; Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States); Goodrich, G [Nanospectra Biosciences Inc, Houston, TX (United States); Krishnan, S [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Gold nanoparticle (GNP) mediated radiosensitization has gained significant attention in recent years. However, the widely used passive targeting strategy requires high concentration of GNPs to induce the desired therapeutic effect, thus dampening the enthusiasm for clinical translation. The purpose of this study is to utilize a molecular targeting strategy to minimize the concentration of GNPs injected while simultaneously enhancing the tumor specific radiosensitization for an improved therapeutic outcome. Methods: Cetuximab (antibody specific to the epidermal growth factor receptor that is over-expressed in tumors) conjugated gold nanorods (cGNRs) was used for the tumor targeting. The binding affinity, internalization, and in vitro radiosensitization were evaluated using dark field microscopy, transmission electron microscopy, and clonogenic cell survival assay, respectively. In vivo biodistribution in tumor (HCT116-colorectal cancer cells) bearing mice were quantified using inductively coupled plasma mass spectrometry. In vivo radiosensitization potential was tested using 250-kVp x-rays and clinically relevant 6-MV radiation beams. Results: cGNRs displayed excellent cell-surface binding and internalization (∼31,000 vs 12,000/cell) when compared to unconjugated GNRs (pGNRs). In vitro, the dose enhancement factor at 10% survival (DEF10) was estimated as 1.06 and 1.17, respectively for both 250-kVp and 6-MV beams. In vivo biodistribution analysis revealed enhanced uptake of cGNRs in tumor (1.3 µg/g of tumor tissue), which is ∼1000-fold less than the reported values using passive targeting strategy. Nonetheless, significant radiosensitization was observed in vivo with cGNRs when compared to pGNRs, when irradiated with 250-kVp (tumor volume doubling time 35 days vs 25 days; p=0.002) and 6 MV (17 days vs 13 days; p=0.0052) beams. Conclusion: The enhanced radiosensitization effect observed with very low intratumoral concentrations of gold and megavoltage x

  17. Role of laser contrast and foil thickness in target normal sheath acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Gizzi, L.A. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Altana, C. [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania (Italy); Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Brandi, F. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, P. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Cristoforetti, G. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan, Milan (Italy); INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Giove, D. [INFN-LASA, Via Fratelli Cervi 201, 20090 Segrate (Italy); Koester, P. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Labate, L. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Lanzalone, G. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Università degli Studi di Enna Kore, Via delle Olimpiadi, 94100 Enna (Italy); Londrillo, P. [INAF–Osservatorio astronomico Bologna (Italy); Mascali, D.; Muoio, A. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Palla, D. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, Università di Pisa (Italy); Schillaci, F. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Sinigardi, S. [Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); INFN, Sez. di Bologna, Via Irnerio 46, 40126 Bologna (Italy); and others

    2016-09-01

    In this paper we present an experimental investigation of laser driven light-ion acceleration using the ILIL laser at an intensity of 2×10{sup 19} W/cm{sup 2}. In the experiment we focused our attention on the identification of the role of target thickness and resistivity in the fast electron transport and in the acceleration process. Here we describe the experimental results concerning the effect of laser contrast in the laser–target interaction regime. We also show preliminary results on ion acceleration which provide information about the role of bulk target ions and surface ions and target dielectric properties in the acceleration process.

  18. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications.

    NARCIS (Netherlands)

    Mandal, S.; Bakeine, G.J.; Krol, S.; Ferrari, C.; Clerici, A.M.; Zonta, C.; Cansolino, L.; Ballarini, F.; Bortolussi, S.; Stella, S.; Protti, N.; Bruschi, P.; Altieri, S.

    2011-01-01

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were

  19. Amended Results for Hard X-Ray Emission by Non-thermal Thick Target Recombination in Solar Flares

    Science.gov (United States)

    Reep, J. W.; Brown, J. C.

    2016-06-01

    Brown & Mallik and the corresponding corrigendum Brown et al. presented expressions for non-thermal recombination (NTR) in the collisionally thin- and thick-target regimes, claiming that the process could account for a substantial part of the hard X-ray continuum in solar flares usually attributed entirely to thermal and non-thermal bremsstrahlung (NTB). However, we have found the thick-target expression to become unphysical for low cut-offs in the injected electron energy spectrum. We trace this to an error in the derivation, derive a corrected version that is real-valued and continuous for all photon energies and cut-offs, and show that, for thick targets, Brown et al. overestimated NTR emission at small photon energies. The regime of small cut-offs and large spectral indices involve large (reducing) correction factors but in some other thick-target parameter regimes NTR/NTB can still be of the order of unity. We comment on the importance of these results to flare and microflare modeling and spectral fitting. An empirical fit to our results shows that the peak NTR contribution comprises over half of the hard X-ray signal if δ ≳ 6{≤ft(\\tfrac{{E}0c}{4{keV}}\\right)}0.4.

  20. Morphological and electrical study of gold ultrathin films on mica

    Energy Technology Data Exchange (ETDEWEB)

    Bahamondes, S.; Donoso, S. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Henríquez, R. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Flores, M., E-mail: mflorescarra@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile)

    2013-12-02

    We present a topographical study of the formation of thin films of gold on muscovite mica. The characterization of the samples was done with scanning tunneling microscopy, atomic force microscopy as well as electric measurements. We performed our study on two groups of samples: first group of samples, evaporated at room temperature for thickness ranging from 1.5 up to 97 nm; second group of samples, for two different thicknesses of 3 nm and 50 nm evaporated at different substrate temperatures, between 110 and 530 K. The gold films show a Volmer–Weber growth. The complete films are obtained from samples with a nominal thickness of 8 nm deposited. The average grain diameter is constant, with nominal thicknesses of 18.5 nm, up to 8 nm and increases with the thickness for higher deposition. The average grain diameter is similar regardless of the temperature of the substrate for samples of 3 nm thickness, but changes for samples of 50 nm thickness. The resistivity is inversely dependent on nominal thickness and the mean free path is lineally dependent on nominal thickness. - Highlights: • We have grown thin gold films onto mica at different substrate temperatures. • We identified a continuous film at nominal thickness of 8 nm. • The grain size shows a direct dependence on the nominal film thickness. • The electron mean free path, at 4 K, is linearly dependent on nominal thickness.

  1. The Golden Target: Analyzing the Tracking Performance of Leveraged Gold ETFs

    OpenAIRE

    Tim Leung; Brian Ward

    2015-01-01

    This paper studies the empirical tracking performance of leveraged ETFs on gold, and their price relationships with gold spot and futures. For tracking the gold spot, we find that our optimized portfolios with short-term gold futures are highly effective in replicating prices. The market-traded gold ETF (GLD) also exhibits a similar tracking performance. However, we show that leveraged gold ETFs tend to underperform their corresponding leveraged benchmark. Moreover, the underperformance worse...

  2. The α-induced thick-target γ-ray yield from light elements

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R. K. [Queen`s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-10-01

    The α-induced thick-target γ-ray yield from light elements has been measured in the energy range 5.6 MeV ≤ Eα ≤ 10 MeV. The γ-ray yield for > 2.1 MeV from thick targets of beryllium, boron nitride, sodium fluoride, magnesium, aluminum and silicon were measured using the α-particle beam from the Lawrence Berkeley Laboratories 88 in. cyclotron. The elemental yields from this experiment were used to construct the α-induced direct production γ-ray spectrum from materials in the SNO detector, a large volume ultra-low background neutrino detector located in the Creighton mine near Sudbury, Canada. This background source was an order of magnitude lower than predicted by previous calculations. These measurements are in good agreement with theoretical calculations of this spectrum based on a statistical nuclear model of the reaction, with the gross high energy spectrum structure being reproduced to within a factor of two. Detailed comparison of experimental and theoretical excitation population distribution of several residual nuclei indicate the same level of agreement within experimental uncertainties.

  3. Growth temperature dependent surface plasmon resonances of densely packed gold nanoparticles’ films and their role in surface enhanced Raman scattering of Rhodamine6G

    International Nuclear Information System (INIS)

    Verma, Shweta; Rao, B. Tirumala; Bhartiya, S.; Sathe, V.; Kukreja, L.M.

    2015-01-01

    Highlights: • Growth temperature produces and tunes the surface plasmon resonance (SPR) of gold films. • Optimum thickness and growth temperature combination results narrow SPR band. • Alumina capping red-shifted the SPR band and showed marginal re-sputtering of films. • Densely packed gold nanoparticles of varying sizes can be realized by pulsed laser deposition. • High SERS intensity of dye from gold films of large SPR strength at excitation wavelength. - Abstract: Localized surface plasmon resonance (LSPR) characteristics of gold nanoparticles films grown at different substrate temperatures and mass thicknesses with and without alumina capping were studied. At different film mass thicknesses, the LSPR response was observed mainly in the films grown at high substrate temperatures. About 300 °C substrate temperature was found to be optimum for producing narrow and strong LSPR band in both uncapped and alumina capped gold nanoparticles films. The LSPR wavelength could be tuned in the range of 600–750 nm by changing either number of ablation pulses or decreasing target to substrate distance (TSD) and alumina layer capping. Though the alumina capping re-sputtered the gold films still these films exhibited stronger LSPR response compared to the uncapped films. Atomic force microscopic analysis revealed formation of densely packed nanoparticles films exhibiting strong LSPR response which is consistent with the package density of the nanoparticles predicted by the theoretical calculations. The average size of nanoparticles increased with substrate temperature, number of ablation pulses and decreasing the TSD. For the same mass thickness of gold films grown at different substrate temperatures the surface enhanced Raman scattering (SERS) intensity of Rhodamine6G dye was found to be significantly different which had direct correlation with the LSPR strength of the films at the excitation wavelength

  4. GOLD's coating and testing facilities for ISSIS-WSO

    Science.gov (United States)

    Larruquert, Juan I.; Méndez, José Antonio; Aznárez, José Antonio; Vidal-Dasilva, Manuela; García-Cortés, Sergio; Rodríguez-de Marcos, Luis; Fernández-Perea, Mónica

    2011-09-01

    ISSIS imager has been thought as an open purpose instrument within the World Space Observatory (WSO) international space mission. The highest priorities of ISSIS, an instrument to be developed by Spain, are to guarantee high spatial resolution and high sensitivity down to the far ultraviolet (FUV). The paper displays the capacities of GOLD for multilayer deposition and FUV reflectometry, among other metrologies, for ISSIS optical elements. Deposition of coatings for ISSIS-WSO will be carried out in a new UHV system with a 75-cm diameter deposition chamber. The purpose of the new laboratory is the deposition of coatings satisfying the constraints for FUV space optics. The first target coating to be developed in this new laboratory is Al protected with MgF2, with optimum reflectance down to ˜120 nm. GOLD's existing reflectometer is able to characterize flat pieces both by transmittance and reflectance, and the latter from near-normal to grazing incidence, in the range from 12 to 200 nm. Other metrologies that will be available at GOLD for ISSIS's coatings and filters include optical thickness of filters to assure parfocality, filter wedge, and coating and filter scattering.

  5. Gold Photoluminescence: Wavelength and Polarization Engineering

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Pors, Anders Lambertus; Bozhevolnyi, Sergey I.

    2015-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes...... and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we...

  6. Evaluation of the x-ray fluorescence method of precious metal plating thickness measurements. Technological spinoff report

    International Nuclear Information System (INIS)

    Carson, J.S.; Hearn, N.K.; Pettie, C.B.

    1975-09-01

    It is shown that gold and silver plating thickness measurements made using an x-ray spectrograph could be closely correlated with thicknesses measured from sectional samples. Good correlations were also shown for single overlays of gold over silver when each layer was less than 0.0003 inch thick

  7. Characterization of a multi-keV x-ray source produced by nanosecond laser irradiation of a solid target: The influence of laser focus spot and target thickness

    International Nuclear Information System (INIS)

    Hu Guangyue; Zheng Jian; Shen Baifei; Lei Anle; Xu Zhizhan; Liu Shenye; Zhang Jiyan; Yang Jiamin; Ding Yongkun; Hu Xin; Huang Yixiang; Du Huabing; Yi Rongqing

    2008-01-01

    The influence of focus spot and target thickness on multi-keV x-ray sources generated by 2 ns duration laser heated solid targets are investigated on the Shenguang II laser facility. In the case of thick-foil targets, the experimental data and theoretical analysis show that the emission volume of the x-ray sources is sensitive to the laser focus spot and proportional to the 3 power of the focus spot size. The steady x-ray flux is proportional to the 5/3 power of the focus spot size of the given laser beam in our experimental condition. In the case of thin-foil targets, experimental data show that there is an optimal foil thickness corresponding to the given laser parameters. With the given laser beam, the optimal thin-foil thickness is proportional to the -2/3 power of the focus spot size, and the optimal x-ray energy of thin foil is independent of focus spot size

  8. Geology of epithermal silver-gold bulk-mining targets, bodie district, Mono County, California

    Science.gov (United States)

    Hollister, V.F.; Silberman, M.L.

    1995-01-01

    The Bodie mining district in Mono County, California, is zoned with a core polymetallic-quartz vein system and silver- and gold-bearing quartz-adularia veins north and south of the core. The veins formed as a result of repeated normal faulting during doming shortly after extrusion of felsic flows and tuffs, and the magmatic-hydrothermal event seems to span at least 2 Ma. Epithermal mineralization accompanied repeated movement of the normal faults, resulting in vein development in the planes of the faults. The veins occur in a very large area of argillic alteration. Individual mineralized structures commonly formed new fracture planes during separate fault movements, with resulting broad zones of veinlets growing in the walls of the major vein-faults. The veinlet swarms have been found to constitute a target estimated at 75,000,000 tons, averaging 0.037 ounce gold per ton. The target is amenable to bulkmining exploitation. The epithermal mineralogy is simple, with electrum being the most important precious metal mineral. The host veins are typical low-sulfide banded epithermal quartz and adularia structures that filled voids created by the faulting. Historical data show that beneficiation of the simple vein mineralogy is very efficient. ?? 1995 Oxford University Press.

  9. Sub-10 ohm resistance gold films prepared by removal of ligands from thiol-stabilized 6 nm gold nanoparticles.

    Science.gov (United States)

    Sugden, Mark W; Richardson, Tim H; Leggett, Graham

    2010-03-16

    The optical and electrical properties of dodecanethiol-stabilized nanoparticles (6 nm diameter gold core) have been investigated over a range of film thicknesses and temperatures. The surface plasmon resonance absorbance is found to be dependent on temperature. Heating of the nanoparticle film causes desorption of the thiol from the surface of the gold nanoparticle, resulting in irreversible changes to the absorption spectra of the nanoparticle film. Atomic force microscopy images of the samples before and after heating for different film thicknesses reveal structural changes and increased domain connectivity for thicker films leading to sub-10 ohm resistances measured for the 15-layer film.

  10. RGD peptide-targeted polyethylenimine-entrapped gold nanoparticles for targeted CT imaging of an orthotopic model of human hepatocellular carcinoma

    Science.gov (United States)

    Zhou, Benqing; Wang, Meng; Zhou, Feifan; Song, Jun; Qu, Junle; Chen, Wei R.

    2018-02-01

    We report the synthesis and characterization of arginine-glycine-aspartic acid (RGD) peptide-targeted polyethylenimine (PEI)-entrapped gold nanoparticles (RGD-Au PENPs) for targeted CT imaging of hepatic carcinomas in situ. In this work, PEI sequentially modified with polyethylene glycol (PEG), and RGD linked-PEG was used as a nanoplatform to prepare AuNPs, followed by complete acetylation of PEI surface amines. We showed that the designed RGD-Au PENPs were colloidally stable and biocompatible in the given concentration range, and could be specifically taken up by αvβ3 integrin-overexpressing liver cancer cells in vitro. Furthermore, in vivo CT imaging results revealed that the particles displayed a great contrast enhancement of hepatic carcinomas region, and could target to hepatic carcinomas region in situ. With the proven biodistribution and histological examinations in vivo, the synthesized RGD-Au PENPs show a great formulation to be used as a contrast agent for targeted CT imaging of different αvβ3 integrin receptoroverexpressing tumors.

  11. Measurement of the thickness of a target deposited in a substrate

    International Nuclear Information System (INIS)

    Martinez Q, E.; Aguilera, E.F.

    1990-12-01

    Being based on the Elastic scattering and in the Energy losses that suffer a projectile to the interacting with the matter, a method that allows to determine the thickness of a target deposited in a more heavy substrate is presented. The obtained results are consistent with that waited and the derived errors of the method are small. The used technique allows to reduce in considerable form the systematic errors coming from the calibration of the equipment. It is considered that this method is applicable in an interval of thickness quite wide and for many materials since it is only necessary to choose the projectile type and the energy of the same one appropriately. (Author)

  12. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: Dependence on metal film thickness

    Science.gov (United States)

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.

    2018-05-01

    We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.

  13. Nanometer-resolution electron microscopy through micrometers-thick water layers

    Energy Technology Data Exchange (ETDEWEB)

    Jonge, Niels de, E-mail: niels.de.jonge@vanderbilt.edu [Vanderbilt University Medical Center, Department of Molecular Physiology and Biophysics, Nashville, TN 37232-0615 (United States); Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6064 (United States); Poirier-Demers, Nicolas; Demers, Hendrix [Universite de Sherbrooke, Electrical and Computer Engineering, Sherbrooke, Quebec J1K 2R1 (Canada); Peckys, Diana B. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6064 (United States); University of Tennessee, Center for Environmental Biotechnology, Knoxville, TN 37996-1605 (United States); Drouin, Dominique [Universite de Sherbrooke, Electrical and Computer Engineering, Sherbrooke, Quebec J1K 2R1 (Canada)

    2010-08-15

    Scanning transmission electron microscopy (STEM) was used to image gold nanoparticles on top of and below saline water layers of several micrometers thickness. The smallest gold nanoparticles studied had diameters of 1.4 nm and were visible for a liquid thickness of up to 3.3 {mu}m. The imaging of gold nanoparticles below several micrometers of liquid was limited by broadening of the electron probe caused by scattering of the electron beam in the liquid. The experimental data corresponded to analytical models of the resolution and of the electron probe broadening as function of the liquid thickness. The results were also compared with Monte Carlo simulations of the STEM imaging on modeled specimens of similar geometry and composition as used for the experiments. Applications of STEM imaging in liquid can be found in cell biology, e.g., to study tagged proteins in whole eukaryotic cells in liquid and in materials science to study the interaction of solid:liquid interfaces at the nanoscale.

  14. Spectroscopic diagnostic of gold plasma

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, M.

    1986-06-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included.

  15. Spectroscopic diagnostic of gold plasma

    International Nuclear Information System (INIS)

    Busquet, M.

    1986-01-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included [fr

  16. (p,γ) reaction on thick target as a spectroscopic tool

    International Nuclear Information System (INIS)

    Paradellis, T.

    1985-01-01

    When thick even-even targets around mass A-60 are bombarded with low energy protons the (p,γ) reaction excite a large number of resonances in the compound nucleus with a strong initial alignment. The statistical gamma decay of these states to the low lying discrete levels of the compound nucleus introduces some attenuation of the initial alignment. It is shown experimentally that the resulting alignment of the low discrete states is strong enough to permit usefull spectroscopic study of these states, since the resulting attenuation do not depend on the target or the bombarding energy being function of the spin of the level. This type of spectroscopy can be extended also to measure life-time of levels through Doppler-shift

  17. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    International Nuclear Information System (INIS)

    Gupta, C.K.; Rohilla, Aman; Abhilash, S.R.; Kabiraj, D.; Singh, R.P.; Mehta, D.; Chamoli, S.K.

    2014-01-01

    A thin isotopic 94 Zr target of thickness 520μg/cm 2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm 2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94 Zr from peeling off, a very thin layer of gold has been evaporated on a 94 Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94 Zr target material was utilized for the fabrication of 94 Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC

  18. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    Science.gov (United States)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  19. Determination of the flux per electron-volt at the resonance energy of gold by means op thick gold detectors (1962); Determination des flux par electron-volt a l'energie de resonance de l'or a l'aide de detecteurs d'or epais. (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Brisbois, J; Fogagnolo, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1962-07-01

    We calculated the coefficients which allow determining a neutron flux at 5 eV by means of 2/10 mm thick gold detectors on Geiger-Muller counter assemblies. These coefficients were obtained comparing the thick detectors with the thin ones. (authors) [French] Nous avons calcule les coefficients permettant de determiner le flux de neutrons a 5 eV a partir de comptages de detecteurs d'or de 2/10 mm d'epaisseur sur des groupes a compteur de Geiger-Muller. Ces coefficients ont ete obtenus en comparant les detecteurs epais avec des detecteurs minces. (auteurs)

  20. Targeting mitochondria in cancer cells using gold nanoparticle-enhanced radiotherapy: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Kirkby, Charles, E-mail: charles.kirkby@albertahealthservices.ca; Ghasroddashti, Esmaeel [Department of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta T1J 1W5 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Oncology, University of Calgary, Calgary, Alberta T2N 4N2 (Canada)

    2015-02-15

    Purpose: Radiation damage to mitochondria has been shown to alter cellular processes and even lead to apoptosis. Gold nanoparticles (AuNPs) may be used to enhance these effects in scenarios where they collect on the outer membranes of mitochondria. A Monte Carlo (MC) approach is used to estimate mitochondrial dose enhancement under a variety of conditions. Methods: The PENELOPE MC code was used to generate dose distributions resulting from photons striking a 13 nm diameter AuNP with various thicknesses of water-equivalent coatings. Similar dose distributions were generated with the AuNP replaced by water so as to estimate the gain in dose on a microscopic scale due to the presence of AuNPs within an irradiated volume. Models of mitochondria with AuNPs affixed to their outer membrane were then generated—considering variation in mitochondrial size and shape, number of affixed AuNPs, and AuNP coating thickness—and exposed (in a dose calculation sense) to source spectra ranging from 6 MV to 90 kVp. Subsequently dose enhancement ratios (DERs), or the dose with the AuNPs present to that for no AuNPs, for the entire mitochondrion and its components were tallied under these scenarios. Results: For a representative case of a 1000 nm diameter mitochondrion affixed with 565 AuNPs, each with a 13 nm thick coating, the mean DER over the whole organelle ranged from roughly 1.1 to 1.6 for the kilovoltage sources, but was generally less than 1.01 for the megavoltage sources. The outer membrane DERs remained less than 1.01 for the megavoltage sources, but rose to 2.3 for 90 kVp. The voxel maximum DER values were as high as 8.2 for the 90 kVp source and increased further when the particles clustered together. The DER exhibited dependence on the mitochondrion dimensions, number of AuNPs, and the AuNP coating thickness. Conclusions: Substantial dose enhancement directly to the mitochondria can be achieved under the conditions modeled. If the mitochondrion dose can be directly

  1. Cellular imaging and folate receptor targeting delivery of gum kondagogu capped gold nanoparticles in cancer cells.

    Science.gov (United States)

    Kumar, Sathish Sundar Dhilip; Mahesh, Ayyavu; Antoniraj, M Gover; Rathore, Hanumant Singh; Houreld, N N; Kandasamy, Ruckmani

    2018-04-01

    In this study, the green synthesis of gum kondagogu capped gold nanoparticles (GK-GNPs) was prepared using a naturally available polysaccharide. The anionic gum capped GK-GNPs enabled the successful coupling of folic acid (FA) and fluorescein isothiocyanate (FITC) to produce a fluorescently labelled GNP (F2-GNP). F2-GNPs were further characterized using different physicochemical methods Cellular viability, cellular imaging, and targeted delivery of F2-GNPs were further evaluated in both folate receptor positive (MCF-7) and folate receptor negative (A549) cancer cells. Physicochemical characterization revealed a nanoparticle with a small size (37 nm), smooth surface (surface charge of -23.7 mV), crystallinity of gold nanoparticles and existence of gum kondagogu in the F2-GNPs. Cellular uptake of F2-GNPs indicated a greater affinity towards folate receptor positive cells. This study shows that the F2-GNPs is as an effective nanocarrier for targeted drug delivery and cellular imaging via folate receptors. Copyright © 2017. Published by Elsevier B.V.

  2. Immunological properties of gold nanoparticles.

    Science.gov (United States)

    Dykman, Lev A; Khlebtsov, Nikolai G

    2017-03-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo . For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.

  3. Measurement of the thickness of thin films by backscattered protons

    International Nuclear Information System (INIS)

    Samaniego, L.E.Q.

    1976-07-01

    The method of backscattered protons has been used to measure the thickness of thin films. A monoenergetic beam of protons is directed on the film to be measured and the backscattered protons are detected with a particle detector. The film thickness is calculated from the energy spectrum of the protons. In the case of films consisting of several layers of elements with well separated atomic masses, it is possible to separate the spectra of protons scattered from the different elements, permitting a measurement of the thicknesses of the different layers. The method consists of calculating the energy loss of the protons throughout their trajectory, from the point of incidence on the film to the final detection. Thicknesses were measured for the following film combinations: gold on mylar, chromium on mylar, gold on chromium on mylar, and pure mylar. (Author) [pt

  4. Production of nuclear fragments from the interactions of 24 GeV/c protons in a gold target

    CERN Document Server

    Herz, A J; O'Sullivan, D; Thompson, A

    1976-01-01

    Lexan polycarbonate track detectors have been used to determine the charge and energy spectra of nuclear fragments with Z>or=6 and with kinetic energies as low as approximately=1.0 MeV/nucleon emitted from a thin gold target bombarded with 24 GeV/c protons. (8 refs).

  5. Low Z target switching to increase tumor endothelial cell dose enhancement during gold nanoparticle-aided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, Ross I., E-mail: rberbeco@partners.org; Detappe, Alexandre [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Tsiamas, Panogiotis [Department of Radiation Oncology, St. Jude Children’s Hospital, Memphis, Tennessee 38105 (United States); Parsons, David; Yewondwossen, Mammo; Robar, James [Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 1V7 (Canada)

    2016-01-15

    Purpose: Previous studies have introduced gold nanoparticles as vascular-disrupting agents during radiation therapy. Crucial to this concept is the low energy photon content of the therapy radiation beam. The authors introduce a new mode of delivery including a linear accelerator target that can toggle between low Z and high Z targets during beam delivery. In this study, the authors examine the potential increase in tumor blood vessel endothelial cell radiation dose enhancement with the low Z target. Methods: The authors use Monte Carlo methods to simulate delivery of three different clinical photon beams: (1) a 6 MV standard (Cu/W) beam, (2) a 6 MV flattening filter free (Cu/W), and (3) a 6 MV (carbon) beam. The photon energy spectra for each scenario are generated for depths in tissue-equivalent material: 2, 10, and 20 cm. The endothelial dose enhancement for each target and depth is calculated using a previously published analytic method. Results: It is found that the carbon target increases the proportion of low energy (<150 keV) photons at 10 cm depth to 28% from 8% for the 6 MV standard (Cu/W) beam. This nearly quadrupling of the low energy photon content incident on a gold nanoparticle results in 7.7 times the endothelial dose enhancement as a 6 MV standard (Cu/W) beam at this depth. Increased surface dose from the low Z target can be mitigated by well-spaced beam arrangements. Conclusions: By using the fast-switching target, one can modulate the photon beam during delivery, producing a customized photon energy spectrum for each specific situation.

  6. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina

    Science.gov (United States)

    Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne

    2017-06-01

    Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an

  7. Ultrathin free-standing close-packed gold nanoparticle films: Conductivity and Raman scattering enhancement

    Science.gov (United States)

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post

  8. Macrocluster desorption effect caused by single MCI: charges of gold clusters (2-20 nm) desorbed due to electronic processes induced by fission fragment bombardment in nanodispersed gold targets

    International Nuclear Information System (INIS)

    Baranov, I.; Jarmiychuk, S.; Kirillov, S.; Novikov, A.; Obnorskii, V.; Pchelintsev, A.; Wien, K.; Reimann, C.

    1999-01-01

    In this work the charge state of the negatively charged gold nanocluster ions (2-20 nm) that were desorbed from nanodispersed gold islet targets by 252 Cf fission fragments via electronic processes is studied. Mean cluster charge was calculated as a ratio of mean cluster mass to mean mass-to-charge ratio . Cluster masses were measured by means of a collector technique employing transmission electron microscopy and scanning force microscopy, while m/q was measured by means of a tandem TOF-spectrometer. It is shown that the nanocluster ions are mostly multiply charged (2-16e) and the charge increases non-linearly with the cluster size. The results are discussed

  9. Benchmark calculations on residue production within the EURISOL DS project; Part II: thick targets

    CERN Document Server

    David, J.-C; Boudard, A; Doré, D; Leray, S; Rapp, B; Ridikas, D; Thiollière, N

    Benchmark calculations on residue production using MCNPX 2.5.0. Calculations were compared to mass-distribution data for 5 different elements measured at ISOLDE, and to specific activities of 28 radionuclides in different places along the thick target measured in Dubna.

  10. Energy straggling determination for charged particles in thick targets

    International Nuclear Information System (INIS)

    Lopez M, J.

    1980-01-01

    Energy straggling is reported for deuterons in carbon and protons in silicon, and the data obtained is compared with predictions of Bohr and Bethe. The experimental method used is based on a reaction resonance widening, observed at backward angles in the thick targets. The incident energy determines the depth at which the resonant scattering occurs and the energy straggling can be measured from the backscattering spectra. The data obtained for the energy straggling of deuterons are approximately two times bigger than those predicted by Bohr's theory; nevertheless, the values found for the energy straggling of protons in silicon are in agreement with the values predicted by the aforesaid theory. This disagreement was explained by the fact that carbon targets used were amorphous and porous, in contrast with those of cristal silicon, (it is an experimental fact that porous materials are expected to give higher stragglings than non-porous ones). Thus, the method reviewed in this work is valid, but the porosity effects should be taken into account in comparing results among materials with different densities. (author)

  11. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    Science.gov (United States)

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Fabrication of {sup 94}Zr thin target for recoil distance doppler shift method of lifetime measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C.K.; Rohilla, Aman [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Abhilash, S.R.; Kabiraj, D.; Singh, R.P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mehta, D. [Department of Physics, Panjab University, Chandigarh 160014 (India); Chamoli, S.K., E-mail: skchamoli@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-11-11

    A thin isotopic {sup 94}Zr target of thickness 520μg/cm{sup 2} has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm{sup 2} thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of {sup 94}Zr from peeling off, a very thin layer of gold has been evaporated on a {sup 94}Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched {sup 94}Zr target material was utilized for the fabrication of {sup 94}Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  13. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  14. Optical constants and structural properties of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, Dmitry I.; Arsenin, Aleksey V.; Stebunov, Yury V.

    2017-01-01

    We report a comprehensive experimental study of optical and electrical properties of thin polycrystalline gold films in a wide range of film thicknesses (from 20 to 200 nm). Our experimental results are supported by theoretical calculations based on the measured morphology of the fabricated gold...... rules for thin-film plasmonic and nanophotonic devices....... films. We demonstrate that the dielectric function of the metal is determined by its structural morphology. Although the fabrication process can be absolutely the same for different films, the dielectric function can strongly depend on the film thickness. Our studies show that the imaginary part...

  15. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    International Nuclear Information System (INIS)

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-01-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  16. Photonics of 2D gold nanolayers on sapphire surface

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Nabatov, B. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation); Konovko, A. A.; Belov, I. V.; Gizetdinov, R. M.; Andreev, A. V. [Moscow State University (Russian Federation); Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    Gold layers with thicknesses of up to several nanometers, including ordered and disordered 2D nanostructures of gold particles, have been formed on sapphire substrates; their morphology is described; and optical investigations are carried out. The possibility of increasing the accuracy of predicting the optical properties of gold layers and 2D nanostructures using quantum-mechanical models based on functional density theory calculation techniques is considered. The application potential of the obtained materials in photonics is estimated.

  17. Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films

    Directory of Open Access Journals (Sweden)

    Qian Haoliang

    2015-11-01

    Full Text Available The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.

  18. Optical properties of self assembled oriented island evolution of ultra-thin gold layers

    International Nuclear Information System (INIS)

    Worsch, Christian; Kracker, Michael; Wisniewski, Wolfgang; Rüssel, Christian

    2012-01-01

    Gold layers with a thickness of only 8 to 21 nm were sputtered on soda–lime–silica glasses. Subsequent annealing at 300 and 400 °C for 1 and 24 h resulted in the formation of separated round gold particles with diameters from 8 to 200 nm. Crystal orientations were described using X-ray diffraction and electron backscatter diffraction. The gold particles are oriented with their (111) planes perpendicular to the surface. Most gold nano particles are single crystalline, some particles are twinned. Thermal annealing of sputtered gold layers resulted in purple samples with a coloration comparable to that of gold ruby glasses. The color can be controlled by the thickness of the sputtered gold layer and the annealing conditions. The simple method of gold film preparation and the annealing temperature dependent properties of the layers make them appropriate for practical applications. - Highlights: ► We produce gold nano particle layers on amorphous substrates. ► Thin sputtered gold layers were annealed at low temperatures. ► Various colors can be achieved reproducibly and UV–vis-NIR spectra are reported. ► A 111-texture of the particles is described as well as twinning. ► The process is suitable for mass production.

  19. Using mineralogy to optimize gold recovery by direct cyanidation

    Science.gov (United States)

    Venter, D.; Chryssoulis, S. L.; Mulpeter, T.

    2004-08-01

    The complete and accurate gold deportments of direct cyanide leach residues provide a clear picture of the occurrence of unrecovered gold and identify causes for poor extraction. Based on the independent measurement of each form and carrier of unleached gold, opportunities for recovery optimization can be assessed more accurately by providing meaningful targets and can help identify the means to achieve such targets. In ten of 14 leach plants surveyed, 23% of the unrecovered gold could be extracted without finer grinding.

  20. Synthesis and Bioevaluation of Iodine-131 Directly Labeled Cyclic RGD-PEGylated Gold Nanorods for Tumor-Targeted Imaging

    Directory of Open Access Journals (Sweden)

    Yingying Zhang

    2017-01-01

    Full Text Available Introduction. Radiolabeled gold nanoparticles play an important role in biomedical application. The aim of this study was to prepare iodine-131 (131I-labeled gold nanorods (GNRs conjugated with cyclic RGD and evaluate its biological characteristics for targeted imaging of integrin αvβ3-expressing tumors. Methods. HS-PEG(5000-COOH molecules were applied to replace CTAB covering the surface of bare GNRs for better biocompatibility, and c(RGDfK peptides were conjugated onto the carboxyl terminal of GNR-PEG-COOH via EDC/NHS coupling reactions. The nanoconjugate was characterized, and 131I was directly tagged on the surface of GNRs via AuI bonds for SPECT/CT imaging. We preliminarily studied the characteristics of the probe and its feasibility for tumor-targeting SPECT/CT imaging. Results. The [131I]GNR-PEG-cRGD probe was prepared in a simple and rapid manner and was stable in both PBS and fetal bovine serum. It targeted selectively and could be taken up by tumor cells mainly via integrin αvβ3-receptor-mediated endocytosis. In vivo imaging, biodistribution, and autoradiography results showed evident tumor uptake in integrin αvβ3-expressing tumors. Conclusions. These promising results showed that this smart nanoprobe can be used for angiogenesis-targeted SPECT/CT imaging. Furthermore, the nanoprobe possesses a remarkable capacity for highly efficient photothermal conversion in the near-infrared region, suggesting its potential as a multifunctional theranostic agent.

  1. Surface plasmon-enhanced molecular fluorescence induced by gold nanostructures

    International Nuclear Information System (INIS)

    Teng, Y.; Ueno, K.; Shi, X.; Aoyo, D.; Misawa, H.; Qiu, J.

    2012-01-01

    The authors report on surface plasmon-enhanced fluorescence of Eosin Y molecules induced by gold nanostructures. Al 2 O 3 films deposited by atomic layer deposition with sub-nanometer resolution were used as the spacer layer to control the distance between molecules and the gold surface. As the thickness of the Al 2 O 3 film increased, the fluorescence intensity first increased and then decreased. The highest enhancement factor is achieved with a 1 nm Al 2 O 3 film. However, the trend for the fluorescence lifetime is the opposite. It first decreased and then increased. The changes in the fluorescence quantum yield were also calculated. The yield shows a similar trend to the fluorescence intensity. The competition between the surface plasmon-induced increase in the radiative decay rate and the gold-induced fluorescence quenching is responsible for the observed phenomenon. In addition, this competition strongly depends on the thickness of the spacer layer between Eosin Y molecules and the gold surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Millenbaugh NJ

    2015-03-01

    Full Text Available Nancy J Millenbaugh,1 Jonathan B Baskin,1 Mauris N DeSilva,1 W Rowe Elliott,1 Randolph D Glickman2 1Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio-Fort Sam Houston, TX, USA; 2Department of Ophthalmology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USAPurpose: The continued emergence of multidrug resistant bacterial infections and the decline in discovery of new antibiotics are major challenges for health care throughout the world. This situation has heightened the need for novel antimicrobial therapies as alternatives to traditional antibiotics. The combination of metallic nanoparticles and laser exposure has been proposed as a strategy to induce physical damage to bacteria, regardless of antibiotic sensitivity. The purpose of this study was to test the antibacterial effect of antibody-targeted gold nanoparticles combined with pulsed laser irradiation.Methods: Gold nanoparticles conjugated to antibodies specific to Staphylococcus aureus peptidoglycan were incubated with suspensions of methicillin-resistant and methicillin-sensitive S. aureus (MRSA and MSSA. Bacterial suspensions were then exposed to 8 ns pulsed laser irradiation at a wavelength of 532 nm and fluences ranging from 1 to 5 J/cm2. Viability of the bacteria following laser exposure was determined using colony forming unit assays. Scanning electron microscopy was used to confirm the binding of nanoparticles to bacteria and the presence of cellular damage.Results: The laser-activated nanoparticle treatment reduced the surviving population to 31% of control in the MSSA population, while the survival in the MRSA population was reduced to 58% of control. Significant decreases in bacterial viability occurred when the laser fluence exceeded 1 J/cm2, and this effect was linear from 0 to 5 J/cm2 (r2=0.97. Significantly less bactericidal effect was observed for nonfunctionalized nanoparticles or

  3. Ordered arrays of nanoporous gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2012-09-01

    Full Text Available A combination of a “top-down” approach (substrate-conformal imprint lithography and two “bottom-up” approaches (dewetting and dealloying enables fabrication of perfectly ordered 2-dimensional arrays of nanoporous gold nanoparticles. The dewetting of Au/Ag bilayers on the periodically prepatterned substrates leads to the interdiffusion of Au and Ag and the formation of an array of Au–Ag alloy nanoparticles. The array of alloy nanoparticles is transformed into an array of nanoporous gold nanoparticles by a following dealloying step. Large areas of this new type of material arrangement can be realized with this technique. In addition, this technique allows for the control of particle size, particle spacing, and ligament size (or pore size by varying the period of the structure, total metal layer thickness, and the thickness ratio of the as-deposited bilayers.

  4. On the efficiency calibration of Si(Li) detector in the low-energy region using thick-target bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    An, Z. E-mail: anzhu@scu.edu.cn; Liu, M.T

    2002-10-01

    In this paper, the efficiency calibration of a Si(Li) detector in the low-energy region down to 0.58 keV has been performed using thick-carbon-target bremsstrahlung by 19 keV electron impact. The shape of the efficiency calibration curve was determined from the thick-carbon-target bremsstrahlung spectrum, and the absolute value for the efficiency calibration was obtained from the use of {sup 241}Am radioactive standard source. The modified Wentzel's formula for thick-target bremsstrahlung was employed and it was also compared with the most recently developed theoretical model based upon the doubly differential cross-sections for bremsstrahlung of Kissel, Quarles and Pratt. In the present calculation of theoretical bremsstrahlung, the self-absorption correction and the convolution of detector's response function with the bremsstrahlung spectrum have simultaneously been taken into account. The accuracy for the efficiency calibration in the low-energy region with the method described here was estimated to be about 6%. Moreover, the self-absorption correction calculation based upon the prescription of Wolters et al. has also been presented as an analytical factor with the accuracy of {approx}1%.

  5. Reversed preparation of low-density poly(divinylbenzene/styrene) foam columns coated with gold films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yinhai; Wang, Ni; Li, Yaling; Yao, Mengqi; Gan, Haibo; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-06-15

    Highlights: • A reversed fabrication of low density foam columns coated with gold films was proposed. • The uniformity in thickness and purity of gold film are easy to be controlled. • A compact layer is prepared through an electrophoretic deposition method. • A low density (12 mg/cc) foam column coated with gold film is obtained. - Abstract: This work aims to fabricate low-density, porous, non-conductive, structural poly(divinylbenzene/styrene) foam columns by high-internal-phase emulsion templating. We prepare these non-conductive foam columns coated with a thin gold layer by electrochemical deposition and the reversed preparation technique. As expected, the density of the foam obtained through this novel method was about 12 mg cm{sup −3}, and the thickness of the gold coating was about 3 μm. We performed field emission scanning electron microscopy to morphologically and microstructurally characterize the products and X-ray diffraction and energy dispersive spectroscopy to determine the composition of the gold coating.

  6. Synthesis of gold nanoparticles with graphene oxide.

    Science.gov (United States)

    Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng

    2014-05-01

    Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.

  7. Functionalized Thick Film Impedance Sensors for Use in In Vitro Cell Culture.

    Science.gov (United States)

    Bartsch, Heike; Baca, Martin; Fernekorn, Uta; Müller, Jens; Schober, Andreas; Witte, Hartmut

    2018-04-05

    Multi-electrode arrays find application in electrophysiological recordings. The quality of the captured signals depends on the interfacial contact between electrogenic cells and the electronic system. Therefore, it requires reliable low-impedance electrodes. Low-temperature cofired ceramic technology offers a suitable platform for rapid prototyping of biological reactors and can provide both stable fluid supply and integrated bio-hardware interfaces for recordings in electrogenic cell cultures. The 3D assembly of thick film gold electrodes in in vitro bio-reactors has been demonstrated for neuronal recordings. However, especially when dimensions become small, their performance varies strongly. This work investigates the influence of different coatings on thick film gold electrodes with regard to their influence on impedance behavior. PSS layer, titanium oxynitride and laminin coatings are deposited on LTCC gold electrodes using different 2D and 3D MEA chip designs. Their impedance characteristics are compared and discussed. Titanium oxynitride layers emerged as suitable functionalization. Small 86-µm-electrodes have a serial resistance R s of 32 kOhm and serial capacitance C s of 4.1 pF at 1 kHz. Thick film gold electrodes with such coatings are thus qualified for signal recording in 3-dimensional in vitro cell cultures.

