WorldWideScience

Sample records for theta band power

  1. Increased theta band EEG power in sickle cell disease patients

    Directory of Open Access Journals (Sweden)

    Case M

    2017-12-01

    Full Text Available Michelle Case,1 Sina Shirinpour,1 Huishi Zhang,1 Yvonne H Datta,2 Stephen C Nelson,3 Karim T Sadak,4 Kalpna Gupta,2 Bin He1,5 1Department of Biomedical Engineering, 2Department of Medicine, University of Minnesota, 3Pediatric Hematology-Oncology, Children’s Hospitals and Clinics of Minnesota, 4Pediatric Hematology-Oncology, University of Minnesota Masonic Children’s Hospital, 5Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA Objective: Pain is a major issue in the care of patients with sickle cell disease (SCD. The mechanisms behind pain and the best way to treat it are not well understood. We studied how electroencephalography (EEG is altered in SCD patients. Methods: We recruited 20 SCD patients and compared their resting state EEG to that of 14 healthy controls. EEG power was found across frequency bands using Welch’s method. Electrophysiological source imaging was assessed for each frequency band using the eLORETA algorithm. Results: SCD patients had increased theta power and decreased beta2 power compared to controls. Source localization revealed that areas of greater theta band activity were in areas related to pain processing. Imaging parameters were significantly correlated to emergency department visits, which indicate disease severity and chronic pain intensity. Conclusion: The present results support the pain mechanism referred to as thalamocortical dysrhythmia. This mechanism causes increased theta power in patients. Significance: Our findings show that EEG can be used to quantitatively evaluate differences between controls and SCD patients. Our results show the potential of EEG to differentiate between different levels of pain in an unbiased setting, where specific frequency bands could be used as biomarkers for chronic pain. Keywords: sickle cell disease, electroencephalography, chronic pain, electrophysiological source imaging, thalamocortical dysrhythmia

  2. Using theta and alpha band power to assess cognitive workload in multitasking environments.

    Science.gov (United States)

    Puma, Sébastien; Matton, Nadine; Paubel, Pierre-V; Raufaste, Éric; El-Yagoubi, Radouane

    2018-01-01

    Cognitive workload is of central importance in the fields of human factors and ergonomics. A reliable measurement of cognitive workload could allow for improvements in human machine interface designs and increase safety in several domains. At present, numerous studies have used electroencephalography (EEG) to assess cognitive workload, reporting the rise in cognitive workload to be associated with increases in theta band power and decreases in alpha band power. However, results have been inconsistent with some failing to reach the required level of significance. We hypothesized that the lack of consistency could be related to individual differences in task performance and/or to the small sample sizes in most EEG studies. In the present study we used EEG to assess the increase in cognitive workload occurring in a multitasking environment while taking into account differences in performance. Twenty participants completed a task commonly used in airline pilot recruitment, which included an increasing number of concurrent sub-tasks to be processed from one to four. Subjective ratings, performances scores, pupil size and EEG signals were recorded. Results showed that increases in EEG alpha and theta band power reflected increases in the involvement of cognitive resources for the completion of one to three subtasks in a multitasking environment. These values reached a ceiling when performances dropped. Consistent differences in levels of alpha and theta band power were associated to levels of task performance: highest performance was related to lowest band power. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Fast entrainment of human electroencephalogram to a theta-band photic flicker during successful memory encoding

    Directory of Open Access Journals (Sweden)

    Naoyuki eSato

    2013-05-01

    Full Text Available Theta band power (4-8Hz in the scalp electroencephalogram (EEG is thought to be stronger during memory encoding for subsequently remembered items than for forgotten items. According to simultaneous EEG-functional magnetic resonance imaging (fMRI measurements, the memory-dependent EEG theta is associated with multiple regions of the brain. This suggests that the multiple regions cooperate with EEG theta synchronization during successful memory encoding. However, a question still remains: What kind of neural dynamic organizes such a memory-dependent global network? In this study, the modulation of the EEG theta entrainment property during successful encoding was hypothesized to lead to EEG theta synchronization among a distributed network. Then, a transient response of EEG theta to a theta-band photic flicker with a short duration was evaluated during memory encoding. In the results, flicker-induced EEG power increased and decreased with a time constant of several hundred milliseconds following the onset and the offset of the flicker, respectively. Importantly, the offset response of EEG power was found to be significantly decreased during successful encoding. Moreover, the offset response of the phase locking index was also found to associate with memory performance. According to computational simulations, the results are interpreted as a smaller time constant (i.e., faster response of a driven harmonic oscillator rather than a change in the spontaneous oscillatory input. This suggests that the fast response of EEG theta forms a global EEG theta network among memory-related regions during successful encoding, and it contributes to a flexible formation of the network along the time course.

  4. Fast entrainment of human electroencephalogram to a theta-band photic flicker during successful memory encoding.

    Science.gov (United States)

    Sato, Naoyuki

    2013-01-01

    Theta band power (4-8 Hz) in the scalp electroencephalogram (EEG) is thought to be stronger during memory encoding for subsequently remembered items than for forgotten items. According to simultaneous EEG-functional magnetic resonance imaging (fMRI) measurements, the memory-dependent EEG theta is associated with multiple regions of the brain. This suggests that the multiple regions cooperate with EEG theta synchronization during successful memory encoding. However, a question still remains: What kind of neural dynamic organizes such a memory-dependent global network? In this study, the modulation of the EEG theta entrainment property during successful encoding was hypothesized to lead to EEG theta synchronization among a distributed network. Then, a transient response of EEG theta to a theta-band photic flicker with a short duration was evaluated during memory encoding. In the results, flicker-induced EEG power increased and decreased with a time constant of several hundred milliseconds following the onset and the offset of the flicker, respectively. Importantly, the offset response of EEG power was found to be significantly decreased during successful encoding. Moreover, the offset response of the phase locking index was also found to associate with memory performance. According to computational simulations, the results are interpreted as a smaller time constant (i.e., faster response) of a driven harmonic oscillator rather than a change in the spontaneous oscillatory input. This suggests that the fast response of EEG theta forms a global EEG theta network among memory-related regions during successful encoding, and it contributes to a flexible formation of the network along the time course.

  5. Genetic variability in the human cannabinoid receptor 1 is associated with resting state EEG theta power in humans.

    Science.gov (United States)

    Heitland, I; Kenemans, J L; Böcker, K B E; Baas, J M P

    2014-11-01

    It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the theta frequency band (4-7Hz) by electroencephalogram. Theta oscillations are supposed to serve as a mechanism in neural representations of behaviorally relevant information. However, it remains unknown whether variability in endogenous cannabinoid activity is involved in theta rhythms and therefore, may serve as an individual differences index of human cognitive functioning. To clarify this issue, we recorded resting state EEG activity in 164 healthy human subjects and extracted EEG power across frequency bands (δ, θ, α, and β). To assess variability in the endocannabinoid system, two genetic polymorphisms (rs1049353, rs2180619) within the cannabinoid receptor 1 (CB1) were determined in all participants. As expected, we observed significant effects of rs1049353 on EEG power in the theta band at frontal, central and parietal electrode regions. Crucially, these effects were specific for the theta band, with no effects on activity in the other frequency bands. Rs2180619 showed no significant associations with theta power after Bonferroni correction. Taken together, we provide novel evidence in humans showing that genetic variability in the cannabinoid receptor 1 is associated with resting state EEG power in the theta frequency band. This extends prior findings of exogenous cannabinoid effects on theta power to the endogenous cannabinoid system. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Working memory performance inversely predicts spontaneous delta and theta-band scaling relations.

    Science.gov (United States)

    Euler, Matthew J; Wiltshire, Travis J; Niermeyer, Madison A; Butner, Jonathan E

    2016-04-15

    Electrophysiological studies have strongly implicated theta-band activity in human working memory processes. Concurrently, work on spontaneous, non-task-related oscillations has revealed the presence of long-range temporal correlations (LRTCs) within sub-bands of the ongoing EEG, and has begun to demonstrate their functional significance. However, few studies have yet assessed the relation of LRTCs (also called scaling relations) to individual differences in cognitive abilities. The present study addressed the intersection of these two literatures by investigating the relation of narrow-band EEG scaling relations to individual differences in working memory ability, with a particular focus on the theta band. Fifty-four healthy adults completed standardized assessments of working memory and separate recordings of their spontaneous, non-task-related EEG. Scaling relations were quantified in each of the five classical EEG frequency bands via the estimation of the Hurst exponent obtained from detrended fluctuation analysis. A multilevel modeling framework was used to characterize the relation of working memory performance to scaling relations as a function of general scalp location in Cartesian space. Overall, results indicated an inverse relationship between both delta and theta scaling relations and working memory ability, which was most prominent at posterior sensors, and was independent of either spatial or individual variability in band-specific power. These findings add to the growing literature demonstrating the relevance of neural LRTCs for understanding brain functioning, and support a construct- and state-dependent view of their functional implications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Power of theta waves in the EEG of human subjects increases during recall of haptic information.

    Science.gov (United States)

    Grunwald, M; Weiss, T; Krause, W; Beyer, L; Rost, R; Gutberlet, I; Gertz, H J

    1999-02-05

    Several studies have reported a functional relationship between spectral power within the theta-band of the EEG (theta-power) and memory load while processing visual or semantic information. We investigated theta power during the processing of different complex haptic stimuli using a delayed recall design. The haptic explorations consisted of palpating the structure of twelve sunken reliefs with closed eyes. Subjects had to reproduce each relief by drawing it 10 s after the end of the exploration. The relationship between mean theta power and mean exploration time was analysed using a regression model. A linear relationship was found between the exploration time and theta power over fronto-central regions (Fp1, Fp2, F3, F7, F8, Fz, C3) directly before the recall of the relief. This result is interpreted in favour of the hypothesis that fronto-central theta power of the EEG correlates with the load of working memory independent of stimulus modality.

  8. Theta band activity in response to emotional expressions and its relationship with gamma band activity as revealed by MEG and advanced beamformer source imaging

    Directory of Open Access Journals (Sweden)

    Qian eLuo

    2014-02-01

    Full Text Available Neuronal oscillations in the theta and gamma bands have been shown to be important for cognition. Here we examined the temporal and spatial relationship between the two frequency bands in emotional processing using Magnetoencephalography and an advanced dynamic beamformer source imaging method called Synthetic Aperture Magnetometry. We found that areas including the amygdala, visual and frontal cortex showed significant event-related synchronization (ERS in both bands, suggesting a functional association of neuronal oscillations in the same areas in the two bands. However, while the temporal profile in both bands was similar in the amygdala, the peak in gamma band power was much earlier within both visual and frontal areas. Our results do not support a traditional view that the localizations of lower and higher frequencies are spatially distinct. Instead, they suggest that in emotional processing, neuronal oscillations in the gamma and theta bands may reflect, at least in visual and frontal cortex either different but related functional processes or, perhaps more probably, different computational components of the same functional process.

  9. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response.

    Science.gov (United States)

    Sipp, Amy R; Gwin, Joseph T; Makeig, Scott; Ferris, Daniel P

    2013-11-01

    Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4-7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12-30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments.

  10. Theta power is reduced in healthy cognitive aging.

    Science.gov (United States)

    Cummins, Tarrant D R; Finnigan, Simon

    2007-10-01

    The effects of healthy cognitive aging on electroencephalographic (EEG) theta (4.9-6.8 Hz) power were examined during performance of a modified Sternberg, S., 1966. High-speed scanning in human memory. Science 153, 652-654.) word recognition task. In a sample of fourteen young (mean age 21.9 years, range=18-27) and fourteen older (mean age 68.4 years, range=60-80) participants, theta power was found to be significantly lower in older adults during both the retention and recognition intervals. This theta power difference was greatest at the fronto-central midline electrode and occurred in parallel with a small, non-significant decrease in recognition accuracy in the older sample. A significant decrease in older adults' mean theta power was also observed in resting EEG, however, it was of substantially smaller magnitude than the task-related theta difference. It is proposed that a neurophysiological measure(s), such as task-specific frontal midline theta (fmtheta) power, may be a more sensitive marker of cognitive aging than task performance measures. Furthermore, as recent research indicates that fmtheta is generated primarily in the anterior cingulate cortex, the current findings support evidence that the function of brain networks incorporating this structure may be affected in cognitive aging.

  11. Transient Global Amnesia Deteriorates the Network Efficiency of the Theta Band.

    Directory of Open Access Journals (Sweden)

    Young Ho Park

    Full Text Available Acute perturbation of the hippocampus, one of the connector hubs in the brain, is a key step in the pathophysiological cascade of transient global amnesia (TGA. We tested the hypothesis that network efficiency, meaning the efficiency of information exchange over a network, is impaired during the acute stage of TGA. Graph theoretical analysis was applied to resting-state EEG data collected from 21 patients with TGA. The EEG data were obtained twice, once during the acute stage ( 2 months after symptom onset of TGA. Characteristic path lengths and clustering coefficients of functional networks constructed using phase-locking values were computed and normalized as a function of the degree in the delta, theta, alpha, beta 1, beta 2 and gamma frequency bands of the EEG. We investigated whether the normalized characteristic path length (nCPL and normalized clustering coefficients (nCC differed significantly between the acute and resolved stages of TGA at each frequency band using the Wilcoxon signed-rank test. For networks where the nCPL or nCC differed significantly between the two stages, we also evaluated changes in the connections of the brain networks. During the acute stage of TGA, the nCPL of the theta band networks with mean degrees of 8, 8.5, 9 and 9.5 significantly increased (P < 0.05. During the acute stage, the lost edges for these networks were mostly found between the anterior (frontal and anterior temporal and posterior (parieto-occipital and posterior temporal brain regions, whereas newly developed edges were primarily found between the left and right frontotemporal regions. The nCC of the theta band with a mean degree of 5.5 significantly decreased during the acute stage (P < 0.05. Our results indicate that TGA deteriorates the network efficiency of the theta frequency band. This effect might be related to the desynchronization between the anterior and posterior brain areas.

  12. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    Science.gov (United States)

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing

  13. Quantitative EEG in Children and Adults With Attention Deficit Hyperactivity Disorder: Comparison of Absolute and Relative Power Spectra and Theta/Beta Ratio.

    Science.gov (United States)

    Markovska-Simoska, Silvana; Pop-Jordanova, Nada

    2017-01-01

    In recent decades, resting state electroencephalographic (EEG) measures have been widely used to document underlying neurophysiological dysfunction in attention deficit hyperactivity disorder (ADHD). Although most EEG studies focus on children, there is a growing interest in adults with ADHD too. The aim of this study was to objectively assess and compare the absolute and relative EEG power as well as the theta/beta ratio in children and adults with ADHD. The evaluated sample comprised 30 male children and 30 male adults with ADHD diagnosed according to DSM-IV criteria. They were compared with 30 boys and 30 male adults matched by age. The mean age (±SD) of the children's group was 9 (±2.44) years and the adult group 35.8 (±8.65) years. EEG was recorded during an eyes-open condition. Spectral analysis of absolute (μV 2 ) and relative power (%) was carried out for 4 frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-21 Hz). The findings obtained for ADHD children are increased absolute power of slow waves (theta and delta), whereas adults exhibited no differences compared with normal subjects. For the relative power spectra there were no differences between the ADHD and control groups. Across groups, the children showed greater relative power than the adults in the delta and theta bands, but for the higher frequency bands (alpha and beta) the adults showed more relative power than children. Only ADHD children showed greater theta/beta ratio compared to the normal group. Classification analysis showed that ADHD children could be differentiated from the control group by the absolute theta values and theta/beta ratio at Cz, but this was not the case with ADHD adults. The question that should be further explored is if these differences are mainly due to maturation processes or if there is a core difference in cortical arousal between ADHD children and adults. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  14. Distinct slow and fast cortical theta dynamics in episodic memory retrieval.

    Science.gov (United States)

    Pastötter, Bernhard; Bäuml, Karl-Heinz T

    2014-07-01

    Brain oscillations in the theta frequency band (3-8 Hz) have been shown to be critically involved in human episodic memory retrieval. In prior work, both positive and negative relationships between cortical theta power and retrieval success have been reported. This study examined the hypothesis that slow and fast cortical theta oscillations at the edges of the traditional theta frequency band are differentially related to retrieval success. Scalp EEG was recorded in healthy human participants as they performed a cued-recall episodic memory task. Slow (~3 Hz) and fast (~7 Hz) theta oscillations at retrieval were examined as a function of whether an item was recalled or not and as a function of the items' output position at test. Recall success typically declines with output position, due to increases in interference level. The results showed that slow theta power was positively related but fast theta power was negatively related to retrieval success. Concurrent positive and negative episodic memory effects for slow and fast theta oscillations were dissociable in time and space, showing different time courses and different spatial locations on the scalp. Moreover, fast theta power increased from early to late output positions, whereas slow theta power was unaffected by items' output position. Together with prior work, the results suggest that slow and fast theta oscillations have distinct functional roles in episodic memory retrieval, with slow theta oscillations being related to processes of recollection and conscious awareness, and fast theta oscillations being linked to processes of interference and interference resolution. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Reduced Theta-Band Power and Phase Synchrony during Explicit Verbal Memory Tasks in Female, Non-Clinical Individuals with Schizotypal Traits.

    Science.gov (United States)

    Choi, Jeong Woo; Jang, Kyoung-Mi; Jung, Ki-Young; Kim, Myung-Sun; Kim, Kyung Hwan

    2016-01-01

    The study of non-clinical individuals with schizotypal traits has been considered to provide a promising endophenotypic approach to understanding schizophrenia, because schizophrenia is highly heterogeneous, and a number of confounding factors may affect neuropsychological performance. Here, we investigated whether deficits in explicit verbal memory in individuals with schizotypal traits are associated with abnormalities in the local and inter-regional synchrony of brain activity. Memory deficits have been recognized as a core problem in schizophrenia, and previous studies have consistently shown explicit verbal memory impairment in schizophrenic patients. However, the mechanism of this impairment has not been fully revealed. Seventeen individuals with schizotypal traits and 17 age-matched, normal controls participated. Multichannel event-related electroencephalograms (EEGs) were recorded while the subjects performed a continuous recognition task. Event-related spectral perturbations (ERSPs) and inter-regional theta-band phase locking values (TPLVs) were investigated to determine the differences in local and global neural synchrony between the two subject groups. Additionally, the connection patterns of the TPLVs were quantitatively analyzed using graph theory measures. An old/new effect was found in the induced theta-band ERSP in both groups. However, the difference between the old and new was larger in normal controls than in schizotypal trait group. The tendency of elevated old/new effect in normal controls was observed in anterior-posterior theta-band phase synchrony as well. Our results suggest that explicit memory deficits observed in schizophrenia patients can also be found in non-clinical individuals with psychometrically defined schizotypal traits.

  16. Differential effects of ongoing EEG beta and theta power on memory formation.

    Science.gov (United States)

    Scholz, Sebastian; Schneider, Signe Luisa; Rose, Michael

    2017-01-01

    Recently, elevated ongoing pre-stimulus beta power (13-17 Hz) at encoding has been associated with subsequent memory formation for visual stimulus material. It is unclear whether this activity is merely specific to visual processing or whether it reflects a state facilitating general memory formation, independent of stimulus modality. To answer that question, the present study investigated the relationship between neural pre-stimulus oscillations and verbal memory formation in different sensory modalities. For that purpose, a within-subject design was employed to explore differences between successful and failed memory formation in the visual and auditory modality. Furthermore, associative memory was addressed by presenting the stimuli in combination with background images. Results revealed that similar EEG activity in the low beta frequency range (13-17 Hz) is associated with subsequent memory success, independent of stimulus modality. Elevated power prior to stimulus onset differentiated successful from failed memory formation. In contrast, differential effects between modalities were found in the theta band (3-7 Hz), with an increased oscillatory activity before the onset of later remembered visually presented words. In addition, pre-stimulus theta power dissociated between successful and failed encoding of associated context, independent of the stimulus modality of the item itself. We therefore suggest that increased ongoing low beta activity reflects a memory promoting state, which is likely to be moderated by modality-independent attentional or inhibitory processes, whereas high ongoing theta power is suggested as an indicator of the enhanced binding of incoming interlinked information.

  17. Computational study of hippocampal-septal theta rhythm changes due to β-amyloid-altered ionic channels.

    Directory of Open Access Journals (Sweden)

    Xin Zou

    Full Text Available Electroencephagraphy (EEG of many dementia patients has been characterized by an increase in low frequency field potential oscillations. One of the characteristics of early stage Alzheimer's disease (AD is an increase in theta band power (4-7 Hz. However, the mechanism(s underlying the changes in theta oscillations are still unclear. To address this issue, we investigate the theta band power changes associated with β-Amyloid (Aβ peptide (one of the main markers of AD using a computational model, and by mediating the toxicity of hippocampal pyramidal neurons. We use an established biophysical hippocampal CA1-medial septum network model to evaluate four ionic channels in pyramidal neurons, which were demonstrated to be affected by Aβ. They are the L-type Ca²⁺ channel, delayed rectifying K⁺ channel, A-type fast-inactivating K⁺ channel and large-conductance Ca²⁺-activated K⁺ channel. Our simulation results demonstrate that only the Aβ inhibited A-type fast-inactivating K⁺ channel can induce an increase in hippocampo-septal theta band power, while the other channels do not affect theta rhythm. We further deduce that this increased theta band power is due to enhanced synchrony of the pyramidal neurons. Our research may elucidate potential biomarkers and therapeutics for AD. Further investigation will be helpful for better understanding of AD-induced theta rhythm abnormalities and associated cognitive deficits.

  18. Testing the effects of adolescent alcohol use on adult conflict-related theta dynamics.

    Science.gov (United States)

    Harper, Jeremy; Malone, Stephen M; Iacono, William G

    2017-11-01

    Adolescent alcohol use (AAU) is associated with brain anomalies, but less is known about long-term neurocognitive effects. Despite theoretical models linking AAU to diminished cognitive control, empirical work testing this relationship with specific cognitive control neural correlates (e.g., prefrontal theta-band EEG dynamics) remains scarce. A longitudinal twin design was used to test the hypothesis that greater AAU is associated with reduced conflict-related EEG theta-band dynamics in adulthood, and to examine the genetic/environmental etiology of this association. In a large (N=718) population-based prospective twin sample, AAU was assessed at ages 11/14/17. Twins completed a flanker task at age 29 to elicit EEG theta-band medial frontal cortex (MFC) power and medial-dorsal prefrontal cortex (MFC-dPFC) connectivity. Two complementary analytic methods (cotwin control analysis; biometric modeling) were used to disentangle the genetic/shared environmental risk towards AAU from possible alcohol exposure effects on theta dynamics. AAU was negatively associated with adult cognitive control-related theta-band MFC power and MFC-dPFC functional connectivity. Genetic influences primarily underlie these associations. Findings provide strong evidence that genetic factors underlie the comorbidity between AAU and diminished cognitive control-related theta dynamics in adulthood. Conflict-related theta-band dynamics appear to be candidate brain-based endophenotypes/mechanisms for AAU. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. Differential effects of ongoing EEG beta and theta power on memory formation.

    Directory of Open Access Journals (Sweden)

    Sebastian Scholz

    Full Text Available Recently, elevated ongoing pre-stimulus beta power (13-17 Hz at encoding has been associated with subsequent memory formation for visual stimulus material. It is unclear whether this activity is merely specific to visual processing or whether it reflects a state facilitating general memory formation, independent of stimulus modality. To answer that question, the present study investigated the relationship between neural pre-stimulus oscillations and verbal memory formation in different sensory modalities. For that purpose, a within-subject design was employed to explore differences between successful and failed memory formation in the visual and auditory modality. Furthermore, associative memory was addressed by presenting the stimuli in combination with background images. Results revealed that similar EEG activity in the low beta frequency range (13-17 Hz is associated with subsequent memory success, independent of stimulus modality. Elevated power prior to stimulus onset differentiated successful from failed memory formation. In contrast, differential effects between modalities were found in the theta band (3-7 Hz, with an increased oscillatory activity before the onset of later remembered visually presented words. In addition, pre-stimulus theta power dissociated between successful and failed encoding of associated context, independent of the stimulus modality of the item itself. We therefore suggest that increased ongoing low beta activity reflects a memory promoting state, which is likely to be moderated by modality-independent attentional or inhibitory processes, whereas high ongoing theta power is suggested as an indicator of the enhanced binding of incoming interlinked information.

  20. Pre-stimulus thalamic theta power predicts human memory formation.

    Science.gov (United States)

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D

    2016-09-01

    Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cognitive control during audiovisual working memory engages frontotemporal theta-band interactions.

    Science.gov (United States)

    Daume, Jonathan; Graetz, Sebastian; Gruber, Thomas; Engel, Andreas K; Friese, Uwe

    2017-10-03

    Working memory (WM) maintenance of sensory information has been associated with enhanced cross-frequency coupling between the phase of low frequencies and the amplitude of high frequencies, particularly in medial temporal lobe (MTL) regions. It has been suggested that these WM maintenance processes are controlled by areas of the prefrontal cortex (PFC) via frontotemporal phase synchronisation in low frequency bands. Here, we investigated whether enhanced cognitive control during audiovisual WM as compared to visual WM alone is associated with increased low-frequency phase synchronisation between sensory areas maintaining WM content and areas from PFC. Using magnetoencephalography, we recorded neural oscillatory activity from healthy human participants engaged in an audiovisual delayed-match-to-sample task. We observed that regions from MTL, which showed enhanced theta-beta phase-amplitude coupling (PAC) during the WM delay window, exhibited stronger phase synchronisation within the theta-band (4-7 Hz) to areas from lateral PFC during audiovisual WM as compared to visual WM alone. Moreover, MTL areas also showed enhanced phase synchronisation to temporooccipital areas in the beta-band (20-32 Hz). Our results provide further evidence that a combination of long-range phase synchronisation and local PAC might constitute a mechanism for neuronal communication between distant brain regions and across frequencies during WM maintenance.

  2. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus.

    Science.gov (United States)

    Vandecasteele, Marie; Varga, Viktor; Berényi, Antal; Papp, Edit; Barthó, Péter; Venance, Laurent; Freund, Tamás F; Buzsáki, György

    2014-09-16

    Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field potentials in both anesthetized and behaving mice. Cholinergic stimulation completely blocked sharp wave ripples and strongly suppressed the power of both slow oscillations (0.5-2 Hz in anesthetized, 0.5-4 Hz in behaving animals) and supratheta (6-10 Hz in anesthetized, 10-25 Hz in behaving animals) bands. The same stimulation robustly increased both the power and coherence of theta oscillations (2-6 Hz) in urethane-anesthetized mice. In behaving mice, cholinergic stimulation was less effective in the theta (4-10 Hz) band yet it also increased the ratio of theta/slow oscillation and theta coherence. The effects on gamma oscillations largely mirrored those of theta. These findings show that medial septal cholinergic activation can both enhance theta rhythm and suppress peri-theta frequency bands, allowing theta oscillations to dominate.

  3. Resting-state theta-band connectivity and verbal memory in schizophrenia and in the high-risk state.

    Science.gov (United States)

    Andreou, Christina; Leicht, Gregor; Nolte, Guido; Polomac, Nenad; Moritz, Steffen; Karow, Anne; Hanganu-Opatz, Ileana L; Engel, Andreas K; Mulert, Christoph

    2015-02-01

    Disturbed functional connectivity is assumed to underlie neurocognitive deficits in patients with schizophrenia. As neurocognitive deficits are already present in the high-risk state, identification of the neural networks involved in this core feature of schizophrenia is essential to our understanding of the disorder. Resting-state studies enable such investigations, while at the same time avoiding the known confounder of impaired task performance in patients. The aim of the present study was to investigate EEG resting-state connectivity in high-risk individuals (HR) compared to first episode patients with schizophrenia (SZ) and to healthy controls (HC), and its association with cognitive deficits. 64-channel resting-state EEG recordings (eyes closed) were obtained for 28 HR, 19 stable SZ, and 23 HC, matched for age, education, and parental education. The imaginary coherence-based multivariate interaction measure (MIM) was used as a measure of connectivity across 80 cortical regions and six frequency bands. Mean connectivity at each region was compared across groups using the non-parametric randomization approach. Additionally, the network-based statistic was applied to identify affected networks in patients. SZ displayed increased theta-band resting-state MIM connectivity across midline, sensorimotor, orbitofrontal regions and the left temporoparietal junction. HR displayed intermediate theta-band connectivity patterns that did not differ from either SZ or HC. Mean theta-band connectivity within the above network partially mediated verbal memory deficits in SZ and HR. Aberrant theta-band connectivity may represent a trait characteristic of schizophrenia associated with neurocognitive deficits. As such, it might constitute a promising target for novel treatment applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Deqi Induction by HT7 Acupuncture Alters Theta and Alpha Band Coherence in Human Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Go-Eun Lee

    2017-01-01

    Full Text Available The aim of this preliminary study is to investigate the changes in phase synchronization in the theta and alpha bands before and during the performance of classical acupuncture on the Sinmun (HT7. The electroencephalogram (EEG signals from nine healthy young subjects were recorded before and during acupuncture in the “closed-eye” state. The EEG signals were acquired from 19 surface scalp electrodes (FP1, FP2, F7, F3, Fz F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2. Needles were inserted into the HT7 bilaterally and were then manipulated to induce deqi and retained for 15 minutes. Phase synchronization was measured by phase coherence. In the theta band, coherence significantly increased between the temporal (T5, T6 and occipital areas (O1, O2 during the acupuncture stimulation. In the alpha band, coherence significantly increased between the left temporal area (T5 and other areas (frontal, parietal, and occipital. Phase coherence in the theta and alpha bands tended to increase during the retention of the acupuncture needles after deqi. Therefore, it can be concluded that acupuncture stimulation with deqi is clinically effective via the central nervous system (CNS.

  5. Transient reduction in theta power caused by interictal spikes in human temporal lobe epilepsy.

    Science.gov (United States)

    Manling Ge; Jundan Guo; Yangyang Xing; Zhiguo Feng; Weide Lu; Xinxin Ma; Yuehua Geng; Xin Zhang

    2017-07-01

    The inhibitory impacts of spikes on LFP theta rhythms(4-8Hz) are investigated around sporadic spikes(SSs) based on intracerebral EEG of 4 REM sleep patients with temporal lobe epilepsy(TLE) under the pre-surgical monitoring. Sequential interictal spikes in both genesis area and extended propagation pathway are collected, that, SSs genesis only in anterior hippocampus(aH)(possible propagation pathway in Entorhinal cortex(EC)), only in EC(possible propagation pathway in aH), and in both aH and EC synchronously. Instantaneous theta power was estimated by using Gabor wavelet transform, and theta power level was estimated by averaged over time and frequency before SSs(350ms pre-spike) and after SSs(350ms post-spike). The inhibitory effect around spikes was evaluated by the ratio of theta power level difference between pre-spike and post-spike to pre-spike theta power level. The findings were that theta power level was reduced across SSs, and the effects were more sever in the case of SSs in both aH and EC synchronously than either SSs only in EC or SSs only in aH. It is concluded that interictal spikes impair LFP theta rhythms transiently and directly. The work suggests that the reduction of theta power after the interictal spike might be an evaluation indicator of damage of epilepsy to human cognitive rhythms.

  6. The Coupling between Gamma and Theta Oscillation and Visuotactile Integration Process

    Directory of Open Access Journals (Sweden)

    Noriaki Kanayama

    2011-10-01

    Full Text Available Some researches revealed the relationship between multisensory integration and EEG oscillations. Previous studies revealed that the visuotactile integration process could be explained by gamma and theta band oscillation. In addition, recent studies have showed the possibility that a coupling between oscillations at the different frequency bands plays an important role on the multisensory integration system. This study aimed to investigate whether the gamma and theta oscillations show the coupling during the visuotactile integration. Using congruency effect paradigm only for left hand, we measured scalp EEG during simultaneous presentation of “spatially congruent” or “spatially incongruent” visuotactile stimuli. In Experiment 1, the proportion of the spatially congruent trials (80% vs 20% was changed across the experimental blocks. The results showed that the relationship between gamma power and theta phase at the parietal area was modulated by the proportion. In Experiment 2, the saliency of the vibration stimulus (0dB vs −20dB was changed across trials. The results showed that the relationship between gamma power and theta phase was immune to the saliency. These results suggest that multisensory integration process has a plasticity, which is modulated by the proportion of congruent trial, and the process could be explained by the coupling between gamma/theta oscillations.

  7. Insights on the neural basis of motor plasticity induced by theta burst stimulation from TMS-EEG

    Science.gov (United States)

    VERNET, Marine; BASHIR, Shahid; YOO, Woo-Kyoung; PEREZ, Jennifer M.; NAJIB, Umer; PASCUAL-LEONE, Alvaro

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a useful tool to induce and measure plasticity in the human brain. However, the cortical effects are generally indirectly evaluated with motor-evoked potentials (MEPs) reflective of modulation of cortico-spinal excitability. In this study, we aim to provide direct measures of cortical plasticity by combining TMS with electroencephalography (EEG). Continuous theta-burst stimulation (cTBS) was applied over the primary motor cortex (M1) of young healthy adults; and we measured modulation of (i) motor evoked-potentials (MEPs), (ii) TMS-induced EEG evoked potentials (TEPs), (iii) TMS-induced EEG synchronization and (iv) eyes-closed resting EEG. Our results show the expected cTBS-induced decrease in MEPs size, which we found to be paralleled by a modulation of a combination of TEPs. Furthermore, we found that cTBS increased the power in the theta band of eyes-closed resting EEG, whereas it decreased single-pulse TMS-induced power in the theta and alpha bands. In addition, cTBS decreased the power in the beta band of eyes-closed resting EEG, whereas it increased single-pulse TMS-induced power in the beta band. We suggest that cTBS acts by modulating the phase alignment between already active oscillators; it synchronizes low frequency (theta and/or alpha) oscillators and desynchronizes high frequency (beta) oscillators. These results provide novel insights into the cortical effects of cTBS and could be useful for exploring cTBS-induced plasticity outside of the motor cortex. PMID:23190020

  8. Modulation of EEG Theta Band Signal Complexity by Music Therapy

    Science.gov (United States)

    Bhattacharya, Joydeep; Lee, Eun-Jeong

    The primary goal of this study was to investigate the impact of monochord (MC) sounds, a type of archaic sounds used in music therapy, on the neural complexity of EEG signals obtained from patients undergoing chemotherapy. The secondary goal was to compare the EEG signal complexity values for monochords with those for progressive muscle relaxation (PMR), an alternative therapy for relaxation. Forty cancer patients were randomly allocated to one of the two relaxation groups, MC and PMR, over a period of six months; continuous EEG signals were recorded during the first and last sessions. EEG signals were analyzed by applying signal mode complexity, a measure of complexity of neuronal oscillations. Across sessions, both groups showed a modulation of complexity of beta-2 band (20-29Hz) at midfrontal regions, but only MC group showed a modulation of complexity of theta band (3.5-7.5Hz) at posterior regions. Therefore, the neuronal complexity patterns showed different changes in EEG frequency band specific complexity resulting in two different types of interventions. Moreover, the different neural responses to listening to monochords and PMR were observed after regular relaxation interventions over a short time span.

  9. Alpha and theta brain oscillations index dissociable processes in spoken word recognition.

    Science.gov (United States)

    Strauß, Antje; Kotz, Sonja A; Scharinger, Mathias; Obleser, Jonas

    2014-08-15

    Slow neural oscillations (~1-15 Hz) are thought to orchestrate the neural processes of spoken language comprehension. However, functional subdivisions within this broad range of frequencies are disputed, with most studies hypothesizing only about single frequency bands. The present study utilizes an established paradigm of spoken word recognition (lexical decision) to test the hypothesis that within the slow neural oscillatory frequency range, distinct functional signatures and cortical networks can be identified at least for theta- (~3-7 Hz) and alpha-frequencies (~8-12 Hz). Listeners performed an auditory lexical decision task on a set of items that formed a word-pseudoword continuum: ranging from (1) real words over (2) ambiguous pseudowords (deviating from real words only in one vowel; comparable to natural mispronunciations in speech) to (3) pseudowords (clearly deviating from real words by randomized syllables). By means of time-frequency analysis and spatial filtering, we observed a dissociation into distinct but simultaneous patterns of alpha power suppression and theta power enhancement. Alpha exhibited a parametric suppression as items increasingly matched real words, in line with lowered functional inhibition in a left-dominant lexical processing network for more word-like input. Simultaneously, theta power in a bilateral fronto-temporal network was selectively enhanced for ambiguous pseudowords only. Thus, enhanced alpha power can neurally 'gate' lexical integration, while enhanced theta power might index functionally more specific ambiguity-resolution processes. To this end, a joint analysis of both frequency bands provides neural evidence for parallel processes in achieving spoken word recognition. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Acute Stress Modulates Feedback Processing in Men and Women: Differential Effects on the Feedback-Related Negativity and Theta and Beta Power

    Science.gov (United States)

    Banis, Stella; Geerligs, Linda; Lorist, Monicque M.

    2014-01-01

    Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN) and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses. PMID:24755943

  11. Acute stress modulates feedback processing in men and women: differential effects on the feedback-related negativity and theta and beta power.

    Directory of Open Access Journals (Sweden)

    Stella Banis

    Full Text Available Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses.

  12. Classification of intelligence quotient via brainwave sub-band power ratio features and artificial neural network.

    Science.gov (United States)

    Jahidin, A H; Megat Ali, M S A; Taib, M N; Tahir, N Md; Yassin, I M; Lias, S

    2014-04-01

    This paper elaborates on the novel intelligence assessment method using the brainwave sub-band power ratio features. The study focuses only on the left hemisphere brainwave in its relaxed state. Distinct intelligence quotient groups have been established earlier from the score of the Raven Progressive Matrices. Sub-band power ratios are calculated from energy spectral density of theta, alpha and beta frequency bands. Synthetic data have been generated to increase dataset from 50 to 120. The features are used as input to the artificial neural network. Subsequently, the brain behaviour model has been developed using an artificial neural network that is trained with optimized learning rate, momentum constant and hidden nodes. Findings indicate that the distinct intelligence quotient groups can be classified from the brainwave sub-band power ratios with 100% training and 88.89% testing accuracies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Why don't you like me? Midfrontal theta power in response to unexpected peer rejection feedback.

    Science.gov (United States)

    van der Molen, M J W; Dekkers, L M S; Westenberg, P M; van der Veen, F M; van der Molen, M W

    2017-02-01

    Social connectedness theory posits that the brain processes social rejection as a threat to survival. Recent electrophysiological evidence suggests that midfrontal theta (4-8Hz) oscillations in the EEG provide a window on the processing of social rejection. Here we examined midfrontal theta dynamics (power and inter-trial phase synchrony) during the processing of social evaluative feedback. We employed the Social Judgment paradigm in which 56 undergraduate women (mean age=19.67 years) were asked to communicate their expectancies about being liked vs. disliked by unknown peers. Expectancies were followed by feedback indicating social acceptance vs. rejection. Results revealed a significant increase in EEG theta power to unexpected social rejection feedback. This EEG theta response could be source-localized to brain regions typically reported during activation of the saliency network (i.e., dorsal anterior cingulate cortex, insula, inferior frontal gyrus, frontal pole, and the supplementary motor area). Theta phase dynamics mimicked the behavior of the time-domain averaged feedback-related negativity (FRN) by showing stronger phase synchrony for feedback that was unexpected vs. expected. Theta phase, however, differed from the FRN by also displaying stronger phase synchrony in response to rejection vs. acceptance feedback. Together, this study highlights distinct roles for midfrontal theta power and phase synchrony in response to social evaluative feedback. Our findings contribute to the literature by showing that midfrontal theta oscillatory power is sensitive to social rejection but only when peer rejection is unexpected, and this theta response is governed by a widely distributed neural network implicated in saliency detection and conflict monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cortical theta wanes for language.

    Science.gov (United States)

    Hermes, Dora; Miller, Kai J; Vansteensel, Mariska J; Edwards, Erik; Ferrier, Cyrille H; Bleichner, Martin G; van Rijen, Peter C; Aarnoutse, Erik J; Ramsey, Nick F

    2014-01-15

    The role of low frequency oscillations in language areas is not yet understood. Using ECoG in six human subjects, we studied whether different language regions show prominent power changes in a specific rhythm, in similar manner as the alpha rhythm shows the most prominent power changes in visual areas. Broca's area and temporal language areas were localized in individual subjects using fMRI. In these areas, the theta rhythm showed the most pronounced power changes and theta power decreased significantly during verb generation. To better understand the role of this language-related theta decrease, we then studied the interaction between low frequencies and local neuronal activity reflected in high frequencies. Amplitude-amplitude correlations showed that theta power correlated negatively with high frequency activity, specifically across verb generation trials. Phase-amplitude coupling showed that during control trials, high frequency power was coupled to theta phase, but this coupling decreased significantly during verb generation trials. These results suggest a dynamic interaction between the neuronal mechanisms underlying the theta rhythm and local neuronal activity in language areas. As visual areas show a pronounced alpha rhythm that may reflect pulsed inhibition, language regions show a pronounced theta rhythm with highly similar features. © 2013.

  15. Lower trait frontal theta activity in mindfulness meditators

    Directory of Open Access Journals (Sweden)

    Guaraci Ken Tanaka

    2014-09-01

    Full Text Available Acute and long-term effects of mindfulness meditation on theta-band activity are not clear. The aim of this study was to investigate frontal theta differences between long- and short-term mindfulness practitioners before, during, and after mindfulness meditation. Twenty participants were recruited, of which 10 were experienced Buddhist meditators. Despite an acute increase in the theta activity during meditation in both the groups, the meditators showed lower trait frontal theta activity. Therefore, we suggested that this finding is a neural correlate of the expert practitioners’ ability to limit the processing of unnecessary information (e.g., discursive thought and increase the awareness of the essential content of the present experience. In conclusion, acute changes in the theta band throughout meditation did not appear to be a specific correlate of mindfulness but were rather related to the concentration properties of the meditation. Notwithstanding, lower frontal theta activity appeared to be a trait of mindfulness practices.

  16. Genetic influences on functional connectivity associated with feedback processing and prediction error: Phase coupling of theta-band oscillations in twins.

    Science.gov (United States)

    Demiral, Şükrü Barış; Golosheykin, Simon; Anokhin, Andrey P

    2017-05-01

    Detection and evaluation of the mismatch between the intended and actually obtained result of an action (reward prediction error) is an integral component of adaptive self-regulation of behavior. Extensive human and animal research has shown that evaluation of action outcome is supported by a distributed network of brain regions in which the anterior cingulate cortex (ACC) plays a central role, and the integration of distant brain regions into a unified feedback-processing network is enabled by long-range phase synchronization of cortical oscillations in the theta band. Neural correlates of feedback processing are associated with individual differences in normal and abnormal behavior, however, little is known about the role of genetic factors in the cerebral mechanisms of feedback processing. Here we examined genetic influences on functional cortical connectivity related to prediction error in young adult twins (age 18, n=399) using event-related EEG phase coherence analysis in a monetary gambling task. To identify prediction error-specific connectivity pattern, we compared responses to loss and gain feedback. Monetary loss produced a significant increase of theta-band synchronization between the frontal midline region and widespread areas of the scalp, particularly parietal areas, whereas gain resulted in increased synchrony primarily within the posterior regions. Genetic analyses showed significant heritability of frontoparietal theta phase synchronization (24 to 46%), suggesting that individual differences in large-scale network dynamics are under substantial genetic control. We conclude that theta-band synchronization of brain oscillations related to negative feedback reflects genetically transmitted differences in the neural mechanisms of feedback processing. To our knowledge, this is the first evidence for genetic influences on task-related functional brain connectivity assessed using direct real-time measures of neuronal synchronization. Copyright © 2016

  17. EEG theta and gamma responses to semantic violations in online sentence processing

    NARCIS (Netherlands)

    Hald, L.A.; Bastiaansen, M.C.M.; Hagoort, P.

    2006-01-01

    We explore the nature of the oscillatory dynamics in the EEG of subjects reading sentences that contain a semantic violation. More specifically, we examine whether increases in theta (≈3–7 Hz) and gamma (around 40 Hz) band power occur in response to sentences that were either semantically correct or

  18. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Wang, Yao; Sokhadze, Estate M.; El-Baz, Ayman S.; Li, Xiaoli; Sears, Lonnie; Casanova, Manuel F.; Tasman, Allan

    2016-01-01

    Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism. PMID:26834615

  19. The theta-structure in string theories - 1: bosonic strings

    International Nuclear Information System (INIS)

    Li Miao.

    1985-09-01

    We explored the theta-structures in bosonic string theories which are similar to those in gauge field theories. The theta-structure of string is due to the multiply connected spatial compact subspace of space-time. The work of this paper shows that there is an energy band E(theta) in the string theory and one may move the tachyon out in theory by choosing some proper theta parameters. (author)

  20. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder.

    Science.gov (United States)

    Xing, Mengqi; Tadayonnejad, Reza; MacNamara, Annmarie; Ajilore, Olusola; DiGangi, Julia; Phan, K Luan; Leow, Alex; Klumpp, Heide

    2017-01-01

    Functional magnetic resonance imaging (fMRI) resting-state studies show generalized social anxiety disorder (gSAD) is associated with disturbances in networks involved in emotion regulation, emotion processing, and perceptual functions, suggesting a network framework is integral to elucidating the pathophysiology of gSAD. However, fMRI does not measure the fast dynamic interconnections of functional networks. Therefore, we examined whole-brain functional connectomics with electroencephalogram (EEG) during resting-state. Resting-state EEG data was recorded for 32 patients with gSAD and 32 demographically-matched healthy controls (HC). Sensor-level connectivity analysis was applied on EEG data by using Weighted Phase Lag Index (WPLI) and graph analysis based on WPLI was used to determine clustering coefficient and characteristic path length to estimate local integration and global segregation of networks. WPLI results showed increased oscillatory midline coherence in the theta frequency band indicating higher connectivity in the gSAD relative to HC group during rest. Additionally, WPLI values positively correlated with state anxiety levels within the gSAD group but not the HC group. Our graph theory based connectomics analysis demonstrated increased clustering coefficient and decreased characteristic path length in theta-based whole brain functional organization in subjects with gSAD compared to HC. Theta-dependent interconnectivity was associated with state anxiety in gSAD and an increase in information processing efficiency in gSAD (compared to controls). Results may represent enhanced baseline self-focused attention, which is consistent with cognitive models of gSAD and fMRI studies implicating emotion dysregulation and disturbances in task negative networks (e.g., default mode network) in gSAD.

  1. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Yao eWang

    2016-01-01

    Full Text Available Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism.Key word: Electroencephalography, Neurofeedback, Autism Spectrum Disorder, Gamma activity, EEG bands’ ratios

  2. Enhanced coherence within the theta band between pairs of brains engaging in experienced versus naïve Reiki procedures.

    Science.gov (United States)

    Ventura, Anabela Carraca; Persinger, Michael A

    2014-08-01

    The study objective was to discern whether the coherence between brain activities of the "patient" and practitioner differ between Reiki experts and novices. If the physical process associated with Reiki involves "convergence" between the practitioner and subject, then this congruence should be evident in time-dependent shared power within specific and meaningful frequency electroencephalographic bands. Simultaneous quantitative electroencephalogram measures (19 channels) were recorded from 9 pairs of subjects when 1 of the pairs was an experienced Reiki practitioner or had just been shown the procedure. Pairs recorded their experiences and images. The "practitioner" and "patient" pairs were measured within a quiet, comfortable acoustic chamber. Real-time correlations and coherence between pairs of brains for power (μV(2)·Hz(-1)) within the various frequency bands over the 10-min sessions were recorded and analyzed for each pair. Descriptors of experiences were analyzed for word meanings. Only the coherence within the theta range increased over time between the brains of the Reiki pairs relative to the Sham pairs, particularly over the left hemisphere. The pleasantness-unpleasantness rating for the words employed to describe experiences written after the experiment were more congruent for the Reiki pairs compared to the reference pairs. The increased synchronization of the cerebral activity of the participant and the practitioner during proximal therapies involving touch such as Reiki may be an important component of any subsequent beneficial effects.

  3. Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a Granger causality analysis.

    Science.gov (United States)

    Kang, D; Ding, M; Topchiy, I; Shifflett, L; Kocsis, B

    2015-11-01

    Medial septum (MS) plays a critical role in controlling the electrical activity of the hippocampus (HIPP). In particular, theta-rhythmic burst firing of MS neurons is thought to drive lasting HIPP theta oscillations in rats during waking motor activity and REM sleep. Less is known about MS-HIPP interactions in nontheta states such as non-REM sleep, in which HIPP theta oscillations are absent but theta-rhythmic burst firing in subsets of MS neurons is preserved. The present study used Granger causality (GC) to examine the interaction patterns between MS and HIPP in slow-wave sleep (SWS, a nontheta state) and during its short interruptions called microarousals (a transient theta state). We found that during SWS, while GC revealed a unidirectional MS→HIPP influence over a wide frequency band (2-12 Hz, maximum: ∼8 Hz), there was no theta peak in the hippocampal power spectra, indicating a lack of theta activity in HIPP. In contrast, during microarousals, theta peaks were seen in both MS and HIPP power spectra and were accompanied by bidirectional GC with MS→HIPP and HIPP→MS theta drives being of equal magnitude. Thus GC in a nontheta state (SWS) vs. a theta state (microarousal) primarily differed in the level of HIPP→MS. The present findings suggest a modification of our understanding of the role of MS as the theta generator in two regards. First, a MS→HIPP theta drive does not necessarily induce theta field oscillations in the hippocampus, as found in SWS. Second, HIPP theta oscillations entail bidirectional theta-rhythmic interactions between MS and HIPP. Copyright © 2015 the American Physiological Society.

  4. Frontal Theta Activity Supports Detecting Mismatched Information in Visual Working Memory.

    Science.gov (United States)

    Liang, Tengfei; Hu, Zhonghua; Liu, Qiang

    2017-01-01

    During the comparison stage of visual working memory (VWM) processing, detecting the mismatch between the external sensory input and internal representations is a crucial cognitive ability for human, but the neural mechanism behind it remains largely unclear. The present study investigated the role of frontal theta power in detecting the mismatched information in VWM in a delayed matching task. A control task required to compare two simultaneously presented visual figures was also designed as a contrast to exclude the possibility that frontal theta activity just reflecting the non-memory-related behavioral conflicts. To better characterize the control mechanisms shaped by the frontal theta oscillation in human VWM, colored shapes were adopted as materials while both the task-relevant shape feature and task-irrelevant color feature could be mismatched. We found that the response times of participants were significantly delayed under the relevant- and irrelevant-mismatch conditions in both tasks and the conjunction-mismatch condition in delayed matching task. While our EEG data showed that increased frontal theta power was only observed under the relevant- and conjunction-mismatch conditions in the delayed matching task, but not the control task. These findings suggest that the frontal distributed theta activity observed here reflects the detection of mismatched information during the comparison stage of VWM, rather than the response-related conflicts. Furthermore, it is consistent with the proposal that theta-band oscillation can act as a control mechanism in working memory function so that the target-mismatched information in VWM could be successfully tracked. We also propose a possible processing structure to explain the neural dynamics underlying the mismatch detection process in VWM.

  5. Frontal Theta Activity Supports Detecting Mismatched Information in Visual Working Memory

    Directory of Open Access Journals (Sweden)

    Tengfei Liang

    2017-10-01

    Full Text Available During the comparison stage of visual working memory (VWM processing, detecting the mismatch between the external sensory input and internal representations is a crucial cognitive ability for human, but the neural mechanism behind it remains largely unclear. The present study investigated the role of frontal theta power in detecting the mismatched information in VWM in a delayed matching task. A control task required to compare two simultaneously presented visual figures was also designed as a contrast to exclude the possibility that frontal theta activity just reflecting the non-memory-related behavioral conflicts. To better characterize the control mechanisms shaped by the frontal theta oscillation in human VWM, colored shapes were adopted as materials while both the task-relevant shape feature and task-irrelevant color feature could be mismatched. We found that the response times of participants were significantly delayed under the relevant- and irrelevant-mismatch conditions in both tasks and the conjunction-mismatch condition in delayed matching task. While our EEG data showed that increased frontal theta power was only observed under the relevant- and conjunction-mismatch conditions in the delayed matching task, but not the control task. These findings suggest that the frontal distributed theta activity observed here reflects the detection of mismatched information during the comparison stage of VWM, rather than the response-related conflicts. Furthermore, it is consistent with the proposal that theta-band oscillation can act as a control mechanism in working memory function so that the target-mismatched information in VWM could be successfully tracked. We also propose a possible processing structure to explain the neural dynamics underlying the mismatch detection process in VWM.

  6. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning

    Science.gov (United States)

    Hoffmann, Loren C.; Cicchese, Joseph J.; Berry, Stephen D.

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning. PMID:25918501

  7. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning.

    Science.gov (United States)

    Hoffmann, Loren C; Cicchese, Joseph J; Berry, Stephen D

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3-12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3-7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning.

  8. The analyzing power Asub(y)(theta) for the elastic scattering of 12 MeV neutrons from deuterons

    International Nuclear Information System (INIS)

    Tornow, W.; Lisowski, P.W.; Byrd, R.C.; Walter, R.L.

    1978-01-01

    The analyzing power Asub(y)(theta) was obtained at 10 0 intervals between 30 0 (lab) to 120 0 (lab) for 2 H(n, n) 2 H at 12.0 MeV. The polarized neutron beam employed in the measurement was obtained by using neutrons emitted at 0 0 from the polarization transfer reaction 2 H(d(pol), n(pol)) 3 He. The accuracy in the Asub(y)(theta) values that was achieved ranged from +- 0.006 to +- 0.013. Comparison of the data to Asub(y)(theta) results obtained at 12 MeV for the charge symmetric reaction 2 H(p, p) 2 H shows that the two Asub(y)(theta) distributions are equal to within the above accuracy. (Auth.)

  9. Optical design and performance of F-Theta lenses for high-power and high-precision applications

    Science.gov (United States)

    Yurevich, V. I.; Grimm, V. A.; Afonyushkin, A. A.; Yudin, K. V.; Gorny, S. G.

    2015-09-01

    F-Theta lenses are widely used in remote laser processing. Nowadays, a large variety of scanning systems utilizing these devices are commercially available. In this paper, we demonstrate that all practical issues lose their triviality in designing high-performance F-Theta scanning systems. Laser power scaling requires attention to thermally-induced phenomena and ghost reflections. This requirement considerably complicates optimization of the optical configuration of the system and primary aberration correction, even during preliminary design. Obtaining high positioning accuracy requires taking into consideration all probable reasons for processing field distortion. We briefly describe the key engineering relationships and invariants as well as the typical design of a scanner lens and the main field-flattening techniques. Specific emphasis is directed to consideration of the fundamental nonlinearity of two-mirror scanners. To the best of our knowledge, this issue has not been yet studied. We also demonstrate the benefits of our F-Theta lens optimization technique, which uses a plurality of entrance pupils. The problems of eliminating focused ghost reflections and the effects of thermally-induced processes in high-power F-Theta lenses are considered. A set of multi-path 3D processing and laser cutting experiments were conducted and are presented herein to demonstrate the impact of laser beam degradation on the process performance. A selection of our non-standard optical designs is presented.

  10. Independent delta/theta rhythms in the human hippocampus and entorhinal cortex

    Directory of Open Access Journals (Sweden)

    Florian Mormann

    2008-05-01

    Full Text Available Theta oscillations in the medial temporal lobe (MTL of mammals are involved in various functions such as spatial navigation, sensorimotor integration, and cognitive processing. While the theta rhythm was originally assumed to originate in the medial septum, more recent studies suggest autonomous theta generation in the MTL. Although coherence between entorhinal and hippocampal theta activity has been found to influence memory formation, it remains unclear whether these two structures can generate theta independently. In this study we analyzed intracranial electroencephalographic (EEG recordings from 22 patients with unilateral hippocampal sclerosis undergoing presurgical evaluation prior to resection of the epileptic focus. Using a wavelet-based, frequency-band-specific measure of phase synchronization, we quantified synchrony between 10 different recording sites along the longitudinal axis of the hippocampal formation in the non-epileptic brain hemisphere. We compared EEG synchrony between adjacent recording sites (i within the entorhinal cortex, (ii within the hippocampus, and (iii between the hippocampus and entorhinal cortex. We observed a significant interregional gap in synchrony for the delta and theta band, indicating the existence of independent delta/theta rhythms in different subregions of the human MTL. The interaction of these rhythms could represent the temporal basis for the information processing required for mnemonic encoding and retrieval.

  11. Word class and context affect alpha-band oscillatory dynamics in an older population

    Directory of Open Access Journals (Sweden)

    Monika eMellem

    2012-04-01

    Full Text Available Differences in the oscillatory EEG dynamics of reading open class and closed class words have previously been found (Bastiaansen et al., 2005 and are thought to reflect differences in lexical-semantic content between these word classes. In particular, the theta band (4–7 Hz seems to play a prominent role in lexical-semantic retrieval. We tested whether this theta effect is robust in an older population of subjects. Additionally, we examined how the context of a word can modulate the oscillatory dynamics underlying retrieval for the two different classes of words. Older participants (mean age 55 read words presented in either syntactically-correct sentences or in a scrambled order (scrambled sentence while their EEG was recorded. We performed time-frequency analysis to examine how power varied based on the context or class of the word. We observed larger power decreases in the alpha (8–12Hz band between 200–700 ms for the open class compared to closed class words, but this was true only for the scrambled sentence context. We did not observe differences in theta power between these conditions. Context exerted an effect on the alpha and low beta (13–18 Hz bands between 0–700 ms. These results suggest that the previously observed word class effects on theta power changes in a younger participant sample do not seem to be a robust effect in this older population. Though this is an indirect comparison between studies, it may suggest the existence of aging effects on word retrieval dynamics for different populations. Additionally, the interaction between word class and context suggests that word retrieval mechanisms interact with sentence-level comprehension mechanisms in the alpha band.