  8. Functionalized Thick Film Impedance Sensors for Use in In Vitro Cell Culture

    Directory of Open Access Journals (Sweden)

    Heike Bartsch

    2018-04-01

    Full Text Available Multi-electrode arrays find application in electrophysiological recordings. The quality of the captured signals depends on the interfacial contact between electrogenic cells and the electronic system. Therefore, it requires reliable low-impedance electrodes. Low-temperature cofired ceramic technology offers a suitable platform for rapid prototyping of biological reactors and can provide both stable fluid supply and integrated bio-hardware interfaces for recordings in electrogenic cell cultures. The 3D assembly of thick film gold electrodes in in vitro bio-reactors has been demonstrated for neuronal recordings. However, especially when dimensions become small, their performance varies strongly. This work investigates the influence of different coatings on thick film gold electrodes with regard to their influence on impedance behavior. PEDOT:PSS layer, titanium oxynitride and laminin coatings are deposited on LTCC gold electrodes using different 2D and 3D MEA chip designs. Their impedance characteristics are compared and discussed. Titanium oxynitride layers emerged as suitable functionalization. Small 86-µm-electrodes have a serial resistance Rs of 32 kOhm and serial capacitance Cs of 4.1 pF at 1 kHz. Thick film gold electrodes with such coatings are thus qualified for signal recording in 3-dimensional in vitro cell cultures.

  9. Adsorption characteristics of self-assembled thiol and dithiol layer on gold

    International Nuclear Information System (INIS)

    Tlili, A.; Abdelghani, A.; Aguir, K.; Gillet, M.; Jaffrezic-Renault, N.

    2007-01-01

    Monolayers of functional proteins are important in many fields related to pure and applied biochemistry and biophysics. The formation of extended uniform protein monolayers by single- or multiple-step self-chemisorption depends on the quality of the functionalized gold surface. The optical and the electrical properties of the 1-nonanethiol and 1,9-nonanedithiol deposited on gold with the self-assembled technique were investigated. We use cyclic voltammetry and impedance spectroscopy to characterize the insulating properties of the two layers. The analysis of the impedance spectra in terms of equivalent circuit of the gold/electrolyte and gold/SAM/electrolyte interface allows defining the thickness of the two thiols and the percentage of coverage area. Atomic force microscopy, contact angle measurement and Fourier transform infra-red spectroscopy have been used for homogeneity, hydrophobic properties and molecular structure of the formed thiols layer, respectively. The measured thickness with impedance spectroscopy fit well the results found with atomic force microscopy

  10. The Metamorphic Rocks-Hosted Gold Mineralization At Rumbia Mountains Prospect Area In The Southeastern Arm of Sulawesi Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hasria Hasria

    2017-09-01

    Full Text Available Recently, in Indonesia gold exploration activities  are not only focused along volcanic-magmatic belts, but also starting to shift along metamorphic and sedimentary terrains. The study area is located in Rumbia mountains, Bombana Regency, Southeast Sulawesi Province. This paper is aimed to describe characteristics of alteration and ore mineralization associated  with metamorphic rock-related gold deposits.  The study area is found the placer and  primary gold hosted by metamorphic rocks. The gold is evidently derived from gold-bearing quartz veins hosted by Pompangeo Metamorphic Complex (PMC. These quartz veins are currently recognized in metamorphic rocks at Rumbia Mountains. The quartz veins are mostly sheared/deformed, brecciated, irregular vein, segmented and  relatively massive and crystalline texture with thickness from 1 cm to 15.7 cm. The wallrock are generally weakly altered. Hydrothermal alteration types include sericitization, argillic, inner propylitic, propylitic, carbonization and carbonatization. There some precious metal identified consist of native gold and ore mineralization including pyrite (FeS2, chalcopyrite (CuFeS2, hematite (Fe2O3, cinnabar (HgS, stibnite (Sb2S3 and goethite (FeHO2. The veins contain erratic gold in various grades from below detection limit <0.0002 ppm to 18.4 ppm. Based on those characteristics, it obviously indicates that the primary gold deposit present in the study area is of orogenic gold deposit type. The orogenic gold deposit is one of the new targets for exploration in Indonesia

  11. Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery.

    Science.gov (United States)

    Alexander, Colleen M; Hamner, Kristen L; Maye, Mathew M; Dabrowiak, James C

    2014-07-16

    In this report we describe the synthesis, characterization, and cytotoxic properties of DNA-capped gold nanoparticles having attached folic acid (FA), a thermoresponsive polymer (p), and/or poly(ethylene glycol) (PEG) oligomers that could be used to deliver the anticancer drug doxorubicin (DOX) in chemotherapy. The FA-DNA oligomer used in the construction of the delivery vehicle was synthesized through the reaction of the isolated folic acid N-hydroxysuccinimide ester with the amino-DNA and the conjugated DNA product was purified using high performance liquid chromatography (HPLC). This approach ultimately allowed control of the amount of FA attached to the surface of the delivery vehicle. Cytotoxicity studies using SK-N-SH neuroblastoma cells with drug loaded delivery vehicles were carried out using a variety of exposure times (1-48 h) and recovery times (1-72 h), and in order to access the effects of varying amounts of attached FA, in culture media deficient in FA. DOX loaded delivery vehicles having 50% of the DNA strands with attached FA were more cytotoxic than when all of the strands contained FA. Since FA stimulates cell growth, the reduced cytotoxicity of vehicles fully covered with FA suggests that the stimulatory effects of FA can more than compensate for the cytotoxic effects of the drug on the cell population. While attachment of hexa-ethylene glycol PEG(18) to the surface of the delivery vehicle had no effect on cytotoxicity, 100% FA plus the thermoresponsive polymer resulted in IC50 = 0.48 ± 0.01 for an exposure time of 24 h and a recovery time of 1 h, which is an order of magnitude more cytotoxic than free DOX. Confocal microscopic studies using fluorescence detection showed that SK-N-SH neuroblastoma cells exposed to DOX-loaded vehicles have drug accumulation inside the cell and, in the case of vehicles with attached FA and thermoresponsive polymer, the drug appears more concentrated. Since the biological target of DOX is DNA, the latter

  12. Porous Gold Films Fabricated by Wet-Chemistry Processes

    Directory of Open Access Journals (Sweden)

    Aymeric Pastre

    2016-01-01

    Full Text Available Porous gold films presented in this paper are formed by combining gold electroless deposition and polystyrene beads templating methods. This original approach allows the formation of conductive films (2 × 106 (Ω·cm−1 with tailored and interconnected porosity. The porous gold film was deposited up to 1.2 μm on the silicon substrate without delamination. An original zirconia gel matrix containing gold nanoparticles deposited on the substrate acts both as an adhesion layer through the creation of covalent bonds and as a seed layer for the metallic gold film growth. Dip-coating parameters and gold electroless deposition kinetics have been optimized in order to create a three-dimensional network of 20 nm wide pores separated by 20 nm thick continuous gold layers. The resulting porous gold films were characterized by GIXRD, SEM, krypton adsorption-desorption, and 4-point probes method. The process is adaptable to different pore sizes and based on wet-chemistry. Consequently, the porous gold films presented in this paper can be used in a wide range of applications such as sensing, catalysis, optics, or electronics.

  13. Gold nanoprobes for theranostics

    Science.gov (United States)

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  14. A method for thickness determination of thin films of amalgamable metals by total-reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Bennun, L.; Greaves, E.D.; Barros, H.; Diaz-Valdes, J.

    2009-01-01

    A method for thickness determination of thin amalgamable metallic films by total-reflection X-ray fluorescence (TXRF) is presented. The peak's intensity in TXRF spectra are directly related to the surface density of the sample, i.e. to its thickness in a homogeneous film. Performing a traditional TXRF analysis on a thin film of an amalgamated metal, and determining the relative peak intensity of a specific metal line, the layer thickness can be precisely obtained. In the case of gold thickness determination, mercury and gold peaks overlap, hence we have developed a general data processing scheme to achieve the most precise results.

  15. Gold - Old Drug with New Potentials.

    Science.gov (United States)

    Faa, Gavino; Gerosa, Clara; Fanni, Daniela; Lachowicz, Joanna I; Nurchi, Valeria M

    2018-01-01

    Research into gold-based drugs for a range of human diseases has seen a revival in recent years. This article reviews the most important applications of gold products in different fields of human pathology. Au(I) and Au(III) compounds have been re-introduced in clinical practice for targeting the cellular components involved in the onset and progression of viral and parasitic diseases, rheumatoid arthritis and cancer. After some brief historical notes, this article takes into account the applications of gold compounds against Mycobacterium tuberculosis, and also in tuberculosis and in rheumatoid arthritis treatment. The use of gold containing drugs in the cure of cancer are then considered, with special emphasis to the use of nanoparticles and to the photo-thermal cancer therapy. The use of colloidal gold in diagnostics, introduced in the last decade is widely discussed. As a last point a survey on the adverse effects and on the toxicity of the various gold derivatives in use in medicine is presented. In this review, we described the surprisingly broad spectrum of possible uses of gold in diagnostics and in therapeutic approaches to multiple human diseases, ranging from degenerative to infectious diseases, and to cancer. In particular, gold nanoparticles appear as attractive elements in modern clinical medicine, combining high therapeutic properties, high selectivity in targeting cancer cells and low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Simple fabrication of gold nanobelts and patterns.

    Directory of Open Access Journals (Sweden)

    Renyun Zhang

    Full Text Available Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm and micrometer (width ∼20 µm, to decimeter (length ∼0.15 m. The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics.

  17. A dual energy gamma-ray transmission technique for gold alloy identification

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Shingu, Hiroyasu; Iwase, Hirotoshi

    1991-01-01

    An application of the dual energy gamma-ray transmission techniques to gold alloy identification is presented. The measurement by dual energy gamma-ray transmission is independent of thickness and density of a sample. Due to this advantage, golden accessories such as necklaces, earrings and rings can be assayed in spite of their various thicknesses and irregular sectional shapes. Choice of a gamma-ray energy pair suitable for the object is important. The authors chose 511 keV and 1275 keV gamma-rays from 22 Na. With this energy pair, R value (a ratio of mass attenuation coefficients for low and high energy gamma-rays) is predominantly related to the weight fraction of gold of the sample. Using a 370 kBq 22 Na small source and a 50 mm dia.x 50 mm thick NaI(Tl) scintillator for 1200 seconds, a resolution of 2% for the R value was obtained. This corresponds to approximately 5% of the weight fraction of gold. A better resolution can be obtained by increasing the source activity or measurement time. (author)

  18. Single cell targeting using plasmon resonant gold-coated liposomes

    Science.gov (United States)

    Leung, Sarah J.; Romanowski, Marek

    2012-03-01

    We have developed an experimental system with the potential for the delivery and localized release of an encapsulated agent with high spatial and temporal resolution. We previously introduced liposome-supported plasmon resonant gold nanoshells; in this composite structure, the liposome allows for the encapsulation of substances, such as therapeutic agents, neurotransmitters, or growth factors, and the plasmon resonant structure facilitates the rapid release of encapsulated contents upon laser light illumination. More recently, we demonstrated that these gold-coated liposomes are capable of releasing their contents in a spectrally-controlled manner, where plasmon resonant nanoparticles only release content upon illumination with a wavelength of light matching their plasmon resonance band. We now show that this release mechanism can be used in a biological setting to deliver a peptide derivative of cholecystokinin to HEK293 cells overexpressing the CCK2 receptor. Using directed laser light, we may enable localized release from gold-coated liposomes to enable accurate perturbation of cellular functions in response to released compounds; this system may have possible applications in signaling pathways and drug discovery.

  19. Modified gold electrodes based on thiocytosine/guanine-gold nanoparticles for uric and ascorbic acid determination

    International Nuclear Information System (INIS)

    Vulcu, Adriana; Grosan, Camelia; Muresan, Liana Maria; Pruneanu, Stela; Olenic, Liliana

    2013-01-01

    The present paper describes the preparation of new modified surfaces for electrodes based on guanine/thiocytosine and gold nanoparticles. The gold nanoparticles were analyzed by UV–vis spectroscopy and transmission electron microscopy (TEM) and it was found that they have diameters between 30 and 40 nm. The layers were characterized by specular reflectance infrared spectroscopy (FTIR-RAS) and by atomic force microscopy (AFM). The thickness of layers was found to be approximately 30 nm for TC layers and 300 nm for GU layers. Every layer was characterized as electrochemical sensor (by cyclic voltammetry) both for uric acid and ascorbic acid determinations, separately and in their mixture. The modified sensors have good calibration functions with good sensitivity (between 1.145 and 1.406 mA cm −2 /decade), reproducibility ( t hiocytosine (Au T C) and gold g uanine (Au G U) layers

  20. Nonlinear Dynamics of Ultrashort Long-Range Surface Plasmon Polariton Pulses in Gold Strip Waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Olivier, Nicolas

    2016-01-01

    We study experimentally and theoretically nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The nonlinear absorption of the plasmonic modes in the waveguides is measured with femtosecond pulses revealing a strong dependence of the third......-order nonlinear susceptibility of the gold core on the pulse duration and layer thickness. A comprehensive model for the pulse duration dependence of the third-order nonlinear susceptibility is developed on the basis of the nonlinear Schrödinger equation for plasmonic mode propagation in the waveguides....... The model accounts for the intrinsic delayed (noninstantaneous) nonlinearity of free electrons of gold as well as the thickness of the gold film and is experimentally verified. The obtained results are important for the development of active plasmonic and nanophotonic components....

  1. Novel technique of making thin target foil of high density material via rolling method

    Science.gov (United States)

    Gupta, C. K.; Rohilla, Aman; Singh, R. P.; Singh, Gurjot; Chamoli, S. K.

    2018-05-01

    The conventional rolling method fails to yield good quality thin foils of thicknesses less than 2 mg/cm2 for high density materials with Z ≥ 70 (e.g. gold, lead). A special and improved technique has been developed to obtain such low thickness good quality gold foils by rolling method. Using this technique thin gold foils of thickness in the range of 0.850-2.5 mg/cm2 were obtained in the present work. By making use of alcohol during rolling, foils of thickness 1 mg/cm2 can be obtained in shorter time with less effort.

  2. Using nanosphere lithography for fabrication of a multilayered system of ordered gold nanoparticles

    Directory of Open Access Journals (Sweden)

    V.I. Styopkin

    2017-07-01

    Full Text Available New modification of nanosphere lithography has been realized to obtain multilayered systems of ordered gold nanopartciles (NP. NP have been formed using vacuum deposition of 5…60-nm layer of gold on ionic etched multilayered regular coating consisted of several layers of 200-nm polystyrene spheres. Optical study shows that spectra of NP depend on their thickness and may be changed by heat treatment. Increasing the NP thickness within the 5…20-nm range leads to a shortwave displacement of the plasmon resonance peak position, while the longwave shift is observed in 20…60-nm range. Heat treatment of NP brings narrowing and displacement of spectral bands, rising the extinction. It has been supposed that variation of the NP shape is the most substantial factor for changes of optical properties in the 5…20 nm thickness region, while electromagnetic coupling between NP in different layers becomes more important for thicknesses larger than 40 nm. Optical properties inherent to the obtained system of NP can be tuned by changing the polystyrene spheres diameter, extent of etching, thickness of gold layer and with the heat treatment. It may be used in design of nanophotonic devices.

  3. Bibliography of published papers on neutron and photon emission from thick or thin target bombarded by charged particles

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Furuta, Yutaka; Sato, Kazuo; Kawachi, Kiyomitsu; Hirayama, Hideo.

    1981-09-01

    Papers describing about secondary particles, especially neutrons and photons, produced by a thick or thin target are surveyed. The survey covers twelve kinds of journals mainly from 1965 to 1980, and brief descriptions are listed about type of accelerator, projectile and target used, measurements and calculations, and quantities obtained. (author)

  4. Gradual growth of gold nanoseeds on silica for SiO2-gold homogeneous nano core/shell applications by the chemical reduction method

    International Nuclear Information System (INIS)

    Rezvani Nikabadi, H; Shahtahmasebi, N; Rezaee Rokn-Abadi, M; Bagheri Mohagheghi, M M; Goharshadi, E K

    2013-01-01

    In this paper, a facile method for the synthesis of gold nanoseeds on the functionalized surface of silica nanoparticles has been investigated. Mono-dispersed silica particles and gold nanoparticles were prepared by the chemical reduction method. The thickness of the Au shell was well controlled by repeating the reduction time of HAuCl 4 on silica/3-aminopropyltriethoxysilane (APTES)/initial gold nanoparticles. The prepared SiO 2 -gold core/shell nanoparticles were studied using x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy and ultraviolet visible (UV-Vis) spectroscopy. The TEM images indicated that the silica nanoparticles were spherical in shape with 100 nm diameters and functionalizing silica nanoparticles with a layer of bi-functional APTES molecules and tetrakis hydroxy methyl phosphonium chloride. The gold nanoparticles show a narrow size of up to 5 nm and by growing gold nanoseeds over the silica cores a red shift in the maximum absorbance of UV-Vis spectroscopy from 524 to 637 nm was observed.

  5. Third-order susceptibility of gold for ultrathin layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This Letter presents an experimental study of nonlinear plasmonic effects in gold-stripe waveguides. The optical characterization is performed by a picosecond laser and reveals two nonlinear effects related to propagation of long-range surface plasmon polaritons: nonlinear power transmission...... of plasmonic modes and spectral broadening of plasmonic modes. The experimental values of the third-order susceptibility of the gold layers are extracted. They exhibit a clear dependence on layer thickness. (C) 2016 Optical Society of America...

  6. Recovery of carrier-free gold-195

    International Nuclear Information System (INIS)

    Iofa, B.Z.; Ivanova, N.A.

    1995-01-01

    It is known that gold(III) is readily extracted from nitric acid solutions with ethers. The authors have studied extraction of trace amounts of gold(III) from nitric acid solutions with diethyl and diisopropyl ethers in the presence of significant excess of Pt(IV). Distribution coefficients of gold(III) were measured radiometrically using carrier-free gold-195 or spectrophotometrically in the presence of platinum(IV). Very high coefficients of gold separation from platinum may be achieved. Preliminary experiments have shown that zinc-65 was not extracted with ethers from nitric acid solutions. As an extraction system, the authors have chosen the system 10 M HNO 3 -diisopropyl ether. After model experiments, the authors have performed recovery of carrier-free gold-195 from a real platinum target irradiated with protons in a cyclotron

  7. Investigation of the channeling of light ions through gold crystals having thicknesses of several hundreds of angstroms from 0.5 to 2 MeV

    International Nuclear Information System (INIS)

    Poizat, J.C.; Remillieux, J.

    A technique to obtain a few hundred A thick self-supporting gold crystal is described. These crystals have been used to perform three channeling experiments with 0.5 to 2 MeV light ions: i) The wide angle scattering probability as a function of the distance from the crystal surface was studied for a beam of particles incident in planar and axial directions. ii) The influence of channeling on the light emission from crystal-excited atomic beams was investigated. iii) A strong channeling effect was found on the probability of transmission of a molecular beam of H 2 + ions through a thin crystal

  8. Gold grade variation and particle microchemistry in exploration pits of the Batouri gold district, SE Cameroon

    Science.gov (United States)

    Vishiti, A.; Suh, C. E.; Lehmann, B.; Egbe, J. A.; Shemang, E. M.

    2015-11-01

    The Batouri area hosts lode-gold mineralization under several-m-thick lateritic cover. Pitting to bed rock on a geochemical Au anomaly defined from previous reconnaissance soil sampling identified five horizons ranging from saprock at the base to laterite at the top. Analysis of bulk samples from each horizon by fire assay shows that most of the horizons are barren although 119 ppb and 48 ppb Au values were obtained from one laterite horizon and one saprolite horizon, respectively, from two separate pits. All the horizons were panned and particulate gold was also recovered only from these two horizons. The gold grains from both horizons are morphologically and compositionally indistinguishable with rare quartz, pyrite and galena inclusions. The grains have irregular, sub-rounded, bean to elongated shapes and they show a remarkable core-rim zonation. Electron microprobe analysis of the grains recorded high gold content in the rims (86.3-100 wt%) and along fissures within the grains (95.1-100 wt%). The cores are relatively Ag rich (11.8-14 wt% Ag) while the rims (0.63-13.7 wt% Ag, most of the values fall within the lower limit of this range) and fissures (0.03-5.02 wt% Ag) are poor in Ag. The low Ag concentration in the rims and along fissures is attributed to preferential leaching of Ag; a process recognized in gold grains and platiniferous alloys from alluvia. The core composition of the grains is similar to that of primary gold composition in the bedrock. These results show that gold in the soil is relic particulate gold derived from the primary source with no evidence of secondary gold precipitation in the weathering cycle. In all the pits no horizon was systematically enriched in gold suggesting there has been no chemical remobilization of gold in this environment. Rather the dispersion of gold here is in the particulate form. Therefore combining particulate gold features with assay data is relevant to exploration in such tropical environments.

  9. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization.

    Directory of Open Access Journals (Sweden)

    Daniel Y Joh

    Full Text Available Successful treatment of brain tumors such as glioblastoma multiforme (GBM is limited in large part by the cumulative dose of Radiation Therapy (RT that can be safely given and the blood-brain barrier (BBB, which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs. GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ~1.3. Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.

  10. Electroplating Gold-Silver Alloys for Spherical Capsules for NIF Double-Shell Targets

    Energy Technology Data Exchange (ETDEWEB)

    Bhandarkar, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Horwood, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bunn, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stadermann, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-17

    For Inertial Confinement Fusion (ICF) implosions, a design based on gradients of high and mid Z materials could potentially be more robust than single element capsule systems. To that end, gold and silver alloys were electroplated on 2.0 mm diameter surrogate brass spheres using a new flow–based pulsed plating method specifically designed to minimize surface roughness without reducing plating rates. The coatings were analyzed by scanning electron microscope (SEM) and white light interferometry for surface topography, and by energy dispersive x-ray spectroscopy (EDX) to determine near-surface gold and silver compositions. The alloy range attainable was 15 to 85 weight percent gold using 1:1 and 1:3 silver to gold ratio plating baths at applied potentials of -0.7 volts to -1.8 volts. This range was bounded by the open circuit potential of the system and hydrogen evolution, and in theory could be extended by using ionic liquids or aprotic solutions. Preliminary gradient trials proved constant composition alloy data could be translated to smooth gradient plating, albeit at higher gold compositions.

  11. Scale-up of high specific activity {sup 186g}Re production using graphite-encased thick {sup 186}W targets and demonstration of an efficient target recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric [Washington Univ., Seattle, WA (United States). Dept. of Radiation Oncology; and others

    2017-07-01

    Production of high specific activity {sup 186g}Re is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity {sup 186g}Re can be obtained by cyclotron irradiation of enriched {sup 186}W via the {sup 186}W(d,2n){sup 186g}Re reaction, but most irradiations were conducted at low beam currents and for short durations. In this investigation, enriched {sup 186}W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched {sup 186}W metal encased between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick {sup 186}W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the {sup 186}W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. To demonstrate scaled-up production, a graphite-encased {sup 186}W target made from recycled {sup 186}W was irradiated for ∝2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of {sup 186g}Re, decay-corrected to the end of bombardment. ICP-MS analysis of the

  12. Investigation of mechanisms of production of argon, krypton and xenon isotopes formed in heavy targets by protons with an energy ranging from 0.15 to 24 GeV

    International Nuclear Information System (INIS)

    Sauvageon, Henri

    1981-01-01

    As experimental results of the investigation of interactions between high-energy protons and nucleus generally lead to the distinction between four types of reaction mechanisms (spallation, fission, fragmentation and isotope production), this research thesis reports the study of this mechanisms by using the so-called 'thick target - thick collector' experiment and by studying the production of various isotopes of rare gases (argon, krypton, xenon). These isotopes are produced by using platinum, gold, bismuth and thorium targets bombarded by protons with an energy ranging from 0.15 to 24 GeV. The author presents the experimental methods (target preparation and irradiation, rare gas analysis system), reports the analysis of thick target - thick-collector experiments (vector-based representation, path determination, path-curve energy, corrections of experimental data, excitation energy of the intermediate nucleus), presents the experimental results, and discusses their interpretation (two-stage model of high energy nuclear reactions, isotopes produced by spallation and by fission, isotopes produced by deep spallation, representations of mechanisms of fragmentation and deep spallation)

  13. Experimental study on neutronics in bombardment of thick targets by high energy proton beams for accelerator-driven sub-critical system

    CERN Document Server

    Guo Shi Lun; Shi Yong Qian; Shen Qing Biao; Wan Jun Sheng; Brandt, R; Vater, P; Kulakov, B A; Krivopustov, M I; Sosnin, A N

    2002-01-01

    The experimental study on neutronics in the target region of accelerator-driven sub-critical system is carried out by using the high energy accelerator in Joint Institute for Nuclear Research, Dubna, Russia. The experiments with targets U(Pb), Pb and Hg bombarded by 0.533, 1.0, 3.7 and 7.4 GeV proton beams show that the neutron yield ratio of U(Pb) to Hg and Pb to Hg targets is (2.10 +- 0.10) and (1.76 +- 0.33), respectively. Hg target is disadvantageous to U(Pb) and Pb targets to get more neutrons. Neutron yield drops along 20 cm thick targets as the thickness penetrated by protons increases. The lower the energy of protons, the steeper the neutron yield drops. In order to get more uniform field of neutrons in the targets, the energy of protons from accelerators should not be lower than 1 GeV. The spectra of secondary neutrons produced by different energies of protons are similar, but the proportion of neutrons with higher energy gradually increases as the proton energy increases

  14. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    International Nuclear Information System (INIS)

    Alba, R; Cosentino, G; Zoppo, A Del; Pietro, A Di; Figuera, P; Finocchiaro, P; Maiolino, C; Santonocito, D; Schillaci, M; Barbagallo, M; Colonna, N; Boccaccio, P; Esposito, J; Celentano, A; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Kostyukov, A

    2013-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  15. Gold recovery from printed wiring board using bioleaching

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Y. [Faculty of Engineering, Osaka Univ. (Japan); Nishikawa, H. [Center for Advanced Science and Innovation, Osaka Univ. (Japan); Takemoto, T. [Joining and Welding Research Inst., Osaka Univ. (Japan)

    2004-07-01

    In the electronic assembly, gold is frequently used as surface plating and a bonding wire. To recover gold from waste electronics, the dissolution process using cyan is a popular method, however, the solution is highly toxic. Accordingly, the environmentally conscious substitute process is preferable. In this study the possibility of Au dissolution from printed wiring boards using bioleaching has been investigated. Chromobacterium violaceum having ability of cyanide formation was used to dissolve Au. The printed wiring boards with gold plating of 0.07nm in thickness were immersed in synthetic medium with C. violaceum. After immersion test for 480h, the gold plating was completely dissolved. The increase in cyanide concentration gave little effect on the enhancement of dissolution of gold, however, the dissolution rate of Au was increased with increasing of dissolved oxygen in the medium. Chromobacterium violaceum produced 0.8mmol/l cyanide but it also decomposed about 60% of cyanide generated, therefore, this dissolution process could be used as an environmentally conscious method. (orig.)

  16. Scalable creation of gold nanostructures on high performance engineering polymeric substrate

    Science.gov (United States)

    Jia, Kun; Wang, Pan; Wei, Shiliang; Huang, Yumin; Liu, Xiaobo

    2017-12-01

    The article reveals a facile protocol for scalable production of gold nanostructures on a high performance engineering thermoplastic substrate made of polyarylene ether nitrile (PEN) for the first time. Firstly, gold thin films with different thicknesses of 2 nm, 4 nm and 6 nm were evaporated on a spin-coated PEN substrate on glass slide in vacuum. Next, the as-evaporated samples were thermally annealed around the glass transition temperature of the PEN substrate, on which gold nanostructures with island-like morphology were created. Moreover, it was found that the initial gold evaporation thickness and annealing atmosphere played an important role in determining the morphology and plasmonic properties of the formulated Au NPs. Interestingly, we discovered that isotropic Au NPs can be easily fabricated on the freestanding PEN substrate, which was fabricated by a cost-effective polymer solution casting method. More specifically, monodispersed Au nanospheres with an average size of ∼60 nm were obtained after annealing a 4 nm gold film covered PEN casting substrate at 220 °C for 2 h in oxygen. Therefore, the scalable production of Au NPs with controlled morphology on PEN substrate would open the way for development of robust flexible nanosensors and optical devices using high performance engineering polyarylene ethers.

  17. Disulfide-induced self-assembled targets : A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    NARCIS (Netherlands)

    Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2017-01-01

    A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol-modified probes, each of which specifically

  18. Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    NARCIS (Netherlands)

    Shokri, E. (Ehsan); M. Hosseini (Morteza); Davari, M.D. (Mehdi D.); Ganjali, M.R. (Mohammad R.); M.P. Peppelenbosch (Maikel); F. Rezaee (Farhad)

    2017-01-01

    textabstractA modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which

  19. The Antineoplastic Activity of Photothermal Ablative Therapy with Targeted Gold Nanorods in an Orthotopic Urinary Bladder Cancer Model.

    Science.gov (United States)

    Yang, Xiaoping; Su, Lih-Jen; La Rosa, Francisco G; Smith, Elizabeth Erin; Schlaepfer, Isabel R; Cho, Suehyun K; Kavanagh, Brian; Park, Wounjhang; Flaig, Thomas W

    2017-07-27

    Gold nanoparticles treated with near infrared (NIR) light can be heated preferentially, allowing for thermal ablation of targeted cells. The use of novel intravesical nanoparticle-directed therapy in conjunction with laser irradiation via a fiber optic cystoscope, represents a potential ablative treatment approach in patients with superficial bladder cancer. To examine the thermal ablative effect of epidermal growth factor receptor (EGFR)-directed gold nanorods irradiated with NIR light in an orthotopic urinary bladder cancer model. Gold nanorods linked to an anti-EGFR antibody (Conjugated gold NanoRods - CNR) were instilled into the bladder cavity of an orthotopic murine xenograft model with T24 bladder cancer cells expressing luciferase. NIR light was externally administered via an 808 nm diode laser. This treatment was repeated weekly for 4 weeks. The anti-cancer effect was monitored by an in vivo imaging system in a non-invasive manner, which was the primary outcome of our study. The optimal approach for an individual treatment was 2.1 W/cm 2 laser power for 30 seconds. Using this in vivo model, NIR light combined with CNR demonstrated a statistically significant reduction in tumor-associated bioluminescent activity ( n  = 16) compared to mice treated with laser alone ( n  = 14) at the end of the study ( p  = 0.035). Furthermore, the CNR+NIR light treatment significantly abrogated bioluminescence signals over a 6-week observation period, compared to pre-treatment levels ( p  = 0.045). Photothermal tumor ablation with EGFR-directed gold nanorods and NIR light proved effective and well tolerated in a murine in vivo model of urinary bladder cancer.

  20. Immunological properties of gold nanoparticles

    OpenAIRE

    Dykman, Lev A.; Khlebtsov, Nikolai G.

    2016-01-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be...

  1. Geostatistical and GIS analysis of the spatial variability of alluvial gold content in Ngoura-Colomines area, Eastern Cameroon: Implications for the exploration of primary gold deposit

    Science.gov (United States)

    Takodjou Wambo, Jonas Didero; Ganno, Sylvestre; Djonthu Lahe, Yannick Sthopira; Kouankap Nono, Gus Djibril; Fossi, Donald Hermann; Tchouatcha, Milan Stafford; Nzenti, Jean Paul

    2018-06-01

    Linear and nonlinear geostatistic is commonly used in ore grade estimation and seldom used in Geographical Information System (GIS) technology. In this study, we suggest an approach based on geostatistic linear ordinary kriging (OK) and Geographical Information System (GIS) techniques to investigate the spatial distribution of alluvial gold content, mineralized and gangue layers thicknesses from 73 pits at the Ngoura-Colomines area with the aim to determine controlling factors for the spatial distribution of mineralization and delineate the most prospective area for primary gold mineralization. Gold content varies between 0.1 and 4.6 g/m3 and has been broadly grouped into three statistical classes. These classes have been spatially subdivided into nine zones using ordinary kriging model based on physical and topographical characteristics. Both mineralized and barren layer thicknesses show randomly spatial distribution, and there is no correlation between these parameters and the gold content. This approach has shown that the Ngoura-Colomines area is located in a large shear zone compatible with the Riedel fault system composed of P and P‧ fractures oriented NE-SW and NNE-SSW respectively; E-W trending R fractures and R‧ fractures with NW-SE trends that could have contributed significantly to the establishment of this gold mineralization. The combined OK model and GIS analysis have led to the delineation of Colomines, Tissongo, Madubal and Boutou villages as the most prospective areas for the exploration of primary gold deposit in the study area.

  2. Neutron energy spectra produced by α-bombardment of light elements in thick targets

    International Nuclear Information System (INIS)

    Jacobs, G.J.H.

    1982-01-01

    The aim of the work, presented in this thesis, is to determine energy spectra of neutrons produced by α-particle bombardment of thick targets containing light elements. These spectra are required for nuclear waste management. The set-up of the neutron spectrometer is described, and its calibration discussed. Absolute efficiencies were determined at various neutron energies, using monoenergetic neutrons produced with the Van de Graaff accelerator in pulsed mode. The additional calibration of the neutron spectrometer as proton-recoil spectrometer was carried out primarily for future applications in measurements where no pulsed neutron source is available or the neutron flux density is too low. The basis for an accurate uncertainty analysis is made by the determination of the covariance matrix for the uncertainties in the efficiencies. The determination of the neutron energy spectra from time-of-flight and from proton-recoil measurements is described. A comparison of the results obtained from the two different types of measurements is made. The experimentally determined spectra were compared with spectra calculated from stopping powers and theoretically determined cross sections. These cross sections were calculated from optical model parameters and level parameters using the Hauser-Feshbach formalism. Measurements were carried out on thick targets of silicon, aluminium, magnesium, carbon, boron nitride, calcium fluoride, aluminium oxide, silicon oxide and uranium oxide at four different α-particle energies. (Auth.)

  3. Cross section of α-induced reactions on iridium isotopes obtained from thick target yield measurement for the astrophysical γ process

    Directory of Open Access Journals (Sweden)

    T. Szücs

    2018-01-01

    Full Text Available The stellar reaction rates of radiative α-capture reactions on heavy isotopes are of crucial importance for the γ process network calculations. These rates are usually derived from statistical model calculations, which need to be validated, but the experimental database is very scarce. This paper presents the results of α-induced reaction cross section measurements on iridium isotopes carried out at first close to the astrophysically relevant energy region. Thick target yields of 191Ir(α,γ195Au, 191Ir(α,n194Au, 193Ir(α,n196mAu, 193Ir(α,n196Au reactions have been measured with the activation technique between Eα=13.4 MeV and 17 MeV. For the first time the thick target yield was determined with X-ray counting. This led to a previously unprecedented sensitivity. From the measured thick target yields, reaction cross sections are derived and compared with statistical model calculations. The recently suggested energy-dependent modification of the α+nucleus optical potential gives a good description of the experimental data.

  4. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer

    Science.gov (United States)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Fu, Hualin; Wang, Kan; Deng, Min; Liao, Qiande; Cui, Daxiang

    2014-05-01

    Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.

  5. Intergranular penetration of liquid gold into stainless steel

    OpenAIRE

    Favez, Denis; Deillon, Léa; Wagnière, Jean-Daniel; Rappaz, Michel

    2011-01-01

    Intergranular penetration of liquid 18 K gold into a superaustenitic stainless steel, which occurs during laser welding of these two materials, has been studied using a C-ring device which can be put under tensile stresses by a screw. It is shown that liquid gold at 1000 degrees C penetrates the immersed stainless steel C-ring at grain boundaries, but only when tensile stresses are applied. Based on the thickness of the peritectic phase that forms all along the liquid crack and on the transve...

  6. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Xu Ziming; Sun Hongjing; Gao Faming, E-mail: fmgao@ysu.edu.cn; Hou Li; Li Na [Yanshan University, Key Laboratory of Applied Chemistry (China)

    2012-12-15

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe-Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe-Au process.

  7. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Science.gov (United States)

    Xu, Ziming; Sun, Hongjing; Gao, Faming; Hou, Li; Li, Na

    2012-12-01

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe@Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe@Au process.

  8. Measurements of neutron spectra produced from a thick tungsten target bombarded with 5 and 15 GeV protons

    CERN Document Server

    Meigo, S; Shigyo, N; Iga, K; Iwamoto, Y; Kitsuki, H; Ishibashi, K; Maehata, K; Arima, H; Nakamo, T; Numajiri, M

    2002-01-01

    For validation of calculation codes that are employed in the design of a pulse spallation neutron source and accelerator driven system, the spectrum of neutrons produced from a thick target plays an important role. However, appropriate experimental data were scarce for incident energies higher than 0.8 GeV. In this study, the spectrum from a thick tungsten target was measured. The experiment was carried out at the pi 2 beam line of the 12-GeV proton synchrotron at KEK. The tungsten target was bombarded by 0.5- and 1.5-GeV secondary protons. The spectrum of neutrons was measured by the time-of-flight technique using organic scintillators of NE213. The calculated result with NMTC/JAM and MCNP-4A is compared with the measured data. It is found that the NMTC/JAM generally gives a good agreement with experiment. The NMTC/JAM, however, gives 50% lower neutron flux in the energy region 20~80 MeV, which is consistent with the results in a previous comparison of a lead target. For the neutrons between 20 and 80 MeV, t...

  9. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing.

    Science.gov (United States)

    Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K

    2013-03-15

    Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. X-ray absorption in characterization of laser fusion targets

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine, J.P.; Rouillard, R.

    1982-11-01

    Many plastic or metal coated targets are opaque, so their thickness and thickness uniformity cannot be obtained by optical means. Therefore, we have built and tested a new system using monochromatic X-ray absorption measurements. This system is also able to perform non-destructive measurements of argon fill pressure in glass microballoons. The X-ray source is a diffraction tube with a chromium target and fine focus (0.4 x 0.8 mm 2 ). Since monochromatic calculations are involved in this method, we use electronic discrimination to isolate the chromium Kα line (5.4 keV) from the bremsstrahlung spectrum. The detectors are xenon-filled proportional counters. The system is composed of two beams (10 μm in diameter), one used as a reference and the other as the measurement arm. A PET desk computer is coupled ot the experiment. We achieved a precision better than 10% for gold layers in the range of 0.1 to 1 μm, and better than 20% for argon pressures in the range of 5 - 13 bars

  11. Fast neutron distributions from Be and C thick targets bombarded with 80 and 160 MeV deuterons

    International Nuclear Information System (INIS)

    Pauwels, N.; Laurent, H.; Clapier, F.; Brandenburg, S.; Beijers, J. P .M.; Zegers, R. G. T.; Lebreton, H.; Saint-Laurent, M.G.; Mirea, M.

    2001-01-01

    Production of fast neutron studies have come to the fore in the past few years because of the great interest for the possible applications of induced fission to produce neutron rich ion beams. In this context, the main objective of the SPIRAL II (Systeme de Production d'Ions Radioactifs Acceleres en Ligne) and PARRNe (Production d'Atomes Radioactifs Riches en Neutrons) R and D projects is the investigation of the feasibility and of the optimum parameters for a neutron rich isotope source. Special attention is dedicated to the energy and angular distributions of the neutrons obtained through deuteron break--up in different types of converters and different incident energies. Analysis and modelling of such behaviors, together with the study of the yields of neutron induced fission, can be used to optimize the productivity of the fissioning target its geometry and designing it accordingly. The present report continues our previous studies realised for 17, 20, 28 and 200 MeV deuteron energies and it is focused on deuteron incident energies of 80 and 160 MeV. In the experiment, the double differential cross section for neutron production induced by 80 and 160 MeV deuterons impinging on thick C and Be targets, in which the incident deuterons were complete stopped, have been measured. The energy of the neutrons was determined from the time--of--flight (TOF) measurement. To obtain an energy resolution of about 4% for the fastest, forward--emitted neutrons, which have approximately beam velocity, the length of the flightpath for the detectors at angles up to 30 angle was chosen to be 6 m. At backward angles, where the neutron energies are lower, a shorter flightpath was chosen. A schematic drawing of the setup is shown. A 100 mm thick Be target and a 70 mm thick C target were used. Results are exemplified with the angular and energy distributions of neutron obtained for Be target at 80 MeV. (authors)

  12. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA

  13. Optimum design of beam window's diameter and thickness of Hyper target system

    International Nuclear Information System (INIS)

    Cho, C. H.; Tak, N. I.; Song, T. Y.; Park, W. S.

    2002-01-01

    HYPER is designed to transmute long-lived TRU and fission products such as Tc-99 and I-129. Pb-Bi is used as the coolant and spallation target material at the same time. HYPER is expected to need about 20mA proton beam to sustain a 1000MW th power level. The cylindrical beam tube and spherical window is adopted as the basic window shape of HYPER. The window diameter and the window thickness are varied to find the maximum allowable current based on the design criteria : Pb-Bi temperature < 500 .deg. C, window temperature < 600 .deg. C, Pb-Bi velocity < 2m/s and window stress < 160MPa. The LAHET code is used to simulate heat generation. CFX is also used for the thermal-hydraulics calculation. Based on our design criteria, the maximum allowable current is calculated to be about 9.2mA, which is smaller than the required current. Therefore, an upgrade of the target system design is required

  14. Measurements of L shell X-ray yields of thick Ag target by 6–29 keV electron impact

    International Nuclear Information System (INIS)

    Zhao, J.L.; Tian, L.X.; Li, X.L.; An, Z.; Zhu, J.J.; Liu, M.T.

    2015-01-01

    In this paper, the L shell X-ray yields for a thick Ag target have been measured at incident electron energies of 6–29 keV. The experimental values are compared with the Monte Carlo simulation results that are obtained by using the PENELOPE code, in which the inner-shell ionization cross sections by electron impact calculated in the theoretical frame of distorted wave Born approximation are used. The experimental and simulation values are in agreement with ∼10% difference. Meanwhile, the L shell X-ray production cross sections are also obtained based on the measured L shell X-ray yields for a thick Ag target in this paper, and are compared with other experimental Ag L shell X-ray production cross section data by electron and positron impact measured previously and some theoretical models. Some factors that could affect these comparisons are also discussed in this paper. - Highlights: • We measured L shell X-ray yields of thick Ag target by 6–29 keV electrons. • Our measured X-ray yields are in good agreement with the MC results with ∼10%. • L shell production cross sections are obtained based on the measured X-ray yields. • L shell production cross sections obtained are in good agreement with theories

  15. Measurements of neutron spectra produced from a thick iron target bombarded with 1.5 GeV protons

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Takada, Hiroshi

    2001-01-01

    For validation of calculation codes which are employed in the design of accelerator facilities, spectra of neutrons produced from a thick iron target bombarded with 1.5-GeV protons were measured. The calculated results with NMTC/JAM were compared with the present experimental results. It is found the NMTC/JAM generally shows in good agreement with experiment. Furthermore, the calculation gives good agreement with the experiment for the energy region 20-80 MeV, whereas the NMTC/JAM gives 50% of the experimental data for the heavy nuclide target such as lead and tungsten target. (author)

  16. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    International Nuclear Information System (INIS)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2010-01-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g -1 , respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with

  17. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower

  18. Influence of dielectric protective layer on laser damage resistance of gold coated gratings

    Science.gov (United States)

    Wu, Kepeng; Ma, Ping; Pu, Yunti; Xia, Zhilin

    2016-03-01

    Aiming at the problem that the damage threshold of gold coated grating is relatively low, a dielectric film is considered on the gold coated gratings as a protective layer. The thickness range of the protective layer is determined under the prerequisite that the diffraction efficiency of the gold coated grating is reduced to an acceptable degree. In this paper, the electromagnetic field, the temperature field and the stress field distribution in the grating are calculated when the silica and hafnium oxide are used as protective layers, under the preconditions of the electromagnetic field distribution of the gratings known. The results show that the addition of the protective layer changes the distribution of the electromagnetic field, temperature field and stress field in the grating, and the protective layer with an appropriate thickness can improve the laser damage resistance of the grating.

  19. Limiting the protein corona: A successful strategy for in vivo active targeting of anti-HER2 nanobody-functionalized nanostars.

    Science.gov (United States)

    D'Hollander, Antoine; Jans, Hilde; Velde, Greetje Vande; Verstraete, Charlotte; Massa, Sam; Devoogdt, Nick; Stakenborg, Tim; Muyldermans, Serge; Lagae, Liesbet; Himmelreich, Uwe

    2017-04-01

    Gold nanoparticles hold great promise as anti-cancer theranostic agents against cancer by actively targeting the tumor cells. As this potential has been supported numerously during in vitro experiments, the effective application is hampered by our limited understanding and control of the interactions within complex in vivo biological systems. When these nanoparticles are exposed to a biological environment, their surfaces become covered with proteins and biomolecules, referred to as the protein corona, reducing the active targeting capabilities. We demonstrate a chemical strategy to overcome this issue by reducing the protein corona's thickness by blocking the active groups of the self-assembled monolayer on gold nanostars. An optimal blocking agent, 2-mercapto ethanol, has been selected based on charge and length of the carbon chain. By using a nanobody as a biological ligand of the human epidermal growth factor 2 receptor (HER2), the active targeting is demonstrated in vitro and in vivo in an experimental tumor model by using darkfield microscopy and photoacoustic imaging. In this study, we have established gold nanostars as a conceivable theranostic agent with a specificity for HER2-positive tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    International Nuclear Information System (INIS)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-01-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 10"8 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer. (paper)

  1. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    Science.gov (United States)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  2. Prostate-Specific Membrane Antigen Targeted Gold Nanoparticles for Theranostics of Prostate Cancer.

    Science.gov (United States)

    Mangadlao, Joey Dacula; Wang, Xinning; McCleese, Christopher; Escamilla, Maria; Ramamurthy, Gopalakrishnan; Wang, Ziying; Govande, Mukul; Basilion, James P; Burda, Clemens

    2018-04-24

    Prostate cancer is one of the most common cancers and among the leading causes of cancer deaths in the United States. Men diagnosed with the disease typically undergo radical prostatectomy, which often results in incontinence and impotence. Recurrence of the disease is often experienced by most patients with incomplete prostatectomy during surgery. Hence, the development of a technique that will enable surgeons to achieve a more precise prostatectomy remains an open challenge. In this contribution, we report a theranostic agent (AuNP-5kPEG-PSMA-1-Pc4) based on prostate-specific membrane antigen (PSMA-1)-targeted gold nanoparticles (AuNPs) loaded with a fluorescent photodynamic therapy (PDT) drug, Pc4. The fabricated nanoparticles are well-characterized by spectroscopic and imaging techniques and are found to be stable over a wide range of solvents, buffers, and media. In vitro cellular uptake experiments demonstrated significantly higher nanoparticle uptake in PSMA-positive PC3pip cells than in PSMA-negative PC3flu cells. Further, more complete cell killing was observed in Pc3pip than in PC3flu cells upon exposure to light at different doses, demonstrating active targeting followed by Pc4 delivery. Likewise, in vivo studies showed remission on PSMA-expressing tumors 14 days post-PDT. Atomic absorption spectroscopy revealed that targeted AuNPs accumulate 4-fold higher in PC3pip than in PC3flu tumors. The nanoparticle system described herein is envisioned to provide surgical guidance for prostate tumor resection and therapeutic intervention when surgery is insufficient.

  3. Implementation of a secondary-ion tritium beam by means of the associated particle technique and its test on a gold target

    Energy Technology Data Exchange (ETDEWEB)

    Policroniades, R.; Fernández-Arnáiz, J.; Murillo, G.; Moreno, E.; Villaseñor, P.; Méndez, B. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca S/N, Ocoyoacac, Estado de México 52750 (Mexico); Chávez, E.; Ortíz-Salazar, M.E.; Huerta, A. [Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000 (Mexico); Varela-González, A. [Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000 (Mexico)

    2014-05-21

    In this work we present the implementation and characterization of a (secondary ion) tritium beam generated through the D(d,t)p reaction, at deuteron energies of 2.0 and 1.88 MeV, tagging the tritium ions with the associated particle technique. In order to prove its utility as a projectile for scientific applications, this beam was made to impinge on a thin gold target to observe expected elastic scattering events. - Highlights: • A new secondary ion tritium beam obtained through the D(d,t)3He reaction. • Tritium beam tagging by the associated particle technique. • A low energy Tritium beam without radiation contamination of equipment. • Tritium elastic scattering on gold.

  4. Implementation of a secondary-ion tritium beam by means of the associated particle technique and its test on a gold target

    International Nuclear Information System (INIS)

    Policroniades, R.; Fernández-Arnáiz, J.; Murillo, G.; Moreno, E.; Villaseñor, P.; Méndez, B.; Chávez, E.; Ortíz-Salazar, M.E.; Huerta, A.; Varela-González, A.

    2014-01-01

    In this work we present the implementation and characterization of a (secondary ion) tritium beam generated through the D(d,t)p reaction, at deuteron energies of 2.0 and 1.88 MeV, tagging the tritium ions with the associated particle technique. In order to prove its utility as a projectile for scientific applications, this beam was made to impinge on a thin gold target to observe expected elastic scattering events. - Highlights: • A new secondary ion tritium beam obtained through the D(d,t)3He reaction. • Tritium beam tagging by the associated particle technique. • A low energy Tritium beam without radiation contamination of equipment. • Tritium elastic scattering on gold

  5. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  6. Charge exchange studies with Gold ions at the Brookhaven Booster and AGS

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Hseuh, H.C.; Roser, T.

    1994-01-01

    Efficient acceleration of Gold ions to ll GeV/nucleon places strong constraints on the vacuum and also on the choice of thickness and material of the necessary stripping foils. Results of a number of detailed experimental studies performed with the Gold beam at the Brookhaven Booster and AGS to determine the relevant electron stripping and pick-up probabilities are presented. Of particular interest is the lifetime of the relatively low energy, partially stripped Gold beam in the Booster and the stripping efficiency to Helium-like AU +77 for injection into the AGS

  7. WE-G-BRE-09: Targeted Radiotherapy Enhancement During Accelerated Partial Breast Irradiation (ABPI) Using Controlled Release of Gold Nanoparticles (GNPs)

    International Nuclear Information System (INIS)

    Cifter, G; Ngwa, W; Chin, J; Cifter, F; Sajo, E; Sinha, N; Bellon, J

    2014-01-01

    Purpose: Several studies have demonstrated low rates of local recurrence with brachytherapy-based accelerated partial breast irradiation (APBI). However, long-term outcomes on toxicity (e.g. telangiectasia), and cosmesis remain a major concern. The purpose of this study is to investigate the dosimetric feasibility of using targeted non-toxic radiosensitizing gold nanoparticles (GNPs) for localized dose enhancement to the planning target volume (PTV) during APBI while reducing dose to normal tissue. Methods: Two approaches for administering the GNPs were considered. In one approach, GNPs are assumed to be incorporated in a micrometer-thick polymer film on the surface of routinely used mammosite balloon applicators, for sustained controlled in-situ release, and subsequent treatment using 50-kVp Xoft devices. In case two, GNPs are administered directly into the lumpectomy cavity e.g. via injection or using fiducials coated with the GNP-loaded polymer film. Recent studies have validated the use of fiducials for reducing the PTV margin during APBI with 6 MV beams. An experimentally determined diffusion coefficient was used to determine space-time customizable distribution of GNPs for feasible in-vivo concentrations of 43 mg/g. An analytic calculational approach from previously published work was employed to estimate the dose enhancement due to GNPs (2 and 10 nm) as a function of distance up to 1 cm from lumpectomy cavity. Results: Dose enhancement due to GNP was found to be about 130% for 50-kVp x-rays, and 110% for 6-MV external beam radiotherapy, 1 cm away from the lumpectomy cavity wall. Higher customizable dose enhancement could be achieved at other distances as a function of nanoparticle size. Conclusion: Our preliminary results suggest that significant dose enhancement can be achieved to residual tumor cells targeted with GNPs during APBI with electronic brachytherapy or external beam therapy. The findings provide a useful basis for developing nanoparticle

  8. Refractive index dependent local electric field enhancement in cylindrical gold nanohole

    International Nuclear Information System (INIS)

    Zhu Jian

    2011-01-01

    We report on the local electric field characters in a long cylindrical gold nanohole. Theoretical calculation results based on quasi-static model show that the local environmental dielectric constant dependent electric field intensity and field distribution in the gold nanohole show quite unique properties, different from those in the thin gold nanotube. Because of the thick gold wall, no plasmon hybridization exists. So there is only one resonance frequency taking place, and the intense local field has been focused into the gold nanohole. Our main finding is that, the local field in the nanohole is largely dependent on the inner hole refractive index and outer environmental refractive index. The competition between inner hole and outer polarization leads to a non-monotonic change of the local field intensity with increasing the dielectric constant of the nanohole. This refractive index controlled local field enhancement in cylindrical gold nanohole presents a potential for tunable surface-enhanced fluorescence and novel nano-optical biosensing applications.

  9. The determination of gold depth distribution in semiconductor silicon-potential interferences inherent in NAA by radiation damages

    International Nuclear Information System (INIS)

    Rudolph, P.; Lange, A.; Flachowsky, J.

    1986-01-01

    Gold is used quite extensively to control the charge storage time of high speed diodes and transistors. Therefore, the diffusion of gold into silicon wafers of finite thickness is important in the design and fabrication of these devices. Therefore it is necessary to estimate exactly concentration and depth distribution of gold formed by gold doping. Usually, gold content and depth distribution has been estimate by neutron activation analysis with step by step etching techniques. But during the irradiation in a nuclear fuel reactor the silicon wafers undergo minute or pronounced radiation damages which may affect the depth profiles of gold concentration. (author)

  10. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    Science.gov (United States)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  11. The pictures of CT scan of gold pneumonitis

    International Nuclear Information System (INIS)

    Taguchi, Yoshio; Iwata, Takekuni; Kuroda, Yasumasa; Sadato, Norihiro; Tanemoto, Kiichiro; Adachi, Kazuhiko.

    1987-01-01

    We experienced two cases of gold pneumonitis and their interesting findings of CT scan. After the cessation of gold salt, both cases were treated with the corticosteroid, resulting in the disappearance of pulmonary manifestations and clearing of shadows on chest roentgenograms. The findings of CT scan on both cases were very interesting. They were the high density shadows along the bronchovascular bundles, the fluffy figures surroundings these shadows and band like shadows reached to the thoracic wall. We considered that each shadows were pathologically compatible with severe exudative changes of interstitial pneumonitis, shrinkage surroundings them and thickness of interlobular septum. (author)

  12. Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity

    Science.gov (United States)

    Bache, Morten; Lavrinenko, Andrei V.

    2017-09-01

    Using long-range surface plasmon polaritons light can propagate in metal nano-scale waveguides for ultracompact opto-electronic devices. Gold is an important material for plasmonic waveguides, but although its linear optical properties are fairly well understood, the nonlinear response is still under investigation. We consider the propagation of pulses in ultrathin gold strip waveguides, modeled by the nonlinear Schrödinger equation. The nonlinear response of gold is accounted for by the two-temperature model, revealing it as a delayed nonlinearity intrinsic in gold. The consequence is that the measured nonlinearities are strongly dependent on pulse duration. This issue has so far only been addressed phenomenologically, but we provide an accurate estimate of the quantitative connection as well as a phenomenological theory to understand the enhanced nonlinear response as the gold thickness is reduced. In comparison with previous works, the analytical model for the power-loss equation has been improved, and can be applied now to cases with a high laser peak power. We show new fits to experimental data from the literature and provide updated values for the real and imaginary parts of the nonlinear susceptibility of gold for various pulse durations and gold layer thicknesses. Our simulations show that the nonlinear loss is inhibiting efficient nonlinear interaction with low-power laser pulses. We therefore propose to design waveguides suitable for the mid-IR, where the ponderomotive instantaneous nonlinearity can dominate over the delayed hot-electron nonlinearity and provide a suitable plasmonics platform for efficient ultrafast nonlinear optics.

  13. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    Science.gov (United States)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  14. Skill and wisdom of craftsman of gold leaf; Kinpaku shokunin no waza to chie

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, K. [Kanazawa Inst. of Technology, Ishikawa (Japan). Faculty of Engineering

    1996-01-05

    In the mid-sixth century, Buddhism was introduced from the Chinese Continent and accompanying therewith, gold leaves began to be used for large dry-japanned images of Buddha and artifacts. Also japan has been used widely for improvement of durability of wooden products and for the purpose of decoration, since japan is the best adhesive for the gold leaf and the gold leaf has an effect to retard deterioration of japan. In this article, technological elucidation has been made on the leaf making technique using Japanese papers unrivaled in the world. The traditional technique of manufacturing a gold leaf in Japan is the technique to manufacture extremely thin gold leaves, each of or less than 0.1 {mu}m thick, in an unit of 1500-1600 sheets at one time manually by the craftsman`s skill using Japanese papers, which are viscoelastic substances, as media and is unique among the traditional industries in Japan. Even by the currently available highest metal rolling technique, it is impossible to prepare metal leaves, each of which has a thickness of an order of submicron. The present leaf making processes are divided roughly into 3 processes and the gold leaf making method is described in detail together with the really skillful hunch and wisdom of the ancestors. 4 refs., 4 figs.

  15. pH-Sensitive Reversible Programmed Targeting Strategy by the Self-Assembly/Disassembly of Gold Nanoparticles.

    Science.gov (United States)

    Ma, Jinlong; Hu, Zhenpeng; Wang, Wei; Wang, Xinyu; Wu, Qiang; Yuan, Zhi

    2017-05-24

    A reversible programmed targeting strategy could achieve high tumor accumulation due to its long blood circulation time and high cellular internalization. Here, targeting ligand-modified poly(ethylene glycol) (PEG-ligand), dibutylamines (Bu), and pyrrolidinamines (Py) were introduced on the surface of gold nanoparticles (Au NPs) for reversible shielding/deshielding of the targeting ligands by pH-responsive self-assembly. Hydrophobic interaction and steric repulsion are the main driving forces for the self-assembly/disassembly of Au NPs. The precise self-assembly (pH ≥ 7.2) and disassembly (pH ≤ 6.8) of Au NPs with different ligands could be achieved by fine-tuning the modifying molar ratio of Bu and Py (R m ), which followed the formula R m = 1/(-0.0013X 2 + 0.0323X + 1), in which X is the logarithm of the partition coefficient of the targeting ligand. The assembled/disassembled behavior of Au NPs at pH 7.2 and 6.8 was confirmed by transmission electron microscopy and dynamic light scattering. Enzyme-linked immunosorbent assays and cellular uptake studies showed that the ligands could be buried inside the assembly and exposed when disassembled. More importantly, this process was reversible, which provides the possibility of prolonging blood circulation by shielding ligands associated with the NPs that were effused from tumor tissue.

  16. Metal coatings for laser fusion targets by electroplating

    International Nuclear Information System (INIS)

    Illige, J.D.; Yu, C.M.; Letts, S.A.

    1980-01-01

    Metal coated laser fusion targets must be dense, uniform spherically symmetric to within a few percent of their diameters and smooth to better than a few tenths of a micron. Electroplating offers some unique advantages including low temperature deposition, a wide choice of elements and substantial industrial plating technology. We have evaluatd electroless and electroplating systems for gold and copper, identified the factors responsible for small grain size, and plated glass microspheres with both metals to achieve smooth surfaces and highly symmetric coatings. We have developed plating cells which sustain the microspheres in continuous random motion during plating. We have established techniques for deposition of the initial conductive adherent layer on the glass microsphere surface. Coatings as thick as 15 μm have been made. The equipment is simple, relatively inexpensive and may be adopted for high volume production of laser fusion targets

  17. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    International Nuclear Information System (INIS)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-01

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg 2+ ), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg 2+ by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T (25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg 2+ ion was intercalated into the DNA polyion complex membrane based on T–Hg 2+ –T coordination chemistry. The chelated Hg 2+ ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH 4 and Ru(NH 3 ) 6 3+ for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg 2+ level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg 2+ . The strategy afforded exquisite selectivity for Hg 2+ against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg 2+ in spiked tap-water samples, and the recovery was 87.9–113.8%

  18. Measurement of resonances in 12 C + 4 He through inverse kinematics with thick targets

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Lizcano, D.; Martinez Q, E.; Fernandez, M.C.; Murillo, G.; Goldberg, V.; Skorodumov, B.B.; Rogachev, G.

    2003-01-01

    The excitation function of elastic scattering for the system 12 C + 4 He to energy from 0.5 to 3.5 MeV in the center of mass system (c.m.) was measured. We use a gassy thick target and the technique of inverse kinematics which allows to make measurements at 180 degrees in c.m. Using the R matrix theory those was deduced parameters of the resonances and the results were compared with measurements reported in the literature made with other techniques. (Author)

  19. Neutron energy spectra from the thick target 9Be(d,n)10B reaction

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1976-12-01

    The energy spectrum of neutrons emitted when deuterons impinge on a thick beryllium target has been measured using an NE213 scintillation detector and the time-of-flight technique. Spectra were measured at angles of 0, 30, 45, 60, 90, 120 and 150 0 for deuteron energies of 1.4, 1.8, 2.3 and 2.8 MeV. Tables are presented of these angle-dependent energy spectra, the angle-integrated energy dependent yeidls, and the total neutron yield as a function of deuteron energy. (author)

  20. Neutron energy spectrum from 120 GeV protons on a thick copper target

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; /Kyushu U.; Sanami, Toshiya; /KEK, Tsukuba; Kajimoto, Tsuyoshi; /Kyushu U.; Iwamoto, Yosuke; /JAEA, Ibaraki; Hagiwara, Masayuki; Saito, Kiwamu; /KEK, Tsukuba; Ishibashi, Kenji; /Kyushu U.; Nakashima, Hiroshi; Sakamoto, Yukio; /JAEA, Ibaraki; Lee, Hee-Seock; /Pohang Accelerator Lab.; Ramberg, Erik; /Fermilab

    2010-08-01

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, protoninduced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30{sup o} and 5 m 90{sup o} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multiparticle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  1. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency, Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This paper describes a preliminary study on possible primary deposit type as a source of the Langkowala (Bombana secondary placer gold. A field study indicates that the Langkowala (Bombana placer/paleoplacer gold is possibly related to gold-bearing quartz veins/veinlets hosted by metamorphic rocks particularly mica schist and metasediments in the area. These quartz veins/veinlets are currently recognized in metamorphic rocks at Wumbubangka Mountains, a northern flank of Rumbia Mountain Range. Sheared, segmented quartz veins/veinlets are of 2 cm to 2 m in width and contain gold in a grade varying between 2 and 61 g/t. At least, there are two generations of the quartz veins. The first generation of quartz vein is parallel to foliation of mica schist and metasediments with general orientation of N 300oE/60o; the second quartz vein generation crosscut the first quartz vein and the foliation of the wallrock. The first quartz veins are mostly sheared/deformed, brecciated, and occasionally sigmoidal, whereas the second quartz veins are relatively massive. The similar quartz veins/veinlets types are also probably present in Mendoke Mountain Range, in the northern side of Langkowala area. This primary gold deposit is called as ‘orogenic gold type’. The orogenic gold deposit could be a new target of gold exploration in Indonesia in the future.

  2. Near-Infrared Light Responsive Folate Targeted Gold Nanorods for Combined Photothermal-Chemotherapy of Osteosarcoma.

    Science.gov (United States)

    Li Volsi, Anna; Scialabba, Cinzia; Vetri, Valeria; Cavallaro, Gennara; Licciardi, Mariano; Giammona, Gaetano

    2017-04-26

    Folate-targeted gold nanorods (GNRs) are proposed as selective theranostic agents for osteosarcoma treatment. An amphiphilic polysaccharide based graft-copolymer (INU-LA-PEG-FA) and an amino derivative of the α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide functionalized with folic acid (PHEA-EDA-FA), have been synthesized to act as coating agents for GNRs. The obtained polymer-coated GNRs were characterized in terms of size, shape, zeta potential, chemical composition, and aqueous stability. They protected the anticancer drug nutlin-3 and were able to deliver it efficiently in different physiological media. The ability of the proposed systems to selectively kill tumor cells was tested on U2OS cancer cells expressing high levels of FRs and compared with human bronchial epithelial cells (16HBE) and human dermal fibroblasts (HDFa). The property of the nanosystems of efficiently controlling drug release upon NIR laser irradiation and of acting as an excellent hyperthermia agent as well as Two Photon Luminescence imaging contrast agents was demonstrated. The proposed folate-targeted GNRs have also been tested in terms of chemoterapeutic and thermoablation efficacy on tridimensional (3-D) osteosarcoma models.

  3. Optical characteristics of jewellery gold alloys

    International Nuclear Information System (INIS)

    Wan Mahmood bin Mat Yunus; Zainal Abidin bin Talib; Maarof bin Moksin; Abdul Fatah bin Awang Mat

    1994-01-01

    Measurements of the reflection of various sample of gold alloys were made over the wavelength range 400-800 nm. Samples were measured using a single beam spectrophotometer at 45 deg. angle of incidence. In this measurement no attempt was made to obtain the optical constants of the samples. The results showed that there were significant differences between bulk and thick samples, with sufficient spectra difference between different composition of the alloys

  4. Measurements of neutron spectra produced from a thick tungsten target bombarded with 0.5- and 1.5-GeV protons

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Takada, Hiroshi

    2002-01-01

    For validation of calculation codes that are employed in the design of pulse spallation neutron source and accelerator driven system, spectrum of neutrons produced from a thick target plays an important role. However, appropriate experimental data were scarce for the incident energies higher than 0.8 GeV. In this study, the spectrum from a thick tungsten target was measured. The experiment was carried out at the π2 beam line of the 12-GeV proton synchrotron at KEK. The tungsten target was bombarded by the 0.5- and 1.5-GeV secondary protons. Spectrum of neutrons was measured by the time-of-flight technique using organic scintillators of NE213. The calculated result with NMTC/JAM and MCNP-4A is compared with the measured data. It is found that the NMTC/JAM generally gives a good agreement with experiment. The NMTC/JAM, however, gives 50% lower neutron flux in the energy region 20∼80 MeV, which is consistent with the results in previous comparison of lead target. For the neutrons between 20 and 80 MeV, the calculation using with the in-medium nucleon-nucleon cross sections reproduced the experiment fairly well. (author)

  5. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    International Nuclear Information System (INIS)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R; Castillo, S J; Zavala, G

    2011-01-01

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  6. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R [Departamento de Ingenieria Quimica y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Castillo, S J [Departamento de Investigacion en Fisica, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Zavala, G, E-mail: elarios@polimeros.uson.mx [Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)

    2011-09-02

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  7. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg{sup 2+}), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg{sup 2+} by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T{sub (25)} oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg{sup 2+} ion was intercalated into the DNA polyion complex membrane based on T–Hg{sup 2+}–T coordination chemistry. The chelated Hg{sup 2+} ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH{sub 4} and Ru(NH{sub 3}){sub 6}{sup 3+} for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg{sup 2+} level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg{sup 2+}. The strategy afforded exquisite selectivity for Hg{sup 2+} against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg{sup 2+} in spiked tap-water samples, and the recovery was 87.9–113.8%.

  8. Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures

    Science.gov (United States)

    Jiang, Nina

    a macroscale array of PANI-coated gold nanorods immobilized on glass slides, whose performance is as good as that of the individual PANI-coated gold nanorods. With much smaller amounts of materials, my core/shell nanorod arrays show peak extinction values and maximal modulation depths that are comparable to those of PANI films with micrometer-scale thicknesses. Switching coupled surface plasmon relative to uncoupled one affords the possibility to achieve the modulation over a wide spectral band and with wealthy plasmonic responses. Thus, I have studied the active control of plasmon coupling in homodimers and homotrimers of PANI-coated gold nanospheres (PGNSs). The dimers and trimers are obtained by reducing the surfactant concentration in the polymerization process of PANI. The reversible proton-doping of PANI enables the control of plasmon coupling to succeed. When the plasmon coupling of the dimers is switched, the wavelength shift of the strongest scattering peak shows an exponential increase with the decrease of the interparticle gap distance. A giant wavelength shift of 231 nm is observed for the dimer with a shell thickness of 10 nm and a gap distance of 0.5 nm. Electrodynamic calculations ascertain that the wavelength shift of the strongest scattering peak originates from the tuning of the dipolar bonding plasmon resonance mode in the dimers. The quadrupolar bonding plasmon resonance mode is turned on and off by switching the doped and undoped state of the dimers with gap distances of less than 3 nm. The active tuning of plasmon coupling is further demonstrated with the trimers of PGNSs, which is sensitive to their configurations. In the triangular configuration, larger vertex angles lead to larger wavelength shifts for the plasmonic tuning. Another strategy for controlling the dielectric properties of PANI shell around gold nanostructures is to change its oxidation level. The variation of the oxidation state of PANI leads to the plasmonic peak wavelength

  9. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I, E-mail: mmakrigiorgos@lroc.harvard.ed [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115 (United States)

    2010-11-07

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g{sup -1}, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to

  10. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    Science.gov (United States)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied

  11. Bremsstrahlung spectra from thick-target electron beams with noncollisional energy losses

    International Nuclear Information System (INIS)

    Brown, J.C.; MacKinnon, A.L.

    1985-01-01

    We consider what can be learned from the bremsstrahlung radiation of fast electrons in a thick target, generalized to include electron energy losses additional to collisions. We show that the observed photon spectrum can, in principle, be inverted to yield an integral functional of the electron spectrum and the effective energy loss rate. In the light of this result, there seems no reason to suppose, in the absence of a priori information to the contrary, that the photon spectrum is symptomatic more of the fast electron distribution than of the energy loss processes. In cases where the electron injection spectrum is known on independent observational or theoretical grounds, it is possible to infer an effective, ''phenomenological'' energy loss function. In the more general case, however, fullest possible modeling of the physical situation and comparison of the resulting spectrum with observations is all that can be attempted

  12. Thick-target Pixe analysis of chromium, copper and arsenic impregnated lumber

    International Nuclear Information System (INIS)

    Saarela, K-E.; Harju, L.; Lill, J-O.; Rajander, J.; Lindroos, A.; Heselius, S-J.

    1999-01-01

    Chromium, copper and arsenic (CCA) have for decades been used for wood preservation. Of these elements especially arsenic is very toxic. As CCA impregnated wood is still today used for many construction purposes, a monitoring of these metal ions is of great environmental importance. Thick-target PIXE is a powerful method for the determination of trace metals in wood. The TTPIXE method enabled study of variations of the elemental concentrations in lumber treated with CCA impregnation solution. Distribution patterns were obtained for both naturally occurring elements and elements introduced in the treatment process. During the impregnation process a desorption of e.g. alkali metal ions takes place from the wood. The sensitivity of the method is improved by dry ashing of the samples prior to PIXE analysis. The TTPIXE method was calibrated and validated using international certified reference materials (CRM) based on wood material

  13. Efficacy of Laser Debridement With Autologous Split-Thickness Skin Grafting in Promoting Improved Wound Healing of Deep Cutaneous Sulfur Mustard Burns

    National Research Council Canada - National Science Library

    Graham, John

    2002-01-01

    ...) full thickness CO2 laser debridement followed by skin grafting, (2) full thickness sharp surgical tangential excision followed by skin grafting, the 'Gold Standard' used in deep thermal burns management, (3...

  14. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  15. Comparison on the production of radionuclides in 1.4 GeV proton irradiated LBE targets of different thickness

    CERN Document Server

    Maiti, Moumita; Mendonça, Tania M; Stora, Thierry; Lahiri, Susanta

    2014-01-01

    This is the first report on the inventory of radionuclides produced in 1.4 GeV proton induced reaction on Lead-Bismuth Eutectic (LBE) targets. LBE targets of 6 mm diameter and 1 to 8 mm lengths were irradiated with 1.4 GeV protons. The radionuclides ranging from Be-7 (53.12 days) to Po-207 (5.8 h) were identified in the samples with the help of time resolved gamma-ray spectroscopy. However, there is no signature of formation of At radioisotopes, which can be produced by the interaction of secondary particles, typical for thick targets.

  16. Controlling the exciton emission of gold coated GaAs-AlGaAs core-shell nanowires with an organic spacer layer

    Science.gov (United States)

    Kaveh, M.; Gao, Q.; Jagadish, C.; Ge, J.; Duscher, G.; Wagner, H. P.

    2016-12-01

    Excitons are the most prominent optical excitations and controlling their emission is an important step towards new optical devices. We have investigated the exciton emission from uncoated and gold/aluminum quinoline (Alq3) coated GaAs-AlGaAs-GaAs core-shell nanowires (NWs) using temperature-, intensity- and polarization dependent photoluminescence (PL). Plasmonic GaAs-AlGaAs-GaAs NWs with a ˜10 nm thick Au coating but without an Alq3 spacer layer reveal a significant reduction of the PL intensity of the exciton emission compared with the uncoated NW sample. Plasmonic NW samples with the same nominal Au coverage and an additional Alq3 interlayer of 3 or 6 nm thickness show a clearly stronger PL intensity which increases with rising Alq3 spacer thickness. Time-resolved (TR) PL measurements reveal an increase of the exciton decay rate by a factor of up to two with decreasing Alq3 spacer thickness suggesting the presence of Förster energy transfer from NW excitons to plasmon oscillations in the gold film. The weak change of the decay time, however, indicates that Förster energy-transfer is only partially responsible for the PL quenching in the gold coated NWs. The main reason for the reduction of the PL emission is attributed to a gold induced band-bending in the GaAs NW core which causes exciton dissociation. With increasing Alq3 spacer thickness the band-bending decreases leading to a reduction of the exciton dissociation and PL quenching. Our interpretation is supported by electron energy loss spectroscopy measurements which show a signal reduction and blue shift of defect (possibly EL2) transitions when gold particles are deposited on NWs compared with bare or Alq3 coated NWs.

  17. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    Science.gov (United States)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Microstructure evolution in nanoporous gold thin films made from sputter-deposited precursors

    International Nuclear Information System (INIS)

    Gwak, Eun-Ji; Kang, Na-Ri; Baek, Un Bong; Lee, Hae Moo; Nahm, Seung Hoon; Kim, Ju-Young

    2013-01-01

    We fabricate almost crack-free 1.5 μm thick nanoporous gold thin films using free-corrosion dealloying and transfer processes from sputter-deposited precursors. By controlling the temperature and the concentration of the nitric acid solution during free-corrosion dealloying, we obtain ligament sizes in nanoporous gold between 22 and 155 nm. We investigate the effects of dissolution rate of Ag atoms, surface diffusivity of Au atoms and formation of Ag oxide on nanoporosity evolution

  19. Synthesis of circular and triangular gold nanorings with tunable optical properties

    KAUST Repository

    Lin, Xiaoying

    2017-08-24

    This communication describes a robust wet-chemical synthetic strategy for the preparation of monodispersed circular and triangular gold nanorings. The localized surface plasmon resonance of the nanorings can be tuned by controlling the outer diameter and ridge thickness of the nanorings.

  20. Synthesis of circular and triangular gold nanorings with tunable optical properties

    KAUST Repository

    Lin, Xiaoying; Liu, Yi; Lin, Meihua; Zhang, Qian; Nie, Zhihong

    2017-01-01

    This communication describes a robust wet-chemical synthetic strategy for the preparation of monodispersed circular and triangular gold nanorings. The localized surface plasmon resonance of the nanorings can be tuned by controlling the outer diameter and ridge thickness of the nanorings.

  1. AEM/STEM analysis of vapor-deposited multilayered laser targets

    International Nuclear Information System (INIS)

    Johnson, K.A.; Staudhammer, K.P.; Reeves, G.A.; Vesser, L.R.

    1983-01-01

    S(TEM) examinations were made to augment other types of measurements of absolute density. The structure of the 5 μm thick layers of aluminum and gold on aluminum laminate gold substrate was examined to establish film integrity, to characterize the microstructure, as well as to estimate the surface roughness of this multilayer material

  2. Characterization of anisotropic UF-membranes: top layer thickness and pore structure

    NARCIS (Netherlands)

    Cuperus, F.P.; Cuperus, F.P.; Bargeman, D.; Bargeman, D.; Smolders, C.A.; Smolders, C.A.

    1991-01-01

    Anisotropic poly(2,6-dimethyl-, 1,4-phenylene oxide) (PPO) ultrafiltration membranes are characterized by means of two techniques. A new method for the determination of skin thicknesses, the gold sol method, is introduced and applied to these membranes. The membranes appeared to have a well-defined

  3. Recent progress in theranostic applications of hybrid gold nanoparticles.

    Science.gov (United States)

    Gharatape, Alireza; Salehi, Roya

    2017-09-29

    A significant area of research is theranostic applications of nanoparticles, which involves efforts to improve delivery and reduce side effects. Accordingly, the introduction of a safe, effective, and, most importantly, renewable strategy to target, deliver and image disease cells is important. This state-of-the-art review focuses on studies done from 2013 to 2016 regarding the development of hybrid gold nanoparticles as theranostic agents in the diagnosis and treatment of cancer and infectious disease. Several syntheses (chemical and green) methods of gold nanoparticles and their applications in imaging, targeting, and delivery are reviewed; their photothermal efficiency is discussed as is the toxicity of gold nanoparticles. Owing to the unique characterizations of hybrid gold nanoparticles and their potential to be developed as multifunctional, we predict they will present an undeniable role in clinical studies and provide treatment platforms for various diseases. Thus, their clearance and interactions with extra- and intra-cellular molecules need to be considered in future projects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Bladder wall thickness mapping for magnetic resonance cystography

    International Nuclear Information System (INIS)

    Zhao Yang; Liang Zhengrong; Zhu Hongbin; Han Hao; Yan Zengmin; Duan Chaijie; Lu Hongbing; Gu Xianfeng

    2013-01-01

    Clinical studies have shown evidence that the bladder wall thickness is an effective biomarker for bladder abnormalities. Clinical optical cystoscopy, the current gold standard, cannot show the wall thickness. The use of ultrasound by experts may generate some local thickness information, but the information is limited in field-of-view and is user dependent. Recent advances in magnetic resonance (MR) imaging technologies lead MR-based virtual cystoscopy or MR cystography toward a potential alternative to map the wall thickness for the entire bladder. From a high-resolution structural MR volumetric image of the abdomen, a reasonable segmentation of the inner and outer borders of the bladder wall can be achievable. Starting from here, this paper reviews the limitation of a previous distance field-based approach of measuring the thickness between the two borders and then provides a solution to overcome the limitation by an electric field-based strategy. In addition, this paper further investigates a surface-fitting strategy to minimize the discretization errors on the voxel-like borders and facilitate the thickness mapping on the three-dimensional patient-specific bladder model. The presented thickness calculation and mapping were tested on both phantom and human subject datasets. The results are preliminary but very promising with a noticeable improvement over the previous distance field-based approach. (paper)

  5. Towards the development of cascaded surface plasmon resonance POF sensors exploiting gold films and synthetic recognition elements for detection of contaminants in transformer oil

    Directory of Open Access Journals (Sweden)

    M. Pesavento

    2017-04-01

    Full Text Available The possibility of developing a multichannel optical chemical sensor, based on molecularly imprinted polymers (MIPs and surface plasmon resonance (SPR in a D-shaped multimode plastic optical fiber (POF, is presented by two cascaded SPR-POF-MIP sensors with different thicknesses of the gold layer. The low cost, the high selectivity and sensitivity of the SPR-POF-MIP platforms and the simple and modular scheme of the optical interrogation layout make this system a potentially suitable on-line multi-diagnostic tool. As a proof of principle, the possibility of simultaneous determination of two important analytes, dibenzyl disulfide (DBDS and furfural (2-FAL, in power transformer oil was investigated. Their presence gives useful indication of underway corrosive or ageing processes in power transformers, respectively. Preliminarily, the dependence of the performance of the D-shaped optical platform on the gold film thickness has been studied, comparing two platforms with 30 nm and 60 nm thick gold layers. It has been found that the resonance wavelengths are different on platforms with gold layer of different thickness, furthermore when MIPs are present on the gold as receptors, the performances of the platforms are similar in the two considered sensors. Keywords: Cascaded multianalyte detection, Surface plasmon resonance, Dibenzyl disulfide, Furfural (furan-2-carbaldehyde, Molecularly imprinted polymers, Plastic optical fibers

  6. Gold removal rate by ion sputtering as a function of ion-beam voltage and raster size using Auger electron spectroscopy. Final report

    International Nuclear Information System (INIS)

    Boehning, C.W.

    1983-01-01

    Gold removal rate was measured as a function of ion beam voltage and raster size using Auger electron spectroscopy (AES). Three different gold thicknesses were developed as standards. Two sputter rate calibration curves were generated by which gold sputter rate could be determined for variations in ion beam voltage or raster size

  7. Observation of material, thickness, and bremsstrahlung x-ray intensity dependent effects in moderate and high Z targets in a gamma and x-ray LIDAR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Ayaz-Maierhafer, Birsen; Laubach, Mitchell A. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2015-06-01

    A high energy gamma and x-ray LIDAR system consisting of a fast pulse (~50 ps, FWHM) LINAC and a Cherenkov detection system was used to investigate response differences among materials, their thicknesses, and bremsstrahlung x-ray intensities. The energies and pulse width of electrons used to produce bremsstrahlung x-rays were set at 20 or 40 MeV and 50 ps FWHM duration, respectively. The Cherenkov detector was built with a fused silica glass optically coupled to a 51 mm fast timing photomultiplier tube, which has an intrinsic energy threshold of 340.7 keV for Compton backscattered gammas. Such a fast detection system yields a coincidence resolving time of 93 ps FWHM, which is equivalent to a depth resolving capability of about 3 cm FWHM. The thicknesses of iron and lead targets were varied from 1 in. to 7 in. with a step of 1 in., and the thicknesses of DU were varied from 1/3 in. to 1 in. with a step of 1/3 in. The experimental results show that iron targets tend to produce a factor of five less observed x-rays and gammas, with less energetic photoelectron frequency distributions, compared with DU and lead targets for the same beam intensity and target thicknesses. Additionally, the self-shielding effect causes the lead to yield more gammas than the DU considering the experimental observation point. For the setup used in this study, a charge per pulse in the range of 1–2.5 nC yields the best resolving capability between the DU and lead targets.

  8. Thin coating thickness determination using radioisotope-excited x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Del Castillo, Lorena A.; Calix, Virginia S.

    2001-01-01

    Three different approaches on thin coating thickness determination using a radioisotope-excited x-ray fluorescence spectrometry were demonstrated and results were compared. A standard of thin layer of gold (Au) on a nickel (Ni) substrate from the US National Bureau of Standards (with a nominal thickness of 0.300505 microns of at least 99.9% Au electrodeposited over 2 nils of Ni) on low carbon steel (1010) was analyzed using a Cd 109-excited XRF system. Au thickness computations were done using the (a) thin standard approach, (b) thick standard approach, and (c) x-ray absorption method (ASTM A754-79 1982). These three methods yielded results within the limit set by the American Society for Testing Materials (ASTM), which is +/-3%. Of the three methods, the thick standard yielded the best result with 0.124% error. (Author)

  9. Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, D.; Cavness, B.; Williams, S. [Department of Physics, Angelo State University, San Angelo, Texas 76909 (United States)

    2011-11-15

    Experimental results are presented comparing the intensities of the bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on a thick Ag target, measured at forward angles in the range of 0 degree sign to 55 degree sign . When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E{sub 0}. The results of our experiments suggest that, as k/E{sub 0}{yields} 0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. A comparison to the theory of Kissel et al.[At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E{sub 0}{approx_equal} 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program penelope.

  10. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  11. A search for strain gradients in gold thin films on substrates using x-ray diffraction

    International Nuclear Information System (INIS)

    Leung, O. S.; Munkholm, A.; Brennan, S.; Nix, W. D.