  12. Effect of focused ultrasound stimulation at different ultrasonic power levels on the local field potential power spectrum

    International Nuclear Information System (INIS)

    Yuan Yi; Lu Cheng-Biao; Li Xiao-Li

    2015-01-01

    Local field potential (LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation (FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases. (paper)

  13. Better than sleep: theta neurofeedback training accelerates memory consolidation.

    Science.gov (United States)

    Reiner, Miriam; Rozengurt, Roman; Barnea, Anat

    2014-01-01

    Consistent empirical results showed that both night and day sleep enhanced memory consolidation. In this study we explore processes of consolidation of memory during awake hours. Since theta oscillations have been shown to play a central role in exchange of information, we hypothesized that elevated theta during awake hours will enhance memory consolidation. We used a neurofeedback protocol, to enhance the relative power of theta or beta oscillations. Participants trained on a tapping task, were divided into three groups: neurofeedback theta; neurofeedback beta; control. We found a significant improvement in performance in the theta group, relative to the beta and control groups, immediately after neurofeedback. Performance was further improved after night sleep in all groups, with a significant advantage favoring the theta group. Theta power during training was correlated with the level of improvement, indicating a clear relationship between memory consolidation, and theta neurofeedback. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Theta vectors and quantum theta functions

    International Nuclear Information System (INIS)

    Chang-Young, Ee; Kim, Hoil

    2005-01-01

    In this paper, we clarify the relation between Manin's quantum theta function and Schwarz's theta vector. We do this in comparison with the relation between the kq representation, which is equivalent to the classical theta function, and the corresponding coordinate space wavefunction. We first explain the equivalence relation between the classical theta function and the kq representation in which the translation operators of the phase space are commuting. When the translation operators of the phase space are not commuting, then the kq representation is no longer meaningful. We explain why Manin's quantum theta function, obtained via algebra (quantum torus) valued inner product of the theta vector, is a natural choice for the quantum version of the classical theta function. We then show that this approach holds for a more general theta vector containing an extra linear term in the exponent obtained from a holomorphic connection of constant curvature than the simple Gaussian one used in Manin's construction

  15. Characterizing the roles of alpha and theta oscillations in multisensory attention.

    Science.gov (United States)

    Keller, Arielle S; Payne, Lisa; Sekuler, Robert

    2017-05-01

    Cortical alpha oscillations (8-13Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4-7Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta's association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

    Directory of Open Access Journals (Sweden)

    Katie A Ferguson

    2015-08-01

    Full Text Available Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens--lacunosum-moleculare (OLM interneurons and bistratified cells (BiCs, make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+ basket and axo-axonic cells (BC/AACs, PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored a number of OLM-BiC connections and connection strengths.We found that our models operate in regimes in which OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the power of network theta oscillations. Our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta

  17. Theta signal as the neural signature of social exclusion.

    Science.gov (United States)

    Cristofori, Irene; Moretti, Laura; Harquel, Sylvain; Posada, Andres; Deiana, Gianluca; Isnard, Jean; Mauguière, François; Sirigu, Angela

    2013-10-01

    The feeling of being excluded from a social interaction triggers social pain, a sensation as intense as actual physical pain. Little is known about the neurophysiological underpinnings of social pain. We addressed this issue using intracranial electroencephalography in 15 patients performing a ball game where inclusion and exclusion blocks were alternated. Time-frequency analyses showed an increase in power of theta-band oscillations during exclusion in the anterior insula (AI) and posterior insula, the subgenual anterior cingulate cortex (sACC), and the fusiform "face area" (FFA). Interestingly, the AI showed an initial fast response to exclusion but the signal rapidly faded out. Activity in the sACC gradually increased and remained significant thereafter. This suggests that the AI may signal social pain by detecting emotional distress caused by the exclusion, whereas the sACC may be linked to the learning aspects of social pain. Theta activity in the FFA was time-locked to the observation of a player poised to exclude the participant, suggesting that the FFA encodes the social value of faces. Taken together, our findings suggest that theta activity represents the neural signature of social pain. The time course of this signal varies across regions important for processing emotional features linked to social information.

  18. Association of single nucleotide polymorphisms in a glutamate receptor gene (GRM8) with theta power of event-related oscillations and alcohol dependence.

    Science.gov (United States)

    Chen, Andrew C H; Tang, Yongqiang; Rangaswamy, Madhavi; Wang, Jen C; Almasy, Laura; Foroud, Tatiana; Edenberg, Howard J; Hesselbrock, Victor; Nurnberger, John; Kuperman, Samuel; O'Connor, Sean J; Schuckit, Marc A; Bauer, Lance O; Tischfield, Jay; Rice, John P; Bierut, Laura; Goate, Alison; Porjesz, Bernice

    2009-04-05

    Evidence suggests the P3 amplitude of the event-related potential and its underlying superimposed event-related oscillations (EROs), primarily in the theta (4-5 Hz) and delta (1-3 Hz) frequencies, as endophenotypes for the risk of alcoholism and other disinhibitory disorders. Major neurochemical substrates contributing to theta and delta rhythms and P3 involve strong GABAergic, cholinergic and glutamatergic system interactions. The aim of this study was to test the potential associations between single nucleotide polymorphisms (SNPs) in glutamate receptor genes and ERO quantitative traits. GRM8 was selected because it maps at chromosome 7q31.3-q32.1 under the peak region where we previously identified significant linkage (peak LOD = 3.5) using a genome-wide linkage scan of the same phenotype (event-related theta band for the target visual stimuli). Neural activities recorded from scalp electrodes during a visual oddball task in which rare target elicited P3s were analyzed in a subset of the Collaborative Study on the Genetics of Alcoholism (COGA) sample comprising 1,049 Caucasian subjects from 209 families (with 472 DSM-IV alcohol dependent individuals). The family-based association test (FBAT) detected significant association (P power to target visual stimuli, and also with alcohol dependence, even after correction for multiple comparisons by false discovery rate (FDR). Our results suggest that variation in GRM8 may be involved in modulating event-related theta oscillations during information processing and also in vulnerability to alcoholism. These findings underscore the utility of electrophysiology and the endophenotype approach in the genetic study of psychiatric disorders. (c) 2008 Wiley-Liss, Inc.

  19. Three-dimensional ideal theta(1)/theta(2) angular transformer and its uses in fiber optics.

    Science.gov (United States)

    Ning, X

    1988-10-01

    A 3-D ideal theta(1)/theta(2) angular transformer in nonimaging optics is introduced. The axially symmetric transformer, combining a portion of a hyperbolic concentrator with two lenses, transforms an input limited Lambertian over an angle theta(1) to an output limited Lambertian over an angle theta(2) without losing throughput. This is the first known transformer with such ideal properties. Results of computer simulations of a transformer with planospherical lenses are presented. Because of its ideal angular transforming property, the transformer offers an excellent solution for power launching and fiber-fiber coupling in optical fiber systems. In principle, the theoretical maximum coupling efficiency based on radiance conservation can be achieved with this transformer. Several conceptual designs of source-fiber and fiber-fiber couplers using the transformer are given.

  20. Increased coherence among striatal regions in the theta range during attentive wakefulness

    Directory of Open Access Journals (Sweden)

    G. Lepski

    2012-08-01

    Full Text Available The striatum, the largest component of the basal ganglia, is usually subdivided into associative, motor and limbic components. However, the electrophysiological interactions between these three subsystems during behavior remain largely unknown. We hypothesized that the striatum might be particularly active during exploratory behavior, which is presumably associated with increased attention. We investigated the modulation of local field potentials (LFPs in the striatum during attentive wakefulness in freely moving rats. To this end, we implanted microelectrodes into different parts of the striatum of Wistar rats, as well as into the motor, associative and limbic cortices. We then used electromyograms to identify motor activity and analyzed the instantaneous frequency, power spectra and partial directed coherence during exploratory behavior. We observed fine modulation in the theta frequency range of striatal LFPs in 92.5 ± 2.5% of all epochs of exploratory behavior. Concomitantly, the theta power spectrum increased in all striatal channels (P 0.7 between the primary motor cortex and the rostral part of the caudatoputamen nucleus, as well as among all striatal channels (P < 0.001. Conclusively, we observed a pattern of strong theta band activation in the entire striatum during attentive wakefulness, as well as a strong coherence between the motor cortex and the entire striatum. We suggest that this activation reflects the integration of motor, cognitive and limbic systems during attentive wakefulness.

  1. Enhancing early consolidation of human episodic memory by theta EEG neurofeedback.

    Science.gov (United States)

    Rozengurt, Roman; Shtoots, Limor; Sheriff, Aviv; Sadka, Ofir; Levy, Daniel A

    2017-11-01

    Consolidation of newly formed memories is readily disrupted, but can it be enhanced? Given the prominent role of hippocampal theta oscillations in memory formation and retrieval, we hypothesized that upregulating theta power during early stages of consolidation might benefit memory stability and persistence. We used EEG neurofeedback to enable participants to selectively increase theta power in their EEG spectra following episodic memory encoding, while other participants engaged in low beta-focused neurofeedback or passively viewed a neutral nature movie. Free recall assessments immediately following the interventions, 24h later and 7d later all indicated benefit to memory of theta neurofeedback, relative to low beta neurofeedback or passive movie-viewing control conditions. The degree of benefit to memory was correlated with the extent of theta power modulation, but not with other spectral changes. Theta enhancement may provide optimal conditions for stabilization of new hippocampus-dependent memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Increased parietal circuit-breaker activity in delta frequency band and abnormal delta/theta band connectivity in salience network in hyperacusis subjects.

    Directory of Open Access Journals (Sweden)

    Jae Joon Han

    Full Text Available Recent studies have suggested that hyperacusis, an abnormal hypersensitivity to ordinary environmental sounds, may be characterized by certain resting-state cortical oscillatory patterns, even with no sound stimulus. However, previous studies are limited in that most studied subjects with other comorbidities that may have affected cortical activity. In this regard, to assess ongoing cortical oscillatory activity in idiopathic hyperacusis patients with no comorbidities, we compared differences in resting-state cortical oscillatory patterns between five idiopathic hyperacusis subjects and five normal controls. The hyperacusis group demonstrated significantly higher electrical activity in the right auditory-related cortex for the gamma frequency band and left superior parietal lobule (SPL for the delta frequency band versus the control group. The hyperacusis group also showed significantly decreased functional connectivity between the left auditory cortex (AC and left orbitofrontal cortex (OFC, between the left AC and left subgenual anterior cingulate cortex (sgACC for the gamma band, and between the right insula and bilateral dorsal anterior cingulate cortex (dACC and between the left AC and left sgACC for the theta band versus the control group. The higher electrical activity in the SPL may indicate a readiness of "circuit-breaker" activity to shift attention to forthcoming sound stimuli. Also, because of the disrupted salience network, consisting of the dACC and insula, abnormally increased salience to all sound stimuli may emerge, as a consequence of decreased top-down control of the AC by the dACC and dysfunctional emotional weight attached to auditory stimuli by the OFC. Taken together, abnormally enhanced attention and salience to forthcoming sound stimuli may render hyperacusis subjects hyperresponsive to non-noxious auditory stimuli.

  3. The influence of methylphenidate on the power spectrum of ADHD children – an MEG study

    Directory of Open Access Journals (Sweden)

    Bauer Susanne

    2005-07-01

    Full Text Available Abstract Background The present study was dedicated to investigate the influence of Methylphenidate (MPH on cortical processing of children who were diagnosed with different subtypes of Attention Deficit Hyperactivity Disorder (ADHD. As all of the previous studies investigating power differences in different frequency bands have been using EEG, mostly with a relatively small number of electrodes our aim was to obtain new aspects using high density magnetoencephalography (MEG. Methods 35 children (6 female, 29 male participated in this study. Mean age was 11.7 years (± 1.92 years. 17 children were diagnosed of having an Attention-Deficit/Hyperactivity Disorder of the combined type (ADHDcom, DSM IV code 314.01; the other 18 were diagnosed for ADHD of the predominantly inattentive type (ADHDin, DSM IV code 314.0. We measured the MEG during a 5 minute resting period with a 148-channel magnetometer system (MAGNES™ 2500 WH, 4D Neuroimaging, San Diego, USA. Power values were averaged for 5 bands: Delta (D, 1.5–3.5 Hz, Theta (T, 3.5–7.5 Hz, Alpha (A, 7.5–12.5 Hz, Beta (B, 12.5–25 Hz and Global (GL, 1.5–25 Hz.. Additionally, attention was measured behaviourally using the D2 test of attention with and without medication. Results The global power of the frequency band from 1.5 to 25 Hz increased with MPH. Relative Theta was found to be higher in the left hemisphere after administration of MPH than before. A positive correlation was found between D2 test improvement and MPH-induced power changes in the Theta band over the left frontal region. A linear regression was computed and confirmed that the larger the improvement in D2 test performance, the larger the increase in Theta after MPH application. Conclusion Main effects induced by medication were found in frontal regions. Theta band activity increased over the left hemisphere after MPH application. This finding contradicts EEG results of several groups who found lower levels of Theta power

  4. Hippocampal theta activity is selectively associated with contingency detection but not discrimination in rabbit discrimination-reversal eyeblink conditioning.

    Science.gov (United States)

    Nokia, Miriam S; Wikgren, Jan

    2010-04-01

    The relative power of the hippocampal theta-band ( approximately 6 Hz) activity (theta ratio) is thought to reflect a distinct neural state and has been shown to affect learning rate in classical eyeblink conditioning in rabbits. We sought to determine if the theta ratio is mostly related to the detection of the contingency between the stimuli used in conditioning or also to the learning of more complex inhibitory associations when a highly demanding delay discrimination-reversal eyeblink conditioning paradigm is used. A high hippocampal theta ratio was not only associated with a fast increase in conditioned responding in general but also correlated with slow emergence of discriminative responding due to sustained responding to the conditioned stimulus not paired with an unconditioned stimulus. The results indicate that the neural state reflected by the hippocampal theta ratio is specifically linked to forming associations between stimuli rather than to the learning of inhibitory associations needed for successful discrimination. This is in line with the view that the hippocampus is responsible for contingency detection in the early phase of learning in eyeblink conditioning. (c) 2009 Wiley-Liss, Inc.

  5. Gender difference in the theta/alpha ratio during the induction of peaceful audiovisual modalities.

    Science.gov (United States)

    Yang, Chia-Yen; Lin, Ching-Po

    2015-09-01

    Gender differences in emotional perception have been found in numerous psychological and psychophysiological studies. The conducting modalities in diverse characteristics of different sensory systems make it interesting to determine how cooperation and competition contribute to emotional experiences. We have previously estimated the bias from the match attributes of auditory and visual modalities and revealed specific brain activity frequency patterns related to a peaceful mood. In that multimodality experiment, we focused on how inner-quiet information is processed in the human brain, and found evidence of auditory domination from the theta-band activity. However, a simple quantitative description of these three frequency bands is lacking, and no studies have assessed the effects of peacefulness on the emotional state. Therefore, the aim of this study was to use magnetoencephalography to determine if gender differences exist (and when and where) in the frequency interactions underpinning the perception of peacefulness. This study provides evidence of auditory and visual domination in perceptual bias during multimodality processing of peaceful consciousness. The results of power ratio analyses suggest that the values of the theta/alpha ratio are associated with a modality as well as hemispheric asymmetries in the anterior-to-posterior direction, which shift from right to left with the auditory to visual stimulations in a peaceful mood. This means that the theta/alpha ratio might be useful for evaluating emotion. Moreover, the difference was found to be most pronounced for auditory domination and visual sensitivity in the female group.

  6. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory.

    Directory of Open Access Journals (Sweden)

    Lars Michels

    Full Text Available In humans, theta band (5-7 Hz power typically increases when performing cognitively demanding working memory (WM tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and

  7. Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes

    Directory of Open Access Journals (Sweden)

    Zhijie eBian

    2014-02-01

    Full Text Available Objective: Diabetes is a risk factor for dementia and mild cognitive impairment. The aim of this study was to investigate whether some features of resting-state EEG (rsEEG could be applied as a biomarker to distinguish the subjects with amnestic mild cognitive impairment (aMCI from normal cognitive function in type 2 diabetes. Materials and Methods: In this study, 28 patients with type 2 diabetes (16 aMCI patients and 12 controls were investigated. Recording of the rsEEG series and neuropsychological assessments were performed. The rsEEG signal was first decomposed into delta, theta, alpha, beta, gamma frequency bands. The relative power of each given band/sum of power and the coherence of waves from different brain areas were calculated. The extracted features from rsEEG and neuropsychological assessments were analyzed as well. Results: The main findings of this study were that: 1 compared with the control group, the ratios of power in theta band (P(theta versus power in alpha band (P(alpha (P(theta/P(alpha in the frontal region and left temporal region were significantly higher for aMCI, and 2 for aMCI, the alpha coherences in posterior, fronto-right temporal, fronto-posterior, right temporo-posterior were decreased; the theta coherences in left central-right central (LC-RC and left posterior-right posterior (LP-RP regions were also decreased; but the delta coherences in left temporal-right temporal (LT-RT region were increased. Conclusion: The proposed indexes from rsEEG recordings could be employed to track cognitive function of diabetic patients and also to help in the diagnosis of those who develop aMCI.

  8. Corticostriatal field potentials are modulated at delta and theta frequencies during interval-timing task in rodents

    Directory of Open Access Journals (Sweden)

    Eric B Emmons

    2016-04-01

    Full Text Available Organizing movements in time is a critical and highly conserved feature of mammalian behavior. Temporal control of action requires corticostriatal networks. We investigate these networks in rodents using a two-interval timing task while recording local field potentials in medial frontal cortex or dorsomedial striatum. Consistent with prior work, we found cue-triggered delta (1-4 Hz and theta activity (4-8 Hz primarily in rodent medial frontal cortex. We observed delta activity across temporal intervals in medial frontal cortex and dorsomedial striatum. Rewarded responses were associated with increased delta activity in medial frontal cortex. Activity in theta bands in medial frontal cortex and delta bands in the striatum was linked with the timing of responses. These data suggest both delta and theta activity in frontostriatal networks are modulated during interval timing and that activity in these bands may be involved in the temporal control of action.

  9. Neurofeedback training aimed to improve focused attention and alertness in children with ADHD: a study of relative power of EEG rhythms using custom-made software application.

    Science.gov (United States)

    Hillard, Brent; El-Baz, Ayman S; Sears, Lonnie; Tasman, Allan; Sokhadze, Estate M

    2013-07-01

    Neurofeedback is a nonpharmacological treatment for attention-deficit hyperactivity disorder (ADHD). We propose that operant conditioning of electroencephalogram (EEG) in neurofeedback training aimed to mitigate inattention and low arousal in ADHD, will be accompanied by changes in EEG bands' relative power. Patients were 18 children diagnosed with ADHD. The neurofeedback protocol ("Focus/Alertness" by Peak Achievement Trainer) has a focused attention and alertness training mode. The neurofeedback protocol provides one for Focus and one for Alertness. This does not allow for collecting information regarding changes in specific EEG bands (delta, theta, alpha, low and high beta, and gamma) power within the 2 to 45 Hz range. Quantitative EEG analysis was completed on each of twelve 25-minute-long sessions using a custom-made MatLab application to determine the relative power of each of the aforementioned EEG bands throughout each session, and from the first session to the last session. Additional statistical analysis determined significant changes in relative power within sessions (from minute 1 to minute 25) and between sessions (from session 1 to session 12). Analysis was of relative power of theta, alpha, low and high beta, theta/alpha, theta/beta, and theta/low beta and theta/high beta ratios. Additional secondary measures of patients' post-neurofeedback outcomes were assessed, using an audiovisual selective attention test (IVA + Plus) and behavioral evaluation scores from the Aberrant Behavior Checklist. Analysis of data computed in the MatLab application, determined that theta/low beta and theta/alpha ratios decreased significantly from session 1 to session 12, and from minute 1 to minute 25 within sessions. The findings regarding EEG changes resulting from brain wave self-regulation training, along with behavioral evaluations, will help elucidate neural mechanisms of neurofeedback aimed to improve focused attention and alertness in ADHD.

  10. A computational study on altered theta-gamma coupling during learning and phase coding.

    Directory of Open Access Journals (Sweden)

    Xuejuan Zhang

    Full Text Available There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and phase coding effects. The spiking neural network incorporates two kinetically different GABA(A receptor-mediated currents to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and GABA(A,slow receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma either with or without coincident changes in theta amplitude. When the model was used to explore the relationship between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in the cortex or hippocampus.

  11. Chasing theta-13 with the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Thierry [CEA/DSM/IRFU/SPP, Gif-sur-Yvette (France)

    2009-07-01

    Neutrino oscillation physics is entering a precision measurement area. The smallness of the theta-13 neutrino mixing angle is still enigmatic and should be resolved. Double Chooz will use two identical detectors near the Chooz nuclear power station to search for a non vanishing theta-13, and hopefully open the way to experiments aspiring to discover CP violation in the leptonic sector.

  12. Changes in hippocampal theta rhythm and their correlations with speed during different phases of voluntary wheel running in rats.

    Science.gov (United States)

    Li, J-Y; Kuo, T B J; Hsieh, I-T; Yang, C C H

    2012-06-28

    Hippocampal theta rhythm (4-12 Hz) can be observed during locomotor behavior, but findings on the relationship between locomotion speed and theta frequency are inconsistent if not contradictory. The inconsistency may be because of the difficulties that previous analyses and protocols have had excluding the effects of behavior training. We recorded the first or second voluntary wheel running each day, and assumed that theta frequency and activity are correlated with speed in different running phases. By simultaneously recording electroencephalography, physical activity, and wheel running speed, this experiment explored the theta oscillations during spontaneous running of the 12-h dark period. The recording was completely wireless and allowed the animal to run freely while being recorded in the wheel. Theta frequency and theta power of middle frequency were elevated before running and theta frequency, theta power of middle frequency, physical activity, and running speed maintained persistently high levels during running. The slopes of the theta frequency and theta activity (4-9.5 Hz) during the initial running were different compared to the same values during subsequent running. During the initial running, the running speed was positively correlated with theta frequency and with theta power of middle frequency. Over the 12-h dark period, the running speed did not positively correlate with theta frequency but was significantly correlated with theta power of middle frequency. Thus, theta frequency was associated with running speed only at the initiation of running. Furthermore, theta power of middle frequency was associated with speed and with physical activity during running when chronological order was not taken into consideration. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Cortical processes associated with continuous balance control as revealed by EEG spectral power.

    Science.gov (United States)

    Hülsdünker, T; Mierau, A; Neeb, C; Kleinöder, H; Strüder, H K

    2015-04-10

    Balance is a crucial component in numerous every day activities such as locomotion. Previous research has reported distinct changes in cortical theta activity during transient balance instability. However, there remains little understanding of the neural mechanisms underlying continuous balance control. This study aimed to investigate cortical theta activity during varying difficulties of continuous balance tasks, as well as examining the relationship between theta activity and balance performance. 37 subjects completed nine balance tasks with different levels of surface stability and base of support. Throughout the balancing task, electroencephalogram (EEG) was recorded from 32 scalp locations. ICA-based artifact rejection was applied and spectral power was analyzed in the theta frequency band. Theta power increased in the frontal, central, and parietal regions of the cortex when balance tasks became more challenging. In addition, fronto-central and centro-parietal theta power correlated with balance performance. This study demonstrates the involvement of the cerebral cortex in maintaining upright posture during continuous balance tasks. Specifically, the results emphasize the important role of frontal and parietal theta oscillations in balance control. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Lateralized theta wave connectivity and language performance in 2- to 5-year-old children.

    Science.gov (United States)

    Kikuchi, Mitsuru; Shitamichi, Kiyomi; Yoshimura, Yuko; Ueno, Sanae; Remijn, Gerard B; Hirosawa, Tetsu; Munesue, Toshio; Tsubokawa, Tsunehisa; Haruta, Yasuhiro; Oi, Manabu; Higashida, Haruhiro; Minabe, Yoshio

    2011-10-19

    Recent neuroimaging studies support the view that a left-lateralized brain network is crucial for language development in children. However, no previous studies have demonstrated a clear link between lateralized brain functional network and language performance in preschool children. Magnetoencephalography (MEG) is a noninvasive brain imaging technique and is a practical neuroimaging method for use in young children. MEG produces a reference-free signal, and is therefore an ideal tool to compute coherence between two distant cortical rhythms. In the present study, using a custom child-sized MEG system, we investigated brain networks while 78 right-handed preschool human children (32-64 months; 96% were 3-4 years old) listened to stories with moving images. The results indicated that left dominance of parietotemporal coherence in theta band activity (6-8 Hz) was specifically correlated with higher performance of language-related tasks, whereas this laterality was not correlated with nonverbal cognitive performance, chronological age, or head circumference. Power analyses did not reveal any specific frequencies that contributed to higher language performance. Our results suggest that it is not the left dominance in theta oscillation per se, but the left-dominant phase-locked connectivity via theta oscillation that contributes to the development of language ability in young children.

  15. Artificial theta stimulation impairs encoding of contextual fear memory.

    Directory of Open Access Journals (Sweden)

    Arto Lipponen

    Full Text Available Several experiments have demonstrated an intimate relationship between hippocampal theta rhythm (4-12 Hz and memory. Lesioning the medial septum or fimbria-fornix, a fiber track connecting the hippocampus and the medial septum, abolishes the theta rhythm and results in a severe impairment in declarative memory. To assess whether there is a causal relationship between hippocampal theta and memory formation we investigated whether restoration of hippocampal theta by electrical stimulation during the encoding phase also restores fimbria-fornix lesion induced memory deficit in rats in the fear conditioning paradigm. Male Wistar rats underwent sham or fimbria-fornix lesion operation. Stimulation electrodes were implanted in the ventral hippocampal commissure and recording electrodes in the septal hippocampus. Artificial theta stimulation of 8 Hz was delivered during 3-min free exploration of the test cage in half of the rats before aversive conditioning with three foot shocks during 2 min. Memory was assessed by total freezing time in the same environment 24 h and 28 h after fear conditioning, and in an intervening test session in a different context. As expected, fimbria-fornix lesion impaired fear memory and dramatically attenuated hippocampal theta power. Artificial theta stimulation produced continuous theta oscillations that were almost similar to endogenous theta rhythm in amplitude and frequency. However, contrary to our predictions, artificial theta stimulation impaired conditioned fear response in both sham and fimbria-fornix lesioned animals. These data suggest that restoration of theta oscillation per se is not sufficient to support memory encoding after fimbria-fornix lesion and that universal theta oscillation in the hippocampus with a fixed frequency may actually impair memory.

  16. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  17. Power shifts track serial position and modulate encoding in human episodic memory.

    Science.gov (United States)

    Serruya, Mijail D; Sederberg, Per B; Kahana, Michael J

    2014-02-01

    The first events in a series exert a powerful influence on cognition and behavior in both humans and animals. This is known as the law of primacy. Here, we analyze the neural correlates of primacy in humans by analyzing electrocorticographic recordings in 84 neurosurgical patients as they studied and subsequently recalled lists of common words. We found that spectral power in the gamma frequency band (28-100 Hz) was elevated at the start of the list and gradually subsided, whereas lower frequency (2-8 Hz) delta and theta band power exhibited the opposite trend. This gradual shift in the power spectrum was found across a widespread network of brain regions. The degree to which the subsequent memory effect was modulated by list (serial) position was most pronounced in medial temporal lobe structures. These results suggest that globally increased gamma and decreased delta-theta spectral powers reflect a brain state that predisposes medial temporal lobe structures to enhance the encoding and maintenance of early list items.

  18. Abnormal-induced theta activity supports early directed-attention network deficits in progressive MCI.

    Science.gov (United States)

    Deiber, Marie-Pierre; Ibañez, Vicente; Missonnier, Pascal; Herrmann, François; Fazio-Costa, Lara; Gold, Gabriel; Giannakopoulos, Panteleimon

    2009-09-01

    The electroencephalography (EEG) theta frequency band reacts to memory and selective attention paradigms. Global theta oscillatory activity includes a posterior phase-locked component related to stimulus processing and a frontal-induced component modulated by directed attention. To investigate the presence of early deficits in the directed attention-related network in elderly individuals with mild cognitive impairment (MCI), time-frequency analysis at baseline was used to assess global and induced theta oscillatory activity (4-6Hz) during n-back working memory tasks in 29 individuals with MCI and 24 elderly controls (EC). At 1-year follow-up, 13 MCI patients were still stable and 16 had progressed. Baseline task performance was similar in stable and progressive MCI cases. Induced theta activity at baseline was significantly reduced in progressive MCI as compared to EC and stable MCI in all n-back tasks, which were similar in terms of directed attention requirements. While performance is maintained, the decrease of induced theta activity suggests early deficits in the directed-attention network in progressive MCI, whereas this network is functionally preserved in stable MCI.

  19. Long-term plasticity is proportional to theta-activity.

    Directory of Open Access Journals (Sweden)

    Marian Tsanov

    Full Text Available BACKGROUND: Theta rhythm in the hippocampal formation is a main feature of exploratory behaviour and is believed to enable the encoding of new spatial information and the modification of synaptic weights. Cyclic changes of dentate gyrus excitability during theta rhythm are related to its function, but whether theta epochs per se are able to alter network properties of dentate gyrus for long time-periods is still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We used low-frequency stimulation protocols that amplify the power of endogenous theta oscillations, in order to estimate the plasticity effect of endogenous theta oscillations on a population level. We found that stimulation-induced augmentation of the theta rhythm is linked to a subsequent increase of neuronal excitability and decrease of the synaptic response. This EPSP-to-Spike uncoupling is related to an increased postsynaptic spiking on the positive phases of theta frequency oscillations. Parallel increase of the field EPSP slope and the population spike occurs only after concurrent pre- and postsynaptic activation. Furthermore, we observed that long-term potentiation (>24 h occurs in the dentate gyrus of freely behaving adult rats after phasic activity of entorhinal afferents in the theta-frequency range. This plasticity is proportional to the field bursting activity of granule cells during the stimulation, and may comprise a key step in spatial information transfer. Long-term potentiation of the synaptic component occurs only when the afferent stimulus precedes the evoked population burst, and is input-specific. CONCLUSIONS/SIGNIFICANCE: Our data confirm the role of the dentate gyrus in filtering information to the subsequent network during the activated state of the hippocampus.

  20. Expected reward modulates encoding-related theta activity before an event.

    Science.gov (United States)

    Gruber, Matthias J; Watrous, Andrew J; Ekstrom, Arne D; Ranganath, Charan; Otten, Leun J

    2013-01-01

    Oscillatory brain activity in the theta frequency range (4-8 Hz) before the onset of an event has been shown to affect the likelihood of successfully encoding the event into memory. Recent work has also indicated that frontal theta activity might be modulated by reward, but it is not clear how reward expectancy, anticipatory theta activity, and memory formation might be related. Here, we used scalp electroencephalography (EEG) to assess the relationship between these factors. EEG was recorded from healthy adults while they memorized a series of words. Each word was preceded by a cue that indicated whether a high or low monetary reward would be earned if the word was successfully remembered in a later recognition test. Frontal theta power between the presentation of the reward cue and the onset of a word was predictive of later memory for the word, but only in the high reward condition. No theta differences were observed before word onset following low reward cues. The magnitude of prestimulus encoding-related theta activity in the high reward condition was correlated with the number of high reward words that were later confidently recognized. These findings provide strong evidence for a link between reward expectancy, theta activity, and memory encoding. Theta activity before event onset seems to be especially important for the encoding of motivationally significant stimuli. One possibility is that dopaminergic activity during reward anticipation mediates frontal theta activity related to memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Task-related modulation of anterior theta and posterior alpha EEG reflects top-down preparation

    Directory of Open Access Journals (Sweden)

    Park Hae-Jeong

    2010-06-01

    Full Text Available Abstract Background Prestimulus EEG alpha activity in humans has been considered to reflect ongoing top-down preparation for the performance of subsequent tasks. Since theta oscillations may be related to poststimulus top-down processing, we investigated whether prestimulus EEG theta activity also reflects top-down cognitive preparation for a stimulus. Results We recorded EEG data from 15 healthy controls performing a color and shape discrimination task, and used the wavelet transformation to investigate the time course and power of oscillatory activity in the signals. We observed a relationship between both anterior theta and posterior alpha power in the prestimulus period and the type of subsequent task. Conclusions Since task-differences were reflected in both theta and alpha activities prior to stimulus onset, both prestimulus theta (particularly around the anterior region and prestimulus alpha (particularly around the posterior region activities may reflect prestimulus top-down preparation for the performance of subsequent tasks.

  2. Theta dynamics in rat: speed and acceleration across the Septotemporal axis.

    Directory of Open Access Journals (Sweden)

    Lauren L Long

    Full Text Available Theta (6-12 Hz rhythmicity in the local field potential (LFP reflects a clocking mechanism that brings physically isolated neurons together in time, allowing for the integration and segregation of distributed cell assemblies. Variation in the theta signal has been linked to locomotor speed, sensorimotor integration as well as cognitive processing. Previously, we have characterized the relationship between locomotor speed and theta power and how that relationship varies across the septotemporal (long axis of the hippocampus (HPC. The current study investigated the relationship between whole body acceleration, deceleration and theta indices at CA1 and dentate gyrus (DG sites along the septotemporal axis of the HPC in rats. Results indicate that whole body acceleration and deceleration predicts a significant amount of variability in the theta signal beyond variation in locomotor speed. Furthermore, deceleration was more predictive of variation in theta amplitude as compared to acceleration as rats traversed a linear track. Such findings highlight key variables that systematically predict the variability in the theta signal across the long axis of the HPC. A better understanding of the relative contribution of these quantifiable variables and their variation as a function of experience and environmental conditions should facilitate our understanding of the relationship between theta and sensorimotor/cognitive functions.

  3. Bi-Directional Theta Modulation between the Septo-Hippocampal System and the Mammillary Area in Free-Moving Rats

    Directory of Open Access Journals (Sweden)

    Ming Ruan

    2017-09-01

    Full Text Available Hippocampal (HPC theta oscillations have long been linked to various functions of the brain. Many cortical and subcortical areas that also exhibit theta oscillations have been linked to functional circuits with the hippocampus on the basis of coupled activities at theta frequencies. We examine, in freely moving rats, the characteristics of diencephalic theta local field potentials (LFPs recorded in the supramammillary/mammillary (SuM/MM areas that are bi-directionally connected to the HPC through the septal complex. Using partial directed coherence (PDC, we find support for previous suggestions that SuM modulates HPC theta at higher frequencies. We find weak separation of SuM and MM by dominant theta frequency recorded locally. Contrary to oscillatory cell activities under anesthesia where SuM is insensitive, but MM is sensitive to medial septal (MS inactivation, theta LFPs persisted and became indistinguishable after MS-inactivation. However, MS-inactivation attenuated SuM/MM theta power, while increasing the frequency of SuM/MM theta. MS-inactivation also reduced root mean squared power in both HPC and SuM/MM equally, but reduced theta power differentially in the time domain. We provide converging evidence that SuM is preferentially involved in coding HPC theta at higher frequencies, and that the MS-HPC circuit normally imposes a frequency-limiting modulation over the SuM/MM area as suggested by cell-based recordings in anesthetized animals. In addition, we provide evidence that the postulated SuM-MS-HPC-MM circuit is under complex bi-directional control, rather than SuM and MM having roles as unidirectional relays in the network.

  4. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest

    Directory of Open Access Journals (Sweden)

    Catherine M. Sweeney-Reed

    2017-07-01

    Full Text Available Cross-frequency coupling (CFC between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC, is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz phase and high frequency band (80–150 Hz amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.

  5. Event-related theta synchronization predicts deficit in facial affect recognition in schizophrenia.

    Science.gov (United States)

    Csukly, Gábor; Stefanics, Gábor; Komlósi, Sarolta; Czigler, István; Czobor, Pál

    2014-02-01

    Growing evidence suggests that abnormalities in the synchronized oscillatory activity of neurons in schizophrenia may lead to impaired neural activation and temporal coding and thus lead to neurocognitive dysfunctions, such as deficits in facial affect recognition. To gain an insight into the neurobiological processes linked to facial affect recognition, we investigated both induced and evoked oscillatory activity by calculating the Event Related Spectral Perturbation (ERSP) and the Inter Trial Coherence (ITC) during facial affect recognition. Fearful and neutral faces as well as nonface patches were presented to 24 patients with schizophrenia and 24 matched healthy controls while EEG was recorded. The participants' task was to recognize facial expressions. Because previous findings with healthy controls showed that facial feature decoding was associated primarily with oscillatory activity in the theta band, we analyzed ERSP and ITC in this frequency band in the time interval of 140-200 ms, which corresponds to the N170 component. Event-related theta activity and phase-locking to facial expressions, but not to nonface patches, predicted emotion recognition performance in both controls and patients. Event-related changes in theta amplitude and phase-locking were found to be significantly weaker in patients compared with healthy controls, which is in line with previous investigations showing decreased neural synchronization in the low frequency bands in patients with schizophrenia. Neural synchrony is thought to underlie distributed information processing. Our results indicate a less effective functioning in the recognition process of facial features, which may contribute to a less effective social cognition in schizophrenia. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  6. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    Science.gov (United States)

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  7. The Effects of Theta and Gamma tACS on Working Memory and Electrophysiology

    Directory of Open Access Journals (Sweden)

    Anja Pahor

    2018-01-01

    Full Text Available A single blind sham-controlled study was conducted to explore the effects of theta and gamma transcranial alternating current stimulation (tACS on offline performance on working memory tasks. In order to systematically investigate how specific parameters of tACS affect working memory, we manipulated the frequency of stimulation (theta frequency vs. gamma frequency, the type of task (n-back vs. change detection task and the content of the tasks (verbal vs. figural stimuli. A repeated measures design was used that consisted of three sessions: theta tACS, gamma tACS and sham tACS. In total, four experiments were conducted which differed only with respect to placement of tACS electrodes (bilateral frontal, bilateral parietal, left fronto-parietal and right-fronto parietal. Healthy female students (N = 72 were randomly assigned to one of these groups, hence we were able to assess the efficacy of theta and gamma tACS applied over different brain areas, contrasted against sham stimulation. The pre-post/sham resting electroencephalogram (EEG analysis showed that theta tACS significantly affected theta amplitude, whereas gamma tACS had no significant effect on EEG amplitude in any of the frequency bands of interest. Gamma tACS did not significantly affect working memory performance compared to sham, and theta tACS led to inconsistent changes in performance on the n-back tasks. Active theta tACS significantly affected P3 amplitude and latency during performance on the n-back tasks in the bilateral parietal and right-fronto parietal protocols.

  8. Effects of semantic relatedness on age-related associative memory deficits: the role of theta oscillations.

    Science.gov (United States)

    Crespo-Garcia, Maite; Cantero, Jose L; Atienza, Mercedes

    2012-07-16

    Growing evidence suggests that age-related deficits in associative memory are alleviated when the to-be-associated items are semantically related. Here we investigate whether this beneficial effect of semantic relatedness is paralleled by spatio-temporal changes in cortical EEG dynamics during incidental encoding. Young and older adults were presented with faces at a particular spatial location preceded by a biographical cue that was either semantically related or unrelated. As expected, automatic encoding of face-location associations benefited from semantic relatedness in the two groups of age. This effect correlated with increased power of theta oscillations over medial and anterior lateral regions of the prefrontal cortex (PFC) and lateral regions of the posterior parietal cortex (PPC) in both groups. But better-performing elders also showed increased brain-behavior correlation in the theta band over the right inferior frontal gyrus (IFG) as compared to young adults. Semantic relatedness was, however, insufficient to fully eliminate age-related differences in associative memory. In line with this finding, poorer-performing elders relative to young adults showed significant reductions of theta power in the left IFG that were further predictive of behavioral impairment in the recognition task. All together, these results suggest that older adults benefit less than young adults from executive processes during encoding mainly due to neural inefficiency over regions of the left ventrolateral prefrontal cortex (VLPFC). But this associative deficit may be partially compensated for by engaging preexistent semantic knowledge, which likely leads to an efficient recruitment of attentional and integration processes supported by the left PPC and left anterior PFC respectively, together with neural compensatory mechanisms governed by the right VLPFC. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Distinguishing stimulus and response codes in theta oscillations in prefrontal areas during inhibitory control of automated responses.

    Science.gov (United States)

    Mückschel, Moritz; Dippel, Gabriel; Beste, Christian

    2017-11-01

    Response inhibition mechanisms are mediated via cortical and subcortical networks. At the cortical level, the superior frontal gyrus, including the supplementary motor area (SMA) and inferior frontal areas, is important. There is an ongoing debate about the functional roles of these structures during response inhibition as it is unclear whether these structures process different codes or contents of information during response inhibition. In the current study, we examined this question with a focus on theta frequency oscillations during response inhibition processes. We used a standard Go/Nogo task in a sample of human participants and combined different EEG signal decomposition methods with EEG beamforming approaches. The results suggest that stimulus coding during inhibitory control is attained by oscillations in the upper theta frequency band (∼7 Hz). In contrast, response selection codes during inhibitory control appear to be attained by the lower theta frequency band (∼4 Hz). Importantly, these different codes seem to be processed in distinct functional neuroanatomical structures. Although the SMA may process stimulus codes and response selection codes, the inferior frontal cortex may selectively process response selection codes during inhibitory control. Taken together, the results suggest that different entities within the functional neuroanatomical network associated with response inhibition mechanisms process different kinds of codes during inhibitory control. These codes seem to be reflected by different oscillations within the theta frequency band. Hum Brain Mapp 38:5681-5690, 2017. © 2017 Wiley-Liss, Inc. © 2017 Wiley Periodicals, Inc.

  10. Activation of GABAergic pathway by hypocretin in the median raphe nucleus (MRN) mediates stress-induced theta rhythm in rats.

    Science.gov (United States)

    Hsiao, Yi-Tse; Jou, Shuo-Bin; Yi, Pei-Lu; Chang, Fang-Chia

    2012-07-15

    The frequency of electroencephalograms (EEGs) is predominant in theta rhythm during stress (e.g., footshock) in rats. Median raphe nucleus (MRN) desynchronizes hippocampal theta waves via activation of GABAergic neurons in the medial septum-diagonal band of Broca (MS-DBB), a theta rhythm pacemaker. Increased hypocretin mediates stress responses in addition to the maintenance of wakefulness. Hypocretin receptors are abundant in the MRN, suggesting a possible role of hypocretin in modulating stress-induced theta rhythm. Our results indicated that the intensity of theta waves was enhanced by footshock and that a hypocretin receptor antagonist (TCS1102) suppressed the footshock-induced theta waves. Administration of hypocretin-1 (1 and 10 μg) and hypocretin-2 (10 μg) directly into the MRN simulated the effect of footshock and significantly increased theta waves. Co-administration of GABA(A) receptor antagonist, bicuculline, into the MRN blocked the increase of theta waves induced by hypocretins or footshock. These results suggested that stress enhances the release of hypocretins, activates GABAergic neurons in the MRN, blocks the ability of MRN to desynchronize theta waves, and subsequently increases the intensity of theta rhythm. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Deficits of entropy modulation in schizophrenia are predicted by functional connectivity strength in the theta band and structural clustering.

    Science.gov (United States)

    Gomez-Pilar, Javier; de Luis-García, Rodrigo; Lubeiro, Alba; de Uribe, Nieves; Poza, Jesús; Núñez, Pablo; Ayuso, Marta; Hornero, Roberto; Molina, Vicente

    2018-01-01

    Spectral entropy (SE) allows comparing task-related modulation of electroencephalogram (EEG) between patients and controls, i.e. spectral changes of the EEG associated to task performance. A SE modulation deficit has been replicated in different schizophrenia samples. To investigate the underpinnings of SE modulation deficits in schizophrenia, we applied graph-theory to EEG recordings during a P300 task and fractional anisotropy (FA) data from diffusion tensor imaging in 48 patients (23 first episodes) and 87 healthy controls. Functional connectivity was assessed from phase-locking values among sensors in the theta band, and structural connectivity was based on FA values for the tracts connecting pairs of regions. From those data, averaged clustering coefficient (CLC), characteristic path-length (PL) and connectivity strength (CS, also known as density) were calculated for both functional and structural networks. The corresponding functional modulation values were calculated as the difference in SE and CLC, PL and CS between the pre-stimulus and response windows during the task. The results revealed a higher functional CS in the pre-stimulus window in patients, predictive of smaller modulation of SE in this group. The amount of increase in theta CS from pre-stimulus to response related to SE modulation in patients and controls. Structural CLC was associated with SE modulation in the patients. SE modulation was predictive of negative symptoms, whereas CLC and PL modulation was associated with cognitive performance in the patients. These results support that a hyperactive functional connectivity and/or structural connective deficits in the patients hamper the dynamical modulation of connectivity underlying cognition.

  12. U-shaped Relation between Prestimulus Alpha-band and Poststimulus Gamma-band Power in Temporal Tactile Perception in the Human Somatosensory Cortex.

    Science.gov (United States)

    Wittenberg, Marc André; Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2018-04-01

    Neuronal oscillations are a ubiquitous phenomenon in the human nervous system. Alpha-band oscillations (8-12 Hz) have been shown to correlate negatively with attention and performance, whereas gamma-band oscillations (40-150 Hz) correlate positively. Here, we studied the relation between prestimulus alpha-band power and poststimulus gamma-band power in a suprathreshold tactile discrimination task. Participants received two electrical stimuli to their left index finger with different SOAs (0 msec, 100 msec, intermediate SOA, intermediate SOA ± 10 msec). The intermediate SOA was individually determined so that stimulation was bistable, and participants perceived one stimulus in half of the trials and two stimuli in the other half. We measured neuronal activity with magnetoencephalography (MEG). In trials with intermediate SOAs, behavioral performance correlated inversely with prestimulus alpha-band power but did not correlate with poststimulus gamma-band power. Poststimulus gamma-band power was high in trials with low and high prestimulus alpha-band power and low for intermediate prestimulus alpha-band power (i.e., U-shaped). We suggest that prestimulus alpha activity modulates poststimulus gamma activity and subsequent perception: (1) low prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that two stimuli were perceived; (2) intermediate prestimulus alpha-band power leads to low gamma-band power (interpreted as inefficient stimulus processing), consequently, perception was not biased in either direction; and (3) high prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that only one stimulus was perceived.

  13. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain.

    Science.gov (United States)

    Nokia, Miriam S; Anderson, Megan L; Shors, Tracey J

    2012-12-01

    Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood-brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3-12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesised that chemotherapy disrupts learning via decreases in hippocampal adult neurogenesis and theta activity. Temozolomide was administered to adult male Sprague-Dawley rats in a cyclic manner for several weeks. Treatment was followed by training with different types of eyeblink classical conditioning, a form of associative learning. Chemotherapy reduced both neurogenesis and endogenous theta activity, as well as disrupted learning and related theta-band responses to the conditioned stimulus. The detrimental effects of temozolomide only occurred after several weeks of treatment, and only on a task that requires the association of events across a temporal gap and not during training with temporally overlapping stimuli. Chemotherapy did not disrupt the memory for previously learned associations, a memory independent of (new neurons in) the hippocampus. In conclusion, prolonged systemic chemotherapy is associated with a decrease in hippocampal adult neurogenesis and theta activity that may explain the selective deficits in processes of learning that describe the 'chemobrain'. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  14. UWB Filtering Power Divider with Two Narrow Notch-bands and Wide Stop-band

    Science.gov (United States)

    Wei, Feng; Wang, Xin-Yi; Zou, Xin Tong; Shi, Xiao Wei

    2017-12-01

    A compact filtering ultra-wideband (UWB) microstrip power divider (PD) with two sharply rejected notch-bands and wide stopband is analyzed and designed in this paper. The proposed UWB PD is based on a conventional Wilkinson power divider, while two stub loaded resonators (SLRs) are coupled into two symmetrical output ports to achieve a bandpass filtering response. The simplified composite right/left-handed (SCRLH) resonators are employed to generate the dual notched bands. Defected ground structure (DGS) is introduced to improve the passband performance. Good insertion/return losses, isolation and notch-band rejection are achieved as demonstrated in both simulation and experiment.

  15. Cueing vocabulary during sleep increases theta activity during later recognition testing.

    Science.gov (United States)

    Schreiner, Thomas; Göldi, Maurice; Rasch, Björn

    2015-11-01

    Neural oscillations in the theta band have repeatedly been implicated in successful memory encoding and retrieval. Several recent studies have shown that memory retrieval can be facilitated by reactivating memories during their consolidation during sleep. However, it is still unknown whether reactivation during sleep also enhances subsequent retrieval-related neural oscillations. We have recently demonstrated that foreign vocabulary cues presented during sleep improve later recall of the associated translations. Here, we examined the effect of cueing foreign vocabulary during sleep on oscillatory activity during subsequent recognition testing after sleep. We show that those words that were replayed during sleep after learning (cued words) elicited stronger centroparietal theta activity during recognition as compared to noncued words. The reactivation-induced increase in theta oscillations during later recognition testing might reflect a strengthening of individual memory traces and the integration of the newly learned words into the mental lexicon by cueing during sleep. © 2015 Society for Psychophysiological Research.

  16. Power Amplifier Design for E-band Wireless System Communications

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan; Krozer, Viktor; Johansen, Tom Keinicke

    2008-01-01

    E-band wireless communications will become important as the microwave backhaul for high-speed data transmission. One of the most critical components is the front-end power amplifier in this system. The paper analyzes different technologies with potential in the E-band frequency range and present...... a power amplifier design satisfying the E-band system specifications. The designed power amplifier achieves a maximum output power of ges 20 dBm with a state-of-the-art power-added efficiency of 15%. The power is realized using InP DHBT technology. To the best of our knowledge it is the highest output...... power and efficiency reported for an InP HBT power amplifier in this frequency range. The predicted power-added efficiency is higher than that of power amplifiers based on SiGe HBT and GaAs pHEMT technologies. The design shows the capabilities of InP DHBT for power amplifier applications...

  17. Band head spin assignment of superdeformed bands in Hg isotopes through power index formula

    Science.gov (United States)

    Sharma, Honey; Mittal, H. M.

    2018-05-01

    The power index formula has been used to obtain the band head spin (I 0) of all the superdeformed (SD) bands in Hg isotopes. A least squares fitting approach is used. The root mean square deviations between the determined and the observed transition energies are calculated by extracting the model parameters using the power index formula. Whenever definite spins are available, the determined and the observed transition energies are in accordance with each other. The computed values of dynamic moment of inertia J (2) obtained by using the power index formula and its deviation with the rotational frequency is also studied. Excellent agreement is shown between the calculated and the experimental results for J (2) versus the rotational frequency. Hence, the power index formula works very well for all the SD bands in Hg isotopes expect for 195Hg(2, 3, 4).

  18. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory.

    Science.gov (United States)

    Akiyama, Masakazu; Tero, Atsushi; Kawasaki, Masahiro; Nishiura, Yasumasa; Yamaguchi, Yoko

    2017-03-07

    Working memory (WM) is known to be associated with synchronization of the theta and alpha bands observed in electroencephalograms (EEGs). Although frontal-posterior global theta synchronization appears in modality-specific WM, local theta synchronization in frontal regions has been found in modality-independent WM. How frontal theta oscillations separately synchronize with task-relevant sensory brain areas remains an open question. Here, we focused on theta-alpha phase relationships in frontal areas using EEG, and then verified their functional roles with mathematical models. EEG data showed that the relationship between theta (6 Hz) and alpha (12 Hz) phases in the frontal areas was about 1:2 during both auditory and visual WM, and that the phase distributions between auditory and visual WM were different. Next, we used the differences in phase distributions to construct FitzHugh-Nagumo type mathematical models. The results replicated the modality-specific branching by orthogonally of the trigonometric functions for theta and alpha oscillations. Furthermore, mathematical and experimental results were consistent with regards to the phase relationships and amplitudes observed in frontal and sensory areas. These results indicate the important role that different phase distributions of theta and alpha oscillations have in modality-specific dissociation in the brain.

  19. Theta oscillations during holeboard training in rats: different learning strategies entail different context-dependent modulations in the hippocampus.

    Science.gov (United States)

    Woldeit, M L; Korz, V

    2010-02-03

    A functional connection between theta rhythms, information processing, learning and memory formation is well documented by studies focusing on the impact of theta waves on motor activity, global context or phase coding in spatial learning. In the present study we analyzed theta oscillations during a spatial learning task and assessed which specific behavioral contexts were connected to changes in theta power and to the formation of memory. Therefore, we measured hippocampal dentate gyrus theta modulations in male rats that were allowed to establish a long-term spatial reference memory in a holeboard (fixed pattern of baited holes) in comparison to rats that underwent similar training conditions but could not form a reference memory (randomly baited holes). The first group established a pattern specific learning strategy, while the second developed an arbitrary search strategy, visiting increasingly more holes during training. Theta power was equally influenced during the training course in both groups, but was significantly higher when compared to untrained controls. A detailed behavioral analysis, however, revealed behavior- and context-specific differences within the experimental groups. In spatially trained animals theta power correlated with the amounts of reference memory errors in the context of the inspection of unbaited holes and exploration in which, as suggested by time frequency analyses, also slow wave (delta) power was increased. In contrast, in randomly trained animals positive correlations with working memory errors were found in the context of rearing behavior. These findings indicate a contribution of theta/delta to long-lasting memory formation in spatially trained animals, whereas in pseudo trained animals theta seems to be related to attention in order to establish trial specific short-term working memory. Implications for differences in neuronal plasticity found in earlier studies are discussed. Copyright 2010 IBRO. Published by Elsevier Ltd

  20. Alcohol Hits You When It Is Hard: Intoxication, Task Difficulty, and Theta Brain Oscillations.

    Science.gov (United States)

    Rosen, Burke Q; Padovan, Nevena; Marinkovic, Ksenija

    2016-04-01

    Alcohol intoxication is known to impair decision making in a variety of situations. Previous neuroimaging evidence suggests that the neurofunctional system subserving controlled processing is especially vulnerable to alcohol in conflict-evoking tasks. The present study investigated the effects of moderate alcohol intoxication on the spatiotemporal neural dynamics of event-related total theta (4 to 7 Hz) power as a function of task difficulty. Two variants of the Simon task manipulated incongruity via simple spatial stimulus-response mismatch and, in a more difficult version, by combining spatial and semantic interference. Healthy social drinkers participated in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg for women) and placebo conditions in a counterbalanced design. Whole-head magnetoencephalography (MEG) signals were acquired and event-related total theta power was calculated on each trial with Morlet wavelets. MEG sources were estimated using anatomically constrained, noise-normalized, spectral dynamic statistical parametric mapping. Longer reaction times and lower accuracy confirmed the difficulty manipulation. Response conflict (incongruity) increased and alcohol intoxication decreased event-related theta power overall during both tasks bilaterally in the medial and ventrolateral prefrontal cortices. However, alcohol-induced theta suppression was selective for conflict only in the more difficult task which engaged the dorsal anterior cingulate (dAC) and anterior inferolateral prefrontal cortices. Theta power correlated negatively with drinking levels and disinhibition, suggesting that cognitive control is susceptible in more impulsive individuals with higher alcohol intake. The spatiotemporal theta profile across the 2 tasks supports the concept of a rostrocaudal activity gradient in the medial prefrontal cortex that is modulated by task difficulty, with the dAC as the key node in the network subserving cognitive control. Conflict-related theta power was

  1. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder

    Directory of Open Access Journals (Sweden)

    Mengqi Xing

    2017-01-01

    Conclusions: Theta-dependent interconnectivity was associated with state anxiety in gSAD and an increase in information processing efficiency in gSAD (compared to controls. Results may represent enhanced baseline self-focused attention, which is consistent with cognitive models of gSAD and fMRI studies implicating emotion dysregulation and disturbances in task negative networks (e.g., default mode network in gSAD.

  2. Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning.

    Directory of Open Access Journals (Sweden)

    Raphael Kaplan

    Full Text Available The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods. These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating

  3. Theta coordinated error-driven learning in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Nicholas Ketz

    Full Text Available The learning mechanism in the hippocampus has almost universally been assumed to be Hebbian in nature, where individual neurons in an engram join together with synaptic weight increases to support facilitated recall of memories later. However, it is also widely known that Hebbian learning mechanisms impose significant capacity constraints, and are generally less computationally powerful than learning mechanisms that take advantage of error signals. We show that the differential phase relationships of hippocampal subfields within the overall theta rhythm enable a powerful form of error-driven learning, which results in significantly greater capacity, as shown in computer simulations. In one phase of the theta cycle, the bidirectional connectivity between CA1 and entorhinal cortex can be trained in an error-driven fashion to learn to effectively encode the cortical inputs in a compact and sparse form over CA1. In a subsequent portion of the theta cycle, the system attempts to recall an existing memory, via the pathway from entorhinal cortex to CA3 and CA1. Finally the full theta cycle completes when a strong target encoding representation of the current input is imposed onto the CA1 via direct projections from entorhinal cortex. The difference between this target encoding and the attempted recall of the same representation on CA1 constitutes an error signal that can drive the learning of CA3 to CA1 synapses. This CA3 to CA1 pathway is critical for enabling full reinstatement of recalled hippocampal memories out in cortex. Taken together, these new learning dynamics enable a much more robust, high-capacity model of hippocampal learning than was available previously under the classical Hebbian model.

  4. Hippocampal Theta-Gamma Coupling Reflects State-Dependent Information Processing in Decision Making.

    Science.gov (United States)

    Amemiya, Seiichiro; Redish, A David

    2018-03-20

    During decision making, hippocampal activity encodes information sometimes about present and sometimes about potential future plans. The mechanisms underlying this transition remain unknown. Building on the evidence that gamma oscillations at different frequencies (low gamma [LG], 30-55 Hz; high gamma [HG], 60-90 Hz; and epsilon, 100-140 Hz) reflect inputs from different circuits, we identified how changes in those frequencies reflect different information-processing states. Using a unique noradrenergic manipulation by clonidine, which shifted both neural representations and gamma states, we found that future representations depended on gamma components. These changes were identifiable on each cycle of theta as asymmetries in the theta cycle, which arose from changes within the ratio of LG and HG power and the underlying phases of those gamma rhythms within the theta cycle. These changes in asymmetry of the theta cycle reflected changes in representations of present and future on each theta cycle. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Theta oscillations are sensitive to both early and late conflict processing stages: effects of alcohol intoxication.

    Science.gov (United States)

    Kovacevic, Sanja; Azma, Sheeva; Irimia, Andrei; Sherfey, Jason; Halgren, Eric; Marinkovic, Ksenija

    2012-01-01

    Prior neuroimaging evidence indicates that decision conflict activates medial and lateral prefrontal and parietal cortices. Theoretical accounts of cognitive control highlight anterior cingulate cortex (ACC) as a central node in this network. However, a better understanding of the relative primacy and functional contributions of these areas to decision conflict requires insight into the neural dynamics of successive processing stages including conflict detection, response selection and execution. Moderate alcohol intoxication impairs cognitive control as it interferes with the ability to inhibit dominant, prepotent responses when they are no longer correct. To examine the effects of moderate intoxication on successive processing stages during cognitive control, spatio-temporal changes in total event-related theta power were measured during Stroop-induced conflict. Healthy social drinkers served as their own controls by participating in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg women) and placebo conditions in a counterbalanced design. Anatomically-constrained magnetoencephalography (aMEG) approach was applied to complex power spectra for theta (4-7 Hz) frequencies. The principal generator of event-related theta power to conflict was estimated to ACC, with contributions from fronto-parietal areas. The ACC was uniquely sensitive to conflict during both early conflict detection, and later response selection and execution stages. Alcohol attenuated theta power to conflict across successive processing stages, suggesting that alcohol-induced deficits in cognitive control may result from theta suppression in the executive network. Slower RTs were associated with attenuated theta power estimated to ACC, indicating that alcohol impairs motor preparation and execution subserved by the ACC. In addition to their relevance for the currently prevailing accounts of cognitive control, our results suggest that alcohol-induced impairment of top-down strategic processing

  6. Electroencephalographic precursors of spike-wave discharges in a genetic rat model of absence epilepsy: Power spectrum and coherence EEG analyses.

    Science.gov (United States)

    Sitnikova, Evgenia; van Luijtelaar, Gilles

    2009-04-01

    Periods in the electroencephalogram (EEG) that immediately precede the onset of spontaneous spike-wave discharges (SWD) were examined in WAG/Rij rat model of absence epilepsy. Precursors of SWD (preSWD) were classified based on the distribution of EEG power in delta-theta-alpha frequency bands as measured in the frontal cortex. In 95% of preSWD, an elevation of EEG power was detected in delta band (1-4Hz). 73% of preSWD showed high power in theta frequencies (4.5-8Hz); these preSWD might correspond to 5-9Hz oscillations that were found in GAERS before SWD onset [Pinault, D., Vergnes, M., Marescaux, C., 2001. Medium-voltage 5-9Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Neuroscience 105, 181-201], however, theta component of preSWD in our WAG/Rij rats was not shaped into a single rhythm. It is concluded that a coalescence of delta and theta in the cortex is favorable for the occurrence of SWD. The onset of SWD was associated with strengthening of intracortical and thalamo-cortical coherence in 9.5-14Hz and in double beta frequencies. No features of EEG coherence can be considered as unique for any of preSWD subtype. Reticular and ventroposteromedial thalamic nuclei were strongly coupled even before the onset of SWD. All this suggests that SWD derive from an intermixed delta-theta EEG background; seizure onset associates with reinforcement of intracortical and cortico-thalamic associations.