    2000-01-01

    The high strengths of gold thin films on silicon substrates have been studied with particular reference to the possible effect of strain gradients. Wafer curvature/thermal cycling measurements have been used to study the strengths of unpassivated, oxide-free gold films ranging in thickness from 0.1 to 2.5 μm. Films thinner than about 1 μm in thickness appear to be weakened by diffusional relaxation effects near the free surface and are not good candidates for the study of strain gradient plasticity. Our search for plastically induced strain gradients was thus limited to thicker films with correspondingly larger grain sizes. Three related x-ray diffraction techniques have been used to investigate the elastic strains in these films. The standard d hkl vs sin2 Ψ technique has been used to find the average strain through the thickness of the films. The results are consistent with wafer curvature measurements. We have also measured a number of d hkl 's as a function of penetration depth to construct depth-dependent d hkl vs sin2 Ψ plots. These data show that the residual elastic strain is essentially independent of depth in the film. Finally, a new technique for sample rotation has been used to measure the d hkl 's for a fixed set of grains in the film as a function of penetration depth. Again, no detectable gradient in strain has been observed. These results show that the high strengths of unpassivated gold films relative to the strength of bulk gold cannot be rationalized on the basis of strain gradients through the film thickness. However, a sharp gradient in strain close to the film substrate interface cannot be ruled out. (c) 2000 American Institute of Physics

  12. Low-Impact Exploration for Gold in the Scottish Caledonides.

    Science.gov (United States)

    Rice, Samuel; Cuthbert, Simon; Hursthouse, Andrew; Broetto, Gabriele

    2017-04-01

    The Caledonian orogenic belt of the northern British Isles hosts some significant gold deposits. However, gold mineralization in the region is underexplored. Some of the most prospective areas identified by rich alluvial gold anomalies are environmentally and culturally sensitive. Traditional mineral exploration methods can have a range of negative environmental, social and economic impacts. The regional tourism economy is dependent on outdoor activities, landscape quality, wildlife and industrial heritage and has the potential to be disrupted by mineral resource developments. Low-cost, low-impact exploration strategies are therefore, key to sustainably developing the mineral resource potential. Research currently in progress in part of the Scottish Caledonides aims to develop protocols for more sustainable exploration. We are using a range of geoscience techniques to characterize the mineral system, improve exploration targeting and reduce negative impacts. To do this we targeted an area with a large preexisting dataset (e.g. stream sediment geochemistry, geomorphology, structural geology, petrology, geophysics, mine data) that can be synthesized and analyzed in a GIS. Part of the work aims to develop and test a model for gold dispersion in the surface environment that accounts for climatic and anthropogenic influences in order to locate bedrock sources. This multidisciplinary approach aims to reduce the target areas for subsequent exploration activities such as soil sampling, excavation and drilling.

  13. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    KAUST Repository

    Wang, Liang

    2015-04-22

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen.

  14. Monte Carlo modelling and comparison with experiment of the nuclide production in thick stony targets isotropically irradiated with 600 MeV protons

    International Nuclear Information System (INIS)

    Aylmer, D.; Herzog, G.F.; Kruse, T.H.; Cloth, P.; Filges, D.; Moniot, R.K.; Signer, P.; Wieler, R.; Tuniz, C.

    1987-05-01

    Depth profiles for the production of stable and radioactive nuclides have been measured for a large variety of target elements in three thick spherical stony targets with radii of 5, 15 and 26 cm isotropically irradiated with 600 MeV protons at the CERN synchrocyclotron. These irradiation experiments (CERN SC96) were intended to simulate the irradiation of meteoroids by galactic cosmic ray protons. In order to combine this experimental approach with a theoretical one the intra- and internuclear cascades were calculated using Monte Carlo techniques via the high energy transport code HET/KFA 1. Together with transport calculations for low energy neutrons by the MORSE-CG code the depth dependent spectra of primary and secondary protons and of secondary neutrons were derived. On the basis of these spectra and a set of evaluated experimental excitation functions for p-induced reactions and of theoretical ones for n-induced reactions, calculated by the code ALICE LIVERMORE 82, theoretical depth profiles for the production of stable and radioactive nuclides in the three thick targets were calculated. This report is a comprehensive survey on all those target/product combination for which both experimental and theoretical data are available. It provides the basis for a detailed discussion of the various production modes of residual nuclides and on the depth and size dependence of their production rates in thick stony targets, serving as a simulation of the galactic cosmic ray irradiation of meteoroids in space. On the other hand the comparison of the experimental and theoretical depth profiles validates the high energy transport calculations, making them a promissing tool for further model calculations of the interactions of cosmic rays with matter. (orig.)

  15. GOLD NANOPARTICLES: A REVIVAL IN PRECIOUS METAL ADMINISTRATION TO PATIENTS

    Science.gov (United States)

    Thakor, AS; Jokerst, J; Zaveleta, C; Massoud, TF; Gambhir, SS

    2011-01-01

    Gold has been used as a therapeutic agent to treat a wide variety of rheumatic diseases including psoriatic arthritis, juvenile arthritis and discoid lupus erythematosus. Although the use of gold has been largely superseded by newer drugs, gold nanoparticles are being used effectively in laboratory based clinical diagnostic methods whilst concurrently showing great promise in vivo either as a diagnostic imaging agent or a therapeutic agent. For these reasons, gold nanoparticles are therefore well placed to enter mainstream clinical practice in the near future. Hence, the present review summarizes the chemistry, pharmacokinetics, bio-distribution, metabolism and toxicity of bulk gold in humans based on decades of clinical observation and experiments in which gold was used to treat patients with rheumatoid arthritis. The beneficial attributes of gold nanoparticles, such as their ease of synthesis, functionalization and shape control are also highlighted demonstrating why gold nanoparticles are an attractive target for further development and optimization. The importance of controlling the size and shape of gold nanoparticles to minimize any potential toxic side effects is also discussed. PMID:21846107

  16. Bioassisted Phytomining of Gold

    Science.gov (United States)

    Maluckov, Biljana S.

    2015-05-01

    Bioassisted phytomining implies targeted use of microorganisms and plants for the selective recovery of the metal. Metals from undissolved compounds are dissolved by applying specially chosen microorganisms and therefore become available to the hyperaccumulating plants. In the article, the selective extraction method of base metals and the precious metal gold by using microorganisms and plants is discussed.

  17. Bismuth-silver mineralization in the Sergozerskoe gold occurrence

    Directory of Open Access Journals (Sweden)

    Kalinin A. A.

    2017-03-01

    Full Text Available Bismuth-silver mineralization attendant to gold mineralization in the Sergozerskoe gold occurrence has been studied in detail. Bi-Ag mineralization is connected with diorite porphyry dykes, which cut volcanic-sedimentary Lopian complexes of the Strel'ninsky greenstone belt – hornblendite and actinolite-chlorite amphibolites, biotite and bi-micaceous gneisses. Distribution of Bi-Ag mineralization similar to gold mineralization is controlled by 80 m thick zone of silicification. Bi minerals are found in brecciated diorite porphyry. Bismuth-silver mineralization includes native metals (bismuth, electrum, silver, tellurides (hedleyite, hessite, selenides (ikunolite, sulfides and sulfosalts of Bi and Ag (matildite, lillianite, eckerite, jalpaite, prustite, acanthite, a few undiagnosed minerals. All Bi and Ag minerals associate with galena. Composition of mineralization evolved from early to late stages of development, depending on intensity of rock alteration. The earliest Bi-Ag minerals were native bismuth and hedleyite formed dissemination in galena, and electrum with 30-45 mass.% Au. Later native bismuth was partly substituted by silver and bismuth sulfosalts and bismuth sulfides. The latest minerals were low-temperature silver sulfides eckerite, jalpaite, and acanthite, which were noted only in the most intensively altered rocks. As soon as the process of formation of Bi-Ag mineralization is the same as formation of gold, findings of bismuth-silver mineralization can serve as a positive exploration sign for gold in the region.

  18. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    Energy Technology Data Exchange (ETDEWEB)

    Thovhogi, Ntevheleni; Sibuyi, Nicole [Medical Research Council, Diabetes Research Group (South Africa); Meyer, Mervin [University of the Western Cape, Biotechnology Department, DST/Mintek Nanotechnology Innovation Centre (South Africa); Onani, Martin [University of the Western Cape, Chemistry Department (South Africa); Madiehe, Abram, E-mail: amadiehe@csir.co.za [Medical Research Council, Diabetes Research Group (South Africa)

    2015-02-15

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats.

  19. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    International Nuclear Information System (INIS)

    Thovhogi, Ntevheleni; Sibuyi, Nicole; Meyer, Mervin; Onani, Martin; Madiehe, Abram

    2015-01-01

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats

  20. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    Science.gov (United States)

    Thovhogi, Ntevheleni; Sibuyi, Nicole; Meyer, Mervin; Onani, Martin; Madiehe, Abram

    2015-02-01

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats.

  1. Neutron yield of thick {sup 12}C and {sup 13}C targets with 20 and 30 MeV deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Lhersonneau, G.; Fadil, M. [GANIL, Caen (France); Malkiewicz, T. [CSC - IT Center for Science Ltd., Espoo (Finland); Gorelov, D.; Sorri, J.; Trzaska, W.H. [University of Jyvaskyla, Department of Physics, Jyvaskyla (Finland); Jones, P.; Ngcobo, P.Z. [iThemba Laboratory for Accelerator Based Science, Western Cape (South Africa)

    2016-12-15

    The neutron yield of thick targets of carbon, natural and enriched in {sup 13}C, bombarded by deuterons of 20 and 30 MeV has been measured by the activation method. The gain with respect to a {sup 12}C target is the same as with protons beams. The yield ratio is about 1.2 only and hardly can justify the use of a {sup 13}C target with deuteron beams. The data, apart from being of interest for the design of facilities where secondary neutron beams are used, provide a test case for calculations where both beam and target have a weakly bound neutron. The MCNPx code version 2.6.0, despite failing to reproduce some details of the experimental distributions, describes their global properties fairly well, especially the relative yields of the {sup 12}C and {sup 13}C targets. (orig.)

  2. 4D modeling in a gimbaled linear accelerator by using gold anchor markers.

    Science.gov (United States)

    Miura, Hideharu; Ozawa, Shuichi; Matsuura, Takaaki; Kawakubo, Atsushi; Hosono, Fumika; Yamada, Kiyoshi; Nagata, Yasushi

    2018-01-01

    The purpose of this study was to verify whether the dynamic tumor tracking (DTT) feature of a Vero4DRT system performs with 10-mm-long and 0.28 mm diameter gold anchor markers. Gold anchor markers with a length of 10 mm and a diameter of 0.28 mm were used. Gold anchor markers were injected with short and long types into bolus material. These markers were sandwiched by a Tough Water (TW) phantom in the bolus material. For the investigation of 4-dimensional (4D) modeling feasibility under various phantom thicknesses, the TW phantom was added at 2 cm intervals (in upper and lower each by 1 cm). A programmable respiratory motion table was used to simulate breathing-induced organ motion, with an amplitude of 30 mm and a breathing cycle of 3 s. X-ray imaging parameters of 80 kV and 125 kV (320 mA and 5 ms) were used. The least detection error of the fiducial marker was defined as the 4D-modeling limitation. The 4D modeling process was attempted using short and long marker types and its limitation with the short and long types was with phantom thicknesses of 6 and 10 cm at 80 kV and 125 kV, respectively. However, the loss in detectability of the gold anchor because of 4D-modeling errors was found to be approximately 6% (2/31) with a phantom thickness of 2 cm under 125 kV. 4D-modeling could be performed except under the described conditions. This work showed that a 10-mm-long gold anchor marker in short and long types can be used with DTT for short water equivalent path length site, such as lung cancer patients, in the Vero4DRT system.

  3. Fabrication of disposable topographic silicon oxide from sawtoothed patterns: control of arrays of gold nanoparticles.

    Science.gov (United States)

    Cho, Heesook; Yoo, Hana; Park, Soojin

    2010-05-18

    Disposable topographic silicon oxide patterns were fabricated from polymeric replicas of sawtoothed glass surfaces, spin-coating of poly(dimethylsiloxane) (PDMS) thin films, and thermal annealing at certain temperature and followed by oxygen plasma treatment of the thin PDMS layer. A simple imprinting process was used to fabricate the replicated PDMS and PS patterns from sawtoothed glass surfaces. Next, thin layers of PDMS films having different thicknesses were spin-coated onto the sawtoothed PS surfaces and annealed at 60 degrees C to be drawn the PDMS into the valley of the sawtoothed PS surfaces, followed by oxygen plasma treatment to fabricate topographic silicon oxide patterns. By control of the thickness of PDMS layers, silicon oxide patterns having various line widths were fabricated. The silicon oxide topographic patterns were used to direct the self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films via solvent annealing process. A highly ordered PS-b-P2VP micellar structure was used to let gold precursor complex with P2VP chains, and followed by oxygen plasma treatment. When the PS-b-P2VP thin films containing gold salts were exposed to oxygen plasma environments, gold salts were reduced to pure gold nanoparticles without changing high degree of lateral order, while polymers were completely degraded. As the width of trough and crest in topographic patterns increases, the number of gold arrays and size of gold nanoparticles are tuned. In the final step, the silicon oxide topographic patterns were selectively removed by wet etching process without changing the arrays of gold nanoparticles.

  4. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    Science.gov (United States)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-08-01

    Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor-liquid-solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  5. Gold and silver thin film analysis by optical and neutron activation techniques

    International Nuclear Information System (INIS)

    Moharram, B.M.; El-Khatib, A.M.; Ammar, E.A.

    1989-01-01

    Thicknesses of gold and silver thin films have been determined by NAA technique. Reasonable agreement with conventional optical methods has been obtained, but the lower detection limit in the case of NAA is far better than in the optical method. (author)

  6. The infrared transmission through gold films on ordered two-dimensional non-close-packed colloidal crystals

    International Nuclear Information System (INIS)

    Ju Jing; Zhou Yuqin; Dong Gangqiang

    2014-01-01

    We studied the infrared transmission properties of gold films on ordered two-dimensional non-close-packed polystyrene (PS) colloidal crystal. The gold films consist of gold half-shells on the PS spheres and gold film with 2D arrays of holes on the glass substrate. An extraordinary optical transmission phenomenon could be found in such a structure. Simulations with the finite-difference time-domain method were also employed to get the transmission spectra and electric field distribution. The transmission response of the samples can be adjusted by controlling the thickness of the gold films. Angle-resolved measurements were performed using polarized light to obtain more information about the surface plasmon polariton resonances of the gold films. As the angle changes, the transmission spectra change a lot. The transmission spectra of p-polarized light have quite different properties compared to those of s-polarized light. (semiconductor physics)

  7. Measurement of thick target neutron yield from the reaction (p+181 Ta) with projectiles in the range of 6-20 MeV

    Science.gov (United States)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P.; Sharma, S. C.; Joshi, D. S.; Bandyopadhyay, T.

    2018-02-01

    181Ta is a commonly used backing material for many targets in nuclear reaction studies. When the target thickness is less than the range of bombarded projectiles, the interaction via Ta(p,n) reactions in the backing can be a significant source of background. In this study, the neutron spectral yields from the reaction of protons of different energies (between 6 to 20 MeV) with a thick Ta target were determined using CR-39 detectors. The results from this study can be used as a correction factor in such situations. The parameters of registered tracks in CR-39 were analysed using an in-house image analysing program autoTRAK_n and then to derive the associated dose values. The spectral yields obtained experimentally were compared with those obtained from the theoretical calculations. The neutron yield was found to increase with increase in projectile energy mainly due to the opening of reaction channels from (p, n) to (p, 3n).

  8. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    Science.gov (United States)

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  9. Growth of pentacene on clean and modified gold surfaces

    International Nuclear Information System (INIS)

    Kaefer, Daniel; Ruppel, Lars; Witte, Gregor

    2007-01-01

    The growth and evolution of pentacene films on gold substrates have been studied. By combining complementary techniques including scanning tunneling microscopy, atomic force microscopy, scanning electron microscopy, near-edge x-ray-absorption fine structure, and x-ray diffraction, the molecular orientation, crystalline structure, and morphology of the organic films were characterized as a function of film thickness and growth parameters (temperature and rate) for different gold substrates ranging from Au(111) single crystals to polycrystalline gold. Moreover, the influence of precoating the various gold substrates with self-assembled monolayers (SAM's) of organothiols with different chemical terminations has been studied. On bare gold the growth of pentacene films is characterized by a pronounced dewetting while the molecular orientation within the resulting crystalline three-dimensional islands depends distinctly on the roughness and cleanliness of the substrate surface. After completion of the first wetting layer where molecules adopt a planar orientation parallel to the surface the molecules continue to grow in a tilted fashion: on Au(111) the long molecular axis is oriented parallel to the surface while on polycrystalline gold it is upstanding oriented and thus parallels the crystalline orientation of pentacene films grown on SiO 2 . On SAM pretreated gold substrates the formation of a wetting layer is effectively suppressed and pentacene grows in a quasi-layer-by-layer fashion with an upstanding orientation leading to rather smooth films. The latter growth mode is observed independently of the chemical termination of the SAM's and the roughness of the gold substrate. Possible reasons for the different growth mechanism as well as consequences for the assignment of spectroscopic data of thin pentacene film are discussed

  10. Charge state and incident energy dependence of K X-ray emission as a function of target thickness for 50-165 MeV Cu ions incident on 11-250 μg/cm2 Cu

    International Nuclear Information System (INIS)

    Momoi, T.; Shima, K.; Umetani, K.; Moriyama, M.; Ishihara, T.; Mikumo, T.

    1986-01-01

    Thin self-supporting Cu targets in 11-250 μg/cm 2 thickness were bombarded with 50-165 MeV Cu sup(qi + ) ions (7 + )+Cu. From the observed K X-ray yields, K-shell vacancy production cross sections averaged over the target thickness t of projectile sigmasub(KV) and target sigmasup(*)sub(KV) were separately derived taking into account the fluorescence yield that can be estimated from the Ksub(α) X-ray energy shift. When the values of sigmasub(KV) and sigmasup(*)sub(KV) are extrapolated to zero foil thickness, the K shell vacancy formed in the collision has been found to be equally shared between projectile and target in a single collision. With the increase of penetration depth, however, the values of sigmasup(*)sub(KV) are greater than those of sigmasub(KV) presumably due to electron transfer of a target K electron to the projectile K vacancy. The evolution process of projectile excited states as a function of target thickness and the resulting variation of projectile and target K X-ray emissions are discussed. (orig.)

  11. A simple thick target for production of 89Zr using an 11MeV cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Krohn, Kenneth A.; O' Hara, Matthew J.

    2017-04-01

    The growing interest but limited availability of 89Zr for PET led us to test targets for the 89(p,n) reaction. The goal was an easily constructed target for an 11 MeV Siements cyclotron. Yttrium foils were tested at different thicknesses, angles and currents. A 90 degree foil tolerated 41 microAmp without damage and produced ~800 MBq/hr, >20 mCi, an amount adequate for radiochemistry research and human doses in a widely available accelerator. This method should translate to higher energy cyclotrons.

  12. The Effect of Voltage Charging on the Transport Properties of Gold Nanotube Membranes.

    Science.gov (United States)

    Experton, Juliette; Martin, Charles R

    2018-05-01

    Porous membranes are used in chemical separations and in many electrochemical processes and devices. Research on the transport properties of a unique class of porous membranes that contain monodisperse gold nanotubes traversing the entire membrane thickness is reviewed here. These gold nanotubes can act as conduits for ionic and molecular transports through the membrane. Because the tubes are electronically conductive, they can be electrochemically charged by applying a voltage to the membrane. How this "voltage charging" affects the transport properties of gold nanotube membranes is the subject of this Review. Experiments showing that voltage charging can be used to reversibly switch the membrane between ideally cation- and anion-transporting states are reviewed. Voltage charging can also be used to enhance the ionic conductivity of gold nanotube membranes. Finally, voltage charging to accomplish electroporation of living bacteria as they pass through gold nanotube membranes is reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Study of X-ray spectrum of laser-produced gold plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, M. (CEA Centre d' Etudes de Limeil, 94 - Villeneuve-Saint-Georges (France)); Pain, D.; Bauche, J.; Luc-Koenig, E. (Centre National de la Recherche Scientifique, 91 - Orsay (France). Lab. Aime Cotton)

    1985-02-01

    Aiming at the spectroscopic diagnostic of gold plasmas, we have studied the wavelengths and intensities of X-ray spectral lines emitted in the range 4.4 to 6.2 angstroms by a target made of gold alloyed to a few percent of aluminium irradiated by a laser pulse. Aluminium yields the wavelength calibration and a monitoring of the temperature and the density of the plasma. The main features of the gold spectrum in this spectral range are due to the 3d-4f, 3p-4s and 3d-4p transitions of gold in the Co I through Cu I isoelectronic sequences.

  14. Study of X-ray spectrum of laser-produced gold plasmas

    International Nuclear Information System (INIS)

    Busquet, M.; Pain, D.; Bauche, J.; Luc-Koenig, E.

    1985-01-01

    Aiming at the spectroscopic diagnostic of gold plasmas, we have studied the wavelengths and intensities of X-ray spectral lines emitted in the range 4.4 to 6.2 angstroms by a target made of gold alloyed to a few percent of aluminium irradiated by a laser pulse. Aluminium yields the wavelength calibration and a monitoring of the temperature and the density of the plasma. The main features of the gold spectrum in this spectral range are due to the 3d-4f, 3p-4s and 3d-4p transitions of gold in the Co I through Cu I isoelectronic sequences. (orig.)

  15. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  16. WE-G-BRE-07: Proton Therapy Enhanced by Tumor-Targeting Gold Nanoparticles: A Pilot in Vivo Experiment at The Proton Therapy Center at MD Anderson Cancer Center

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, T; Grant, J; Wolfe, A; Gillin, M; Krishnan, S [MD Anderson Cancer Ctr., Houston, TX (United States)

    2014-06-15

    Purpose: Assess tumor-growth delay and survival in a mouse model of prostate cancer treated with tumor-targeting gold nanoparticles (AuNPs) and proton therapy. Methods: We first examined the accumulation of targeting nanoparticles within prostate tumors by imaging AuNPs with ultrasound-guided photoacoustics at 24h after the intravenous administration of goserelin-conjugated AuNPs (gAuNP) in three mice. Nanoparticles were also imaged at the cellular level with TEM in PC3 cells incubated with gAuNP for 24h. Pegylated AuNPs (pAuNP) were also imaged in vivo and in vitro for comparison. PC3 cells were then implanted subcutaneously in nude mice; 51mice with 8–10mm tumors were included. AuNPs were injected intravenously at 0.2%w/w final gold concentration 24h before irradiation. A special jig was designed to facilitate tumor irradiation perpendicular to the proton beam. Proton energy was set to 180MeV, the radiation field was 18×18cm{sup 2}, and 9cm or 13.5cm thick solid-water compensators were used to position the tumors at either the beam entrance (BE) or the SOBP. Physical doses of 5Gy were delivered to all tumors on a patient beam line at MD Anderson's Proton Therapy Center. Results: The photoacoustic experiment reveled that our nanoparticles leak from the tumor-feeding vasculature and accumulate within the tumor volume over time. Additionally, TEM images showed gAuNP are internalized in cancer cells, accumulating within the cytoplasm, whereas pAuNP are not. Tumor-growth was delayed by 11 or 32days in mice receiving gAuNP irradiated at the BE or the SOBP, relative to proton radiation alone. Survival curves (ongoing experiment) reveal that gAuNPs improved survival by 36% or 74% for tumors irradiated at the BE or SOBP. Conclusion: These important, albeit preliminary, in vivo findings reveal nanoparticles to be potent sensitizers to proton therapy. Further, conjugation of AuNPs to tumor-specific antigens that promote enhanced cellular internalization improved

  17. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T1&T2-MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy.

    Science.gov (United States)

    Wang, Guannan; Qian, Kun; Mei, Xifan

    2018-06-14

    Multifunctional nanoparticles, bearing low toxicity and tumor-targeting properties, coupled with multifunctional diagnostic imaging and enhanced treatment efficacy, have drawn tremendous attention due to their enormous potential for medical applications. Herein, we report a new kind of biocompatible and tumor-targeting magneto-gold@fluorescent polymer nanoparticle (MGFs-LyP-1), which is based on ultra-small magneto-gold (Fe 3 O 4 -Au) nanoparticles and NIR emissive fluorescent polymers by a solvent-mediated method. This kind of nanoparticle could be taken up efficiently and simultaneously serve for in vivo tumor targeting T 1 &T 2 -MRI/CT/near infrared (NIR) fluorescence bioimaging. Furthermore, the nanoparticles exhibit small size, higher tumor targeting accumulation, excellent cytocompatibility for long-term tracking, and no disturbing cell proliferation and differentiation. Moreover, clear and convincing evidence proves that as-synthesized MGFs-LyP-1 could elicit genuine autophagy via inducing autophagosome formation, which offers a definite synergistic effect to enhance cancer therapy with doxorubicin (DOX) at a nontoxic concentration through enhancement of the autophagy flux. Meanwhile, the as-prepared nanoparticles could be rapidly cleared from mice without any obvious organ impairment. The results indeed reveal a promising prospect of an MGFs-LyP-1 contrast agent with low toxicity and high efficiency for promising application in biomedicine.

  18. Non-ohmic transport behavior in ultra-thin gold films

    International Nuclear Information System (INIS)

    Alkhatib, A.; Souier, T.; Chiesa, M.

    2011-01-01

    Highlights: → C-AFM study on ultra-thin gold films. → Connection between ultra-thin film morphology and lateral electrical transport. → Transition between ohmic and non-ohmic behavior. → Electrical transition correlation to the film structure continuity. → Direct and indirect tunneling regimes related to discontinuous structures. - Abstract: Structure and local lateral electrical properties of Au films of thicknesses ranging from 10 to 140 nm are studied using conductive atomic force microscopy. Comparison of current maps taken at different thicknesses reveals surprising highly resistive regions (10 10 -10 11 Ω), the density of which increases strongly at lower thickness. The high resistivity is shown to be directly related to discontinuities in the metal sheet. Local I-V curves are acquired to show the nature of electrical behavior relative to thickness. Results show that in Au films of higher thickness the electrical behavior is ohmic, while it is non-ohmic in highly discontinuous films of lower thickness, with the transition happening between 34 and 39 nm. The non-ohmic behavior is explained with tunneling occurring between separated Au islands. The results explain the abrupt increase of electrical resistivity at lower thin film thicknesses.

  19. Laser generated guided waves and finite element modeling for the thickness gauging of thin layers.

    Science.gov (United States)

    Lefevre, F; Jenot, F; Ouaftouh, M; Duquennoy, M; Ourak, M

    2010-03-01

    In this paper, nondestructive testing has been performed on a thin gold layer deposited on a 2 in. silicon wafer. Guided waves were generated and studied using a laser ultrasonic setup and a two-dimensional fast Fourier transform technique was employed to obtain the dispersion curves. A gold layer thickness of 1.33 microm has been determined with a +/-5% margin of error using the shape of the two first propagating modes, assuming for the substrate and the layer an uncertainty on the elastic parameters of +/-2.5%. A finite element model has been implemented to validate the data post-treatment and the experimental results. A good agreement between the numerical simulation, the analytical modeling and the experimentations has been observed. This method was considered suitable for thickness layer higher than 0.7 microm.

  20. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles

    NARCIS (Netherlands)

    Cormode, David P.; Roessl, Ewald; Thran, Axel; Skajaa, Torjus; Gordon, Ronald E.; Schlomka, Jens-Peter; Fuster, Valentin; Fisher, Edward A.; Mulder, Willem J. M.; Proksa, Roland; Fayad, Zahi A.

    2010-01-01

    To investigate the potential of spectral computed tomography (CT) (popularly referred to as multicolor CT), used in combination with a gold high-density lipoprotein nanoparticle contrast agent (Au-HDL), for characterization of macrophage burden, calcification, and stenosis of atherosclerotic

  1. Characterization of Pulse Reverses Electroforming on Hard Gold Coating.

    Science.gov (United States)

    Byoun, Young-Min; Noh, Young-Tai; Kim, Young-Geun; Ma, Seung-Hwan; Kim, Gwan-Hoon

    2018-03-01

    Effect of pulse reverse current (PRC) method on brass coatings electroplated from gold solution was investigated by various plating parameters such as plating duration, the anodic duty cycle, the anodic current density and the cathodic current density. The reversed current results in a significant change in the morphology of electrodeposits, improvement of the overall current efficiency and reduction of deposit porosity. With longer pulses, hemispherical surface features are generated, while larger grains result from shorter pulse widths. The porosity of the plated samples is found to decrease compared with results at the same time-average plating rate obtained from DC or Pulse plating. A major impediment to reducing gold later thickness is the corrosion of the underlying substrate, which is affected by the porosity of the gold layer. Both the morphology and the hydrogen evolution reaction have significant impact on porosity. PRC plating affect hydrogen gold and may oxidize hydrogen produced during the cathodic portion of the waveform. Whether the dissolution of gold and oxidation of hydrogen occur depends on the type of plating bath and the plating conditions adapted. In reversed pulse plating, the amount of excess near-surface cyanide is changed after the cathodic current is applied, and the oxidation of gold under these conditions has not been fully addressed. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance.

  2. Validation of MC models of spallation reactions in thin and thick targets in the GeV range

    International Nuclear Information System (INIS)

    Goldenbaum, F.; Filges, D.; Neef, R.D.; Nuenighoff, K.; Paul, N.; Schaal, H.; Sterzenbach, G.; Tietze, A.; Wohlmuther, M.; Galin, J.; Letourneau, A.; Lott, B.; Peghaire, A.; Pienkowski, L.

    2001-01-01

    In the framework of new projects of intense spallation neutron sources an extensive experimental and theoretical effort is devoted to the precise prediction and optimization of the targets and shielding in terms of reaction cross sections, hadronic interaction lengths and usable neutrons produced in proton induced spallation reactions. Strong constraints on Monte-Carlo high energy transport codes are put by a measurement campaign of the NESSI (neutron scintillator and silicon detector) collaboration. While the predictive power of inter- and intra-nuclear cascade models coupled to evaporation codes and transport systems is excellent as far as neutron production in thick targets is concerned, there are considerable discrepancies not only between experiments and models, but also among the different codes themselves when regarding charged particle production in thin targets. In the current contribution a representative validation will be executed and possible deficiencies within the codes are elaborated. (orig.)

  3. Gold placer and Quaternary stratigraphy of the Jabal Mokhyat area, southern Najd Province, Kingdom of Saudi Arabia

    Science.gov (United States)

    Schmidt, D.L.; Puffett, W.P.; Campbell, W.L.; Al-Koulak, Z. H.

    1981-01-01

    An ancient gold placer at Jabal Mokhyat (lat 20?12.2'N., long 43?28'E.), about 90 km east of Qalat Bishah in the southern Najd Province, Kingdom of Saudi Arabia, was studied in 1973. Seven hundred and twenty-eight samples in 25 measured sections were collected along trenches and pits 2.5 m in depth and 2,600 m in total length. Alluvium was thicker than the excavation depth along about 50 percent of the trench length. The average gold content was 4.4 mg per m3, and the highest grade trench contained 40 mg gold per m 3. Because fine particulate gold is rare in the alluvium, a few large particles, 1 to 5 mm in diameter, greatly affected the sampling results. The ancient placer diggings are in small headwater wadis distributed over a 30-km 2 area, and the total dug area is about 1.2 km2. The placer produced an estimated 50 kg of gold and was worked about 2,600 + 250 years ago. The potential for a present-day placer operation is small. The gold is sparsely distributed in locally derived, flood-deposited, immature gravels throughout a stratigraphic section that consists of 1) calichified, saprolitic bedrock of Precambrian age; 2) basal, intensely calichified, saprolitic gravel (0-3 m thick) of Pleistocene age; 3) disconformable, slightly consolidated gravel and sand (0-1 m thick) of late Pleistocene age containing sparse, disseminated caliche; 4) firm loessic silt (0-1 m thick) of early Holocene age; and 5) loose sand and gravel (0.3-1 m thick) of late Holocene age. The loessic silt accumulated during the Holocene pluvial. The top of the loessic silt unit is dated at about 6,000 years B.P. by using charcoal from hearths of ancient man. Following the Holocene pluvial, the climate became arid, and extreme desiccation resulted in abundant eolian sand that progressively diluted the late Holocene gravels. The remnants of the pre-Holocene stratigraphy suggest similar climatic cycles during the Pleistocene. Abundant, sparsely mineralized, gold-bearing quartz veins (0-1 m wide

  4. Local re-acceleration and a modified thick target model of solar flare electrons

    Science.gov (United States)

    Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.

    2009-12-01

    Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as

  5. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance.

    Science.gov (United States)

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-17

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  6. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    Science.gov (United States)

    Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu

    2010-09-01

    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.

  7. Enhancement of radiation effect on cancer cells by gold-pHLIP

    Science.gov (United States)

    Antosh, Michael P.; Wijesinghe, Dayanjali D.; Shrestha, Samana; Lanou, Robert; Huang, Yun Hu; Hasselbacher, Thomas; Fox, David; Neretti, Nicola; Sun, Shouheng; Katenka, Natallia; Cooper, Leon N; Andreev, Oleg A.; Reshetnyak, Yana K.

    2015-01-01

    Previous research has shown that gold nanoparticles can increase the effectiveness of radiation on cancer cells. Improved radiation effectiveness would allow lower radiation doses given to patients, reducing adverse effects; alternatively, it would provide more cancer killing at current radiation doses. Damage from radiation and gold nanoparticles depends in part on the Auger effect, which is very localized; thus, it is important to place the gold nanoparticles on or in the cancer cells. In this work, we use the pH-sensitive, tumor-targeting agent, pH Low-Insertion Peptide (pHLIP), to tether 1.4-nm gold nanoparticles to cancer cells. We find that the conjugation of pHLIP to gold nanoparticles increases gold uptake in cells compared with gold nanoparticles without pHLIP, with the nanoparticles distributed mostly on the cellular membranes. We further find that gold nanoparticles conjugated to pHLIP produce a statistically significant decrease in cell survival with radiation compared with cells without gold nanoparticles and cells with gold alone. In the context of our previous findings demonstrating efficient pHLIP-mediated delivery of gold nanoparticles to tumors, the obtained results serve as a foundation for further preclinical evaluation of dose enhancement. PMID:25870296

  8. Polypyrrole–gold nanoparticle composites for highly sensitive DNA detection

    International Nuclear Information System (INIS)

    Spain, Elaine; Keyes, Tia E.; Forster, Robert J.

    2013-01-01

    DNA capture surfaces represent a powerful approach to developing highly sensitive sensors for identifying the cause of infection. Electrochemically deposited polypyrrole, PPy, films have been functionalized with electrodeposited gold nanoparticles to give a nanocomposite material, PPy–AuNP. Thiolated capture strand DNA, that is complementary to the sequence from the pathogen Staphylococcus aureus that causes mammary gland inflammation, was then immobilized onto the gold nanoparticles and any of the underlying gold electrode that is exposed. A probe strand, labelled with horse radish peroxidase, HRP, was then hybridized to the target. The concentration of the target was determined by measuring the current generated by reducing benzoquinone produced by the HRP label. Semi-log plots of the pathogen DNA concentration vs. faradaic current are linear from 150 pM to 1 μM and pM concentrations can be detected without the need for molecular, e.g., PCR or NASBA, amplification. The nanocomposite also exhibits excellent selectivity and single base mismatches in a 30 mer sequence can be detected

  9. Metamorphic rock-hosted orogenic gold deposit style at Bombana (Southeast Sulawesi and Buru Island (Maluku: Their key features and significances for gold exploration in Eastern Indonesia

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2017-06-01

    Full Text Available In Indonesia, gold is commonly mined from epithermal-, porphyry-, and skarn-type deposits that are commonly found in volcanic belts along island arcs or active continental margin settings. Numerous gold prospects, however, were recently discovered in association with metamorphic rocks. This paper focuses on metamorphic rock-hosted gold mineralization in Eastern Indonesia, in particular the Bombana (SE Sulawesi and Buru Island (Maluku prospects. At Bombana, gold-bearing quartz-veins are hosted by the Pompangeo metamorphic complex. Sheared, segmented veins vary in thickness from 2 cm to 2 m. Gold is mainly present in the form of ‘free gold’ among silicate minerals and closely related to cinnabar, stibnite, tripuhyite, and in places, minor arsenopyrite. The gold distribution is erratic, however, ranging from below detection limit up to 134 g/t. At least three generations of veins are identified. The first is parallel to the foliation, the second crosscuts the first generation of veins as well as the foliation, and the late-stage laminated deformed quartz-calcite vein represents the third mineralization stage. The early veins are mostly massive to crystalline, occasionally brecciated, and sigmoidal, whereas the second-stage veins are narrower than the first ones and less subjected to brecciation. Gold grades in the second- and third-stage veins are on average higher than that in the earlier veins. Microthermometric and Raman spectrometric studies of fluid inclusions indicate abundant H2O-NaCl and minor H2O-NaCl-CO2 fluids. Homogenization temperatures and salinities vary from 114 to 283 ºC and 0.35 to 9.08 wt.% NaCl eq., respectively. Crush-leach analysis of fluid inclusions suggests that the halogen fluid chemistry is not identical to sea water, magmatic or epithermal related fluids, but tends to be similar to fluids in mesothermal-type gold deposits. In Buru Island (Gunung Botak and Gogorea prospects, two distinct generations of quartz veins

  10. Gold in the hills: patterns of placer gold accumulation under dynamic tectonic and climatic conditions

    Science.gov (United States)

    Roy, Sam; Upton, Phaedra; Craw, Dave

    2018-01-01

    Formation of placer accumulations in fluvial environments requires 103-106 or even greater times concentration of heavy minerals. For this to occur, regular sediment supply from erosion of adjacent topography is required, the river should remain within a single course for an extended period of time and the material must be reworked such that a high proportion of the sediment is removed while a high proportion of the heavy minerals remains. We use numerical modeling, constrained by observations of circum-Pacific placer gold deposits, to explore processes occurring in evolving river systems in dynamic tectonic environments. A fluvial erosion/transport model is used to determine the mobility of placer gold under variable uplift rate, storm intensity, and rock mass strength conditions. Gold concentration is calculated from hydraulic and bedload grain size conditions. Model results suggest that optimal gold concentration occurs in river channels that frequently approach a threshold between detachment-limited and transport-limited hydraulic conditions. Such a condition enables the accumulation of gold particles within the framework of a residual gravel lag. An increase in transport capacity, which can be triggered by faster uplift rates, more resistant bedrock, or higher intensity storm events, will strip all bedload from the channel. Conversely, a reduction in transport capacity, triggered by a reduction in uplift rate, bedrock resistance, or storm intensity, will lead to a greater accumulation of a majority of sediments and a net decrease in gold concentration. For our model parameter range, the optimal conditions for placer gold concentration are met by 103 times difference in strength between bedrock and fault, uplift rates between 1 and 5 mm a-1, and moderate storm intensities. Fault damage networks are shown to be a critical factor for high Au concentrations and should be a target for exploration.

  11. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II)

    Science.gov (United States)

    Zhu, Jian; Chang, Hui; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu

    2018-01-01

    The effect of silicon-coated gold nanoparticles with different gold core diameter and silica shell thickness on the fluorescence emission of CdTe quantum dots (QDs) was investigated. For gold nanoparticles with a diameter of 15 nm, silica coating can only results in fluorescence recover of the bare gold nanoparticle-induced quenching of QDs. However, when the size of gold nanoparticle is increased to 60 nm, fluorescence enhancement of the QDs could be obtained by silica coating. Because of the isolation of the silica shell-reduced quenching effect and local electric field effect, the fluorescence of QDs gets intense firstly and then decreases. The maximum fluorescence enhancement takes place as the silica shell has a thickness of 30 nm. This enhanced fluorescence from silicon-coated gold nanoparticles is demonstrated for sensing of Hg2 +. Under optimal conditions, the enhanced fluorescence intensity decreases linearly with the concentration of Hg2 + ranging from 0 to 200 ng/mL. The limit of detection for Hg2 + is 1.25 ng/mL. Interference test and real samples detection indicate that the influence from other metal ions could be neglected, and the Hg2 + could be specifically detected.

  12. Diverse Near-Infrared Resonant Gold Nanostructures for Biomedical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-12-08

    The ability of near-infrared (NIR) light to penetrate tissues deeply and to target malignant sites with high specificity via precise temporal and spatial control of light illumination makes it useful for diagnosing and treating diseases. Owing to their unique biocompatibility, surface chemistry and optical properties, gold nanostructures offer advantages as in vivo NIR photosensitizers. This chapter describes the recent progress in the varied use of NIR-resonant gold nanostructures for NIR-light-mediated diagnostic and therapeutic applications. We begin by describing the unique biological, chemical and physical properties of gold nanostructures that make them excellent candidates for biomedical applications. From here, we make an account of the basic principles involved in the diagnostic and therapeutic applications where gold nanostructures have set foot. Finally, we review recent developments in the fabrication and use of diverse NIR-resonant gold nanostructures for cancer imaging and cancer therapy.

  13. The influence of structure depth on image blurring of micrometres-thick specimens in MeV transmission electron imaging.

    Science.gov (United States)

    Wang, Fang; Sun, Ying; Cao, Meng; Nishi, Ryuji

    2016-04-01

    This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Remote micro-encapsulation of curium-gold cermets

    International Nuclear Information System (INIS)

    Coops, M.S.; Voegele, A.L.; Hayes, W.N.; Sisson, D.H.

    1980-01-01

    A technique is described for fabricating minature, high-density capsules of curium-244 oxide contained in three concentric jackets of metallic gold (or silver), with the outer surface being free of alpha contamination. The completed capsules are right circular cylinders 0.2500-inch diameter and 0.125-inch tall, with each level of containment soldered (or brazed) closed. A typical capsule would contain approx. 70 mg of 244 Cm (5.7 Ci) mixed with 120 mg of gold powder in the form of a cermet wafer clad in three concentric, 0.010-inch thick, liquid tight jackets. This method of fabrication eliminates voids between the jackets and produces a minimum size, maximum density capsule. Cermet densities of 11.5 g/cc were obtained, with an overall density of 17.3 g/cc for the finished capsule

  15. Thermionic field emission in gold nitride Schottky nanodiodes

    Science.gov (United States)

    Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.

    2012-11-01

    We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

  16. Information Extraction and Interpretation Analysis of Mineral Potential Targets Based on ETM+ Data and GIS technology: A Case Study of Copper and Gold Mineralization in Burma

    International Nuclear Information System (INIS)

    Wenhui, Du; Yongqing, Chen; Nana, Guo; Yinglong, Hao; Pengfei, Zhao; Gongwen, Wang

    2014-01-01

    Mineralization-alteration and structure information extraction plays important roles in mineral resource prospecting and assessment using remote sensing data and the Geographical Information System (GIS) technology. Choosing copper and gold mines in Burma as example, the authors adopt band ratio, threshold segmentation and principal component analysis (PCA) to extract the hydroxyl alteration information using ETM+ remote sensing images. Digital elevation model (DEM) (30m spatial resolution) and ETM+ data was used to extract linear and circular faults that are associated with copper and gold mineralization. Combining geological data and the above information, the weights of evidence method and the C-A fractal model was used to integrate and identify the ore-forming favourable zones in this area. Research results show that the high grade potential targets are located with the known copper and gold deposits, and the integrated information can be used to the next exploration for the mineral resource decision-making

  17. Plasmon-organic fiber interactions in diamond-like carbon coated nanostructured gold films

    Science.gov (United States)

    Cielecki, Paweł Piotr; Sobolewska, Elżbieta Karolina; Kostiuočenko, Oksana; Leißner, Till; Tamulevičius, Tomas; Tamulevičius, Sigitas; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek

    2017-11-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays, coated with protective layers of varying thickness. We numerically investigate the spectral position of surface plasmon polariton resonances and electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we characterize the plasmonic coupling between organic nanofibers and underlying substrates, considered as one of the main loss channels for photoluminescence from nanofibers, by time-resolved photoluminescence spectroscopy. Our findings reveal that, for the investigated system, plasmonic interactions are preserved for DLC coatings up to 55 nm. This is relevant for the fabrication of new passive and active plasmonic components with increased durability and hence prolonged lifetime.

  18. Electrografting of N’,N’-dimethylphenothiazin-5-ium-3,7-diamine (Azure A) diazonium salt forming electrocatalytic organic films on gold or graphene oxide gold hybrid electrodes

    International Nuclear Information System (INIS)

    Gómez-Anquela, C.; Revenga-Parra, M.; Abad, J.M.; Marín, A. García; Pau, J.L.; Pariente, F.; Piqueras, J.; Lorenzo, E.

    2014-01-01

    Electroactive films containing redox active phenothiazine moieties are covalently bound onto gold and graphene oxide gold hybrid electrodes, using reductive redox grafting of N’,N’-dimethylphenothiazin-5-ium-3,7-diamine (Azure A) diazonium salt. The grafting procedure is based on continuous voltammetric potential sweep of solutions containing the phenothiazine diazonium salt previously generated in situ. Control of the film thickness, electroactivity and stability can easily be exerted through appropriate choice of the concentration and number of potential scans performed. Cyclic Voltammetry, Electrochemical Quartz Crystal Microbalance (EQCM) and Spectroscopic Ellipsometry are used to characterize the growth process as well as the viscoelastic properties of the resulting stable electrografted films. The electron transfer reactions through the films are mediated by the presence of the Azure A redox moieties, which show a quasi-reversible electrochemical response and exhibit a potent electrocatalytic effect toward the oxidation of NADH. This electrocatalytic model has been used to compare the properties of Azure A electrografted films generated on gold electrodes with those obtained on hybrid electrodes composed by graphene oxide modified gold electrodes

  19. Deposition of plasmon gold-fluoropolymer nanocomposites

    Science.gov (United States)

    Safonov, Alexey I.; Sulyaeva, Veronica S.; Timoshenko, Nikolay I.; Kubrak, Konstantin V.; Starinskiy, Sergey V.

    2016-12-01

    Degradation-resistant two-dimensional metal-fluoropolymer composites consisting of gold nanoparticles coated with a thin fluoropolymer film were deposited on a substrate by hot wire chemical vapour deposition (HWCVD) and ion sputtering. The morphology and optical properties of the obtained coatings were determined. The thickness of the thin fluoropolymer film was found to influence the position of the surface plasmon resonance peak. Numerical calculations of the optical properties of the deposited materials were performed using Mie theory and the finite-difference time-domain (FDTD) method. The calculation results are consistent with the experimental data. The study shows that the position of the resonance peak can be controlled by changing the surface concentration of particles and the thickness of the fluoropolymer coating. The protective coating was found to prevent the plasmonic properties of the nanoparticles from changing for several months.

  20. Biological and Geochemical Development of Placer Gold Deposits at Rich Hill, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Erik B. Melchiorre

    2018-02-01

    Full Text Available Placer gold from the Devils Nest deposits at Rich Hill, Arizona, USA, was studied using a range of micro-analytical and microbiological techniques to assess if differences in (paleo-environmental conditions of three stratigraphically-adjacent placer units are recorded by the gold particles themselves. High-angle basin and range faulting at 5–17 Ma produced a shallow basin that preserved three placer units. The stratigraphically-oldest unit is thin gold-rich gravel within bedrock gravity traps, hosting elongated and flattened placer gold particles coated with manganese-, iron-, barium- (Mn-Fe-Ba oxide crusts. These crusts host abundant nano-particulate and microcrystalline secondary gold, as well as thick biomats. Gold surfaces display unusual plumate-dendritic structures of putative secondary gold. A new micro-aerophilic Betaproteobacterium, identified as a strain of Comamonas testosteroni, was isolated from these biomats. Significantly, this ‘black’ placer gold is the radiogenically youngest of the gold from the three placer units. The middle unit has well-rounded gold nuggets with deep chemical weathering rims, which likely recorded chemical weathering during a wetter period in Arizona’s history. Biomats, nano-particulate gold and secondary gold growths were not observed here. The uppermost unit is a pulse placer deposited by debris flows during a recent drier period. Deep cracks and pits in the rough and angular gold from this unit host biomats and nano-particulate gold. During this late arid period, and continuing to the present, microbial communities established within the wet, oxygen-poor bedrock traps of the lowermost placer unit, which resulted in biological modification of placer gold chemistry, and production of Mn-Fe-Ba oxide biomats, which have coated and cemented both gold and sediments. Similarly, deep cracks and pits in gold from the uppermost unit provided a moist and sheltered micro-environment for additional gold

  1. Safety and efficacy of targeted hyperthermia treatment utilizing gold nanorod therapy in spontaneous canine neoplasia.

    Science.gov (United States)

    Schuh, Elizabeth M; Portela, Roberta; Gardner, Heather L; Schoen, Christian; London, Cheryl A

    2017-10-02

    Hyperthermia is an established anti-cancer treatment but is limited by tolerance of adjacent normal tissues. Parenteral administration of gold nanorods (NRs) as a photosensitizer amplifies the effects of hyperthermia treatment while sparing normal tissues. This therapy is well tolerated and has demonstrated anti-tumor effects in mouse models. The purpose of this phase 1 study was to establish the safety and observe the anti-tumor impact of gold NR enhanced (plasmonic) photothermal therapy (PPTT) in client owned canine patients diagnosed with spontaneous neoplasia. Seven dogs underwent gold NR administration and subsequent NIR PPTT. Side effects were mild and limited to local reactions to NIR laser. All of the dogs enrolled in the study experienced stable disease, partial remission or complete remission. The overall response rate (ORR) was 28.6% with partial or complete remission of tumors at study end. PPTT utilizing gold nanorod therapy can be safely administered to canine patients. Further studies are needed to determine the true efficacy in a larger population of canine cancer patients and to and identify those patients most likely to benefit from this therapy.

  2. Stability of contamination-free gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water

    International Nuclear Information System (INIS)

    Nikov, R.G.; Nikolov, A.S.; Nedyalkov, N.N.; Dimitrov, I.G.; Atanasov, P.A.; Alexandrov, M.T.

    2012-01-01

    Highlights: ► Au and Ag colloids were prepared by nanosecond laser ablation of solids in water. ► The alteration of the produced colloids during one month was investigated. ► Optical transmission spectra of the samples were measured from 350 to 800 nm. ► TEM measurements were made of as-prepared colloids and on the 30-th day. ► Zeta potential measurements were performed of as-prepared samples. - Abstract: Preparation of noble metal nanoparticle (NPs) colloids using pulsed laser ablation in water has an inherent advantage compared to the different chemical methods used, especially when biological applications of the colloids are considered. The fabrication method is simple and the NPs prepared in this way are contamination free. The method of laser ablation of a solid target in water is applied in the present work in order to obtain gold and silver NP colloids. The experiment was preformed by using the fundamental wavelength (1064 nm) of a Nd:YAG laser system. The target immersed in double distilled water was irradiated for 20 min by laser pulses with duration of 15 ns and repetition rate of 10 Hz. The sedimentation and aggregation of NPs in the colloids, stored at constant temperature, as a function of the time after preparation were investigated. The analyses are based on optical transmission spectroscopy in UV and vis regions. The change of the plasmon resonance wavelength as a function of time was studied. Zeta potential measurement was also utilized to measure the charge of the NPs in the colloids. The size distribution of the NPs and its change in time was determined by transmission electron microscopy (TEM). On the basis of the results obtained, the optimal conditions of post fabrication manipulation with gold and silver colloids are defined in view of producing stable NPs with a narrow size distribution.

  3. Stability and dewetting kinetics of thin gold films on Ti, TiOx and ZnO adhesion layers

    International Nuclear Information System (INIS)

    Schaefer, Brian T.; Cheung, Jeffrey; Ihlefeld, Jon F.; Jones, Jacob L.; Nagarajan, Valanoor

    2013-01-01

    We present an in situ high-temperature confocal laser microscopy study on the thermal stability of 40 nm thick gold thin films grown on 40 nm Ti, TiO x and ZnO adhesion layers on (0 0 1) Si. In situ observation of the dewetting process was performed over a wide range of set temperatures (400–800 °C) and ramp rates (10–50 °C min −1 ) for each gold/adhesion layer combination. We found that significant dewetting and subsequent formation of gold islands occurs only at and above 700 °C for all adhesion layers. The dewetting is driven to equilibrium for gold/ZnO compared to gold/Ti and gold/TiO x as confirmed by ex situ X-ray diffraction and scanning electron microscopy characterization. Quantification of the in situ data through stretched exponential kinetic models reveals an underlying apparent activation energy of the dewetting process. This energy barrier for dewetting is higher for gold/Ti and gold/TiO x compared to gold/ZnO, thus confirming the ex situ observations. We rationalize that these apparent activation energies correspond to the underlying thermal stability of each gold/adhesion layer system

  4. Fabrication of Gold Nanodot Array for the Localized Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Young Min Bae

    2014-01-01

    Full Text Available Localized surface plasmon resonance (LSPR is a promising method for detecting antigen-antibody binding in label-free biosensors. In this study, the fabrication of a LSPR substrate with a gold nanodot array through the lift-off process of an alumina mask is reported. The substrate showed an extinction peak in its extinction spectrum, and the peak position was dependent on the height of the gold nanodot array, and the change of extinction peak with the height could be predicted by the numerical simulation. In addition, the peak position was observed to be red-shifted with the increasing RIU value of the medium surrounding the gold nanodot array. In particular, the peak position in the 10 nm thick gold nanodot array was approximately 710 nm in air, and the sensitivity, defined as the ratio of the shift of peak position to the RIU of the medium, was 323.6 nm/RIU. The fabrication procedure could be applied to fabricate the LSPR substrates with a large area.

  5. The adsorption of Tl(I), Au(III), Cu(II) and the separation of 199Tl from alpha bombardment of gold target with PDB-18C6

    International Nuclear Information System (INIS)

    Zhou Dehai; Zhou Jimeng

    1989-01-01

    The adsorptive behavior of polymer of methyl aldehyde of dibenzo-18-crown-6 (PDB-18C6) in hydrochloric acid medium is studied and it is shown that the adsorption of T1(I), Au(III), and Cu(II) depends on the particle size of the crown ether resins, hydrochloric acid concentration and amount of the crown ether resins used. The difference in the adsorption behavior of different particle sizes of crown ether resins may be used for separating Tl(I), Au(III), and Cu(II) ions. The best eluant of Tl(I) and Au(III) is 0.4 mol/l perchloric acid and 2-ethoxy-ethanol. The recovery for Tl(I) is 82-98.8%. The gold target is bombarded in a 1.2 m cyclotron with 25-27 MeV α-particle with a cumulative beam intensities of 27μA·h, and 199 Tl is separated from the gold target with PDB-18C6. γ-spectrometry has shown that the Tl obtained is 199 Tl of high purity containing only about 0.50% 200 Tl

  6. Enhancement of two-photon photoluminescence and SERS for low-coverage gold films

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Beermann, Jonas; Frydendahl, Christian

    2016-01-01

    Electromagnetic field enhancement (FE) effects occurring in thin gold films 3-12-nm are investigated with two-photon photoluminescence (TPL) and Raman scanning optical microscopies. The samples are characterized using scanning electron microscopy images and linear optical spectroscopy. TPL images...... exhibit a strong increase in the level of TPL signals for films thicknesses 3-8-nm, near the percolation threshold. For some thicknesses, TPL measurements reveal super-cubic dependences on the incident power. We ascribe this feature to the occurrence of very strongly localized and enhanced electromagnetic...

  7. Self-absorption of neutron capture gamma-rays in gold samples

    International Nuclear Information System (INIS)

    Wisshak, K.; Walter, G.; Kaeppeler, F.

    1983-06-01

    The self absorption of neutron capture gamma rays in gold samples has been determined experimentally for two standard setups used in measurements of neutron capture cross sections. One makes use of an artificially collimated neutron beam and two C 6 D 6 detectors, the other of kinematically collimated neutrons and three Moxon-Rae detectors. Correction factors for an actual measurement of a neutron capture cross section using a gold standard of 1 mm thickness up to 12% were found for the first setup while they are only 4% for the second setup. The present data allow to determine the correction in an actual measurement with an accuracy of 0.5-1%. (orig.) [de

  8. 12C fragmentation at 95 MeV per nucleon for hadron-therapy. Experimental study and simulation with thick PMMA targets

    International Nuclear Information System (INIS)

    Braunn, B.

    2010-11-01

    A study of the 12 C fragmentation at 95 MeV per nucleon on thick PMMA targets is presented on this document. This study is motivated by the development of a new technique for irradiation of malignant tumours: the carbon ion therapy. The purpose of this work is to compare experimental data against nuclear models used in GEANT4 tool-kit. The aim is to determine if the models are sufficiently predictive to the criteria of hadron-therapy. To achieve this goal, a first experiment was performed at GANIL with a 12 C beam at 95 MeV/u and thick PMMA targets. This experiment has achieved the production rates, angular and energy distributions of different fragments produced in nuclear collisions. Comparisons between experimental data and simulated results obtained using the binary intra-nuclear cascade (BIC) and quantum molecular dynamics model (QMD) available in GEANT4 have been performed. These comparisons show the inability of the tested models to reproduce carbon fragmentation at 95 MeV per nucleon with the accuracy required in hadron-therapy. (author)

  9. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    International Nuclear Information System (INIS)

    Birmingham, J.T.; Lawrence Berkeley National Lab., CA

    1996-06-01

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H 2 crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of 4 He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for 4 He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the 4 He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-T c superconductor La 1.87 Sr 0.13 CuO 4

  10. A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure

    Science.gov (United States)

    Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya

    2011-06-01

    This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.

  11. Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films

    NARCIS (Netherlands)

    Ramakrishnan, G.; Planken, P.C.M.

    2011-01-01

    Emission of pulses of electromagnetic radiation in the terahertz range is observed when ultrathin gold films on glass are illuminated with femtosecond near-IR laser pulses. A distinct maximum is observed in the emitted terahertz amplitude from films of average thickness just above the percolation

  12. Surface-enhanced Raman scattering from graphene covered gold nanocap arrays

    Science.gov (United States)

    Long, Kailin; Luo, Xiaoguang; Nan, Haiyan; Du, Deyang; Zhao, Weiwei; Ni, Zhenhua; Qiu, Teng

    2013-11-01

    This work reports an efficient method to fabricate large-area flexible substrates for surface enhanced Raman scattering (SERS) application. Our technique is based on a single-step direct imprint process via porous anodic alumina stamps. Periodic hexagonal arrangements of porous anodic alumina stamps are transferred to the polyethylene terephthalate substrates by mechanically printing process. Printed nanocaps will turn into "hot spots" for electromagnetic enhancement with a deposited gold film by high vacuum evaporation. The gaps between the nanocaps are controllable with a tight correspondence to the thickness of the deposited gold, which dramatically influence the enhancement factor. After covered with a single-layer graphene sheet, the gold nanocap substrate can be further optimized with an extra enhancement of Raman signals, and it is available for the trace detection of probe molecules. This convenient, simple, and low-cost method of making flexible SERS-active substrates potentially opens a way towards biochemical analysis and disease detection.

  13. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    International Nuclear Information System (INIS)

    Das, Rupali; Navas, M. P.; Soni, R. K.

    2016-01-01

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions were investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.

  14. Multifunctional gold nanoparticles for diagnosis and therapy of disease

    Science.gov (United States)

    Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.

    2013-01-01

    Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440

  15. Measurements of activation reaction rates in transverse shielding concrete exposed to the secondary particle field produced by intermediate energy heavy ions on an iron target

    International Nuclear Information System (INIS)

    Ogawa, T.; Morev, M.N.; Iimoto, T.; Kosako, T.

    2012-01-01

    Reaction rate distributions were measured inside a 60-cm thick concrete pile placed at the lateral position of a thick (stopping length) iron target that was bombarded with heavy ions, 400 MeV/u C and 800 MeV/u Si. Foils of aluminum and gold, as well as gold, tungsten and manganese covered with cadmium were inserted at various locations in the concrete pile to serve as activation detectors. Features of reaction rate distribution, such as the shape of the reaction rate profile, contribution of the neutrons from intra-nuclear cascade and that from evaporation to the activation reactions are determined by the analysis of measured reaction rates. The measured reaction rates were compared with those calculated with radiation transport simulation codes, FLUKA and PHITS, to verify their capability to predict induced activity. The simulated reaction rates agree with the experimental results within a factor of three in general. However, systematic discrepancies between simulated reaction rates and measured reaction rates attributed to the neutron source terms are observed.

  16. Gold Nanofilm Redox Catalysis for Oxygen Reduction at Soft Interfaces

    International Nuclear Information System (INIS)

    Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Girault, Hubert H.

    2016-01-01

    ABSTRACT: Functionalization of a soft or liquid-liquid interface by a one gold nanoparticle thick “nanofilm” provides a conductive pathway to facilitate interfacial electron transfer from a lipophilic electron donor to a hydrophilic electron acceptor in a process known as interfacial redox catalysis. The gold nanoparticles in the nanofilm are charged by Fermi level equilibration with the lipophilic electron donor and act as an interfacial reservoir of electrons. Additional thermodynamic driving force can be provided by electrochemically polarising the interface. Using these principles, the biphasic reduction of oxygen by a lipophilic electron donor, decamethylferrocene, dissolved in α,α,α-trifluorotoluene was catalysed at a gold nanoparticle nanofilm modified water-oil interface. A recently developed microinjection technique was utilised to modify the interface reproducibly with the mirror-like gold nanoparticle nanofilm, while the oxidised electron donor species and the reduction product, hydrogen peroxide, were detected by ion transfer voltammetry and UV/vis spectroscopy, respectively. Metallization of the soft interface allowed the biphasic oxygen reduction reaction to proceed via an alternative mechanism with enhanced kinetics and at a significantly lower overpotential in comparison to a bare soft interface. Weaker lipophilic reductants, such as ferrocene, were capable of charging the interfacial gold nanoparticle nanofilm but did not have sufficient thermodynamic driving force to significantly elicit biphasic oxygen reduction.

  17. On the formation of protected gold nanoparticles from AuCl4- by the reduction using aromatic amines

    International Nuclear Information System (INIS)

    Subramaniam, Chandramouli; Tom, Renjis T.; Pradeep, T.

    2005-01-01

    Amines are used extensively as reductants and subsequent capping agents in the synthesis of metal nanoparticles, especially gold, due to its affinity to nitrogen. Taking 2-methyl aniline as an example, we show that metal reduction is followed by polymerization of the amine, while part of it covers the nanoparticle surface another fraction deposits in the solution. It is found that the oxidative polymerization of the amine goes in step with the formation of gold nanoparticles. The gold nanoparticles thus formed have a mean diameter of 20 nm. The polymerized amine encapsulates the gold nanoparticle forming a robust shell of about 5 nm thickness, making the gold core inert towards mineralizing agents such as chloroform, bromoform, sodium cyanide, benzylchloride, etc. which react with the naked gold nanoparticles. The deposited polymer is largely protonated, taking up protons from the medium during its formation. Similar results have been observed in the case of aniline also. The materials have been fully characterized by spectroscopy and microscopy

  18. Measurements of laser generated soft X-ray emission from irradiated gold foils

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. S.; Keiter, P. A.; Klein, S. R.; Drake, R. P.; Shvarts, D. [University of Michigan, 2455 Hayward St., Ann Arbor, Michigan 48109 (United States); Frank, Y.; Raicher, E.; Fraenkel, M. [Soreq Nuclear Research Center, Yavne (Israel)

    2016-11-15

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  19. High-Quality Ultrathin Gold Layers For Use In Plasmonic And Metamaterials Applications

    DEFF Research Database (Denmark)

    Sukham, Johneph; Takayama, Osamu; Lavrinenko, Andrei

    2018-01-01

    The propagation of electromagnetic waves can be manipulated at the nanoscale by surface plasmons supported by ultra thin metal layers. An adhesion layer, with thickness in the order of few nanometerss is used for depositing ultra thin metal gold layers. Cr and Ti are the most popular metallic...... adhesion layers. Apart from them, a non metallic silane based wetting layer like (3-Aminopropyl)trimethoxysilane (APTMS) can be used. The behaviour of the propagating surface plasmons due to the influence of these adhesion layers has not been thoroughly investigated. To study the influence of the adhesion...... layers on propagating plasmons for use in plasmonic and metamaterial applications,we experimentally compared the performances of the ultra-thin gold layers using Cr and APTMS adhesion layers and without any adhesion layer. We show that the gold layers using APTMS adhesion exhibit short range surface...

  20. Gold monetization and gold discipline

    OpenAIRE

    Robert P. Flood; Peter M. Garber

    1981-01-01

    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  1. Native gold and gold-rich sulfide deposits in a submarine basaltic caldera, Higashi-Aogashima hydrothermal field, Izu-Ogasawara frontal arc, Japan

    Science.gov (United States)

    Iizasa, Kokichi; Asada, Akira; Mizuno, Katsunori; Katase, Fuyuki; Lee, Sangkyun; Kojima, Mitsuhiro; Ogawa, Nobuhiro

    2018-04-01

    Sulfide deposits with extremely high Au concentrations (up to 275 ppm; avg. 102 ppm, n = 15), high Au/Ag ratios (0.24, n = 15), and low Cu/(Cu + Zn) ratios (0.03, n = 15) were discovered in 2015 in active hydrothermal fields at a water depth of 760 m in a basalt-dominated submarine caldera in the Izu-Ogasawara frontal arc, Japan. Native gold grains occur in massive sulfide fragments, concretions, and metalliferous sediments from a sulfide mound (40 m across and 20 m high) with up to 30-m-high black smoker chimneys. Tiny native gold grains up to 14 μm in diameter are mainly present in sulfide fallouts from chimney orifices and plumes. Larger native gold grains up to 150 μm long occur mostly as discrete particles and/or with amorphous silica and sulfides. The larger gold grains are interpreted to represent direct precipitation from Au-bearing hydrothermal fluids circulating in and/or beneath the unconsolidated sulfide mound deposits. Sulfur isotope compositions from a limited number of sulfide separates (n = 4) range from 4.3 to 5.8‰ δ34S, similar to the quaternary volcanic rocks of the arc. Barite separates have values of 22.2 and 23.1‰, close to modern seawater values, and indicate probable seawater sulfate origin. The Cu, Zn, and Pb concentrations in bulk samples of sulfide-rich rocks are similar to those of volcanogenic massive sulfides formed in continental crustal environments. The gold is interpreted to have formed by low-temperature hydrothermal activity, perhaps genetically different from systems with documented magmatic contributions or from seafloor hydrothermal systems in other island arc settings. Its presence suggests that basalt-dominated submarine calderas situated on relatively thick continental crust in an intraoceanic arc setting such as the Higashi-Aogashima knoll caldera may be perspective for gold mineralization.

  2. Features of Inner Structure of Placer Gold of the North-Eastern Part Siberian Platform

    Science.gov (United States)

    Gerasimov, Boris; Zhuravlev, Anatolii; Ivanov, Alexey

    2017-12-01

    Mineral and raw material base of placer and ore gold is based on prognosis evaluation, which allows to define promising areas regarding gold-bearing deposit prospecting. But there are some difficulties in gold primary source predicting and prospecting at the North-east Siberian platform, because the studied area is overlapped by thick cover of the Cenozoic deposits, where traditional methods of gold deposit prospecting are ineffective. In this connection, detailed study of typomorphic features of placer gold is important, because it contains key genetic information, necessary for development of mineralogical criteria of prognosis evaluation of ore gold content. Authors studied mineralogical-geochemical features of placer gold of the Anabar placer area for 15 years, with a view to identify indicators of gold, typical for different formation types of primary sources. This article presents results of these works. In placer regions, where primary sources of gold are not identified, there is need to study typomorphic features of placer gold, because it contains important genetic information, necessary for the development of mineralogical criteria of prognosis evaluation of ore gold content. Inner structures of gold from the Anabar placer region are studied, as one of the diagnostic typomorphic criteria as described in prominent method, developed by N.V. Petrovskaya [1980]. Etching of gold was carried out using reagent: HCl + HNO3 + FeCl3 × 6H2O + CrO3 +thioureat + water. Identified inner structures wer studied in details by means of scanning electron microscope JEOL JSM-6480LV. Two types of gold are identified according to the features of inner structure of placer gold of the Anabar region. First type - medium-high karat fine, well processed gold with significantly changed inner structure. This gold is allochthonous, which was redeposited many times from ancient intermediate reservoirs to younger deposits. Second type - low-medium karat, poorly rounded gold with

  3. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Novotná, Zdenka, E-mail: zdenka1.novotn@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology Prague, Prague (Czech Republic); Rimpelová, Silvie; Juřík, Petr [Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague (Czech Republic); Veselý, Martin [Department of Organic Technology, University of Chemistry and Technology Prague, Prague (Czech Republic); Kolská, Zdenka [Faculty and Science, J. E. Purkinje University in Usti nad Labem, Usti nad Labem (Czech Republic); Hubáček, Tomáš [Biology Centre CAS CR, SoWa National Research Infrastructure, Ceske Budejovice (Czech Republic); Ruml, Tomáš [Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague (Czech Republic); Švorčík, Václav [Department of Solid State Engineering, University of Chemistry and Technology Prague, Prague (Czech Republic)

    2017-02-01

    We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample. - Highlights: • Gold-coating improved wettability of polyethylene in comparison with plasma-treatment. • Plasma-treatment increased the surface roughness while the subsequent gold-coating decreased the roughness. • Adhesion and growth of mouse embryonic fibroblasts (L929) were studied in vitro. • Low amounts of gold nanoparticles released in the medium promoted cell growth.

  4. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility

    International Nuclear Information System (INIS)

    Novotná, Zdenka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdenka; Hubáček, Tomáš; Ruml, Tomáš; Švorčík, Václav

    2017-01-01

    We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample. - Highlights: • Gold-coating improved wettability of polyethylene in comparison with plasma-treatment. • Plasma-treatment increased the surface roughness while the subsequent gold-coating decreased the roughness. • Adhesion and growth of mouse embryonic fibroblasts (L929) were studied in vitro. • Low amounts of gold nanoparticles released in the medium promoted cell growth.

  5. Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by a gold-based compound.

    Directory of Open Access Journals (Sweden)

    Ana Paula Martins

    Full Text Available Aquaporins (AQPs are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III complexes screened on human red blood cells (hRBC and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50 = 0.8±0.08 µM in hRBC. Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.

  6. Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy

    Science.gov (United States)

    Yang, C.; Bromma, Kyle; Chithrani, B. D.

    2018-02-01

    Recent developments in nanotechnology has provided new tools for cancer therapy and diagnosis. Among other nanomaterial systems, gold nanoparticles are being used as radiation dose enhancers and anticancer drug carriers in cancer therapy. Fate of gold nanoparticles within biological tissues can be probed using techniques such as TEM (transmission electron microscopy) and SEM (Scanning Electron Microscopy) due to their high electron density. We have shown for the first time that cancer drug loaded gold nanoparticles can reach the nucleus (or the brain) of cancer cells enhancing the therapeutic effect dramatically. Nucleus of the cancer cells are the most desirable target in cancer therapy. In chemotherapy, smart delivery of highly toxic anticancer drugs through packaging using nanoparticles will reduce the side effects and improve the quality and care of cancer patients. In radiation therapy, use of gold nanoparticles as radiation dose enhancer is very promising due to enhanced localized dose within the cancer tissue. Recent advancement in nanomaterial characterization techniques will facilitate mapping of nanomaterial distribution within biological specimens to correlate the radiobiological effects due to treatment. Hence, gold nanoparticle mediated combined chemoradiation would provide promising tools to achieve personalized and tailored cancer treatments in the near future.

  7. Fabrication of Localized Surface Plasmon Resonance Fiber Probes Using Ionic Self-Assembled Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Miao Wan

    2010-07-01

    Full Text Available An nm-thickness composite gold thin film consisting of gold nanoparticles and polyelectrolytes is fabricated through ionic self-assembled multilayers (ISAM technique and is deposited on end-faces of optical fibers to construct localized surface plasmon resonance (LSPR fiber probes. We demonstrate that the LSPR spectrum induced by ISAM gold films can be fine-tuned through the ISAM procedure. We investigate variations of reflection spectra of the probe with respect to the layer-by-layer adsorption of ISAMs onto end-faces of fibers, and study the spectral variation mechanism. Finally, we demonstrated using this fiber probe to detect the biotin-streptavidin bioconjugate pair. ISAM adsorbed on optical fibers potentially provides a simple, fast, robust, and low-cost, platform for LSPR biosensing applications.

  8. Functionalization of Gold-plasmonic Devices for Protein Capture

    KAUST Repository

    Battista, E.; Scognamiglio, P.L.; Das, Gobind; Manzo, G.; Causa, F.; Di Fabrizio, Enzo M.; Netti, P.A.

    2017-01-01

    Here we propose a straightforward method to functionalize gold nanostructures by using an appropriate peptide sequence already selected toward gold surfaces and derivatized with another sequence for the capture of a molecular target. Large scale 3D-plasmonic devices with different nanostructures were fabricated by means of direct nanoimprint technique. The present work is aimed to address different innovative aspects related to the fabrication of large-area 3D plasmonic arrays, their direct and easy functionalization with capture elements, and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques.

  9. Functionalization of Gold-plasmonic Devices for Protein Capture

    KAUST Repository

    Battista, E.

    2017-07-13

    Here we propose a straightforward method to functionalize gold nanostructures by using an appropriate peptide sequence already selected toward gold surfaces and derivatized with another sequence for the capture of a molecular target. Large scale 3D-plasmonic devices with different nanostructures were fabricated by means of direct nanoimprint technique. The present work is aimed to address different innovative aspects related to the fabrication of large-area 3D plasmonic arrays, their direct and easy functionalization with capture elements, and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques.

  10. Improved synthesis of gold and silver nanoshells.

    Science.gov (United States)

    Brito-Silva, Antonio M; Sobral-Filho, Regivaldo G; Barbosa-Silva, Renato; de Araújo, Cid B; Galembeck, André; Brolo, Alexandre G

    2013-04-02

    Metallic nanoshells have been in evidence as multifunctional particles for optical and biomedical applications. Their surface plasmon resonance can be tuned over the electromagnetic spectrum by simply adjusting the shell thickness. Obtaining these particles, however, is a complex and time-consuming process, which involves the preparation and functionalization of silica nanoparticles, synthesis of very small metallic nanoparticles seeds, attachment of these seeds to the silica core, and, finally, growing of the shells in a solution commonly referred as K-gold. Here we present synthetic modifications that allow metallic nanoshells to be obtained in a faster and highly reproducible manner. The main improved steps include a procedure for quick preparation of 2.3 ± 0.5 nm gold particles and a faster approach to synthesize the silica cores. An investigation on the effect of the stirring speed on the shell growth showed that the optimal stirring speeds for gold and silver shells were 190 and 1500 rpm, respectively. In order to demonstrate the performance of the nanoshells fabricated by our method in a typical plasmonic application, a method to immobilize these particles on a glass slide was implemented. The immobilized nanoshells were used as substrates for the surface-enhanced Raman scattering from Nile Blue A.

  11. Measured and calculated neutron yields for 100 MeV protons on thick targets of Pb and Li

    International Nuclear Information System (INIS)

    Jones, R.T.; Lone, M.A.; Okazaki, A.

    1983-01-01

    The neutron yield per proton from thick targets of lead and lithium irradiated with 100 MeV protons has been measured and calculated. The water bath method was used to measure the neutron production, and a Faraday cup for the beam current determination. Measured yields are 0.343 +- 0.021 for lead and 0.123 +- 0.007 for lithium. Corresponding yields calculated with the nucleon-meson transport code NMTC are 0.363 +- 0.002 and 0.160 +- 0.001. Measured and calculated thermal neutron distributions in the water bath are also compared

  12. Experimental observation of energy dependence of saturation thickness of multiply scattered gamma photons

    International Nuclear Information System (INIS)

    Singh, Manpreet; Singh, Gurvinderjit; Singh, Bhajan; Sandhu, B.S.

    2008-01-01

    The gamma photons continue to soften in energy as the number of scatterings increases in the target having finite dimensions both in depth and lateral dimensions. The number of multiply scattered photons increases with an increase in target thickness, and saturates at a particular value of the target thickness known as saturation thickness (depth). The present measurements are carried out to study the energy dependence of saturation thickness of multiply scattered gamma photons from targets of various thicknesses. The scattered photons are detected by a properly shielded NaI(Tl) gamma ray detector placed at 90 deg. to the incident beam. We observe that the saturation thickness increases with increasing incident gamma photon energy. Monte Carlo calculations based upon the package developed by Bauer and Pattison [Compton scattering experiments at the HMI (1981), HMI-B 364, pp. 1-106] support the present experimental results

  13. Thick target benchmark test for the code used in the design of high intensity proton accelerator project

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Harada, Masatoshi

    2003-01-01

    In the neutronics design for the JAERI and KEK Joint high intensity accelerator facilities, transport codes of NMTC/JAM, MCNPX and MARS are used. In order to confirm the predict ability for these code, it is important to compare with the experiment result. For the validation of the source term of neutron, the calculations are compared with the experimental spectrum of neutrons produced from thick target, which are carried out at LANL and KEK. As for validation of low energy incident case, the calculations are compared with experiment carried out at LANL, in which target of C, Al, Fe, and 238 U are irradiated with 256-MeV protons. By the comparison, it is found that both NMTC/JAM and MCNPX show good agreement with the experiment within by a factor of 2. MARS shows good agreement for C and Al target. MARS, however, gives rather underestimation for all targets in the neutron energy region higher than 30 MeV. For the validation high incident energy case, the codes are compared with the experiment carried out at KEK. In this experiment, W and Pb targets are bombarded with 0.5- and 1.5-GeV protons. Although slightly disagreement exists, NMTC/JAM, MCNPX and MARS are in good agreement with the experiment within by a factor of 2. (author)

  14. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    Science.gov (United States)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  15. HIRFL–CSR internal cluster target

    International Nuclear Information System (INIS)

    Shao, Caojie; Lu, Rongchun; Cai, Xiaohong; Yu, Deyang; Ruan, Fangfang; Xue, Yingli; Zhang, Jianming; Torpokov, D.K.; Nikolenko, D.

    2013-01-01

    Highlights: • An internal cluster target was built and installed at HIRFL–CSR. • The target thickness for H 2 amounts up to 6.6 × 10 12 atoms/cm 2 . • The feasibility and stability of the internal cluster target were verified by on-line experiments. -- Abstract: Since HIRFL–CSR internal cluster target was built, it has played a key role in in-ring experiments at HIRFL–CSR. So far it have been operated with five gas species as targets for scattering experiments, i.e. hydrogen, nitrogen, argon, neon, and krypton. The obtained highest thickness for hydrogen target amounts up to 10 12 atoms/cm 2 , and those of other targets are larger than 10 13 atoms/cm 2 with the background pressure of 10 −11 mbar in CSR. The target thickness can be varied by regulating the nozzle temperature and pressure of the inlet gas. The first online internal target experiment dedicated to investigate radioactive electron capture (REC) process with Xe 54+ ions colliding with the nitrogen target demonstrated the stability and reliability of the internal target system. In addition, hydrogen and krypton were also tested online in recent experiments, which indicate the target system can meet experimental requirements for the thickness of target, pressure in scattering chamber, and long-term stability

  16. Effect of Gold Marker Seeds on Magnetic Resonance Spectroscopy of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Murshed, E-mail: Murshed.Hossain@fccc.edu [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Schirmer, Timo [Global MR Applied Science Laboratory, GE Healthcare, Munich (Germany); Richardson, Theresa; Chen, Lili; Buyyounouski, Mark K.; Ma Changming [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)

    2012-05-01

    Purpose: Magnetic resonance stereoscopic imaging (MRSI) of the prostate is an emerging technique that may enhance targeting and assessment in radiotherapy. Current practices in radiotherapy invariably involve image guidance. Gold seed fiducial markers are often used to perform daily prostate localization. If MRSI is to be used in targeting prostate cancer and therapy assessment, the impact of gold seeds on MRSI must be investigated. The purpose of this study was to quantify the effects of gold seeds on the quality of MRSI data acquired in phantom experiments. Methods and Materials: A cylindrical plastic phantom with a spherical cavity 10 centimeters in diameter wss filled with water solution containing choline, creatine, and citrate. A gold seed fiducial marker was put near the center of the phantom mounted on a plastic stem. Spectra were acquired at 1.5 Tesla by use of a clinical MRSI sequence. The ratios of choline + creatine to citrate (CC/Ci) were compared in the presence and absence of gold seeds. Spectra in the vicinity of the gold seed were analyzed. Results: The maximum coefficient of variation of CC/Ci induced by the gold seed was found to be 10% in phantom experiments at 1.5 T. Conclusion: MRSI can be used in prostate radiotherapy in the presence of gold seed markers. Gold seeds cause small effects (in the order of the standard deviation) on the ratio of the metabolite's CC/Ci in the phantom study done on a 1.5-T scanner. It is expected that gold seed markers will have similar negligible effect on spectra from prostate patients. The maximum of 10% of variation in CC/Ci found in the phantom study also sets a limit on the threshold accuracy of CC/Ci values for deciding whether the tissue characterized by a local spectrum is considered malignant and whether it is a candidate for local boost in radiotherapy dose.

  17. Effect of Gold Marker Seeds on Magnetic Resonance Spectroscopy of the Prostate

    International Nuclear Information System (INIS)

    Hossain, Murshed; Schirmer, Timo; Richardson, Theresa; Chen, Lili; Buyyounouski, Mark K.; Ma Changming

    2012-01-01

    Purpose: Magnetic resonance stereoscopic imaging (MRSI) of the prostate is an emerging technique that may enhance targeting and assessment in radiotherapy. Current practices in radiotherapy invariably involve image guidance. Gold seed fiducial markers are often used to perform daily prostate localization. If MRSI is to be used in targeting prostate cancer and therapy assessment, the impact of gold seeds on MRSI must be investigated. The purpose of this study was to quantify the effects of gold seeds on the quality of MRSI data acquired in phantom experiments. Methods and Materials: A cylindrical plastic phantom with a spherical cavity 10 centimeters in diameter wss filled with water solution containing choline, creatine, and citrate. A gold seed fiducial marker was put near the center of the phantom mounted on a plastic stem. Spectra were acquired at 1.5 Tesla by use of a clinical MRSI sequence. The ratios of choline + creatine to citrate (CC/Ci) were compared in the presence and absence of gold seeds. Spectra in the vicinity of the gold seed were analyzed. Results: The maximum coefficient of variation of CC/Ci induced by the gold seed was found to be 10% in phantom experiments at 1.5 T. Conclusion: MRSI can be used in prostate radiotherapy in the presence of gold seed markers. Gold seeds cause small effects (in the order of the standard deviation) on the ratio of the metabolite's CC/Ci in the phantom study done on a 1.5-T scanner. It is expected that gold seed markers will have similar negligible effect on spectra from prostate patients. The maximum of 10% of variation in CC/Ci found in the phantom study also sets a limit on the threshold accuracy of CC/Ci values for deciding whether the tissue characterized by a local spectrum is considered malignant and whether it is a candidate for local boost in radiotherapy dose.

  18. Resistivity and Hall voltage in gold thin films deposited on mica at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bahamondes, Sebastián; Donoso, Sebastián; Ibañez-Landeta, Antonio; Flores, Marcos [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Henriquez, Ricardo, E-mail: ricardo.henriquez@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile)

    2015-03-30

    Highlights: • We determined the 4 K thickness dependence of resistivity for a family of gold thin films. • We determined the thickness dependence of resistivity during the growth process. • Both behaviors are well represented by the Mayadas–Shatzkes theory. • We determined Hall tangent and Hall resistance at 4 K and up to 4.5 T. • Hall mobility is always higher than the drift mobility. - Abstract: We report the thickness dependence of the resistivity measured at 4 K of gold films grown onto mica at room temperature (RT), for thickness ranging from 8 to 100 nm. This dependence was compared to the one obtained for a sample during its growth process at RT. Both behaviors are well represented by the Mayadas–Shatzkes theory. Using this model, we found comparable contributions of electron surface and electron grain boundary scattering to the resistivity at 4 K. Hall effect measurements were performed using a variable transverse magnetic field up to 4.5 T. Hall tangent and Hall resistance exhibit a linear dependence on the magnetic field. For this magnetic field range, the Hall mobility is always larger than the drift mobility. This result is explained through the presence of the above-mentioned scattering mechanisms acting on the galvanomagnetic coefficients. In addition, we report the temperature dependence of the resistivity between 4 and 70 K.