  7. Behavioural Inhibition System (BIS) sensitivity differentiates EEG theta responses during goal conflict in a continuous monitoring task.

    Science.gov (United States)

    Moore, Roger A; Mills, Matthew; Marshman, Paul; Corr, Philip J

    2012-08-01

    Previous research has revealed that EEG theta oscillations are affected during goal conflict processing. This is consistent with the behavioural inhibition system (BIS) theory of anxiety (Gray & McNaughton, 2000). However, studies have not attempted to relate these BIS-related theta effects to BIS personality measures. Confirmation of such an association would provide further support for BIS theory, especially as it relates to trait differences. EEG was measured (32 electrodes) from extreme groups (low/high trait BIS) engaged in a target detection task. Goal conflicts were introduced throughout the task. Results show that the two groups did not differ in behavioural performance. The major EEG result was that a stepwise discriminant analysis indicated discrimination by 6 variables derived from coherence and power, with 5 of the 6 in the theta range as predicted by BIS theory and one in the beta range. Also, across the whole sample, EEG theta coherence increased at a variety of regions during primary goal conflict and showed a general increase during response execution; EEG theta power, in contrast, was primarily reactive to response execution. This is the first study to reveal a three-way relationship between the induction of goal conflict, the induction of theta power and coherence, and differentiation by psychometrically-defined low/high BIS status. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Estimation of localization and dipole moment of alpha- and theta-rhythm sources by cluster analysis in healthy subjects and schizophrenics

    NARCIS (Netherlands)

    Verkhlyutov, VM; Shchuchkin, YV; Ushakov, VL; Strelets, VB; Pirogov, YA

    2006-01-01

    In 12 healthy subjects and 9 schizophrenic patients in the background conditions (with eyes closed) EEG was recorded from 16 standard derivations (10-20 system) during 3 min. The record underwent the spectral analysis detecting alpha- and theta-frequency bands. After the preliminary narrow band

  9. Developmental differences in beta and theta power during sentence processing

    Directory of Open Access Journals (Sweden)

    Julie M. Schneider

    2016-06-01

    Full Text Available Although very young children process ongoing language quickly and effortlessly, research indicates that they continue to improve and mature in their language skills through adolescence. This prolonged development may be related to differing engagement of semantic and syntactic processes. This study used event related potentials and time frequency analysis of EEG to identify developmental differences in neural engagement as children (ages 10–12 and adults performed an auditory verb agreement grammaticality judgment task. Adults and children revealed very few differences in comprehending grammatically correct sentences. When identifying grammatical errors, however, adults displayed widely distributed beta and theta power decreases that were significantly less pronounced in children. Adults also demonstrated a significant P600 effect, while children exhibited an apparent N400 effect. Thus, when identifying subtle grammatical errors in real time, adults display greater neural activation that is traditionally associated with syntactic processing whereas children exhibit greater activity more commonly associated with semantic processing. These findings support previous claims that the cognitive and neural underpinnings of syntactic processing are still developing in adolescence, and add to them by more clearly identifying developmental changes in the neural oscillations underlying grammatical processing.

  10. Midfrontal Theta and Posterior Parietal Alpha Band Oscillations Support Conflict Resolution in a Masked Affective Priming Task.

    Science.gov (United States)

    Jiang, Jun; Bailey, Kira; Xiao, Xiao

    2018-01-01

    Past attempts to characterize the neural mechanisms of affective priming have conceptualized it in terms of classic cognitive conflict, but have not examined the neural oscillatory mechanisms of subliminal affective priming. Using behavioral and electroencephalogram (EEG) time frequency (TF) analysis, the current study examines the oscillatory dynamics of unconsciously triggered conflict in an emotional facial expressions version of the masked affective priming task. The results demonstrate that the power dynamics of conflict are characterized by increased midfrontal theta activity and suppressed parieto-occipital alpha activity. Across-subject and within-trial correlation analyses further confirmed this pattern. Phase synchrony and Granger causality analyses (GCAs) revealed that the fronto-parietal network was involved in unconscious conflict detection and resolution. Our findings support a response conflict account of affective priming, and reveal the role of the fronto-parietal network in unconscious conflict control.

  11. Midfrontal Theta and Posterior Parietal Alpha Band Oscillations Support Conflict Resolution in a Masked Affective Priming Task

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    2018-05-01

    Full Text Available Past attempts to characterize the neural mechanisms of affective priming have conceptualized it in terms of classic cognitive conflict, but have not examined the neural oscillatory mechanisms of subliminal affective priming. Using behavioral and electroencephalogram (EEG time frequency (TF analysis, the current study examines the oscillatory dynamics of unconsciously triggered conflict in an emotional facial expressions version of the masked affective priming task. The results demonstrate that the power dynamics of conflict are characterized by increased midfrontal theta activity and suppressed parieto-occipital alpha activity. Across-subject and within-trial correlation analyses further confirmed this pattern. Phase synchrony and Granger causality analyses (GCAs revealed that the fronto-parietal network was involved in unconscious conflict detection and resolution. Our findings support a response conflict account of affective priming, and reveal the role of the fronto-parietal network in unconscious conflict control.

  12. Systematic study of β-band and correlation with g- band using power law and soft rotor formula

    International Nuclear Information System (INIS)

    Katoch, Vikas; Kaushik, Reetu; Sharma, S.; Gupta, J.B.

    2014-01-01

    The nuclear structure of even Z even N medium mass transitional nuclei consist of ground state band, K π =0 1 β-band, K π =2 1 γ- band and other higher bands. As we move away from closed shell, energy levels are low lying from spherical to deformed nuclei and energy deviated from ideal rotor behavior. The energy of these transitional nuclei in ground band can also be studied using Bohr Mottelson energy expression, Soft Rotor Formula (SRF), Power Law (PL) etc. Recently, Gupta et al. (2013) modified SRF for non zero band head K π =2 1 γ-band and reproduced the level energies. Here same formula applied for K π =0 1 β-band and the level energies are reproduced and compared with experimental energies. The power law is also used for recalculation of level energies and for useful comparison

  13. (No) Time for control: Frontal theta dynamics reveal the cost of temporally guided conflict anticipation

    NARCIS (Netherlands)

    van Driel, J.; Swart, J.C.; Egner, T.; Ridderinkhof, K.R.; Cohen, M.

    2015-01-01

    During situations of response conflict, cognitive control is characterized by prefrontal theta-band (3- to 8-Hz) activity. It has been shown that cognitive control can be triggered proactively by contextual cues that predict conflict. Here, we investigated whether a pretrial preparation interval

  14. (No) time for control: frontal theta dynamics reveal the cost of temporally guided conflict anticipation

    NARCIS (Netherlands)

    van Driel, J.; Swart, J.C.; Egner, T.; Ridderinkhof, K.R.; Cohen, M.X.

    2015-01-01

    During situations of response conflict, cognitive control is characterized by prefrontal theta-band (3- to 8-Hz) activity. It has been shown that cognitive control can be triggered proactively by contextual cues that predict conflict. Here, we investigated whether a pretrial preparation interval

  15. Double Chooz and non Asian efforts towards {theta}{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Thierry [CEA/Saclay and Laboratoire Astroparticle and Cosmologie Institut de Recherche des Lois Fondamentales de l' Univers Service de Physique des Particules 91191 Gif-s-Yvette (France)], E-mail: thierry.lasserre@cea.fr

    2008-11-01

    Neutrino oscillation physics is entering a precision measurement area. The smallness of the {theta}{sub 13} neutrino mixing angle is still enigmatic and should be resolved. Double Chooz will use two identical detectors near the Chooz nuclear power station to search for a non vanishing {theta}{sub 13}, and hopefully open the way to experiments aspiring to discover CP violation in the leptonic sector. The Angra project aims to prevail over the Double Chooz experiment if the third neutrino oscillation channel is not discovered in the forthcoming years.

  16. Why don't you like me? : Midfrontal theta power in response to unexpected peer rejection feedback

    NARCIS (Netherlands)

    van der Molen, M.J.W.; Dekkers, L.M.S.; Westenberg, P.M.; van der Veen, F.M.; van der Molen, M.W.

    2017-01-01

    Social connectedness theory posits that the brain processes social rejection as a threat to survival. Recent electrophysiological evidence suggests that midfrontal theta (4–8 Hz) oscillations in the EEG provide a window on the processing of social rejection. Here we examined midfrontal theta

  17. (No) time for control: Frontal theta dynamics reveal the cost of temporally guided conflict anticipation.

    Science.gov (United States)

    van Driel, Joram; Swart, Jennifer C; Egner, Tobias; Ridderinkhof, K Richard; Cohen, Michael X

    2015-12-01

    During situations of response conflict, cognitive control is characterized by prefrontal theta-band (3- to 8-Hz) activity. It has been shown that cognitive control can be triggered proactively by contextual cues that predict conflict. Here, we investigated whether a pretrial preparation interval could serve as such a cue. This would show that the temporal contingencies embedded in the task can be used to anticipate upcoming conflict. To this end, we recorded electroencephalography (EEG) from 30 human subjects while they performed a version of a Simon task in which the duration of a fixation cross between trials predicted whether the next trial would contain response conflict. Both their behavior and EEG activity showed a consistent but unexpected pattern of results: The conflict effect (increased reaction times and decreased accuracy on conflict as compared to nonconflict trials) was stronger when conflict was cued, and this was associated with stronger conflict-related midfrontal theta activity and functional connectivity. Interestingly, intervals that predicted conflict did show a pretarget increase in midfrontal theta power. These findings suggest that temporally guided expectations of conflict do heighten conflict anticipation, but also lead to less efficiently applied reactive control. We further explored this post-hoc interpretation by means of three behavioral follow-up experiments, in which we used nontemporal cues, semantically informative cues, and neutral cues. Together, this body of results suggests that the counterintuitive cost of conflict cueing may not be uniquely related to the temporal domain, but may instead be related to the implicitness and validity of the cue.

  18. Index of alpha/theta ratio of the electroencephalogram: a new marker for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Magali eSchmidt

    2013-10-01

    Full Text Available Objective: We evaluated quantitative EEG measures to determine a screening index to discriminate AD patients from normal individuals. Methods: Two groups of individuals older than 50 years, comprising a control group of 57 normal volunteers and a study group of 50 patients with probable AD, were compared. EEG recordings were obtained from subjects in a wake state with eyes closed at rest for 30 min. Logistic regression analysis was conducted. Results: Spectral potentials of the alpha and theta bands were computed for all electrodes and the alpha/theta ratio calculated. Logistic regression of alpha/theta of the mean potential of the C3 and O1 electrodes was carried out. A formula was calculated to aid the diagnosis of AD yielding 76.4 % sensitivity and 84.6 specificity for AD with an area under the ROC curve of 0.92. Conclusions: Logistic regression of alpha/theta of the spectrum of the mean potential of EEG represents a good marker discriminating AD patients from normal controls.

  19. {theta}-Compactness in L-topological spaces

    Energy Technology Data Exchange (ETDEWEB)

    Hanafy, I.M. [Department of Mathematics, Faculty of Education, Suez Canal University, El-Arish (Egypt)], E-mail: ihanafy@hotmail.com

    2009-12-15

    Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and e{sup {infinity}} theory. In 2005, Caldas and Jafari have introduced {theta}-compact fuzzy topological spaces. In this paper, the concepts of{theta}-compactness, countable{theta}-compactness and the{theta}-Lindeloef property are introduced and studied in L-topological spaces, where L is a complete de Morgan algebra. They are defined by means of{theta}-openL-sets and their inequalities. They does not rely on the structure of basis lattice L and no distributivity in L is required. They can also be characterized by{theta}-closedL-sets and their inequalities. When L is a completely de Morgan algebra, their many characterizations are presented.

  20. Double-Chooz: a search for {theta}{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th. [DSM/DAPNIA/SPP, CEA/Saclay, 91191 Gif-sur-Yvette (France)

    2005-12-15

    The Double-Chooz experiment goal is to search for a non-vanishing value of the {theta}{sub 13} neutrino mixing angle. This is the last step to accomplish prior moving towards a new era of precision measurements in the lepton sector. The current best constraint on the third mixing angle comes from the CHOOZ reactor neutrino experiment sin{sup 2}(2{theta}{sub 13})<0.2 (90% C.L., {delta}m{sub atm}{sup 2}=2.0eV{sup 2}). Double-Chooz will explore the range of sin{sup 2}(2{theta}{sub 13}) from 0.2 to 0.03-0.02, within three years of data taking. The improvement of the CHOOZ result requires an increase in the statistics, a reduction of the systematic error below one percent, and a careful control of the backgrounds. Therefore, Double-Chooz will use two identical detectors, one at 150 m and another at 1.05 km distance from the Chooz nuclear cores. In addition, we will use the near detector as a ''state of the art'' prototype to investigate the potential of neutrinos for monitoring the civil nuclear power plants. The plan is to start operation with two detectors in 2008, and to reach a sensitivity sin{sup 2}(2{theta}{sub 13}) of 0.05 in 2009, and 0.03-0.02 in 2011.

  1. Change in hippocampal theta oscillation associated with multiple lever presses in a bimanual two-lever choice task for robot control in rats.

    Directory of Open Access Journals (Sweden)

    Norifumi Tanaka

    Full Text Available Hippocampal theta oscillations have been implicated in working memory and attentional process, which might be useful for the brain-machine interface (BMI. To further elucidate the properties of the hippocampal theta oscillations that can be used in BMI, we investigated hippocampal theta oscillations during a two-lever choice task. During the task body-restrained rats were trained with a food reward to move an e-puck robot towards them by pressing the correct lever, ipsilateral to the robot several times, using the ipsilateral forelimb. The robot carried food and moved along a semicircle track set in front of the rat. We demonstrated that the power of hippocampal theta oscillations gradually increased during a 6-s preparatory period before the start of multiple lever pressing, irrespective of whether the correct lever choice or forelimb side were used. In addition, there was a significant difference in the theta power after the first choice, between correct and incorrect trials. During the correct trials the theta power was highest during the first lever-releasing period, whereas in the incorrect trials it occurred during the second correct lever-pressing period. We also analyzed the hippocampal theta oscillations at the termination of multiple lever pressing during the correct trials. Irrespective of whether the correct forelimb side was used, the power of hippocampal theta oscillations gradually decreased with the termination of multiple lever pressing. The frequency of theta oscillation also demonstrated an increase and decrease, before and after multiple lever pressing, respectively. There was a transient increase in frequency after the first lever press during the incorrect trials, while no such increase was observed during the correct trials. These results suggested that hippocampal theta oscillations reflect some aspects of preparatory and cognitive neural activities during the robot controlling task, which could be used for BMI.

  2. Theta and Alpha Alterations in Amnestic Mild Cognitive Impairment in Semantic Go/NoGo Tasks

    Directory of Open Access Journals (Sweden)

    Lydia T. Nguyen

    2017-05-01

    Full Text Available Growing evidence suggests that cognitive control processes are impaired in amnestic mild cognitive impairment (aMCI; however the nature of these alterations needs further examination. The current study examined differences in electroencephalographic theta and alpha power related to cognitive control processes involving response execution and response inhibition in 22 individuals with aMCI and 22 age-, sex-, and education-matched cognitively normal controls. Two Go/NoGo tasks involving semantic categorization were used. In the basic categorization task, Go/NoGo responses were made based on exemplars of a single car (Go and a single dog (NoGo. In the superordinate categorization task, responses were made based on multiple exemplars of objects (Go and animals (NoGo. Behavioral data showed that the aMCI group had more false alarms during the NoGo trials compared to controls. The EEG data revealed between group differences related to response type in theta (4–7 Hz and low-frequency alpha (8–10 Hz power. In particular, the aMCI group differed from controls in theta power during the NoGo trials at frontal and parietal electrodes, and in low-frequency alpha power during Go trials at parietal electrodes. These results suggest that alterations in theta power converge with behavioral deterioration in response inhibition, whereas alterations in low-frequency alpha power appear to precede behavioral changes in response execution. Both behavioral and electrophysiological correlates combined provide a more comprehensive characterization of cognitive control deficits in aMCI.

  3. The morphology of midcingulate cortex predicts frontal-midline theta neurofeedback success

    Directory of Open Access Journals (Sweden)

    Stefanie eEnriquez-Geppert

    2013-08-01

    Full Text Available Humans differ in their ability to learn how to control their own brain activity by neurofeedback. However, neural mechanisms underlying these inter-individual differences, which may determine training success and associated cognitive enhancement, are not well understood. Here, it is asked whether neurofeedback success of frontal-midline (fm theta, an oscillation related to higher cognitive functions, could be predicted by the morphology of brain structures known to be critically involved in fm-theta generation. Nineteen young, right-handed participants underwent magnetic resonance imaging of T1-weighted brain images, and took part in an individualized, eight-session neurofeedback training in order to learn how to enhance activity in their fm-theta frequency band. Initial training success, measured at the second training session, was correlated with the final outcome measure. We found that the inferior, superior and middle frontal cortices were not associated with training success. However, volume of the midcingulate cortex as well as volume and concentration of the underlying white matter structures act as predictor variables for the general responsiveness to training. These findings suggest a neuroanatomical foundation for the ability to learn to control one’s own brain activity.

  4. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    Science.gov (United States)

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-01-29

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.

  5. X-band RF power sources for accelerator applications

    International Nuclear Information System (INIS)

    Kirshner, Mark F.; Kowalczyk, Richard D.; Wilsen, Craig B.; True, Richard B.; Simpson, Ian T.; Wray, John T.

    2011-01-01

    The majority of medical and industrial linear accelerators (LINACs) in use today operate at S-band. To reduce size and weight, these systems are gradually migrating toward X-band. The new LINACs will require suitable RF components to power them. In anticipation of this market, L-3 Communications Electron Devices Division (EDD) has recently developed a suite of RF sources operating at 9.3 GHz to complement our existing S-band product line. (author)

  6. Transcranial Direct Current Stimulation and Power Spectral Parameters: a tDCS/EEG co-registration study

    Directory of Open Access Journals (Sweden)

    Anna Lisa Mangia

    2014-08-01

    Full Text Available Transcranial direct current stimulation (tDCS delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta and gamma power bands were investigated. Three main findings emerged: 1 an increase in theta band activity during the first minutes of stimulation; 2 an increase in alpha and beta power during and after stimulation; 3 a widespread activation in several brain regions.

  7. Improving mental task classification by adding high frequency band information.

    Science.gov (United States)

    Zhang, Li; He, Wei; He, Chuanhong; Wang, Ping

    2010-02-01

    Features extracted from delta, theta, alpha, beta and gamma bands spanning low frequency range are commonly used to classify scalp-recorded electroencephalogram (EEG) for designing brain-computer interface (BCI) and higher frequencies are often neglected as noise. In this paper, we implemented an experimental validation to demonstrate that high frequency components could provide helpful information for improving the performance of the mental task based BCI. Electromyography (EMG) and electrooculography (EOG) artifacts were removed by using blind source separation (BSS) techniques. Frequency band powers and asymmetry ratios from the high frequency band (40-100 Hz) together with those from the lower frequency bands were used to represent EEG features. Finally, Fisher discriminant analysis (FDA) combining with Mahalanobis distance were used as the classifier. In this study, four types of classifications were performed using EEG signals recorded from four subjects during five mental tasks. We obtained significantly higher classification accuracy by adding the high frequency band features compared to using the low frequency bands alone, which demonstrated that the information in high frequency components from scalp-recorded EEG is valuable for the mental task based BCI.

  8. Topography, power, and current source density of θ oscillations during reward processing as markers for alcohol dependence.

    Science.gov (United States)

    Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B; Pandey, Ashwini K; Roopesh, Bangalore N; Porjesz, Bernice

    2012-05-01

    Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol-dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task, which involved outcomes of either loss or gain of an amount (10 or 50¢) that was bet. Event-related theta band (3.0-7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200-500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current source density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition when compared with controls who manifested stronger and focused midline sources. Furthermore, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing, and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. Copyright © 2011 Wiley-Liss, Inc.

  9. Double-Chooz: a search for {theta}{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Mention, G. [APC/PCC, College de France, 75005 Paris (France)

    2005-08-15

    The Double-Chooz experiment goal is to search for a non-vanishing value of the {theta}{sub 13} neutrino mixing angle. This is the last step to accomplish prior moving towards a new era of precision measurements in the lepton sector. The current best constraint on the third mixing angle comes from the CHOOZ reactor neutrino experiment sin{sup 2}(2{theta}{sub 13}) < 0.2-0.14 (90% C.L., {delta}m{sub atm}{sup 2}=2.0-2.410{sup -3} eV{sup 2}). Double-Chooz will explore the range of sin{sup 2}(2{theta}{sub 13}) from 0.2 to 0.03-0.02, within three years of data taking. The improvement of the CHOOZ result requires an increase in the statistics, a reduction of the systematic error below one percent, and a careful control of the backgrounds. Therefore, Double-Chooz will use two identical detectors, one at 150 m and another at 1.05 km distance from the Chooz nuclear cores. In addition, we will use the near detector as a 'state of the art' prototype to investigate the potential of neutrinos for monitoring the civil nuclear power plants. The plan is to start operation with two detectors in 2008, and to reach a sin{sup 2}(2{theta}{sub 13}) sensitivity of 0.05 in 2009, and 0.03-0.02 in 2011.

  10. Traveling Theta Waves in the Human Hippocampus

    Science.gov (United States)

    Zhang, Honghui

    2015-01-01

    The hippocampal theta oscillation is strongly correlated with behaviors such as memory and spatial navigation, but we do not understand its specific functional role. One hint of theta's function came from the discovery in rodents that theta oscillations are traveling waves that allow parts of the hippocampus to simultaneously exhibit separate oscillatory phases. Because hippocampal theta oscillations in humans have different properties compared with rodents, we examined these signals directly using multielectrode recordings from neurosurgical patients. Our findings confirm that human hippocampal theta oscillations are traveling waves, but also show that these oscillations appear at a broader range of frequencies compared with rodents. Human traveling waves showed a distinctive pattern of spatial propagation such that there is a consistent phase spread across the hippocampus regardless of the oscillations' frequency. This suggests that traveling theta oscillations are important functionally in humans because they coordinate phase coding throughout the hippocampus in a consistent manner. SIGNIFICANCE STATEMENT We show for the first time in humans that hippocampal theta oscillations are traveling waves, moving along the length of the hippocampus in a posterior–anterior direction. The existence of these traveling theta waves is important for understanding hippocampal neural coding because they cause neurons at separate positions in the hippocampus to experience different theta phases simultaneously. The theta phase that a neuron measures is a key factor in how that cell represents behavioral information. Therefore, the existence of traveling theta waves indicates that, to fully understand how a hippocampal neuron represents information, it is vital to also account for that cell's location in addition to conventional measures of neural activity. PMID:26354915

  11. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms.

    Science.gov (United States)

    Wang, Wuyi; Viswanathan, Shivakumar; Lee, Taraz; Grafton, Scott T

    2016-01-01

    Cortical theta band oscillations (4-8 Hz) in EEG signals have been shown to be important for a variety of different cognitive control operations in visual attention paradigms. However the synchronization source of these signals as defined by fMRI BOLD activity and the extent to which theta oscillations play a role in multimodal attention remains unknown. Here we investigated the extent to which cross-modal visual and auditory attention impacts theta oscillations. Using a simultaneous EEG-fMRI paradigm, healthy human participants performed an attentional vigilance task with six cross-modal conditions using naturalistic stimuli. To assess supramodal mechanisms, modulation of theta oscillation amplitude for attention to either visual or auditory stimuli was correlated with BOLD activity by conjunction analysis. Negative correlation was localized to cortical regions associated with the default mode network and positively with ventral premotor areas. Modality-associated attention to visual stimuli was marked by a positive correlation of theta and BOLD activity in fronto-parietal area that was not observed in the auditory condition. A positive correlation of theta and BOLD activity was observed in auditory cortex, while a negative correlation of theta and BOLD activity was observed in visual cortex during auditory attention. The data support a supramodal interaction of theta activity with of DMN function, and modality-associated processes within fronto-parietal networks related to top-down theta related cognitive control in cross-modal visual attention. On the other hand, in sensory cortices there are opposing effects of theta activity during cross-modal auditory attention.

  12. Fourier band-power E/B-mode estimators for cosmic shear

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Matthew R.; Rozo, Eduardo

    2016-01-20

    We introduce new Fourier band-power estimators for cosmic shear data analysis and E/B-mode separation. We consider both the case where one performs E/B-mode separation and the case where one does not. The resulting estimators have several nice properties which make them ideal for cosmic shear data analysis. First, they can be written as linear combinations of the binned cosmic shear correlation functions. Secondly, they account for the survey window function in real-space. Thirdly, they are unbiased by shape noise since they do not use correlation function data at zero separation. Fourthly, the band-power window functions in Fourier space are compact and largely non-oscillatory. Fifthly, they can be used to construct band-power estimators with very efficient data compression properties. In particular, we find that all of the information on the parameters Ωm, σ8 and ns in the shear correlation functions in the range of ~10–400 arcmin for single tomographic bin can be compressed into only three band-power estimates. Finally, we can achieve these rates of data compression while excluding small-scale information where the modelling of the shear correlation functions and power spectra is very difficult. Given these desirable properties, these estimators will be very useful for cosmic shear data analysis.

  13. Semantic congruence enhances memory of episodic associations: role of theta oscillations.

    Science.gov (United States)

    Atienza, Mercedes; Crespo-Garcia, Maite; Cantero, Jose L

    2011-01-01

    Growing evidence suggests that theta oscillations play a crucial role in episodic encoding. The present study evaluates whether changes in electroencephalographic theta source dynamics mediate the positive influence of semantic congruence on incidental associative learning. Here we show that memory for episodic associations (face-location) is more accurate when studied under semantically congruent contexts. However, only participants showing RT priming effect in a conceptual priming test (priming group) also gave faster responses when recollecting source information of semantically congruent faces as compared with semantically incongruent faces. This improved episodic retrieval was positively correlated with increases in theta power during the study phase mainly in the bilateral parahippocampal gyrus, left superior temporal gyrus, and left lateral posterior parietal lobe. Reconstructed signals from the estimated sources showed higher theta power for congruent than incongruent faces and also for the priming than the nonpriming group. These results are in agreement with the attention to memory model. Besides directing top-down attention to goal-relevant semantic information during encoding, the dorsal parietal lobe may also be involved in redirecting attention to bottom-up-driven memories thanks to connections between the medial-temporal and the left ventral parietal lobe. The latter function can either facilitate or interfere with encoding of face-location associations depending on whether they are preceded by semantically congruent or incongruent contexts, respectively, because only in the former condition retrieved representations related to the cue and the face are both coherent with the person identity and are both associated with the same location.

  14. A reversed-field theta-pinch plasma machine

    International Nuclear Information System (INIS)

    Yasojima, Yoshiyuki; Ueda, Yoshihiro; Sasao, Hiroyuki; Ueno, Noboru; Tanaka, Toshihide

    1984-01-01

    Mitsubishi Electric has constructed a reversed-field theta-pinch machine at its Central Research Laboratory and initiated a series of plasma diagnostics and control studies for development of nuclear-fusion technology. Although the device has a linear configuration, a stable high-temperature, high-density toroidal plasma can be generated. The article describes the overall structure, vacuum system, power-supply system, and diagnostics and control system of the plasma machine. (author)

  15. Solid-State Powered X-band Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A.K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nann, Emilio A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, Valery A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, Sami [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neilson, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple test cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.

  16. Theta oscillations orchestrate medial temporal lobe and neocortex in remembering autobiographical memories.

    Science.gov (United States)

    Fuentemilla, L; Barnes, G R; Düzel, E; Levine, B

    2014-01-15

    Remembering autobiographical events can be associated with detailed visual imagery. The medial temporal lobe (MTL), precuneus and prefrontal cortex are held to jointly enable such vivid retrieval, but how these regions are orchestrated remains unclear. An influential prediction from animal physiology is that neural oscillations in theta frequency may be important. In this experiment, participants prospectively collected audio recordings describing personal autobiographical episodes or semantic knowledge over 2 to 7 months. These were replayed as memory retrieval cues while recording brain activity with magnetoencephalography (MEG). We identified a peak of theta power within a left MTL region of interest during both autobiographical and General Semantic retrieval. This MTL region was selectively phase-synchronized with theta oscillations in precuneus and medial prefrontal cortex, and this synchrony was higher during autobiographical as compared to General Semantic knowledge retrieval. Higher synchrony also predicted more detailed visual imagery during retrieval. Thus, theta phase-synchrony orchestrates in humans the MTL with a distributed neocortical memory network when vividly remembering autobiographical experiences. © 2013.

  17. Episodic sequence memory is supported by a theta-gamma phase code.

    Science.gov (United States)

    Heusser, Andrew C; Poeppel, David; Ezzyat, Youssef; Davachi, Lila

    2016-10-01

    The meaning we derive from our experiences is not a simple static extraction of the elements but is largely based on the order in which those elements occur. Models propose that sequence encoding is supported by interactions between high- and low-frequency oscillations, such that elements within an experience are represented by neural cell assemblies firing at higher frequencies (gamma) and sequential order is encoded by the specific timing of firing with respect to a lower frequency oscillation (theta). During episodic sequence memory formation in humans, we provide evidence that items in different sequence positions exhibit greater gamma power along distinct phases of a theta oscillation. Furthermore, this segregation is related to successful temporal order memory. Our results provide compelling evidence that memory for order, a core component of an episodic memory, capitalizes on the ubiquitous physiological mechanism of theta-gamma phase-amplitude coupling.

  18. Frontal theta accounts for individual differences in the cost of conflict on decision making.

    Science.gov (United States)

    Pinner, John F L; Cavanagh, James F

    2017-10-01

    Cognitive conflict is often experienced as a difficult, frustrating, and aversive state. Recent studies have indicated that conflict acts as an implicit cost during learning, valuation, and the instantiation of cognitive control. Here we investigated if an implicit manipulation of conflict also influences explicit decision making to risk. Participants were required to perform a Balloon Analogue Risk Task wherein the virtual balloon was inflated by performing a flankers task. By varying the percent of incongruent flanker trials between balloons, we hypothesized that participants would pump the balloon fewer times in conditions of higher conflict and that frontal midline theta would account for significant variance in this relationship. Across two studies, we demonstrate that conflict did not elicit reliable behavioral changes in this task across participants. However, individual differences in frontal theta power accounted for significant variance by predicting diminished balloon pumps. Thus, while conflict costs may act as investments to some individuals (invigorating behavior), it is aversive to others (diminishing behavior), and frontal midline theta power accounts for these varying behavioral tendencies between individuals. These findings demonstrate how frontal midline theta is not only a candidate mechanism for implementing cognitive control, but it is sensitive to the inherent costs therein. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Theta-Generalized closed sets in fuzzy topological spaces

    International Nuclear Information System (INIS)

    El-Shafei, M.E.; Zakari, A.

    2006-01-01

    In this paper we introduce the concepts of theta-generalized closed fuzzy sets and generalized fuzzy sets in topological spaces. Furthermore, generalized fuzzy sets are extended to theta-generalized fuzzy sets. Also, we introduce the concepts of fuzzy theta-generalized continuous and fuzzy theta-generalized irresolute mappings. (author)

  20. S-band 45 MW peak power test facility at RRCAT

    International Nuclear Information System (INIS)

    Wanmode, A. Yashwant; Reddy, Sivananda; Mulchandani, J.; Mohania, Praveen; Shrivastava, B. Purushottam

    2015-01-01

    RRCAT is engaged in the design and development of high energy electron LINAC as future injectors for the Booster Synchrotron for Indus-1 and Indus-2 SRS. The high energy LINAC will need microwave power over 30 MW depending on the number of structures to be energized. In order to have advance preparations for this development a 45 MW S-Band test facility has been designed and developed at RRCAT. The test stand is built around a 45 MW peak power S-band pulsed klystron, A conventional pulse forming network based modulator for klystron has been designed and developed. The WR-284 waveguide transmission system consisting of dual directional couplers, SF 6 gas pressurization unit, high power waveguide load and arc sensor has been developed and interfaced with the klystron. The klystron has been successfully tested up to 30 MW peak power at 2856 MHz on SF 6 pressurized waveguide line. A solid state S Band driver amplifier up to 1 kW output power was designed developed for driving the klystron. This paper describes the results of 30 MW peak power test of this facility. (author)

  1. Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory.

    Science.gov (United States)

    Kawasaki, Masahiro; Kitajo, Keiichi; Yamaguchi, Yoko

    2010-05-01

    Working memory (WM) tasks require not only distinct functions such as a storage buffer and central executive functions, but also coordination among these functions. Neuroimaging studies have revealed the contributions of different brain regions to different functional roles in WM tasks; however, little is known about the neural mechanism governing their coordination. Electroencephalographic (EEG) rhythms, especially theta and alpha, are known to appear over distributed brain regions during WM tasks, but the rhythms associated with task-relevant regional coupling have not been obtained thus far. In this study, we conducted time-frequency analyses for EEG data in WM tasks that include manipulation periods and memory storage buffer periods. We used both auditory WM tasks and visual WM tasks. The results successfully demonstrated function-specific EEG activities. The frontal theta amplitudes increased during the manipulation periods of both tasks. The alpha amplitudes increased during not only the manipulation but also the maintenance periods in the temporal area for the auditory WM and the parietal area for the visual WM. The phase synchronization analyses indicated that, under the relevant task conditions, the temporal and parietal regions show enhanced phase synchronization in the theta bands with the frontal region, whereas phase synchronization between theta and alpha is significantly enhanced only within the individual areas. Our results suggest that WM task-relevant brain regions are coordinated by distant theta synchronization for central executive functions, by local alpha synchronization for the memory storage buffer, and by theta-alpha coupling for inter-functional integration.

  2. CMOS 60-GHz and E-band power amplifiers and transmitters

    CERN Document Server

    Zhao, Dixian

    2015-01-01

    This book focuses on the development of design techniques and methodologies for 60-GHz and E-band power amplifiers and transmitters at device, circuit and layout levels. The authors show the recent development of millimeter-wave design techniques, especially of power amplifiers and transmitters, and presents novel design concepts, such as “power transistor layout” and “4-way parallel-series power combiner”, that can enhance the output power and efficiency of power amplifiers in a compact silicon area. Five state-of-the-art 60-GHz and E-band designs with measured results are demonstrated to prove the effectiveness of the design concepts and hands-on methodologies presented. This book serves as a valuable reference for circuit designers to develop millimeter-wave building blocks for future 5G applications.

  3. Bursts of occipital theta and alpha amplitude preceding alternation and repetition trials in a task-switching experiment

    NARCIS (Netherlands)

    Gladwin, T.E.; De Jong, Ritske

    The instantaneous amplitude of the theta and alpha bands of the electroencephalogram (EEG) was studied during preparation periods in a task-switching experiment. Subjects had to switch between tasks in which they were to respond to either the visual or the auditory component of the stimulus. 11-13

  4. Electroencephalographic precursors of spike-wave discharges in a genetic rat model of absence epilepsy: Power spectrum and coherence EEG analyses

    NARCIS (Netherlands)

    Sitnikova, E.Y.; Luijtelaar, E.L.J.M. van

    2009-01-01

    Periods in the electroencephalogram (EEG) that immediately precede the onset of spontaneous spike-wave discharges (SWD) were examined in WAG/Rij rat model of absence epilepsy. Precursors of SWD (preSWD) were classified based on the distribution of EEG power in delta-theta-alpha frequency bands as

  5. Theta oscillations at encoding mediate the context-dependent nature of human episodic memory.

    Science.gov (United States)

    Staudigl, Tobias; Hanslmayr, Simon

    2013-06-17

    Human episodic memory is highly context dependent. Therefore, retrieval benefits when a memory is recalled in the same context compared to a different context. This implies that items and contexts are bound together during encoding, such that the reinstatement of the initial context at test improves retrieval. Animal studies suggest that theta oscillations and theta-to-gamma cross-frequency coupling modulate such item-context binding, but direct evidence from humans is scarce. We investigated this issue by manipulating the overlap of contextual features between encoding and retrieval. Participants studied words superimposed on movie clips and were later tested by presenting the word with either the same or a different movie. The results show that memory performance and the oscillatory correlates of memory formation crucially depend on the overlap of the context between encoding and test. When the context matched, high theta power during encoding was related to successful recognition, whereas the opposite pattern emerged in the context-mismatch condition. In addition, cross-frequency coupling analysis revealed a context-dependent theta-to-gamma memory effect specifically in the left hippocampus. These results reveal for the first time that context-dependent episodic memory effects are mediated by theta oscillatory activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Other characterizations of $\\beta$-$\\theta$-R0 topological spaces

    OpenAIRE

    Miguel Caldas Cueva

    2013-01-01

    In this paper we give other characterizations of $\\beta$-$\\theta$-$%R_0$ and also introduce a new separation axiom called$\\beta$-$\\theta$-$R_1$. It turns out that $\\beta$-$\\theta$-$R_1$ isstronger that $\\beta$-$\\theta$-$R_0$

  7. Increased frontal electroencephalogram theta amplitude in patients with anorexia nervosa compared to healthy controls

    Directory of Open Access Journals (Sweden)

    Hestad KA

    2016-09-01

    Full Text Available Knut A Hestad,1–3 Siri Weider,3,4 Kristian Bernhard Nilsen,5–7 Marit Sæbø Indredavik,8,9 Trond Sand7,10 1Department of Research, Innlandet Hospital Trust, Brumunddal, Norway; 2Department of Public Health, Hedmark University of Applied Sciences, Elverum, Norway; 3Department of Psychology, Faculty of Social Sciences and Technology Management, Norwegian University of Science and Technology (NTNU, Trondheim, Norway; 4Department of Psychiatry, Specialised Unit for Eating Disorder Patients, Levanger Hospital, Health Trust Nord-Trøndelag, Levanger, Norway; 5Department of Neuroscience, Norwegian University of Science and Technology (NTNU, Trondheim, Norway; 6Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway; 7Department of Neurology, Section for Clinical Neurophysiology, Oslo University Hospital, Ullevål, Oslo, Norway; 8Regional Centre for Child and Youth Mental Health and Child Welfare, Faculty of Medicine, Norwegian University of Science and Technology (NTNU, Trondheim, Norway; 9Department of Child and Adolescent Psychiatry, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; 10Department of Neurology and Clinical Neurophysiology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway Objective: To conduct a blind study of quantitative electroencephalogram-band amplitudes in patients with anorexia nervosa (AN and healthy controls.Methods: Twenty-one patients with AN and 24 controls were examined with eyes-closed 16-channel electroencephalogram. Main variables were absolute alpha, theta, and delta amplitudes in frontal, temporal, and posterior regions.Results: There were no significant differences between the AN patients and controls regarding absolute regional band amplitudes in µV. Borderline significance was found for anterior theta (P=0.051. Significantly increased left and right frontal electrode theta amplitude was found in AN patients (F3, P=0.014; F4, P

  8. High-power test of S-band klystron for long-pulse operation

    International Nuclear Information System (INIS)

    Morii, Y.; Oshita, E.; Abe, S.; Keishi, T.; Tomimasu, T.; Ohkubo, Y.; Yoshinao, M.; Yonezawa, H.

    1994-01-01

    FELI(Free Electron Laser Research Institute, Inc.) is constructing a free electron laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using an S-band linac. The linac is commissioning now. An RF system of the linac for FELs is required of long pulse duration and high stability. S-band klystrons (TOSHIBA E3729) of the FELI linac are operated in three pulse operation modes (pulse width and peak RF power; 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW). The S-band klystron and its modulator were combined to test their performance. The high power test results of the S-band klystron are summarized in this paper. (author)

  9. [Changes in cortical power distribution produced by memory consolidation as a function of a typewriting skill].

    Science.gov (United States)

    Cunha, Marlo; Bastos, Victor Hugo; Veiga, Heloisa; Cagy, Maurício; McDowell, Kaleb; Furtado, Vernon; Piedade, Roberto; Ribeiro, Pedro

    2004-09-01

    The present study aimed to investigate alterations in EEG patterns in normal, right-handed individuals, during the process of learning a specific motor skill (typewriting). Recent studies have shown that the cerebral cortex is susceptible to several changes during a learning process and that alterations in the brain's electrical patterns take place as a result of the acquisition of a motor skill and memory consolidation. In this context, subjects' brain electrical activity was analyzed before and after the motor task. EEG data were collected by a Braintech 3000 and analyzed by Neurometrics. For the statistical analysis, the behavioral variables "time" and "number of errors" were assessed by a one-way ANOVA. For the neurophysiological variable "Absolute Power", a paired t-Test was performed for each pair of electrodes CZ-C3/CZ-C4, in the theta and alpha frequency bands. The main results demonstrated a change in performance, through both behavioral variables ("time" and "number of errors"). At the same time, no changes were observed for the neurophysiological variable ("Absolute Power") in the theta band. On the other hand, a significant increase was observed in the alpha band in central areas (CZ-C3/CZ-C4). These results suggest an adaptation of the sensory-motor cortex, as a consequence of the typewriting training.

  10. Material testing in a linear theta pinch

    International Nuclear Information System (INIS)

    Alani, R.; Azodi, H.; Naraghi, M.; Safaii, B.; Torabi-Fard, A.

    1983-01-01

    The interaction of stainless steel 316 and Inconel 625 alloys has been investigated with a thermonuclear-like plasma, n = 10 16 cm -3 and Tsub(i) = 1 keV, generated in the Alvand I linear theta pinch. The average power flux is 10 7 W/cm 2 and the interaction time nearly one μs. A theoretical analysis based on the formation of an observed impurity layer near the material, has been used to determine the properties of the impurity layer and the extent of the damage on the material. Although arcing has been observed, the dominant damage mechanism has been assessed to be due to evaporation. Exposure to single shots has produced very heavily defective areas and even surface cracks on the SS 316 sample, but no cracks were observed on Inconel 625 after exposure to even 18 shots. On the basis of temperature rise and evaporation a comparison is made among materials exposed to plasmas of a theta pinch, shock tube, present generation tokamak and an anticipated tokamak reactor. (orig.)

  11. High power tests of X-band RF windows at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Otake, Yuji [Earthquake Research Inst., Tokyo Univ., Tokyo (Japan); Tokumoto, Shuichi; Kazakov, Sergei Yu.; Odagiri, Junichi; Mizuno, Hajime

    1997-04-01

    Various RF windows comprising a short pill-box, a long pill-box, a TW (traveling wave)-mode and three TE11-mode horn types have been developed for an X-band high-power pulse klystron with two output windows for JLC (Japan Linear Collider). The output RF power of the klystron is designed to be 130 MW with the 800 ns pulse duration. Since this X-band klystron has two output windows, the maximum RF power of the window must be over 85 MW. The design principle for the windows is to reduce the RF-power density and/or the electric-field strength at the ceramic part compared with that of an ordinary pill-box-type window. Their reduction is effective to increase the handling RF power of the window. To confirm that the difference among the electric-field strengths depends on their RF structures, High-power tests of the above-mentioned windows were successfully carried out using a traveling-wave resonator (TWR) for the horns and the TW-mode type and, installing them directly to klystron output waveguides for the short and long pill-box type. Based upon the operation experience of S-band windows, two kinds of ceramic materials were used for these tests. The TE11-mode 1/2{lambda}g-1 window was tested up to the RF peak-power of 84 MW with the 700 ns pulse duration in the TWR. (J.P.N)

  12. Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting

    Directory of Open Access Journals (Sweden)

    Stefanie eEnriquez-Geppert

    2014-12-01

    Full Text Available Frontal-midline (fm theta oscillations as measured via the electroencephalogram (EEG have been suggested as neural working language of executive functioning. Their power has been shown to increase when cognitive processing or task performance is enhanced. Thus, the question arises whether learning to increase fm-theta amplitudes would functionally impact the behavioral performance in tasks probing executive functions (EFs. Here, the effects of neurofeedback, a learning method to self-up-regulate fm-theta over frontal-midline electrodes, on the four most representative EFs, memory updating, set shifting, conflict monitoring, and motor inhibition are presented. Before beginning and after completing an individualized, eight-session gap-spaced neurofeedback intervention, the three-back, letter/number task-switching, Stroop, and stop-signal tasks were tested while measuring the EEG. Self-determined up-regulation of fm-theta and its putative role for executive functioning were compared to an active control group, the so-called pseudo-neurofeedback group. Task-related fm-theta activity after training differed significantly between groups. More importantly, though, after neurofeedback significantly enhanced behavioral performance was observed. The training group showed higher accuracy scores in the three-back task and reduced mixing and shifting costs in letter/number task-switching. However, this specific protocol type did not affect performance in tasks probing conflict monitoring and motor inhibition. Thus, our results suggest a modulation of proactive but not reactive mechanisms of cognitive control. In sum, the modulation of fm-theta via neurofeedback may serve as potent treatment approach for executive dysfunctions.

  13. Quantum thetas on noncommutative T4 from embeddings into lattice

    International Nuclear Information System (INIS)

    Chang-Young, Ee; Kim, Hoil

    2007-01-01

    In this paper, we investigate the theta vector and quantum theta function over noncommutative T 4 from the embedding of RxZ 2 . Manin has constructed the quantum theta functions from the lattice embedding into vector space (x finite group). We extend Manin's construction of the quantum theta function to the embedding of vector space x lattice case. We find that the holomorphic theta vector exists only over the vector space part of the embedding, and over the lattice part we can only impose the condition for the Schwartz function. The quantum theta function built on this partial theta vector satisfies the requirement of the quantum theta function. However, two subsequent quantum translations from the embedding into the lattice part are nonadditive, contrary to the additivity of those from the vector space part

  14. Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest.

    Science.gov (United States)

    Meneses, Francisco M; Queirós, Fernanda C; Montoya, Pedro; Miranda, José G V; Dubois-Mendes, Selena M; Sá, Katia N; Luz-Santos, Cleber; Baptista, Abrahão F

    2016-01-01

    Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F (1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F (1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F (1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA.

  15. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2015-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers......We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers...

  16. Search for the exotic $\\Theta^+$ resonance in the NOMAD experiment

    CERN Document Server

    Samoylov, O; Autiero, D; Baldisseri, Alberto; Baldo-Ceolin, M; Banner, M; Bassompierre, G; Benslama, K; Besson, N; Bird, I; Blumenfeld, B; Bobisut, F; Bouchez, J; Boyd, S; Bueno, A; Bunyatov, S; Camilleri, L L; Cardini, A; Cattaneo, P W; Cavasinni, V; Cervera-Villanueva, A; Challis, R; Chukanov, A; Collazuol, G; Conforto, G; Conta, C; Contalbrigo, M; Cousins, R; Daniels, D; De Santo, A; Degaudenzi, H M; Del Prete, T; Di Lella, L; Dignan, T; Do Couto e Silva, E; Dumarchez, J; Ellis, M; Feldman, G J; Ferrari, R; Ferrère, D; Flaminio, V; Fraternali, M; Gaillard, J M; Gangler, E; Geiser, A; Geppert, D; Gibin, D; Gninenko, S; Godley, A; Gosset, J; Gouanère, M; Grant, A; Graziani, G; Guglielmi, A M; Gómez-Cadenas, J J; Gössling, C; Hagner, C; Hernando, J; Hubbard, D; Hurst, P; Hyett, N; Iacopini, E; Joseph, C; Juget, F; Kent, N; Kirsanov, M; Klimov, O; Kokkonen, J; Kovzelev, A; Krasnoperov, A V; La Rotonda, L; Lacaprara, S; Lachaud, C; Lakic, B; Lanza, A; Laveder, M; Letessier-Selvon, A A; Linssen, L; Ljubicic, A; Long, J; Lupi, A; Lyubushkin, V; Lévy, J M; Marchionni, A; Martelli, F; Mendiburu, J P; Meyer, J P; Mezzetto, M; Mishra, S R; Moorhead, G F; Méchain, X; Naumov, D; Nefedov, Yu; Nguyen-Mau, C; Nédélec, P; Orestano, D; Pastore, F; Peak, L S; Pennacchio, E; Pessard, H; Petti, R; Placci, A; Polesello, G; Pollmann, D; Polyarush, A Yu; Popov, B; Poulsen, C; Rebuffi, L; Rico, J; Riemann, P; Roda, C; Rubbia, André; Salvatore, F; Schahmaneche, K; Schmidt, B; Schmidt, T; Sconza, A; Sevior, M; Sillou, D; Soler, F J P; Sozzi, G; Steele, D; Stiegler, U; Stipcevic, M; Stolarczyk, T; Tareb-Reyes, M; Taylor, G N; Tereshchenko, V V; Toropin, A; Touchard, A M; Tovey, S N; Tran, M T; Tsesmelis, E; Ulrichs, J; Vacavant, L; Valdata-Nappi, M; Valuev, V; Vannucci, F; Varvell, K E; Veltri, M; Vercesi, V; Vidal-Sitjes, G; Vieira, J M; Vinogradova, T; Weber, F V; Weisse, T; Wilson, F F; Winton, L J; Yabsley, B D; Zaccone, Henri; Zuber, K; Zuccon, P

    2007-01-01

    A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the NOMAD muon neutrino DIS data is reported. The special background generation procedure was developed. The proton identification criteria are tuned to maximize the sensitivity to the Theta signal as a function of xF which allows to study the Theta production mechanism. We do not observe any evidence for the Theta state in the NOMAD data. We provide an upper limit on Theta production rate at 90% CL as 2.13 per 1000 of neutrino interactions.

  17. Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict

    Directory of Open Access Journals (Sweden)

    Michael X Cohen

    2011-02-01

    Full Text Available In most cognitive neuroscience experiments there are many behavioral and experimental dynamics, and many indices of brain activity, that vary from trial to trial. For example, in studies of response conflict, conflict is usually treated as a binary variable (i.e., response conflict exists or does not in any given trial, whereas some evidence and intuition suggests that conflict may vary in intensity from trial to trial. Here we demonstrate that single-trial multiple regression of time-frequency electrophysiological activity reveals neural mechanisms of cognitive control that are not apparent in cross-trial averages. We also introduce a novel extension to oscillation phase coherence and synchronization analyses, based on weighted phase modulation, that has advantages over standard coherence measures in terms of linking electrophysiological dynamics to trial-varying behavior and experimental variables. After replicating previous response conflict findings using trial-averaged data, we extend these findings using single trial analytic methods to provide novel evidence for the role of medial frontal-lateral prefrontal theta-band synchronization in conflict-induced response time dynamics, including a role for lateral prefrontal theta-band activity in biasing response times according to perceptual conflict. Given that these methods shed new light on the prefrontal mechanisms of response conflict, they are also likely to be useful for investigating other neurocognitive processes.

  18. Modeling and experimental studies of a side band power re-injection locked magnetron

    Science.gov (United States)

    Ye, Wen-Jun; Zhang, Yi; Yuan, Ping; Zhu, Hua-Cheng; Huang, Ka-Ma; Yang, Yang

    2016-12-01

    A side band power re-injection locked (SBPRIL) magnetron is presented in this paper. A tuning stub is placed between the external injection locked (EIL) magnetron and the circulator. Side band power of the EIL magnetron is reflected back to the magnetron. The reflected side band power is reused and pulled back to the central frequency. A phase-locking model is developed from circuit theory to explain the process of reuse of side band power in SBPRIL magnetron. Theoretical analysis proves that the side band power is pulled back to the central frequency of the SBPRIL magnetron, then the amplitude of the RF voltage increases and the phase noise performance is improved. Particle-in-cell (PIC) simulation of a 10-vane continuous wave (CW) magnetron model is presented. Computer simulation predicts that the frequency spectrum’s peak of the SBPRIL magnetron has an increase of 3.25 dB compared with the free running magnetron. The phase noise performance at the side band offset reduces 12.05 dB for the SBPRIL magnetron. Besides, the SBPRIL magnetron experiment is presented. Experimental results show that the spectrum peak rises by 14.29% for SBPRIL magnetron compared with the free running magnetron. The phase noise reduces more than 25 dB at 45-kHz offset compared with the free running magnetron. Project supported by the National Basic Research Program of China (Grant No. 2013CB328902) and the National Natural Science Foundation of China (Grant No. 61501311).

  19. Kinetic description of linear theta-pinch equilibria

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Davidson, R.C.

    1975-01-01

    Equilibrium properties of linear theta-pinch plasmas are studied within the framework of the steady-state (o/x=0) Vlasov-Maxwell equations. The analysis is carried out for an infinitely long plasma column aligned parallel to an externally applied axial magnetic field Bsub(z)sup(ext)esub(z). Equilibrium properties are calculated for the class of rigid-rotor Vlasov equilibria, in which the th component distribution function (Hsub(perpendicular), Psub(theta), upsilonsub(z) depends on perpendicular energy H and canonical angular momentum Psub(theta), exclusively through the linear combination Hsub(perpendicular)-ωsub(j)Psub(theta), where ω;=const.=angular velocity of mean rotation. General equilibrium relations that pertain to the entire class of rigid-rotor Vlasov equilibria are discussed; and specific examples of sharp- and diffuse-boundary equilibrium configurations are considered. Rigid-rotor density and magnetic field profiles are compared with experimentally observed profiles. A general prescription is given for determining the functional dependence of the equilibrium distribution function on Hsub(perpendicular)-ωsub(j)Psub(theta) in circumstances, where the density profile or magnetic field profile is specified. (author)

  20. Quantum thetas on noncommutative Td with general embeddings

    International Nuclear Information System (INIS)

    Chang-Young, Ee; Kim, Hoil

    2008-01-01

    In this paper, we construct quantum theta functions over noncommutative T d with general embeddings. Manin has constructed quantum theta functions from the lattice embedding into vector space x finite group. We extend Manin's construction of quantum thetas to the case of general embedding of vector space x lattice x torus. It turns out that only for the vector space part of the embedding there exists the holomorphic theta vector, while for the lattice part there does not. Furthermore, the so-called quantum translations from embedding into the lattice part become non-additive, while those from the vector space part are additive

  1. High Peak Power Test and Evaluation of S-band Waveguide Switches

    Science.gov (United States)

    Nassiri, A.; Grelick, A.; Kustom, R. L.; White, M.

    1997-05-01

    The injector and source of particles for the Advanced Photon Source is a 2856-MHz S-band electron-positron linear accelerator (linac) which produces electrons with energies up to 650 MeV or positrons with energies up to 450 MeV. To improve the linac rf system availability, an additional modulator-klystron subsystem is being constructed to provide a switchable hot spare unit for each of the five exsisting S-band transmitters. The switching of the transmitters will require the use of SF6-pressurized S-band waveguide switches at a peak operating power of 35 MW. Such rf switches have been successfully operated at other accelerator facilities but at lower peak powers. A test stand has been set up at the Stanford Linear Accelerator Center (SLAC) Klystron Factory to conduct tests comparing the power handling characteristics of two WR-284 and one WR-340 switches. Test results are presented and their implications for the design of the switching system are discussed.

  2. Ferroelectric switch for a high-power Ka-band active pulse compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2013-12-18

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW μs-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses could be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.

  3. Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat.

    Science.gov (United States)

    Villette, Vincent; Poindessous-Jazat, Frédérique; Simon, Axelle; Léna, Clément; Roullot, Elodie; Bellessort, Brice; Epelbaum, Jacques; Dutar, Patrick; Stéphan, Aline

    2010-08-18

    The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.

  4. Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation.

    Science.gov (United States)

    Landau, Ayelet Nina; Schreyer, Helene Marianne; van Pelt, Stan; Fries, Pascal

    2015-08-31

    When subjects monitor a single location, visual target detection depends on the pre-target phase of an ∼8 Hz brain rhythm. When multiple locations are monitored, performance decrements suggest a division of the 8 Hz rhythm over the number of locations, indicating that different locations are sequentially sampled. Indeed, when subjects monitor two locations, performance benefits alternate at a 4 Hz rhythm. These performance alternations were revealed after a reset of attention to one location. Although resets are common and important events for attention, it is unknown whether, in the absence of resets, ongoing attention samples stimuli in alternation. Here, we examined whether spatially specific attentional sampling can be revealed by ongoing pre-target brain rhythms. Visually induced gamma-band activity plays a role in spatial attention. Therefore, we hypothesized that performance on two simultaneously monitored stimuli can be predicted by a 4 Hz modulation of gamma-band activity. Brain rhythms were assessed with magnetoencephalography (MEG) while subjects monitored bilateral grating stimuli for a unilateral target event. The corresponding contralateral gamma-band responses were subtracted from each other to isolate spatially selective, target-related fluctuations. The resulting lateralized gamma-band activity (LGA) showed opposite pre-target 4 Hz phases for detected versus missed targets. The 4 Hz phase of pre-target LGA accounted for a 14.5% modulation in performance. These findings suggest that spatial attention is a theta-rhythmic sampling process that is continuously ongoing, with each sampling cycle being implemented through gamma-band synchrony. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Ramanujan's theta functions

    CERN Document Server

    Cooper, Shaun

    2017-01-01

    Theta functions were studied extensively by Ramanujan. This book provides a systematic development of Ramanujan’s results and extends them to a general theory. The author’s treatment of the subject is comprehensive, providing a detailed study of theta functions and modular forms for levels up to 12. Aimed at advanced undergraduates, graduate students, and researchers, the organization, user-friendly presentation, and rich source of examples, lends this book to serve as a useful reference, a pedagogical tool, and a stimulus for further research. Topics, especially those discussed in the second half of the book, have been the subject of much recent research; many of which are appearing in book form for the first time. Further results are summarized in the numerous exercises at the end of each chapter.

  6. Encoding of rat working memory by power of multi-channel local field potentials via sparse non-negative matrix factorization

    Institute of Scientific and Technical Information of China (English)

    Xu Liu; Tiao-Tiao Liu; Wen-Wen Bai; Hu Yi; Shuang-Yan Li; Xin Tian

    2013-01-01

    Working memory plays an important role in human cognition.This study investigated how working memory was encoded by the power of multi-channel local field potentials (LFPs) based on sparse nonnegative matrix factorization (SNMF).SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four Sprague-Dawley rats during a memory task in a Y maze,with 10 trials for each rat.Then the power-increased LFP components were selected as working memory-related features and the other components were removed.After that,the inverse operation of SNMF was used to study the encoding of working memory in the timefrequency domain.We demonstrated that theta and gamma power increased significantly during the working memory task.The results suggested that postsynaptic activity was simulated well by the sparse activity model.The theta and gamma bands were meaningful for encoding working memory.

  7. Quantum Thetas on Noncommutative T^d with General Embeddings

    OpenAIRE

    Chang-Young, Ee; Kim, Hoil

    2007-01-01

    In this paper we construct quantum theta functions over noncommutative T^d with general embeddings. Manin has constructed quantum theta functions from the lattice embedding into vector space x finite group. We extend Manin's construction of quantum thetas to the case of general embedding of vector space x lattice x torus. It turns out that only for the vector space part of the embedding there exists the holomorphic theta vector, while for the lattice part there does not. Furthermore, the so-c...