  19. Multifunctional gold nanoparticles for photodynamic therapy of cancer

    Science.gov (United States)

    Khaing Oo, Maung Kyaw

    As an important and growing branch of photomedicine, photodynamic therapy (PDT) is being increasingly employed in clinical applications particularly for the treatment of skin cancer. This dissertation focuses on the synthesis, characterization and deployment of gold nanoparticles for enhanced PDT of fibrosarcoma cancer cells. We have developed robust strategies and methods in fabrication of gold nanoparticles with positively- and negatively-tethered surface charges by photo-reduction of gold chloride salt using branched polyethyleneimine and sodium citrate respectively. An optimal concentration window of gold salt has been established to yield the most stable and monodispersed gold nanoparticles. 5-aminolevulinic acid (5-ALA), a photosensitizing precursor, has been successfully conjugated on to positively charged gold nanoparticles through electrostatic interactions. The 5-ALA/gold nanoparticle conjugates are biocompatible and have shown to be preferably taken up by cancer cells. Subsequent light irradiation results in the generation of reactive oxygen species (ROS) in cancer cells, leading to their destruction without adverse effects on normal fibroblasts. We have demonstrated for the first time that gold nanoparticles can enhance PDT efficacy by 50% compared to the treatment with 5-ALA alone. Collected evidence has strongly suggested that this enhancement stems from the elevated formation of ROS via the strongly localized electric field of gold nanoparticles. Through single cell imaging using surface-enhanced Raman scattering enabled by the very same gold nanoparticles, we have shown that multifunctionality of gold nanoparticles can be harvested concurrently for biomedical applications in general and for PDT in specific. In other words, gold nanoparticles can be used not only for targeted drug delivery and field-enhanced ROS formation, but also for monitoring cell destructions during PDT. Finally, our COMSOL Multiphysics simulation of the size-dependent electric

  20. Emerging advances in nanomedicine with engineered gold nanostructures.

    Science.gov (United States)

    Webb, Joseph A; Bardhan, Rizia

    2014-03-07

    Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.

  1. Coal-gold agglomeration: an alternative separation process in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  2. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  3. Dewetting dynamics of a gold film on graphene: implications for nanoparticle formation.

    Science.gov (United States)

    Namsani, Sadanandam; Singh, Jayant K

    2016-01-01

    The dynamics of dewetting of gold films on graphene surfaces is investigated using molecular dynamics simulation. The effect of temperature (973-1533 K), film diameter (30-40 nm) and film thickness (0.5-3 nm) on the dewetting mechanism, leading to the formation of nanoparticles, is reported. The dewetting behavior for films ≤5 Å is in contrast to the behavior seen for thicker films. The retraction velocity, in the order of ∼300 m s(-1) for a 1 nm film, decreases with an increase in film thickness, whereas it increases with temperature. However at no point do nanoparticles detach from the surface within the temperature range considered in this work. We further investigated the self-assembly behavior of nanoparticles on graphene at different temperatures (673-1073 K). The process of self-assembly of gold nanoparticles is favorable at lower temperatures than at higher temperatures, based on the free-energy landscape analysis. Furthermore, the shape of an assembled structure is found to change from spherical to hexagonal, with a marked propensity towards an icosahedral structure based on the bond-orientational order parameters.

  4. Conductivity of Pedot-Pss with Gold and Silver Nanocomposites Modified Gold Electrodes for Ganoderma Boninense DNA Detection

    Directory of Open Access Journals (Sweden)

    Sabo Wada Dutse

    2015-08-01

    Full Text Available The conductivity of a designed electrochemical DNA biosensor was improved using gold and or silver nanoparticles. A gold electrode modified with a conductive nanocomposite of poly(3,4-ethylene dioxythiophen–poly (styrenesulfonate (Pedot-Pss and gold or silver nano particles enhanced the conductivity of the electrode surface area. Bare and modified gold electrode surfaces were characterized using cyclic voltammetry (CV technique in ethylenediaminetetraacetic acid (TE supporting electrolyte. Immobilization of a 20-mer DNA probe was achieved by covalent attachment of the amine group of the capture probe to a carboxylic group of an activated 3,3’-dithiodipropionic acid layer using EDC/NHSS for Hybridization. The effect of hybridization temperature and time was optimized and the sensor demonstrated specific detection for the target concentration ranged between 1.0´10-15 M to 1.0´10-9 M with a detection limit of 9.70´10-19 M. Control experiments verified the specificity of the biosensor in the presence of mismatched DNA sequence. The DNA hybridization was monitored using a new ruthenium complex [Ru(dppz2(qtpyCl2; dppz = dipyrido [3,2–a:2’,3’-c] phenazine; qtpy=2,2’,-4,4”.4’4”’-quarterpyridyl redox indicator.

  5. Ca-48 targets - Home and abroad!

    Science.gov (United States)

    Greene, John P.; Carpenter, Michael; Janssens, Robert V. F.

    2018-05-01

    Using the method of reduction/distillation, high-purity films of robust and ductile calcium metal were prepared for use as targets in nuclear physics experiments. These targets, however, are extremely air-sensitive and procedures must be developed for their handling and use without exposure to the air. In most instances, the thin 48Ca target is used on a carrier foil (backing) and a thin covering film of similar material is employed to further reduce re-oxidation. Un-backed metallic targets are rarely produced due to these concerns. In addition, the low natural abundance of the isotope 48Ca provided an increased incentive for the best efficiencies available in their preparation. Here, we describe the preparation of 48Ca targets employing a gold backing and thin gold cover for use at home, Argonne National Laboratory (ANL), as well as abroad, at Osaka University. For the overseas shipments, much care and preparation were necessary to ensure good targets and safe arrival to the experimental facilities.

  6. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...

  7. Application of Industrial XRF Coating Thickness Analyzer for Phosphate Coating Thickness on Steel

    Directory of Open Access Journals (Sweden)

    Aleksandr Sokolov

    2018-03-01

    Full Text Available The results of industrial application of an online X-ray fluorescence coating thickness analyzer for measuring the thickness of phosphate coatings on moving steel strips are considered in the article. The target range of coating thickness to be measured is from tens to hundreds of mg/m2 in a measurement time of 10 s. The measurement accuracy observed during long-duration factory acceptance test was 10–15%. The coating thickness analyzer consists of two XRF gauges, mounted above and below the steel strip and capable of moving across the moving strip system for their suspension and relocation and electronic control unit. Fully automated software was developed to automatically and continuously (24/7 control both gauges, scanning both sides of the steel strip, and develop and test methods for measuring new coatings. It allows performing offline storage and retrieval of the measurement results, remotely controlling the analyzer components and measurement modes from a control room. The developed XRF coating thickness analyzer can also be used for real-time measurement of other types of coatings, both metallic and non-metallic.

  8. Gold and gold working in Late Bronze Age Northern Greece

    Science.gov (United States)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  9. Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    Science.gov (United States)

    Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2017-04-01

    A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which specifically binds at one half of the target introduced SH groups at both ends of dsDNA. Continuous disulfide bond formation at 3‧ and 5‧ terminals of targets leads to the self-assembly of dsDNAs into the sulfur- rich and flexible products with different lengths. These products have a high affinity for the surface of Au-NPs and efficiently protect the surface from salt induced aggregation. To evaluate the assay efficacy, a small part of the citrus tristeza virus (CTV) genome was targeted, leading to a detection limit of about 5 × 10-9 mol.L-1 over a linear ranged from 20 × 10-9 to 10 × 10-7 mol.L-1. This approach also exhibits good reproducibility and recovery levels in the presence of plant total RNA or human plasma total circulating RNA extracts. Self-assembled targets can be then sensitively distinguished from non-assembled or mismatched targets after gel electrophoresis. The disulfide reaction method and integrating self-assembled DNAs/RNAs targets with bare AuNPs as a sensitive indicator provide us a powerful and simple visual detection tool for a wide range of applications.

  10. Fast neutron forward distributions from C, Be and U thick targets bombarded by deuterons

    International Nuclear Information System (INIS)

    Menard, S.; Clapier, F.; Pauwels, N.; Proust, J.; Donzaud, C.; Guillemaud-Mueller, D.; Lhenry, I.; Mueller, A.C.; Scarpaci, J.A.; Sorlin, O.; Mirea, M.

    1999-01-01

    In principle, to produce neutron rich radioactive beams with sufficient intensities, a source of isotopes far from the valley of β--stability can be obtained through the fission of 238 U induced by fast neutrons. A very promising way to assess the feasibility of these very intense neutron beams is to break an intense 2 H beam in a dedicated converter. The main objective of SPIRAL and PARRNe R - D projects is the investigation of the optimum parameters for a neutron rich isotope source in accordance with the scheme presented above. In such conditions, the charge particle energy loss can prevent the destruction of the fission target. In the frame of these project, a special attention is dedicated to the energetic and angular distributions of the neutrons emerging from a set of converters at a series of 2 H incident energies. Deuteron beams at energies less than 30 MeV are particularly interesting because it is expected that, after the decay in the 238 U target, the neutron rich radioactive fission products are cold enough, thus avoiding the evaporation of a too large number of neutrons. For such purposes, one needs experimental angular distributions at given energies for different types of converters and to elaborate a theoretical tool in order to estimate accurately the characteristics of the secondary neutron beam. In this paper, the experimental results were obtained with 17, 20 and 28 MeV deuteron energies on Be, C and U converters using the time of flight method. These data are compared to results given by a model valid at higher energy in order to obtain pertinent simulations in a large range of incident energies. Many theoretical tools were developed to characterize the properties of the neutron beams emerging from thick targets. In this contribution the Serber's model, considered with its improvements which account for the Coulomb deflection and the mean straggling of the beam in the material, is compared to experimental data in order to verify the validity

  11. Thin gold films on SnO2:In: Temperature-dependent effects on the optical properties

    International Nuclear Information System (INIS)

    Lansåker, P.C.; Niklasson, G.A.; Granqvist, C.G.

    2012-01-01

    Gold films with thicknesses of 5 ± 0.5 nm were sputter deposited onto SnO 2 :In-coated glass kept at different temperatures up to 140 °C, and similar films, deposited onto substrates at 25 °C, were annealing post treated at the same temperatures. Nanostructures and optical properties were recorded by scanning electron microscopy and spectrophotometry in the 0.3 to 2.5 μm wavelength range, respectively. Annealing had a minor influence on the optical transmittance despite significant changes in the scale of the nanostructure, whereas deposition onto substrates heated to 140 °C yielded granular films with strong plasmon absorption of luminous radiation. These results are of considerable interest for optical devices with gold films prepared at elevated temperature or operating at such temperature. - Highlights: ► Thin gold films have been deposited onto base layers of SnO 2 :In. ► The gold depositions were made onto both non-heated and heated substrates. ► Gold depositions onto non-heated substrates were followed by heat treatment. ► Depending on heating procedure, the gold films show apparently different structure.

  12. Effect of the hybrid composition on the physicochemical properties and morphology of iron oxide–gold nanoparticles

    International Nuclear Information System (INIS)

    Barnett, C. M.; Gueorguieva, M.; Lees, M. R.; McGarvey, D. J.; Darton, R. J.; Hoskins, C.

    2012-01-01

    Hybrid nanoparticles (HNPs) formed from iron oxide cores and gold nano-shells are becoming increasingly applicable in biomedicine. However, little investigation has been carried out on the effects of the constituent components on their physical characteristics. Here we determine the effect of polymer intermediate, gold nano-shell thickness and magnetic iron oxide core diameter on the morphological and physical properties of these nano-hybrids. Our findings suggest that the use of polymer intermediate directly impacts the morphology of the nanostructure formed. Here, we observed the formation of nano-sphere and nano-star structures by varying the cationic polymer intermediate. The nano-stars formed have a larger magnetic coercivity, T 2 relaxivity and exhibited a unique characteristic nano-heating pattern upon laser irradiation. Increasing the iron oxide core diameter resulted in a greater T 2 relaxivity enhanced and nano-heating capabilities due to increased surface area. Increasing the gold nano-shell thickness resulted in a decreased efficiency as a nano-heater along with a decrease in T 2 relaxivity. These results highlight the importance of identifying the key traits required when fabricating HNPs in order to tailor them to specific applications.

  13. Some Observations on Gold in the Weathering Profile at Garimpo Porquinho, an Artisanal Mine in the Tapajós Region, Brazilian Amazon

    OpenAIRE

    Sonia Maria Barros de Oliveira; João Henrique Larizzatti

    2006-01-01

    At Garimpo Porquinho (Tapajós Province, Brazilian Amazon) gold-bearing quartz veins containing sulfides occur in anarrow zone affected by hydrothermal alteration. The artisanally mined veins are exposed in a saprolite zone extending downat least 9 m to the fresh rock and are covered by a 1 m thick residual soil. Lateral gold dispersion in the saprolite is notnoticeable whereas in the soil gold dispersion has been observed as far as 2 m from the vein. Trace metals associated with goldinclude A...

  14. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment

    Science.gov (United States)

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-06-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  15. Measurement of the thickness of a target deposited in a substrate; Medicion del grosor de un blanco depositado en un substrato

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Q, E.; Aguilera, E.F

    1990-12-15

    Being based on the Elastic scattering and in the Energy losses that suffer a projectile to the interacting with the matter, a method that allows to determine the thickness of a target deposited in a more heavy substrate is presented. The obtained results are consistent with that waited and the derived errors of the method are small. The used technique allows to reduce in considerable form the systematic errors coming from the calibration of the equipment. It is considered that this method is applicable in an interval of thickness quite wide and for many materials since it is only necessary to choose the projectile type and the energy of the same one appropriately. (Author)

  16. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

      Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  17. Laser-accelerated proton conversion efficiency thickness scaling

    International Nuclear Information System (INIS)

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-01-01

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10 19 W/cm 2 Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 μm, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 μm, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH 3 on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  18. Failure Mechanisms of a Gold Microelectrode in Bioelectronics Applications

    Directory of Open Access Journals (Sweden)

    Jonghun Kim

    2015-01-01

    Full Text Available The generation, growth, and collapse of tiny bubbles are inevitable for a microelectrode working in aqueous environment, thus resulting in physical damages on the microelectrode. The failure mechanisms of a microelectrode induced by tiny bubble collapsing are investigated by generating tiny hydrogen bubbles on a gold microelectrode through deionized water electrolysis. The surface of the microelectrode is modified with a thiol-functionalized arginine-glycine-aspartic acid peptide to generate perfectly spherical bubbles in proximity of the surface. The failure of an Au microelectrode is governed by two damage mechanisms, depending on the thickness of the microelectrode: a water-hammer pressure due to the violent collapse of a single large bubble, formed through merging of small bubbles, for ultrathin Au microelectrodes of 40–60 nm in thickness, and an energy accumulation resulting from the repetitive collapse of tiny bubbles for thick Au microelectrodes of 100–120 nm.

  19. Cancer nanotechnology: emerging role of gold nanoconjugates.

    Science.gov (United States)

    Kudgus, Rachel A; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-12-01

    Over the last few decades, the study of nanotechnology has grown exponentially. Nanotechnology bridges science, engineering and technology; it continues to expand in definition as well as practice. One sub-set of nanotechnology is bionanotechnology, this will be the focus of this review. Currently, bionanotechnology is being studied and exploited for utility within medicinal imaging, diagnosis and therapy in regard to cancer. Cancer is a world-wide health problem and the implication rate as well as the death rate increase year to year. However promising work is being done with gold nanoparticles for detection, diagnosis and targeted drug delivery therapy. Gold nanoparticles can be synthesized in various shapes and sizes, which directly correlates to the color; they can also be manipulated to carry various antibody, protein, plasmid, DNA or small molecule drug. Herein we summarize some of the very influential research being done in the field of Cancer Nanotechnology with an emphasis on gold nanoparticles.

  20. Measurements of Neutron Spectra Produced from a Thick Iron Target Bombarded with 1.5-GeV Protons

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Shigyo, Nobuhiro; Iga, Kiminori; Iwamoto, Yosuke; Kitsuki, Hirohiko; Ishibashi, Kenji; Maehata, Keisuke; Arima, Hidehiko; Nakamoto, Tatsushi; Numajiri, Masaharu

    2005-01-01

    For validation of calculation codes that are employed in the design of accelerator facilities, spectra of neutrons produced from a thick iron target bombarded with 1.5-GeV protons were measured. The calculated results with NMTC/JAM were compared with the present experimental results. It is found that the NMTC/JAM generally shows good agreement with experiment. Furthermore, the calculation gives good agreement with the experiment for the energy region 20 to 80 MeV for iron, whereas the NMTC/JAM gives 50% of the experimental data for the heavy-nuclides such as lead and tungsten

  1. Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells.

    Science.gov (United States)

    Shi, Xiangyang; Wang, Su He; Lee, Inhan; Shen, Mingwu; Baker, James R

    2009-11-01

    Dendrimer-based nanotechnology significantly advances the area of targeted cancer imaging and therapy. Herein, we compared the difference of surface acetylated fluorescein isocyanate (FI) and folic acid (FA) modified generation 5 (G5) poly(amidoamine) dendrimers (G5.NHAc-FI-FA), and dendrimer-entrapped gold nanoparticles with similar modifications ([(Au(0))(51.2)-G5.NHAc-FI-FA]) in terms of their specific internalization to FA receptor (FAR)-overexpressing cancer cells. Confocal microscopic studies show that both G5.NHAc-FI-FA and [(Au(0))(51.2-)G5.NHAc-FI-FA] exhibit similar internalization kinetics regardless of the existence of Au nanoparticles (NPs). Molecular dynamics simulation of the two different nanostructures reveals that the surface area and the FA moiety distribution from the center of the geometry are slightly different. This slight difference may not be recognized by the FARs on the cell membrane, consequently leading to similar internalization kinetics. This study underlines the fact that metal or inorganic NPs entrapped within dendrimers interact with cells in a similar way to that of dendrimers lacking host NPs. 2009 Wiley Periodicals, Inc.

  2. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Catarina Roma-Rodrigues

    2017-01-01

    Full Text Available Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  3. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy.

    Science.gov (United States)

    Roma-Rodrigues, Catarina; Raposo, Luís R; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V; Fernandes, Alexandra R

    2017-01-14

    Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes' release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs' properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs' role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  4. Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: Cytotoxicity and thioredoxin reductase targeting.

    Science.gov (United States)

    Rodríguez-Fanjul, Vanessa; López-Torres, Elena; Mendiola, M Antonia; Pizarro, Ana María

    2018-03-25

    Gold(III) compounds have received increasing attention in cancer research. Three gold complexes of general formula [Au III L]Cl, where L is benzil bis(thiosemicarbazonate), compound 1, benzil bis(4-methyl-3-thiosemicarbazonate), compound 2, or benzil bis(4-cyclohexyl-3-thiosemicarbazonate), compound 3, have been synthesized and fully characterized, including the X-ray crystal structure of compound 3, confirming square-planar geometry around the gold(III) centre. Compound 1 showed moderate cytotoxicity and accumulation in MCF7 breast cancer cells but did not inhibit thioredoxin reductase (TrxR) activity and did not induce reactive oxygen species (ROS) production. Compound 2, the least cytotoxic, was found to be capable of modestly inhibiting TrxR activity and produced low levels of ROS in the MCF7 cell line. The most cytotoxic compound, 3, had the highest cellular accumulation and its distribution pattern showed a clear preference for the cytosol and mitochondria of MCF7 cells. It readily hampered intracellular TrxR activity leading to a dramatic alteration of the cellular redox state and to the induction of cell death. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Gold Nanoparticles Obtained by Bio-precipitation from Gold(III) Solutions

    International Nuclear Information System (INIS)

    Gardea-Torresdey, J.L.; Tiemann, K.J.; Gamez, G.; Dokken, K.; Tehuacanero, S.; Jose-Yacaman, M.

    1999-01-01

    The use of metal nanoparticles has shown to be very important in recent industrial applications. Currently gold nanoparticles are being produced by physical methods such as evaporation. Biological processes may be an alternative to physical methods for the production of gold nanoparticles. Alfalfa biomass has shown to be effective at passively binding and reducing gold from solutions containing gold(III) ions and resulting in the formation of gold(0) nanoparticles. High resolution microscopy has shown that five different types of gold particles are present after reaction with gold(III) ions with alfalfa biomass. These particles include: fcc tetrahedral, hexagonal platelet, icosahedral multiple twinned, decahedral multiple twinned, and irregular shaped particles. Further analysis on the frequency of distribution has shown that icosahedral and irregular particles are more frequently formed. In addition, the larger particles observed may be formed through the coalescence of smaller particles. Through modification of the chemical parameters, more uniform particle size distribution may be obtained by the alfalfa bio-reduction of gold(III) from solution

  6. Fibers as solid, internal targets for storage rings

    International Nuclear Information System (INIS)

    Przewoski, B.v.

    1994-01-01

    It has been demonstrated that fibers or micro ribbons provide the possibility to expose solid targets to a stored ion beam. Compared to gas targets or micro particle targets fiber targets require a relatively small technical effort, since differential pumping systems are not necessary to maintain the ring vacuum. Since stationary fibers are often too thick to allow for long enough lifetimes of the stored beam to be useful for experiments, a methods has been developed to move the fiber periodically through the beam. That way, the time averaged target thickness is small compared to the thickness the same fiber would have, if it were stationary in the path of the beam. In addition, the time averaged thickness can be adjusted if the amplitude of the fiber motion is increased or decreased to obtain a thinner or thicker target respectively. Measurements that compare the lifetime of the stored beam in the presence of a fiber target with the lifetime of a stored beam in the presence of a gas target show that a fiber target of a certain time averaged target thickness is equivalent to a homogeneous target of the same thickness. The data are in good agreement with Monte Carlo calculations

  7. Comparison of (alpha, n) thick-target neutron yields and spectra from ORIGEN-S and SOURCES

    International Nuclear Information System (INIS)

    Brown, T.H.; Wilson, W.B.; Perry, R.T.; Charlton, W.S.

    1998-01-01

    Both ORIGEN-S and SOURCES generate thick-target neutron yields and energy spectra from (α,n) reactions in homogeneous materials. SOURCES calculates yield and spectra for any material containing α-emitting and (α,n) target elements by simulating reaction physics, using α-emission energy spectra, elemental stopping cross sections, (α,n) cross sections for target nuclei, and branching fractions to produce-nuclide energy levels. This methodology results in accurate yield and spectra. ORIGEN-S has two options for calculating yields and spectra. The UO 2 option (default) estimates yields and spectra assuming the input α-emitters to be infinitely dilute in UO 2 . The borosilicate-glass option estimates yields from the total input material composition and generates spectra purportedly representative of spectra generated by 238 Pu, 241 Am, 242 Cm, and 244 Cm infinitely dilute in borosilicate glass, even if none of these four α-emitters are present in the input material composition. Because yields from the borosilicate-glass option in ORIGEN-S are based on entire input material composition and are reasonably accurate, the same is often assumed to be true for spectra. The input/output functionality of the borosilicate-glass option, along with ambiguity in ORIGEN-S documentation, gives the incorrect impression that spectra representative of input compositions are generated. This impression is reinforced by wide usage of the SCALE code system and its ORIGEN-S module and their sponsorship by the US Nuclear Regulatory Commission

  8. Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies

    Directory of Open Access Journals (Sweden)

    Spadavecchia J

    2016-02-01

    Full Text Available Jolanda Spadavecchia,1,2,* Dania Movia,3,* Caroline Moore,3,4 Ciaran Manus Maguire,3,4 Hanane Moustaoui,2 Sandra Casale,1 Yuri Volkov,3,4 Adriele Prina-Mello3,4 1Laboratoire de Réactivité de Surface, Sorbonne Universités, UPMC Univ Paris VI, Paris, 2Centre National de la recherche française, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures, and Properties of Biomaterials and Therapeutic Agents, Université Paris 13, Sorbonne Paris Cité, Bobigny, France; 3AMBER Centre, CRANN Institute, 4Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland *These authors contributed equally to this work Abstract: The main objective of this study was to optimize and characterize a drug delivery carrier for doxorubicin, intended to be intravenously administered, capable of improving the therapeutic index of the chemotherapeutic agent itself, and aimed at the treatment of pancreatic cancer. In light of this goal, we report a robust one-step method for the synthesis of dicarboxylic acid-terminated polyethylene glycol (PEG-gold nanoparticles (AuNPs and doxorubicin-loaded PEG-AuNPs, and their further antibody targeting (anti-Kv11.1 polyclonal antibody [pAb]. In in vitro proof-of-concept studies, we evaluated the influence of the nanocarrier and of the active targeting functionality on the anti-tumor efficacy of doxorubicin, with respect to its half-maximal effective concentration (EC50 and drug-triggered changes in the cell cycle. Our results demonstrated that the therapeutic efficacy of doxorubicin was positively influenced not only by the active targeting exploited through anti-Kv11.1-pAb but also by the drug coupling with a nanometer-sized delivery system, which indeed resulted in a 30-fold decrease of doxorubicin EC50, cell cycle blockage, and drug localization in the cell nuclei. The cell internalization pathway was strongly influenced by the active targeting of the Kv11.1 subunit of the human Ether-à-go-go related gene

  9. Refining enamel thickness measurements from B-mode ultrasound images.

    Science.gov (United States)

    Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin

    2009-01-01

    Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).

  10. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  11. Angular reflectance of suspended gold, aluminum and silver nanospheres on a gold film: Effects of concentration and size distribution

    International Nuclear Information System (INIS)

    Aslan, Mustafa M.; Wriedt, Thomas

    2010-01-01

    In this article, we describe a parametric study of the effects of the size distribution (SD) and the concentration of nanospheres in ethanol on the angular reflectance. Calculations are based on an effective medium approach in which the effective dielectric constant of the mixture is obtained using the Maxwell-Garnett formula. The detectable size limits of gold, aluminum, and silver nanospheres on a 50-nm-thick gold film are calculated to investigate the sensitivity of the reflectance to the SD and the concentration of the nanospheres. The following assumptions are made: (1) the total number of particles in the unit volume of suspension is constant, (2) the nanospheres in the suspension on a gold film have a SD with three different concentrations, and (3) there is no agglomeration and the particles have a log-normal SD, where the effective diameter, d eff and the effective variance, ν eff are given. The dependence of the reflectance on the d eff , ν eff , and the width of the SD are also investigated numerically. The angular variation of the reflectance as a function of the incident angle shows a strong dependence on the effective size of the metallic nanospheres. The results confirm that the size of the nanospheres (d eff o and 75 o for a given concentration with a particular SD.

  12. Modalities of Tonometry and their Accuracy with Respect to Corneal Thickness and Irregularities

    Directory of Open Access Journals (Sweden)

    Carlos Gustavo V. De Moraes

    2008-01-01

    Each of the many different commercially available tonometers has specific advantages and disadvantages. New non-invasive technologies are getting closer to a precise estimation of the true IOP. However, among all tonometers, none is highly accurate when both corneal thickness and surface irregularities are present. Fifty years after its development, Goldmann tonometry remains the gold standard to which all other devices are compared.

  13. Optical reconfiguration and polarization control in semicontinuous gold films close to the percolation threshold

    DEFF Research Database (Denmark)

    Frydendahl, Christian; Repän, Taavi; Geisler, Mathias

    In this work we have studied the intrinsic and reconfigured optical properties of semi-continuous gold films, fabricated via a simple metal evaporation technique. We have prepared three films of nominal thicknesses 5, 6, and 7nm. After fabrication the films are illuminated in areas by scanning a fs-pulsed...

  14. Evaluation of cross sections of 56Fe up to 3 GeV and integral benchmark calculation for thick target yield

    International Nuclear Information System (INIS)

    Yoshizawa, Nobuaki; Meigo, Shin-ichiro

    2001-01-01

    The neutron and proton cross sections of 56 Fe were evaluated up to 3 GeV. JENDL High Energy File of 56 Fe were developed for use in transport calculation. For neutrons, the high-energy data are merged with JENDL3.3-file. Integral benchmark calculations for thick target neutron yields (TTY) for 113 MeV and 256 MeV proton bombardment of Fe targets were performed using the evaluated libraries. Calculated TTY neutron spectra were compared with experimental data. For 113 MeV, calculated TTY at 7.5 degree underestimated in the emitted neutron energy range above 10 MeV. For 256 MeV, calculated TTY well agree with experimental data except below 10 MeV. (author)

  15. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    International Nuclear Information System (INIS)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc

    2008-01-01

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the ''low energy

  16. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    Energy Technology Data Exchange (ETDEWEB)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc [Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); National Research Council Canada, Institute for National Measurement Standards, 1200 Montreal Road, Building M-36, Ottawa, Ontario K1A 0R6 (Canada); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya and Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Diagonal 647, 08028 Barcelona (Spain); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, 08028 Barcelona (Spain)

    2008-10-15

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the &apos

  17. Beta ray backscattering studies for thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M; Sharma, K K [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1979-01-01

    Back-scattering of beta rays from /sup 204/Tl (Esub(..beta..)max = 740 keV) and /sup 90/Sr-/sup 90/Y (Esub(..beta..)max =550 and 2250 keV) has been studied in an improved reflection geometry, using annular sources, from a number of elemental targets with Z values ranging from 13 to 82. Source to target and target to detector geometry factors are 0.0225 and 0.0282 respectively. Values of saturation back scattering thickness obtained in the two cases are 72 +- 10 and 190 +- 40 mg/cm/sup 2/ respectively. It is observed that the intensity of back scattered radiation varies linearly with thickness upto a value of 12 +- 2 mg/cm/sup 2/ in /sup 204/Tl and 17 +- 3 mg/cm/sup 2/ in /sup 90/Sr-/sup 90/Y.

  18. Uranium sandwich targets of 0.1 to 100 mg.cm-2 prepared by electron beam gun evaporation

    International Nuclear Information System (INIS)

    Folger, H.; Klemm, J.

    1978-01-01

    Metallic uranium layers of 0.1 to 100 mg.cm -2 between different backings and protecting layers were prepared for bombardments with heavy ions such as argon, krypton, xenon, lead, or uranium at energies of up to 8 MeV/u at the UNILAC of the GSI. An experimental set-up for the preparation of thick and oxygen-free sandwich targets using a 6 kVA electron beam gun was installed in a high vacuum apparatus. Then deposition and evaporation rates for uranium were investigated as a function of the electron beam gun power. It turned out that reproducible evaporation rates of up to 7 mg.s -1 were achieved when uranium pieces of 20 to 40 grams were used. Specific evaporation rates and vapor pressures for different temperatures were calculated. Some of these data are compared to measured values, especially evaporation rates at the evaporation point. The preparation, composition, and usage of uranium sandwich targets is described in detail. It concerns uranium layers of 0.1 to 100 mg.cm -2 deposited onto backings of carbon, titanium, nickel, gold, or glass. Evaporated films of carbon, titanium, nickel, or gold of 0.01 to 0.2 mg.cm -2 are used to protect the uranium layers from oxidation

  19. Effect of coping thickness and background type on the masking ability of a zirconia ceramic.

    Science.gov (United States)

    Tabatabaian, Farhad; Taghizade, Fateme; Namdari, Mahshid

    2018-01-01

    The masking ability of zirconia ceramics as copings is unclear. The purpose of this in vitro study was to evaluate the effect of coping thickness and background type on the masking ability of a zirconia ceramic and to determine zirconia coping thickness cut offs for masking the backgrounds investigated. Thirty zirconia disks in 3 thickness groups of 0.4, 0.6, and 0.8 mm were placed on 9 backgrounds to measure CIELab color attributes using a spectrophotometer. The backgrounds included A1, A2, and A3.5 shade composite resin, A3 shade zirconia, nickel-chromium alloy, nonprecious gold-colored alloy, amalgam, black, and white. ΔE values were measured to determine color differences between the specimens on the A2 shade composite resin background and the same specimens on the other backgrounds. The color change (ΔE) values were compared with threshold values for acceptability (ΔE=5.5) and perceptibility (ΔE=2.6). Repeated measures ANOVA, the Bonferroni test, and 1-sample t tests were used to analyze data (α=.05). Mean ΔE values ranged between 1.44 and 7.88. The zirconia coping thickness, the background type, and their interaction affected the CIELab and ΔE values (Pmasking, the minimum thickness of a zirconia coping should be 0.4 mm for A1 and A3.5 shade composite resin, A3 shade zirconia, and nonprecious gold-colored alloy, 0.6 mm for amalgam, and 0.8 mm for nickel-chromium alloy. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Fabrication of large-area self-organizing gold nanostructures on a porous Al2O3 template for application as a SERS-substrate

    DEFF Research Database (Denmark)

    Nielsen, Peter; Hassing, Søren; Albrektsen, Ole

    A new technique for fabrication of large-area self-organizing variably ordered gold nanostructures with sub-10 nm gaps on templates of hexagonally ordered porous anodic aluminum oxide is demonstrated. The size as well as the interparticle distance of the fabricated gold nanostructures are adjusted...... by application of various electrolytes used in anodization of the aluminum template and the thickness of gold sputter-coated on the pore layer. The fabricated substrates are characterized by SEM, and the applicability as SERS substrates is investigated by adsorption of rhodamine 6G on the nanostructures...

  1. The interactions of laser beam with high Z solid target

    International Nuclear Information System (INIS)

    Peng Huimin; Zhang Guoping; Sheng Jiatian

    1990-01-01

    The 1-D non-LTE radiative hydrodynamic laser irradiated code JB-19 is used to calculate the laser-produced plasma conditions of high z gold disk. Following physical processes are considered: bremsstrahlung effect, radiative ionization and recombination, collisional ionization by electrons and three-body recombination, collisional excitation and de-excitation by electrons, radiative line emission and absorption and Compton scattering. A gaussian laser pulse with wavelength 1.06 μm, FWHM 600 ps and peak intensity 3 x 10 14 W/cm 2 is used to irradiate 20 μm thick gold disk. The computational results for laser-produced plasma conditions and the absorption efficiency and laser-x-rays conversion efficiency for gold disk are shown

  2. Radiochemical study of the reactions of heavy ions with gold

    International Nuclear Information System (INIS)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions

  3. Radiochemical study of the reactions of heavy ions with gold

    Energy Technology Data Exchange (ETDEWEB)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions.

  4. A multi-analytical approach to gold in Ancient Egypt: Studies on provenance and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tissot, I., E-mail: isabeltissot@gmail.com [LIBPhys – UNL, Faculty of Science and Technology, 2829-516 Caparica (Portugal); Department of Physics, Faculty of Sciences, University of Lisbon, Campo Grande, 1649-004 Lisbon (Portugal); Troalen, L.G. [National Museums Scotland, Collections Services Department, 242 West Granton Road, Edinburgh EH5 1JA (United Kingdom); Manso, M. [LIBPhys – UNL, Faculty of Science and Technology, 2829-516 Caparica (Portugal); Faculdade de Belas-Artes da Universidade de Lisboa, Largo da Academia Nacional de Belas-Artes, 1249-058 Lisbon (Portugal); Ponting, M. [Archaeology, Classics and Egyptology, University of Liverpool, 12-14 Abercromby Square, Liverpool L69 7WZ (United Kingdom); Radtke, M.; Reinholz, U. [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin (Germany); Barreiros, M.A. [LNEG, I.P., Estrada do Paço do Lumiar, 22, 1649-038 Lisbon (Portugal); Shaw, I. [Archaeology, Classics and Egyptology, University of Liverpool, 12-14 Abercromby Square, Liverpool L69 7WZ (United Kingdom); Carvalho, M.L. [LIBPhys – UNL, Faculty of Science and Technology, 2829-516 Caparica (Portugal); Guerra, M.F. [ArchAm, UMR 8096 CNRS - Université Paris Sorbonne, MAE, 21 allée de l' Université, 92023 Nanterre (France)

    2015-06-01

    Recent results from a three-year multi-disciplinary project on Ancient Egyptian gold jewellery revealed that items of jewellery from the Middle Kingdom to the New Kingdom were manufactured using a variety of alluvial gold alloys. These alloys cover a wide range of colours and the majority contain Platinum Group Elements inclusions. However, in all the gold foils analysed, these inclusions were found to be absent. In this work a selection of gilded wood and leather items and gold foil fragments, all from the excavations by John Garstang at Abydos (primarily from Middle Kingdom graves), were examined using Scanning Electron Microscopy-Energy Disperse Spectroscopy (SEM-EDS), X-Ray Fluorescence (μXRF), Particle Induced X-Ray Emission (µPIXE) and Double Dispersive X-Ray Fluorescence (D{sup 2}XRF). The work allowed us to characterise the composition of the base-alloys and also to reveal the presence of Pt at trace levels, confirming the use of alluvial gold deposits. Corrosion products were also investigated in the foils where surface tarnish was visually observed. Results showed that the differences in the colour of corrosion observed for the foils are related not only to the thickness of the corrosion layer but also to a multi-layer structure containing the various corrosion products. - Highlights: • Multi-analytical protocol based on techniques with different MDLs and spatial resolution • Application of D{sup 2}XRF developed at synchrotron BESSY II for determination of Pt in Au with a MDL of 1 ppm • Egyptian gold alloys have nanoporous corrosion layers where distinct corrosion phases could be identified. • Egyptian gold foils are made with different gold base alloys, but all containing alluvial gold.

  5. A multi-analytical approach to gold in Ancient Egypt: Studies on provenance and corrosion

    International Nuclear Information System (INIS)

    Tissot, I.; Troalen, L.G.; Manso, M.; Ponting, M.; Radtke, M.; Reinholz, U.; Barreiros, M.A.; Shaw, I.; Carvalho, M.L.; Guerra, M.F.

    2015-01-01

    Recent results from a three-year multi-disciplinary project on Ancient Egyptian gold jewellery revealed that items of jewellery from the Middle Kingdom to the New Kingdom were manufactured using a variety of alluvial gold alloys. These alloys cover a wide range of colours and the majority contain Platinum Group Elements inclusions. However, in all the gold foils analysed, these inclusions were found to be absent. In this work a selection of gilded wood and leather items and gold foil fragments, all from the excavations by John Garstang at Abydos (primarily from Middle Kingdom graves), were examined using Scanning Electron Microscopy-Energy Disperse Spectroscopy (SEM-EDS), X-Ray Fluorescence (μXRF), Particle Induced X-Ray Emission (µPIXE) and Double Dispersive X-Ray Fluorescence (D 2 XRF). The work allowed us to characterise the composition of the base-alloys and also to reveal the presence of Pt at trace levels, confirming the use of alluvial gold deposits. Corrosion products were also investigated in the foils where surface tarnish was visually observed. Results showed that the differences in the colour of corrosion observed for the foils are related not only to the thickness of the corrosion layer but also to a multi-layer structure containing the various corrosion products. - Highlights: • Multi-analytical protocol based on techniques with different MDLs and spatial resolution • Application of D 2 XRF developed at synchrotron BESSY II for determination of Pt in Au with a MDL of 1 ppm • Egyptian gold alloys have nanoporous corrosion layers where distinct corrosion phases could be identified. • Egyptian gold foils are made with different gold base alloys, but all containing alluvial gold

  6. A comparative study of electrochemical and optical properties of rhenium deposited on gold and platinum

    Energy Technology Data Exchange (ETDEWEB)

    Zerbino, Jorge O.; Castro Luna, Ana M.; Martins, M. E. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Inst. de Investigaciones Fisico-Quimicas, Teoricas y Aplicadas (INIFTA)]. E-mail: mmartins@inifta.unlp.edu.ar; Zinola, Carlos F.; Mendez, Eduardo [Universidad de la Republica, Montevideo (Uruguay). Facultad de Ciencias. Lab. de Electroquimica Fundamental

    2002-08-01

    Rhenium-containing films were grown on gold and platinum after different potentiostatic and potentiodynamic polarizations in the - 0.20 V to 0.70 V range (vs rhe) in aqueous acid perrhenate. Experimental data were obtained using cyclic voltammetry and ellipsometry, from which the thickness and optical indices of the electrodeposited rhenium layer were calculated. Metallic rhenium deposition on gold takes place at potentials within the hydrogen evolution reaction. Rhenium oxide on platinum is formed in the hydrogen adatom potential domain, whereas metallic rhenium is deposited concurrently with the hydrogen adsorption and evolution reactions on the same metal. (author)

  7. A comparative study of electrochemical and optical properties of rhenium deposited on gold and platinum

    Directory of Open Access Journals (Sweden)

    Zerbino Jorge O.

    2002-01-01

    Full Text Available Rhenium-containing films were grown on gold and platinum after different potentiostatic and potentiodynamic polarizations in the - 0.20 V to 0.70 V range (vs rhe in aqueous acid perrhenate. Experimental data were obtained using cyclic voltammetry and ellipsometry, from which the thickness and optical indices of the electrodeposited rhenium layer were calculated. Metallic rhenium deposition on gold takes place at potentials within the hydrogen evolution reaction. Rhenium oxide on platinum is formed in the hydrogen adatom potential domain, whereas metallic rhenium is deposited concurrently with the hydrogen adsorption and evolution reactions on the same metal.

  8. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  9. Synthesis and characterization of pHLIP® coated gold nanoparticles.

    Science.gov (United States)

    Daniels, Jennifer L; Crawford, Troy M; Andreev, Oleg A; Reshetnyak, Yana K

    2017-07-01

    Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP ® ) were introduced. The presence of a tumor-targeting pHLIP ® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP ® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  10. Synthesis and characterization of pHLIP® coated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Jennifer L. Daniels

    2017-07-01

    Full Text Available Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG and pH Low Insertion Peptide (pHLIP® were introduced. The presence of a tumor-targeting pHLIP® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  11. Liquid hydrogen and deuterium targets

    International Nuclear Information System (INIS)

    Bougon, M.; Marquet, M.; Prugne, P.

    1961-01-01

    A description is given of 1) Atmospheric pressure target: liquid hydrogen, 400 mm thickness; thermal insulation: styrofoam; the hydrogen vapors are used to improve the target cooling; Mylar windows. 2) Vacuum target: 12 liter content: hydrogen or deuterium; liquid thickness 400 mm; thermal insulation is afforded by a vacuum vessel and a liquid nitrogen shield. Recovery and liquefaction of deuterium vapors are managed in the vacuum vessel which holds the target. The target emptying system is designed for operating in a few minutes. (author) [fr

  12. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    Science.gov (United States)

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Precise measurements of the thick target neutron yields of the 7Li(p,n) reaction

    International Nuclear Information System (INIS)

    Matysiak, W.; Prestwich, W.V.; Byun, S.H.