  8. Abnormal hippocampal theta and gamma hypersynchrony produces network and spike timing disturbances in the Fmr1-KO mouse model of Fragile X syndrome

    NARCIS (Netherlands)

    Arbab, Tara; Battaglia, Francesco P.; Pennartz, Cyriel M. A.; Bosman, Conrado A.

    2018-01-01

    Neuronal networks can synchronize their activity through excitatory and inhibitory connections, which is conducive to synaptic plasticity. This synchronization is reflected in rhythmic fluctuations of the extracellular field. In the hippocampus, theta and gamma band LFP oscillations are a hallmark

  9. Staged theta pinch experiments

    International Nuclear Information System (INIS)

    Linford, R.K.; Downing, J.N.; Gribble, R.F.; Jacobson, A.R.; Platts, D.A.; Thomas, K.S.

    1976-01-01

    Two implosion heating circuits are being experimentally tested. The principal experiment in the program is the 4.5-m-long Staged Theta Pinch (STP). It uses two relatively low energy (50kJ and 100 kJ), high voltage (125 kV) capacitor banks to produce the theta pinch plasma inside the 20 cm i.d. quartz discharge tube. A lower voltage (50 kV), higher energy (750 kJ) capacitor bank is used to contain the plasma and provide a variable amount of adiabatic compression. Because the experiment produces a higher ratio of implosion heating to compressional heating than conventional theta pinches, it should be capable of producing high temperature plasmas with a much larger ratio of plasma radius to discharge tube radius than has been possible in the past. The Resonant Heating Experiment (RHX) in its initial configuration is the same as a 0.9-m-long section of the high voltage part of the STP experiment and all the plasma results here were obtained with the experiment in that configuration. Part of the implosion bank will be removed and a low inductance crowbar added to convert it to the resonant heating configuration. (U.K.)

  10. Impaired theta-gamma coupling during working memory performance in schizophrenia.

    Science.gov (United States)

    Barr, Mera S; Rajji, Tarek K; Zomorrodi, Reza; Radhu, Natasha; George, Tony P; Blumberger, Daniel M; Daskalakis, Zafiris J

    2017-11-01

    Working memory deficits represent a core feature of schizophrenia. These deficits have been associated with dysfunctional dorsolateral prefrontal cortex (DLPFC) cortical oscillations. Theta-gamma coupling describes the modulation of gamma oscillations by theta phasic activity that has been directly associated with the ordering of information during working memory performance. Evaluating theta-gamma coupling may provide greater insight into the neural mechanisms mediating working memory deficits in this disorder. Thirty-eight patients diagnosed with schizophrenia or schizoaffective disorder and 38 healthy controls performed the verbal N-Back task administered at 4 levels, while EEG was recorded. Theta (4-7Hz)-gamma (30-50Hz) coupling was calculated for target and non-target correct trials for each working memory load. The relationship between theta-gamma coupling and accuracy was determined. Theta-gamma coupling was significantly and selectively impaired during correct responses to target letters among schizophrenia patients compared to healthy controls. A significant and positive relationship was found between theta-gamma coupling and 3-Back accuracy in controls, while this relationship was not observed in patients. These findings suggest that impaired theta-gamma coupling contribute to working memory dysfunction in schizophrenia. Future work is needed to evaluate the predictive utility of theta-gamma coupling as a neurophysiological marker for functional outcomes in this disorder. Copyright © 2017. Published by Elsevier B.V.

  11. Oscillatory Hierarchy Controlling Cortical Excitability and Stimulus Integration

    Science.gov (United States)

    Shah, A. S.; Lakatos, P.; McGinnis, T.; O'Connell, N.; Mills, A.; Knuth, K. H.; Chen, C.; Karmos, G.; Schroeder, C. E.

    2004-01-01

    Cortical gamma band oscillations have been recorded in sensory cortices of cats and monkeys, and are thought to aid in perceptual binding. Gamma activity has also been recorded in the rat hippocampus and entorhinal cortex, where it has been shown, that field gamma power is modulated at theta frequency. Since the power of gamma activity in the sensory cortices is not constant (gamma-bursts). we decided to examine the relationship between gamma power and the phase of low frequency oscillation in the auditory cortex of the awake macaque. Macaque monkeys were surgically prepared for chronic awake electrophysiological recording. During the time of the experiments. linear array multielectrodes were inserted in area AI to obtain laminar current source density (CSD) and multiunit activity profiles. Instantaneous theta and gamma power and phase was extracted by applying the Morlet wavelet transformation to the CSD. Gamma power was averaged for every 1 degree of low frequency oscillations to calculate power-phase relation. Both gamma and theta-delta power are largest in the supragranular layers. Power modulation of gamma activity is phase locked to spontaneous, as well as stimulus-related local theta and delta field oscillations. Our analysis also revealed that the power of theta oscillations is always largest at a certain phase of delta oscillation. Auditory stimuli produce evoked responses in the theta band (Le., there is pre- to post-stimulus addition of theta power), but there is also indication that stimuli may cause partial phase re-setting of spontaneous delta (and thus also theta and gamma) oscillations. We also show that spontaneous oscillations might play a role in the processing of incoming sensory signals by 'preparing' the cortex.

  12. Leptogenesis, $\\mu - \\tau$ Symmetry and $\\theta_{13}$

    CERN Document Server

    Mohapatra, Rabindra N; Yu, H; Yu, Haibo

    2005-01-01

    We show that in theories where neutrino masses arise from type I seesaw formula with three right handed neutrinos and where large atmospheric mixing angle owes its origin to an approximate leptonic $\\mu-\\tau$ interchange symmetry, the primordial lepton asymmetry of the Universe, $\\epsilon_l$ can be expressed in a simple form in terms of low energy neutrino oscillation parameters as $\\epsilon_l = (a \\Delta m^2_\\odot+ b \\Delta m^2_A \\theta^2_{13})$, where $a$ and $b$ are parameters characterizing high scale physics and are each of order $\\leq 10^{-2} $ eV$^{-2}$. We also find that for the case of two right handed neutrinos, $\\epsilon_l \\propto \\theta^2_{13}$ as a result of which, the observed value of baryon to photon ratio implies a lower limit on $\\theta_{13}$. For specific choices of the CP phase $\\delta$ we find $\\theta_{13}$ is predicted to be between $0.10-0.15$.

  13. S-Band AlGaN/GaN power amplifier MMIC with over 20 Watt output power

    NARCIS (Netherlands)

    van Heijningen, M; Visser, G.C.; Wurfl, J.; van Vliet, Frank Edward

    2008-01-01

    Abstract This paper presents the design of an S-band HPA MMIC in AlGaN/GaN CPW technology for radar TR-module application. The trade-offs of using an MMIC solution versus discrete power devices are discussed. The MMIC shows a maximum output power of 38 Watt at 37% Power Added Efficiency at 3.1 GHz.

  14. S-Band AlGaN/GaN Power Amplifier MMIC with over 20 Watt Output Power

    NARCIS (Netherlands)

    Heijningen, M. van; Visser, G.C.; Wuerfl, J.; Vliet, F.E. van

    2008-01-01

    This paper presents the design of an S-band HPA MMIC in AlGaN/GaN CPW technology for radar TR-module application. The trade-offs of using an MMIC solution versus discrete power devices are discussed. The MMIC shows a maximum output power of 38 Watt at 37% Power Added Efficiency at 3.1 GHz. An output

  15. Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs.

    Science.gov (United States)

    Liberman, Tamara; Velluti, Ricardo A; Pedemonte, Marisa

    2009-11-17

    The hippocampal theta rhythm is associated with the processing of sensory systems such as touch, smell, vision and hearing, as well as with motor activity, the modulation of autonomic processes such as cardiac rhythm, and learning and memory processes. The discovery of temporal correlation (phase locking) between the theta rhythm and both visual and auditory neuronal activity has led us to postulate the participation of such rhythm in the temporal processing of sensory information. In addition, changes in attention can modify both the theta rhythm and the auditory and visual sensory activity. The present report tested the hypothesis that the temporal correlation between auditory neuronal discharges in the inferior colliculus central nucleus (ICc) and the hippocampal theta rhythm could be enhanced by changes in sensory stimulation. We presented chronically implanted guinea pigs with auditory stimuli that varied over time, and recorded the auditory response during wakefulness. It was observed that the stimulation shifts were capable of producing the temporal phase correlations between the theta rhythm and the ICc unit firing, and they differed depending on the stimulus change performed. Such correlations disappeared approximately 6 s after the change presentation. Furthermore, the power of the hippocampal theta rhythm increased in half of the cases presented with a stimulation change. Based on these data, we propose that the degree of correlation between the unitary activity and the hippocampal theta rhythm varies with--and therefore may signal--stimulus novelty.

  16. Theta function identities associated with Ramanujan's modular ...

    Indian Academy of Sciences (India)

    In Chapter 20 of his second notebook [6], Ramanujan recorded several theta function identities associated with modular equations of composite degree 15. These identities have previously been proved by Berndt in [3]. But he proved most of these theta function identities using modular equations. These identities can also ...

  17. W-band Solid State Power Amplifier for Remote Sensing Radars, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High power, compact, reliable and affordable power amplifiers operating in the W-band (94 GHz region) are critical to realizing transmitters for many NASA missions...

  18. W-Band Solid State Power Amplifier for Remote Sensing Radars, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — High power, compact, reliable and affordable power amplifiers operating in the W-band (94 GHz region) are critical to realizing transmitters for many NASA missions...

  19. Lee weight enumerators of self-dual codes and theta functions

    NARCIS (Netherlands)

    Asch, van A.G.; Martens, F.J.L.

    2008-01-01

    The theory of modular forms, in particular theta functions, and coding theory are in a remarkable way connected. The connection is established by defining a suitable lattice corresponding to the given code, and considering its theta function. First we define some special theta functions, and

  20. Histamine Enhances Theta-Coupled Spiking and Gamma Oscillations in the Medial Entorhinal Cortex Consistent With Successful Spatial Recognition.

    Science.gov (United States)

    Chen, Quanhui; Luo, Fenlan; Yue, Faguo; Xia, Jianxia; Xiao, Qin; Liao, Xiang; Jiang, Jun; Zhang, Jun; Hu, Bo; Gao, Dong; He, Chao; Hu, Zhian

    2017-06-07

    Encoding of spatial information in the superficial layers of the medial entorhinal cortex (sMEC) involves theta-modulated spiking and gamma oscillations, as well as spatially tuned grid cells and border cells. Little is known about the role of the arousal-promoting histaminergic system in the modification of information encoded in the sMEC in vivo, and how such histamine-regulated information correlates with behavioral functions. Here, we show that histamine upregulates the neural excitability of a significant proportion of neurons (16.32%, 39.18%, and 52.94% at 30 μM, 300 μM, and 3 mM, respectively) and increases local theta (4-12 Hz) and gamma power (low: 25-48 Hz; high: 60-120 Hz) in the sMEC, through activation of histamine receptor types 1 and 3. During spatial exploration, the strength of theta-modulated firing of putative principal neurons and high gamma oscillations is enhanced about 2-fold by histamine. The histamine-mediated increase of theta phase-locking of spikes and high gamma power is consistent with successful spatial recognition. These results, for the first time, reveal possible mechanisms involving the arousal-promoting histaminergic system in the modulation of spatial cognition. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. Hippocampal theta activity in the acute cerveau isolé cat.

    Science.gov (United States)

    Gottesmann, C; Zernicki, B; Gandolfo, G

    1981-01-01

    In three cerveau isole cats, cortical and hippocampal EEG activity were recorded. In the cortical records, spindles alternated with low-voltage activity, whereas theta activity dominated in the hippocampus. The amount and frequency of theta were similar to those described previously for the pretrigeminal cat. In confirmation of previous results on rats, although cortical EEG activity differs in cerveau isole cat and pretrigeminal cat, both preparations show domination of theta activity in the hippocampus. It is concluded that the mesencephalic transection eliminates inhibitory effects from the lower brainstem on generators of the theta rhythm.

  2. Sustained frontal midline theta enhancements during effortful listening track working memory demands.

    Science.gov (United States)

    Wisniewski, Matthew G; Iyer, Nandini; Thompson, Eric R; Simpson, Brian D

    2017-11-27

    Recent studies demonstrate that frontal midline theta power (4-8 Hz) enhancements in the electroencephalogram (EEG) relate to effortful listening. It has been proposed that these enhancements reflect working memory demands. Here, the need to retain auditory information in working memory was manipulated in a 2-interval 2-alternative forced-choice delayed pitch discrimination task ("Which interval contained the higher pitch?"). On each trial, two square wave stimuli differing in pitch at an individual's ∼70.7% correct threshold were separated by a 3-second ISI. In a 'Roving' condition, the lowest pitch stimulus was randomly selected on each trial (uniform distribution from 840 to 1160 Hz). In a 'Fixed' condition, the lowest pitch was always 979 Hz. Critically, the 'Fixed' condition allowed one to know the correct response immediately following the first stimulus (e.g., if the first stimulus is 979 Hz, the second must be higher). In contrast, the 'Roving' condition required retention of the first tone for comparison to the second. Frontal midline theta enhancements during the ISI were only observed for the 'Roving' condition. Alpha (8-13 Hz) enhancements were apparent during the ISI, but did not differ significantly between conditions. Since conditions were matched for accuracy at threshold, results suggest that frontal midline theta enhancements will not always accompany difficult listening. Mixed results in the literature regarding frontal midline theta enhancements may be related to differences between tasks in regards to working memory demands. Alpha enhancements may reflect task general effortful listening processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Functional localization and effective connectivity of cortical theta and alpha oscillatory activity during an attention task

    Directory of Open Access Journals (Sweden)

    Yuichi Kitaura

    Full Text Available Objectives: The aim of this paper is to investigate cortical electric neuronal activity as an indicator of brain function, in a mental arithmetic task that requires sustained attention, as compared to the resting state condition. The two questions of interest are the cortical localization of different oscillatory activities, and the directional effective flow of oscillatory activity between regions of interest, in the task condition compared to resting state. In particular, theta and alpha activity are of interest here, due to their important role in attention processing. Methods: We adapted mental arithmetic as an attention ask in this study. Eyes closed 61-channel EEG was recorded in 14 participants during resting and in a mental arithmetic task (“serial sevens subtraction”. Functional localization and connectivity analyses were based on cortical signals of electric neuronal activity estimated with sLORETA (standardized low resolution electromagnetic tomography. Functional localization was based on the comparison of the cortical distributions of the generators of oscillatory activity between task and resting conditions. Assessment of effective connectivity was based on the iCoh (isolated effective coherence method, which provides an appropriate frequency decomposition of the directional flow of oscillatory activity between brain regions. Nine regions of interest comprising nodes from the dorsal and ventral attention networks were selected for the connectivity analysis. Results: Cortical spectral density distribution comparing task minus rest showed significant activity increase in medial prefrontal areas and decreased activity in left parietal lobe for the theta band, and decreased activity in parietal-occipital regions for the alpha1 band. At a global level, connections among right hemispheric nodes were predominantly decreased during the task condition, while connections among left hemispheric nodes were predominantly increased. At more

  4. MMIC for High-Efficiency Ka-BAnd GaN Power Amplifiers (2007043), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for high-efficiency, high-output power amplifiers operating in the Ka-band frequencies. For space communications, the power...

  5. A pedagogical introduction to theta functions

    International Nuclear Information System (INIS)

    Koh, I.G.; Shin, H.J.

    1988-01-01

    This paper reports on revolutions in physics that have been frequently accompanied by new developments in mathematics. In seventeenth century, Newton has initiated a program of describing celestial motion by classical mechanics. Integral and differential calculus was essential tool. Orbits of the moon and the earth are given by solving the differential equation of Newton's equation. Imagine a situation where one tries to solve such orbits without integral and differential calculus. Similar revolutions in understanding quantum gravity and in making deep connections between statistical and string physics are under progresses. One of indispensible tools are the theory of theta functions on Riemann surfaces. Since the literature of theta functions is mainly written by professional mathematician, physicists feel somewhat uneasy to begin to read a long chapters of lemmas and theorems, but it is now generally accepted that theta function is essential in understanding two-dimensional conformal field theory as the integral and differential calculus was indispensible in Newtonian mechanics

  6. Efficient Algorithm and Architecture of Critical-Band Transform for Low-Power Speech Applications

    Directory of Open Access Journals (Sweden)

    Gan Woon-Seng

    2007-01-01

    Full Text Available An efficient algorithm and its corresponding VLSI architecture for the critical-band transform (CBT are developed to approximate the critical-band filtering of the human ear. The CBT consists of a constant-bandwidth transform in the lower frequency range and a Brown constant- transform (CQT in the higher frequency range. The corresponding VLSI architecture is proposed to achieve significant power efficiency by reducing the computational complexity, using pipeline and parallel processing, and applying the supply voltage scaling technique. A 21-band Bark scale CBT processor with a sampling rate of 16 kHz is designed and simulated. Simulation results verify its suitability for performing short-time spectral analysis on speech. It has a better fitting on the human ear critical-band analysis, significantly fewer computations, and therefore is more energy-efficient than other methods. With a 0.35 m CMOS technology, it calculates a 160-point speech in 4.99 milliseconds at 234 kHz. The power dissipation is 15.6 W at 1.1 V. It achieves 82.1 power reduction as compared to a benchmark 256-point FFT processor.

  7. IHEP S-band 45 MW pulse power klystron development

    International Nuclear Information System (INIS)

    Dong Dong; Zhou Zusheng; Zhang Liang; Li Gangying; Tian Shuangmin

    2006-01-01

    S-band 45 MW pulse power klystron has been developed in the Institute of High Energy Physics (IHEP) for the Beijing Electron Positron Collider (BEPC) upgrade projects (BEPC-II). This new klystron has 5 cavities in its RF-beam interaction and single RF output window, and the RF output power is 45 MW at 310 kV, the gain is 50 dB, the efficiency 40%. The manufacturing, training and testing of a prototype klystron has been finished in IHEP and RF power 45 MW at 300 kV has been reached. The testing results show that all the parameters of the 45 MW klystron reach the design goal. (authors)

  8. Oscillatory theta activity during memory formation and its impact on overnight consolidation: a missing link?

    Science.gov (United States)

    Heib, Dominik P J; Hoedlmoser, Kerstin; Anderer, Peter; Gruber, Georg; Zeitlhofer, Josef; Schabus, Manuel

    2015-08-01

    Sleep has been shown to promote memory consolidation driven by certain oscillatory patterns, such as sleep spindles. However, sleep does not consolidate all newly encoded information uniformly but rather "selects" certain memories for consolidation. It is assumed that such selection depends on salience tags attached to the new memories before sleep. However, little is known about the underlying neuronal processes reflecting presleep memory tagging. The current study sought to address the question of whether event-related changes in spectral theta power (theta ERSP) during presleep memory formation could reflect memory tagging that influences subsequent consolidation during sleep. Twenty-four participants memorized 160 word pairs before sleep; in a separate laboratory visit, they performed a nonlearning control task. Memory performance was tested twice, directly before and after 8 hr of sleep. Results indicate that participants who improved their memory performance overnight displayed stronger theta ERSP during the memory task in comparison with the control task. They also displayed stronger memory task-related increases in fast sleep spindle activity. Furthermore, presleep theta activity was directly linked to fast sleep spindle activity, indicating that processes during memory formation might indeed reflect memory tagging that influences subsequent consolidation during sleep. Interestingly, our results further indicate that the suggested relation between sleep spindles and overnight performance change is not as direct as once believed. Rather, it appears to be mediated by processes beginning during presleep memory formation. We conclude that theta ERSP during presleep memory formation reflects cortico-hippocampal interactions that lead to a better long-term accessibility by tagging memories for sleep spindle-related reprocessing.

  9. Atmospheric, long baseline, and reactor neutrino data constraints on theta_{13}.

    Science.gov (United States)

    Roa, J E; Latimer, D C; Ernst, D J

    2009-08-07

    An atmospheric neutrino oscillation tool that uses full three-neutrino oscillation probabilities and a full three-neutrino treatment of the Mikheyev-Smirnov-Wolfenstein effect, together with an analysis of the K2K, MINOS, and CHOOZ data, is used to examine the bounds on theta_{13}. The recent, more finely binned, Super-K atmospheric data are employed. For L/E_{nu} greater, similar 10;{4} km/GeV, we previously found significant linear in theta_{13} terms. This analysis finds theta_{13} bounded from above by the atmospheric data while bounded from below by CHOOZ. The origin of this result arises from data in the previously mentioned very long baseline region; here, matter effects conspire with terms linear in theta_{13} to produce asymmetric bounds on theta_{13}. Assuming CP conservation, we find theta_{13} = -0.07_{-0.11};{+0.18} (90% C.L.).

  10. Studies of a powerful PPM focused X-band klystron

    International Nuclear Information System (INIS)

    Avrakhov, P.; Balakin, V.; Chashurin, V.

    1998-01-01

    Results of computer simulation and testing of the powerful X band klystron with phase-pulse modulation are presented. The klystron was developed for KEK synchrotron. The simulation efficiency of the klystron is smaller than the testing one. The parasitic oscillations are detected in the klystron, and it is necessary to suppress them [ru

  11. Event-related oscillations (EROs) and event-related potentials (ERPs) comparison in facial expression recognition.

    Science.gov (United States)

    Balconi, Michela; Pozzoli, Uberto

    2007-09-01

    The study aims to explore the significance of event-related potentials (ERPs) and event-related brain oscillations (EROs) (delta, theta, alpha, beta, gamma power) in response to emotional (fear, happiness, sadness) when compared with neutral faces during 180-250 post-stimulus time interval. The ERP results demonstrated that the emotional face elicited a negative peak at approximately 230 ms (N2). Moreover, EEG measures showed that motivational significance of face (emotional vs. neutral) could modulate the amplitude of EROs, but only for some frequency bands (i.e. theta and gamma bands). In a second phase, we considered the resemblance of the two EEG measures by a regression analysis. It revealed that theta and gamma oscillations mainly effect as oscillation activity at the N2 latency. Finally, a posterior increased power of theta was found for emotional faces.

  12. Engineering prototypes for theta-pinch devices

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Hammer, C.F.; Hanks, K.W.; McDonald, T.E.; Nunnally, W.C.

    1975-01-01

    Past, present, and future engineering prototypes for theta-pinch plasma-physics devices at Los Alamos Scientific Laboratory are discussed. Engineering prototypes are designed to test and evaluate all components under system conditions expected on actual plasma-physics experimental devices. The importance of engineering prototype development increases as the size and complexity of the plasma-physics device increases. Past experiences with the Scyllac prototype and the Staged Theta-Pinch prototype are discussed and evaluated. The design of the proposed Staged Scyllac prototype and the Large Staged Scyllac implosion prototype assembly are discussed

  13. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus

    Directory of Open Access Journals (Sweden)

    Lauren L Long

    2015-03-01

    Full Text Available Hippocampal theta has been related to locomotor speed, attention, anxiety, sensorimotor integration and memory among other emergent phenomena. One difficulty in understanding the function of theta is that the hippocampus (HPC modulates voluntary behavior at the same time that it processes sensory input. Both functions are correlated with characteristic changes in theta indices. The current review highlights a series of studies examining theta local field potential (LFP signals across the septotemporal or longitudinal axis of the HPC. While the theta signal is coherent throughout the entirety of the HPC, the amplitude, but not the frequency, of theta varies significantly across its three-dimensional expanse. We suggest that the theta signal offers a rich vein of information about how distributed neuronal ensembles support emergent function. Further, we speculate that emergent function across the long axis varies with respect to spatiotemporal scale. Thus, septal hippocampus processes details of the proximal spatiotemporal environment while more temporal aspects process larger spaces and wider time-scales. The degree to which emergent functions are supported by the synchronization of theta across the septotemporal axis is an open question. Our working model is that theta synchrony serves to bind ensembles representing varying resolutions of spatiotemporal information at interdependent septotemporal areas of the HPC. Such synchrony and cooperative interactions along the septotemporal axis likely support memory formation and subsequent consolidation and retrieval.

  14. From neural oscillations to reasoning ability: Simulating the effect of the theta-to-gamma cycle length ratio on individual scores in a figural analogy test.

    Science.gov (United States)

    Chuderski, Adam; Andrelczyk, Krzysztof

    2015-02-01

    Several existing computational models of working memory (WM) have predicted a positive relationship (later confirmed empirically) between WM capacity and the individual ratio of theta to gamma oscillatory band lengths. These models assume that each gamma cycle represents one WM object (e.g., a binding of its features), whereas the theta cycle integrates such objects into the maintained list. As WM capacity strongly predicts reasoning, it might be expected that this ratio also predicts performance in reasoning tasks. However, no computational model has yet explained how the differences in the theta-to-gamma ratio found among adult individuals might contribute to their scores on a reasoning test. Here, we propose a novel model of how WM capacity constraints figural analogical reasoning, aimed at explaining inter-individual differences in reasoning scores in terms of the characteristics of oscillatory patterns in the brain. In the model, the gamma cycle encodes the bindings between objects/features and the roles they play in the relations processed. Asynchrony between consecutive gamma cycles results from lateral inhibition between oscillating bindings. Computer simulations showed that achieving the highest WM capacity required reaching the optimal level of inhibition. When too strong, this inhibition eliminated some bindings from WM, whereas, when inhibition was too weak, the bindings became unstable and fell apart or became improperly grouped. The model aptly replicated several empirical effects and the distribution of individual scores, as well as the patterns of correlations found in the 100-people sample attempting the same reasoning task. Most importantly, the model's reasoning performance strongly depended on its theta-to-gamma ratio in same way as the performance of human participants depended on their WM capacity. The data suggest that proper regulation of oscillations in the theta and gamma bands may be crucial for both high WM capacity and effective complex

  15. Cusp-latitude Pc3 spectra: band-limited and power-law components

    Directory of Open Access Journals (Sweden)

    P. V. Ponomarenko

    Full Text Available This work attempts to fill a gap in comparative studies of upstream-generated Pc3–4 waves and broad band ULF noise observed at cusp latitudes. We performed a statistical analysis of the spectral properties of three years of cusp-latitude ground magnetometer data, finding that the average daytime Pc3–4 spectra are characterized by two principal components: an upstream-related band-limited enhancement (‘signal’ and a power-law background (‘noise’ with S(f a  f -4 . Based on this information we developed an algorithm allowing for the deconvolution of these two components in the spectral domain. The frequency of the signal enhancement increases linearly with IMF magnitude as f [mHz] ~ 4.4 | BIMF | [nT], and its power maximizes around IMF cone angles qxB ~ 20 and 160° and at 10:30–11:00 MLT. Both spectral components exhibit similar semiannual variations with equinoctial maxima. The back-ground noise power grows with increasing southward Bz and remains nearly constant for northward Bz . Its diurnal variation resembles that of Pc5 field-line resonance power, with a maximum near 09:00 MLT. Both the band-limited signal and broad band noise components show power-law growth with solar wind velocity a V 5.71sw and a V 4.12sw, respectively. Thus, the effective signal-to-noise ratio increases with in-creasing Vsw. The observations suggest that the noise generation is associated with reconnection processes.

    Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; MHD waves and instabilities; solar wind magnetosphere interactions

  16. Night sleep electroencephalogram power spectral analysis in excessive daytime sleepiness disorders

    Directory of Open Access Journals (Sweden)

    Rubens Reimão

    1991-06-01

    Full Text Available A group of 53 patients (40 míales, 13 females with mean age of 49 years, ranging from 30 to 70 years, was evaluated in the. following excessive daytime sleepiness (EDS disorders : obstructive sleep apnea syndrome (B4a, periodic movements in sleep (B5a, affective disorder (B2a, functional psychiatric non affective disorder (B2b. We considered all adult patients referred to the Center sequentially with no other distinctions but these three criteria: (a EDS was the main complaint; (b right handed ; (c not using psychotropic drugs for two weeks prior to the all-night polysomnography. EEG (C3/A1, C4/A2 samples from 2 to 10 minutes of each stage of the first REM cycle were chosen. The data was recorded simultaneously in magnetic tape and then fed into a computer for power spectral analysis. The percentage of power (PP in each band calculated in relation to the total EEG power was determined of subsequent sections of 20.4 s for the following frequency bands: delta, theta, alpha and beta. The PP in all EOS patients sample had a tendency to decrease progressively from the slowest to the fastest frequency bands, in every sleep stage. PP distribution in the delta range increased progressively from stage 1 to stage 4; stage REM levels were close to stage 2 levels. In an EDS patients interhemispheric coherence was high in every band and sleep stage. B4a patients sample PP had a tendency to decrease progressively from the slowest to the fastest frequency bands, in¡ every sleep stage; PP distribution in the delta range increased progressively from stage 1 to stage 4; stage REM levels were between stage 1 and stage 2 levels. B2a patients sample PP had a tendency to decrease progressively from the slowest to the fastest frequency bands, in every sleep stage; PP distribution in the delta range increased progressively from stage 1 to stage 4; stage REM levels were close to stage 2 levels. B2b patients sample PP had a tendency to decrease progressively from the

  17. Completely X-symmetric S-matrices corresponding to theta functions

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1981-01-01

    We consider the realization of the classical Weyl commutation relations using THETA-functions. The representations of the Heisenberg group enable us to realize completely symmetric factorized S-matrices in terms of THETA-functions corresponding to the torsion subgroup of an abelian variety. (orig.)

  18. Theta oscillations locked to intended actions rhythmically modulate perception.

    Science.gov (United States)

    Tomassini, Alice; Ambrogioni, Luca; Medendorp, W Pieter; Maris, Eric

    2017-07-07

    Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range.

  19. Modeling of a Robust Confidence Band for the Power Curve of a Wind Turbine.

    Science.gov (United States)

    Hernandez, Wilmar; Méndez, Alfredo; Maldonado-Correa, Jorge L; Balleteros, Francisco

    2016-12-07

    Having an accurate model of the power curve of a wind turbine allows us to better monitor its operation and planning of storage capacity. Since wind speed and direction is of a highly stochastic nature, the forecasting of the power generated by the wind turbine is of the same nature as well. In this paper, a method for obtaining a robust confidence band containing the power curve of a wind turbine under test conditions is presented. Here, the confidence band is bound by two curves which are estimated using parametric statistical inference techniques. However, the observations that are used for carrying out the statistical analysis are obtained by using the binning method, and in each bin, the outliers are eliminated by using a censorship process based on robust statistical techniques. Then, the observations that are not outliers are divided into observation sets. Finally, both the power curve of the wind turbine and the two curves that define the robust confidence band are estimated using each of the previously mentioned observation sets.

  20. Cubic metaplectic forms and theta functions

    CERN Document Server

    Proskurin, Nikolai

    1998-01-01

    The book is an introduction to the theory of cubic metaplectic forms on the 3-dimensional hyperbolic space and the author's research on cubic metaplectic forms on special linear and symplectic groups of rank 2. The topics include: Kubota and Bass-Milnor-Serre homomorphisms, cubic metaplectic Eisenstein series, cubic theta functions, Whittaker functions. A special method is developed and applied to find Fourier coefficients of the Eisenstein series and cubic theta functions. The book is intended for readers, with beginning graduate-level background, interested in further research in the theory of metaplectic forms and in possible applications.

  1. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2016-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier...

  2. Some theorems on the explicit evaluation of Ramanujan's theta-functions

    Directory of Open Access Journals (Sweden)

    Nayandeep Deka Baruah

    2004-01-01

    Full Text Available Bruce C. Berndt et al. and Soon-Yi Kang have proved many of Ramanujan's formulas for the explicit evaluation of the Rogers-Ramanujan continued fraction and theta-functions in terms of Weber-Ramanujan class invariants. In this note, we give alternative proofs of some of these identities of theta-functions recorded by Ramanujan in his notebooks and deduce some formulas for the explicit evaluation of his theta-functions in terms of Weber-Ramanujan class invariants.

  3. Are resting state spectral power measures related to executive functions in healthy young adults?

    Science.gov (United States)

    Gordon, Shirley; Todder, Doron; Deutsch, Inbal; Garbi, Dror; Getter, Nir; Meiran, Nachshon

    2018-01-08

    Resting-state electroencephalogram (rsEEG) has been found to be associated with psychopathology, intelligence, problem solving, academic performance and is sometimes used as a supportive physiological indicator of enhancement in cognitive training interventions (e.g. neurofeedback, working memory training). In the current study, we measured rsEEG spectral power measures (relative power, between-band ratios and asymmetry) in one hundred sixty five young adults who were also tested on a battery of executive function (EF). We specifically focused on upper Alpha, Theta and Beta frequency bands given their putative role in EF. Our indices enabled finding correlations since they had decent-to-excellent internal and retest reliability and very little range restriction relative to a nation-wide representative large sample. Nonetheless, Bayesian statistical inference indicated support for the null hypothesis concerning lack of monotonic correlation between EF and rsEEG spectral power measures. Therefore, we conclude that, contrary to the quite common interpretation, these rsEEG spectral power measures do not indicate individual differences in the measured EF abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fluctuating inhibitory inputs promote reliable spiking at theta frequencies in hippocampal interneurons

    Directory of Open Access Journals (Sweden)

    Duluxan eSritharan

    2012-05-01

    Full Text Available Theta frequency (4-12 Hz rhythms in the hippocampus play important roles in learning and memory. CA1 interneurons located at the stratum lacunosum-moleculare and radiatum junction (LM/RAD are thought to contribute to hippocampal theta population activities by rhythmically pacing pyramidal cells with inhibitory postsynaptic potentials. This implies that LM/RAD cells need to fire reliably at theta frequencies in vivo. To determine whether this could occur, we use biophysically-based LM/RAD model cells and apply different cholinergic and synaptic inputs to simulate in vivo-like network environments. We assess spike reliabilities and spiking frequencies, identifying biophysical properties and network conditions that best promote reliable theta spiking. We find that synaptic background activities that feature large inhibitory, but not excitatory, fluctuations are essential. This suggests that strong inhibitory input to these cells is vital for them to be able to contribute to population theta activities. Furthermore, we find that Type I-like oscillator models produced by augmented persistent sodium currents (INap or diminished A type potassium currents (IA enhance reliable spiking at lower theta frequencies. These Type I-like models are also the most responsive to large inhibitory fluctuations and can fire more reliably under such conditions. In previous work, we showed that INap and IA are largely responsible for establishing LM/RAD cells’ subthreshold activities. Taken together with this study, we see that while both these currents are important for subthreshold theta fluctuations and reliable theta spiking, they contribute in different ways – INap to reliable theta spiking and subthreshold activity generation, and IA to subthreshold activities at theta frequencies. This suggests that linking subthreshold and suprathreshold activities should be done with consideration of both in vivo contexts and biophysical specifics.

  5. Lexical tonal discrimination in Zapotec children. A study of the theta rhythm.

    Science.gov (United States)

    Poblano, Adrián; Castro-Sierra, Eduardo; Arteaga, Carmina; Pérez-Ruiz, Santiago J

    Zapotec is a language used mainly in the state of Oaxaca in Mexico of tonal characteristic; homophone words with difference in fundamental frequency with different meanings. Our objective was to analyze changes in the electroencephalographic (EEG) theta rhythm during word discrimination of lexical tonal bi-syllabic homophone word samples of Zapotec. We employed electroencephalography analysis during lexical tonal discrimination in 12 healthy subjects 9-16 years of age. We observed an increase in theta relative power between lexical discrimination and at rest eyes-open state in right temporal site. We also observed several significant intra- and inter-hemispheric correlations in several scalp sites, mainly in left fronto-temporal and right temporal areas when subjects were performing lexical discrimination. Our data suggest more engagement of neural networks of the right hemisphere are involved in Zapotec language discrimination. Copyright © 2015 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  6. Oscillatory frontal theta responses are increased upon bisensory stimulation.

    Science.gov (United States)

    Sakowitz, O W; Schürmann, M; Başar, E

    2000-05-01

    To investigate the functional correlation of oscillatory EEG components with the interaction of sensory modalities following simultaneous audio-visual stimulation. In an experimental study (15 subjects) we compared auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) to bimodal evoked potentials (BEPs; simultaneous auditory and visual stimulation). BEPs were assumed to be brain responses to complex stimuli as a marker for intermodal associative functioning. Frequency domain analysis of these EPs showed marked theta-range components in response to bimodal stimulation. These theta components could not be explained by linear addition of the unimodal responses in the time domain. Considering topography the increased theta-response showed a remarkable frontality in proximity to multimodal association cortices. Referring to methodology we try to demonstrate that, even if various behavioral correlates of brain oscillations exist, common patterns can be extracted by means of a systems-theoretical approach. Serving as an example of functionally relevant brain oscillations, theta responses could be interpreted as an indicator of associative information processing.

  7. Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy.

    Science.gov (United States)

    Samaha, Jason; Iemi, Luca; Postle, Bradley R

    2017-09-01

    The magnitude of power in the alpha-band (8-13Hz) of the electroencephalogram (EEG) prior to the onset of a near threshold visual stimulus predicts performance. Together with other findings, this has been interpreted as evidence that alpha-band dynamics reflect cortical excitability. We reasoned, however, that non-specific changes in excitability would be expected to influence signal and noise in the same way, leaving actual discriminability unchanged. Indeed, using a two-choice orientation discrimination task, we found that discrimination accuracy was unaffected by fluctuations in prestimulus alpha power. Decision confidence, on the other hand, was strongly negatively correlated with prestimulus alpha power. This finding constitutes a clear dissociation between objective and subjective measures of visual perception as a function of prestimulus cortical excitability. This dissociation is predicted by a model where the balance of evidence supporting each choice drives objective performance but only the magnitude of evidence supporting the selected choice drives subjective reports, suggesting that human perceptual confidence can be suboptimal with respect to tracking objective accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Adaptive [theta]-methods for pricing American options

    Science.gov (United States)

    Khaliq, Abdul Q. M.; Voss, David A.; Kazmi, Kamran

    2008-12-01

    We develop adaptive [theta]-methods for solving the Black-Scholes PDE for American options. By adding a small, continuous term, the Black-Scholes PDE becomes an advection-diffusion-reaction equation on a fixed spatial domain. Standard implementation of [theta]-methods would require a Newton-type iterative procedure at each time step thereby increasing the computational complexity of the methods. Our linearly implicit approach avoids such complications. We establish a general framework under which [theta]-methods satisfy a discrete version of the positivity constraint characteristic of American options, and numerically demonstrate the sensitivity of the constraint. The positivity results are established for the single-asset and independent two-asset models. In addition, we have incorporated and analyzed an adaptive time-step control strategy to increase the computational efficiency. Numerical experiments are presented for one- and two-asset American options, using adaptive exponential splitting for two-asset problems. The approach is compared with an iterative solution of the two-asset problem in terms of computational efficiency.

  9. Modifications of EEG power spectra in mesial temporal lobe during n-back tasks of increasing difficulty. A sLORETA study.

    Science.gov (United States)

    Imperatori, Claudio; Farina, Benedetto; Brunetti, Riccardo; Gnoni, Valentina; Testani, Elisa; Quintiliani, Maria I; Del Gatto, Claudia; Indraccolo, Allegra; Contardi, Anna; Speranza, Anna M; Della Marca, Giacomo

    2013-01-01

    The n-back task is widely used to investigate the neural basis of Working Memory (WM) processes. The principal aim of this study was to explore and compare the EEG power spectra during two n-back tests with different levels of difficulty (1-back vs. 3-back). Fourteen healthy subjects were enrolled (seven men and seven women, mean age 31.21 ± 7.05 years, range: 23-48). EEG was recorded while performing the N-back test, by means of 19 surface electrodes referred to joint mastoids. EEG analysis were conducted by means of the standardized Low Resolution brain Electric Tomography (sLORETA) software. The statistical comparison between EEG power spectra in the two conditions was performed using paired t-statistics on the coherence values after Fisher's z transformation available in the LORETA program package. The frequency bands considered were: delta (0.5-4 Hz); theta (4.5-7.5 Hz); alpha (8-12.5 Hz); beta (13-30 Hz); gamma (30.5-100 Hz). Significant changes occurred in the delta band: in the 3-back condition an increased delta power was localized in a brain region corresponding to the Brodmann Area (BA) 28 in the left posterior entorhinal cortex (T = 3.112; p < 0.05) and in the BA 35 in the left perirhinal cortex in the parahippocampal gyrus (T = 2.876; p < 0.05). No significant differences were observed in the right hemisphere and in the alpha, theta, beta, and gamma frequency bands. Our results indicate that the most prominent modification induced by the increased complexity of the task occur in the mesial left temporal lobe structures.

  10. Modifications of EEG Power Spectra in Mesial Temporal Lobe during n-back tasks of increasing difficulty. A sLORETA study.

    Directory of Open Access Journals (Sweden)

    Claudio eImperatori

    2013-04-01

    Full Text Available The n-back task is widely used to investigate the neural basis of Working Memory (WM processes. The principal aim of this study was to explore and compare the EEG power spectra during two n-back tests with different levels of difficulty (1-back vs 3-back.Fourteen healthy subjects were enrolled (7 men and 7 women, mean age 31.21±7.05 years, range: 23-48. EEG was recorded while performing the N-back test, by means of 19 surface electrodes referred to joint mastoids. EEG analysis were conducted by means of the standardized LOw Resolution brain Electric Tomography (sLORETA software. The statistical comparison between EEG power spectra in the two conditions was performed using paired t-statistics on the coherence values after Fisher’s z transformation available in the LORETA program package. The frequency bands considered were: delta (0.5-4 Hz; theta (4.5–7.5 Hz; alpha (8–12.5 Hz; beta (13–30 Hz; gamma (30.5–100 Hz. Significant changes occurred in the delta band: in the 3-back condition an increased delta power was localized in a brain region corresponding to the Brodmann Area (BA 28 in the left posterior entorhinal cortex (T = 3.112; p<0.05 and in the BA 35 in the left peririnhal cortex in the parahippocampal gyrus (T = 2.876; p<0.05. No significant differences were observed in the right hemisphere and in the alpha, theta, beta and gamma frequency bands. Our results indicate that the most prominent modification induced by the increased complexity of the task occur in the mesial left temporal lobe structures.

  11. High-power comparison among brazed, clamped and electroformed X-band cavities

    Energy Technology Data Exchange (ETDEWEB)

    Spataro, B., E-mail: bruno.spataro@lnf.infn.it [INFN-LNF, Via E. Fermi 40, 00044 Frascati, Rome (Italy); Alesini, D.; Chimenti, V. [INFN-LNF, Via E. Fermi 40, 00044 Frascati, Rome (Italy); Dolgashev, V. [SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Higashi, Y. [KEK 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Migliorati, M.; Mostacci, A. [University of Rome Sapienza, Department of Fundamental and Applied Science for Engineering, Via A. Scarpa 14, 00185 Rome (Italy); Parodi, R. [INFN-Genova, Via Dodecaneso 33, 16146 Genova (Italy); Tantawi, S.G.; Yeremian, A.D. [SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2011-11-21

    We report the building procedure of X-band copper structures using the electroforming and electroplating techniques. These techniques allow the deposition of copper layers on a suitable die and they can be used to build RF structures avoiding the high temperature brazing step in the standard technique. We show the constructed prototypes and low power RF measurements and discuss the results of the high power tests at SLAC National Accelerator Laboratory.

  12. Development of C-band High-Power Mix-Mode RF Window

    CERN Document Server

    Michizono, S; Matsumoto, T; Nakao, K; Takenaka, T

    2004-01-01

    High power c-band (5712 MHz) rf system (40 MW, 2 μs, 50 Hz) is under consideration for the electron-linac upgrade aimed for the super KEKB project. An rf window, which isolates the vacuum and pass the rf power, is one of the most important components for the rf system. The window consists of a ceramic disk and a pill-box housing. The mix-mode rf window is designed so as to decrease the electric field on the periphery of the ceramic disk. A resonant ring is assembled in order to examine the high-power transmission test. The window was tested up to the transmission power of 160 MW. The rf losses are also measured during the rf operation.

  13. Eisenstein Series Identities Involving the Borweins' Cubic Theta Functions

    Directory of Open Access Journals (Sweden)

    Ernest X. W. Xia

    2012-01-01

    Full Text Available Based on the theories of Ramanujan's elliptic functions and the (p, k-parametrization of theta functions due to Alaca et al. (2006, 2007, 2006 we derive certain Eisenstein series identities involving the Borweins' cubic theta functions with the help of the computer. Some of these identities were proved by Liu based on the fundamental theory of elliptic functions and some of them may be new. One side of each identity involves Eisenstein series, the other products of the Borweins' cubic theta functions. As applications, we evaluate some convolution sums. These evaluations are different from the formulas given by Alaca et al.

  14. 47 CFR 90.267 - Assignment and use of frequencies in the 450-470 MHz band for low power use.

    Science.gov (United States)

    2010-10-01

    ...-470 MHz band for low power use. 90.267 Section 90.267 Telecommunication FEDERAL COMMUNICATIONS... Special Frequencies or Frequency Bands § 90.267 Assignment and use of frequencies in the 450-470 MHz band... medical radio telemetry device with an output power not to exceed 20 milliwatts without specific...

  15. Torus C-I field reversed theta-pinch at UNICAMP

    International Nuclear Information System (INIS)

    Machida, M.; Collares, M.P.; Honda, R.Y.; Sakanaka, P.H.; Scheid, V.H.B.

    1984-01-01

    The influence of multipole fields (octopole and quadrupole) on supressing the n=2 rotational instability, field reconnection, particle loss effects is studied, and the viability of transforming the theta-pinch from Campinas, Brazil (100Kv, 55Kj) to the field reversed theta-pinch with plasma translation program is analyzed. (E.G.) [pt

  16. Stage theta pinch experiments

    International Nuclear Information System (INIS)

    Linford, R.K.; Downing, J.N.; Gribble, R.F.; Jacobson, A.R.; Platts, D.A.; Thomas, K.S.

    1975-01-01

    The Staged Theta Pinch program is designed to study the technological and physics problems associated with producing fat plasmas and separating the implosion heating from the adiabatic compression. Several methods of implosion heating are discussed. Circuit diagrams and theoretical magnetic field behavior are described for the STP and resonant heating experiments. (MOW)

  17. Idiopathic normal pressure hydrocephalus, quantitative EEG findings, and the cerebrospinal fluid tap test: a pilot study.

    Science.gov (United States)

    Seo, Jong-Geun; Kang, Kyunghun; Jung, Ji-Young; Park, Sung-Pa; Lee, Maan-Gee; Lee, Ho-Won

    2014-12-01

    In this pilot study, we analyzed relationships between quantitative EEG measurements and clinical parameters in idiopathic normal pressure hydrocephalus patients, along with differences in these quantitative EEG markers between cerebrospinal fluid tap test responders and nonresponders. Twenty-six idiopathic normal pressure hydrocephalus patients (9 cerebrospinal fluid tap test responders and 17 cerebrospinal fluid tap test nonresponders) constituted the final group for analysis. The resting EEG was recorded and relative powers were computed for seven frequency bands. Cerebrospinal fluid tap test nonresponders, when compared with responders, showed a statistically significant increase in alpha2 band power at the right frontal and centrotemporal regions. Higher delta2 band powers in the frontal, central, parietal, and occipital regions and lower alpha1 band powers in the right temporal region significantly correlated with poorer cognitive performance. Higher theta1 band powers in the left parietal and occipital regions significantly correlated with gait dysfunction. And higher delta1 band powers in the right frontal regions significantly correlated with urinary disturbance. Our findings may encourage further research using quantitative EEG in patients with ventriculomegaly as a potential electrophysiological marker for predicting cerebrospinal fluid tap test responders. This study additionally suggests that the delta, theta, and alpha bands are statistically correlated with the severity of symptoms in idiopathic normal pressure hydrocephalus patients.

  18. Riemann-Theta Boltzmann Machine arXiv

    CERN Document Server

    Krefl, Daniel; Haghighat, Babak; Kahlen, Jens

    A general Boltzmann machine with continuous visible and discrete integer valued hidden states is introduced. Under mild assumptions about the connection matrices, the probability density function of the visible units can be solved for analytically, yielding a novel parametric density function involving a ratio of Riemann-Theta functions. The conditional expectation of a hidden state for given visible states can also be calculated analytically, yielding a derivative of the logarithmic Riemann-Theta function. The conditional expectation can be used as activation function in a feedforward neural network, thereby increasing the modelling capacity of the network. Both the Boltzmann machine and the derived feedforward neural network can be successfully trained via standard gradient- and non-gradient-based optimization techniques.

  19. Increase of EEG spectral theta power indicates higher risk of the development of severe cognitive decline in Parkinson’s disease after 3 years

    Directory of Open Access Journals (Sweden)

    Vitalii V Cozac

    2016-11-01

    Full Text Available Objective: We investigated quantitative electroencephalography (qEEG and clinical parameters as potential risk factors of severe cognitive decline in Parkinson’s disease.Methods: We prospectively investigated 37 patients with Parkinson’s disease at baseline and follow-up (after 3 years. Patients had no severe cognitive impairment at baseline. We used a summary score of cognitive tests as the outcome at follow-up. At baseline we assessed motor, cognitive, and psychiatric factors; qEEG variables (global relative median power spectra were obtained by a fully automated processing of high-resolution EEG (256-channels. We used linear regression models with calculation of the explained variance to evaluate the relation of baseline parameters with cognitive deterioration.Results: The following baseline parameters significantly predicted severe cognitive decline: global relative median power theta (4-8 Hz, cognitive task performance in executive functions and working memory.Conclusions: Combination of neurocognitive tests and qEEG improves identification of patients with higher risk of cognitive decline in PD.

  20. What is the functional relevance of prefrontal cortex entrainment to hippocampal theta rhythms?

    Directory of Open Access Journals (Sweden)

    James Michael Hyman

    2011-03-01

    Full Text Available There has been considerable interest in the importance of oscillations in the brain and in how these oscillations relate to the firing of single neurons. Recently a number of studies have shown that the spiking of individual neurons in the medial prefrontal cortex (mPFC become entrained to the hippocampal (HPC theta rhythm. We recently showed that theta-entrained mPFC cells lost theta-entrainment specifically on error trials even though the firing rates of these cells did not change (Hyman et al., 2010. This implied that the level of HPC theta-entrainment of mPFC units was more predictive of trial outcome than differences in firing rates and that there is more information encoded by the mPFC on working memory tasks than can be accounted for by a simple rate code. Nevertheless, the functional meaning of mPFC entrainment to HPC theta remains a mystery. It is also unclear as to whether there are any differences in the nature of the information encoded by theta-entrained and non-entrained mPFC cells. In this review we discuss mPFC entrainment to HPC theta within the context of previous results as well as provide a more detailed analysis of the Hyman et al. (2010 data set. This re-analysis revealed that theta-entrained mPFC cells selectively encoded a variety of task relevant behaviors and stimuli while never theta-entrained mPFC cells were most strongly attuned to errors or the lack of expected rewards. In fact, these error responsive neurons were responsible for the error representations exhibited by the entire ensemble of mPFC neurons. A theta reset was also detected in the post-error period. While it is becoming increasingly evident that mPFC neurons exhibit correlates to virtually all cues and behaviors, perhaps phase-locking directs attention to the task-relevant representations required to solve a spatially based working memory task while the loss of theta-entrainment at the start of error trials may represent a shift of attention away from

  1. Analysis of EEG activity in response to binaural beats with different frequencies.

    Science.gov (United States)

    Gao, Xiang; Cao, Hongbao; Ming, Dong; Qi, Hongzhi; Wang, Xuemin; Wang, Xiaolu; Chen, Runge; Zhou, Peng

    2014-12-01

    When two coherent sounds with nearly similar frequencies are presented to each ear respectively with stereo headphones, the brain integrates the two signals and produces a sensation of a third sound called binaural beat (BB). Although earlier studies showed that BB could influence behavior and cognition, common agreement on the mechanism of BB has not been reached yet. In this work, we employed Relative Power (RP), Phase Locking Value (PLV) and Cross-Mutual Information (CMI) to track EEG changes during BB stimulations. EEG signals were acquired from 13 healthy subjects. Five-minute BBs with four different frequencies were tested: delta band (1 Hz), theta band (5 Hz), alpha band (10 Hz) and beta band (20 Hz). We observed RP increase in theta and alpha bands and decrease in beta band during delta and alpha BB stimulations. RP decreased in beta band during theta BB, while RP decreased in theta band during beta BB. However, no clear brainwave entrainment effect was identified. Connectivity changes were detected following the variation of RP during BB stimulations. Our observation supports the hypothesis that BBs could affect functional brain connectivity, suggesting that the mechanism of BB-brain interaction is worth further study. Copyright © 2014. Published by Elsevier B.V.

  2. Differential spectral power alteration following acupuncture at different designated places revealed by magnetoencephalography

    Science.gov (United States)

    You, Youbo; Bai, Lijun; Dai, Ruwei; Xue, Ting; Zhong, Chongguang; Liu, Zhenyu; Wang, Hu; Feng, Yuanyuan; Wei, Wenjuan; Tian, Jie

    2012-03-01

    As an ancient therapeutic technique in Traditional Chinese Medicine, acupuncture has been used increasingly in modern society to treat a range of clinical conditions as an alternative and complementary therapy. However, acupoint specificity, lying at the core of acupuncture, still faces many controversies. Considering previous neuroimaging studies on acupuncture have mainly employed functional magnetic resonance imaging, which only measures the secondary effect of neural activity on cerebral metabolism and hemodynamics, in the current study, we adopted an electrophysiological measurement technique named magnetoencephalography (MEG) to measure the direct neural activity. 28 healthy college students were recruited in this study. We filtered MEG data into 5 consecutive frequency bands (delta, theta, alpha, beta and gamma band) and grouped 140 sensors into 10 main brain regions (left/right frontal, central, temporal, parietal and occipital regions). Fast Fourier Transformation (FFT) based spectral analysis approach was further performed to explore the differential band-limited power change patterns of acupuncture at Stomach Meridian 36 (ST36) using a nearby nonacupoint (NAP) as control condition. Significantly increased delta power and decreased alpha as well as beta power in bilateral frontal ROIs were observed following stimulation at ST36. Compared with ST36, decreased alpha power in left and right central, right parietal as well as right temporal ROIs were detected in NAP group. Our research results may provide additional evidence for acupoint specificity.

  3. Changes in trait brainwave power and coherence, state and trait anxiety after three-month transcendental meditation (TM) practice.

    Science.gov (United States)

    Tomljenović, Helena; Begić, Dražen; Maštrović, Zora

    2016-03-01

    The amount of studies showing different benefits of practicing meditation is growing. EEG brainwave patterns objectively reflect both the cognitive processes and objects of meditation. This study aimed to examine the effects of transcendental meditation (TM) practice on baseline EEG brainwave patterns (outside of meditation) and to examine weather TM reduces state and trait anxiety. Standard EEG recordings were conducted on volunteer participants (N=12), all students or younger employed people, before and after a three-month meditation training. Artifact-free 100-second epochs were selected and analyzed by Fast Fourier Transformation (FFT) analysis. Endlers Multidimensional Anxiety Scales (EMAS) were used to assess anxiety levels. Power (μV(2)) and coherence levels were compared in the alpha, beta, theta and delta frequency band. Changes in EEG patterns after meditation practice were found mostly in the theta band. An interaction effect was found on the left hemisphere (pmeditation practice. Most of the changes were found in the occipital and temporal areas, less in the central and frontal areas. State anxiety decreased after TM practice. Findings suggest TM practice could be helpful in treating different kinds of disorders, especially anxiety disorders.

  4. Recent developments in linear theta-pinch research: experiment and theory

    International Nuclear Information System (INIS)

    McKenna, K.F.; Bartsch, R.R.; Commisso, R.J.

    1978-01-01

    High energy plasmas offusion interest can be generated in linear theta pinches. However, end losses present a fundamental limitation on the plasma containment time. This paper discusses recent progress in end-loss and end-stoppering experiments and in the theoretical understanding of linear theta-pinch physics

  5. Dual-Polarized Antenna Arrays with CMOS Power Amplifiers for SiP Integration at W-Band

    Science.gov (United States)

    Giese, Malte; Vehring, Sönke; Böck, Georg; Jacob, Arne F.

    2017-09-01

    This paper presents requirements and front-end solutions for low-cost communication systems with data rates of 100 Gbit/s. Link budget analyses in different mass-market applications are conducted for that purpose. It proposes an implementation of the front-end as an active antenna array with support for beam steering and polarization multiplexing over the full W-band. The critical system components are investigated and presented. This applies to a transformer coupled power amplifier (PA) in 40 nm bulk CMOS. It shows saturated output power of more than 10 dBm and power-added-efficiency of more than 10 % over the full W-band. Furthermore, the performance of microstrip-to-waveguide transitions is shown exemplarily as an important part of the active antenna as it interfaces active circuitry and antenna in a polymer-and-metal process. The transition test design shows less than 0.9 dB insertion loss and more than 12 dB return loss for the differential transition over the full W-band.

  6. S-band 300 W pulsed solid state microwave amplifier development for driving high power klystrons for electron accelerators

    International Nuclear Information System (INIS)

    Mohania, Praveen; Shrivastava, Purushottam; Hannurkar, P.R.

    2005-01-01

    S-Band Microwave electron accelerators like microtrons and linear accelerators need pulsed microwaves from few megawatts to tens of megawatts to accelerator the electrons to desired energy and intensity. Klystron tube based driver amplifiers were used to drive the high power klystrons, which need microwave power from few tens of watts to 1 kW depending on tube output power and gain. A endeavour was initiated at Centre for Advanced Technology to develop state of art solid state S-band microwave amplifiers indigenously to drive the klystron tubes. A modular design approach was used and individual modules up to 160 W power levels were developed and tested. Finally combining 160 W modules will give up to 300 W output power. Several more modules can be combined to achieve even high power levels. Present paper describes the developmental efforts of 300 W S-band solid-state amplifiers and related microwave technologies. (author)

  7. Theta oscillation and neuronal activity in rat hippocampus areinvolved in temporal discrimination of time in seconds

    Directory of Open Access Journals (Sweden)

    Tomoaki eNakazono

    2015-06-01

    Full Text Available The discovery of time cells revealed that the rodent hippocampus has information of time.Previous studies have suggested that a role of hippocampal time cells is to integratetemporally segregated events into a sequence using working memory with time perception.However, it is unclear that hippocampal cells contribute to time perception itself becausemost previous studies employed delayed matching-to-sample tasks that did not evaluatetime perception separately from working memory processes. Here, we investigated thefunction of the rat hippocampus in time perception using a temporal discrimination task. Inthe task, rats had to discriminate between durations of 1 and 3 sec to get a reward, andmaintaining task-related information as working memory was not required. We found thatsome hippocampal neurons showed firing rate modulation similar to that of time cells.Moreover, theta oscillation of local field potentials (LFPs showed a transient enhancementof power during time discrimination periods. However, there were little relationshipsbetween the neuronal activities and theta oscillations. These results suggest that both theindividual neuronal activities and theta oscillations of LFPs in the hippocampus have a possibility to be engaged in seconds order time perception; however, they participate in different ways.

  8. The KASKA project - a Japanese medium-baseline reactor-neutrino oscillation experiment to measure the mixing angle $\\theta_{13}$ -

    OpenAIRE

    Kuze, Masahiro; Collaboration, for the KASKA

    2005-01-01

    A new reactor-neutrino oscillation experiment, KASKA, is proposed to measure the unknown neutrino-mixing angle $\\theta_{13}$ using the world's most powerful Kashiwazaki-Kariwa nuclear power station. It will measure a very small deficit of reactor-neutrino flux using three identical detectors, two placed just close to the sources and one at a distance of about 1.8km. Its conceptual design and physics reach are discussed.

  9. Energy transfer efficiency measurements in a theta-pinch

    International Nuclear Information System (INIS)

    Cavalcanti, G.H.; Luna, F.R.T.; Trigueiros, A.G.

    1993-01-01

    An increase in energy transfer efficiency of the capacitor bank to the plasma was obtained when the electrical system of a theta-pinch was changed so that the ratio of total inductance to coil inductance was switched of 1/6 to 1/2. A further increase about 20% was obtained for 16/1 ratio. The measurements were made through the current discharge decay, and the spectral analysis of the emitted light from theta-pinch shows a correspondent efficiency increase. (author)

  10. LTPF: a linear theta-pinch neutron source

    International Nuclear Information System (INIS)

    Ellis, W.R.

    1975-07-01

    The linear theta pinch is optimized with respect to maximum neutron current on a sample located between the discharge tube and the compression coil wall. Emphasis throughout is placed on physics and technology considerations which govern the choice of parameters. Technological demands are (hopefully) kept to a minimum. Two ''point designs'' are developed which are distinguished by their compressional magnetic field (i.e., coil current) wave-forms: one is sinusoidal and continuous, the other trapezoidal and pulsed intermittently. Both point designs give an average neutron current of approximately 5 x 10 13 n/cm 2 /s. Both devices are characterized by short lengths (approximately 1 m), rapid cycling (2 to 30 kHz), and magnetic mirrors (2 to 5:1) at the ends. A crucial item is the power supply, which is discussed in detail. (U.S.)

  11. Cost estimation for a theta-pinch reactor

    International Nuclear Information System (INIS)

    Coultas, T.A.; Cook, J.M.; Crnkovich, P.; Dauzvardis, P.

    1976-02-01

    A simulation of a theta-pinch fusion power plant has been completed to the point where economic feasibility can be examined. A PL/I cost subprogram is presented for interfacing with the computer code TPFPP. This code is then used to obtain a first approximation of the costs for the reactor. Independent geometrical and plant design parameters are varied over a wide range, with simultaneous variation of magnetic field, minor first wall radius, and plasma maximum compression. The study indicates that the plant energy balance must be favorable, availability must be high, and major component costs must be low to achieve economical results. Although costing uncertainties remain, it is clear that development of easy and rapid replacement methods for reactor components is essential and that new staging concepts to reduce the implosion energy requirement must be pursued

  12. Learning curves of theta/beta neurofeedback in children with ADHD.

    Science.gov (United States)

    Janssen, Tieme W P; Bink, Marleen; Weeda, Wouter D; Geladé, Katleen; van Mourik, Rosa; Maras, Athanasios; Oosterlaan, Jaap

    2017-05-01

    Neurofeedback is widely applied as non-pharmacological intervention aimed at reducing symptoms of ADHD, even though efficacy has not been unequivocally established. Neuronal changes during the neurofeedback intervention that resemble learning can provide crucial evidence for the feasibility and specificity of this intervention. A total of 38 children (aged between 7 and 13 years) with a DSM-IV-TR diagnosis of ADHD, completed on average 29 sessions of theta (4-8 Hz)/beta (13-20 Hz) neurofeedback training. Dependent variables included training-related measures as well as theta and beta power during baseline and training runs for each session. Learning effects were analyzed both within and between sessions. To further specify findings, individual learning curves were explored and correlated with behavioral changes in ADHD symptoms. Over the course of the training, there was a linear increase in participants' mean training level, highest obtained training level and the number of earned credits (range b = 0.059, -0.750, p neurofeedback, although a lack of behavioral correlates may indicate insufficient transfer to daily functioning, or to confounding reinforcement of electromyographic activity. This trial is registered at the US National Institutes of Health (ClinicalTrials.gov, ref. no: NCT01363544); https://clinicaltrials.gov/show/NCT01363544 .

  13. Theta series, wall-crossing and quantum dilogarithm identities

    CERN Document Server

    Alexandrov, Sergei

    2016-01-01

    Motivated by mathematical structures which arise in string vacua and gauge theories with N=2 supersymmetry, we study the properties of certain generalized theta series which appear as Fourier coefficients of functions on a twisted torus. In Calabi-Yau string vacua, such theta series encode instanton corrections from $k$ Neveu-Schwarz five-branes. The theta series are determined by vector-valued wave-functions, and in this work we obtain the transformation of these wave-functions induced by Kontsevich-Soibelman symplectomorphisms. This effectively provides a quantum version of these transformations, where the quantization parameter is inversely proportional to the five-brane charge $k$. Consistency with wall-crossing implies a new five-term relation for Faddeev's quantum dilogarithm $\\Phi_b$ at $b=1$, which we prove. By allowing the torus to be non-commutative, we obtain a more general five-term relation valid for arbitrary $b$ and $k$, which may be relevant for the physics of five-branes at finite chemical po...

  14. A high power cross-field amplifier at X-Band

    International Nuclear Information System (INIS)

    Eppley, K.; Feinstein, J.; Ko, K.; Kroll, N.; Lee, T.; Nelson, E.

    1991-05-01

    A high power cross-field amplifier is under development at SLAC with the objective of providing sufficient peak power to feed a section of an X-Band (11.424 GHz) accelerator without the need for pulse compression. The CFA being designed employs a conventional distributed secondary emission cathode but a novel anode structure which consists of an array of vane resonators alternatively coupled to a rectangular waveguide. The waveguide impedance (width) is tapered linearly from input to output so as to provide a constant RF voltage at the vane tips, leading to uniform power generation along the structure. Nominal design for this tube calls for 300 MW output power, 20 dB gain, DC voltage 142 KV, magnetic field 5 KG, anode-cathode gap 3.6 mm and total interaction length of about 60 cm. These specifications have been supported by computer simulations of both the RF slow wave structure as well as the electron space charge wave interaction. We have used ARGUS to model the cold circuit properties and CONDOR to model the electronic power conversion. An efficiency of 60 percent can be expected. We will discuss the details of the design effort. 5 refs., 6 figs

  15. Production of $\\Theta^{+}$ (1540) and $\\Xi$ pentaquark states in proton- proton interactions

    CERN Document Server

    Bleicher, M; Liu, F M; Pierog, T; Werner, K; 10.1016/j.physletb.2004.05.010

    2004-01-01

    The production of strange pentaquark states (e.g., Theta baryons and Xi /sup --/states) in hadronic interactions within a Gribov-Regge approach is explored. In this approach the Theta /sup +/(1540) and the Xi are produced by disintegration of remnants formed by the exchange of pomerons between the two protons. We predict the rapidity and transverse momentum distributions as well as the 4 pi multiplicity of the Theta /sup +/, Xi /sup --/ , Xi /sup -/, Xi /sup 0/ and Xi /sup +/ for square root s=17 GeV (SPS) and 200 GeV (RHIC). For both energies more than 10/sup -3/ Theta /sup +/ and more than 10 /sup -5/ Xi per pp event should be observed by the present experiments.

  16. Theta Neurofeedback Effects on Motor Memory Consolidation and Performance Accuracy: An Apparent Paradox?

    Science.gov (United States)

    Reiner, Miriam; Lev, Dror D; Rosen, Amit

    2018-05-15

    Previous studies have shown that theta neurofeedback enhances motor memory consolidation on an easy-to-learn finger-tapping task. However, the simplicity of the finger-tapping task precludes evaluating the putative effects of elevated theta on performance accuracy. Mastering a motor sequence is classically assumed to entail faster performance with fewer errors. The speed-accuracy tradeoff (SAT) principle states that as action speed increases, motor performance accuracy decreases. The current study investigated whether theta neurofeedback could improve both performance speed and performance accuracy, or would only enhance performance speed at the cost of reduced accuracy. A more complex task was used to study the effects of parietal elevated theta on 45 healthy volunteers The findings confirmed previous results on the effects of theta neurofeedback on memory consolidation. In contrast to the two control groups, in the theta-neurofeedback group the speed-accuracy tradeoff was reversed. The speed-accuracy tradeoff patterns only stabilized after a night's sleep implying enhancement in terms of both speed and accuracy. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. FFT transformed quantitative EEG analysis of short term memory load.

    Science.gov (United States)

    Singh, Yogesh; Singh, Jayvardhan; Sharma, Ratna; Talwar, Anjana

    2015-07-01

    The EEG is considered as building block of functional signaling in the brain. The role of EEG oscillations in human information processing has been intensively investigated. To study the quantitative EEG correlates of short term memory load as assessed through Sternberg memory test. The study was conducted on 34 healthy male student volunteers. The intervention consisted of Sternberg memory test, which runs on a version of the Sternberg memory scanning paradigm software on a computer. Electroencephalography (EEG) was recorded from 19 scalp locations according to 10-20 international system of electrode placement. EEG signals were analyzed offline. To overcome the problems of fixed band system, individual alpha frequency (IAF) based frequency band selection method was adopted. The outcome measures were FFT transformed absolute powers in the six bands at 19 electrode positions. Sternberg memory test served as model of short term memory load. Correlation analysis of EEG during memory task was reflected as decreased absolute power in Upper alpha band in nearly all the electrode positions; increased power in Theta band at Fronto-Temporal region and Lower 1 alpha band at Fronto-Central region. Lower 2 alpha, Beta and Gamma band power remained unchanged. Short term memory load has distinct electroencephalographic correlates resembling the mentally stressed state. This is evident from decreased power in Upper alpha band (corresponding to Alpha band of traditional EEG system) which is representative band of relaxed mental state. Fronto-temporal Theta power changes may reflect the encoding and execution of memory task.

  18. Simplified scaling model for the THETA-pinch

    Science.gov (United States)

    Ewing, K. J.; Thomson, D. B.

    1982-02-01

    A simple ID scaing model for the fast Theta pinch was developed and written as a code that would be flexible, inexpensive in computer time, and readily available for use with the Los Alamos explosive-driven high magnetic field program. The simplified model uses three successive separate stages: (1) a snowplow-like radial implosion, (2) an idealized resistive annihilation of reverse bias field, and (3) an adiabatic compression stage of a Beta = 1 plasma for which ideal pressure balance is assumed to hold. The code uses one adjustable fitting constant whose value was first determined by comparison with results from the Los Alamos Scylla III, Scyllacita, and Scylla IA Theta pinches.

  19. Search for {theta}(1540){sup +} in the exclusive proton-induced reaction p+C(N){yields}{theta}{sup +} anti K{sup 0}+C(N) at the energy of 70 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Yu.M.; Artamonov, A.V.; Batarin, V.A.; Eroshin, O.V. [Inst. for High Energy Physics, Protvino (Russian Federation); Kolgamov, V.Z. [Inst. of Theoretical and Experimental Physics, Moscow (RU)] [and others

    2004-09-01

    A search for narrow {theta}(1540){sup +}, a candidate for pentaquark baryon with positive strangeness, has been performed in an exclusive proton-induced reaction p+C(N){yields}{theta}{sup +} anti K{sup 0}+C(N) on carbon nuclei or quasifree nucleons at E{sub beam}=70 GeV ({radical}(s)=11.5 GeV) studying nK{sup +}, pK{sub S}{sup 0} and pK{sub L}{sup 0} decay channels of {theta}(1540){sup +} in four different final states of the {theta}{sup +} anti K{sup 0} system. In order to assess the quality of the identification of the final states with neutron or K {sup 0} {sub L}, we reconstructed {lambda}(1520){yields}nK{sup 0}{sub S} and {phi}{yields}K{sup 0}{sub L}K{sup 0}{sub S} decays in the calibration reactions p+C(N){yields}{lambda}(1520)K{sup +}+C(N) and p+C(N){yields}p{phi}+C(N). We found no evidence for narrow pentaquark peak in any of the studied final states and decay channels. Assuming that the production characteristics of the {theta}{sup +} anti K{sup 0} system are not drastically different from those of the {lambda}(1520)K{sup +} and p{phi} systems, we established upper limits on the cross-section ratios {sigma}({theta}{sup +} anti K{sup 0})/{sigma}({lambda}(1520)K{sup +})< 0.02 and {sigma}({theta}{sup +} anti K{sup 0})/{sigma}(p{phi})< 0.15 at 90% CL and a preliminary upper limit for the forward hemisphere cross-section {sigma}({theta}{sup +} anti K{sup 0})< 30 nb/nucleon. (orig.)

  20. Modification of EEG power spectra and EEG connectivity in autobiographical memory: a sLORETA study.

    Science.gov (United States)

    Imperatori, Claudio; Brunetti, Riccardo; Farina, Benedetto; Speranza, Anna Maria; Losurdo, Anna; Testani, Elisa; Contardi, Anna; Della Marca, Giacomo

    2014-08-01

    The aim of the present study was to explore the modifications of scalp EEG power spectra and EEG connectivity during the autobiographical memory test (AM-T) and during the retrieval of an autobiographical event (the high school final examination, Task 2). Seventeen healthy volunteers were enrolled (9 women and 8 men, mean age 23.4 ± 2.8 years, range 19-30). EEG was recorded at baseline and while performing the autobiographical memory (AM) tasks, by means of 19 surface electrodes and a nasopharyngeal electrode. EEG analysis was conducted by means of the standardized LOw Resolution Electric Tomography (sLORETA) software. Power spectra and lagged EEG coherence were compared between EEG acquired during the memory tasks and baseline recording. The frequency bands considered were as follows: delta (0.5-4 Hz); theta (4.5-7.5 Hz); alpha (8-12.5 Hz); beta1 (13-17.5 Hz); beta2 (18-30 Hz); gamma (30.5-60 Hz). During AM-T, we observed a significant delta power increase in left frontal and midline cortices (T = 3.554; p < 0.05) and increased EEG connectivity in delta band in prefrontal, temporal, parietal, and occipital areas, and for gamma bands in the left temporo-parietal regions (T = 4.154; p < 0.05). In Task 2, we measured an increased power in the gamma band located in the left posterior midline areas (T = 3.960; p < 0.05) and a significant increase in delta band connectivity in the prefrontal, temporal, parietal, and occipital areas, and in the gamma band involving right temporo-parietal areas (T = 4.579; p < 0.05). These results indicate that AM retrieval engages in a complex network which is mediated by both low- (delta) and high-frequency (gamma) EEG bands.

  1. Scylla IV-P theta pinch

    International Nuclear Information System (INIS)

    Bailey, A.G.; Chandler, G.I.; Ekdahl, C.A. Jr.; Lillberg, J.W.; Machalek, M.D.; Seibel, F.T.

    1976-01-01

    Scylla IV-P is a flexible, linear theta pinch designed to investigate high-density linear concepts, end-stoppering, alternate heating methods, and plasma injection techniques relevant to a pure fusion reactor and/or a fusion-fission hybrid system. The construction and experimental arrangement of the device are briefly described

  2. Steady state theta pinch concept for slow formation of FRC

    International Nuclear Information System (INIS)

    Hirano, K.

    1987-05-01

    A steady state high beta plasma flow through a channel along the magnetic field increasing downstream can be regarded as a ''steady state theta pinch'', because if we see the plasma riding on the flow we should observe very similar process taking place in a theta pinch. Anticipating to produce an FRC without using very high voltage technics such as the ones required in a conventional theta pinch, we have studied after the analogy a ''steady state reversed field theta pinch'' which is brought about by steady head-on collision of counter plasma streams along the channel as ejected from two identical co-axial plasma sources mounted at the both ends of the apparatus. The ideal Poisson and shock adiabatic flow models are employed for the analysis of the steady colliding process. It is demonstrated that an FRC involving large numbers of particles is produced only by the weak shock mode which is achieved in case energetic plasma flow is decelerated almost to be stagnated through Poisson adiabatic process before the streams are collided. (author)

  3. A novel tri-band T-junction impedance-transforming power divider with independent power division ratios.

    Science.gov (United States)

    Wu, Yongle; Guan, Yangyang; Zhuang, Zheng; Wang, Weimin; Liu, Yuanan

    2017-01-01

    In this paper, a novel L network (LN) is presented, which is composed of a frequency-selected section (FSS) and a middle stub (MS). Based on the proposed LN, a tri-band T-junction power divider (TTPD) with impedance transformation and independent power division ratios is designed. Moreover, the closed-form design theory of the TTPD is derived based on the transmission line theory and circuit theory. Finally, a microstrip prototype of the TTPD is simulated, fabricated, and measured. The design is for three arbitrarily chosen frequencies, 1 GHz, 1.6 GHz, and 2.35 GHz with the independent power division ratios of 0.5, 0.7, and 0.9. The measured results show that the fabricated prototype is consistent with the simulation, which demonstrates the effectiveness of this proposed design.

  4. A high-gain high-power L-band antenna for field test applications

    Science.gov (United States)

    Abe, David K.; Tran, George T.; Knop, C. M.

    1995-09-01

    A high-gain, prime-focus parabolic dish antenna system was designed and constructed for experimental use in the field. The antenna was designed to radiate in L-band at peak power levels exceeding 1 X 106 watts. A 3.6 m diameter, commercial off-the-shelf parabolic dish antenna was modified with a custom-designed waveguide horn feed. The system was mounted on an antenna pedestal to allow for fine (approximately 0.001 degrees) elevation and azimuth control; the antenna and pedestal were mounted on a 4.3 m long trailer for mobility in the field. The antenna has a measured gain of 32 dBi and a 3-dB beamwidth of approximately 4.5 degrees. The system was successfully operated in the field in L-band at peak power levels exceeding 5 MW. The design, calibration, and testing of the antenna system will be presented.

  5. Chasing {theta}{sub 13} with new reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th. [DSM/DAPNIA/SPP, CEA/Saclay, 91191 Gif-sur-Yvette (France)

    2005-12-15

    It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the {theta}{sub 13} mixing angle, free from any parameter degeneracies and correlations induced by matter effect and the unknown leptonic Dirac CP phase. The current best constraint on the third mixing angle comes from the Chooz reactor neutrino experiment sin{sup 2}(2{theta}{sub 13})<0.2 (90 % C.L., {delta}m{sub atm}{sup 2}=2.010{sup -3} eV{sup 2}). Several projects of experiment, with different timescales, have been proposed over the last two years all around the world. Their sensitivities range from sin{sup 2}(2{theta}{sub 13})<0.01 to 0.03, having thus an excellent discovery potential of the {nu}{sub e} fraction of {nu}{sub 3}.

  6. Establishing the Thematic Structure and Investigating the most Prominent Theta Roles Used in Sindhi Language

    Directory of Open Access Journals (Sweden)

    Zahid Ali Veesar

    2015-07-01

    Full Text Available This study focuses on the thematic structure of the Sindhi verbs to find theta roles in the Sindhi language. The study tries to answer the research questions; “What are the thematic structures of Sindhi verbs?” and “What are the prominent theta roles in the Sindhi language?” It examines the argument/thematic structure of Sindhi verbs and also finds the theta roles assigned by the Sindhi verbs to their arguments along with the most prominent theta roles used in the Sindhi language. The data come from the two interviews taken from two young native Sindhi speakers, which consist of 2 hours conversation having 1,669 sentences in natural spoken version of the Sindhi language. Towards the end, it has been found that the Sindhi language has certain theta roles which are assigned by the verbs to their arguments in sentences. Each verb phrase in our data is thus examined and studied in detail in terms of Argument/Thematic structure in order to find theta roles in Sindhi language. Thus, in this regard, each verb phrase (in a sentence has been examined with the help of Carnie’s theoretical framework (Thematic Relation and Theta Roles: 2006 in order to find the prominent theta roles in the Sindhi language. The data have been examined and analysed on the basis of the Carnie’s theoretical framework. The study finds that the Sindhi language has all (09 theta roles which have been proposed by Carnie (2006. It has been found that six prominent theta roles out of nine are used prominently in Sindhi. The six prominent theta roles in Sindhi language are: agent, theme, beneficiary, recipient, locative and goal.

  7. Mixing angle theta and magnetic monopole in Weinberg's unified gauge theory

    International Nuclear Information System (INIS)

    Hsu, J.P.

    1975-01-01

    Gauge symmetry admits a local unit isovector and leads to the magnetic monopoles in Weinberg's unified theory. One predicts sin 2 theta = 1 / 2 for the mixing angle theta on the basis of Dirac's condition for charge quantization. This interesting result should be tested experimentally

  8. Indefinite theta series and generalized error functions

    CERN Document Server

    Alexandrov, Sergei; Manschot, Jan; Pioline, Boris

    2016-01-01

    Theta series for lattices with indefinite signature $(n_+,n_-)$ arise in many areas of mathematics including representation theory and enumerative algebraic geometry. Their modular properties are well understood in the Lorentzian case ($n_+=1$), but have remained obscure when $n_+\\geq 2$. Using a higher-dimensional generalization of the usual (complementary) error function, discovered in an independent physics project, we construct the modular completion of a class of `conformal' holomorphic theta series ($n_+=2$). As an application, we determine the modular properties of a generalized Appell-Lerch sum attached to the lattice ${\\operatorname A}_2$, which arose in the study of rank 3 vector bundles on $\\mathbb{P}^2$. The extension of our method to $n_+>2$ is outlined.

  9. Desynchronization of Theta-Phase Gamma-Amplitude Coupling during a Mental Arithmetic Task in Children with Attention Deficit/Hyperactivity Disorder.

    Directory of Open Access Journals (Sweden)

    Jun Won Kim

    Full Text Available Theta-phase gamma-amplitude coupling (TGC measurement has recently received attention as a feasible method of assessing brain functions such as neuronal interactions. The purpose of this electroencephalographic (EEG study is to understand the mechanisms underlying the deficits in attentional control in children with attention deficit/hyperactivity disorder (ADHD by comparing the power spectra and TGC at rest and during a mental arithmetic task.Nineteen-channel EEGs were recorded from 97 volunteers (including 53 subjects with ADHD from a camp for hyperactive children under two conditions (rest and task performance. The EEG power spectra and the TGC data were analyzed. Correlation analyses between the Intermediate Visual and Auditory (IVA continuous performance test (CPT scores and EEG parameters were performed.No significant difference in the power spectra was detected between the groups at rest and during task performance. However, TGC was reduced during the arithmetic task in the ADHD group compared with the normal group (F = 16.70, p < 0.001. The TGC values positively correlated with the IVA CPT scores but negatively correlated with theta power.Our findings suggest that desynchronization of TGC occurred during the arithmetic task in ADHD children. TGC in ADHD children is expected to serve as a promising neurophysiological marker of network deactivation during attention-demanding tasks.

  10. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction.

    Directory of Open Access Journals (Sweden)

    Jörg Lesting

    Full Text Available Signals related to fear memory and extinction are processed within brain pathways involving the lateral amygdala (LA for formation of aversive stimulus associations, the CA1 area of the hippocampus for context-dependent modulation of these associations, and the infralimbic region of the medial prefrontal cortex (mPFC for extinction processes. While many studies have addressed the contribution of each of these modules individually, little is known about their interactions and how they function as an integrated system. Here we show, by combining multiple site local field potential (LFP and unit recordings in freely behaving mice in a fear conditioning paradigm, that theta oscillations may provide a means for temporally and functionally connecting these modules. Theta oscillations occurred with high specificity in the CA1-LA-mPFC network. Theta coupling increased between all areas during retrieval of conditioned fear, and declined during extinction learning. During extinction recall, theta coupling partly rebounded in LA-mPFC and CA1-mPFC, and remained at a low level in CA1-LA. Interfering with theta coupling through local electrical microstimulation in CA1-LA affected conditioned fear and extinction recall depending on theta phase. These results support the hypothesis that theta coupling provides a means for inter-areal coordination in conditioned behavioral responsiveness. More specifically, theta oscillations seem to contribute to a population code indicating conditioned stimuli during recall of fear memory before and after extinction.

  11. A Precision Measurement of sin$^{2}\\theta$$_{w}$ from Semileptonic Neutrino Scattering

    CERN Document Server

    Wotschack, Jorg

    1987-01-01

    There is considerable interest in measuring the electroweak mixing parameter sin$^{2}\\Theta$$_{w}$, of the Glashow-Salam-Weinberg theory $^{1}$ as precisely as possible: first, its value may be predicted by models of Grand Unification;$^{2}$ second, precise measurements of sin$^{2}\\Theta$$_{w}$ from different processes would test the validity of electroweak radiative corrections. $^{3,$}$. Different methods have been used to determine sin$^{2}\\Theta$$_{w}$, over a large range of $Q^{2}$ values. FIGURE 1 gives a compilation of sin$^{2}\\Theta$$_{w}$ with remarkable agreement between the results. At present, it is most precisely determined in semileptonic neutrino-nucleon scattering from the ratio of neutral current (NC) to charged current (CC) cross and in proton-antiproton collisions from the W boson mass. $^{10,11}$.

  12. [Effects of unstructured video exposure on EEG power in situations of forced attention and rest].

    Science.gov (United States)

    Dan'ko, S G; Boĭtsova, Iu A; Kachalova, L M

    2011-01-01

    Group 1 (N = 30) and group 2 (N = 22) of healthy volunteers participated in the experiment. EEG registration took place while the examinees were in the resting states: with closed eyes; with opened eyes; with opened eyes and being under exposure to TV channel noises (white noise). Group 1 had also to fulfill a task to count randomly appearing symbols on a screen and group 2 had to fulfill a task to find an image in the noises. Averaged values of EEG power in each of the derivations in each of the derivations were calculated for an every examinee and for each of the states. The estimations were done in delta, theta, alpha1, alpha2, beta1, beta2, gamma frequency bands. The received results demonstrate that exposure to unstructured non-informative video noise can lead to significant changes of EEG power in a variety of frequency bands which are most prominent in the band alpha2. The changes are topically widespread, reflecting systemic changes in corresponding brain mechanisms, but are much less intensive if compared to changes between resting states with opened and closed eyes.

  13. Spirituality and brain waves.

    Science.gov (United States)

    Vaghefi, Mahsa; Nasrabadi, Ali Motie; Golpayegani, Seyed Mohammad Reza Hashemi; Mohammadi, Mohammad-Reza; Gharibzadeh, Shahriar

    2015-02-01

    The aim of this study is to investigate the effect of Quran on a Persian-speaking Muslim. Volunteers listened to three different audio files (Verses from Sura 'Forqan' unconsciously; Arabic text unconsciously; Verses from Sura 'Fath' consciously). EEG signals were recorded and the changes in the relative power of theta and alpha band are considered an indicators of relaxation. The findings indicate that conscious listening to Holy Quran increases the relative theta power in most areas of the head, compared to the rest condition, and listening to Quran unconsciously increased relative theta power in the frontal and central lobes of the head significantly, compared to the rest condition. Also, listening to Quran consciously increases the relative alpha power in the frontal lobe, compared to the rest condition.

  14. Age-related changes of frontal-midline theta is predictive of efficient memory maintenance.

    Science.gov (United States)

    Kardos, Z; Tóth, B; Boha, R; File, B; Molnár, M

    2014-07-25

    Frontal areas are thought to be the coordinators of working memory processes by controlling other brain areas reflected by oscillatory activities like frontal-midline theta (4-7 Hz). With aging substantial changes can be observed in the frontal brain areas, presumably leading to age-associated changes in cortical correlates of cognitive functioning. The present study aimed to test whether altered frontal-midline theta dynamics during working memory maintenance may underlie the capacity deficits observed in older adults. 33-channel EEG was recorded in young (18-26 years, N=20) and old (60-71 years, N=16) adults during the retention period of a visual delayed match-to-sample task, in which they had to maintain arrays of 3 or 5 colored squares. An additional visual odd-ball task was used to be able to measure the electrophysiological indices of sustained attentional processes. Old participants showed reduced frontal theta activity during both tasks compared to the young group. In the young memory maintenance-related frontal-midline theta activity was shown to be sensitive both to the increased memory demands and to efficient subsequent memory performance, whereas the old adults showed no such task-related difference in the frontal theta activity. The decrease of frontal-midline theta activity in the old group indicates that cerebral aging may alter the cortical circuitries of theta dynamics, thereby leading to age-associated decline of working memory maintenance function. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Study on EEG power and coherence in patients with mild cognitive impairment during working memory task

    Institute of Scientific and Technical Information of China (English)

    JIANG Zheng-yan

    2005-01-01

    To investigate the features of electroencephalography (EEG) power and coherence at rest and during a working memory task of patients with mild cognitive impairment (MCI). Thirty-five patients (17 males, 18 females; 52~71 years old) and 34 sex- and age-matched controls (17 males, 17 females; 51~63 years old) were recruited in the present study. Mini-Mental State Examination (MMSE) of 35 patients with MCI and 34 normal controls revealed that the scores of MCI patients did not differ significantly from those of normal controls (P>0.05). Then, EEGs at rest and during working memory task with three levels of working memory load were recorded. The EEG power was computed over 10 channels: right and left frontal (F3, F4), central (C3,C4), parietal (P3, P4), temporal (TS, T6) and occipital (O1, O2); inter-hemispheric coherences were computed from five electrode pairs of F3-F4, C3-C4, P3-P4, T5-T6 and O1-O2 for delta (1.0~3.5 Hz), theta (4.0~7.5 Hz), alpha-1 (8.0~10.0 Hz), alpha-2 (10.5~13.0 Hz), beta-1 (13.5~18.0 Hz) and beta-2 (18.5~30.0 Hz) frequency bands. All values of the EEG power of MCI patients were found to be higher than those of normal controls at rest and during working memory tasks. Furthermore, the values of EEG power in the theta, alpha-1, alpha-2 and beta-1 bands of patients with MCI were significantly high (P<0.05) in comparison with those of normal controls. Correlation analysis indicated a significant negative correlation between the EEG powers and MMSE scores. In addition, during working memory tasks, the EEG coherences in all bands were significantly higher in the MCI group in comparison with those in the control group (P<0.05). However, there was no significant difference in EEG coherences between two groups at rest. These findings comprise evidence that MCI patients have higher EEG power at rest, and higher EEG power and coherence during working conditions. It suggests that MCI may be associated with compensatory processes at

  16. The fermion boundary condition and the THETA-angle in QED2

    International Nuclear Information System (INIS)

    Hrasko, P.

    1983-09-01

    The order parameter of the Schwinger model is calculated in the Euclidean functional integral approach. It is shown that the symmetry breaking angle THETA is intimately connected to the boundary condition imposed on the fermions. The transition to the Euclidean description involves both imaginary time and imaginary THETA. (author)

  17. Non-REM sleep EEG power distribution in fatigue and sleepiness.

    Science.gov (United States)

    Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Linkowski, Paul; Le Bon, Olivier

    2014-04-01

    The aim of this study is to contribute to the sleep-related differentiation between daytime fatigue and sleepiness. 135 subjects presenting with sleep apnea-hypopnea syndrome (SAHS, n=58) or chronic fatigue syndrome (CFS, n=52) with respective sleepiness or fatigue complaints and a control group (n=25) underwent polysomnography and psychometric assessments for fatigue, sleepiness, affective symptoms and perceived sleep quality. Sleep EEG spectral analysis for ultra slow, delta, theta, alpha, sigma and beta power bands was performed on frontal, central and occipital derivations. Patient groups presented with impaired subjective sleep quality and higher affective symptom intensity. CFS patients presented with highest fatigue and SAHS patients with highest sleepiness levels. All groups showed similar total sleep time. Subject groups mainly differed in sleep efficiency, wake after sleep onset, duration of light sleep (N1, N2) and slow wave sleep, as well as in sleep fragmentation and respiratory disturbance. Relative non-REM sleep power spectra distributions suggest a pattern of power exchange in higher frequency bands at the expense of central ultra slow power in CFS patients during all non-REM stages. In SAHS patients, however, we found an opposite pattern at occipital sites during N1 and N2. Slow wave activity presents as a crossroad of fatigue and sleepiness with, however, different spectral power band distributions during non-REM sleep. The homeostatic function of sleep might be compromised in CFS patients and could explain why, in contrast to sleepiness, fatigue does not resolve with sleep in these patients. The present findings thus contribute to the differentiation of both phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The design of a linear L-band high power amplifier for mobile communication satellites

    Science.gov (United States)

    Whittaker, N.; Brassard, G.; Li, E.; Goux, P.

    1990-01-01

    A linear L-band solid state high power amplifier designed for the space segment of the Mobile Satellite (MSAT) mobile communication system is described. The amplifier is capable of producing 35 watts of RF power with multitone signal at an efficiency of 25 percent and with intermodulation products better than 16 dB below carrier.

  19. Increased alpha-band power during the retention of shapes and shape-location associations in visual short-term memory

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Johnson

    2011-06-01

    Full Text Available Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band (~8-14 Hz power during the delay period of delayed-recognition short-term memory tasks. These increases have been proposed to reflect the inhibition, for example, of cortical areas representing task-irrelevant information, or of potentially interfering representations from previous trials. Another possibility, however, is that elevated delay-period alpha-band power reflects the selection and maintenance of information, rather than, or in addition to, the inhibition of task-irrelevant information. In the present study, we explored these possibilities using a delayed-recognition paradigm in which the presence and task-relevance of shape information was systematically manipulated across trial blocks and EEG was used to measure alpha-band power. In the first trial block, participants remembered locations marked by identical black circles. The second block featured the same instructions, but locations were marked by unique shapes. The third block featured the same stimulus presentation as the second, but with pretrial instructions indicating, on a trial-by-trial basis, whether memory for shape or location was required, the other dimension being irrelevant. In the final block, participants remembered the unique pairing of shape and location for each stimulus. Results revealed minimal delay-period alpha-band power in each of the location-memory conditions, whether locations were marked with identical circles or with unique task-irrelevant shapes. In contrast, alpha-band power increases were observed in both the shape-memory condition, in which location was task irrelevant, and in the critical final condition, in which both shape and location were task relevant. These results provide support for the proposal that alpha-band oscillations reflect the retention of shape information and/or shape-location associations in short-term memory.

  20. Are the iota(1440) and theta(1640) glueballs or quarkonia

    International Nuclear Information System (INIS)

    Ono, S.; Pene, O.

    1982-01-01

    We study the possibility that the iota (1440) and theta (1640) are radially excited quarkonium states (2S and 2P). Their masses, total decay rates and psi → iotaγ, thetaγ branching ratios are roughly in agreement with this hypothesis but deltaπ dominance in iota decay is difficult to explain. We propose clear tests to check if they are quarkonium states. (orig.)

  1. Theta Phase Synchronization Is the Glue that Binds Human Associative Memory.

    Science.gov (United States)

    Clouter, Andrew; Shapiro, Kimron L; Hanslmayr, Simon

    2017-10-23

    Episodic memories are information-rich, often multisensory events that rely on binding different elements [1]. The elements that will constitute a memory episode are processed in specialized but distinct brain modules. The binding of these elements is most likely mediated by fast-acting long-term potentiation (LTP), which relies on the precise timing of neural activity [2]. Theta oscillations in the hippocampus orchestrate such timing as demonstrated by animal studies in vitro [3, 4] and in vivo [5, 6], suggesting a causal role of theta activity for the formation of complex memory episodes, but direct evidence from humans is missing. Here, we show that human episodic memory formation depends on phase synchrony between different sensory cortices at the theta frequency. By modulating the luminance of visual stimuli and the amplitude of auditory stimuli, we directly manipulated the degree of phase synchrony between visual and auditory cortices. Memory for sound-movie associations was significantly better when the stimuli were presented in phase compared to out of phase. This effect was specific to theta (4 Hz) and did not occur in slower (1.7 Hz) or faster (10.5 Hz) frequencies. These findings provide the first direct evidence that episodic memory formation in humans relies on a theta-specific synchronization mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    Science.gov (United States)

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  3. Relationships between electroencephalographic spectral peaks across frequency bands

    Directory of Open Access Journals (Sweden)

    Sacha Jennifer Van Albada

    2013-03-01

    Full Text Available The degree to which electroenencephalographic (EEG spectral peaks are independent, and the relationships between their frequencies have been debated. A novel fitting method was used to determine peak parameters in the range 2–35 Hz from a large sample of eyes-closed spectra, and their interrelationships were investigated. Findings were compared with a mean-field model of thalamocortical activity, which predicts near-harmonic relationships between peaks. The subject set consisted of 1424 healthy subjects from the Brain Resource International Database. Peaks in the theta range occurred on average near half the alpha peak frequency, while peaks in the beta range tended to occur near twice and three times the alpha peak frequency on an individual-subject basis. Moreover, for the majority of subjects, alpha peak frequencies were significantly positively correlated with frequencies of peaks in the theta and low and high beta ranges. Such a harmonic progression agrees semiquantitatively with theoretical predictions from the mean-field model. These findings indicate a common or analogous source for different rhythms, and help to define appropriate individual frequency bands for peak identification.

  4. Relationships between Electroencephalographic Spectral Peaks Across Frequency Bands

    Science.gov (United States)

    van Albada, S. J.; Robinson, P. A.

    2013-01-01

    The degree to which electroencephalographic spectral peaks are independent, and the relationships between their frequencies have been debated. A novel fitting method was used to determine peak parameters in the range 2–35 Hz from a large sample of eyes-closed spectra, and their interrelationships were investigated. Findings were compared with a mean-field model of thalamocortical activity, which predicts near-harmonic relationships between peaks. The subject set consisted of 1424 healthy subjects from the Brain Resource International Database. Peaks in the theta range occurred on average near half the alpha peak frequency, while peaks in the beta range tended to occur near twice and three times the alpha peak frequency on an individual-subject basis. Moreover, for the majority of subjects, alpha peak frequencies were significantly positively correlated with frequencies of peaks in the theta and low and high beta ranges. Such a harmonic progression agrees semiquantitatively with theoretical predictions from the mean-field model. These findings indicate a common or analogous source for different rhythms, and help to define appropriate individual frequency bands for peak identification. PMID:23483663

  5. Laser--plasma interaction in a theta-pinch geometry

    International Nuclear Information System (INIS)

    Armstrong, W.T.

    1978-06-01

    Prompt stimulated Brillouin scatter (SBS) is studied in an experiment wherein a high power, pulsed CO 2 laser irradiates an independently produced, theta-pinch plasma. SBS does not significantly affect laser heating of the plasma. Measurements of density profiles and temperature histories permitted examination of laser refraction, local heating and net absorption. Refractive containment of the CO 2 laser beam by an on-axis density minimum was observed at early times during the laser pulse. However, refractive containment was lost at late times due to the diffusive loss of the density minimum. Classical modeling of the expected heating required ''bleached'' absorption to account for the observed heating. A plasma absorptivity of approximately 46% was inferred from calorimetry measurements at 250 mtorr fill pressure. These results confirm that classical heating and refraction dominated the laser-plasma interaction

  6. Comparison of QEEG Findings between Adolescents with Attention Deficit Hyperactivity Disorder (ADHD) without Comorbidity and ADHD Comorbid with Internet Gaming Disorder.

    Science.gov (United States)

    Park, Jeong Ha; Hong, Ji Sun; Han, Doug Hyun; Min, Kyoung Joon; Lee, Young Sik; Kee, Baik Seok; Kim, Sun Mi

    2017-03-01

    Internet gaming disorder (IGD) is often comorbid with attention deficit hyperactivity disorder (ADHD). In this study, we compared the neurobiological differences between ADHD comorbid with IGD (ADHD+IGD group) and ADHD without comorbidity (ADHD-only group) by analyzing quantitative electroencephalogram (QEEG) findings. We recruited 16 male ADHD+IGD, 15 male ADHD-only adolescent patients, and 15 male healthy controls (HC group). Participants were assessed using Young's Internet Addiction Scale and ADHD Rating Scale. Relative power and inter- and intra-hemispheric coherences of brain waves were measured using a digital electroencephalography (EEG) system. Compared to the ADHD-only group, the ADHD+IGD group showed lower relative delta power and greater relative beta power in temporal regions. The relative theta power in frontal regions were higher in ADHD-only group compared to HC group. Inter-hemispheric coherence values for the theta band between F3-F4 and C3-C4 electrodes were higher in ADHD-only group compared to HC group. Intra-hemispheric coherence values for the delta, theta, alpha, and beta bands between P4-O2 electrodes and intra-hemispheric coherence values for the theta band between Fz-Cz and T4-T6 electrodes were higher in ADHD+IGD group compared to ADHD-only group. Adolescents who show greater vulnerability to ADHD seem to continuously play Internet games to unconsciously enhance attentional ability. In turn, relative beta power in attention deficit in ADHD+IGD group may become similar to that in HC group. Repetitive activation of brain reward and working memory systems during continuous gaming may result in an increase in neuronal connectivity within the parieto-occipital and temporal regions for the ADHD+IGD group.

  7. High-Efficiency, Ka-band Solid-State Power Amplifier Utilizing GaN Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop an efficient, solid-state power amplifier (SSPA), operating at Ka-band frequencies, for high data rate, long range space...

  8. Refrigeration requirements for fusion reactors based upon the theta-pinch concept

    International Nuclear Information System (INIS)

    Williamson, K.D. Jr.; King, C.R.

    1976-01-01

    Two refrigeration systems applicable to the theta-pinch fusion concept are described. The first is a 1100 W, 4.5 K refrigerator which will be used for testing superconducting NbTi Magnetic Energy Transfer and Storage (METS) coil systems. This unit is currently being installed and is to be operational by April 1977. The second unit is applicable to the Syllac Fusion Test Reactor (SFTR) and has been conceptually designed. This liquefier-refrigerator is about 22 times larger than those in existence at present and will require 12-MW input electrical power. It will provide 3045 kg/h of liquid helium at 4.5 K

  9. Dendritic brushes under theta and poor solvent conditions

    Science.gov (United States)

    Gergidis, Leonidas N.; Kalogirou, Andreas; Charalambopoulos, Antonios; Vlahos, Costas

    2013-07-01

    The effects of solvent quality on the internal stratification of polymer brushes formed by dendron polymers up to third generation were studied by means of molecular dynamics simulations with Langevin thermostat. The distributions of polymer units, of the free ends, the radii of gyration, and the back folding probabilities of the dendritic spacers were studied at the macroscopic states of theta and poor solvent. For high grafting densities we observed a small decrease in the height of the brush as the solvent quality decreases. The internal stratification in theta solvent was similar to the one we found in good solvent, with two and in some cases three kinds of populations containing short dendrons with weakly extended spacers, intermediate-height dendrons, and tall dendrons with highly stretched spacers. The differences increase as the grafting density decreases and single dendron populations were evident in theta and poor solvent. In poor solvent at low grafting densities, solvent micelles, polymeric pinned lamellae, spherical and single chain collapsed micelles were observed. The scaling dependence of the height of the dendritic brush at high density brushes for both solvents was found to be in agreement with existing analytical results.

  10. High-Efficiency, Ka-Band Solid-State Power Amplifier Utilizing GaN Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop a high-efficiency, solid-state power amplifier (SSPA), operating at Ka-band frequencies, for high data rate, long range space...

  11. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period.

    Science.gov (United States)

    Martinez, E I Rodríguez; Barriga-Paulino, C I; Zapata, M I; Chinchilla, C; López-Jiménez, A M; Gómez, C M

    2012-08-24

    The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.

  12. The analyzing power Asub(y)[(theta) for 12C(n,nsub(0,1))12C betwen 8.9 and] 14.9 MeV neutron energy

    International Nuclear Information System (INIS)

    Woye, E.; Tornow, W.; Mack, G.; Clegg, T.B.; Wylie, W.

    1983-01-01

    The analyzing power Asub(#betta#)(theta) for 12 C(n,n) 12 C elastic scattering and for inelastic scattering to the first excited state (Jsup(π) = 2 + , Q = -4.44 MeV) of 12 C was measured in the energy range from 8.9 to 14.9 MeV in 1 MeV steps. A pulsed polarized neutron beam was produced via the 2 H(d vector,n vector) 3 He polarization transfer reaction. Monte Carlo simulations were used to correct the data for finite geometry and multiple scattering effects. The Asub(#betta#) data, together with publsihed cross-section data, were analyzed in the framework of the spherical optical model and in the coupled-channels formalism. A good description of the data has been achieved. (orig.)

  13. Modulation of electroencephalograph activity by manual acupuncture stimulation in healthy subjects: An autoregressive spectral analysis

    International Nuclear Information System (INIS)

    Yi Guo-Sheng; Wang Jiang; Deng Bin; Wei Xi-Le; Han Chun-Xiao

    2013-01-01

    To investigate whether and how manual acupuncture (MA) modulates brain activities, we design an experiment where acupuncture at acupoint ST36 of the right leg is used to obtain electroencephalograph (EEG) signals in healthy subjects. We adopt the autoregressive (AR) Burg method to estimate the power spectrum of EEG signals and analyze the relative powers in delta (0 Hz–4 Hz), theta (4 Hz–8 Hz), alpha (8 Hz–13 Hz), and beta (13 Hz–30 Hz) bands. Our results show that MA at ST36 can significantly increase the EEG slow wave relative power (delta band) and reduce the fast wave relative powers (alpha and beta bands), while there are no statistical differences in theta band relative power between different acupuncture states. In order to quantify the ratio of slow to fast wave EEG activity, we compute the power ratio index. It is found that the MA can significantly increase the power ratio index, especially in frontal and central lobes. All the results highlight the modulation of brain activities with MA and may provide potential help for the clinical use of acupuncture. The proposed quantitative method of acupuncture signals may be further used to make MA more standardized. (interdisciplinary physics and related areas of science and technology)

  14. The electric dipole moment of the deuteron from the QCD {theta}-term

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, J.; Liebig, S. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Hanhart, C.; Nogga, A.; Wirzba, A. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich (Germany); Forschungszentrum Juelich, JARA - Forces And Matter Experiments, Juelich (Germany); Meissner, U.G. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich (Germany); Forschungszentrum Juelich, JARA - Forces And Matter Experiments, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Universitaet Bonn, Bethe Center for Theoretical Physics, Bonn (Germany)

    2013-03-15

    The two-nucleon contributions to the electric dipole moment (EDM) of the deuteron, induced by the QCD {theta}-term, are calculated in the framework of effective field theory up-to-and-including next-to-next-to-leading order. In particular we find for the difference of the deuteron EDM and the sum of proton and neutron EDM induced by the QCD {theta}-term a value of (- 5.4 {+-}3.9) anti {theta} x 10{sup -} {sup 4} e fm. The by far dominant uncertainty comes from the CP- and isospin-violating {pi}NN coupling constant. (orig.)

  15. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity.

    Science.gov (United States)

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-01-01

    A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state.

  16. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity

    Directory of Open Access Journals (Sweden)

    Nantawachara Jirakittayakorn

    2017-06-01

    Full Text Available A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state.

  17. Areas V1 and V2 show microsaccade-related 3-4-Hz covariation in gamma power and frequency.

    Science.gov (United States)

    Lowet, E; Roberts, M J; Bosman, C A; Fries, P; De Weerd, P

    2016-05-01

    Neuronal gamma-band synchronization (25-80 Hz) in visual cortex appears sustained and stable during prolonged visual stimulation when investigated with conventional averages across trials. However, recent studies in macaque visual cortex have used single-trial analyses to show that both power and frequency of gamma oscillations exhibit substantial moment-by-moment variation. This has raised the question of whether these apparently random variations might limit the functional role of gamma-band synchronization for neural processing. Here, we studied the moment-by-moment variation in gamma oscillation power and frequency, as well as inter-areal gamma synchronization, by simultaneously recording local field potentials in V1 and V2 of two macaque monkeys. We additionally analyzed electrocorticographic V1 data from a third monkey. Our analyses confirm that gamma-band synchronization is not stationary and sustained but undergoes moment-by-moment variations in power and frequency. However, those variations are neither random and nor a possible obstacle to neural communication. Instead, the gamma power and frequency variations are highly structured, shared between areas and shaped by a microsaccade-related 3-4-Hz theta rhythm. Our findings provide experimental support for the suggestion that cross-frequency coupling might structure and facilitate the information flow between brain regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. The relationship between hippocampal EEG theta activity and locomotor behaviour in freely moving rats: effects of vigabatrin.

    Science.gov (United States)

    Bouwman, B M; van Lier, H; Nitert, H E J; Drinkenburg, W H I M; Coenen, A M L; van Rijn, C M

    2005-01-30

    The relationship between hippocampal electroencephalogram (EEG) theta activity and locomotor speed in both spontaneous and forced walking conditions was studied in rats after vigabatrin injection (500 mg/kg i.p.). Vigabatrin increased the percentage of time that rats spent being immobile. During spontaneous walking in the open field, the speed of locomotion was increased by vigabatrin, while theta peak frequency was decreased. Vigabatrin also reduced the theta peak frequency during forced (speed controlled) walking. There was only a weak positive correlation (r=0.22) between theta peak frequency and locomotor speed for the saline condition. Furthermore, vigabatrin abolishes the weak relationship between speed of locomotion and theta peak frequency. Vigabatrin and saline did not differ in the slope of the regression line, but showed different offset points at the theta peak frequency axis. Thus, other factors than speed of locomotion seem to be involved in determination of the theta peak frequency.

  19. Performance analysis of a low power low noise tunable band pass filter for multiband RF front end

    International Nuclear Information System (INIS)

    Manjula, J.; Malarvizhi, S.

    2014-01-01

    This paper presents a low power tunable active inductor and RF band pass filter suitable for multiband RF front end circuits. The active inductor circuit uses the PMOS cascode structure as the negative transconductor of a gyrator to reduce the noise voltage. Also, this structure provides possible negative resistance to reduce the inductor loss with wide inductive bandwidth and high resonance frequency. The RF band pass filter is realized using the proposed active inductor with suitable input and output buffer stages. The tuning of the center frequency for multiband operation is achieved through the controllable current source. The designed active inductor and RF band pass filter are simulated in 180 nm and 45 nm CMOS process using the Synopsys HSPICE simulation tool and their performances are compared. The parameters, such as resonance frequency, tuning capability, noise and power dissipation, are analyzed for these CMOS technologies and discussed. The design of a third order band pass filter using an active inductor is also presented. (semiconductor integrated circuits)

  20. Compact-Toroid fusion reactor based on the field-reversed theta pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-03-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CTOR) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  1. Search for $\\Theta^{++}$ Pentaquarks in the Exclusive Reaction $\\gamma p\\to K^+K^-p$

    Energy Technology Data Exchange (ETDEWEB)

    V. Kubarovsky; Marco Battaglieri; Raffaella De Vita; John Goett; Lei Guo; Gordon Mutchler; Paul Stoler; Dennis Weygand; Pawel Ambrozewicz; Marco Anghinolfi; Gegham Asryan; Harutyun AVAKIAN; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; V. Batourine; Ivan Bedlinski; Ivan Bedlinskiy; Matthew Bellis; Nawal Benmouna; Barry Berman; Angela Biselli; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Shifeng Chen; Eric Clinton; Philip Cole; Patrick Collins; Philip Coltharp; Donald Crabb; Hall Crannell; Volker Crede; John Cummings; Rita De Masi; Daniel Dale; Enzo De Sanctis; Pavel Degtiarenko; Alexandre Deur; Kahanawita Dharmawardane; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; Paul Eugenio; Gleb Fedotov; Herbert Funsten; Marianna Gabrielyan; Liping Gan; Michel Garcon; Ashot Gasparian; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; Oleksandr Glamazdin; John Goetz; Evgueni Golovatch; Atilla Gonenc; Christopher Gordon; Ralf Gothe; Keith Griffioen; Michel Guidal; Nevzat Guler; Vardan Gyurjyan; Cynthia Hadjidakis; Kawtar Hafidi; Rafael Hakobyan; John Hardie; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Franz Klein; Friedrich Klein; Alexei Klimenko; Mikhail Kossov; Laird Kramer; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ji Li; Kenneth Livingston; Hai-jiang Lu; Marion MacCormick; Nikolai Markov; Bryan McKinnon; Bernhard Mecking; Joseph Melone; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Vasiliy Mochalov; Viktor Mokeev; Ludyvine Morand; Steven Morrow; Maryam Moteabbed; Pawel Nadel-Turonski; Itaru Nakagawa; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Sergey Pozdnyakov; John Price; Yelena Prok; Dan Protopopescu; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Nikolay Shvedunov; Elton Smith; Lee Smith; Daniel Sober; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Igor Strakovski; Steffen Strauch; Mauro Taiuti; David Tedeschi; Aram Teymurazyan; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Lawrence Weinstein; Michael Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao

    2006-04-28

    The reaction {gamma}p {yields} K{sup +}K{sup -}p was studied at Jefferson Lab with photon energies from 1.8 to 3.8 GeV using a tagged photon beam. The goal was to search for a {Theta}{sup ++} pentaquark, a narrow doubly charged baryon state having strangeness S = +1 and isospin I = 1, in the pK{sup +} invariant mass spectrum. No statistically significant evidence of a {Theta}{sup ++} was found. Upper limits on the total and differential production cross section for the reaction {gamma}p {yields} K{sup -}{Theta}{sup ++} were obtained in the mass range from 1.5 to 2.0 GeV/c{sup 2}, with an upper limit of about 0.15 nb, 95% C.L. for a narrow resonance with a mass M{sub {Theta}{sup ++}} = 1.54 GeV/c{sup 2}. This result places a very stringent upper limit on the {Theta}{sup ++} width.

  2. High-power broad-band tunable microwave oscillator, driven by REB in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kuzelev, M V; Loza, O T; Ponomarev, A V; Rukhadze, A A; Strel` kov, P S; Shkvarunets, A G; Ulyanov, D K [General Physics Inst. of Russian Academy of Sciences, Moscow (Russian Federation)

    1997-12-31

    The radiation spectra of a plasma relativistic broad-band microwave oscillator were measured. A hollow relativistic electron beam (REB) was injected into the plasma waveguide, consisting of annular plasma in a circular metal waveguide. The radiation spectra were measured by means of a calorimeter-spectrometer with a large cross section in the band of 3-39 GHz. The mean frequency was tunable in the band of 20-27 GHz, the spectrum width was 5-25 GHz with a power level of 40-85 MW. Calculations were carried out based on non-linear theory, taking into account electromagnetic noise amplification due to REB injection into the plasma waveguide. According to the theory the radiation regime should change from the single-particle regime to the collective regime when the plasma density and the gap between the annular plasma and REB are increased. Comparison of the experimental results with the non-linear theory explains some peculiarities of the measured spectrum. (author). 4 figs., 2 refs.

  3. HIGH POWER TESTS OF A MULTIMODE X-BAND RF DISTRIBUTION SYSTEMS

    International Nuclear Information System (INIS)

    Tantawi, S

    2004-01-01

    We present a multimode X-band rf pulse compression system suitable for the Next Linear Collider (NLC). The NLC main linacs operate at 11.424 GHz. A single NLC rf unit is required which produce 400 ns pulses with 600 MW of peak power. Each rf unit should power approximately 5 meters of accelerator structures. These rf units consist of two 75 MW klystrons and a dual-moded resonant delay line pulse compression system [1] that produce a flat output pulse. The pulse compression system components are all over moded and most components are design to operate with two modes at the same time. This approach allows increasing the power handling capabilities of the system while maintain a compact inexpensive system. We detail the design of this system and present experimental cold test results. The high power testing of the system is verified using four 50-MW solenoid focused klystrons. These Klystrons should be able to push the system beyond NLC requirements

  4. Flux compression generators as plasma compression power sources

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; Thomson, D.B.; Garn, W.B.

    1979-01-01

    A survey is made of applications where explosive-driven magnetic flux compression generators have been or can be used to directly power devices that produce dense plasmas. Representative examples are discussed that are specific to the theta pinch, the plasma gun, the dense plasma focus and the Z pinch. These examples are used to illustrate the high energy and power capabilities of explosive generators. An application employing a rocket-borne, generator-powered plasma gun emphasizes the size and weight potential of flux compression power supplies. Recent results from a local effort to drive a dense plasma focus are provided. Imploding liners ae discussed in the context of both the theta and Z pinches

  5. Delta-gamma-theta Hedging of Crude Oil Asian Options

    Directory of Open Access Journals (Sweden)

    Juraj Hruška

    2015-01-01

    Full Text Available Since Black-Scholes formula was derived, many methods have been suggested for vanilla as well as exotic options pricing. More of investing and hedging strategies have been developed based on these pricing models. Goal of this paper is to derive delta-gamma-theta hedging strategy for Asian options and compere its efficiency with gamma-delta-theta hedging combined with predictive model. Fixed strike Asian options are type of exotic options, whose special feature is that payoff is calculated from the difference of average market price and strike price for call options and vice versa for the put options. Methods of stochastic analysis are used to determine deltas, gammas and thetas of Asian options. Asian options are cheaper than vanilla options and therefore they are more suitable for precise portfolio creation. On the other hand their deltas are also smaller as well as profits. That means that they are also less risky and more suitable for hedging. Results, conducted on chosen commodity, confirm better feasibility of Asian options compering with vanilla options in sense of gamma hedging.

  6. swot: Super W Of Theta

    Science.gov (United States)

    Coupon, Jean; Leauthaud, Alexie; Kilbinger, Martin; Medezinski, Elinor

    2017-07-01

    SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.

  7. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents.

    Science.gov (United States)

    Benoit, Stephen C; Kemp, Christopher J; Elias, Carol F; Abplanalp, William; Herman, James P; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G; Holland, William L; Clegg, Deborah J

    2009-09-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-theta, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-theta was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-theta to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-theta nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-theta attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-theta activation, resulting in reduced insulin activity.

  8. Experimental study of CF4 conical theta pinch plasma expanding into vacuum

    International Nuclear Information System (INIS)

    Pedrow, P.D.; Nasiruddin, A.M.

    1989-01-01

    Langmuir probe, photodiode, and optical multichannel analyzer (OMA) measurements have been made on a pulsed CF 4 conical theta pinch plasma. A cloud of CF 4 gas was puffed into a conical theta pinch coil, converted to plasma, and propelled into the vacuum region ahead of the expanding gas cloud. At a position 67 cm away from the conical theta pinch coil, the plasma arrived in separate packets that were about 20 μs in duration. The average drift velocity of these packets corresponded to an energy of about 3 eV. The OMA measurements showed that the second packet contained neutral atomic fluorine as well as charged particles

  9. Support vector machine and fuzzy C-mean clustering-based comparative evaluation of changes in motor cortex electroencephalogram under chronic alcoholism.

    Science.gov (United States)

    Kumar, Surendra; Ghosh, Subhojit; Tetarway, Suhash; Sinha, Rakesh Kumar

    2015-07-01

    In this study, the magnitude and spatial distribution of frequency spectrum in the resting electroencephalogram (EEG) were examined to address the problem of detecting alcoholism in the cerebral motor cortex. The EEG signals were recorded from chronic alcoholic conditions (n = 20) and the control group (n = 20). Data were taken from motor cortex region and divided into five sub-bands (delta, theta, alpha, beta-1 and beta-2). Three methodologies were adopted for feature extraction: (1) absolute power, (2) relative power and (3) peak power frequency. The dimension of the extracted features is reduced by linear discrimination analysis and classified by support vector machine (SVM) and fuzzy C-mean clustering. The maximum classification accuracy (88 %) with SVM clustering was achieved with the EEG spectral features with absolute power frequency on F4 channel. Among the bands, relatively higher classification accuracy was found over theta band and beta-2 band in most of the channels when computed with the EEG features of relative power. Electrodes wise CZ, C3 and P4 were having more alteration. Considering the good classification accuracy obtained by SVM with relative band power features in most of the EEG channels of motor cortex, it can be suggested that the noninvasive automated online diagnostic system for the chronic alcoholic condition can be developed with the help of EEG signals.