    2011-01-01

    Thick target neutron yield of the 7 Li(p,n) 7 Be reaction was measured in the proton energy range from 1.95 to 2.3 MeV by determining induced activity of the 7 Be. A HPGe detector was used to detect the 478 keV gamma-rays emitted through 7 Be decay. A series of irradiations with nominal proton energies of 1.95, 2.0, 2.1, 2.2, and 2.3 MeV were carried out. In an independent experiment, raw neutron spectra were collected by a 3 He ion chamber for the same series of proton energies. From the raw neutron spectra, it was noted, that the effective proton energies were lower than the nominal by 50-58 keV. After corrections for the proton energy offsets were applied, the measured neutron yields matched the analytically calculated yields within 20%. Long term stability of neutron yield was tested at two nominal proton energies, 2.1 and 1.95 MeV over an experimental period of one year. The results show that the yield at 2.1 MeV was stable within rmse variation coefficient of 4.7% and remained consistent even when the lithium target was replaced, whereas at 1.95 MeV, the maximum fluctuations reached a factor of 10.

  14. Preparation of thin nuclear targets

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1979-03-01

    Thin film backings, sources and targets are needed for many applications in low energy nuclear physics and nuclear chemistry experiments. A survey of techniques used in the preparation of nuclear targets is first briefly discussed. These are classified as chemical, mechanical and physical preparations. Vacuum evaporation, being the most generally used technique, is discussed in detail. It is highly desirable to monitor the film thickness and control the deposition rate during evaporation and to measure the final target thickness after deposition has concluded. The relative merits of various thickness measuring techniques are described. Stages in the fabrication and mounting of self-supporting foils are described in detail, with emphasis given to the preparation of thin self-supporting carbon foils used as target backings and stripper foils. Various target backings, and the merits of the more generally used release agents are described in detail. The preparations of more difficult elemental targets are discussed, and a comprehensive list of the common targets is presented

  15. NA35: sulphur-gold collision

    CERN Multimedia

    1991-01-01

    In this image the real particles produced by the collision of a 6400 GeV sulphur ion with a gold target can be seen as they pass through a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. The NA35 experiment, which was in operation in the 1980s, was part of CERN's ongoing heavy ion project.

  16. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species

    KAUST Repository

    Fang, Caihong; Jia, Henglei; Chang, Shuai; Ruan, Qifeng; Wang, Peng; Chen, Tao; Wang, Jianfang

    2014-01-01

    Integration of gold and titania in a nanoscale core/shell architecture can offer large active metal/semiconductor interfacial areas and avoid aggregation and reshaping of the metal nanocrystal core. Such hybrid nanostructures are very useful for studying plasmon-enhanced/enabled processes and have great potential in light-harvesting applications. Herein we report on a facile route to (gold nanocrystal core)/(titania shell) nanostructures with their plasmon band synthetically variable from ∼700 nm to over 1000 nm. The coating method has also been applied to other mono- and bi-metallic Pd, Pt, Au nanocrystals. The gold/titania nanostructures have been employed as the scattering layer in dye-sensitized solar cells, with the resultant cells exhibiting a 13.3% increase in the power conversion efficiency and a 75% decrease in the scattering-layer thickness. Moreover, under resonant excitation, the gold/titania nanostructures can efficiently utilize low-energy photons to generate reactive oxygen species, including singlet oxygen and hydroxyl radicals.

  17. Electrical resistivity surveys for gold-bearing veins in the Yongjang mine, Korea

    International Nuclear Information System (INIS)

    Park, Jong-Oh; You, Young-June; Kim, Hee Joon

    2009-01-01

    The Yongjang mine is an Au–Ag deposit near Masan, located at the southernmost tip of the Korean Peninsula. The deposit lies within Cretaceous sedimentary rocks and contains many quartz veins which contain elements such as gold and silver, and sulfides. In the mine, the Yongjang, En and Ansan quartz veins have been found to be gold bearing. These veins have thicknesses of 2–40 cm and extents of 100–260 m. Electrical resistivity surveys were conducted to clarify the location of gold deposits at both prospect and detailed scales. Apparent resistivity data were collected with a dipole–dipole array on the ground surface and in boreholes, and with a pole–dipole array for surface-to-borehole surveys. The datasets derived from three-dimensional inversion of apparent resistivities are quite effective at delineating the geological structures related to gold-bearing quartz veins. These appear as a low-resistivity anomaly because almost all of the gold mineralization occurs in fractured areas associated with faults or shear zones. The surface-to-borehole survey had better resolution than the surface dipole–dipole survey when imaging gold-bearing quartz veins. The low-resistivity anomalies indicating the Yongjang and Ansan veins extend nearly vertically to sea level and dip steeply below sea level. They run NW–SE parallel to each other at a distance of about 70 m. The En vein is imaged near the Yonjang vein with a strike direction of N60°–70° W and a dip angle of about 45°

  18. Memory effects in annealed hybrid gold nanoparticles/block copolymer bilayers

    Directory of Open Access Journals (Sweden)

    Ruffino Francesco

    2011-01-01

    Full Text Available Abstract We report on the use of the self-organization process of sputtered gold nanoparticles on a self-assembled block copolymer film deposited by horizontal precipitation Langmuir-Blodgett (HP-LB method. The morphology and the phase-separation of a film of poly-n-butylacrylate-block-polyacrylic acid (PnBuA-b-PAA were studied at the nanometric scale by using atomic force microscopy (AFM and Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS. The templating capability of the PnBuA-b-PAA phase-separated film was studied by sputtering gold nanoparticles (NPs, forming a film of nanometric thickness. The effect of the polymer chain mobility onto the organization of gold nanoparticle layer was assessed by heating the obtained hybrid PnBuA-b-PAA/Au NPs bilayer at T >Tg. The nanoparticles' distribution onto the different copolymer domains was found strongly affected by the annealing treatment, showing a peculiar memory effect, which modifies the AFM phase response of the Au NPs layer onto the polar domains, without affecting their surfacial composition. The effect is discussed in terms of the peculiar morphological features induced by enhanced mobility of polymer chains on the Au NPs layer.

  19. Transverse magnetoresistance induced by electron-surface scattering on thin gold films: Experiment and theory

    International Nuclear Information System (INIS)

    Oyarzún, Simón; Henríquez, Ricardo; Suárez, Marco Antonio; Moraga, Luis; Kremer, Germán; Munoz, Raúl C.

    2014-01-01

    We report new experimental data regarding the transverse magnetoresistance measured in a family of thin gold films of different thickness with the electric field E oriented perpendicular to the magnetic field B (both fields contained within the plane of the film), as well as a theoretical description of size effects based upon a solution of Boltzmann Transport Equation. The measurements were performed at low temperatures T (4 K ≤ T ≤ 50 K) under magnetic field strengths B (1.5 T ≤ B ≤ 9 T). The magnetoresistance signal can be univocally identified as arising from electron-surface scattering, for the Hall mobility at 4 K depends linearly on film thickness. The magnetoresistance signal exhibits a marked thickness dependence, and its curvature as a function of magnetic field B varies with film thickness. The theoretical description of the magnetic field dependence of the magnetoresistance requires a Hall field that varies with the thickness of the film; this Hall field is tuned to reproduce the experimental data.

  20. Transverse magnetoresistance induced by electron-surface scattering on thin gold films: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzún, Simón [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne CEDEX (France); Henríquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Suárez, Marco Antonio; Moraga, Luis [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Kremer, Germán [Bachillerato, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800024 (Chile); Munoz, Raúl C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)

    2014-01-15

    We report new experimental data regarding the transverse magnetoresistance measured in a family of thin gold films of different thickness with the electric field E oriented perpendicular to the magnetic field B (both fields contained within the plane of the film), as well as a theoretical description of size effects based upon a solution of Boltzmann Transport Equation. The measurements were performed at low temperatures T (4 K ≤ T ≤ 50 K) under magnetic field strengths B (1.5 T ≤ B ≤ 9 T). The magnetoresistance signal can be univocally identified as arising from electron-surface scattering, for the Hall mobility at 4 K depends linearly on film thickness. The magnetoresistance signal exhibits a marked thickness dependence, and its curvature as a function of magnetic field B varies with film thickness. The theoretical description of the magnetic field dependence of the magnetoresistance requires a Hall field that varies with the thickness of the film; this Hall field is tuned to reproduce the experimental data.

  1. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    International Nuclear Information System (INIS)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun

    2016-01-01

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively

  2. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun [Andong National Univ., Andong (Korea, Republic of)

    2016-07-15

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively.

  3. Gold 100: proceedings of the international conference on gold. V. 2

    International Nuclear Information System (INIS)

    Fivaz, C.E.; King, R.P.

    1986-01-01

    The proceedings of Gold 100 have been published in three separate volumes. The first deals with the mining of gold, the second with the extractive metallurgy of gold, and the third with industrial uses of gold. In this second volume, the papers on extractive metallurgy presented at the Conference reflect most of the problems that are currently of significant technical interest to the industry. This volume is divided in six main parts covering plant design, carbon-in-pulp technology, refractory gold, new technology, grinding and concentration, and leaching. The part on new technology includes papers on x-ray fluorescence analyzers, Moessbauer spectroscopy and leaching processes for uranium, while the part on grinding and concentration includes papers on nuclear and radiotracer techniques for the recovery of gold as well as various flotation parameters in the flotation behaviour of gold and uranium

  4. In Situ Evaluation of Density, Viscosity and Thickness of Adsorbed Soft Layers by Combined Surface Acoustic Wave and Surface Plasmon Resonance

    OpenAIRE

    Francis, L.; Friedt, J. -M.; Zhou, C.; Bertrand, P.

    2003-01-01

    We show the theoretical and experimental combination of acoustic and optical methods for the in situ quantitative evaluation of the density, the viscosity and the thickness of soft layers adsorbed on chemically tailored metal surfaces. For the highest sensitivity and an operation in liquids, a Love mode surface acoustic wave (SAW) sensor with a hydrophobized gold coated sensing area is the acoustic method, while surface plasmon resonance (SPR) on the same gold surface as the optical method is...

  5. One-step synthesis of gold-polyaniline core-shell particles

    International Nuclear Information System (INIS)

    Wang Zhijuan; Yuan Junhua; Han Dongxue; Niu Li; Ivaska, Ari

    2007-01-01

    A one-step method has been developed for synthesizing gold-polyaniline (Au-PANI) core-shell particles by using chlorauric acid (HAuCl 4 ) to oxidize aniline in the presence of acetic acid and Tween 40 at room temperature. SEM images indicated that the resulting core-shell particles were composed of submicrometre-scale Au particles and PANI shells with an average thickness of 25 nm. Furthermore, a possible mechanism concerning the growth of Au-PANI particles was also proposed based on the results of control experiments

  6. Using a cover layer to improve the damage resistance of gold-coated gratings induced by a picosecond pulsed laser

    Science.gov (United States)

    Xia, Zhilin; Wu, Yihan; Kong, Fanyu; Jin, Yunxia

    2018-04-01

    The chirped pulse amplification (CPA) technology is the main approach to achieve high-intensity short-pulse laser. Diffraction gratings are good candidates for stretching and compressing laser pulses in CPA. In this paper, a kind of gold-coated grating has been prepared and its laser damage experiment has been performed. The results reflect that the gratings laser damage was dominated by thermal ablation due to gold films or inclusions absorption and involved the deformation or eruption of the gold film. Based on these damage phenomena, a method of using a cover layer to prevent gold films from deforming and erupting has been adopted to improve the gold-coated gratings laser damage threshold. Since the addition of a cover layer changes the gratings diffraction efficiency, the gratings structure has been re-optimized. Furthermore, according to the calculated thermal stress distributions in gratings with optimized structures, the cover layer was demonstrated to be helpful for improving the gratings laser damage resistance if it is thick enough.

  7. Detection of fission fragments using thick samples in contact with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Lima, D.A. de; Martins, J.B.; Tavares, O.A.P.

    1987-01-01

    Whenever use is made of thick samples in contact with solid state nuclear track detectors for determining fission yields, one of the fundamental problems is the evaluation of the effective number of target nuclei which contributes to the fraction of the number of fission events that will be recorded. The evaluation of the effective number of target nuclei which contributes to recorded events is based on the effective thickness of the sample. A method for evaluating effective thickness of thick samples for binary fission modes, is presented. A cross section equation which takes into account all the necessary corrections due to fragment attenuation effects by a thick target for calculation induced fission yields, was obtained. (Author) [pt

  8. Measurements of spallation neutrons from a thick lead target bombarded with 0.5 and 1.5 GeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro; Takada, Hiroshi; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-03-01

    Double differential neutron spectra from a thick lead target bombarded with 0.5 and 1.5 GeV protons have been measured with the time-of-flight technique. In order to obtain the neutron spectra without the effect of the flight time fluctuation by neutron scattering in the target, an unfolding technique has also been employed in the low energy region below 3 MeV. The measured data have been compared with the calculated results of NMTC/JAERI-MCNP-4A code system. It has been found that the code system gives about 50 % lower neutron yield than the experimental ones in the energy region between 20 and 80 MeV for both incident energies. The disagreements, however, have been improved well by taking account of the inmedium nucleon-nucleon scattering cross sections in the NMTC/JAERI code. (author)

  9. Measurement of proton induced thick target γ-ray yields on B, N, Na, Al and Si from 2.5 to 4.1 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, M., E-mail: chiari@fi.infn.it [INFN-Florence and Department of Physics and Astronomy, University of Florence, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Ferraccioli, G.; Melon, B.; Nannini, A.; Perego, A.; Salvestrini, L. [INFN-Florence and Department of Physics and Astronomy, University of Florence, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Lagoyannis, A.; Preketes-Sigalas, K. [Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, NCSR “Demokritos”, 153.10 Aghia Paraskevi, Athens (Greece)

    2016-01-01

    Thick target yields for proton induced γ-ray emission (PIGE) on low-Z nuclei, namely B, N, Na, Al and Si, were measured for proton energies from 2.5 to 4.1 MeV and emission angles of 0°, 45° and 90°, at the 3 MV Tandetron laboratory of INFN-LABEC in Florence. The studied reactions were: {sup 10}B(p,α′γ){sup 7}Be (E{sub γ} = 429 keV), {sup 10}B(p,p′γ){sup 10}B (E{sub γ} = 718 keV) and {sup 11}B(p,p′γ){sup 11}B (E{sub γ} = 2125 keV) for boron; {sup 14}N(p,p′γ){sup 14}N (E{sub γ} = 2313 keV) for nitrogen; {sup 23}Na(p,p′γ){sup 23}Na (E{sub γ} = 441 and 1636 keV) and {sup 23}Na(p,α′γ){sup 20}Ne (E{sub γ} = 1634 keV) for sodium; {sup 27}Al(p,p′γ){sup 27}Al (E{sub γ} = 844 and 1014 keV) and {sup 27}Al(p,α′γ){sup 24}Mg (E{sub γ} = 1369 keV) for aluminum; {sup 28}Si(p,p′γ){sup 28}Si (E{sub γ} = 1779 keV) and {sup 29}Si(p,p′γ){sup 29}Si (E{sub γ} = 1273 keV) for silicon. The PIGE thick target yields have been measured with an overall uncertainty typically better than 10%. The use of the measured thick target yield to benchmark and validate experimental cross sections available in the literature is demonstrated.

  10. Angular measurement of the energy distribution of neutrons from the thick target 7Li(p,n)7Be source

    International Nuclear Information System (INIS)

    Rose, A.

    1981-11-01

    The energy spectrum of neutrons emitted from a thick lithium target bombarded by protons has been measured as a function of neutron angle of emission. The measurements were done at proton energies up to 2.8 MeV and at 30 deg. intervals in the range 0 to 120 deg. using proportional detectors with gas fillings of hydrogen and methane. A review is given of papers published on the 7 Li(p,n) 7 Be reactions at 0 deg.; where applicable, comparisons are made with the present results

  11. Paper Money but a Gold Debt. Italy in the Gold Standard

    OpenAIRE

    Giuseppe Tattara; or consequences)

    2002-01-01

    During the 52 years between the Unification of the Kingdom of Italy and World War 1, the lira was legally convertible into metal for a limited period of time. Although not formally committed to gold, the lira exchange towards the gold standard countries proved remarkably stable, \\223shadowing\\224 gold. It is widely claimed that being one of the successful members of the gold standard circle entailed a number of advantages. If the lira was closely linked to gold, suggesting that there was only...

  12. SU-F-T-666: Molecular-Targeted Gold Nanorods Enhances the RBE of Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, A; Sahoo, N; Krishnan, S; Diagaradjane, P [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: In recent years, proton beam radiation therapy (PBRT) has gained significant attention in the treatment of tumors in anatomically complex locations. However, the therapeutic benefit of PBRT is limited by a relative biological effectiveness (RBE) of just 1.1. The purpose of this study is to evaluate whether this limitation can be overcome by artificially enhancing the RBE using molecular-targeted gold nanorods (GNRs). Methods: Molecular-targeting of GNRs was accomplished using Cetuximab (antibody specific to epidermal growth factor receptor that is over-expressed in tumors) conjugated GNRs (cGNRs) and their binding affinity to Head and Neck cancer cells was confirmed using dark field microscopy and Transmission Electron Microscopy (TEM). The radiosensitization potential of cGNRs when irradiated with photon (6MV) and proton (100 and 160 MeV) beams was determined using clonogenic assays. The RBE at 10% surviving fraction (RBE{sub 10}) for proton therapies at central and distal locations of SOBP was calculated with respect to 6 MV photons. IgGconjugated GNRs (iGNRs) were used as controls in all experiments. Results: cGNRs demonstrated significant radiosensitization when compared to iGNRs for 6MV photons (1.14 vs 1.04), 100 MeV protons (1.19 vs 1.04), and 160 MeV protons (1.17 vs 1.04). While RBE10 for proton beams at the center of SOBP revealed similar effects for both 100 and 160 MeV (RBE{sup 10}=1.39 vs 1.38; p>0.05), enhanced radiosensitization was observed at the distal SOBP with 100 MeV beams demonstrating greater effect than 160 MeV beams (RBE{sup 10}=1.79 vs 1.6; p<0.05). Conclusion: EGFR-targeting GNRs significantly enhance the RBE of protons well above the accepted 1.1 value. The enhanced RBE observed for lower energy protons (100 MeV) and at the distal SOBP suggests that low energy components may play a role in the observed radiosensitization effect. This strategy holds promise for clinical translation and could evolve as a paradigm-changing approach

  13. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  14. Exciton Emission from Bare and Alq3/Gold Coated GaN Nanorods

    Science.gov (United States)

    Mohammadi, Fatemesadat; Kuhnert, Gerd; Hommel, Detlef; Schmitzer, Heidrun; Wagner, Hans-Peter

    We study the excitonic and impurity related emission in bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL). The GaN nanorods were grown by molecular beam epitaxy. Alq3 as well as Alq3/gold covered nanorods were synthesized by organic molecular beam deposition. In the near-band edge region a donor-bound-exciton (D0X) emission is observed at 3.473 eV. Another emission band at 3.275 eV reveals LO-phonon replica and is attributed to a donor-acceptor-pair (DAP) luminescence. TR PL traces at 20 K show a nearly biexponential decay for the D0X with lifetimes of approximately 180 and 800 ps for both bare and Alq3 coated nanorods. In GaN nanorods which were coated with an Alq3 film and subsequently with a 10 nm thick gold layer we observe a PL quenching of D0X and DAP band and the lifetimes of the D0X transition shorten. The quenching behaviour is partially attributed to the energy-transfer from free excitons and donor-bound-excitons to plasmon oscillations in the gold layer.

  15. Optimal stapler cartridge selection according to the thickness of the pancreas in distal pancreatectomy.

    Science.gov (United States)

    Kim, Hongbeom; Jang, Jin-Young; Son, Donghee; Lee, Seungyeoun; Han, Youngmin; Shin, Yong Chan; Kim, Jae Ri; Kwon, Wooil; Kim, Sun-Whe

    2016-08-01

    Stapling is a popular method for stump closure in distal pancreatectomy (DP). However, research on which cartridges are suitable for different pancreatic thickness is lacking. To identify the optimal stapler cartridge choice in DP according to pancreatic thickness.From November 2011 to April 2015, data were prospectively collected from 217 consecutive patients who underwent DP with 3-layer endoscopic staple closure in Seoul National University Hospital, Korea. Postoperative pancreatic fistula (POPF) was graded according to International Study Group on Pancreatic Fistula definitions. Staplers were grouped based on closed length (CL) (Group I: CL ≤ 1.5 mm, II: 1.5 mm 17 mm. With pancreatic thickness <12 mm, the POPF rate was lowest with Group II (I: 50%, II: 27.6%, III: 69.2%, P = 0.035).The optimal stapler cartridges with pancreatic thickness <12 mm were those in Group II (Gold, CL: 1.8 mm). There was no suitable cartridge for thicker pancreases. Further studies are necessary to reduce POPF in thick pancreases.

  16. Impact of oxide thickness on SEGR failure in vertical power MOSFETs: Development of a semi-empirical expression

    International Nuclear Information System (INIS)

    Titus, J.L.; Wheatley, C.F.; Burton, D.I.; Mouret, I.; Allenspach, M.; Brews, J.; Schrimpf, R.; Galloway, K.; Pease, R.L.

    1995-01-01

    This paper investigates the role that the gate oxide thickness (T ox ) plays on the gate and drain failure threshold voltages required to induce the onset of single-event gate rupture (SEGR). The impact of gate oxide thickness on SEGR is experimentally determined from vertical power metal-oxide semiconductor field-effect transistors (MOSFETs) having identical process and design parameters, except for the gate oxide thickness. Power MOSFETs from five variants were specially fabricated with nominal gate oxide thicknesses of 30, 50, 70, 100, and 150 nm. Devices from each variant were characterized to mono-energetic ion beams of Nickel, Bromine, Iodine, and Gold, Employing different bias conditions, failure thresholds for the onset of SEGR were determined for each oxide thickness. Applying these experimental test results, the previously published empirical expression is extended to include the effects of gate oxide thickness. In addition, observations of ion angle, temperature, cell geometry, channel conductivity, and curvature at high drain voltages are briefly discussed

  17. Development of a gold-nanostructured surface for amperometric genosensors

    Energy Technology Data Exchange (ETDEWEB)

    Zanardi, Chiara, E-mail: chiara.zanardi@unimore.it [Universita di Modena e Reggio Emilia, Dipartimento di Chimica (Italy); Baldoli, Clara, E-mail: clara.baldoli@istm.cnr.it [Istituto di Scienze e Tecnologie Molecolari del CNR (Italy); Licandro, Emanuela [Universita degli Studi di Milano, Dipartimento di Chimica Organica ed Industriale (Italy); Terzi, Fabio; Seeber, Renato [Universita di Modena e Reggio Emilia, Dipartimento di Chimica (Italy)

    2012-10-15

    A gold-nanostructured surface has been obtained by stable deposition of chemically synthesized gold nanoparticles (2.1-5.5 nm size range) on a gold substrate through a dithiol linker. The method proposed for the obtainment of the nanostructure is suitable for the further stable anchoring of a peptide nucleic acid oligomer through four amine groups of lysine terminal residues, leading to fairly reproducible systems. The geometric area of the nanostructured surface is compared with those of a smooth and of an electrochemically generated nanostructured surface by depositing a probe bearing an electrochemically active ferrocene residue. Despite the area of the two nanostructures being quite similar, the response toward a 2 nM target oligonucleotide sequence is particularly high when using the surface built up by nanoparticle deposition. This aspect indicates that morphologic details of the nanostructure play a key role in conditioning the performances of the genosensors.

  18. Development of a gold-nanostructured surface for amperometric genosensors

    International Nuclear Information System (INIS)

    Zanardi, Chiara; Baldoli, Clara; Licandro, Emanuela; Terzi, Fabio; Seeber, Renato

    2012-01-01

    A gold-nanostructured surface has been obtained by stable deposition of chemically synthesized gold nanoparticles (2.1–5.5 nm size range) on a gold substrate through a dithiol linker. The method proposed for the obtainment of the nanostructure is suitable for the further stable anchoring of a peptide nucleic acid oligomer through four amine groups of lysine terminal residues, leading to fairly reproducible systems. The geometric area of the nanostructured surface is compared with those of a smooth and of an electrochemically generated nanostructured surface by depositing a probe bearing an electrochemically active ferrocene residue. Despite the area of the two nanostructures being quite similar, the response toward a 2 nM target oligonucleotide sequence is particularly high when using the surface built up by nanoparticle deposition. This aspect indicates that morphologic details of the nanostructure play a key role in conditioning the performances of the genosensors.

  19. Heavy-ion targets

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.

    1985-01-01

    This chapter examines the characteristics of targets required in heavy-ion accelerator physics experiments. The effects of target parameters on heavy-ion experimental results are reviewed. The target fabrication and characterization techniques used to minimize experimental problems during heavy-ion bombardment are described. Topics considered include target thickness and uniformity, target lifetime, target purity, substrate materials, Doppler shift effects, metal preparations, and target preparation methods

  20. Charged--particle beam implosion of fusion targets

    International Nuclear Information System (INIS)

    Clauser, M.J.; Sweeney, M.A.

    1975-01-01

    This paper discusses the calculated behavior of fusion targets consisting of solid shells filled with DT gas, irradiated by high power electron or ion beams. The current required for breakeven with gold shells is 500 to 1000 MA, independent of target radius and nearly independent of beam voltage in the 1 / 2 to 1 MeV range. Above 1 MeV the breakeven current increases because of the increased bremsstrahlung production by the beam electrons. By using a diamond ablator and a gold pusher, the breakeven current is reduced to 220 MA. The ion current required for breakeven (about 10 MA of protons) is independent of proton voltage above 10 MeV with gold shell targets. Below 10 MeV the range of the proton becomes too short for efficient coupling, and the required current increases, but the power does not. Various aspects of the symmetry and stability of the implosion are discussed. One finds that the relatively long deposition lengths of electrons result in relatively small growths of the Rayleigh--Taylor instability during the acceleration of the pusher, resulting in a relatively stable implosion

  1. Mixed DNA/Oligo(ethylene glycol) Functionalized Gold Surface Improve DNA Hybridization in Complex Media

    International Nuclear Information System (INIS)

    Lee, C.; Gamble, L.; Grainger, D.; Castner, D.

    2006-01-01

    Reliable, direct 'sample-to-answer' capture of nucleic acid targets from complex media would greatly improve existing capabilities of DNA microarrays and biosensors. This goal has proven elusive for many current nucleic acid detection technologies attempting to produce assay results directly from complex real-world samples, including food, tissue, and environmental materials. In this study, we have investigated mixed self-assembled thiolated single-strand DNA (ssDNA) monolayers containing a short thiolated oligo(ethylene glycol) (OEG) surface diluent on gold surfaces to improve the specific capture of DNA targets from complex media. Both surface composition and orientation of these mixed DNA monolayers were characterized with x-ray photoelectron spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS). XPS results from sequentially adsorbed ssDNA/OEG monolayers on gold indicate that thiolated OEG diluent molecules first incorporate into the thiolated ssDNA monolayer and, upon longer OEG exposures, competitively displace adsorbed ssDNA molecules from the gold surface. NEXAFS polarization dependence results (followed by monitoring the N 1s→π* transition) indicate that adsorbed thiolated ssDNA nucleotide base-ring structures in the mixed ssDNA monolayers are oriented more parallel to the gold surface compared to DNA bases in pure ssDNA monolayers. This supports ssDNA oligomer reorientation towards a more upright position upon OEG mixed adlayer incorporation. DNA target hybridization on mixed ssDNA probe/OEG monolayers was monitored by surface plasmon resonance (SPR). Improvements in specific target capture for these ssDNA probe surfaces due to incorporation of the OEG diluent were demonstrated using two model biosensing assays, DNA target capture from complete bovine serum and from salmon genomic DNA mixtures. SPR results demonstrate that OEG incorporation into the ssDNA adlayer improves surface resistance to both nonspecific DNA and protein

  2. Optical properties of gold island films-a spectroscopic ellipsometry study

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, Martin, E-mail: mloncaric@irb.hr; Sancho-Parramon, Jordi; Zorc, Hrvoje

    2011-02-28

    Metal island films of noble metals are obtained by deposition on glass substrates during the first stage of evaporation process when supported metal nanoparticles are formed. These films show unique optical properties, owing to the localized surface plasmon resonance of free electrons in metal nanoparticles. In the present work we study the optical properties of gold metal island films deposited on glass substrates with different mass thicknesses at different substrate temperatures. The optical characterization is performed by spectroscopic ellipsometry at different angles of incidence and transmittance measurements at normal incidence in the same point of the sample. Fitting of the ellipsometric data allows determining the effective optical constants and thickness of the island film. A multiple oscillator approach was used to successfully represent the dispersion of the effective optical constants of the films.

  3. Deterministic assembly of linear gold nanorod chains as a platform for nanoscale applications

    DEFF Research Database (Denmark)

    Rey, Antje; Billardon, Guillaume; Loertscher, Emanuel

    2013-01-01

    target substrate, thus establishing a platform for a variety of nanoscale electronic and optical applications ranging from molecular electronics to optical and plasmonic devices. As a first example, electrical measurements are performed on contacted gold nanorod chains before and after their immersion......We demonstrate a method to assemble gold nanorods highly deterministically into a chain formation by means of directed capillary assembly. This way we achieved straight chains consisting of end-to-end aligned gold nanorods assembled in one specific direction with well-controlled gaps of similar...... to 6 nm between the individual constituents. We determined the conditions for optimum quality and yield of nanorod chain assembly by investigating the influence of template dimensions and assembly temperature. In addition, we transferred the gold nanorod chains from the assembly template onto a Si/SiO2...

  4. Light-activated microbubbles around gold nanorods for photoacoustic microsurgery

    Science.gov (United States)

    Cavigli, Lucia; Centi, Sonia; Lai, Sarah; Borri, Claudia; Micheletti, Filippo; Tortoli, Paolo; Panettieri, Ilaria; Streit, Ingolf; Rossi, Francesca; Ratto, Fulvio; Pini, Roberto

    2018-02-01

    The increasing interest around imaging and microsurgery techniques based on the photoacoustic effect has boosted active research into the development of exogenous contrast agents that may enhance the potential of this innovative approach. In this context, plasmonic particles as gold nanorods are achieving resounding interest, owing to their efficiency of photothermal conversion, intense optical absorbance in the near infrared region, inertness in the body and convenience for conjugation with ligands of molecular targets. On the other hand, the photoinstability of plasmonic particles remains a remarkable obstacle. In particular, gold nanorods easily reshape into nanospheres and so lose their optical absorbance in the near infrared region, under exposure to few-ns-long laser pulses. This issue is attracting much attention and stimulating ad-hoc solutions, such as the addition of rigid shells and the optimization of multiple parameters. In this contribution, we focus on the influence of the shape of gold nanorods on their photothermal behavior and photostability. We describe the photothermal process in the gold nanorods by modeling their optical absorption and consequent temperature dynamics as a function of their aspect ratio (length / diameter). Our results suggest that increasing the aspect ratio does probably not limit the photostability of gold nanorods, while shifting the plasmonic peak towards wavelengths around 1100 nm, which hold more technological interest.

  5. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    Science.gov (United States)

    Marr, Isabella; Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2011-01-01

    Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers. PMID:22164042

  6. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    Directory of Open Access Journals (Sweden)

    Gunter Hagen

    2011-08-01

    Full Text Available Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers.

  7. Enhancement of gold recovery using bioleaching from gold concentrate

    Science.gov (United States)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  8. Ar ion beam mixing at gold-silicon interfaces

    International Nuclear Information System (INIS)

    Li Yupu; Chen Jian; Liu Jiarui; Zhang Qichu

    1987-01-01

    Ar-ion beam mixing at Au-Si interface is investigated systematically as a function of the energy of Ar-ion beam (100-300 keV), dose (5 x 10 15 - 8 x 10 16 /cm 2 ), dose rate (1.6 - 16 μA/cm 2 ) and substrate temperature (77 - 573 K). Very good ion beam mixing is obtained when the Ar-ion range distribution R p ± ΔR p fits the gold film thickness, where R p is the projected range and ΔR p is the standard deviation. At LN 2 temperature, the mixing amount is proportional to the square root of the dose but independent of the dose rate and the mixing process can be explained by the random walking model for the cascade process. At room temperature the dose rate effect is observed because of the beam current induced temperature effect. The temperature effect of the mixing amount, the uniformity, the thickness of mixing layers and the phase structure are observed

  9. Thermal Effusivity Determination of Metallic Films of Nanometric Thickness by the Electrical Micropulse Method

    Science.gov (United States)

    Lugo, J. M.; Oliva, A. I.

    2017-02-01

    The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films' thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.

  10. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2012-01-01

    Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. A tumor vascular endothelial cell (EC) is modeled as a slab of 2 μm (thickness) × 10 μm (length) × 10 μm (width). The EC contains a nucleus of 5 μm diameter and thickness of 0.5-1 μm, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting extensive tumor cell death.

  11. Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I. [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2012-01-15

    Purpose: Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. Methods: A tumor vascular endothelial cell (EC) is modeled as a slab of 2 {mu}m (thickness) x 10 {mu}m (length) x 10 {mu}m (width). The EC contains a nucleus of 5 {mu}m diameter and thickness of 0.5-1 {mu}m, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. Results: For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. Conclusions: The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting

  12. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    OpenAIRE

    Marija Matulionyte; Dominyka Dapkute; Laima Budenaite; Greta Jarockyte; Ricardas Rotomskis

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. The...

  13. Systematic analysis of neutron yields from thick targets bombarded by heavy ions and protons with moving source model

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takashi; Kurosawa, Tadahiro; Nakamura, Takashi E-mail: nakamura@cyric.tohoku.ac.jp

    2002-03-21

    A simple phenomenological analysis using the moving source model has been performed on the neutron energy spectra produced by bombarding thick targets with high energy heavy ions which have been systematically measured at the Heavy-Ion Medical Accelerator (HIMAC) facility (located in Chiba, Japan) of the National Institute of Radiological Sciences (NIRS). For the bombardment of both heavy ions and protons in the energy region of 100-500 MeV per nucleon, the moving source model incorporating the knock-on process could be generally successful in reproducing the measured neutron spectra within a factor of two margin of accuracy. This phenomenological analytical equation is expressed having several parameters as functions of atomic number Z{sub p}, mass number A{sub p}, energy per nucleon E{sub p} for projectile, and atomic number Z{sub T}, mass number A{sub T} for target. By inputting these basic data for projectile and target into this equation we can easily estimate the secondary neutron energy spectra at an emission angle of 0-90 deg. for bombardment with heavy ions and protons in the aforementioned energy region. This method will be quite useful to estimate the neutron source term in the neutron shielding design of high energy proton and heavy ion accelerators.

  14. Biomedical Applications of Gold Nanoparticles Functionalized Using Hetero-Bifunctional Poly(ethylene glycol) Spacer

    National Research Council Canada - National Science Library

    Fu, Wei; Shenoy, Dinesh; Li, Jane; Crasto, Curtis; Jones, Graham; Dimarzio, Charles; Sridhar, Srinivas; Amiji, Mansoor

    2005-01-01

    To increase the targeting potential, circulation time, and the flexibility of surface-attached biomedically-relevant ligands on gold nanoparticles, hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500...

  15. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-06-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  16. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-04-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  17. The geology of the gold deposits of Prestea gold belt of Ghana ...

    African Journals Online (AJOL)

    This paper presents the geology of the gold deposits along the Prestea gold belt of Ghana to assist exploration work for new orebodies along the belt. Prestea district is the third largest gold producer in West Africa after Obuasi and Tarkwa districts (over 250 metric tonnes Au during the last century). The gold deposits are ...

  18. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.

    Science.gov (United States)

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-10-28

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.

  19. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Lai, Hong-Zheng; Wang, Sin-Ge; Wu, Ching-Yi; Chen, Yu-Chie

    2015-02-17

    Staphylococcus aureus is one of the common pathogenic bacteria responsible for bacterial infectious diseases and food poisoning. This study presents an analytical method based on the affinity nanoprobe-based mass spectrometry that enables detection of S. aureus in aqueous samples. A peptide aptamer DVFLGDVFLGDEC (DD) that can recognize S. aureus and methicillin-resistant S. aureus (MRSA) was used as the reducing agent and protective group to generate DD-immobilized gold nanoparticles (AuNPs@DD) from one-pot reactions. The thiol group from cysteine in the peptide aptamer, i.e., DD, can interact with gold ions to generate DD-immobilized AuNPs in an alkaline solution. The generated AuNPs@DD has an absorption maximum at ∼518 nm. The average particle size is 7.6 ± 1.2 nm. Furthermore, the generated AuNPs@DD can selectively bind with S. aureus and MRSA. The conjugates of the target bacteria with AuNPs were directly analyzed by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The gold ions generated from the AuNPs@DD anchored on the target bacteria were monitored. Gold ions (m/z 197 and 394) were only generated from the conjugates of the target bacterium-AuNP@DD in the SALDI process. Thus, the gold ions could be used as the indicators for the presence of the target bacteria. The detection limit of S. aureus using this method is in the order of a few tens of cells. The low detection limit is due to the ease of generation of gold cluster ion derived from AuNPs under irradiation with a 355 nm laser beam. Apple juice mixed with S. aureus was used as the sample to demonstrate the suitability of the method for real-world application. Because of its low detection limit, this approach can potentially be used to screen the presence of S. aureus in complex samples.

  20. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors

    Science.gov (United States)

    Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.

    2015-10-01

    Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.

  1. Gold Leaching Characteristics and Intensification of a High S and As-Bearing Gold Concentrate

    Science.gov (United States)

    Yang, Yong-bin; Liu, Xiao-liang; Jiang, Tao; Li, Qian; Xu, Bin; Zhang, Yan

    Some high sulfur and arsenic-bearing gold concentrate has a gold leaching rate less than 80% by oxidation roasting-pickling-cyanidation process. The characteristics and intensification of gold leaching were studied systemically. By combining chemical composition and phase analysis, the low gold leaching rate was found to lie in the capsulation of gold by iron-containing phases including iron oxides, arsenopyrite and pyrite. 96.66% of gold in the industrial leaching residue was capsulated and 95.88% of the capsulated turned out to be in the iron-containing phases. The results of laboratory pickling-cyanidation experiments on the calcine and industrial leaching residue presented further demonstration for the fact that gold capsulated in the iron-containing phases was hard to be leached. However, the gold cyanide leaching rate of calcine could be raised over 95% by a reduction roasting-pickling pretreatment which played such a significant role in exposing the capsulated gold that gold leaching was intensified remarkably.

  2. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Simon, G.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E.; Kao, L.S. [Univ. of Michigan, Ann Arbor, MI (United States)

    1999-07-01

    XANES measurements on gold-bearing arsenian pyrite from the Twin Creeks Carlin-type gold deposits show that gold is present as both Au{sup 0} and Au{sup 1+} and arsenic is present as As{sup 1{minus}}. Au{sup 0} is attributed to sub-micrometer size inclusions of free gold, whereas Au{sup 1+} is attributed to gold in the lattice of the arsenian pyrite. STEM observations suggest that As{sup 1{minus}} is probably concentrated in angstrom-scale, randomly distributed layers with a marcasite or arsenopyrite structure. Ionic gold (Au{sup 1+}) could be concentrated in these layers as well, and is present in both twofold- and fourfold-coordinated forms, with fourfold-coordinated Au{sup 1+} more abundant. Twofold-coordinated Au{sup 1+} is similar to gold in Au{sub 2}S in which it is linearly coordinated to two sulfur atoms. The nature of fourfold-coordinated Au{sup 1+} is not well understood, although it might be present as an Au-As-S compound where gold is bonded in fourfold coordination to sulfur and arsenic atoms, or in vacancy positions on a cation site in the arsenian pyrite. Au{sup 1+} was probably incorporated into arsenian pyrite by adsorption onto pyrite surfaces during crystal growth. The most likely compound in the case of twofold-coordinated Au{sup 1+} was probably a tri-atomic surface complex such as S{sub pyrite}-Au{sup 1+}-S{sub bi-sulfide}H or Au{sup 1+}-S-Au{sup 1+}. The correlation between gold and arsenic might be related to the role of arsenic in enhancing the adsorption of gold complexes of this type on pyrite surfaces, possibly through semiconductor effects.

  3. Copper-gold nanoparticles: Fabrication, characteristic and application as drug carriers

    Energy Technology Data Exchange (ETDEWEB)

    Woźniak-Budych, Marta J., E-mail: marta.budych@amu.edu.pl; Langer, Krzysztof; Peplińska, Barbara; Przysiecka, Łucja; Jarek, Marcin; Jarzębski, Maciej; Jurga, Stefan

    2016-08-15

    In this investigation, the fabrication of porous core/shell nanostructures consisting of copper (core) and copper-gold nanoalloy (shell) for medical applications is presented. As a core triangular-shaped copper nanoparticles were used. The porous bimetallic nanoshell was prepared via galvanic reaction in the presence of oil-in water emulsion. It was proved that porous nanoalloy layer can be prepared at pH 7 and in the presence 0.1% and 0.5% oil-in water emulsion. The porous structure fabrication was mainly determined by volume fraction of hexadecane to acetone in the oil-in water emulsion and Zeta-potential of emulsion droplets (pH of emulsion). The influence of emulsion droplets size before galvanic reaction on porous structure preparation was negligible. It was found that doxorubicin could be easily introduced and released from porous core/shell nanostructures, due to spontaneous adsorption on the copper-gold nanoporous surface. The in vitro test showed that cytotoxic effect was more prominent once the doxorubicin was adsorbed on the porous copper-gold nanocarriers. It was demonstrated, that doxorubicin-loaded copper-gold nanostructures caused inhibition cell proliferation and viability of cancer cells, in a concentration-dependent manner. The results indicates that presented coper-gold nanocarrier have potential to be used in targeted cancer therapy, due to its porous structure and cytotoxic effect in cancer cells. - Highlights: • Porous copper-gold nanostructure as a cytostatic drug carrier was prepared. • Kinetics and thermodynamics of drug adsorption were studied. • DOX-loaded copper-gold nanoparticles showed a pH-controlled release rate. • DOX-loaded copper-gold NPs caused inhibition cell proliferation of cancer cells. • The Cu-Au NPs could serve as a theranostic platform for biomedical applications.