  10. The role of REM theta activity in emotional memory

    Directory of Open Access Journals (Sweden)

    Isabel Camilla Hutchison

    2015-10-01

    Full Text Available While NREM sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of REM sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity – which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex – is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale PGO waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and the gradual weakening of consolidated hippocampal memory traces observed in both wake and REM sleep. Hippocampal theta activity is also correlated with REM sleep acetylcholine levels – which are thought to reduce hippocampal afferent inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate recurrent activation within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.

  11. Ramanujan's mock theta functions.

    Science.gov (United States)

    Griffin, Michael; Ono, Ken; Rolen, Larry

    2013-04-09

    In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. Recent work by Zwegers [Zwegers S (2001) Contemp Math 291:268-277 and Zwegers S (2002) PhD thesis (Univ of Utrecht, Utrecht, The Netherlands)] has elucidated the theory encompassing these examples. They are holomorphic parts of special harmonic weak Maass forms. Despite this understanding, little attention has been given to Ramanujan's original definition. Here, we prove that Ramanujan's examples do indeed satisfy his original definition.

  12. Transmitter release in the neuromuscular synapse of the protein kinase C theta-deficient adult mouse.

    Science.gov (United States)

    Besalduch, Núria; Santafé, Manel M; Garcia, Neus; Gonzalez, Carmen; Tomás, Marta; Tomás, Josep; Lanuza, Maria A

    2011-04-01

    We studied structural and functional features of the neuromuscular junction in adult mice (P30) genetically deficient in the protein kinase C (PKC) theta isoform. Confocal and electron microscopy shows that there are no differences in the general morphology of the endplates between PKC theta-deficient and wild-type (WT) mice. Specifically, there is no difference in the density of the synaptic vesicles. However, the myelin sheath is not as thick in the intramuscular nerve fibers of the PKC theta-deficient mice. We found a significant reduction in the size of evoked endplate potentials and in the frequency of spontaneous, asynchronous, miniature endplate potentials in the PKC theta-deficient neuromuscular preparations in comparison with the WT, but the mean amplitude of the spontaneous potentials is not different. These changes indicate that PKC theta has a presynaptic role in the function of adult neuromuscular synapses. Copyright © 2010 Wiley-Liss, Inc.

  13. Enhanced Constraints on theta13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    The KamLAND Collaboration; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, K.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B. D.; Yabumoto, H.; Yoshida, H.; Yoshida, S.; Enomoto, S.; Kozlov, A.; Murayama, H.; Grant, C.; Keefer, G.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O' Donnell, T.; Steiner, H. M.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Decowski, M. P.

    2010-09-24

    We present new constraints on the neutrino oscillation parameters {Delta}m{sub 21}{sup 2}, {theta}{sub 12}, and {theta}{sub 13} from a three-flavor analysis of solar and KamLAND data. The KamLAND data set includes data acquired following a radiopurity upgrade and amounts to a total exposure of 3.49 x 10{sup 32} target-proton-year. Under the assumption of CPT invariance, a two-flavor analysis ({theta}{sub 13} = 0) of the KamLAND and solar data yields the best-fit values tan{sup 2} {theta}{sub 12} = 0.444{sub -0.030}{sup +0.036} and {Delta}m{sub 21}{sup 2} = 7.50{sub -0.20}{sup +0.19} x 10{sup -5} eV{sup 2}; a three-flavor analysis with {theta}{sub 13} as a free parameter yields the best-fit values tan{sup 2} {theta}{sub 12} = 0.452{sub -0.033}{sup +0.035}, {Delta}m{sub 21}{sup 2} = 7.50{sub -0.20}{sup +0.19} x 10{sup -5}eV{sup 2}, and sin{sup 2} {theta}{sub 13} = 0.020{sub -0.016}{sup +0.016}. This {theta}{sub 13} interval is consistent with other recent work combining the CHOOZ, atmospheric and long-baseline accelerator experiments. We also present a new global {theta}{sub 13} analysis, incorporating the CHOOZ, atmospheric and accelerator data, which indicates sin{sup 2} {theta}{sub 13} = 0.017{sub -0.009}{sup +0.010}, a nonzero value at the 93% C.L. This finding will be further tested by upcoming accelerator and reactor experiments.

  14. Acupuncture induces divergent alterations of functional connectivity within conventional frequency bands: evidence from MEG recordings.

    Directory of Open Access Journals (Sweden)

    Youbo You

    Full Text Available As an ancient Chinese healing modality which has gained increasing popularity in modern society, acupuncture involves stimulation with fine needles inserted into acupoints. Both traditional literature and clinical data indicated that modulation effects largely depend on specific designated acupoints. However, scientific representations of acupoint specificity remain controversial. In the present study, considering the new findings on the sustained effects of acupuncture and its time-varied temporal characteristics, we employed an electrophysiological imaging modality namely magnetoencephalography with a temporal resolution on the order of milliseconds. Taken into account the differential band-limited signal modulations induced by acupuncture, we sought to explore whether or not stimulation at Stomach Meridian 36 (ST36 and a nearby non-meridian point (NAP would evoke divergent functional connectivity alterations within delta, theta, alpha, beta and gamma bands. Whole-head scanning was performed on 28 healthy participants during an eyes-closed no-task condition both preceding and following acupuncture. Data analysis involved calculation of band-limited power (BLP followed by pair-wise BLP correlations. Further averaging was conducted to obtain local and remote connectivity. Statistical analyses revealed the increased connection degree of the left temporal cortex within delta (0.5-4 Hz, beta (13-30 Hz and gamma (30-48 Hz bands following verum acupuncture. Moreover, we not only validated the closer linkage of the left temporal cortex with the prefrontal and frontal cortices, but further pinpointed that such patterns were more extensively distributed in the ST36 group in the delta and beta bands compared to the restriction only to the delta band for NAP. Psychophysical results for significant pain threshold elevation further confirmed the analgesic effect of acupuncture at ST36. In conclusion, our findings may provide a new perspective to lend

  15. Impaired theta phase-resetting underlying auditory N1 suppression in chronic alcoholism.

    Science.gov (United States)

    Fuentemilla, Lluis; Marco-Pallarés, Josep; Gual, Antoni; Escera, Carles; Polo, Maria Dolores; Grau, Carles

    2009-02-18

    It has been suggested that chronic alcoholism may lead to altered neural mechanisms related to inhibitory processes. Here, we studied auditory N1 suppression phenomena (i.e. amplitude reduction with repetitive stimuli) in chronic alcoholic patients as an early-stage information-processing brain function involving inhibition by the analysis of the N1 event-related potential and time-frequency computation (spectral power and phase-resetting). Our results showed enhanced neural theta oscillatory phase-resetting underlying N1 generation in suppressed N1 event-related potential. The present findings suggest that chronic alcoholism alters neural oscillatory synchrony dynamics at very early stages of information processing.

  16. A simple approximation of moments of the quasi-equilibrium distribution of an extended stochastic theta-logistic model with non-integer powers.

    Science.gov (United States)

    Bhowmick, Amiya Ranjan; Bandyopadhyay, Subhadip; Rana, Sourav; Bhattacharya, Sabyasachi

    2016-01-01

    The stochastic versions of the logistic and extended logistic growth models are applied successfully to explain many real-life population dynamics and share a central body of literature in stochastic modeling of ecological systems. To understand the randomness in the population dynamics of the underlying processes completely, it is important to have a clear idea about the quasi-equilibrium distribution and its moments. Bartlett et al. (1960) took a pioneering attempt for estimating the moments of the quasi-equilibrium distribution of the stochastic logistic model. Matis and Kiffe (1996) obtain a set of more accurate and elegant approximations for the mean, variance and skewness of the quasi-equilibrium distribution of the same model using cumulant truncation method. The method is extended for stochastic power law logistic family by the same and several other authors (Nasell, 2003; Singh and Hespanha, 2007). Cumulant truncation and some alternative methods e.g. saddle point approximation, derivative matching approach can be applied if the powers involved in the extended logistic set up are integers, although plenty of evidence is available for non-integer powers in many practical situations (Sibly et al., 2005). In this paper, we develop a set of new approximations for mean, variance and skewness of the quasi-equilibrium distribution under more general family of growth curves, which is applicable for both integer and non-integer powers. The deterministic counterpart of this family of models captures both monotonic and non-monotonic behavior of the per capita growth rate, of which theta-logistic is a special case. The approximations accurately estimate the first three order moments of the quasi-equilibrium distribution. The proposed method is illustrated with simulated data and real data from global population dynamics database. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Theta-Gamma Coupling and Working Memory in Alzheimer’s Dementia and Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Michelle S. Goodman

    2018-04-01

    Full Text Available Working memory deficits are common among individuals with Alzheimer’s dementia (AD or mild cognitive impairment (MCI. Yet, little is known about the mechanisms underlying these deficits. Theta-gamma coupling—the modulation of high-frequency gamma oscillations by low-frequency theta oscillations—is a neurophysiologic process underlying working memory. We assessed the relationship between theta-gamma coupling and working memory deficits in AD and MCI. We hypothesized that: (1 individuals with AD would display the most significant working memory impairments followed by MCI and finally healthy control (HC participants; and (2 there would be a significant association between working memory performance and theta-gamma coupling across all participants. Ninety-eight participants completed the N-back working memory task during an electroencephalography (EEG recording: 33 with AD (mean ± SD age: 76.5 ± 6.2, 34 with MCI (mean ± SD age: 74.8 ± 5.9 and 31 HCs (mean ± SD age: 73.5 ± 5.2. AD participants performed significantly worse than control and MCI participants on the 1- and 2-back conditions. Regarding theta-gamma coupling, AD participants demonstrated the lowest level of coupling followed by the MCI and finally control participants on the 2-back condition. Finally, a linear regression analysis demonstrated that theta-gamma coupling (β = 0.69, p < 0.001 was the most significant predictor of 2-back performance. Our results provide evidence for a relationship between altered theta-gamma coupling and working memory deficits in individuals with AD and MCI. They also provide insight into a potential mechanism underlying working memory impairments in these individuals.

  18. Modulation of Hippocampal Theta Oscillations and Spatial Memory by Relaxin-3 Neurons of the Nucleus Incertus

    Science.gov (United States)

    Ma, Sherie; Olucha-Bordonau, Francisco E.; Hossain, M. Akhter; Lin, Feng; Kuei, Chester; Liu, Changlu; Wade, John D.; Sutton, Steven W.; Nunez, Angel; Gundlach, Andrew L.

    2009-01-01

    Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the…

  19. Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Adrienne L Tierney

    Full Text Available Current research suggests that autism spectrum disorder (ASD is characterized by asynchronous neural oscillations. However, it is unclear whether changes in neural oscillations represent an index of the disorder or are shared more broadly among both affected and unaffected family members. Additionally, it remains unclear how early these differences emerge in development and whether they remain constant or change over time. In this study we examined developmental trajectories in spectral power in infants at high- or low-risk for ASD. Spectral power was extracted from resting EEG recorded over frontal regions of the scalp when infants were 6, 9, 12, 18 and 24 months of age. We used multilevel modeling to assess change over time between risk groups in the delta, theta, low alpha, high alpha, beta, and gamma frequency bands. The results indicated that across all bands, spectral power was lower in high-risk infants as compared to low-risk infants at 6-months of age. Furthermore high-risk infants showed different trajectories of change in spectral power in the subsequent developmental window indicating that not only are the patterns of change different, but that group differences are dynamic within the first two years of life. These findings remained the same after removing data from a subset of participants who displayed ASD related behaviors at 24 or 36 months. These differences in the nature of the trajectories of EEG power represent important endophenotypes of ASD.

  20. Effect of the Power Balance® band on static balance, hamstring flexibility, and arm strength in adults.

    Science.gov (United States)

    Verdan, Princess J R; Marzilli, Thomas S; Barna, Geanina I; Roquemore, Anntionette N; Fenter, Brad A; Blujus, Brittany; Gosselin, Kevin P

    2012-08-01

    The purpose of this study was to determine the effect of Power Balance® bands on strength, flexibility, and balance. Strength and flexibility were measured using the MicroFit system. Strength was measured via a bicep curl and flexibility via the sit-and-reach method. Balance was measured by the BIODEX System SD. There were 4 different conditions for the balance test: eyes open on a firm surface (EOFS), eyes closed on a firm surface (ECFS), eyes open on a foam surface (EOFoS), and eyes closed on a foam surface (ECFoS). There were 24 subjects in the study (10 men and 14 women). A counterbalance, double-blind, placebo, controlled within-subject design was used. Each of the subjects participated in 3 treatment sessions, consisting of Power Balance®, placebo band, and no band. An alpha level of p ≤ 0.05 was set a priori. There were no significant differences in strength, flexibility, or balance with regard to the treatments used. There was a significant difference between the conditions in the balance test (p = 0.000): EOFS (0.51), ECFS (0.68), EOFoS (0.99), and ECFoS (2.18); however, these were independent of the treatment conditions. The results indicate that the Power Balance® bands did not have an effect on strength, flexibility, or balance.

  1. Donaldson-Witten theory and indefinite theta functions

    Science.gov (United States)

    Korpas, Georgios; Manschot, Jan

    2017-11-01

    We consider partition functions with insertions of surface operators of topologically twisted N=2 , SU(2) supersymmetric Yang-Mills theory, or Donaldson-Witten theory for short, on a four-manifold. If the metric of the compact four-manifold has positive scalar curvature, Moore and Witten have shown that the partition function is completely determined by the integral over the Coulomb branch parameter a, while more generally the Coulomb branch integral captures the wall-crossing behavior of both Donaldson polynomials and Seiberg-Witten invariants. We show that after addition of a \\overlineQ -exact surface operator to the Moore-Witten integrand, the integrand can be written as a total derivative to the anti-holomorphic coordinate ā using Zwegers' indefinite theta functions. In this way, we reproduce Göttsche's expressions for Donaldson invariants of rational surfaces in terms of indefinite theta functions for any choice of metric.

  2. The Parkinsonian Subthalamic Network: Measures of Power, Linear, and Non-linear Synchronization and their Relationship to L-DOPA Treatment and OFF State Motor Severity.

    Science.gov (United States)

    West, Timothy; Farmer, Simon; Berthouze, Luc; Jha, Ashwani; Beudel, Martijn; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir

    2016-01-01

    In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.

  3. W-band power amplifier MMIC with 400 mW output power in 0.1 μm AlGaN/GaN technology

    NARCIS (Netherlands)

    Heijningen,M. van; Rodenburg, M.; Vliet, F.E. van; Massler, M.; Tessmann, A.; Brückner, F.; Müller, S.; Schwantuschke, D.; Quay; Narhi, T.

    2012-01-01

    The 0.1 μm AlGaN/GaN technology and design of two W-band power amplifiers in this technology are described. The dual-stage amplifier reaches an output power of 400 mW at 90 GHz at an operation bias of 20 V. Two designs with different driver to final stage gate width ratio are discussed. More than 10

  4. Early Changes in Alpha Band Power and DMN BOLD Activity in Alzheimer’s Disease: A Simultaneous Resting State EEG-fMRI Study

    Directory of Open Access Journals (Sweden)

    Katharina Brueggen

    2017-10-01

    Full Text Available Simultaneous resting state functional magnetic resonance imaging (rsfMRI–resting state electroencephalography (rsEEG studies in healthy adults showed robust positive associations of signal power in the alpha band with BOLD signal in the thalamus, and more heterogeneous associations in cortical default mode network (DMN regions. Negative associations were found in occipital regions. In Alzheimer’s disease (AD, rsfMRI studies revealed a disruption of the DMN, while rsEEG studies consistently reported a reduced power within the alpha band. The present study is the first to employ simultaneous rsfMRI-rsEEG in an AD sample, investigating the association of alpha band power and BOLD signal, compared to healthy controls (HC. We hypothesized to find reduced positive associations in DMN regions and reduced negative associations in occipital regions in the AD group. Simultaneous resting state fMRI–EEG was recorded in 14 patients with mild AD and 14 HC, matched for age and gender. Power within the EEG alpha band (8–12 Hz, 8–10 Hz, and 10–12 Hz was computed from occipital electrodes and served as regressor in voxel-wise linear regression analyses, to assess the association with the BOLD signal. Compared to HC, the AD group showed significantly decreased positive associations between BOLD signal and occipital alpha band power in clusters in the superior, middle and inferior frontal cortex, inferior temporal lobe and thalamus (p < 0.01, uncorr., cluster size ≥ 50 voxels. This group effect was more pronounced in the upper alpha sub-band, compared to the lower alpha sub-band. Notably, we observed a high inter-individual heterogeneity. Negative associations were only reduced in the lower alpha range in the hippocampus, putamen and cerebellum. The present study gives first insights into the relationship of resting-state EEG and fMRI characteristics in an AD sample. The results suggest that positive associations between alpha band power and BOLD

  5. F-band, High-Efficiency GaN Power Amplifier for the Scanning Microwave Limb Sounder and SOFIA, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop a 4-watt Solid-State Power Amplifier (SSPA) operating at F-band (106-114 GHz) with a power-added efficiency (PAE) of greater...

  6. Compact-Toroid Fusion Reactor (CTOR) based on the Field-Reversed Theta Pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-01-01

    Scoping studies of a translating Compact Torus Reactor (CTOR) have been made on the basis of a dynamic plasma model and an overall systems approach. This CTOR embodiment uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plamoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radition shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  7. A low-power current-reuse dual-band analog front-end for multi-channel neural signal recording.

    Science.gov (United States)

    Sepehrian, H; Gosselin, B

    2014-01-01

    Thoroughly studying the brain activity of freely moving subjects requires miniature data acquisition systems to measure and wirelessly transmit neural signals in real time. In this application, it is mandatory to simultaneously record the bioelectrical activity of a large number of neurons to gain a better knowledge of brain functions. However, due to limitations in transferring the entire raw data to a remote base station, employing dedicated data reduction techniques to extract the relevant part of neural signals is critical to decrease the amount of data to transfer. In this work, we present a new dual-band neural amplifier to separate the neuronal spike signals (SPK) and the local field potential (LFP) simultaneously in the analog domain, immediately after the pre-amplification stage. By separating these two bands right after the pre-amplification stage, it is possible to process LFP and SPK separately. As a result, the required dynamic range of the entire channel, which is determined by the signal-to-noise ratio of the SPK signal of larger bandwidth, can be relaxed. In this design, a new current-reuse low-power low-noise amplifier and a new dual-band filter that separates SPK and LFP while saving capacitors and pseudo resistors. A four-channel dual-band (SPK, LFP) analog front-end capable of simultaneously separating SPK and LFP is implemented in a TSMC 0.18 μm technology. Simulation results present a total power consumption per channel of 3.1 μw for an input referred noise of 3.28 μV and a NEF for 2.07. The cutoff frequency of the LFP band is fc=280 Hz, and fL=725 Hz and fL=11.2 KHz for SPK, with 36 dB gain for LFP band 46 dB gain for SPK band.

  8. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging.

    Science.gov (United States)

    Caplan, Jeremy B; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A

    2015-05-15

    Rhythmic brain activity at low frequencies (healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; Caplan et al., 2001; Whitten et al., 2011) avoids these problems by using the signal's own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18-25 years) and older (60-74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1-4Hz), at which rhythms are sporadic; topographies were more similar in the 8-12Hz alpha band. There was little theta-band activity meeting the BOSC method's criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In summary, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Electrostatic probes driven by broad band high power and propagation of the turbulent perturbation

    International Nuclear Information System (INIS)

    Wang Zhijiang; Sun Xuan; Wan Shude; Wen Yizhi; Yu Changxuan; Liu Wandong; Wang Cheng; Pan Gesheng

    2003-01-01

    A high dynamic output, broad-band power source for driving electrostatic probes in the investigation on propagation of turbulent perturbation has been built and used successfully in experiments on the KT-5C tokamak. The details of the experiment setup as well as some preliminary results are presented. Detections both from the small size magnetic probes and electrostatic probes indicate that the modified perturbation excited by the power source may propagate electrostatically, and electromagnetically as well

  10. Study on creep behavior of Grade 91 heat-resistant steel using theta projection method

    Science.gov (United States)

    Ren, Facai; Tang, Xiaoying

    2017-10-01

    Creep behavior of Grade 91 heat-resistant steel used for steam cooler was characterized using the theta projection method. Creep tests were conducted at the temperature of 923K under the stress ranging from 100-150MPa. Based on the creep curve results, four theta parameters were established using a nonlinear least square fitting method. Four theta parameters showed a good linearity as a function of stress. The predicted curves coincided well with the experimental data and creep curves were also modeled to the low stress level of 60MPa.

  11. High Power Test of an X-Band Slotted-IRIS Accelerator Structure at NLCTA

    International Nuclear Information System (INIS)

    Doebert, S.; Fandos, R.; Grudiev, A.; Heikkinen, S.; Rodriquez, J.A.; Taborelli, M.; Wuensch, W.; Adolphsen, Chris E.; Laurent, L.

    2007-01-01

    The CLIC study group at CERN has built two X-band HDS (hybrid damped structure) accelerating structures for high-power testing in NLCTA at SLAC. These accelerating structures are novel with respect to their rf- design and their fabrication technique. The eleven-cell constant impedance structures, one made out of copper and one out of molybdenum, are assembled from clamped high-speed milled quadrants. They feature the same heavy higher-order-mode damping as nominal CLIC structures achieved by slotted irises and radial damping waveguides for each cell. The X-band accelerators are exactly scaled versions of structures tested at 30 GHz in the CLIC test facility, CTF3. The results of the X-band tests are presented and compared to those at 30 GHz to determine frequency scaling, and are compared to the extensive copper data from the NLC structure development program to determine material dependence and make a basic validation of the HDS design

  12. EEG Analysis during complex diagnostic tasks in Nuclear Power Plants - Simulator-based Experimental Study

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jun Su; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2005-07-01

    In literature, there are a lot of studies based on EEG signals during cognitive activities of human-beings but most of them dealt with simple cognitive activities such as transforming letters into Morse code, subtraction, reading, semantic memory search, visual search, memorizing a set of words and so on. In this work, EEG signals were analyzed during complex diagnostic tasks in NPP simulator-based environment. Investigated are the theta, alpha, beta, and gamma band EEG powers during the diagnostic tasks. The experimental design and procedure are represented in section 2 and the results are shown in section 3. Finally some considerations are discussed and the direction for the further work is proposed in section 4.

  13. EEG Analysis during complex diagnostic tasks in Nuclear Power Plants - Simulator-based Experimental Study

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2005-01-01

    In literature, there are a lot of studies based on EEG signals during cognitive activities of human-beings but most of them dealt with simple cognitive activities such as transforming letters into Morse code, subtraction, reading, semantic memory search, visual search, memorizing a set of words and so on. In this work, EEG signals were analyzed during complex diagnostic tasks in NPP simulator-based environment. Investigated are the theta, alpha, beta, and gamma band EEG powers during the diagnostic tasks. The experimental design and procedure are represented in section 2 and the results are shown in section 3. Finally some considerations are discussed and the direction for the further work is proposed in section 4

  14. Analyzing power Asub(y)((theta) for /sup 12/C(n,nsub(0,1))/sup 12/C betwen 8. 9 and) 14. 9 MeV neutron energy

    Energy Technology Data Exchange (ETDEWEB)

    Woye, E.; Tornow, W.; Mack, G. (Tuebingen Univ. (Germany, F.R.). Physikalisches Inst.); Floyd, C.E.; Guss, P.P.; Murphy, K.; Byrd, R.C.; Wender, S.A.; Walter, R.L. (Duke Univ., Durham, NC (USA). Dept. of Physics; Triangle Universities Nuclear Lab., Durham, NC (USA))

    1983-02-01

    The analyzing power Asub(..gamma..)(theta) for /sup 12/C(n,n)/sup 12/C elastic scattering and for inelastic scattering to the first excited state (Jsup(..pi..) = 2/sup +/, Q = -4.44 MeV) of /sup 12/C was measured in the energy range from 8.9 to 14.9 MeV in 1 MeV steps. A pulsed polarized neutron beam was produced via the /sup 2/H(d vector,n vector)/sup 3/He polarization transfer reaction. Monte Carlo simulations were used to correct the data for finite geometry and multiple scattering effects. The Asub(..gamma..) data, together with publsihed cross-section data, were analyzed in the framework of the spherical optical model and in the coupled-channels formalism. A good description of the data has been achieved.

  15. Statistical properties of multi-theta polymer chains

    Science.gov (United States)

    Uehara, Erica; Deguchi, Tetsuo

    2018-04-01

    We study statistical properties of polymer chains with complex structures whose chemical connectivities are expressed by graphs. The multi-theta curve of m subchains with two branch points connected by them is one of the simplest graphs among those graphs having closed paths, i.e. loops. We denoted it by θm , and for m  =  2 it is given by a ring. We derive analytically the pair distribution function and the scattering function for the θm -shaped polymer chains consisting of m Gaussian random walks of n steps. Surprisingly, it is shown rigorously that the mean-square radius of gyration for the Gaussian θm -shaped polymer chain does not depend on the number m of subchains if each subchain has the same fixed number of steps. For m  =  3 we show the Kratky plot for the theta-shaped polymer chain consisting of hard cylindrical segments by the Monte-Carlo method including reflection at trivalent vertices.

  16. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory.

    Science.gov (United States)

    Kawasaki, Masahiro; Kitajo, Keiichi; Yamaguchi, Yoko

    2014-01-01

    In humans, theta phase (4-8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  17. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2014-03-01

    Full Text Available In humans, theta phase (4–8 Hz synchronization observed on electroencephalography (EEG plays an important role in the manipulation of mental representations during working memory (WM tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  18. Effects of intermittent theta burst stimulation on cerebral blood flow and cerebral vasomotor reactivity.

    Science.gov (United States)

    Pichiorri, Floriana; Vicenzini, Edoardo; Gilio, Francesca; Giacomelli, Elena; Frasca, Vittorio; Cambieri, Chiara; Ceccanti, Marco; Di Piero, Vittorio; Inghilleri, Maurizio

    2012-08-01

    To determine whether intermittent theta burst stimulation influences cerebral hemodynamics, we investigated changes induced by intermittent theta burst stimulation on the middle cerebral artery cerebral blood flow velocity and vasomotor reactivity to carbon dioxide (CO(2)) in healthy participants. The middle cerebral artery flow velocity and vasomotor reactivity were monitored by continuous transcranial Doppler sonography. Changes in cortical excitability were tested by transcranial magnetic stimulation. In 11 healthy participants, before and immediately after delivering intermittent theta burst stimulation, we tested cortical excitability measured by the resting motor threshold and motor evoked potential amplitude over the stimulated hemisphere and vasomotor reactivity to CO(2) bilaterally. The blood flow velocity was monitored in both middle cerebral arteries throughout the experimental session. In a separate session, we tested the effects of sham stimulation under the same experimental conditions. Whereas the resting motor threshold remained unchanged before and after stimulation, motor evoked potential amplitudes increased significantly (P = .04). During and after stimulation, middle cerebral artery blood flow velocities also remained bilaterally unchanged, whereas vasomotor reactivity to CO(2) increased bilaterally (P = .04). The sham stimulation left all variables unchanged. The expected intermittent theta burst stimulation-induced changes in cortical excitability were not accompanied by changes in cerebral blood flow velocities; however, the bilateral increased vasomotor reactivity suggests that intermittent theta burst stimulation influences the cerebral microcirculation, possibly involving subcortical structures. These findings provide useful information on hemodynamic phenomena accompanying intermittent theta burst stimulation, which should be considered in research aimed at developing this noninvasive, low-intensity stimulation technique for safe

  19. The small mixing angle $\\theta_{13}$ and the lepton asymmetry

    CERN Document Server

    Lee, S H; Lee, Song-Haeng; Siyeon, Kim

    2005-01-01

    We present the correlation of low energy CP phases, both Dirac and Majorana, and the lepton asymmetry for the baryon asymmetry in the universe, with a certain class of Yukawa matrices that consist of two right-handed neutrinos and include one texture zero in themselves. For cases in which the amount of the lepton asymmetry $Y_L$ turns out to be proportional to $\\theta_{13}^2$, we consider the relation between two types of CP phases and the relation of $Y_L$ versus the Jarlskog invariant or the amplitude of neutrinoless double beta decay as $\\theta_{13}$ varies.

  20. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    Science.gov (United States)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  1. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation.

    Science.gov (United States)

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual's memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity.

  2. Performance of high power S-band klystrons focused with permanent magnet

    International Nuclear Information System (INIS)

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 % of the longitudinal field in the entire rf interaction region of the klystron. (author)

  3. Performance of high power S-band klystrons focused with permanent magnet

    Science.gov (United States)

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 percent of the longitudinal field in the entire RF interaction region of the klystron.

  4. An electrophysiological study of task demands on concreteness effects: evidence for dual coding theory.

    Science.gov (United States)

    Welcome, Suzanne E; Paivio, Allan; McRae, Ken; Joanisse, Marc F

    2011-07-01

    We examined ERP responses during the generation of word associates or mental images in response to concrete and abstract concepts. Of interest were the predictions of dual coding theory (DCT), which proposes that processing lexical concepts depends on functionally independent but interconnected verbal and nonverbal systems. ERP responses were time-locked to either stimulus onset or response to compensate for potential latency differences across conditions. During word associate generation, but not mental imagery, concrete items elicited a greater N400 than abstract items. A concreteness effect emerged at a later time point during the mental imagery task. Data were also analyzed using time-frequency analysis that investigated synchronization of neuronal populations over time during processing. Concrete words elicited an enhanced late going desynchronization of theta-band power (723-938 ms post stimulus onset) during associate generation. During mental imagery, abstract items elicited greater delta-band power from 800 to 1,000 ms following stimulus onset, theta-band power from 350 to 205 ms before response, and alpha-band power from 900 to 800 ms before response. Overall, the findings support DCT in suggesting that lexical concepts are not amodal and that concreteness effects are modulated by tasks that focus participants on verbal versus nonverbal, imagery-based knowledge.

  5. Active auditory experience in infancy promotes brain plasticity in Theta and Gamma oscillations

    Directory of Open Access Journals (Sweden)

    Gabriella Musacchia

    2017-08-01

    Full Text Available Language acquisition in infants is driven by on-going neural plasticity that is acutely sensitive to environmental acoustic cues. Recent studies showed that attention-based experience with non-linguistic, temporally-modulated auditory stimuli sharpens cortical responses. A previous ERP study from this laboratory showed that interactive auditory experience via behavior-based feedback (AEx, over a 6-week period from 4- to 7-months-of-age, confers a processing advantage, compared to passive auditory exposure (PEx or maturation alone (Naïve Control, NC. Here, we provide a follow-up investigation of the underlying neural oscillatory patterns in these three groups. In AEx infants, Standard stimuli with invariant frequency (STD elicited greater Theta-band (4–6 Hz activity in Right Auditory Cortex (RAC, as compared to NC infants, and Deviant stimuli with rapid frequency change (DEV elicited larger responses in Left Auditory Cortex (LAC. PEx and NC counterparts showed less-mature bilateral patterns. AEx infants also displayed stronger Gamma (33–37 Hz activity in the LAC during DEV discrimination, compared to NCs, while NC and PEx groups demonstrated bilateral activity in this band, if at all. This suggests that interactive acoustic experience with non-linguistic stimuli can promote a distinct, robust and precise cortical pattern during rapid auditory processing, perhaps reflecting mechanisms that support fine-tuning of early acoustic mapping.

  6. Impulse Control Disorders in Parkinson's Disease are Associated with Alterations in Reward-Related Cortical Oscillations.

    Science.gov (United States)

    Carriere, Nicolas; Bourriez, Jean-Louis; Delval, Arnaud; Derambure, Philippe; Defebvre, Luc; Dujardin, Kathy

    2016-06-28

    Impulse control disorders (ICDs) in Parkinson's disease (PD) are related to treatment with dopamine agonists, which is thought to deregulate the dopaminergic mesolimbic pathway and impair reward evaluation. EEG studies in healthy controls (HCs) have suggested that the increase in theta power observed after negative outcome is a marker of reward processing. To compare outcome-locked, event-related spectral perturbation in a gambling task in PD patients with and without ICDs and in HCs. Twelve PD patients with ICDs, 12 PD patients without ICDs and 14 HCs underwent EEG while performing a gambling task. The groups were compared in terms of (i) the peak EEG power in the theta (4-7 Hz), alpha (8-14 Hz) and beta (15-30 Hz) frequency bands between 200 and 500 ms after the outcome, and (ii) time-frequency plots at Fz, FCz and Cz. Positive outcomes were associated with greater theta power than negative outcomes in patients without ICDs and in HCs, but not in patients with ICDs. Patients with ICDs and HCs displayed greater theta power following unexpectedly high outcomes. HCs displayed greater beta power following high amplitude than low amplitude outcomes, whereas patients with ICD showed the opposite pattern. In PD, ICDs are associated with (i) weaker modulation of frontocentral theta power by reward valence, (ii) greater frontocentral theta power following unexpected, high outcomes, and (iii) a reversal of the effect of risk on beta oscillations. These observations are consistent with an impairment in prediction error computation in the medial prefrontal cortex.

  7. Analysis of RF section of 250 kW CW C-Band high power klystron

    International Nuclear Information System (INIS)

    Badola, Richa; Kaushik, Meenu; Baloda, Suman; Kirti; Vrati; Lamba, O.S.; Joshi, L.M.

    2012-01-01

    Klystron is a microwave tube which is used as a power amplifier in various applications like radar, particle accelerators and thermonuclear reactors. The paper deals with the analysis of RF section of 250 kW CW C band high power klystron for 50 to 60 kV beam voltage The simulation is done using Poisson's superfish and AJ disk software's Design of cavity is done using superfish. The result of superfish is used to decide the dimensions of the geometry of the cavity and AJ disk is used to determined the centre to centre distances between the cavities in order to obtain the desired powers. (author)

  8. Acute effects of elastic bands during the free-weight barbell back squat exercise on velocity, power, and force production.

    Science.gov (United States)

    Stevenson, Mark W; Warpeha, Joseph M; Dietz, Cal C; Giveans, Russell M; Erdman, Arthur G

    2010-11-01

    The use of elastic bands in resistance training has been reported to be effective in increasing performance-related parameters such as power, rate of force development (RFD), and velocity. The purpose of this study was to assess the following measures during the free-weight back squat exercise with and without elastic bands: peak and mean velocity in the eccentric and concentric phases (PV-E, PV-C, MV-E, MV-C), peak force (PF), peak power in the concentric phase, and RFD immediately before and after the zero-velocity point and in the concentric phase (RFDC). Twenty trained male volunteers (age = 26.0 ± 4.4 years) performed 3 sets of 3 repetitions of squats (at 55% one repetition maximum [1RM]) on 2 separate days: 1 day without bands and the other with bands in a randomized order. The added band force equaled 20% of the subjects' 55% 1RM. Two independent force platforms collected ground reaction force data, and a 9-camera motion capture system was used for displacement measurements. The results showed that PV-E and RFDC were significantly (p squats with elastic bands in terms of RFD. Practitioners concerned with improving RFD may want to consider incorporating this easily implemented training variation.

  9. Hippocampal theta frequency shifts and operant behaviour

    NARCIS (Netherlands)

    Lopes da Silva, F.H.; Kamp, A.

    1. 1. A shift of hippocampal dominant theta frequency to 6 c/sec has been demonstrated in the post-reward period in two dogs, which occurs consistently related in time to a well defined behavioural pattern in the course of an operant conditioning paradigm. 2. 2. The frequency shift was detected and

  10. New indices for quantification of the power spectrum of heart rate variability time series without the need of any frequency band definition

    International Nuclear Information System (INIS)

    García-González, M A; Fernández-Chimeno, M; Benítez, A; Ramos-Castro, J; Ferrer, J; Escorihuela, R M; Parrado, E; Capdevila, L; Angulo, R; Rodríguez, F A; Iglesias, X; Bescós, R; Marina, M; Padullés, J M

    2011-01-01

    This paper presents a new family of indices for the frequency domain analysis of heart rate variability time series that do not need any frequency band definition. After proper detrending of the time series, a cumulated power spectrum is obtained and frequencies that contain a certain percentage of the power below them are identified, so median frequency, bandwidth and a measure of the power spectrum asymmetry are proposed to complement or improve the classical spectral indices as the ratio of the powers of LF and HF bands (LF/HF). In normal conditions the median frequency provides similar information as the classical indices, while the bandwidth and asymmetry can be complementary measures of the physiological state of the tested subject. The proposed indices seem to be a good choice for tracking changes in the power spectrum in exercise stress, and they can guide in the determination of frequency band limits in other animal species

  11. A Randomized Trial of Comparing the Efficacy of Two Neurofeedback Protocols for Treatment of Clinical and Cognitive Symptoms of ADHD: Theta Suppression/Beta Enhancement and Theta Suppression/Alpha Enhancement

    Directory of Open Access Journals (Sweden)

    Arash Mohagheghi

    2017-01-01

    Full Text Available Introduction. Neurofeedback (NF is an adjuvant or alternative therapy for children with Attention Deficit Hyperactivity Disorder (ADHD. This study intended to compare the efficacy of two different NF protocols on clinical and cognitive symptoms of ADHD. Materials and Methods. In this clinical trial, sixty children with ADHD aged 7 to 10 years old were randomly grouped to receive two different NF treatments (theta suppression/beta enhancement protocol and theta suppression/alpha enhancement protocol. Clinical and cognitive assessments were conducted prior to and following the treatment and also after an eight-week follow-up. Results. Both protocols alleviated the symptoms of ADHD in general (p<0.001, hyperactivity (p<0.001, inattention (p<0.001, and omission errors (p<0.001; however, they did not affect the oppositional and impulsive scales nor commission errors. These effects were maintained after an eight-week intervention-free period. The only significant difference between the two NF protocols was that high-frequency alpha enhancement protocol performed better in suppressing omission errors (p<0.001. Conclusion. The two NF protocols with theta suppression/beta enhancement and theta suppression/alpha enhancement have considerable and comparable effect on clinical symptoms of ADHD. Alpha enhancement protocol was more effective in suppressing omission errors.

  12. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation

    Directory of Open Access Journals (Sweden)

    Johannes eVosskuhl

    2015-05-01

    Full Text Available Working memory (WM and short-term memory (STM supposedly rely on the phase-amplitude coupling of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual’s memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS. To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N=33 were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG was measured before stimulation and analyzed with regard to the properties of phase-amplitude coupling between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity.

  13. Evaluation of Reduced Power Spectra from Three-Dimensional k-Space

    Science.gov (United States)

    Saur, J.; von Papen, M.

    2014-12-01

    We present a new tool to evaluate one dimensional reduced power spectral densities (PSD) from arbitrary energy distributions in kk-space. This enables us to calculate the power spectra as they are measured in spacecraft frame for any given measurement geometry assuming Taylor's frozen-in approximation. It is possible to seperately calculate the diagonal elements of the spectral tensor and also to insert additional, non-turbulent energy in kk-space (e.g. mirror mode waves). Given a critically balanced turbulent cascade with k∥˜kα⊥k_\\|sim k_perp^alpha, we explore the implications on the spectral form of the PSD and the functional dependence of the spectral index κkappa on the field-to-flow angle θtheta between plasma flow and background magnetic field. We show that critically balanced turbulence develops a θtheta-independent cascade with the spectral slope of the perpendicular cascade κ(θ=90∘)kappa(theta{=}90^circ). This happens at frequencies f>fmaxf>f_mathrm{max}, where fmax(L,α,θ)f_mathrm{max}(L,alpha,theta) is a function of outer scale LL, critical balance exponent αalpha and field-to-flow angle θtheta. We also discuss potential damping terms acting on the kk-space distribution of energy and their effect on the PSD. Further, we show that the functional dependence κ(θ)kappa(theta) as found by textit{Horbury et al.} (2008) and textit{Chen et al.} (2010) can be explained with a damped critically balanced turbulence model.

  14. A capacitive membrane MEMS microwave power sensor in the X-band based on GaAs MMIC technology

    International Nuclear Information System (INIS)

    Su Shi; Liao Xiaoping

    2009-01-01

    This paper presents the modeling, fabrication, and measurement of a capacitive membrane MEMS microwave power sensor. The sensor measures microwave power coupled from coplanar waveguide (CPW) transmission lines by a MEMS membrane and then converts it into a DC voltage output by using thermopiles. Since the fabrication process is fully compatible with the GaAs monolithic microwave integrated circuit (MMIC) process, this sensor could be conveniently embedded into MMIC. From the measured DC voltage output and S-parameters, the average sensitivity in the X-band is 225.43 μV/mW, while the reflection loss is below -14 dB. The MEMS microwave power sensor has good linearity with a voltage standing wave ration of less than 1.513 in the whole X-band. In addition, the measurements using amplitude modulation signals prove that the modulation index directly influences the output DC voltage.

  15. A C-band 55% PAE high gain two-stage power amplifier based on AlGaN/GaN HEMT

    International Nuclear Information System (INIS)

    Zheng Jia-Xin; Ma Xiao-Hua; Zhang Hong-He; Zhang Meng; Hao Yue; Lu Yang; Zhao Bo-Chao; Cao Meng-Yi

    2015-01-01

    A C-band high efficiency and high gain two-stage power amplifier based on AlGaN/GaN high electron mobility transistor (HEMT) is designed and measured in this paper. The input and output impedances for the optimum power-added efficiency (PAE) are determined at the fundamental and 2nd harmonic frequency (f 0 and 2f 0 ). The harmonic manipulation networks are designed both in the driver stage and the power stage which manipulate the second harmonic to a very low level within the operating frequency band. Then the inter-stage matching network and the output power combining network are calculated to achieve a low insertion loss. So the PAE and the power gain is greatly improved. In an operation frequency range of 5.4 GHz–5.8 GHz in CW mode, the amplifier delivers a maximum output power of 18.62 W, with a PAE of 55.15% and an associated power gain of 28.7 dB, which is an outstanding performance. (paper)

  16. On the irrationality of Ramanujan's mock theta functions and other q-series at an infinite number of points

    OpenAIRE

    Mingarelli, Angelo B.

    2007-01-01

    We show that all of Ramanujan's mock theta functions of order 3, Watson's three additional mock theta functions of order 3, the Rogers-Ramanujan q-series, and 6 mock theta functions of order 5 take on irrational values at the points q=\\pm 1/2,\\pm 1/3,\\pm 1/4,...

  17. Alzheimer's disease: relationship between cognitive aspects and power and coherence EEG measures

    Directory of Open Access Journals (Sweden)

    Lineu C. Fonseca

    2011-12-01

    Full Text Available OBJECTIVE: To evaluate the relationship between specific cognitive aspects and quantitative EEG measures, in patients with mild or moderate Alzheimer's disease (AD. METHOD: Thirty-eight AD patients and 31 controls were assessed by CERAD neuropsychological battery (Consortium to Establish a Registry for AD and the electroencephalogram (EEG. The absolute power and coherences EEG measures were calculated at rest. The correlations between the cognitive variables and the EEG were evaluated. RESULTS: In the AD group there were significant correlations between different coherence EEG measures and Mini-Mental State Examination, verbal fluency, modified Boston naming, word list memory with repetition, word list recall and recognition, and constructional praxis (p<0.01. These correlations were all negative for the delta and theta bands and positive for alpha and beta. There were no correlations between cognitive aspects and absolute EEG power. CONCLUSION: The coherence EEG measures reflect different forms in the relationship between regions related to various cognitive dysfunctions.

  18. A compact broadband high efficient X-band 9-watt PHEMT MMIC high-power amplifier for phased array radar applications

    NARCIS (Netherlands)

    Hek, A.P. de; Hunneman, P.A.H.; Demmler, M.; Hulsmann, A.

    1999-01-01

    ln this paper the development and measurement results of a compact broadband 9-Watt high efficient X-band high-power amplifier are discussed. The described amplifier has the following state-of-the art performance: an average ouput power of 9 Watt, a gain of 20 dB and an average Power Added

  19. Combinatorial identities for tenth order mock theta functions

    Indian Academy of Sciences (India)

    44

    which lead us to one 4-way and one 3-way combinatorial identity. ... mock theta functions, partition identities and different combinatorial parameters, see for ... 3. Example 1.1. There are twelve (n + 1)–color partitions of 2: 21, 21 + 01, 11 + 11, ...

  20. Multifractal Detrended Fluctuation Analysis of alpha and theta EEG rhythms with musical stimuli

    International Nuclear Information System (INIS)

    Maity, Akash Kumar; Pratihar, Ruchira; Mitra, Anubrato; Dey, Subham; Agrawal, Vishal; Sanyal, Shankha; Banerjee, Archi; Sengupta, Ranjan; Ghosh, Dipak

    2015-01-01

    Highlights: • EEG was done to record the brain electrical activity of 10 subjects in response to simple acoustical tanpura stimuli. • Empirical Mode Decomposition (EMD) technique used to make the EEG signal free from blink and other muscular artifacts. • Multifractal Detrended Fluctuation Analysis (MFDFA) performed to assess the complexity of extracted alpha and theta brain rhythms. • The findings show spectral width i.e. complexity of alpha and theta rhythms increase in all the seven frontal locations studied, under the effect of musical stimuli. - Abstract: Electroencephalography (EEG) was performed on 10 participants using a simple acoustical stimuli i.e. a tanpura drone. The tanpura drone is free from any semantic content and is used with a hypothesis that it provides a specific resting environment for the listeners. The EEG data was extracted for all the frontal electrodes viz. F3, F4, F7, F8, Fp1, Fp2 and Fz. Empirical Mode Decomposition (EMD) was applied on the acquired raw EEG signal to make it free from blink as well as other muscular artifacts. Wavelet Transform (WT) technique was used to segregate alpha and theta waves from the denoised EEG signal. Non-linear analysis in the form of Multifractal Detrended Fluctuation Analysis (MFDFA) was carried out on the extracted alpha and theta time series data to study the variation of their complexity. It was found that in all the frontal electrodes alpha as well as theta complexity increases as is evident from the increase of multifractal spectral width. This study is entirely new and gives interesting data regarding neural activation of the alpha and theta brain rhythms while listening to simple acoustical stimuli. The importance of this study lies in the context of emotion quantification using multifractal spectral width as a parameter as well as in the field of cognitive music therapy. The results are discussed in detail.

  1. A high peak power S-band switching system for the Advanced Photon Source (APS) Linear Accelerator (Linac)

    International Nuclear Information System (INIS)

    Grelick, A. E.

    1998-01-01

    An S-band linear accelerator is the source of particles and front end of the Advanced Photon Source [1] injector. Additionally, it will be used to support a low-energy undulator test line (LEUTL) and to drive a free-electron laser (FEL). To provide maximum linac availability for all uses, an additional modulator-klystron subsystem has been built,and a waveguide-switching and distribution subsystem is now under construction. The combined subsystems provide a hot spare for any of the five S-band transmitters that power the lina cand have been given the additional function of powering an rf gun test stand whenever they are not otherwise needed. Design considerations for the waveguide-switching subsystem, topology selection, timing, control, and system protection provisions are described

  2. Ramanujan’s mock theta functions

    Science.gov (United States)

    Griffin, Michael; Ono, Ken; Rolen, Larry

    2013-01-01

    In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. Recent work by Zwegers [Zwegers S (2001) Contemp Math 291:268–277 and Zwegers S (2002) PhD thesis (Univ of Utrecht, Utrecht, The Netherlands)] has elucidated the theory encompassing these examples. They are holomorphic parts of special harmonic weak Maass forms. Despite this understanding, little attention has been given to Ramanujan’s original definition. Here, we prove that Ramanujan’s examples do indeed satisfy his original definition. PMID:23536292

  3. High precision measurement of sin2theta/sub W/ in semi-leptonic neutrino interactions

    International Nuclear Information System (INIS)

    Guyot, C.

    1985-01-01

    The experiment has provided what is presently the most accurate measurement of sin 2 theta/sub W/. The errors are still too large for a significant test of the standard model and the measured value is in agreement with the measured values of M/sub W/ and M/sub Z/. On the other hand, this result can constrain the Grand Unified models. The standard SU(5) model predicts sin 2 theta/sub W//sup MS/ = 0.214 +/- 0.004 (the error comes from the uncertainty on Lambda/sub MS/), in very good agreement with the measured value. While this model has big problems with the proton lifetime, it could be saved by its supersymmetric extension. In the minimal SU(5) SUSY model (with 2 Higgs supermultiplets) sin 2 theta/sub W//sup MS/ = 0.233 +/- 0.004, [12] in bad agreement with the measured value. The addition of other Higgs supermultiplets increases the value of sin 2 theta/sub W/. Unless some unexpected large contribution from higher-twist terms occurs, the present measurement can already bring a significant constraint on Grand Unified models

  4. Oscillatory bands, neuronal synchrony and hippocampal function: implications of the effects of prenatal choline supplementation for sleep-dependent memory consolidation.

    Science.gov (United States)

    Cheng, Ruey-Kuang; Williams, Christina L; Meck, Warren H

    2008-10-27

    Choline supplementation of the maternal diet has long-term facilitative effects on spatial and temporal memory processes in the offspring. To further delineate the impact of early nutritional status on brain and behavior, we examined effects of prenatal-choline availability on hippocampal oscillatory frequency bands in 12 month-old male and female rats. Adult offspring of time-pregnant dams that were given a deficient level of choline (DEF=0.0 g/kg), sufficient choline (CON=1.1 g/kg) or supplemental choline (SUP=3.5 g/kg) in their chow during embryonic days (ED) 12-17 were implanted with an electroencephalograph (EEG) electrode in the hippocampal dentate gyrus in combination with an electromyograph (EMG) electrode patch implanted in the nuchal muscle. Five consecutive 8-h recording sessions revealed differential patterns of EEG activity as a function of awake, slow-wave sleep (SWS) and rapid-eye movement (REM) sleep states and prenatal choline status. The main finding was that SUP rats displayed increased power levels of gamma (30-100 Hz) band oscillations during all phases of the sleep/wake cycle. These findings are discussed within the context of a general review of neuronal oscillations (e.g., delta, theta, and gamma bands) and synchronization across multiple brain regions in relation to sleep-dependent memory consolidation in the hippocampus.

  5. Resolution improvement by nonconfocal theta microscopy.

    Science.gov (United States)

    Lindek, S; Stelzer, E H

    1999-11-01

    We present a novel scanning fluorescence microscopy technique, nonconfocal theta microscopy (NCTM), that provides almost isotropic resolution. In NCTM, multiphoton absorption from two orthogonal illumination directions is used to induce fluorescence emission. Therefore the point-spread function of the microscope is described by the product of illumination point-spread functions with reduced spatial overlap, which provides the resolution improvement and the more isotropic observation volume. We discuss the technical details of this new method.

  6. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory.

    Science.gov (United States)

    Tendler, Alex; Wagner, Shlomo

    2015-02-16

    Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7-10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3-7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes.

  7. High-power and highly reliable 638-nm band BA-LD for CW operation

    Science.gov (United States)

    Nishida, Takehiro; Kuramoto, Kyosuke; Abe, Shinji; Kusunoki, Masatsugu; Miyashita, Motoharu; Yagi, Tetsuya

    2018-02-01

    High-power laser diodes (LDs) are strongly demanded as light sources of display applications. In multiple spatial light modulator-type projectors or liquid crystal displays, the light source LDs are operated under CW condition. The high-power 638-nm band broad-area LD for CW operation was newly developed. The LD consisted of two stripes with each width of 75 μm to reduce both an optical power density at a front facet and a threshold current. The newly improved epitaxial technology was also applied to the LD to suppress an electron overflow from an active layer. The LD showed superior output characteristics, such as output of 1.77 W at case temperature of 55 °C with wall plug efficiency (WPE) of 23%, which was improved by 40% compared with the current product. The peak WPE at 25 °C reached 40.6% under the output power of 2.37 W, CW, world highest.

  8. High power experimental studies of hybrid photonic band gap accelerator structures

    Directory of Open Access Journals (Sweden)

    JieXi Zhang

    2016-08-01

    Full Text Available This paper reports the first high power tests of hybrid photonic band gap (PBG accelerator structures. Three hybrid PBG (HPBG structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM_{02} mode, with suppression of both lower order modes, such as the TM_{11} mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion of the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19  MV/m, corresponding to a surface electric field of 78  MV/m, with a breakdown probability of 5×10^{-1} per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20  MV/m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. This research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.

  9. Investigation of attention deficit hyperactivity disorder (ADHD) sub-types in children via EEG frequency domain analysis.

    Science.gov (United States)

    Aldemir, Ramazan; Demirci, Esra; Per, Huseyin; Canpolat, Mehmet; Özmen, Sevgi; Tokmakçı, Mahmut

    2018-04-01

    To investigate the frequency domain effects and changes in electroencephalography (EEG) signals in children diagnosed with attention deficit hyperactivity disorder (ADHD). The study contains 40 children. All children were between the ages of 7 and 12 years. Participants were classified into four groups which were ADHD (n=20), ADHD-I (ADHD-Inattentive type) (n=10), ADHD-C (ADHD-Combined type) (n=10), and control (n=20) groups. In this study, the frequency domain of EEG signals for ADHD, subtypes and control groups were analyzed and compared using Matlab software. The mean age of the ADHD children's group was 8.7 years and the control group 9.1 years. Spectral analysis of mean power (μV 2 ) and relative-mean power (%) was carried out for four different frequency bands: delta (0--4 Hz), theta (4--8 Hz), alpha (8--13 Hz) and beta (13--32 Hz). The ADHD and subtypes of ADHD-I, and ADHD-C groups had higher average power value of delta and theta band than that of control group. However, this is not the case for alpha and beta bands. Increases in delta/beta ratio and statistical significance were found only between ADHD-I and control group, and in delta/beta, theta/delta ratio statistical significance values were found to exist between ADHD-C and control group. EEG analyzes can be used as an alternative method when ADHD subgroups are identified.

  10. Comparison of polarization and analysing power for the 9Be(p,n)9B reaction

    International Nuclear Information System (INIS)

    Byrd, R.C.; Lisowski, P.W.; Tornow, W.; Walter, R.L.

    1983-01-01

    A recent Lane model of the 9 Be + nucleon system raised the question of differences between the polarization P(THETA) and the analyzing power A(THETA) in (p, n) reactions between mirror nuclei. Since these two observables are identical under exact charge symmetry, observation of a difference would indicate the breaking of this symmetry, probably by the Coulomb interaction. This paper describes the techniques for measurements of P(THETA) and A(THETA) in (p, n) reactions, with an emphasis on the elimination of systematic errors and the determination of background contributions. Measurements of both observables were made for the 9 Be(p, n 0 ) 9 B reaction at several angles for energies from 3 to 10 MeV. The results are combined with previous measurements to develop data sets for a comprehensive comparison of P(THETA) and A(THETA). Previous A(THETA) values agree well with the present measurements, while most of the earlier P(THETA) data are shown to be in error. Our data show that there do exist sizeable differences between P(THETA) and A(THETA) at energies from Esub(p) = 5-7 MeV. The existence of such differences in light nuclear systems is consistent with recent shell-model calculations for the 11 B(p, n 0 ) 11 C reaction. (orig.)

  11. X-Band GaN Power Amplifier MMIC with a Third Harmonic-Tuned Circuit

    Directory of Open Access Journals (Sweden)

    Kyung-Tae Bae

    2017-11-01

    Full Text Available This paper presents an X-band GaN HEMT power amplifier with a third harmonic-tuned circuit for a higher power density per area and a higher power-added efficiency (PAE using a 0.25 μm GaN HEMT process of WIN semiconductors, Inc. The optimum load impedances at the fundamental and third harmonic frequencies are extracted from load-pull simulations at the transistor’s extrinsic plane, including the drain-source capacitance and the series drain inductance. The third harmonic-tuned circuit is effectively integrated with the output matching circuit at the fundamental frequency, without complicating the whole output matching circuit. The input matching circuit uses a lossy matching scheme, which allows a good return loss and a simple LC low-pass circuit configuration. The fabricated power amplifier monolithic microwave integrated circuit (MMIC occupies an area of 13.26 mm2, and shows a linear gain of 20 dB or more, a saturated output power of 43.2~44.7 dBm, and a PAE of 35~37% at 8.5 to 10.5 GHz.

  12. Imploding to equilibrium of helically symmetric theta pinches

    International Nuclear Information System (INIS)

    Sharky, N.N.

    1978-01-01

    The time-dependent, single-fluid, dissipative magnetohydrodynamic equations are solved in helical coordinates (r,phi), where phi = THETA-kz, k = 2π/L and L is the periodicity length in the z-direction. The two-dimensional numerical calculations simulate theta pinches which have an l = 1 helical field added to them. Given the applied magnetic fields and the initial state of the plasma, we study the time evolution of the system. The plasma is found to experience two kinds of oscillations, occurring on different time scales. These are the radial compression oscillations, and the slower helical oscillations of the plasma column. The plasma motion is followed until these oscillations disappear and an equilibrium is nearly reached. Hence given the amplitude and the rise time of the applied magnetic fields, the calculations allow one to relate the initial state of a cold, homogeneous plasma to its final equilibrium state where it is heated and compressed

  13. Opacity test using a neon-seeded theta pinch

    International Nuclear Information System (INIS)

    Thomson, D.B.

    1980-02-01

    Vacuum ultraviolet (VUV) emission from a neon-seeded high-density theta-pinch has been observed for comparison with theoretical radiation emission calculations. The plasma was created in a 25-cm-long theta-coil with 90-kG field having a 3.0-μs quarter period. A gas fill of 1 torr of helium + 2% neon was used. Observation of the HeII 4686 line/continuum ratio gave an electron temperature of 25 +- 4 eV. Shadowgraphs of the plasma radius, taken with a ruby laser, gave an electron density of 0.9 +- 0.09 x 10 18 cm -3 . The VUV emission was observed in radial view and with time resolution with a 2.2-m grazing-incidence monochromator equipped with a photomultiplier and p-terphenyl scintillator. Thin foils of carbon and aluminum were used as filters to absorb stray light and pass emission in the 44- to 100-A region

  14. Adaptive Hysteresis Band Current Control (AHB) with PLL of Grid Side Converter-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2011-01-01

    Adaptive hysteresis band current control(AHB CC) is used to control the three-phase grid currents by means of grid side converter in wind power generation system in this paper. AHB has reached the good purpose with PLL (Lock phase loop). First the mathematical models of each part are given......, transformer and grid, and control parts, etc. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage in wind power generation system....

  15. Cerebral oscillatory activity during simulated driving using MEG

    Directory of Open Access Journals (Sweden)

    Kotoe eSakihara

    2014-12-01

    Full Text Available We aimed to examine cerebral oscillatory differences associated with psychological processes during simulated car driving. We recorded neuromagnetic signals in 14 healthy volunteers using magnetoencephalography (MEG during simulated driving. MEG data were analyzed using synthetic aperture magnetometry to detect the spatial distribution of cerebral oscillations. Group effects between subjects were analyzed statistically using a nonparametric permutation test. Oscillatory differences were calculated by comparison between passive viewing and active driving. Passive viewing was the baseline, and oscillatory differences during active driving showed an increase or decrease in comparison with a baseline. Power increase in the theta band was detected in the superior frontal gyrus (SFG during active driving. Power decreases in the alpha, beta, and low gamma bands were detected in the right inferior parietal lobe (IPL, left postcentral gyrus (PoCG, middle temporal gyrus (MTG, and posterior cingulate gyrus (PCiG during active driving. Power increase in the theta band in the SFG may play a role in attention. Power decrease in the right IPL may reflect selectively divided attention and visuospatial processing, whereas that in the left PoCG reflects sensorimotor activation related to driving manipulation. Power decreases in the MTG and PCiG may be associated with object recognition.

  16. Selective Entrainment of Theta Oscillations in the Dorsal Stream Causally Enhances Auditory Working Memory Performance.

    Science.gov (United States)

    Albouy, Philippe; Weiss, Aurélien; Baillet, Sylvain; Zatorre, Robert J

    2017-04-05

    The implication of the dorsal stream in manipulating auditory information in working memory has been recently established. However, the oscillatory dynamics within this network and its causal relationship with behavior remain undefined. Using simultaneous MEG/EEG, we show that theta oscillations in the dorsal stream predict participants' manipulation abilities during memory retention in a task requiring the comparison of two patterns differing in temporal order. We investigated the causal relationship between brain oscillations and behavior by applying theta-rhythmic TMS combined with EEG over the MEG-identified target (left intraparietal sulcus) during the silent interval between the two stimuli. Rhythmic TMS entrained theta oscillation and boosted participants' accuracy. TMS-induced oscillatory entrainment scaled with behavioral enhancement, and both gains varied with participants' baseline abilities. These effects were not seen for a melody-comparison control task and were not observed for arrhythmic TMS. These data establish theta activity in the dorsal stream as causally related to memory manipulation. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae

    Science.gov (United States)

    Sharma, Honey; Mittal, H. M.

    2018-03-01

    The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.

  18. Cross coherence independent component analysis in resting and action states EEG discrimination

    International Nuclear Information System (INIS)

    Almurshedi, A; Ismail, A K

    2014-01-01

    Cross Coherence time frequency transform and independent component analysis (ICA) method were used to analyse the electroencephalogram (EEG) signals in resting and action states during open and close eyes conditions. From the topographical scalp distributions of delta, theta, alpha, and beta power spectrum can clearly discriminate between the signal when the eyes were open or closed, but it was difficult to distinguish between resting and action states when the eyes were closed. In open eyes condition, the frontal area (Fp1, Fp2) was activated (higher power) in delta and theta bands whilst occipital (O1, O2) and partial (P3, P4, Pz) area of brain was activated alpha band in closed eyes condition. The cross coherence method of time frequency analysis is capable of discrimination between rest and action brain signals in closed eyes condition

  19. Frontal theta and beta synchronizations for monetary reward increase visual working memory capacity.

    Science.gov (United States)

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2013-06-01

    Visual working memory (VWM) capacity is affected by motivational influences; however, little is known about how reward-related brain activities facilitate the VWM systems. To investigate the dynamic relationship between VWM- and reward-related brain activities, we conducted time-frequency analyses using electroencephalograph (EEG) data obtained during a monetary-incentive delayed-response task that required participants to memorize the position of colored disks. In case of a correct answer, participants received a monetary reward (0, 10 or 50 Japanese yen) announced at the beginning of each trial. Behavioral results showed that VWM capacity under high-reward condition significantly increased compared with that under low- or no-reward condition. EEG results showed that frontal theta (6 Hz) amplitudes enhanced during delay periods and positively correlated with VWM capacity, indicating involvement of theta local synchronizations in VWM. Moreover, frontal beta activities (24 Hz) were identified as reward-related activities, because delay-period amplitudes correlated with increases in VWM capacity between high-reward and no-reward conditions. Interestingly, cross-frequency couplings between frontal theta and beta phases were observed only under high-reward conditions. These findings suggest that the functional dynamic linking between VWM-related theta and reward-related beta activities on the frontal regions plays an integral role in facilitating increases in VWM capacity.

  20. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  1. Automatic sleep scoring: a search for an optimal combination of measures.

    Science.gov (United States)

    Krakovská, Anna; Mezeiová, Kristína

    2011-09-01

    The objective of this study is to find the best set of characteristics of polysomnographic signals for the automatic classification of sleep stages. A selection was made from 74 measures, including linear spectral measures, interdependency measures, and nonlinear measures of complexity that were computed for the all-night polysomnographic recordings of 20 healthy subjects. The adopted multidimensional analysis involved quadratic discriminant analysis, forward selection procedure, and selection by the best subset procedure. Two situations were considered: the use of four polysomnographic signals (EEG, EMG, EOG, and ECG) and the use of the EEG alone. For the given database, the best automatic sleep classifier achieved approximately an 81% agreement with the hypnograms of experts. The classifier was based on the next 14 features of polysomnographic signals: the ratio of powers in the beta and delta frequency range (EEG, channel C3), the fractal exponent (EMG), the variance (EOG), the absolute power in the sigma 1 band (EEG, C3), the relative power in the delta 2 band (EEG, O2), theta/gamma (EEG, C3), theta/alpha (EEG, O1), sigma/gamma (EEG, C4), the coherence in the delta 1 band (EEG, O1-O2), the entropy (EMG), the absolute theta 2 (EEG, Fp1), theta/alpha (EEG, Fp1), the sigma 2 coherence (EEG, O1-C3), and the zero-crossing rate (ECG); however, even with only four features, we could perform sleep scoring with a 74% accuracy, which is comparable to the inter-rater agreement between two independent specialists. We have shown that 4-14 carefully selected polysomnographic features were sufficient for successful sleep scoring. The efficiency of the corresponding automatic classifiers was verified and conclusively demonstrated on all-night recordings from healthy adults. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Oscillatory cortical network involved in auditory verbal hallucinations in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Remko van Lutterveld

    Full Text Available Auditory verbal hallucinations (AVH, a prominent symptom of schizophrenia, are often highly distressing for patients. Better understanding of the pathogenesis of hallucinations could increase therapeutic options. Magnetoencephalography (MEG provides direct measures of neuronal activity and has an excellent temporal resolution, offering a unique opportunity to study AVH pathophysiology.Twelve patients (10 paranoid schizophrenia, 2 psychosis not otherwise specified indicated the presence of AVH by button-press while lying in a MEG scanner. As a control condition, patients performed a self-paced button-press task. AVH-state and non-AVH state were contrasted in a region-of-interest (ROI approach. In addition, the two seconds before AVH onset were contrasted with the two seconds after AVH onset to elucidate a possible triggering mechanism.AVH correlated with a decrease in beta-band power in the left temporal cortex. A decrease in alpha-band power was observed in the right inferior frontal gyrus. AVH onset was related to a decrease in theta-band power in the right hippocampus.These results suggest that AVH are triggered by a short aberration in the theta band in a memory-related structure, followed by activity in language areas accompanying the experience of AVH itself.

  3. Fade Mitigation Techniques at Ka-Band

    Science.gov (United States)

    Dissanayake, Asoka (Editor)

    1996-01-01

    Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.

  4. Electrical insulators for the theta-pinch fusion reactor

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1976-01-01

    The five major applications for electrical insulators in the Reference Theta Pinch Reactor are as follows: (1) first-wall insulator, (2) blanket intersegment insulator, (3) graphite encapsulating insulator, (4) implosion coil insulator, and (5) compression coil insulator. Insulator design proposals and some preliminary test results are given for each application

  5. Pupil Dilation and EEG Alpha Frequency Band Power Reveal Load on Executive Functions for Link-Selection Processes during Text Reading.

    Directory of Open Access Journals (Sweden)

    Christian Scharinger

    Full Text Available Executive working memory functions play a central role in reading comprehension. In the present research we were interested in additional load imposed on executive functions by link-selection processes during computer-based reading. For obtaining process measures, we used a methodology of concurrent electroencephalographic (EEG and eye-tracking data recording that allowed us to compare epochs of pure text reading with epochs of hyperlink-like selection processes in an online reading situation. Furthermore, this methodology allowed us to directly compare the two physiological load-measures EEG alpha frequency band power and pupil dilation. We observed increased load on executive functions during hyperlink-like selection processes on both measures in terms of decreased alpha frequency band power and increased pupil dilation. Surprisingly however, the two measures did not correlate. Two additional experiments were conducted that excluded potential perceptual, motor, or structural confounds. In sum, EEG alpha frequency band power and pupil dilation both turned out to be sensitive measures for increased load during hyperlink-like selection processes in online text reading.

  6. Algebraic geometry and theta functions

    CERN Document Server

    Coble, Arthur B

    1929-01-01

    This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and

  7. Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model.

    Directory of Open Access Journals (Sweden)

    Samuel A Neymotin

    Full Text Available Ih channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4-12 Hz and gamma (25 Hz oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells, contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases.

  8. Combinatorics of tenth-order mock theta functions

    Indian Academy of Sciences (India)

    θ(q) there is some root of unity ζ for which f (q) − θ(q) is unbounded as q → ζ rapidly. In the long list of 17 mock theta functions given by Ramanujan, few have been interpreted combinatorially. For example, (q) defined by (1.1) below, has been interpreted by Fine. [8] as a generating function for partitions into odd parts without ...

  9. Instantons, theta-vacua, confinement..... a pedagogical introduction

    International Nuclear Information System (INIS)

    Teper, M.J.

    1980-01-01

    In this series of lectures the concept of the instanton and its various ramifications, such as the dilute gas and theta-vacua, are introduced through the relatively simple dynamical system of 1 + 1 dimensional quantum mechanics and the 1 + 1 abelian Higgs model. Although QCD is not dealt with explicitly those aspects of the argument which are relevant to that much more complicated theory are noted. (UK)

  10. Upsilon NU: Our chapter in Sigma Theta Tau Internacional Upsilon NU: nuestro capítulo en Sigma Theta Tau International

    Directory of Open Access Journals (Sweden)

    GARZÓN ALARCÓN NELLY

    2008-07-01

    Full Text Available ALa Sociedad de Honor de Enfermería, Sigma Theta Tau Internacional, es una organización que nace y vive para desarrollar el conocimiento y la ciencia de enfermería como fundamentos del liderazgo y la búsqueda de la excelencia en el cuidado de la persona, la familia y la comunidad.

  11. Creep curve modeling of hastelloy-X alloy by using the theta projection method

    International Nuclear Information System (INIS)

    Woo Gon, Kim; Woo-Seog, Ryu; Jong-Hwa, Chang; Song-Nan, Yin

    2007-01-01

    To model the creep curves of the Hastelloy-X alloy which is being considered as a candidate material for the VHTR (Very High Temperature gas-cooled Reactor) components, full creep curves were obtained by constant-load creep tests for different stress levels at 950 C degrees. Using the experimental creep data, the creep curves were modeled by applying the Theta projection method. A number of computing processes of a nonlinear least square fitting (NLSF) analysis was carried out to establish the suitably of the four Theta parameters. The results showed that the Θ 1 and Θ 2 parameters could not be optimized well with a large error during the fitting of the full creep curves. On the other hand, the Θ 3 and Θ 4 parameters were optimized well without an error. For this result, to find a suitable cutoff strain criterion, the NLSF analysis was performed with various cutoff strains for all the creep curves. An optimum cutoff strain range for defining the four Theta parameters accurately was found to be a 3% cutoff strain. At the 3% cutoff strain, the predicted curves coincided well with the experimental ones. The variation of the four Theta parameters as the function of a stress showed a good linearity, and the creep curves were modeled well for the low stress levels. Predicted minimum creep rate showed a good agreement with the experimental data. Also, for a design usage of the Hastelloy-X alloy, the plot of the log stress versus log the time to a 1% strain was predicted, and the creep rate curves with time and a cutoff strain at 950 C degrees were constructed numerically for a wide rang of stresses by using the Theta projection method. (authors)

  12. Study of CP(N-1) theta-vacua by cluster simulation of SU(N) quantum spin ladders.

    Science.gov (United States)

    Beard, B B; Pepe, M; Riederer, S; Wiese, U-J

    2005-01-14

    D-theory provides an alternative lattice regularization of the 2D CP(N-1) quantum field theory in which continuous classical fields emerge from the dimensional reduction of discrete SU(N) quantum spins. Spin ladders consisting of n transversely coupled spin chains lead to a CP(N-1) model with a vacuum angle theta=npi. In D-theory no sign problem arises and an efficient cluster algorithm is used to investigate theta-vacuum effects. At theta=pi there is a first order phase transition with spontaneous breaking of charge conjugation symmetry for CP(N-1) models with N>2.

  13. Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons.

    Science.gov (United States)

    Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F

    2009-11-18

    Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.

  14. A High-Speed Power-Line Communication System with Band-Limited OQAM Based Multi-Carrier Transmission

    Science.gov (United States)

    Kawabata, Naohiro; Koga, Hisao; Muta, Osamu; Akaiwa, Yoshihiko

    As a method to realize a high-speed communication in the home network, the power-line communication (PLC) technique is known. A problem of PLC is that leakage radiation interferes with existing systems. When OFDM is used in a PLC system, the leakage radiation is not sufficiently reduced, even if the subcarriers corresponding to the frequency-band of the existing system are never used, because the signal is not strictly band-limited. To solve this problem, each subcarrier must be band-limited. In this paper, we apply the OQAM based multi-carrier transmission (OQAM-MCT) to a high-speed PLC system, where each subcarrier is individually band-limited. We also propose a pilot-symbol sequence suitable for frequency offset estimation, symbol-timing detection and channel estimation in the OQAM-MCT system. In this method, the pilot signal-sequence consists of a repeated series of the same data symbol. With this method, the pilot sequence approximately becomes equivalent to OFDM sequence and therefore existing pilot-assisted methods for OFDM are also applicable to OQAM-MCT system. Computer simulation results show that the OQAM-MCT system achieves both good transmission rate performance and low out-of-band radiation in PLC channels. It is also shown that the proposed pilot-sequence improves frequency offset estimation, symbol-timing detection and channel estimation performance as compared with the case of using pseudo-noise sequence.

  15. The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme.

    Science.gov (United States)

    Lisman, John

    2005-01-01

    In the hippocampus, oscillations in the theta and gamma frequency range occur together and interact in several ways, indicating that they are part of a common functional system. It is argued that these oscillations form a coding scheme that is used in the hippocampus to organize the readout from long-term memory of the discrete sequence of upcoming places, as cued by current position. This readout of place cells has been analyzed in several ways. First, plots of the theta phase of spikes vs. position on a track show a systematic progression of phase as rats run through a place field. This is termed the phase precession. Second, two cells with nearby place fields have a systematic difference in phase, as indicated by a cross-correlation having a peak with a temporal offset that is a significant fraction of a theta cycle. Third, several different decoding algorithms demonstrate the information content of theta phase in predicting the animal's position. It appears that small phase differences corresponding to jitter within a gamma cycle do not carry information. This evidence, together with the finding that principle cells fire preferentially at a given gamma phase, supports the concept of theta/gamma coding: a given place is encoded by the spatial pattern of neurons that fire in a given gamma cycle (the exact timing within a gamma cycle being unimportant); sequential places are encoded in sequential gamma subcycles of the theta cycle (i.e., with different discrete theta phase). It appears that this general form of coding is not restricted to readout of information from long-term memory in the hippocampus because similar patterns of theta/gamma oscillations have been observed in multiple brain regions, including regions involved in working memory and sensory integration. It is suggested that dual oscillations serve a general function: the encoding of multiple units of information (items) in a way that preserves their serial order. The relationship of such coding to

  16. Frontal theta EEG dynamics in a real-world air traffic control task.

    Science.gov (United States)

    Shou, Guofa; Ding, Lei

    2013-01-01

    Mental workload and time-on-task effect are two major factors expediting fatigue progress, which leads to performance decline and/or failure in real-world tasks. In the present study, electroencephalography (EEG) is applied to study mental fatigue development during an air traffic control (ATC) task. Specifically, the frontal theta EEG dynamics are firstly dissolved into a unique frontal independent component (IC) through a novel time-frequency independent component analysis (tfICA) method. Then the temporal fluctuations of the identified frontal ICs every minute are compared to workload (reflected by number of clicks per minute) and time-on-task effect by correlational analysis and linear regression analysis. It is observed that the frontal theta activity significantly increase with workload augment and time-on-task. The present study demonstrates that the frontal theta EEG activity identified by tfICA method is a sensitive and reliable metric to assess mental workload and time-on-task effect in a real-world task, i.e., ATC task, at the resolution of minute(s).

  17. Comparison of polarization and analyzing power for the /sup 15/N(p,n)/sup 15/O reaction

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, R.C.; Tornow, W.; Lisowski, P.W.; Murphy, K.; Walter, R.L. (Duke Univ., Durham, NC (USA). Dept. of Physics; Triangle Universities Nuclear Lab., Durham, NC (USA))

    1983-11-21

    The analyzing power Asub(y)(theta) and polarization Psup(y)(theta) for the /sup 15/N(p,n/sub 0/)/sup 15/O reaction have been measured for Esub(p)=4.5-11.3 MeV. The values of the two observables are nearly the same above 11 MeV, where a ''quasi-elastic'' view of the (p,n) reaction to the analog state should be applicable. Below 10 MeV, however, large spin-flip amplitudes and isospin-mixing ratios provide the two major conditions needed to obtain Psup(y)(theta)not=Asub(y)(theta) and dramatic differences between the two observables are observed. The size of the differences and their dependence on energy are similar to the results predicted by shell-model calculations. The Psup(y)(theta) and Asub(y)(theta) measurements have been combined with existing cross-section data to provide information about spin-flip processes. We also comment on the connection between comparisons of Psup(y)(theta) and Asup(y)(theta) in charge-symmetric (p,n) reactions and the recent controversial measurements of a difference between the values of Psup(y)(theta) for a reaction and Asub(y)(theta) for the inverse reaction.

  18. The impact of visual gaze direction on auditory object tracking.

    Science.gov (United States)

    Pomper, Ulrich; Chait, Maria

    2017-07-05

    Subjective experience suggests that we are able to direct our auditory attention independent of our visual gaze, e.g when shadowing a nearby conversation at a cocktail party. But what are the consequences at the behavioural and neural level? While numerous studies have investigated both auditory attention and visual gaze independently, little is known about their interaction during selective listening. In the present EEG study, we manipulated visual gaze independently of auditory attention while participants detected targets presented from one of three loudspeakers. We observed increased response times when gaze was directed away from the locus of auditory attention. Further, we found an increase in occipital alpha-band power contralateral to the direction of gaze, indicative of a suppression of distracting input. Finally, this condition also led to stronger central theta-band power, which correlated with the observed effect in response times, indicative of differences in top-down processing. Our data suggest that a misalignment between gaze and auditory attention both reduce behavioural performance and modulate underlying neural processes. The involvement of central theta-band and occipital alpha-band effects are in line with compensatory neural mechanisms such as increased cognitive control and the suppression of task irrelevant inputs.

  19. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm.

    Science.gov (United States)

    Mondini, Valeria; Mangia, Anna Lisa; Cappello, Angelo

    2018-01-01

    Transcranial direct current stimulation (tDCS) and neurofeedback-guided motor imagery (MI) have attracted considerable interest in neurorehabilitation, given their ability to influence neuroplasticity. As tDCS has been shown to modulate event-related desynchronization (ERD), the neural signature of motor imagery detected for neurofeedback, a combination of the techniques was recently proposed. One limitation of this approach is that the area targeted for stimulation is the same from which the signal for neurofeedback is acquired. As tDCS may interfere with proximal electroencephalographic (EEG) electrodes, in this study our aim was to test whether contralateral tDCS could have interhemispheric effects on the spectral power of the unstimulated hemisphere, possibly mediated by transcallosal connection, and whether such effects could be used to enhance ERD magnitudes. A contralateral stimulation approach would indeed facilitate co-registration, as the stimulation electrode would be far from the recording sites. Twenty right-handed healthy volunteers (aged 21 to 32) participated in the study: ten assigned to cathodal, ten to anodal versus sham stimulation. We applied stimulation over the dominant (left) hemisphere, and assessed ERD and spectral power over the non-dominant (right) hemisphere. The effect of tDCS was evaluated over time. Spectral power was assessed in theta, alpha and beta bands, under both rest and MI conditions, while ERD was evaluated in alpha and beta bands. Two main findings emerged: (1) contralateral alpha-ERD was reduced after anodal (p = 0.0147), but not enhanced after cathodal tDCS; (2) both stimulations had remote effects on the spectral power of the contralateral hemisphere, particularly in theta and alpha (significant differences in the topographical t-value maps). The absence of contralateral cathodal ERD enhancement suggests that the protocol is not applicable in the context of MI training. Nevertheless, ERD results of anodal and spectral

  20. Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling.

    Science.gov (United States)

    Fernández-Ruiz, Antonio; Oliva, Azahara; Nagy, Gergő A; Maurer, Andrew P; Berényi, Antal; Buzsáki, György

    2017-03-08

    Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Exponential mean-square stability of two classes of theta Milstein methods for stochastic delay differential equations

    Science.gov (United States)

    Rouz, Omid Farkhondeh; Ahmadian, Davood; Milev, Mariyan

    2017-12-01

    This paper establishes exponential mean square stability of two classes of theta Milstein methods, namely split-step theta Milstein (SSTM) method and stochastic theta Milstein (STM) method, for stochastic differential delay equations (SDDEs). We consider the SDDEs problem under a coupled monotone condition on drift and diffusion coefficients, as well as a necessary linear growth condition on the last term of theta Milstein method. It is proved that the SSTM method with θ ∈ [0, ½] can recover the exponential mean square stability of the exact solution with some restrictive conditions on stepsize, but for θ ∈ (½, 1], we proved that the stability results hold for any stepsize. Then, based on the stability results of SSTM method, we examine the exponential mean square stability of the STM method and obtain the similar stability results to that of the SSTM method. In the numerical section the figures show thevalidity of our claims.

  2. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex.

    Science.gov (United States)

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-06-10

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation.

  3. How reduction of theta rhythm by medial septum inactivation may covary with disruption of entorhinal grid cell responses due to reduced cholinergic transmission

    Directory of Open Access Journals (Sweden)

    Praveen K. Pilly

    2013-10-01

    Full Text Available Oscillations in the coordinated firing of brain neurons have been proposed to play important roles in perception, cognition, attention, learning, navigation, and sensory-motor control. The network theta rhythm has been associated with properties of spatial navigation, as has the firing of entorhinal grid cells and hippocampal place cells. Two recent studies reduced the theta rhythm by inactivating the medial septum (MS and demonstrated a correlated reduction in the characteristic hexagonal spatial firing patterns of grid cells. These results, along with properties of intrinsic membrane potential oscillations (MPOs in slice preparations of entorhinal cells, have been interpreted to support oscillatory interference models of grid cell firing. The current article shows that an alternative self-organizing map model of grid cells can explain these data about intrinsic and network oscillations without invoking oscillatory interference. In particular, the adverse effects of MS inactivation on grid cells can be understood in terms of how the concomitant reduction in cholinergic inputs may increase the conductances of leak potassium (K+ and slow and medium after-hyperpolarization (sAHP and mAHP channels. This alternative model can also explain data that are problematic for oscillatory interference models, including how knockout of the HCN1 gene in mice, which flattens the dorsoventral gradient in MPO frequency and resonance frequency, does not affect the development of the grid cell dorsoventral gradient of spatial scales, and how hexagonal grid firing fields in bats can occur even in the absence of theta band modulation. These results demonstrate how models of grid cell self-organization can provide new insights into the relationship between brain learning, oscillatory dynamics, and navigational behaviors.

  4. Analyzing power measurements for neutron-nucleus scattering and the spin-orbit potential

    International Nuclear Information System (INIS)

    Walter, R.L.

    1985-01-01

    Analyzing power A/sub y/(theta) and cross section measurements have been obtained from 10 to 17 MeV for 20 isotopes ranging from 6 Li to 208 Pb. These combined data sets provide a unique data base for nuclear model development. The experimental method for the A/sub y/(theta) measurements and comparisons to coupled-channels and spherical optical model calculations are given

  5. Theta frequency background tunes transmission but not summation of spiking responses.

    Directory of Open Access Journals (Sweden)

    Dhanya Parameshwaran

    Full Text Available Hippocampal neurons are known to fire as a function of frequency and phase of spontaneous network rhythms, associated with the animal's behaviour. This dependence is believed to give rise to precise rate and temporal codes. However, it is not well understood how these periodic membrane potential fluctuations affect the integration of synaptic inputs. Here we used sinusoidal current injection to the soma of CA1 pyramidal neurons in the rat brain slice to simulate background oscillations in the physiologically relevant theta and gamma frequency range. We used a detailed compartmental model to show that somatic current injection gave comparable results to more physiological synaptically driven theta rhythms incorporating excitatory input in the dendrites, and inhibitory input near the soma. We systematically varied the phase of synaptic inputs with respect to this background, and recorded changes in response and summation properties of CA1 neurons using whole-cell patch recordings. The response of the cell was dependent on both the phase of synaptic inputs and frequency of the background input. The probability of the cell spiking for a given synaptic input was up to 40% greater during the depolarized phases between 30-135 degrees of theta frequency current injection. Summation gain on the other hand, was not affected either by the background frequency or the phasic afferent inputs. This flat summation gain, coupled with the enhanced spiking probability during depolarized phases of the theta cycle, resulted in enhanced transmission of summed inputs during the same phase window of 30-135 degrees. Overall, our study suggests that although oscillations provide windows of opportunity to selectively boost transmission and EPSP size, summation of synaptic inputs remains unaffected during membrane oscillations.

  6. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    Science.gov (United States)

    Kasparek, W.; Petelin, M. I.; Shchegolkov, D. Yu; Erckmann, V.; Plaum, B.; Bruschi, A.; ECRH Groups at IPP Greifswald; Karlsruhe, FZK; Stuttgart, IPF

    2008-05-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented.

  7. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    International Nuclear Information System (INIS)

    Kasparek, W.; Plaum, B.; Petelin, M.I.; Shchegolkov, D.Yu; Erckmann, V.; Bruschi, A.

    2008-01-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented

  8. Verification and Enhancement of VIIRS Day-Night Band Power Outage Detection Product

    Science.gov (United States)

    Burke, A.; Schultz, L. A.; Omitaomu, O.; Molthan, A.; Cole, T.; Griffin, R.

    2017-12-01

    The NASA SPoRT (Short-term Prediction Research and Transition) Center has collaborated with scientists at NASA Goddard Space Flight Center to create a power outage detection product from radiance data obtained by the VIIRS (Visible Infrared Imaging Radiometer Suite) sensor aboard the Suomi-NPP satellite. This product uses a composite of pre-event radiance values from the VIIRS Day-Night Band to establish a baseline of "normal" nighttime lights for a study area. Then, after a severe weather event or other disaster, post-event images are compared to the composite to generate a percent-of-normal radiance product to identify areas that are experiencing outages and to aid in disaster response and monitor recovery. This project will use ground-truth county-level outage data provided by Oak Ridge National Laboratory (ORNL) in order validate the product and to establish a percent-of-normal threshold for identifying power outages. Once a threshold is found, ORNL's LandScan Global population data will be combined with the product to estimate how many electrical customers are being affected by power outages after a disaster. Two case studies will be explored to examine power outage recovery after severe weather events, including Hurricane Matthew from 2016 and the Washington D.C. Derecho event of 2012.

  9. Intrahemispheric theta rhythm desynchronization impairs working memory.

    Science.gov (United States)

    Alekseichuk, Ivan; Pabel, Stefanie Corinna; Antal, Andrea; Paulus, Walter

    2017-01-01

    There is a growing interest in large-scale connectivity as one of the crucial factors in working memory. Correlative evidence has revealed the anatomical and electrophysiological players in the working memory network, but understanding of the effective role of their connectivity remains elusive. In this double-blind, placebo-controlled study we aimed to identify the causal role of theta phase connectivity in visual-spatial working memory. The frontoparietal network was over- or de-synchronized in the anterior-posterior direction by multi-electrode, 6 Hz transcranial alternating current stimulation (tACS). A decrease in memory performance and increase in reaction time was caused by frontoparietal intrahemispheric desynchronization. According to the diffusion drift model, this originated in a lower signal-to-noise ratio, known as the drift rate index, in the memory system. The EEG analysis revealed a corresponding decrease in phase connectivity between prefrontal and parietal areas after tACS-driven desynchronization. The over-synchronization did not result in any changes in either the behavioral or electrophysiological levels in healthy participants. Taken together, we demonstrate the feasibility of manipulating multi-site large-scale networks in humans, and the disruptive effect of frontoparietal desynchronization on theta phase connectivity and visual-spatial working memory.

  10. The electric dipole moment of the nucleon from simulations at imaginary vacuum angle theta

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton (United States)]|[Tsukuba Univ. (Japan). Graduate School of Pure and Applied Sciences; Horsley, R.; Zanotti, J. [Edinburgh Univ. (United Kingdom). School of Physics; Izubuchi, T. [RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton (United States)]|[Kanazawa Univ. (Japan). Inst. for Theoretical Physics; Nakamura, Y.; Pleiter, D.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division. Dept. of Mathematical Sciences

    2008-07-15

    We compute the electric dipole moment of proton and neutron from lattice QCD simulations with N{sub f}=2 flavors of dynamical quarks at imaginary vacuum angle {theta}. The calculation proceeds via the CP odd form factor F{sub 3}. A novel feature of our calculation is that we use partially twisted boundary conditions to extract F{sub 3} at zero momentum transfer. As a byproduct, we test the QCD vacuum at nonvanishing {theta}. (orig.)

  11. X-BAND CIRCULARLY POLARIZED RECTENNAS FOR MICROWAVE POWER TRANSMISSION APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexia; Xu Junshu; Xu Deming; Xu Changlong

    2008-01-01

    Circularly polarized rectennas operating at X-band are studied in this paper. The quasi-square patches fed by aperture coupling are used as the circularly polarized receiving antennas,which are easily matched and integrated with the circuits of rectennas. The double-layer structure not only minimizes the size of the rectennas but also decreases the effects of the circuits on the antenna. The receiving elements have broader bandwidth and higher gain than the single-layer patches.Two rectennas operating at 10GHz are designed, fabricated and measured. The voltage of 3.86V on a load of 200Ωis measured and a high RF-DC conversion efficiency of 75% is obtained at 9.98GHz. It is convenient for this kind of rectennas to form large arrays for high power applications.

  12. Analyzing power measurements for n-p scattering between 13.5 and 16.9 MeV

    International Nuclear Information System (INIS)

    Tornow, W.; Lisowski, P.W.; Byrd, R.C.; Walter, R.L.

    1980-01-01

    The analyzing power A%sub(Y)(theta) for neutron-proton scattering has been measured for theta = 90 0 (c.m.) from 13.5 to 16.9 MeV and from theta = 50 0 to 145 0 (c.m.) at 16.9 MeV. Extensive Monte Carlo calculations have been made to correct for multiple scattering effects. Overall uncertainties are about +- 0.002. All the A%sub(Y)(theta) data, but primarily those at 16.9 MeV, disagree with predictions based on the phase-shift sets which have been derived previously by way of global analyses of nucleon-nucleon scattering data. Data for the product delta(theta)A%sub(Y)(theta) have been fitted with an expansion of the form (sin theta)(a 0 + a 1 cos theta + a 2 cos 2 theta). For the first time the need for a non-zero a 2 has been illustrated for energies below 20 MeV. This parameter is shown to be related to the nucleon-nucleon F-state spin-orbit phase parameter. In addition, the P, D, and F spin-orbit phase parameter values derived from the present data differ significantly from the ones based on the Yale-IV and Livermore-X global analyses. The derived D and F spin-orbit phase parameters also differ from those obtained in the recent analysis of nucleon-nucleon scattering data by Arndt et al. (orig.)

  13. Commissioning of the First Klystron-Based X-Band Power Source at CERN

    CERN Document Server

    Kovermann, J; Curt, S; Doebert, S; Naon, M; McMonagle, G; Paju, E; Rey, S; Riddone, G; Schirm, K; Syratchev, I; Timeo, L; Wuensch, W; Hamdi, A; Peauger, FF; Eichner, J; Haase, A; Sprehn, D

    2012-01-01

    A new klystron based X-band rf power source operating at 11.994 GHz has been installed and started to be commissioned at CERN in collaboration with CEA Saclay and SLAC for CLIC accelerating structure tests. The system comprises a solid state high voltage modulator, an XL5 klystron developed by SLAC, a cavity based SLED type pulse compressor, the necessary low level rf system including rf diagnostics and interlocks and the surrounding vacuum, cooling and controls infrastructure. The system is designed to produce up to 50 MW rf pulses of 1500 ns pulse width and 50 Hz repetition rate. After pulse compression, up to 100 MW of rf power at 250 ns pulse width will be available in the structure test bunker. This paper describes in more detail this setup and the process of commissioning which is necessary to arrive at the design performance.

  14. Eta Products and Theta Series Identities

    CERN Document Server

    Kohler, Gunter

    2011-01-01

    This monograph deals with products of Dedekind's eta function, with Hecke theta series on quadratic number fields, and with "Eisenstein series." The author brings to the public the large number of identities that have been discovered over the past 20 years, the majority of which have not been published elsewhere. This book will be of interest to graduate students and scholars in the field of number theory and, in particular, modular forms. It is not an introductory text in this field. Nevertheless, some theoretical background material is presented that is important for understanding

  15. Theta and Alpha Oscillations in Attentional Interaction during Distracted Driving

    Directory of Open Access Journals (Sweden)

    Yu-Kai Wang

    2018-02-01

    Full Text Available Performing multiple tasks simultaneously usually affects the behavioral performance as compared with executing the single task. Moreover, processing multiple tasks simultaneously often involve more cognitive demands. Two visual tasks, lane-keeping task and mental calculation, were utilized to assess the brain dynamics through 32-channel electroencephalogram (EEG recorded from 14 participants. A 400-ms stimulus onset asynchrony (SOA factor was used to induce distinct levels of attentional requirements. In the dual-task conditions, the deteriorated behavior reflected the divided attention and the overlapping brain resources used. The frontal, parietal and occipital components were decomposed by independent component analysis (ICA algorithm. The event- and response-related theta and alpha oscillations in selected brain regions were investigated first. The increased theta oscillation in frontal component and decreased alpha oscillations in parietal and occipital components reflect the cognitive demands and attentional requirements as executing the designed tasks. Furthermore, time-varying interactive over-additive (O-Add, additive (Add and under-additive (U-Add activations were explored and summarized through the comparison between the summation of the elicited spectral perturbations in two single-task conditions and the spectral perturbations in the dual task. Add and U-Add activations were observed while executing the dual tasks. U-Add theta and alpha activations dominated the posterior region in dual-task situations. Our results show that both deteriorated behaviors and interactive brain activations should be comprehensively considered for evaluating workload or attentional interaction precisely.

  16. Comparison of polarization and analysing power for the /sup 9/Be(p,n)/sup 9/B reaction

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, R.C.; Lisowski, P.W.; Tornow, W.; Walter, R.L. (Duke Univ., Durham, NC (USA). Dept. of Physics; Triangle Universities Nuclear Lab., Durham, NC (USA))

    1983-08-01

    A recent Lane model of the /sup 9/Be + nucleon system raised the question of differences between the polarization P(THETA) and the analyzing power A(THETA) in (p, n) reactions between mirror nuclei. Since these two observables are identical under exact charge symmetry, observation of a difference would indicate the breaking of this symmetry, probably by the Coulomb interaction. This paper describes the techniques for measurements of P(THETA) and A(THETA) in (p, n) reactions, with an emphasis on the elimination of systematic errors and the determination of background contributions. Measurements of both observables were made for the /sup 9/Be(p, n/sub 0/)/sup 9/B reaction at several angles for energies from 3 to 10 MeV. The results are combined with previous measurements to develop data sets for a comprehensive comparison of P(THETA) and A(THETA). Previous A(THETA) values agree well with the present measurements, while most of the earlier P(THETA) data are shown to be in error. Our data show that there do exist sizeable differences between P(THETA) and A(THETA) at energies from Esub(p) = 5-7 MeV. The existence of such differences in light nuclear systems is consistent with recent shell-model calculations for the /sup 11/B(p, n/sub 0/)/sup 11/C reaction.

  17. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior

    Science.gov (United States)

    Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo

    2016-01-01

    Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0–12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization. PMID:26879632

  18. A Comparison of Frontal Theta Activity During Shooting among Biathletes and Cross-Country Skiers before and after Vigorous Exercise.

    Directory of Open Access Journals (Sweden)

    Harri Luchsinger

    Full Text Available Previous studies using electroencephalography (EEG to monitor brain activity have linked higher frontal theta activity to more focused attention and superior performance in goal-directed precision tasks. In biathlon, shooting performance requires focused attention after high-intensity cross-country skiing.To compare biathletes (serving as experts and cross-country skiers (novices and examine the effect of vigorous exercise on frontal theta activity during shooting.EEG frontal theta (4-7 Hz activity was compared between nine biathletes and eight cross-country skiers at comparable skiing performance levels who fired 100 shots on a 5-m indoor shooting range in quiescent condition followed by 20 shots after each of five 6-min high-intensity roller skiing sessions in the skating technique on a treadmill.Biathletes hit 80±14% and 81±10% before and after the roller skiing sessions, respectively. For the cross-country skiers these values were significantly lower than for the biathletes and amounted to 39±13% and 44±11% (p<0.01. Biathletes had on average 6% higher frontal theta activity during shooting as compared to cross-country skiers (F1,15 = 4.82, p = 0.044, but no significant effect of vigorous exercise on frontal theta activity in either of the two groups were found (F1,15 = 0.14, p = 0.72.Biathletes had significantly higher frontal theta activity than cross-country skiers during shooting, indicating higher focused attention in biathletes. Vigorous exercise did not decrease shooting performance or frontal theta activity during shooting in biathletes and cross-country skiers.

  19. Reduced ERPs and theta oscillations underlie working memory deficits in Toxoplasma gondii infected seniors.

    Science.gov (United States)

    Gajewski, Patrick D; Falkenstein, Michael; Hengstler, Jan G; Golka, Klaus

    2016-10-01

    Toxoplasma gondii is one of the most widespread infections in humans. Recent studies give evidence for memory deficits in infected older adults. To investigate working memory dysfunction in infected elderly, a double-blinded electrophysiological study was conducted. 84 persons derived from a sample of 131 healthy participants with the mean age of 70 years were assigned to two groups of 42 non-infected and 42 infected individuals. The outcome measures were behavioral performance, target and response-related ERPs, and time-frequency wavelets during performance in a n-back working-memory task. The infected individuals showed a reduced rate of detected targets and diminished P3b amplitude both in target-locked as well as response-locked data compared to the non-infected group. Time-frequency decomposition of the EEG-signals revealed lower evoked power in the theta frequency range in the target-locked as well as in the response-locked data in infected individuals. The reported effects were comparable with differences between healthy young and old adults described previously. Taking together, the reduced working-memory performance accompanied by an attenuated P3b and frontal theta activity may suggest neurotransmitter imbalance like dopamine and norepinephrine in T. gondii infected individuals. In face of a high prevalence of T. gondii infection and the increasing ratio of older population their accelerated memory decline may have substantial socioeconomic consequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Simple UHV offset manipulator with independent theta and phi rotations

    International Nuclear Information System (INIS)

    Jamison, K.D.; Dunning, F.B.

    1984-01-01

    A simple UHV offset manipulator is described that not only allows a target crystal to be moved to any point on a circle centered on the manipulator axis but also provides indepedent theta and phi rotations at each position

  1. Intermittent Theta Burst Over M1 May Increase Peak Power of a Wingate Anaerobic Test and Prevent the Reduction of Voluntary Activation Measured with Transcranial Magnetic Stimulation.

    Science.gov (United States)

    Giboin, Louis-Solal; Thumm, Patrick; Bertschinger, Raphael; Gruber, Markus

    2016-01-01

    Despite the potential of repetitive transcranial magnetic stimulation (rTMS) to improve performances in patients suffering from motor neuronal afflictions, its effect on motor performance enhancement in healthy subjects during a specific sport task is still unknown. We hypothesized that after an intermittent theta burst (iTBS) treatment, performance during the Wingate Anaerobic Test (WAnT) will increase and supraspinal fatigue following the exercise will be lower in comparison to a control treatment. Ten subjects participated in two randomized experiments consisting of a WAnT 5 min after either an iTBS or a control treatment. We determined voluntary activation (VA) of the right knee extensors with TMS (VATMS) and with peripheral nerve stimulation (VAPNS) of the femoral nerve, before and after the WAnT. T-tests were applied to the WAnT results and a two way within subject ANOVA was applied to VA results. The iTBS treatment increased the peak power and the maximum pedalling cadence and suppressed the reduction of VATMS following the WAnT compared to the control treatment. No behavioral changes related to fatigue (mean power and fatigue index) were observed. These results indicate for the first time that iTBS could be used as a potential intervention to improve anaerobic performance in a sport specific task.

  2. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.

    Science.gov (United States)

    Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin

    Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of

  3. Reduction in LFP cross-frequency coupling between theta and gamma rhythms associated with impaired STP and LTP in a rat model of brain ischemia

    Directory of Open Access Journals (Sweden)

    Tao eZhang

    2013-04-01

    Full Text Available The theta-gamma cross-frequency coupling (CFC in hippocampus was reported to reflect memory process. In this study, we measured the CFC of hippocampal local field potentials (LFPs in a two-vessel occlusion (2VO rat model, combined with both amplitude and phase properties and associated with short and long-term plasticity indicating the memory function. Male Wistar rats were used and a 2VO model was established. STP and LTP were recorded in hippocampal CA3-CA1 pathway after LFPs were collected in both CA3 and CA1. Based on the data of relative power spectra and phase synchronization, it suggested that both the amplitude and phase coupling of either theta or gamma rhythm were involved in modulating the neural network in 2VO rats. In order to determine whether the CFC was also implicated in neural impairment in 2VO rats, the coupling of CA3 theta–CA1 gamma was measured by both phase-phase coupling (n:m phase synchronization and phase-amplitude coupling. The attenuated CFC strength in 2VO rats implied the impaired neural communication in the coordination of theta-gamma entraining process. Moreover, compared with modulation index (MI a novel algorithm named cross frequency conditional mutual information (CF-CMI, was developed to focus on the coupling between theta phase and the phase of gamma amplitude. The results suggest that the reduced CFC strength probably attributed to the disruption of the phase of CA1 gamma envelop. In conclusion, it implied that the phase coupling and CFC of hippocampal theta and gamma played an important role in supporting functions of neural network. Furthermore, synaptic plasticity on CA3-CA1 pathway was reduced in line with the decreased CFC strength from CA3 to CA1. It partly supported our hypothesis that directional CFC indicator might probably be used as a measure of synaptic plasticity.

  4. Modification of EEG functional connectivity and EEG power spectra in overweight and obese patients with food addiction: An eLORETA study.

    Science.gov (United States)

    Imperatori, Claudio; Fabbricatore, Mariantonietta; Innamorati, Marco; Farina, Benedetto; Quintiliani, Maria Isabella; Lamis, Dorian A; Mazzucchi, Edoardo; Contardi, Anna; Vollono, Catello; Della Marca, Giacomo

    2015-12-01

    We evaluated the modifications of electroencephalographic (EEG) power spectra and EEG connectivity in overweight and obese patients with elevated food addiction (FA) symptoms. Fourteen overweight and obese patients (3 men and 11 women) with three or more FA symptoms and fourteen overweight and obese patients (3 men and 11 women) with two or less FA symptoms were included in the study. EEG was recorded during three different conditions: 1) five minutes resting state (RS), 2) five minutes resting state after a single taste of a chocolate milkshake (ML-RS), and 3) five minutes resting state after a single taste of control neutral solution (N-RS). EEG analyses were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Significant modification was observed only in the ML-RS condition. Compared to controls, patients with three or more FA symptoms showed an increase of delta power in the right middle frontal gyrus (Brodmann Area [BA] 8) and in the right precentral gyrus (BA 9), and theta power in the right insula (BA 13) and in the right inferior frontal gyrus (BA 47). Furthermore, compared to controls, patients with three or more FA symptoms showed an increase of functional connectivity in fronto-parietal areas in both the theta and alpha band. The increase of functional connectivity was also positively associated with the number of FA symptoms. Taken together, our results show that FA has similar neurophysiological correlates of other forms of substance-related and addictive disorders suggesting similar psychopathological mechanisms.

  5. Classical Conditioning of Hippocampal Theta Patterns in the Rat.

    Science.gov (United States)

    1976-08-01

    associated with changes in performance of learned tasks , 1,4,5, 8,9 there have been very few studies of neurona l plasticity of the hippocampus It self...rapid development of a conditioned hippocampal theta response to a visual sti mulus demonstrates tha t there is considerable neurona l plasticity in the

  6. Effects of mental fatigue on attention : An ERP study

    NARCIS (Netherlands)

    Boksem, MAS; Meijman, TF; Lorist, MM

    The effects of mental fatigue on attention were assessed. Subjects performed a visual attention task for 3 h without rest. Subjective levels of fatigue, performance measures and EEG were recorded. Subjective fatigue ratings, as well as theta and lower-alpha EEG band power increased, suggesting that

  7. Event-related EEG changes preceding saccadic eye movements before and after dry immersion.

    Science.gov (United States)

    Tomilovskaya, E S; Kirenskaya, A V; Novototski-Vlasov, V Yu; Kozlovskaya, I B

    2004-07-01

    Objectives of this work were to quantify antisaccade characteristics, presaccadic slow negative EEG-potentials, and event-related EEG frequency band power (theta, alpha1, alpha2, beta1, beta2 and beta3) changes (ERD) in healthy volunteers before and after 6-day simulated weightlessness (dry immersion).

  8. White paper report on using nuclear reactors to search for a value of theta13

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K.; Anjos, J.C.; Ayres, D.; Beacom, J.; Bediaga, I.; de Bellefon, A.; Berger, B.E.; Bilenky, S.; Blucher, E.; Bolton, T.; Buck, C.; Bugg, W.; Busenitz, J.; Choubey, S.; Conrad, J.; Cribier, M.; Dadoun, O.; Dalnoki-Veress, F.; Decowski, M.; de Gouvea, Andre; Demutrh, D.; Dessages-Ardellier, F.; Efremenko, Y.; von Feilitzsch, F.; Finley, D.; Formaggio, J.A.; Freedman, S.J.; Fujikawa, B.K.; Garbini, M.; Giusti, P.; Goger-Neff, M.; Goodman, M.; Gray, F.; Grieb, C.; Grudzinski, J.J.; Guarino, V.J.; Hartmann, F.; Hagner, C.; Heeger, K.M.; Hofmann, W.; Horton-Smith, G.; Huber, P.; Inzhechik, L.; Jochum, J.; Jostlein, H.; Kadel, R.; Kamyshkov, Y.; Kaplan, D.; Kasper, P.; de Kerret, H.; Kersten, J.; Klein, J.; Knopfle, K.T.; Kopeikin, V.; Kozlov, Yu.; Kryn, D.; Kuchler, V.; Kuze, M.; Lachenmaier, T.; Lasserre, T.; Laughton, C.; Lendvai, C.; Li, J.; Lindner, M.; Link, J.; Longo, M.; Lu, Y.S.; Luk, K.B.; Ma, Y.Q.; Martemyanov, V.P.; Mauger, C.; Manghetti, H.; McKeown, R.; Mention, G.; Meyer, J.P.; Mikaelyan, L.; Minakata, H.; Naples, D.; Nunokawa, H.; Oberauer, L.; Obolensky, M.; Parke, S.; Petcov, S.T.; Peres, O.L.G.; Potzel, W.; Pilcher, J.; Plunkett, R.; Raffelt, G.; Rapidis, P.; Reyna, D.; Roe, B.; Rolinec, M.; Sakamoto, Y.; Sartorelli, G.; Schonert, S.; Schwertz, T.; Selvi, M.; Shaevitz, M.; Shellard, R.; Shrock, R.; Sidwell, R.; Sims, J.; Sinev, V.; Stanton, N.; Stancu, I.; Stefanski, R.; Seukane, F.; Sugiyama, H.; Sukhotin, S.; Sumiyoshi, T.; Svoboda, R.; Talaga, R.; Tamura, N.; Tanimoto, M.; Thron, J.; von Toerne, E.; Vignaud, D.; Wagner, C.; Wang, Y.F.; Wang, Z.; Winter, W.; Wong, H.; Yakushev, E.; Yang, C.G.; Yasuda, O.

    2004-02-26

    There has been superb progress in understanding the neutrino sector of elementary particle physics in the past few years. It is now widely recognized that the possibility exists for a rich program of measuring CP violation and matter effects in future accelerator {nu} experiments, which has led to intense efforts to consider new programs at neutrino superbeams, off-axis detectors, neutrino factories and beta beams. However, the possibility of measuring CP violation can be fulfilled only if the value of the neutrino mixing parameter {theta}{sub 13} is such that sin{sup 2} (2{theta}{sub 13}) greater than or equal to on the order of 0.01. The authors of this white paper are an International Working Group of physicists who believe that a timely new experiment at a nuclear reactor sensitive to the neutrino mixing parameter {theta}{sub 13} in this range has a great opportunity for an exciting discovery, a non-zero value to {theta}{sub 13}. This would be a compelling next step of this program. We are studying possible new reactor experiments at a variety of sites around the world, and we have collaborated to prepare this document to advocate this idea and describe some of the issues that are involved.

  9. Correlation between quantitative EEG and cerebral blood flow and oxygen metabolism in patients with dementia of Alzheimer type

    International Nuclear Information System (INIS)

    Kudoh, Masako; Takahashi, Satoshi; Yonezawa, Hisashi

    1997-01-01

    Quantitative scalp EEG and cerebral blood flow (CBF) and oxygen metabolism (CMRO 2 ) measured by the steady-state 15 O technique and positron emission tomography were studied in 19 patients with mild to moderate dementia of Alzheimer type (DAT) and age-matched controls (EEG=19, PET=6). Scalp electrodes were placed according to the international 10-20 method except for Cz, T3, and T4. To evaluate the relative changes in power for each frequency band between the two groups, the percentage power fraction (percentage power for each frequency band at a site compared to the total power at that site; %delta for 2.0-3.8 Hz, %theta for 4.0-7.8 Hz, %alpha for 8.0-12.8 Hz, %beta for 13.0-25.4 Hz) was calculated. Compared with controls, DAT patients showed a significant decrease in %alpha, while significant increases in %theta at all electrodes, and significant increases in %delta at the temporal, parietal and occipital electrodes were observed. The patient group displayed a significant decrease in rCBF and rCMRO 2 in the parietal, temporal and frontal cortices, but the reduction in rCMRO 2 was less remarkable than that of rCBF. %Theta at P3, O1 and O2 showed a significant negative correlation with rCBF, and %theta at P3, O1showed a significant negative correlation with rCMRO 2 . %Delta at P3, P4 and T5 was significantly negatively correlated with rCBF in the corresponding regions, and %alpha at almost all the electrodes (except O1, F3, P3) was significantly positively correlated with rCBF in the corresponding regions. %Delta and %alpha did not show any significant correlation with rCMRO 2 . (author)

  10. A 65nm CMOS low-power MedRadio-band integer-N cascaded phase-locked loop for implantable medical systems.

    Science.gov (United States)

    Wang, Yi-Xiao; Chen, Wei-Ming; Wu, Chung-Yu

    2014-01-01

    This paper presents a low-power MedRadio-band integer-N phase-locked Loop (PLL) system which is composed of two charge-pump PLLs cascade connected. The PLL provides the operation clock and local carrier signals for an implantable medical electronic system. In addition, to avoid the off-chip crystal oscillator, the 13.56 MHz Industrial, Scientific and Medical (ISM) band signal from the wireless power transmission system is adopted as the input reference signal for the PLL. Ring-based voltage controlled oscillators (VCOs) with current control units are adopted to reduce chip area and power dissipation. The proposed cascaded PLL system is designed and implemented in TSMC 65-nm CMOS technology. The measured jitter for 216.96 MHz signal is 12.23 ps and the phase noise is -65.9 dBc/Hz at 100 kHz frequency offset under 402.926 MHz carrier frequency. The measured power dissipations are 66 μW in the first PLL and 195 μW in the whole system under 1-V supply voltage. The chip area is 0.1088 mm(2) and no off-chip component is required which is suitable for the integration of the implantable medical electronic system.

  11. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 1992-present, Sigma-Theta

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Sigma-Theta (Potential Density Anomaly) data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  12. Analyzing powers and interference between one- and multi-step processes in (polarized p, t) reactions on medium-mass vibrational nuclei

    International Nuclear Information System (INIS)

    Yagi, K.; Kunori, S.; Aoki, Y.; Nagano, K.; Tagishi, Y.

    1978-01-01

    A neutron-number (N) dependence of analyzing powers A (theta) has been observed for the first time in (polarized p, t) reactions leading to the quadrupole vibrational states (2 1 + ) in 98 Ru, sup(102,108)Pd, 114 Cd, 116 Sn, and sup(120,126)Te. Although analyzing powers for the ground-state transitions A(theta,0 sub(g)sup(+)) are very similar to each other, those for the 2 1 + transitions A(theta,2 1 + ) for the nuclei belonging to the beginning of the N = 50 - 82 shell are markedly different, having almost opposite signs, from A(theta,2 1 + ) for nuclei belonging to the latter half of the major shell. The difference is explained as a result of a sign change of the interference between one- and inelastic multi-step processes in two-neutron pickup reactions. Nuclear structure effects on such an interference are discussed on the basis of the microscopic description of collective quadrupole oscillation of nuclei. (author)

  13. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    OpenAIRE

    Masahiro eKawasaki; Masahiro eKawasaki; Masahiro eKawasaki; Keiichi eKitajo; Keiichi eKitajo; Yoko eYamaguchi

    2014-01-01

    In humans, theta phase (4–8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from...

  14. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  15. Investigation of plasma turbulence in a theta-pinch-discharge

    International Nuclear Information System (INIS)

    Lins, G.

    1980-01-01

    This thesis is concerned with investigations of plasma turbulence in a 3 KJ Theta-Pinch during implosion by high-frequency Stark-effect and Thomson scattering. The next points are modifications of electron-distribution function by ionization in low preionizized turbulent plasma and energy losses by particle flow and heat flow at the ends. (HT)

  16. Strength Training Using Elastic Bands: Improvement of Muscle Power and Throwing Performance in Young Female Handball Players.

    Science.gov (United States)

    Mascarin, Naryana Cristina; de Lira, Claudio Andre Barbosa; Vancini, Rodrigo Luiz; de Castro Pochini, Alberto; da Silva, Antonio Carlos; Dos Santos Andrade, Marilia

    2017-05-01

    Imbalance in shoulder-rotator muscles has been considered a risk factor for injuries in handball. Strength training programs (STPs) may play an important preventive role. To verify the effects of an STP using elastic bands on shoulder muscles and ball-throwing speed. Randomized and prospective controlled trial. Exercise physiology laboratory. Thirty-nine female handball players were randomly assigned to an experimental (EG, n = 21, 15.3 ± 1.1 y) or a control (CG, n = 18, 15.0 ± 0.8 y) group. The EG performed the STP with elastic-band progressive exercises for 6 wk before regular handball training, and the CG underwent only their regular training. Before and after the STP, both groups underwent a ball-throwing-speed test and isokinetic test to assess shoulder internal- (IR) and external-rotator muscle performance. Average power values for IR muscles presented a significant group-vs-time interaction effect (F = 3.9, P = .05); EG presented significantly higher values after the STP (P = .03). Ball speed presented higher values in EG after the STP in standing (P = .04) and jumping (P = .03) throws. IR peak-torque values and balance in shoulder-rotator muscles presented no group-vs-time interaction effect. STP using elastic bands performed for 6 wk was effective to improve muscle power and ball speed for young female handball players.

  17. Atypical electrophysiological activity during pain observation in amputees who experience synaesthetic pain.

    Science.gov (United States)

    Fitzgibbon, Bernadette M; Enticott, Peter G; Giummarra, Melita J; Thomson, Richard H; Georgiou-Karistianis, Nellie; Bradshaw, John L

    2012-03-01

    There are increasing reports of people experiencing pain when observing pain in another. This describes the phenomenon of synaesthetic pain which, until recently, had been primarily reported in amputees with phantom pain. In the current study, we used electroencephalography (EEG) to investigate how amputees who experience synaesthetic pain process pain observed in another. Participants were grouped according to amputees who experience phantom and synaesthetic pain (n=8), amputees who experience phantom pain but not synaesthetic pain (n=10) and healthy controls (n=10). Participants underwent EEG as they observed still images of hands and feet in potentially painful and non-painful situations. We found that pain synaesthetes showed some reduced event-related potential (ERP) components at certain electrode sites, and reduced theta- and alpha band power amplitude at a central electrode. The finding of reduced ERP amplitude and theta band power may reflect inhibition of the processing of observed pain (e.g. avoidance/guarding as a protective strategy), and reduced alpha band power may indicate a disinhibition in control processes that may result in synaesthetic pain. These results provide the first documentation of atypical neurophysiological activity in amputees who experience synaesthetic pain when processing pain in another. © The Author (2011). Published by Oxford University Press.

  18. Impairment of decision making and disruption of synchrony between basolateral amygdala and anterior cingulate cortex in the maternally separated rat.

    Science.gov (United States)

    Cao, Bing; Wang, Jun; Zhang, Xu; Yang, Xiangwei; Poon, David Chun-Hei; Jelfs, Beth; Chan, Rosa H M; Wu, Justin Che-Yuen; Li, Ying

    2016-12-01

    There is considerable evidence to suggest early life experiences, such as maternal separation (MS), play a role in the prevalence of emotional dysregulation and cognitive impairment. At the same time, optimal decision making requires functional integrity between the amygdala and anterior cingulate cortex (ACC), and any dysfunction of this system is believed to induce decision-making deficits. However, the impact of MS on decision-making behavior and the underlying neurophysiological mechanisms have not been thoroughly studied. As such, we consider the impact of MS on the emotional and cognitive functions of rats by employing the open-field test, elevated plus-maze test, and rat gambling task (RGT). Using multi-channel recordings from freely behaving rats, we assessed the effects of MS on the large scale synchrony between the basolateral amygdala (BLA) and the ACC; while also characterizing the relationship between neural spiking activity and the ongoing oscillations in theta frequency band across the BLA and ACC. The results indicated that the MS rats demonstrated anxiety-like behavior. While the RGT showed a decrease in the percentage of good decision-makers, and an increase in the percentage of poor decision-makers. Electrophysiological data revealed an increase in the total power in the theta band of the LFP in the BLA and a decrease in theta power in the ACC in MS rats. MS was also found to disrupt the spike-field coherence of the ACC single unit spiking activity to the ongoing theta oscillations in the BLA and interrupt the synchrony in the BLA-ACC pathway. We provide specific evidence that MS leads to decision-making deficits that are accompanied by alteration of the theta band LFP in the BLA-ACC circuitries and disruption of the neural network integrity. These observations may help revise fundamental notions regarding neurophysiological biomarkers to treat cognitive impairment induced by early life stress. Copyright © 2016 Elsevier Inc. All rights

  19. Development of high power X-band semiconductor microwave switch for pulse compression systems of future linear colliders

    Directory of Open Access Journals (Sweden)

    Fumihiko Tamura

    2002-06-01

    Full Text Available We describe concepts for high power semiconductor rf switches, designed to handle signals at X-band with power level near 100 MW. We describe an abstract design methodology and derive a general scaling law for these switches. We also present a design and experimental work of a switch operating at the TE_{01} mode in overmoded circular waveguides. The switch is composed of an array of tee junction elements that have a p-i-n diode array window in the third arm.

  20. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band.