  4. A Test of Thick-Target Nonuniform Ionization as an Explanation for Breaks in Solar Flare Hard X-Ray Spectra

    Science.gov (United States)

    Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard

    2010-01-01

    Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.

  5. Optical absorption of carbon-gold core-shell nanoparticles

    Science.gov (United States)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  6. The fabrication techniques of Z-pinch targets. Techniques of fabricating self-adapted Z-pinch wire-arrays

    International Nuclear Information System (INIS)

    Qiu Longhui; Wei Yun; Liu Debin; Sun Zuoke; Yuan Yuping

    2002-01-01

    In order to fabricate wire arrays for use in the Z-pinch physical experiments, the fabrication techniques are investigated as follow: Thickness of about 1-1.5 μm of gold is electroplated on the surface of ultra-fine tungsten wires. Fibers of deuterated-polystyrene (DPS) with diameters from 30 to 100 microns are made from molten DPS. And two kinds of planar wire-arrays and four types of annular wire-arrays are designed, which are able to adapt to the variation of the distance between the cathode and anode inside the target chamber. Furthermore, wire-arrays with diameters form 5-24 μm are fabricated with tungsten wires, respectively. The on-site test shows that the wire-arrays can self-adapt to the distance changes perfectly

  7. Impedance and dielectric characterizations of ionic partitioning in interfaces that membranous, biomimetic and gold surfaces form with electrolytes

    International Nuclear Information System (INIS)

    Chilcott, Terry C.; Guo, Chuan

    2013-01-01

    Silicon dioxide, organic monolayers covalently attached to silicon and gold are used as biosensor substrates and anchoring platforms for hybrid, tethered and supported lipid membranes used in membrane-protein studies. Electrical impedance spectroscopy (EIS) studies of gold in contact with potassium chloride electrolytes of concentrations ranging from 1 mM to 300 mM, characterized the gold–electrolyte interface as principally a Stern layer 20–30 Å thick and conductivity many orders of magnitude less than that of the bulk electrolyte. EIS studies of SiO 2 –electrolyte system that were similar to studies of a tetradecane–electrolyte system are presented herein that reveal an interface comprised of at least two interfacial layers and extending some 10 5 Å into the electrolyte. The average conductivity and thickness values for the layer in contact with the SiO 2 surface (∼10 −6 S m −1 and ∼28 Å, respectively) were of the order of magnitude expected for the Gouy–Chapman layer but the dependency of the thickness on concentration did not reflect the expected dependency of the Debye length over the full range of concentrations. The average values for the next layer (∼10 −3 S m −1 and ∼10 5 Å) exhibited a dependency on concentration similar to that expected for the bulk electrolyte. The theoretical derivations of ionic partitioning arising from the Born (dielectric) energy distributions in both the SiO 2 and gold interfaces were generally consistent with the respective EIS studies and revealed that partitioning in the SiO 2 interface mimicked that in bio-membranous interfaces. The dielectric characterizations suggest that; ionic partitioning in biomimetic interfaces play a role in long-ranging sequestration of organic molecules, the extensiveness of these interfaces contributes to differences in the lipid densities of bilayers formed on biomimetic substrates, and chloride ions have a greater affinity than the smaller potassium ions for gold

  8. Structure and electronic properties of gold adsorbed on Ti(0 0 0 1)

    International Nuclear Information System (INIS)

    Tsud, N.; Sutara, F.; Matolinova, I.; Veltruska, K.; Dudr, V.; Chab, V.; Prince, K.C.; Matolin, V.

    2006-01-01

    The Au/Ti(0 0 0 1) adsorption system was studied by low energy electron diffraction (LEED) and photoemission spectroscopy with synchrotron radiation after step-wise Au evaporation onto the Ti(0 0 0 1) surface. For adsorption of Au at 300 K, no additional superstructures were observed and the (1 x 1) pattern of the clean surface simply became diffuse. Annealing of gold layers more than 1 ML thick resulted in the formation of an ordered Au-Ti surface alloy. Depending on the temperature and annealing time, three surface reconstructions were observed by LEED: (√3 x √3) R30 deg., (2 x 2) and a one-dimensional incommensurate (√3 x √3) rectangular pattern. The Au 4f core level and valence band photoemission spectra provided evidence of a strong chemical interaction between gold and titanium. The data indicated formation of an intermetallic interface and associated valence orbital hybridization, together with diffusion of gold into the bulk. Au core-level shifts were found to be dependent on the surface alloy stoichiometry

  9. Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles

    International Nuclear Information System (INIS)

    Tsai, Tsung-Ting; Shen, Shu-Wei; Chen, Chien-Fu; Cheng, Chao-Min

    2013-01-01

    A colorimetric sensing strategy employing gold nanoparticles and a paper assay platform has been developed for tuberculosis diagnosis. Unmodified gold nanoparticles and single-stranded detection oligonucleotides are used to achieve rapid diagnosis without complicated and time-consuming thiolated or other surface-modified probe preparation processes. To eliminate the use of sophisticated equipment for data analysis, the color variance for multiple detection results was simultaneously collected and concentrated on cellulose paper with the data readout transmitted for cloud computing via a smartphone. The results show that the 2.6 nM tuberculosis mycobacterium target sequences extracted from patients can easily be detected, and the turnaround time after the human DNA is extracted from clinical samples was approximately 1 h. (paper)

  10. Province-scale commonalities of some world-class gold deposits: Implications for mineral exploration

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2015-05-01

    Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adopted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.

  11. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  12. Coal-oil gold agglomeration assisted flotation to recover gold from refractory ore

    Science.gov (United States)

    Otsuki, A.; Yue, C.

    2017-07-01

    This study aimed to investigate the applicability of coal-oil gold agglomeration (CGA) assisted flotation to recover gold from a refractory ore. The ore with the grade of 2-5 g/t was tested with the CGA-flotation process in six different size fractions from 38 to 300 urn using different collector types and dosages. In addition, the flotation without CGA was performed under the same condition for comparison. The results showed that the higher gold grade and recovery were achieved by applying the CGA-flotation, compared with the flotation without CGA. More than 20-60 times grade increase from the head grade was obtained with CGA-flotation. The elemental analysis of gold and sulphur explained their relationship with gold recovery. The results well indicated the applicability of CGA to upgrade the refractory gold ore.

  13. Experimental study of population inversion and spectral line broadening in a plasma containing a mixture of high Z and low Z ions

    International Nuclear Information System (INIS)

    Griem, H.R.

    1988-10-01

    In our work this past year at the University of Rochester's Laboratory for Laser Energetics we have studied laser-produced plasmas using spherical targets continuing layers of high Z and low Z materials. Our emphasis was on quantitative spectroscopy of ions in a very dense, recombining plasma. The targets used consisted of carbon-copper, carbon-gold, and aluminum-gold mixtures, instead of the originally proposed Fe or Mo mixtures with carbon. The thickness of the Cu and the Au layers were varied in order to study the effect of higher Z ions cooling the plasma. Indeed a pronounced cooling effect was observed by increasing the thickness of the Au layer in targets with Al-Au layers. Electron temperatures were studied by measuring the 1s-2p/1s 2 -1s2p line ratio of Al XIII to Al XII. Our experimental measurements, together with a collisional-radiative model and a 1-D hydrodynamic code, indicate that the electron temperature falls from 1500 eV with no gold to 950 eV with a 500 angstrom layer of gold. A detailed discussion of our results with Al-Au targets can be found in the enclosed preprint entitled Radiation Cooling in Laser-Produced Plasmas Due to High-Z Layers

  14. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes

    International Nuclear Information System (INIS)

    Wang Hui; Zhang Chengxiao; Li Yan; Qi Honglan

    2006-01-01

    A novel sensitive electrogenerated chemiluminescence (ECL) method for the detection deoxyribonucleic acid (DNA) hybridization based on gold nanoparticles carrying multiple probes was developed. Ruthenium bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)-N-hydroxysuccinimide ester (Ru(bpy) 2 (dcbpy)NHS) was used as a ECL label and gold nanoparticle as a carrier. Probe single strand DNA (ss-DNA) was self-assembled at the 3'-terminal with a thiol group to the surface of gold nanoparticle and covalently labeled at the 5'-terminal of a phosphate group with Ru(bpy) 2 (dcbpy)NHS and the resulting conjugate (Ru(bpy) 2 (dcbpy)NHS)-ss-DNA-Au, was taken as a ECL probe. When target analyte ss-DNA was immobilized on a gold electrode by self-assembled monolayer technique and then hybridized with the ECL probe to form a double-stranded DNA (ds-DNA), a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of the complementary sequence (target ss-DNA) in the range from 1.0 x 10 -11 to 1.0 x 10 -8 mol L -1 , and the linear regression equation was S = 57301 + 4579.6 lg C (unit of C is mol L -1 ). A detection limit of 5.0 x 10 -12 mol L -1 for target ss-DNA was achieved. The ECL signal generated from many reporters of ECL probe prepared is greatly amplified, compared to the convention scheme which is based on one reporter per hybridization event

  15. Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens.

    Science.gov (United States)

    Shaikh, Sibhghatulla; Rizvi, Syed Mohd Danish; Shakil, Shazi; Hussain, Talib; Alshammari, Thamir M; Ahmad, Waseem; Tabrez, Shams; Al-Qahtani, Mohammad H; Abuzenadah, Adel M

    2017-09-01

    Multidrug-resistance due to "β lactamases having the expanded spectrum" (ESBLs) in members of Enterobacteriaceae is a matter of continued clinical concern. CTX-M is among the most common ESBLs in Enterobacteriaceae family. In the present study, a nanoformulation of cefotaxime was prepared using gold nanoparticles to combat drug-resistance in ESBL producing strains. Here, two CTX-M-15 positive cefotaxime resistant bacterial strains (i.e., one Escherichia coli and one Klebsiella pneumoniae strain) were used for testing the efficacy of "cefotaxime loaded gold-nanoparticles." Bromelain was used for both reduction and capping in the process of synthesis of gold-nanoparticles. Thereafter, cefotaxime was conjugated onto it with the help of activator 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide. For characterization of both unconjugated and cefotaxime conjugated gold nanoparticles; UV-Visible spectroscopy, Scanning, and Transmission type Electron Microscopy methods accompanied with Dynamic Light Scattering were used. We used agar diffusion method plus microbroth-dilution method for the estimation of the antibacterial-activity and determination of minimum inhibitory concentration or MIC values, respectively. MIC values of cefotaxime loaded gold nanoparticles against E. coli and K. pneumoniae were obtained as 1.009 and 2.018 mg/L, respectively. These bacterial strains were completely resistant to cefotaxime alone. These results reinforce the utility of conjugating an old unresponsive antibiotic with gold nanoparticles to restore its efficacy against otherwise resistant bacterial pathogens. J. Cell. Biochem. 118: 2802-2808, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Merely Measuring the UV-Visible Spectrum of Gold Nanoparticles Can Change Their Charge State.

    Science.gov (United States)

    Navarrete, Jose; Siefe, Chris; Alcantar, Samuel; Belt, Michael; Stucky, Galen D; Moskovits, Martin

    2018-02-14

    Metallic nanostructures exhibit a strong plasmon resonance at a wavelength whose value is sensitive to the charge density in the nanostructure, its size, shape, interparticle coupling, and the dielectric properties of its surrounding medium. Here we use UV-visible transmission and reflectance spectroscopy to track the shifts of the plasmon resonance in an array of gold nanoparticles buried under metal-oxide layers of varying thickness produced using atomic layer deposition (ALD) and then coated with bulk layers of one of three metals: aluminum, silver, or gold. A significant shift in the plasmon resonance was observed and a precise value of ω p , the plasmon frequency of the gold comprising the nanoparticles, was determined by modeling the composite of gold nanoparticles and metal-oxide layer as an optically homogeneous film of core-shell particles bounded by two substrates: one of quartz and the other being one of the aforementioned metals, then using a Maxwell-Garnett effective medium expression to extract ω p for the gold nanoparticles before and after coating with the bulk metals. Under illumination, the change in the charge density of the gold nanoparticles per particle determined from the change in the values of ω p is found to be some 50-fold greater than what traditional electrostatic contact electrification models compute based on the work function difference of the two conductive materials. Moreover, when using bulk gold as the capping layer, which should have resulted in a negligible charge exchange between the gold nanoparticles and the bulk gold, a significant charge transfer from the bulk gold layer to the nanoparticles was observed as with the other metals. We explain these observations in terms of the "plasmoelectric effect", recently described by Atwater and co-workers, in which the gold nanoparticles modify their charge density to allow their resonant wavelength to match that of the incident light, thereby achieving, a lower value of the

  17. Synthesis and characterization of human transferrin-stabilized gold nanoclusters

    International Nuclear Information System (INIS)

    Le Guevel, Xavier; Schneider, Marc; Daum, Nicole

    2011-01-01

    Human transferrin has been biolabelled with gold nanoclusters (Au NCs) using a simple, fast and non-toxic method. These nanocrystals ( em = 695 nm). Structural investigation and photophysical measurements show a high population of clusters formed of 22-33 gold atoms covalently bound to the transferrin. In solutions with pH ranging from 5 to 10 and in buffer solutions (PBS, HEPES), those biolabelled proteins exhibit a good stability. No significant quenching effect of the fluorescent transferrin has been detected after iron loading of iron-free transferrin (apoTf) and in the presence of a specific polyclonal antibody. Additionally, antibody-induced agglomeration demonstrates no alteration in the protein activity and the receptor target ability. MTT and Vialight Plus tests show no cytotoxicity of these labelled proteins in cells (1 μg ml -1 -1 mg ml -1 ). Cell line experiments (A549) indicate also an uptake of the iron loaded fluorescent proteins inside cells. These remarkable data highlight the potential of a new type of non-toxic fluorescent transferrin for imaging and targeting.

  18. Semi-transparent gold film as simultaneous surface heater and resistance thermometer for nucleate boiling studies

    International Nuclear Information System (INIS)

    Oker, E.; Merte, H. Jr.

    1981-01-01

    A large (22 x 25 mm) semi-transparent thin film of gold, approximately 400 A in thickness, is deposited on a glass substrate for simultaneous use as a heat source and resistance thermometer. Construction techniques and calibration procedures are described, and a sample application to a transient boiling process is included with simultaneous high speed photographs taken through the thin film from beneath

  19. Gold and gold-copper nanoparticles in 2-propanol: A radiation chemical study

    International Nuclear Information System (INIS)

    Dey, G.R.

    2011-01-01

    The studies on the reduction of Au 3+ to gold nanoparticles in presence and absence of Cu 2+ under deoxygenated conditions in 2-propanol by radiolytic method have been carried out. On γ-radiolysis, preliminary yellow colored solution of Au 3+ changed to purple color owing to gold nanoparticles formation, which exhibits an absorption peak at around 540 nm. In the presence of Cu 2+ , absorption of gold-copper nanoparticles, which was also produced during γ-radiolysis, was red shifted in contrast to the system containing no Cu 2+ . Under DLS studies the sizes of gold nanoparticles in the absence and the presence of Cu 2+ were found to be larger (>400 nm). However, in presence of polyethylene glycol, a stabilizer the nanoparticle sizes became smaller, sizes measured for gold and gold-copper nanoparticles are 40 and 140 nm, respectively. Moreover, the change in UV-vis spectra in the Cu 2+ and Au 3+ mixed system highlights the formation of gold-copper nanoparticles in core-shell type arrangement. - Highlights: → Present radiation chemical study highlights high reactivity of Au ·2+ with Cu 2+ . → Absorption of gold-copper nanoparticles is blue shifted as compared to copper nanoparticles. → Change in UV-vis spectra with dose emphasizes core-shell type arrangement of Au-Cu nanoparticles.

  20. Gold in plants

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.

    1980-01-01

    Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants

  1. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  2. Moessbauer study of the chemical state of gold in gold ores

    International Nuclear Information System (INIS)

    Wagner, F.E.; Marion, P.H.; Regnard, J.-R.

    1986-01-01

    Information on the chemical state of gold in gold ores has been obtained by 197 Au Moessbauer spectroscopy in cases where the state of this element cannot be determined by such standard methods as optical or electron microscopy. Ore concentrates consisting mainly of pyrite or arsenopyrite and roasted ore and matte samples were studied. The results yielded directly the respective amounts of metallic and chemically bound gold. Unless the gold is metallic, its chemical state in the ores turns out to be different from that in the minerals studied so far as reference materials. The chemical processes taking place during various treatments of the ores, such as roasting or leaching, can also be followed by Moessbauer spectroscopy. It is hoped that Moessbauer spectroscopy will eventually facilitate the development of more efficient methods of gold extraction

  3. Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell

    International Nuclear Information System (INIS)

    Li, Ling; Green, Kory; Hallen, Hans; Lim, Shuang Fang

    2015-01-01

    Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF 4 : Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core. (paper)

  4. Electronic structure effects on stability and quantum conductance in 2D gold nanowires

    International Nuclear Information System (INIS)

    Kashid, Vikas; Shah, Vaishali; Salunke, H. G.

    2011-01-01

    In this study, we have investigated the stability and conductivity of unsupported, two-dimensional infinite gold nanowires using ab initio density functional theory (DFT). Two-dimensional ribbon-like nanowires with 1–5 rows of gold atoms in the non-periodic direction and with different possible structures have been considered. The nanowires with >2 rows of atoms exhibit dimerization, similar to finite wires, along the non-periodic direction. Our results show that in these zero thickness nanowires, the parallelogram motif is the most stable. A comparison between parallelogram- and rectangular-shaped nanowires of increasing width indicates that zero thickness (111) oriented wires have a higher stability over (100). A detailed analysis of the electronic structure, reveals that the (111) oriented structures show increased delocalization of s and p electrons in addition to a stronger delocalization of the d electrons and hence are the most stable. The density of states show that the nanowires are metallic and conducting except for the double zigzag structure, which is semiconducting. Conductance calculations show transmission for a wide range of energies in all the stable nanowires with more than two rows of atoms. The conductance channels are not purely s and have strong contributions from the d levels, and weak contributions from the p levels.

  5. Gold contents of sulfide minerals in granitoids from southwestern New Brunswick, Canada

    Science.gov (United States)

    Yang, Xue-Ming; Lentz, David R.; Sylvester, Paul J.

    2006-07-01

    manner is concentrated in a suitable geological environment (e.g., shear zones or fracture systems), intrusion-related gold deposits may also be generated. Exploration for intrusion-related gold systems should focus on the areas around evolved phases of granitoid suites that remained sulfur-undersaturated. For sulfur-saturated granitoid suites, the less differentiated phase and associated structures are the most prospective targets.

  6. Particle-induced X-ray emission: thick-target analysis of inorganic materials in the determination of light elements

    International Nuclear Information System (INIS)

    Perez-Arantegui, J.; Castillo, J.R.; Querre, G.

    1994-01-01

    Particle-induced X-ray emission (PIXE) has been applied to the analysis of inorganic materials to determine some elements with Z < 27: Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe, in thick-target analysis. A PIXE method has been developed for the analysis of geological materials, ceramics and pottery. Work has been carried out with an ion beam analytical system, using a low particle beam energy. Relative sensitivity, detection limits, reproducibility and accuracy of the method were calculated based on the analysis of geological standard materials (river sediments, argillaceous limestone, basalt, diorite and granite). Analysis using PIXE offers a number of advantages, such as short analysis time, multi-elemental and nondestructive determinations, and the results are similar to those obtained with other instrumental techniques of analysis. (Author)

  7. Neutron production in bombardments of thin and thick W, Hg, Pb targets by 0.4, 0.8, 1.2, 1.8 and 2.5 GeV protons

    International Nuclear Information System (INIS)

    Letrourneau, A.; Galin, J.; Goldenbaum, F.; Lott, B.; Peghaire, A.; Enke, M.; Hilscher, D.; Jahnke, U.; Nuenighoff, K.; Filges, D.; Neef, R.D.; Paul, N.; Schaal, H.; Sterzenbach, G.; Tietze, A.

    2000-05-01

    Neutron experimental data relevant to the design of the target of neutron spallation sources are presented and discussed. The data include the reaction cross sections for W, Hg and Pb investigated with 0.4, 0.8, 1.2, 1.8 and 2.5 GeV proton beams as well as the neutron production, neutron multiplicity distribution, as determined event per event using a high efficiency detector. The production as a function of target material is investigated for both thin (with a single reaction) and thick targets (multiple reactions). Comparisons are made with the predictions of a high energy transport code. (authors)

  8. ANALYSIS OF PERIODIC NANOSTRUCTURES FORMATION ON A GOLD SURFACE UNDER EXPOSURE TO ULTRASHORT LASER PULSES NEAR THE MELTING THRESHOLD

    Directory of Open Access Journals (Sweden)

    D. S. Ivanov

    2015-11-01

    Full Text Available Subject of Study. The mechanism of surface restructuring by ultrashort laser pulses involves a lot of fast, non-equilibrium, and interrelated processes while the solid is in a transient state. As a result, the analysis of the experimental data cannot cover all the mechanisms of nanostructuring. We present a direct comparison of a simulation and experimental results of surface nanomodification induced by a single laser pulse. Method. The experimental results were obtained by using a mask projection setup with a laser wavelength equal to 248 nm and a pulse length equal to 1.6 ps. This setup is used to produce an intensity grating on a gold surface with a sinusoidal shape and a period of 500 nm. The formed structures were analyzed by a scanning and transmission electron microscope, respectively. Then a hybrid atomistic-continuum model capable of capturing the essential mechanisms responsible for the nanostructuring process was used for modeling the interaction of the laser pulse with a thick gold target. Main Results. A good agreement between simulation and experimental data justifies the proposed approach as a powerful tool revealing the physics behind the nanostructuring process at a gold surface and providing a microscopic insight into the dynamics of the structuring processes of metals in general. The presented model, therefore, is an important step towards a new computational tool in predicting materials response to an ultrashort laser pulse on the atomic scale and properties of the modified surfaces. Practical Relevance. This detailed understanding of the dynamics of the process will pave the way towards pre-designed topologies for functionalized surfaces on the nano- and micro-scales.

  9. Gold Nanotheranostics: Proof-of-Concept or Clinical Tool?

    Directory of Open Access Journals (Sweden)

    Pedro Pedrosa

    2015-11-01

    Full Text Available Nanoparticles have been making their way in biomedical applications and personalized medicine, allowing for the coupling of diagnostics and therapeutics into a single nanomaterial—nanotheranostics. Gold nanoparticles, in particular, have unique features that make them excellent nanomaterials for theranostics, enabling the integration of targeting, imaging and therapeutics in a single platform, with proven applicability in the management of heterogeneous diseases, such as cancer. In this review, we focus on gold nanoparticle-based theranostics at the lab bench, through pre-clinical and clinical stages. With few products facing clinical trials, much remains to be done to effectively assess the real benefits of nanotheranostics at the clinical level. Hence, we also discuss the efforts currently being made to translate nanotheranostics into the market, as well as their commercial impact.

  10. GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.

    Energy Technology Data Exchange (ETDEWEB)

    HAINFELD,J.F.; POWELL,R.D.

    2004-02-04

    stabilization, and the total size of the label is therefore significantly smaller. Since the clusters considered in this chapter are generally less than 3 nm in diameter, this allows the preparation of probes that are much smaller than conventional immunocolloids, and cluster labeling can take advantage of the higher resolution and penetration available with smaller conjugates. Most importantly, while colloidal gold is adsorbed to its conjugate probe, clusters are conjugated by chemically specific covalent cross-linking. Therefore, the range of possible conjugate targeting agents includes any probe containing an appropriate reactive group. Clusters conjugates have been prepared with a wide variety of molecules that do not form colloidal gold conjugates, including lipids, oligonucleotides, peptides, and other small molecules. In addition to the development of gold cluster labeling technology, this chapter will also review new developments in the related metallographic, or metal deposition, methods. This includes gold enhancement, in which gold rather than silver is selectively deposited onto gold particles. We will also describe some results obtained using another novel metallographic procedure, enzyme metallography, in which metal is directly deposited from solution by an enzymatic reaction. Because the original, and most widespread, use of metal cluster labels is in electron microscopy, many of the light microscopy methods described were developed as extensions of, or complements to electron microscopy methods, and demonstrate their greatest advantages when used with electron microscopy; therefore reference will also be made to the electron microscope methods used in the same studies, and the unique information that may be obtained from the correlation of both methods.

  11. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Science.gov (United States)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  12. Cylindrical target Li-beam-driven hohlraum experiments

    International Nuclear Information System (INIS)

    Derzon, M.S.; Aubert, J.; Chandler, G.A.

    1998-06-01

    The authors performed a series of experiments on the Particle Beam Fusion Accelerator II (PBFA II) in May, 1994, and obtained a brightness temperature of 61 ± 2 eV for an ion-beam heated hohlraum. The hohlraum was a 4-mm-diameter, right-circular cylinder with a 1.5-mm-thick gold wall, a low-density CH foam fill, and a 1.5- or 3-mm-diameter diagnostic aperture in the top. The nominal parameters of the radially-incident PBFA II Li ion beam were 9 MeV peak energy (∼10 MeV at the gas cell) at the target at a peak power of 2.5 ± 0.3 TW/cm 2 and a 15 ns pulse width. Azimuthal variations in intensity of a factor of 3, with respect to the mean, were observed. Nonuniformities in thermal x-ray emission across the area of the diagnostic hole were also observed. Time-dependent hole-closure velocities were measured: the time-averaged velocity of ∼2 cm/micros is in good agreement with sound speed estimates. Unfolded x-ray spectra and brightness temperatures as a function of time are reported and compared to simulations. Hole closure corrections are discussed with comparisons between XRD and bolometer measurements. Temperature scaling with power on target is also presented

  13. Increased sensitivity in thick-target particle induced X-ray emission analyses using dry ashing for preconcentration

    International Nuclear Information System (INIS)

    Lill, J.-O.; Harju, L.; Saarela, K.-E.; Lindroos, A.; Heselius, S.-J.

    1999-01-01

    The sensitivity in thick-target particle induced X-ray emission (PIXE) analyses of biological materials can be enhanced by dry ashing. The gain depends mainly on the mass reduction factor and the composition of the residual ash. The enhancement factor was 7 for the certified reference material Pine Needles and the limits of detection (LODs) were below 0.2 μg/g for Zn, Cu, Rb and Sr. When ashing biological materials with low ash contents such as wood of pine or spruce (0.3% of dry weight) and honey (0.1% of wet weight) the gain was far greater. The LODs for these materials were 30 ng/g for wood and below 10 ng/g for honey. In addition, the ashed samples were more homogenous and more resistant to changes during the irradiation than the original biological samples. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Evaluation of image quality and radiation dose using gold nanoparticles and other clinical contrast agents in dual-energy Computed Tomography (CT): CT abdomen phantom

    Science.gov (United States)

    Zukhi, J.; Yusob, D.; Tajuddin, A. A.; Vuanghao, L.; Zainon, R.

    2017-05-01

    The aim of this study was to evaluate the image quality and radiation dose using commercial gold nanoparticles and clinical contrast agents in dual-energy Computed Tomography (CT). Five polymethyl methacrylate (PMMA) tubes were used in this study, where four tubes were filled with different contrast agents (barium, iodine, gadolinium, and gold nanoparticles). The fifth tube was filled with water. Two optically stimulated luminescence dosimeters (OSLD) were placed in each tube to measure the radiation dose. The tubes were placed in a fabricated adult abdominal phantom of 32 cm in diameter using PMMA. The phantom was scanned using a DECT at low energy (80 kV) and high energy (140 kV) with different pitches (0.6 mm and 1.0 mm) and different slice thickness (3.0 mm and 5.0 mm). The tube current was applied automatically using automatic exposure control (AEC) and tube current modulation recommended by the manufacturer (CARE Dose 4D, Siemens, Germany). The contrast-to-noise ratio (CNR) of each contrast agent was analyzed using Weasis software. Gold nanoparticles has highest atomic number (Z = 79) than barium (Z = 56), iodine (Z = 53) and gadolinium (Z = 64). The CNR value of each contrast agent increases when the slice thickness increases. The radiation dose obtained from this study decreases when the pitch increases. The optimal imaging parameters for gold nanoparticles and other clinical contrast agents is obtained at pitch value of 1.0 mm and slice thickness of 5.0 mm. Low noise and low radiation dose obtained at these imaging parameters. The optimal imaging parameters obtained in this study can be applied in multiple contrast agents imaging.

  15. Evaluation of image quality and radiation dose using gold nanoparticles and other clinical contrast agents in dual-energy Computed Tomography (CT): CT abdomen phantom

    International Nuclear Information System (INIS)

    Zukhi, J; Yusob, D; Vuanghao, L; Zainon, R; Tajuddin, A A

    2017-01-01

    The aim of this study was to evaluate the image quality and radiation dose using commercial gold nanoparticles and clinical contrast agents in dual-energy Computed Tomography (CT). Five polymethyl methacrylate (PMMA) tubes were used in this study, where four tubes were filled with different contrast agents (barium, iodine, gadolinium, and gold nanoparticles). The fifth tube was filled with water. Two optically stimulated luminescence dosimeters (OSLD) were placed in each tube to measure the radiation dose. The tubes were placed in a fabricated adult abdominal phantom of 32 cm in diameter using PMMA. The phantom was scanned using a DECT at low energy (80 kV) and high energy (140 kV) with different pitches (0.6 mm and 1.0 mm) and different slice thickness (3.0 mm and 5.0 mm). The tube current was applied automatically using automatic exposure control (AEC) and tube current modulation recommended by the manufacturer (CARE Dose 4D, Siemens, Germany). The contrast-to-noise ratio (CNR) of each contrast agent was analyzed using Weasis software. Gold nanoparticles has highest atomic number (Z = 79) than barium (Z = 56), iodine (Z = 53) and gadolinium (Z = 64). The CNR value of each contrast agent increases when the slice thickness increases. The radiation dose obtained from this study decreases when the pitch increases. The optimal imaging parameters for gold nanoparticles and other clinical contrast agents is obtained at pitch value of 1.0 mm and slice thickness of 5.0 mm. Low noise and low radiation dose obtained at these imaging parameters. The optimal imaging parameters obtained in this study can be applied in multiple contrast agents imaging. (paper)

  16. Gold deposit styles and placer gold characterisation in northern and east-central Madagascar

    Science.gov (United States)

    Pitfield, Peter E. J; Styles, Michael T.; Taylor, Cliff D.; Key, Roger M.; Bauer,; Ralison, A

    2009-01-01

    Microchemical characterisation of bedrock and placer gold grains from six gold districts within the Archaean domains and intervening Neoproterozoic Anaboriana-Manampotsy belt of northern and east-central Madagascar show few opaque inclusions (e.g pyrrhotite, Bi tellurides) but wide range of Ag contents (40wt%). Some districts exhibit multiple source populations of grains. The ‘greenstone belt’ terranes have an orogenic gold signature locally with an intrusion-related to epithermal overprint. Proterozoic metasediments with felsic to ultramafic bodies yield dominantly intrusion-related gold. A high proportion of secondary gold (<0.5wt% Ag) is related to recycling of paleoplacers and erosion of post-Gondwana planation surfaces and indicates that some mesothermal gold systems were already partially to wholly removed by erosion by the PermoTriassic.

  17. Analysis of gold and silver concentration on gold mining tailings by neutron activation analysis

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Salimov, M.I.; Sadykova, Z.O.

    2014-01-01

    Full text: Instrumental neutron-activation analysis without radiochemical separation is one of most applicable and often used methods to analyze the concentration of gold, silver and other rare and noble metals in gold ores. This method is not suitable for analyzing low concentration of gold and silver in gold mining tailings due to rather high concentration of some elements. Samples are dissolved by boiling in a mixture of concentrated hydrochloric and nitric acids to extract gold and silver into the solution. Chemical yield of gold and silver after dissolution of the sample and further chromatographic separation is between 92 and 95 percent respectively

  18. Gold nanoparticle formation in diamond-like carbon using two different methods: Gold ion implantation and co-deposition of gold and carbon

    International Nuclear Information System (INIS)

    Salvadori, M. C.; Teixeira, F. S.; Araújo, W. W. R.; Sgubin, L. G.; Cattani, M.; Spirin, R. E.; Brown, I. G.

    2012-01-01

    We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp 3 bonding for the DLC, demonstrating that some sp 3 bonds are destroyed by the gold implantation.

  19. Precise measurements of the thick target neutron yields of the {sup 7}Li(p,n) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Matysiak, W., E-mail: matysiw@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ont., L8S 4K1 (Canada); Prestwich, W.V.; Byun, S.H. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ont., L8S 4K1 (Canada)

    2011-07-01

    Thick target neutron yield of the {sup 7}Li(p,n){sup 7}Be reaction was measured in the proton energy range from 1.95 to 2.3 MeV by determining induced activity of the {sup 7}Be. A HPGe detector was used to detect the 478 keV gamma-rays emitted through {sup 7}Be decay. A series of irradiations with nominal proton energies of 1.95, 2.0, 2.1, 2.2, and 2.3 MeV were carried out. In an independent experiment, raw neutron spectra were collected by a {sup 3}He ion chamber for the same series of proton energies. From the raw neutron spectra, it was noted, that the effective proton energies were lower than the nominal by 50-58 keV. After corrections for the proton energy offsets were applied, the measured neutron yields matched the analytically calculated yields within 20%. Long term stability of neutron yield was tested at two nominal proton energies, 2.1 and 1.95 MeV over an experimental period of one year. The results show that the yield at 2.1 MeV was stable within rmse variation coefficient of 4.7% and remained consistent even when the lithium target was replaced, whereas at 1.95 MeV, the maximum fluctuations reached a factor of 10.

  20. Radiochemical separations of target-like reaction products from Au-, Pt-, and Th-targets after irradiation with GeV protons

    International Nuclear Information System (INIS)

    Szweryn, B.; Bruechle, W.; Schausten, B.; Schaedel, M.

    1988-08-01

    Chemical separation procedures for separations of reaction products after spallation reactions with 2.6 GeV protons and heavy element targets are presented. To determine independent cross sections of individual isotopes the elements Au, Pt, Ir, Os, Re, W, Ta, Hf, (Lu, Yb, Tm, Er), (Gd, Eu, Sm), were separated from gold targets, Pt, Ir, Os, W, Ta, Hf, (Lu, Yb, Tm, Er), (Gd, Eu, Sm) from a platinum target and Au, Tl from a thorium target. (orig.)

  1. Influence of micromachined targets on laser accelerated proton beam profiles

    Science.gov (United States)

    Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran

    2018-03-01

    High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.

  2. The thick-target 9Be(d,n) neutron spectra for deuteron energies between 2.6 and 7.0-MeV

    International Nuclear Information System (INIS)

    Meadows, J.W.

    1991-11-01

    The measurement of the zero deg. neutron spectra and yields from deuterons incident on thick beryllium metal targets is described. 235 U and 238 U fission ion chambers were used as neutron detectors to span the neutron energy range above 0.05-MeV with a time resolution of ≤ 3 nanosec. Measurements were made for incident deuteron energies from 2.6 to 7.0-MeV, at 0.4-MeV intervals, using time-of-flight techniques with flight paths of 2.7 and 6.8 meters. The results are presented in graphical form and in tables

  3. Gold Nanohole Array with Sub-1 nm Roughness by Annealing for Sensitivity Enhancement of Extraordinary Optical Transmission Biosensor

    Science.gov (United States)

    Zhang, Jian; Irannejad, Mehrdad; Yavuz, Mustafa; Cui, Bo

    2015-05-01

    Nanofabrication technology plays an important role in the performance of surface plasmonic devices such as extraordinary optical transmission (EOT) sensor. In this work, a double liftoff process was developed to fabricate a series of nanohole arrays of a hole diameter between 150 and 235 nm and a period of 500 nm in a 100-nm-thick gold film on a silica substrate. To improve the surface quality of the gold film, thermal annealing was conducted, by which an ultra-smooth gold film with root-mean-square (RMS) roughness of sub-1 nm was achieved, accompanied with a hole diameter shrinkage. The surface sensitivity of the nanohole arrays was measured using a monolayer of 16-mercaptohexadecanoic acid (16-MHA) molecule, and the surface sensitivity was increased by 2.5 to 3 times upon annealing the extraordinary optical transmission (EOT) sensor.

  4. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  5. Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action

    International Nuclear Information System (INIS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li Zian; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-01-01

    Silver, gold, and silver–gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15–25 nm), gold (5–6 nm), and silver–gold (50:50; 10–12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver–gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver–gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver–gold nanoparticles in the concentration range of 5–20 μg mL −1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  6. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    Science.gov (United States)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  7. Gold nanoparticle-based fluorescent sensor for the analysis of dithiocarbamate pesticides in water

    DEFF Research Database (Denmark)

    Senkbeil, Silja; Lafleur, Josiane P.; Jensen, Thomas Glasdam

    2012-01-01

    Pesticides play a key role in the high yields achieved in modern agricultural food production. Besides their positive effect on increasing productivity they are intentionally toxic, often towards non-target organisms and contaminated food products can have a serious impact on human...... and environmental health. This paper demonstrates the potential of a gold nanoparticle-based microfluidic sensor for in field detection of dithiocarbamate pesticides at remote locations. Combining the attractive optical properties of gold nanoparticles with on chip mixing and detection, using a simple digital...

  8. Near IR Scanning Angle Total Internal Reflection Raman Spectroscopy at Smooth Gold Films

    Energy Technology Data Exchange (ETDEWEB)

    McKee, Kristopher; Meyer, Matthew; Smith, Emily

    2012-04-13

    Total internal reflection (TIR) Raman and reflectivity spectra were collected for nonresonant analytes as a function of incident angle at sapphire or sapphire/smooth 50 nm gold interfaces using 785 nm excitation. For both interfaces, the Raman signal as a function of incident angle is well-modeled by the calculated interfacial mean square electric field (MSEF) relative to the incident field times the thickness of the layer being probed in the Raman measurement (D{sub RS}). The Raman scatter was reproducibly enhanced at the interface containing a gold film relative to the sapphire interface by a factor of 4.3–4.6 for aqueous pyridine or 2.2–3.7 for neat nitrobenzene, depending on the analyzed vibrational mode. The mechanism for the increased Raman signal is the enhanced MSEF at incident angles where propagating surface plasmons are excited in the metal film. The background from the TIR prism was reduced by 89–95% with the addition of the gold film, and the percent relative uncertainty in peak area was reduced from 15 to 1.7% for the 1347 cm–1 mode of nitrobenzene. Single monolayers of benzenethiol (S/N = 6.8) and 4-mercaptopyridine (S/N = 16.5) on gold films were measured by TIR Raman spectroscopy with 785 nm excitation (210 mW) without resonant enhancement in 1 min.

  9. For the love of gold

    International Nuclear Information System (INIS)

    Young, J.E.

    1993-01-01

    Gold is found in minute quantities and gold mining generates enormous amounts of waste materials and long history of environmental destruction: mercury in tailing, eroded land, and acid mine drainage are legacies of the past. The problem has become worse in recent years in North America, Australia, the Amazon basin, Philippines. This paper describes the economics of gold and the changes in the world economy which has precipitated the new gold rushes. Current technology uses a cyanide solution for leaching small amounts of gold from tons of waste, and mercury remains a toxic waste of gold mining. Both short and long term results of gold mining, on the environment and on indiginous populations are described

  10. Effects of gold and silver backings on the dose rate around an 125I seed

    International Nuclear Information System (INIS)

    Cygler, J.; Szanto, J.; Soubra, M.; Rogers, D.W.

    1990-01-01

    Measurements of the effect of either gold or silver backing on the dose rate around an 125I seed were performed using a Therados RFA7 dosimetry system and a small diode detector which was 2.5 mm in diameter and 0.06 mm thick. It was found that the presence of the gold or silver backing modifies the diode response on the side of the 125I seed away from the backing. The effect depends on the backing material and the distance from the seed. There is a small increase close to the gold backing but a decrease further away. This decrease at distances greater than 10 mm from the seed is uniformly 10%, the same as found when the seed is backed by air. There is an increase of up to 25% observed with silver backing the seed and this increase remains significant more than 30 mm from the seed. When the response increases, the results are hard to interpret quantitatively because of variations in the diode response per unit dose with photon energy and extreme sensitivity to geometric changes. Nonetheless, except for the increase at close distances with the gold, the results are in agreement with EGS4 Monte Carlo photon transport simulations which are for a simplified geometry and account for x-ray fluorescence from the K-shell. Furthermore, the increase in the gold-backed case is qualitatively explained by Williamson's Monte Carlo calculations which take into account the L-shell fluorescent x-rays from gold

  11. Frontiers in Gold Chemistry

    OpenAIRE

    Ahmed A. Mohamed

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  12. Hybrid gold nanoparticles in molecular imaging and radiotherapy

    International Nuclear Information System (INIS)

    Katti, K.V.; Kannan, R.; Katti, K.; Kattumuri, V.; Pandrapragada, R.; Rahing, V.; Cutler, C.; Boote, E.; Casteel, S.W.; Smith, C.J.; Robertson, J.D.; Jurrison, S.

    2006-01-01

    Metallic nanoparticles, because of their size, chemical and physical properties, are particularly attractive as therapeutic probes in treating cancer. Central to any clinical advances in nanoparticulate based therapy will be to produce hybrid nanoparticles that can be targeted to vascular, extracellular or cell surface receptors. Development of hybrid nanoparticles that specifically target cancer vasculature has received considerable attention. Most cancers have leaky vasculature and the defective vascular architecture, created due to the rapid vascularisation necessary to serve fast growing cancers, in combination with poor lymphatic drainage allows increased permeation and retention effects. The leaky vasculature, because of higher porosity and permeability, serve as natural high affinity targets to metallic nanoparticles. Another attractive approach toward the application of nanotechnology to nanomedicine is the utility of nanoparticles that display inherent therapeutic properties. For example radioactive gold nanoparticles present attractive prospects in therapy of cancer. The radioactive properties of Au-198 (β(max) = 0.96 MeV; t(1/2) = 2.7 d) and Au-199 (β(max) 0.46 MeV; t(1/2) = 3.14 d) make them ideal candidates for use in radiotherapeutic applications. In addition, they both have imageable gamma emissions for dosimetry and pharmacokinetic studies and Au-199 can be made carrier-free by indirect methods. Gold nanoparticles are of interest for treatment of disease as they can deliver agents directly into cells and cellular components with a higher concentration of radioactivity, e.g. higher dose of radioactivity, to cancerous tumor cells