    Science.gov (United States)

    Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu

    2012-08-07

    This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder-coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg(-1) was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest.

  1. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Toner, Ruth B. [Univ. of Cambridge (United Kingdom). Pembroke College

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  2. Eating breakfast enhances the efficiency of neural networks engaged during mental arithmetic in school-aged children.

    Science.gov (United States)

    Pivik, R T; Tennal, Kevin B; Chapman, Stephen D; Gu, Yuyuan

    2012-06-25

    To determine the influence of a morning meal on complex mental functions in children (8-11 y), time-frequency analyses were applied to electroencephalographic (EEG) activity recorded while children solved simple addition problems after an overnight fast and again after having either eaten or skipped breakfast. Power of low frequency EEG activity [2 Hertz (Hz) bands in the 2-12 Hz range] was determined from recordings over frontal and parietal brain regions associated with mathematical thinking during mental calculation of correctly answered problems. Analyses were adjusted for background variables known to influence or reflect the development of mathematical skills, i.e., age and measures of math competence and math fluency. Relative to fed children, those who continued to fast showed greater power increases in upper theta (6-8 Hz) and both alpha bands (8-10 Hz; 10-12 Hz) across sites. Increased theta suggests greater demands on working memory. Increased alpha may facilitate task-essential activity by suppressing non-task-essential activity. Fasting children also had greater delta (2-4 Hz) and greater lower-theta (4-6 Hz) power in left frontal recordings-indicating a region-specific emphasis on both working memory for mental calculation (theta) and activation of processes that suppress interfering activity (delta). Fed children also showed a significant increase in correct responses while children who continued to fast did not. Taken together the findings suggest that neural network activity involved in processing numerical information is functionally enhanced and performance is improved in children who have eaten breakfast, whereas greater mental effort is required for this mathematical thinking in children who skip breakfast. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Functional roles of 10 Hz alpha-band power modulating engagement and disengagement of cortical networks in a complex visual motion task.

    Directory of Open Access Journals (Sweden)

    Kunjan D Rana

    Full Text Available Alpha band power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, attention modulation, and working memory. However, the interactions between cortical areas and their relationship to the different functional roles of the alpha band oscillations are still poorly understood. Here we examined alpha band power and the cortico-cortical interregional phase synchrony in a psychophysical task involving the detection of an object moving in depth by an observer in forward self-motion. Wavelet filtering at the 10 Hz frequency revealed differences in the profile of cortical activation in the visual processing regions (occipital and parietal lobes and in the frontoparietal regions. The alpha rhythm driving the visual processing areas was found to be asynchronous with the frontoparietal regions. These findings suggest a decoupling of the 10 Hz frequency into separate functional roles: sensory inhibition in the visual processing regions and spatial attention in the frontoparietal regions.

  4. Operating point considerations for the Reference Theta-Pinch Reactor (RTPR)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1976-01-01

    Aspects of the continuing engineering design-point reassessment and optimization of the Reference Theta-Pinch Reactor (RTPR) are discussed. An updated interim design point which achieves a favorable energy balance and involves relaxed technological requirements, which nonetheless satisfy more rigorous physics and engineering constraints, is presented

  5. Phase synchronization of delta and theta oscillations increase during the detection of relevant lexical information

    Directory of Open Access Journals (Sweden)

    Enzo eBrunetti

    2013-06-01

    Full Text Available During monitoring of the discourse, the detection of the relevance of incoming lexical information could be critical for its incorporation to update mental representations in memory. Because, in these situations, the relevance for lexical information is defined by abstract rules that are maintained in memory, results critical to understand how an abstract level of knowledge maintained in mind mediates the detection of the lower-level semantic information. In the present study, we propose that neuronal oscillations participate in the detection of relevant lexical information, based on ‘kept in mind’ rules deriving from more abstract semantic information. We tested our hypothesis using an experimental paradigm that restricted the detection of relevance to inferences based on explicit information, thus controlling for ambiguities derived from implicit aspects. We used a categorization task, in which the semantic relevance was previously defined based on the congruency between a kept in mind category (abstract knowledge, and the lexical-semantic information presented. Our results show that during the detection of the relevant lexical information, phase synchronization of neuronal oscillations selectively increases in delta and theta frequency bands during the interval of semantic analysis. These increments were independent of the semantic category maintained in memory, had a temporal profile specific for each subject, and were mainly induced, as they had no effect on the evoked mean global field power. Also, recruitment of an increased number of pairs of electrodes was a robust observation during the detection of semantic contingent words. These results are consistent with the notion that the detection of relevant lexical information based on a particular semantic rule, could be mediated by increasing the global phase synchronization of neuronal oscillations, which may contribute to the recruitment of an extended number of cortical regions.

  6. Phase synchronization of delta and theta oscillations increase during the detection of relevant lexical information.

    Science.gov (United States)

    Brunetti, Enzo; Maldonado, Pedro E; Aboitiz, Francisco

    2013-01-01

    During monitoring of the discourse, the detection of the relevance of incoming lexical information could be critical for its incorporation to update mental representations in memory. Because, in these situations, the relevance for lexical information is defined by abstract rules that are maintained in memory, a central aspect to elucidate is how an abstract level of knowledge maintained in mind mediates the detection of the lower-level semantic information. In the present study, we propose that neuronal oscillations participate in the detection of relevant lexical information, based on "kept in mind" rules deriving from more abstract semantic information. We tested our hypothesis using an experimental paradigm that restricted the detection of relevance to inferences based on explicit information, thus controlling for ambiguities derived from implicit aspects. We used a categorization task, in which the semantic relevance was previously defined based on the congruency between a kept in mind category (abstract knowledge), and the lexical semantic information presented. Our results show that during the detection of the relevant lexical information, phase synchronization of neuronal oscillations selectively increases in delta and theta frequency bands during the interval of semantic analysis. These increments occurred irrespective of the semantic category maintained in memory, had a temporal profile specific for each subject, and were mainly induced, as they had no effect on the evoked mean global field power. Also, recruitment of an increased number of pairs of electrodes was a robust observation during the detection of semantic contingent words. These results are consistent with the notion that the detection of relevant lexical information based on a particular semantic rule, could be mediated by increasing the global phase synchronization of neuronal oscillations, which may contribute to the recruitment of an extended number of cortical regions.

  7. Increased gamma band power during movement planning coincides with motor memory retrieval.

    Science.gov (United States)

    Thürer, Benjamin; Stockinger, Christian; Focke, Anne; Putze, Felix; Schultz, Tanja; Stein, Thorsten

    2016-01-15

    The retrieval of motor memory requires a previous memory encoding and subsequent consolidation of the specific motor memory. Previous work showed that motor memory seems to rely on different memory components (e.g., implicit, explicit). However, it is still unknown if explicit components contribute to the retrieval of motor memories formed by dynamic adaptation tasks and which neural correlates are linked to memory retrieval. We investigated the lower and higher gamma bands of subjects' electroencephalography during encoding and retrieval of a dynamic adaptation task. A total of 24 subjects were randomly assigned to a treatment and control group. Both groups adapted to a force field A on day 1 and were re-exposed to the same force field A on day 3 of the experiment. On day 2, treatment group learned an interfering force field B whereas control group had a day rest. Kinematic analyses showed that control group improved their initial motor performance from day 1 to day 3 but treatment group did not. This behavioral result coincided with an increased higher gamma band power in the electrodes over prefrontal areas on the initial trials of day 3 for control but not treatment group. Intriguingly, this effect vanished with the subsequent re-adaptation on day 3. We suggest that improved re-test performance in a dynamic motor adaptation task is contributed by explicit memory and that gamma bands in the electrodes over the prefrontal cortex are linked to these explicit components. Furthermore, we suggest that the contribution of explicit memory vanishes with the subsequent re-adaptation while task automaticity increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. High-Field Nb3Sn Cos-theta Dipole with Stress Management

    Energy Technology Data Exchange (ETDEWEB)

    Novitski, Igor [Fermilab; Carmichael, Justin [Fermilab; Kashikhin, Vadim V. [Fermilab; Zlobin, Alexander V. [Fermilab

    2017-01-01

    Cost-effective superconducting dipole magnets with operating fields up to 16 T are being considered for the LHC en-ergy upgrade (HE-LHC) and a Future Circular Collider (FCC). To demonstrate feasibility of 15 T accelerator quality dipole mag-nets, FNAL as a part of the US-MDP is developing a single-aper-ture Nb3Sn dipole demonstrator based on a 4-layer graded cos-theta coil with 60 mm aperture and cold iron yoke. In parallel, to explore the limit of the Nb3Sn accelerator magnet technology, op-timize magnet design and performance parameters, and reduce magnet cost, magnet design studies are also being performed to push the nominal bore field to 16 T in a 60-mm aperture cos-theta dipole. Results of these studies are reported and discussed in this paper.

  9. Intermittent theta burst over M1 may increase peak power of a Wingate anaerobic test and prevent the reduction of voluntary activation measured with transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Louis-Solal Giboin

    2016-07-01

    Full Text Available Despite the potential of repetitive transcranial magnetic stimulation (rTMS to improve performances in patients suffering from motor neuronal afflictions, its effect on motor performance enhancement in healthy subjects during a specific sport task is still unknown. We hypothesised that after an intermittent theta burst (iTBS treatment, performance during the Wingate Anaerobic Test (WAnT, will increase and supraspinal fatigue following the exercise will be lower in comparison to a control treatment.Ten subjects participated in two randomised experiments consisting of a WAnT 5 minutes after either an iTBS or a control treatment. We determined voluntary activation (VA of the right knee extensors with TMS (VATMS and with peripheral nerve stimulation (VAPNS of the femoral nerve, before and after the WAnT. T-tests were applied to the WAnT results and a 2 way within subject ANOVA was applied to VA results. The iTBS treatment increased the peak power and the maximum pedalling cadence and suppressed the reduction of VATMS following the WAnT compared to the control treatment. No behavioural changes related to fatigue (mean power and fatigue index were observed.These results indicate for the first time that iTBS could be used as a potential intervention to improve anaerobic performance in a sport specific task.

  10. Compact-toroid fusion reactor based on the field-reversed theta pinch: reactor scaling and optimization for CTOR

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1980-01-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CT) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conduction shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  11. Instability study during implosion in the Tupa Theta-Pinch

    International Nuclear Information System (INIS)

    Kayama, M.E.; Boeckelmann, H.K.

    1986-01-01

    The importance of instabilities which occur during plasma heating in a Theta Pinch, in the implosion phase, is analysed. The plasma diagnostic was done by ultrafast photography and diamagnetic probe. The implosion time and the current layer thickness were calculated using a hybrid code for plasma simulation. The theoretical data were compared with the experimental ones. (M.C.K.) [pt

  12. A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration.

    Science.gov (United States)

    Gruzelier, John

    2009-02-01

    Professionally significant enhancement of music and dance performance and mood has followed training with an EEG-neurofeedback protocol which increases the ratio of theta to alpha waves using auditory feedback with eyes closed. While originally the protocol was designed to induce hypnogogia, a state historically associated with creativity, the outcome was psychological integration, while subsequent applications focusing on raising the theta-alpha ratio, reduced depression and anxiety in alcoholism and resolved post traumatic stress syndrome (PTSD). In optimal performance studies we confirmed associations with creativity in musical performance, but effects also included technique and communication. We extended efficacy to dance and social anxiety. Diversity of outcome has a counterpart in wide ranging associations between theta oscillations and behaviour in cognitive and affective neuroscience: in animals with sensory-motor activity in exploration, effort, working memory, learning, retention and REM sleep; in man with meditative concentration, reduced anxiety and sympathetic autonomic activation, as well as task demands in virtual spatial navigation, focussed and sustained attention, working and recognition memory, and having implications for synaptic plasticity and long term potentiation. Neuroanatomical circuitry involves the ascending mescencephalic-cortical arousal system, and limbic circuits subserving cognitive as well as affective/motivational functions. Working memory and meditative bliss, representing cognitive and affective domains, respectively, involve coupling between frontal and posterior cortices, exemplify a role for theta and alpha waves in mediating the interaction between distal and widely distributed connections. It is posited that this mediation in part underpins the integrational attributes of alpha-theta training in optimal performance and psychotherapy, creative associations in hypnogogia, and enhancement of technical, communication and

  13. Cortico-pontine theta carrier frequency phase shift across sleep/wake states following monoaminergic lesion in rat.

    Science.gov (United States)

    Kalauzi, Aleksandar; Spasic, Sladjana; Petrovic, Jelena; Ciric, Jelena; Saponjic, Jelena

    2012-06-01

    This study was aimed to explore the sleep/wake states related cortico-pontine theta carrier frequency phase shift following a systemically induced chemical axotomy of the monoaminergic afferents within a brain of the freely moving rats. Our experiments were performed in 14 adult, male Sprague Dawley rats, chronically implanted for sleep recording. We recorded sleep during baseline condition, following sham injection (saline i.p. 1 ml/kg), and every week for 5 weeks following injection of the systemic neurotoxins (DSP-4 or PCA; 1 ml/kg, i.p.) for chemical axotomy of the locus coeruleus (LC) and dorsal raphe (DR) axon terminals. After sleep/wake states identification, FFT analysis was performed on 5 s epochs. Theta carrier frequency phase shift (∆Φ) was calculated for each epoch by averaging theta Fourier component phase shifts, and the ∆Φ values were plotted for each rat in control condition and 28 days following the monoaminergic lesions, as a time for permanently established DR or LC chemical axotomy. Calculated group averages have shown that ∆Φ increased between pons and cortex significantly in all sleep/wake states (Wake, NREM and REM) following the monoaminergic lesions, with respect to controls. Monoaminergic lesions established the pontine leading role in the brain theta oscillations during all sleep/wake states.

  14. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu

    2012-01-01

    This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder–coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg −1 was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest. (paper)

  15. EEG correlates of a mental arithmetic task in patients with first episode schizophrenia and schizoaffective disorder.

    Science.gov (United States)

    Garakh, Zhanna; Zaytseva, Yuliya; Kapranova, Alexandra; Fiala, Ondrej; Horacek, Jiri; Shmukler, Alexander; Gurovich, Isaac Ya; Strelets, Valeria B

    2015-11-01

    To evaluate the spectral power of the cortical bands in patients with first episode schizophrenia and schizoaffective disorder at rest and during the performance of a mental arithmetic task. We analyzed EEG spectral power (SP) in the resting state and subsequently while counting down from 200 in steps of 7, in 32 first episode schizophrenia patients (SZ), 32 patients with first episode schizoaffective disorder (SA) and healthy controls (HC, n=40). Behavioral parameters such as accuracy and counting speed were also evaluated. Both SZ and SA patients were slower in counting than HC, no difference was obtained in the accuracy and counting speed in the patient groups. In the resting state patients showed elevated midline theta power, off-midline anterior beta 2 power and decreased central/posterior alpha power. The SA group occupied an intermediate position between the schizophrenia patients and controls. In task performance patients lacked a typical increase of midline theta, left anterior beta 2, and anterior gamma power; however, schizoaffective patients demonstrated a growing trend of power in the gamma band in left anterior off-midline sites similar to HC. Moreover, alpha power was less inhibited in schizoaffective patients and more pronounced in schizophrenia patients indicating distinct inhibitory mechanisms in these psychotic disorders. Patients with SA demonstrate less alteration in the spectral power of bands at rest than SZ, and present spectral power changes during cognitive task performance close to the controls. Our study contributes to the present evidence on the neurophysiological distinction between schizophrenia and schizoaffective disorder. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Transient loss of plasma from a theta pinch having an initially reversed magnetic field

    International Nuclear Information System (INIS)

    Heidrich, J.E.

    1981-01-01

    The results of an experimental study of the transient loss of plasma from a 25-cm-long theta pinch initially containing a reversed trapped magnetic field are presented. The plasma, amenable to MHD analyses, was a doubly ionized helium plasma characterized by an ion density N/sub i/ = 2 x 10 16 cm -3 and an ion temperature T/sub i/ = 15 eV at midcoil and by N/sub i/ = 0.5 x 10 16 cm -3 and T/sub i/ = 6 eV at a position 2.5 cm beyond the end of the theta coil

  17. Desynchronization of Theta-Phase Gamma-Amplitude Coupling during a Mental Arithmetic Task in Children with Attention Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Kim, Jun Won; Kim, Bung-Nyun; Lee, Jaewon; Na, Chul; Kee, Baik Seok; Min, Kyung Joon; Han, Doug Hyun; Kim, Johanna Inhyang; Lee, Young Sik

    2016-01-01

    Theta-phase gamma-amplitude coupling (TGC) measurement has recently received attention as a feasible method of assessing brain functions such as neuronal interactions. The purpose of this electroencephalographic (EEG) study is to understand the mechanisms underlying the deficits in attentional control in children with attention deficit/hyperactivity disorder (ADHD) by comparing the power spectra and TGC at rest and during a mental arithmetic task. Nineteen-channel EEGs were recorded from 97 volunteers (including 53 subjects with ADHD) from a camp for hyperactive children under two conditions (rest and task performance). The EEG power spectra and the TGC data were analyzed. Correlation analyses between the Intermediate Visual and Auditory (IVA) continuous performance test (CPT) scores and EEG parameters were performed. No significant difference in the power spectra was detected between the groups at rest and during task performance. However, TGC was reduced during the arithmetic task in the ADHD group compared with the normal group (F = 16.70, p attention-demanding tasks.

  18. Validation Study of CODES Dragonfly Network Model with Theta Cray XC System

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak, Misbah [Argonne National Lab. (ANL), Argonne, IL (United States); Ross, Robert B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-31

    This technical report describes the experiments performed to validate the MPI performance measurements reported by the CODES dragonfly network simulation with the Theta Cray XC system at the Argonne Leadership Computing Facility (ALCF).

  19. FG7142, yohimbine, and βCCE produce anxiogenic-like effects in the elevated plus-maze but do not affect brainstem activated hippocampal theta.

    Science.gov (United States)

    Yeung, Michelle; Lu, Lily; Hughes, Adam M; Treit, Dallas; Dickson, Clayton T

    2013-12-01

    The neurobiological underpinnings of anxiety are of paramount importance to selective and efficacious pharmaceutical intervention. Hippocampal theta frequency in urethane anaesthetized rats is suppressed by all known (and some previously unknown) anti-anxiety (anxiolytic) drugs. Although these findings support the predictive validity of this assay, its construct validity (i.e., whether theta frequency actually indexes anxiety per se) has not been a subject of systematic investigation. We reasoned that if anxiolytic drugs suppress hippocampal theta frequency, then drugs that increase anxiety (i.e., anxiogenic agents) should increase theta frequency, thus providing evidence of construct validity. We used three proven anxiogenic drugs--two benzodiazepine receptor inverse agonists, N-methyl-β-carboline-3-carboxamide (FG7142) and β-carboline-3-carboxylate ethyl ester (βCCE), and one α2 noradrenergic receptor antagonist, 17α-hydroxy-yohimban-16α-carboxylic acid methyl ester (yohimbine) as pharmacological probes to assess the construct validity of the theta model. Although all three anxiogenic drugs significantly increased behavioural measures of anxiety in the elevated plus-maze, none of the three increased the frequency of hippocampal theta oscillations in the neurophysiological model. As a positive control, we demonstrated that diazepam, a proven anxiolytic drug, decreased the frequency of hippocampal theta, as in all other studies using this model. Given this discrepancy between the significant effects of anxiogenic drugs in the behavioural model and the null effects of these drugs in the neurophysiological model, we conclude that the construct validity of the hippocampal theta model of anxiety is questionable. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Theta-Cream trademark versus Bepanthol trademark lotion in breast cancer patients under radiotherapy. A new prophylactic agent in skin care?

    International Nuclear Information System (INIS)

    Roeper, B.; Kaisig, D.; Auer, F.; Mergen, E.; Molls, M.

    2004-01-01

    Background and purpose: in radiotherapy of the breast following breast-conserving surgery, the adverse reaction predominatly found is confined to the skin. After phase II studies, Theta-Cream trademark , containing CM glucan, hydroxyprolisilan C und matrixyl as active substances, was said to have prophylactic properties of preventing acute radiation side effects in skin tissue. In a prospective randomized study, Theta-Cream trademark was compared with standard skin care using Bepanthol trademark lotion. Patients and methods: 20 breast cancer patients were randomly assigned to use Theta-Cream trademark or Bepanthol trademark lotion during radiotherapy. At 0, 30, and 50 Gy, acute skin toxicity was scored with a modified RTOG scoring system. The patients' content with the skin care and the technical assistants' content with the skin marks were recorded. Results: for single aspects of toxicity and their sums in defined skin areas, no differences in median and range between study groups were found. The maximal toxicity anywhere in the breast averaged in a moderate erythema, mild elevation of skin temperature, no desquamation in both groups. Mild itchiness and sporadic efflorescences more frequently seen with Theta-Cream trademark . According to a ranking of anonymized breast photos at 50 Gy by independent investigators, side effects were equal. Patients' content was high with both skin care regimens (1.25 on a scale from 0 to 10). With Theta-Cream trademark a trend toward worse skin marks was noted. Adverse events exclusively occurred in Theta-Cream trademark users: suspected allergic reaction once, and the necessity for resimulation twice. Conclusion: in direct comparison with dexpanthenol-containing lotion, no advantage for Theta-Cream trademark was found. Higher costs and problems with skin marks prevent a general recommendation. (orig.)

  1. Reentrant Information Flow in Electrophysiological Rat Default Mode Network.

    Science.gov (United States)

    Jing, Wei; Guo, Daqing; Zhang, Yunxiang; Guo, Fengru; Valdés-Sosa, Pedro A; Xia, Yang; Yao, Dezhong

    2017-01-01

    Functional MRI (fMRI) studies have demonstrated that the rodent brain shows a default mode network (DMN) activity similar to that in humans, offering a potential preclinical model both for physiological and pathophysiological studies. However, the neuronal mechanism underlying rodent DMN remains poorly understood. Here, we used electrophysiological data to analyze the power spectrum and estimate the directed phase transfer entropy (dPTE) within rat DMN across three vigilance states: wakeful rest (WR), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). We observed decreased gamma powers during SWS compared with WR in most of the DMN regions. Increased gamma powers were found in prelimbic cortex, cingulate cortex, and hippocampus during REMS compared with WR, whereas retrosplenial cortex showed a reverse trend. These changed gamma powers are in line with the local metabolic variation of homologous brain regions in humans. In the analysis of directional interactions, we observed well-organized anterior-to-posterior patterns of information flow in the delta band, while opposite patterns of posterior-to-anterior flow were found in the theta band. These frequency-specific opposite patterns were only observed in WR and REMS. Additionally, most of the information senders in the delta band were also the receivers in the theta band, and vice versa. Our results provide electrophysiological evidence that rat DMN is similar to its human counterpart, and there is a frequency-dependent reentry loop of anterior-posterior information flow within rat DMN, which may offer a mechanism for functional integration, supporting conscious awareness.

  2. A spectroscopic study of radiation produced in a theta-pinch

    International Nuclear Information System (INIS)

    Trigueiros, A.; Machida, M.; Pagan, C.J.B.

    1988-01-01

    Preliminary results of the analysis of the spectra of four times ionized Krypton, Kr-V, are presented. 28 transitions were classified and for five of then the classification is new. We also present the UNICAMP theta-pinch for the study of highly ionized atoms. This device is now in testing. (author) [pt

  3. Theta-paced flickering between place-cell maps in the hippocampus

    Czech Academy of Sciences Publication Activity Database

    Ježek, Karel; Henriksen, E. J.; Treves, A.; Moser, E. I.; Moser, M.B.

    2011-01-01

    Roč. 478, č. 7368 (2011), s. 246-249 ISSN 0028-0836 R&D Projects: GA MŠk(CZ) LC554; GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z50110509 Keywords : memory * theta * hippocampus * place cells * teleportation Subject RIV: FH - Neurology Impact factor: 36.280, year: 2011

  4. Mindfulness based cognitive therapy improves frontal control in bipolar disorder: a pilot EEG study

    Directory of Open Access Journals (Sweden)

    Howells Fleur M

    2012-02-01

    Full Text Available Abstract Background Cognitive processing in Bipolar Disorder is characterized by a number of attentional abnormalities. Mindfulness Based Cognitive Therapy combines mindfulness meditation, a form of attentional training, along with aspects of cognitive therapy, and may improve attentional dysfunction in bipolar disorder patients. Methods 12 euthymic BD patients and 9 control participants underwent record of electroencephalography (EEG, band frequency analysis during resting states (eyes open, eyes closed and during the completion of a continuous performance task (A-X version, EEG event-related potential (ERP wave component analysis. The individuals with BD completed an 8-week MBCT intervention and record of EEG was repeated. Results (1 Brain activity, individuals with BD showed significantly decreased theta band power, increased beta band power, and decreased theta/beta ratios during the resting state, eyes closed, for frontal and cingulate cortices. Post MBCT intervention improvement over the right frontal cortex was seen in the individuals with BD, as beta band power decreased. (2 Brain activation, individuals with BD showed a significant P300-like wave form over the frontal cortex during the cue. Post MBCT intervention the P300-like waveform was significantly attenuated over the frontal cortex. Conclusions Individuals with BD show decreased attentional readiness and activation of non-relevant information processing during attentional processes. These data are the first that show, MBCT in BD improved attentional readiness, and attenuated activation of non-relevant information processing during attentional processes.

  5. Spectrum Band Selection in Delay-QoS Constrained Cognitive Radio Networks

    KAUST Repository

    Yang, Yuli

    2014-01-01

    In this paper, a cognitive radio (CR) network with multiple spectrum bands available for secondary users (SUs) is considered. For the SU\\'s active spectrum-band selection, two criteria are developed. One is to select the band with the highest secondary channel power gain, and the other is to select the band with the lowest interference channel power gain to primary users (PUs). With the quality-of-service (QoS) requirement concerning delay, the effective capacity (EC) behaviors over secondary links are investigated for both criteria under two spectrum-sharing constraints. To begin by presenting full benefits in these criteria, the constraint imposed on the secondary transmitter (ST) is the average interference limitation to PUs only. Furthermore, taking into account the ST\\'s battery/energy budget, the ST is imposed by joint constraints on its average interference to PUs, as well as on its own average transmit power. For either constraint, we formulate the ST\\'s optimal transmit power allocation to maximize the SU\\'s EC with both band-selection criteria and, correspondingly, obtain the secondary\\'s power allocation and maximum EC in closed forms. Numerical results demonstrated subsequently substantiate the validity of our derivations and provide a powerful tool for the spectrum-band selection in CR networks with multiple bands available. © 1967-2012 IEEE.

  6. Oscillatory brain activity related to control mechanisms during laboratory-induced reactive aggression

    Directory of Open Access Journals (Sweden)

    Ulrike M Krämer

    2009-11-01

    Full Text Available Aggressive behavior is a common reaction in humans after an interpersonal provocation, but little is known about the underlying brain mechanisms. The present study analyzed oscillatory brain activity while participants were involved in an aggressive interaction to examine the neural processes subserving the associated decision and evaluation processes. Participants were selected from a larger sample because of their high scores in trait aggressiveness. We used a competitive reaction time task that induces aggressive behavior through provocation. Each trial is separated in a decision phase, during which the punishment for the opponent is set, and an outcome phase, during which the actual punishment is applied or received. We observed provocation-related differences during the decision phase in the theta band which differed depending on participants’ aggressive behavior: High provocation was associated with an increased frontal theta response in participants refraining from retaliation, but with reduced theta power in those who got back to the opponent. Moreover, more aggressive decisions after being punished were associated with a decrease of frontal theta power. Non-aggressive and aggressive participants differed also in their outcome-related response: Being punished led to an increased frontal theta power compared to win trials in the latter only, pointing to differences in evaluation processes associated with their different behavioral reactions. The data thus support previous evidence for a role of prefrontal areas in the control of reactive aggression and extend behavioral studies on associations between aggression or violence and impaired prefrontal functions.

  7. First wall thermal--mechanical analyses of the reference theta-pinch reactor

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.; Cort, G.E.

    1977-01-01

    The thermal-mechanical response of the Reference Theta-Pinch Reactor (RTPR) first wall was analyzed. The first wall problems anticipated for a pulsed, high-β fusion power plant can be ameliorated by either alterations in the physics operating point, materials reengineering, or blanket/first wall reconfiguration. Within the latter ''configuration'' scenario, a two-fold approach has been adopted for the thermal-mechanical portion of the RTPR first wall technology assessment. First, a number of new first wall configurations (bonded or unbonded laminated composites, all-ceramic structures, protective and/or sacrificial ''bumpers'') were considered. Second, a more quantitative failure criterion, based on the developing theories of fracture mechanics, was identified. For each first wall configuration, transient heat transfer and thermoelastic stress calculations have been made. Two-dimensional finite element structural analyses have been made for a variety of mechanical boundary conditions. Only the Al 2 O 3 /Nb - 1 Zr system has been considered. The results of this study indicated a wide range of design solutions to the pulsed thermal stress problem anticipated for the RTPR

  8. Unusual developmental pattern of brain lateralization in young boys with autism spectrum disorder: Power analysis with child-sized magnetoencephalography.

    Science.gov (United States)

    Hiraishi, Hirotoshi; Kikuchi, Mitsuru; Yoshimura, Yuko; Kitagawa, Sachiko; Hasegawa, Chiaki; Munesue, Toshio; Takesaki, Natsumi; Ono, Yasuki; Takahashi, Tsutomu; Suzuki, Michio; Higashida, Haruhiro; Asada, Minoru; Minabe, Yoshio

    2015-03-01

    Autism spectrum disorder (ASD) is often described as comprising an unusual brain growth pattern and aberrant brain lateralization. Although it is important to study the pathophysiology of the developing ASD cortex, examples of physiological brain lateralization in young children with ASD have yet to be well examined. Thirty-eight boys with ASD (aged 3-7 years) and 38 typically developing (TD) boys (aged 3-8 years) concentrated on video programs and their brain activities were measured non-invasively. We employed a customized child-sized magnetoencephalography system in which the sensors were located as close to the brain as possible for optimal recording in young children. To produce a credible laterality index of the brain oscillations, we defined two clusters of sensors corresponding to the right and left hemispheres. We focused on the laterality index ([left - right]/[left+right]) of the relative power band in seven frequency bands. The TD group displayed significantly rightward lateralized brain oscillations in the theta-1 frequency bands compared to the ASD group. This is the first study to demonstrate unusual brain lateralization of brain oscillations measured by magnetoencephalography in young children with ASD. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  9. Oscillatory neuronal dynamics associated with manual acupuncture: a magnetoencephalography study using beamforming analysis

    Directory of Open Access Journals (Sweden)

    Aziz eAsghar

    2012-11-01

    Full Text Available Magnetoencephalography (MEG enables non-invasive recording of neuronal activity, with reconstruction methods providing estimates of underlying brain source locations and oscillatory dynamics from externally recorded neuromagnetic fields. The aim of our study was to use MEG to determine the effect of manual acupuncture on neuronal oscillatory dynamics. A major problem in MEG investigations of manual acupuncture is the absence of onset times for each needle manipulation. Given that beamforming (spatial filtering analysis is not dependent upon stimulus-driven responses being phase-locked to stimulus onset, we postulated that beamforming could reveal source locations and induced changes in neuronal activity during manual acupuncture. In a beamformer analysis, a two-minute period of manual acupuncture needle manipulation delivered to the ipsilateral right LI-4 (Hegu acupoint was contrasted with a two-minute baseline period. We considered oscillatory power changes in the theta (4-8Hz, alpha (8-13Hz, beta (13-30Hz and gamma (30-100Hz frequency bands. We found significant decreases in beta band power in the contralateral primary somatosensory cortex and superior frontal gyrus. In the ipsilateral cerebral hemisphere, we found significant power decreases in beta and gamma frequency bands in only the superior frontal gyrus. No significant power modulations were found in theta and alpha bands. Our results indicate that beamforming is a useful analytical tool to reconstruct underlying neuronal activity associated with manual acupuncture. Our main finding was of beta power decreases in primary somatosensory cortex and superior frontal gyrus, which opens up a line of future investigation regarding whether this contributes towards an underlying mechanism of acupuncture.

  10. Estimating workload using EEG spectral power and ERPs in the n-back task

    Science.gov (United States)

    Brouwer, Anne-Marie; Hogervorst, Maarten A.; van Erp, Jan B. F.; Heffelaar, Tobias; Zimmerman, Patrick H.; Oostenveld, Robert

    2012-08-01

    Previous studies indicate that both electroencephalogram (EEG) spectral power (in particular the alpha and theta band) and event-related potentials (ERPs) (in particular the P300) can be used as a measure of mental work or memory load. We compare their ability to estimate workload level in a well-controlled task. In addition, we combine both types of measures in a single classification model to examine whether this results in higher classification accuracy than either one alone. Participants watched a sequence of visually presented letters and indicated whether or not the current letter was the same as the one (n instances) before. Workload was varied by varying n. We developed different classification models using ERP features, frequency power features or a combination (fusion). Training and testing of the models simulated an online workload estimation situation. All our ERP, power and fusion models provide classification accuracies between 80% and 90% when distinguishing between the highest and the lowest workload condition after 2 min. For 32 out of 35 participants, classification was significantly higher than chance level after 2.5 s (or one letter) as estimated by the fusion model. Differences between the models are rather small, though the fusion model performs better than the other models when only short data segments are available for estimating workload.

  11. Hypoglycemia-associated changes in the electroencephalogram in patients with type 1 diabetes and normal hypoglycemia awareness or unawareness

    DEFF Research Database (Denmark)

    Sejling, Anne-Sophie; Kjær, Troels W; Pedersen-Bjergaard, Ulrik

    2015-01-01

    Hypoglycemia is associated with increased activity in the low-frequency bands in the electroencephalogram (EEG). We investigated whether hypoglycemia awareness and unawareness are associated with different hypoglycemia-associated EEG changes in patients with type 1 diabetes.Twenty-four patients...... and hypoglycemia symptom scores were recorded and the counterregulatory hormonal response was measured.Quantitative EEG analysis showed that the absolute amplitude of the theta band and alpha-theta band up to doubled during hypoglycemia with no difference between the two groups. In the recovery period the theta...

  12. Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans

    NARCIS (Netherlands)

    Wischnewski, M.; Schutter, D.J.L.G.

    2015-01-01

    BACKGROUND: In the past decade research has shown that continuous (cTBS) and intermittent theta burst stimulation (iTBS) alter neuronal excitability levels in the primary motor cortex. OBJECTIVE: Quantitatively review the magnitude and time course on cortical excitability of cTBS and iTBS. METHODS:

  13. Field reversed theta pinch TC-I UNICAMP

    International Nuclear Information System (INIS)

    Honda, R.Y.; Machida, M.; Aramaki, E.A.; Porto, P.; Berni, L.A.

    1990-01-01

    Field reversed configuration TC-I device is 16 cm diameter, 1 meter long with two mirror coils and 30 kJ field reversed theta pinch working for over two years at University of Campinas. Its implosion dynamics and field reversal parameters have been studied using flux excluded loops, internal magnetic probe, visible spectroscopy, photodiode array and image converter camera. The vacuum vessel is a pyrex tube of 14,5 cm diameter pumped with a liquid nitrogen cooled diffusion pump to a base pressure of 6 x 10 -7 Torr. The schematic view of the machine and experimental set up are shown. (Author)

  14. Event-related delta, theta, alpha and gamma correlates to auditory oddball processing during Vipassana meditation

    Science.gov (United States)

    Delorme, Arnaud; Polich, John

    2013-01-01

    Long-term Vipassana meditators sat in meditation vs. a control (instructed mind wandering) states for 25 min, electroencephalography (EEG) was recorded and condition order counterbalanced. For the last 4 min, a three-stimulus auditory oddball series was presented during both meditation and control periods through headphones and no task imposed. Time-frequency analysis demonstrated that meditation relative to the control condition evinced decreased evoked delta (2–4 Hz) power to distracter stimuli concomitantly with a greater event-related reduction of late (500–900 ms) alpha-1 (8–10 Hz) activity, which indexed altered dynamics of attentional engagement to distracters. Additionally, standard stimuli were associated with increased early event-related alpha phase synchrony (inter-trial coherence) and evoked theta (4–8 Hz) phase synchrony, suggesting enhanced processing of the habituated standard background stimuli. Finally, during meditation, there was a greater differential early-evoked gamma power to the different stimulus classes. Correlation analysis indicated that this effect stemmed from a meditation state-related increase in early distracter-evoked gamma power and phase synchrony specific to longer-term expert practitioners. The findings suggest that Vipassana meditation evokes a brain state of enhanced perceptual clarity and decreased automated reactivity. PMID:22648958

  15. 50 MW C-band pulse klystron; 50MW C band pulse klystron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    C-band pulse klystron E3746 with an output of 50 MW class was developed jointly with the High-Energy Accelerator Research Organization in the Ministry of Education as the klystron for a linear accelerator. For a large-sized linear accelerator in the next generation, a klystron with higher operating frequency has been required to obtain a compact and efficient accelerator. In E3746, the problem of power resistance during high-frequency operation was solved by mounting a traveling-wave multi-cell output circuit. Moreover, stable operation in the pulse width of 2.5 {mu}s and the output of 54 MW was performed at the same operation efficiency (44%) as the conventional S-band tube by using the frequency (in a C-band frequency band) that is two times as high as the conventional general accelerator. (translated by NEDO)

  16. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  17. Engineering design and fabrication of X-Band components

    CERN Document Server

    Filippova, M; Solodko, A; Riddone, G; Syratchev, I

    2011-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.994 GHz permitting beam independent power production using klystrons for the accelerating structure testing. X-band klystron test facilities at 11.424 GHz are operated at SLAC and at KEK [1], and they are used by the CLIC study in the framework of the X-band structure collaboration for testing accelerating structures scaled to that frequency [2]. CERN is currently building a klystron test-stand operating at 11.994 GHz. In addition X-FEL projects at PSI and Sincrotrone Trieste operate at 11.4 GHz. Therefore several RF components accommodating frequencies from 11.424 to 11.994 GHz are required. The engineering design of these RF components (high power and compact loads, bi-directional couplers, X-band splitters, hybrids, phase shifters, variable power attenuators) and the main fabrication processes are presented here.

  18. Experimental study of energy harvesting in UHF band

    International Nuclear Information System (INIS)

    Bernacki, Ł; Gozdur, R; Salamon, N

    2016-01-01

    A huge progress of down-sizing technology together with trend of decreasing power consumption and, on the other hand, increasing efficiency of electronics give the opportunity to design and to implement the energy harvesters as main power sources. This paper refers to the energy that can be harvested from electromagnetic field in the unlicensed frequency bands. The paper contains description of the most popular techniques and transducers that can be applied in energy harvesting domain. The overview of current research and commercial solutions was performed for bands in ultra-high frequency range, which are unlicensed and where transmission is not limited by administrative arrangements. During the experiments with Powercast’s receiver, the same bands as sources of electromagnetic field were taken into account. This power source is used for conducting radio-communication process and excess energy could be used for powering the extra electronic circuits. The paper presents elaborated prototype of energy harvesting system and the measurements of power harvested in ultra-high frequency range. The evaluation of RF energy harvesters for powering ultra-low power (ULP) electronic devices was performed based on survey and results of the experiments. (paper)

  19. The effects of individualized theta burst stimulation on the excitability of the human motor system.

    Science.gov (United States)

    Brownjohn, Philip W; Reynolds, John N J; Matheson, Natalie; Fox, Jonathan; Shemmell, Jonathan B H

    2014-01-01

    Theta burst stimulation (TBS) is a pattern of repetitive transcranial magnetic stimulation that has been demonstrated to facilitate or suppress human corticospinal excitability when applied intermittently (iTBS) or continuously (cTBS), respectively. While the fundamental pattern of TBS, consisting of bursts of 50 Hz stimulation repeated at a 5 Hz theta frequency, induces synaptic plasticity in animals and in vitro preparations, the relationship between TBS and underlying cortical firing patterns in the human cortex has not been elucidated. To compare the effects of 5 Hz iTBS and cTBS with individualized TBS paradigms on corticospinal excitability and intracortical inhibitory circuits. Participants received standard and individualized iTBS (iTBS 5; iTBS I) and cTBS (cTBS 5; cTBS I), and sham TBS, in a randomised design. For individualized paradigms, the 5 Hz theta component of the TBS pattern was replaced by the dominant cortical frequency (4-16 Hz; upper frequency restricted by technical limitations) for each individual. We report that iTBS 5 and iTBS I both significantly facilitated motor evoked potential (MEP) amplitude to a similar extent. Unexpectedly, cTBS 5 and cTBS I failed to suppress MEP amplitude. None of the active TBS protocols had any significant effects on intracortical circuits when compared with sham TBS. In summary, iTBS facilitated MEP amplitude, an effect that was not improved by individualizing the theta component of the TBS pattern, while cTBS, a reportedly inhibitory paradigm, produced no change, or facilitation of MEP amplitude in our hands. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. QEEG Spectral and Coherence Assessment of Autistic Children in Three Different Experimental Conditions

    Science.gov (United States)

    Machado, Calixto; Estévez, Mario; Leisman, Gerry; Melillo, Robert; Rodríguez, Rafael; DeFina, Phillip; Hernández, Adrián; Pérez-Nellar, Jesús; Naranjo, Rolando; Chinchilla, Mauricio; Garófalo, Nicolás; Vargas, José; Beltrán, Carlos

    2015-01-01

    We studied autistics by quantitative EEG spectral and coherence analysis during three experimental conditions: basal, watching a cartoon with audio (V-A), and with muted audio band (VwA). Significant reductions were found for the absolute power spectral density (PSD) in the central region for delta and theta, and in the posterior region for sigma…

  1. Epileptic seizure prediction based on a bivariate spectral power methodology.

    Science.gov (United States)

    Bandarabadi, Mojtaba; Teixeira, Cesar A; Direito, Bruno; Dourado, Antonio

    2012-01-01

    The spectral power of 5 frequently considered frequency bands (Alpha, Beta, Gamma, Theta and Delta) for 6 EEG channels is computed and then all the possible pairwise combinations among the 30 features set, are used to create a 435 dimensional feature space. Two new feature selection methods are introduced to choose the best candidate features among those and to reduce the dimensionality of this feature space. The selected features are then fed to Support Vector Machines (SVMs) that classify the cerebral state in preictal and non-preictal classes. The outputs of the SVM are regularized using a method that accounts for the classification dynamics of the preictal class, also known as "Firing Power" method. The results obtained using our feature selection approaches are compared with the ones obtained using minimum Redundancy Maximum Relevance (mRMR) feature selection method. The results in a group of 12 patients of the EPILEPSIAE database, containing 46 seizures and 787 hours multichannel recording for out-of-sample data, indicate the efficiency of the bivariate approach as well as the two new feature selection methods. The best results presented sensitivity of 76.09% (35 of 46 seizures predicted) and a false prediction rate of 0.15(-1).

  2. Design and analysis of an integrated pulse modulated s-band power amplifier in gallium nitride process

    Energy Technology Data Exchange (ETDEWEB)

    Sedlock, Steve [Kansas State Univ., Manhattan, KS (United States)

    2012-01-01

    The design of power amplifiers in any semi-conductor process is not a trivia exercise and it is often encountered that the simulated solution is qualitatively different than the results obtained. Phenomena such as oscillation occurring either in-band or out of band and sometimes at subharmonic intervals, continuous spectrum noticed in some frequency bands, often referred to as chaos, and jumps and hysteresis effects can all be encountered and render a design useless. All of these problems might have been identified through a more rigorous approach to stability analysis. Designing for stability is probably the one area of amplifier design that receives the least amount of attention but incurs the most catastrophic of effects if it is not performed properly. Other parameters such as gain, power output, frequency response and even matching may suitable mitigation paths. But the lack of stability in an amplifier has no mitigating path. In addition to of loss of the design completely there are the increased production cycle costs, costs involved with investigating and resolving the problem and the costs involved with schedule slips or delays resulting from it. The Linville or Rollett stability criteria that many microwave engineers follow and rely exclusively on is not sufficient by itself to ensure a stable and robust design. It will be shown that the universal belief that unconditional stability is obtained through an analysis of the scattering matrix S to determine if 1 and |{Delta}{sub S}| < 1 is only part of the procedure and other tools must be used to validate the criteria. The research shown contributes to the state of the art by developing a more thorough stability design technique for designing amplifiers of any class, whether that be current mode or switch mode, than is currently undertaken with the goal of obtaining first pass design success.

  3. Engineering design study of a reference theta-pinch reactor (RTPR): environmental impact study

    International Nuclear Information System (INIS)

    Draley, J.E.; Krakowski, R.A.; Coultas, T.A.; Maroni, V.A.

    1975-03-01

    The recently completed engineering design study for the Reference Theta-Pinch Reactor (RTPR) has allowed an assessment of the potential environmental impact of an RTPR power plant to be made. During normal operation of the plant, tritium is expected to be released at a rate of 6 Ci/day, an amount that would lead to low maximum doses (0.06 to 0.8 mrem/yr, depending on site and cooling options). These doses, and the anticipated integrated population doses, are considerably less than doses now considered acceptable. Problems related to (i) the required commitment of some natural resources (e.g., beryllium and niobium), (ii) the disposition of activated structural materials and other radioactive waste (76,700 kg/yr or 12 GCi/yr at shutdown) for a five-year niobium component lifetime, and (iii) land despoilment are substantial but do not appear to compromise the viability of RTPR's as a useful power source. Consideration of the occurrence of severe accidents (e.g., liquid-metal fires) and other unusual incidents indicate that their effects will be contained within the plant, but that they may be costly. Radiation doses resulting from accidental release of the operating tritium inventory during a liquid-metal fire would probably be below the level now permitted for fission plants. (U.S.)

  4. Development of L-band pillbox RF window

    International Nuclear Information System (INIS)

    Takeuchi, Y.; Fukuda, S.; Hisamatsu, H.; Saito, Y.; Takahashi, A.

    1994-01-01

    A pillbox RF output window was developed for the L-band pulsed klystron for the Japanese Hadron Project (JHP) 1-GeV proton linac. The window was designed to withstand a peak RF power of 6 MW, where the pulse width is 600 μsec and the repetition rate is 50 Hz. A high power model was fabricated using an alumina ceramic which has a low loss tangent of 2.5x10 -5 . A high power test was successfully performed up to a 113 kW RF average power with a 4 MW peak power, a 565 μsec pulse width and a 50 Hz repetition rate. By extrapolating the data of this high power test, the temperature rise of the ceramic is estimated low enough at the full RF power of 6 MW. Thus this RF window is expected to satisfy the specifications of the L-band Klystron. (author)

  5. Influence of transcranial direct current stimulation of the dorsolateral prefrontal cortex on pain related emotions: a study using electroencephalographic power spectrum analysis.

    Science.gov (United States)

    Maeoka, Hiroshi; Matsuo, Atsushi; Hiyamizu, Makoto; Morioka, Shu; Ando, Hiroshi

    2012-03-14

    Pain is a multidimensional experience with sensory-discriminative, cognitive-evaluative and affective-motivational components. Emotional factors such as unpleasantness or anxiety are known to have influence on pain in humans. The aim of this single-blinded, cross over study was to evaluate the effects of transcranial direct current stimulation (tDCS) on emotional aspects of pain in pain alleviation. Fifteen subjects (5 females, 10 males) volunteered to participate in this study. In an oddball paradigm, three categories of 20 pictures (unpleasant, neutral, and pleasant) served as rare target pictures from the International Affective Picture System (IAPS). The power of the delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-25 Hz), and gamma (30-40 Hz) frequency bands in the three categories were measured using electroencephalography during an oddball paradigm at pre- and post-anodal or sham tDCS above the left dorsolateral prefrontal cortex (DLPFC). Results showed that the beta band power was significantly increased, and the alpha band power was significantly decreased during unpleasant pictures after anodal tDCS compared with sham tDCS. Furthermore, regarding unpleasant pictures, subjective reports of Self Assessment Manikin (SAM) for emotional valence after anodal tDCS showed a significant decrease of unpleasantness. Therefore, emotional aspects of pain may be effectively alleviated by tDCS of the left DLPFC as was shown not only by subjective evaluation, but also by objective observation of cerebral neural activity. This processing may be mediated by facilitation of the descending pain inhibitory system through enhancing neural activity of the left DLPFC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Uniaxial strain effects on transport properties of a supramolecular organic conductor theta-(DIETS) sub 2 [Au(CN) sub 4

    CERN Document Server

    Tajima, N; Kato, R; Nishio, Y; Kajita, K

    2003-01-01

    Pressure-controlled switching between an insulating state and a superconducting state has been successfully realized on a supramolecular organic conductor theta-(DIETS) sub 2 [Au(CN) sub 4] [DIETS = diiodo(ethylenedithio)diselenadithiafulvalene]. Strong contact between iodine on the donor (DIETS) molecule and nitrogen on the anion [Au(CN) sub 4] genetates characteristic uniaxial strain effects on transport properties. Under the ambient pressure, the present system undergoes a semiconductor-insulator transition at 226 K. The effect of strains parallel to the conduction plane (ab-plane) is very small. Even under uniaxial strains up to 20 kbar along the a- and b-axis directions, the transition is not suppressed. Surprisingly, however, the c-axis strain induces a superconducting state with T sub c of 8.6 K at 10 kbar. Band parameter calculation and the conductivity anisotropy ratio suggest that an increase in the bandwidth W associated with a c-axis strain transforms the system to the metallic and superconducting...

  7. Design and optimization of G-band extended interaction klystron with high output power

    Science.gov (United States)

    Li, Renjie; Ruan, Cunjun; Zhang, Huafeng

    2018-03-01

    A ladder-type Extended Interaction Klystron (EIK) with unequal-length slots in the G-band is proposed and designed. The key parameters of resonance cavities working in the π mode are obtained based on the theoretical analysis and 3D simulation. The influence of the device fabrication tolerance on the high-frequency performance is analyzed in detail, and it is found that at least 5 μm of machining precision is required. Thus, the dynamic tuning is required to compensate for the frequency shift and increase the bandwidth. The input and output coupling hole dimensions are carefully designed to achieve high output power along with a broad bandwidth. The effect of surface roughness of the metallic material on the output power has been investigated, and it is proposed that lower surface roughness leads to higher output power. The focusing magnetic field is also optimized to 0.75 T in order to maintain the beam transportation and achieve high output power. With 16.5 kV operating voltage and 0.30 A beam current, the output power of 360 W, the efficiency of 7.27%, the gain of 38.6 dB, and the 3 dB bandwidth of 500 MHz are predicted. The output properties of the EIK show great stability with the effective suppression of oscillation and mode competition. Moreover, small-signal theory analysis and 1D code AJDISK calculations are carried out to verify the results of 3D PIC simulations. A close agreement among the three methods proves the relative validity and the reliability of the designed EIK. Thus, it is indicated that the EIK with unequal-length slots has potential for power improvement and bandwidth extension.

  8. Altered Frequency Distribution in the Electroencephalogram is Correlated to the Analgesic Effect of Remifentanil

    DEFF Research Database (Denmark)

    Graversen, Carina; Malver, Lasse P; Kurita, Geana P

    2015-01-01

    Opioids alter resting state brain oscillations by multiple and complex factors, which are still to be elucidated. To increase our knowledge, multi-channel electroencephalography (EEG) was subjected to multivariate pattern analysis (MVPA), to identify the most descriptive frequency bands and scalp...... distributions were extracted by a continuous wavelet transform and normalized into delta, theta, alpha, beta and gamma bands. Alterations relative to pre-treatment responses were calculated for all channels and used as input to the MVPA. Compared to placebo, remifentanil increased the delta band and decreased...... the theta and alpha band oscillations as a mean over all channels (all p ≤ 0.007). The most discriminative channels in these frequency bands were F1 in delta (83.33%, p = 0.0023) and theta bands (95.24%, p band (80.95%, p = 0.0054). These alterations were correlated...

  9. GAMMA BAND PLASTICITY IN SENSORY CORTEX IS A SIGNATURE OF THE STRONGEST MEMORY RATHER THAN MEMORY OF THE TRAINING STIMULUS

    Science.gov (United States)

    Weinberger, Norman M.; Miasnikov, Alexandre A.; Bieszczad, Kasia M.; Chen, Jemmy C.

    2013-01-01

    Gamma oscillations (~30–120 Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detailed contents of memory remains largely unknown. We investigated the relationship between learning-induced increased gamma power in the primary auditory cortex (A1) and the strength of memory for acoustic frequency. Adult male rats (n = 16) received three days (200 trials each) of pairing a tone (3.66 kHz) with stimulation of the nucleus basalis, which implanted a memory for acoustic frequency as assessed by associatively-induced disruption of ongoing behavior, viz., respiration. Post-training frequency generalization gradients (FGGs) revealed peaks at non-CS frequencies in 11/16 cases, likely reflecting normal variation in pre-training acoustic experiences. A stronger relationship was found between increased gamma power and the frequency with the strongest memory (peak of the difference between individual post- and pre-training FGGs) vs. behavioral responses to the CS training frequency. No such relationship was found for the theta/alpha band (4–15 Hz). These findings indicate that the strength of specific increased neuronal synchronization within primary sensory cortical fields can determine the specific contents of memory. PMID:23669065

  10. Gamma band plasticity in sensory cortex is a signature of the strongest memory rather than memory of the training stimulus.

    Science.gov (United States)

    Weinberger, Norman M; Miasnikov, Alexandre A; Bieszczad, Kasia M; Chen, Jemmy C

    2013-09-01

    Gamma oscillations (∼30-120Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detailed contents of memory remains largely unknown. We investigated the relationship between learning-induced increased gamma power in the primary auditory cortex (A1) and the strength of memory for acoustic frequency. Adult male rats (n=16) received three days (200 trials each) of pairing a tone (3.66 kHz) with stimulation of the nucleus basalis, which implanted a memory for acoustic frequency as assessed by associatively-induced disruption of ongoing behavior, viz., respiration. Post-training frequency generalization gradients (FGGs) revealed peaks at non-CS frequencies in 11/16 cases, likely reflecting normal variation in pre-training acoustic experiences. A stronger relationship was found between increased gamma power and the frequency with the strongest memory (peak of the difference between individual post- and pre-training FGGs) vs. behavioral responses to the CS training frequency. No such relationship was found for the theta/alpha band (4-15 Hz). These findings indicate that the strength of specific increased neuronal synchronization within primary sensory cortical fields can determine the specific contents of memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Plasma resistivity in a slow rising current theta-pinch device

    International Nuclear Information System (INIS)

    Kayama, Milton Eiji; Dobrowolsky, Marcelo Shubert; Honda, Roberto Yzumi; Aramaki, Emilia Akemi; Algatti, Mauricio Antonio

    1998-01-01

    Anomalous behavior of plasma resistivity was observed in a Theta-pinch plasma. A comparative analysis was performed with a hybrid numerical code where the Chodura s resistivity algorithm is included. Good agreement was found in the radial plasma dynamic description. The experimental value of resistivity at null field point was found to be one order of magnitude greater than the theoretical prediction. (author)

  12. Intraoperative Frontal Alpha-Band Power Correlates with Preoperative Neurocognitive Function in Older Adults

    Directory of Open Access Journals (Sweden)

    Charles M. Giattino

    2017-05-01

    Full Text Available Each year over 16 million older Americans undergo general anesthesia for surgery, and up to 40% develop postoperative delirium and/or cognitive dysfunction (POCD. Delirium and POCD are each associated with decreased quality of life, early retirement, increased 1-year mortality, and long-term cognitive decline. Multiple investigators have thus suggested that anesthesia and surgery place severe stress on the aging brain, and that patients with less ability to withstand this stress will be at increased risk for developing postoperative delirium and POCD. Delirium and POCD risk are increased in patients with lower preoperative cognitive function, yet preoperative cognitive function is not routinely assessed, and no intraoperative physiological predictors have been found that correlate with lower preoperative cognitive function. Since general anesthesia causes alpha-band (8–12 Hz electroencephalogram (EEG power to decrease occipitally and increase frontally (known as “anteriorization”, and anesthetic-induced frontal alpha power is reduced in older adults, we hypothesized that lower intraoperative frontal alpha power might correlate with lower preoperative cognitive function. Here, we provide evidence that such a correlation exists, suggesting that lower intraoperative frontal alpha power could be used as a physiological marker to identify older adults with lower preoperative cognitive function. Lower intraoperative frontal alpha power could thus be used to target these at-risk patients for possible therapeutic interventions to help prevent postoperative delirium and POCD, or for increased postoperative monitoring and follow-up. More generally, these results suggest that understanding interindividual differences in how the brain responds to anesthetic drugs can be used as a probe of neurocognitive function (and dysfunction, and might be a useful measure of neurocognitive function in older adults.

  13. Seasonal variation of Sigma sub(Theta) with wind speed, direction and stability

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    For an airport site near Visakhapatnam, India, and based on 10 years of data for the months of January, April, August and October, values of Sigma sub(Theta) are given as a function of wind speed, wind direction and Pasquill diffusion category...

  14. Future with fusion power

    International Nuclear Information System (INIS)

    Hirschfeld, F.

    1977-01-01

    This article reviews several current approaches to the development of nuclear fusion power sources by the year 2000. First mentioned is the only project to develop a nonpolluting, radiation-free source by using only natural and nonradioactive isotopes (nuclei of deuterium, helium 3 and boron) as ''advanced'' fuels. This system will also be capable of direct conversion of the released energy into electricity. Next described is the PACER concept, in which thermonuclear burning of deuterium occurs in fusion explosion taking place underground (e.g., in a salt dome). The released energy is absorbed in high-pressure steam which is then piped to a surface heat exchanger to provide steam for a turbogenerator. After filtration, the steam is returned. The PACER system also produces fissionable fuel. The balance of the article reviews three ''magnetic fusion'' approaches. Tokamak, mirror and theta pinch systems utilize magnetic fields to confine a plasma for either pulsed or steady-state operation. The tokamak and theta pinch are toroidal in shape, while the mirror can be thought of as a magnetic field configuration of roughly tubular shape that confines the plasma by means of higher fields at the ends than at its center. The tokamak approach accounts for about 65 percent of the magnetic fusion research and development, while theta pinches and mirrors represent about 15 percent each. Refs

  15. The noncommutative standard model. Construction beyond leading order in {theta} and collider phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Alboteanu, A.M.

    2007-07-01

    Within this work we study the phenomenological consequences of a possible realization of QFT on noncommutative space-time. In the first part we performed a phenomenological analysis of the hadronic process pp {yields} Z{sub {gamma}} {yields} l{sup +}l{sup -}{gamma} at the LHC and of electron-positron pair annihilation into a Z boson and a photon at the International Linear Collider (ILC). The noncommutative extension of the SM considered within this work relies on two building blocks: the Moyal-Weyl *-product of functions on ordinary space-time and the Seiberg-Witten maps. A consequence of the noncommutativity of space-time is the violation of rotational invariance with respect to the beam axis. This effect shows up in the azimuthal dependence of cross sections, which is absent in the SM as well as in other models beyond the SM. We have found this dependence to be best suited for deriving the sensitivity bounds on the noncommutative scale NC. By studying pp{yields}Z{sub {gamma}} {yields}l{sup +}l{sup -}{gamma} to first order in the noncommutative parameter {theta}, we show in the first part of this work that measurements at the LHC are sensitive to noncommutative effects only in certain cases, giving bounds on the noncommutative scale of {lambda}{sub NC} >or similar 1.2 TeV. By means of e{sup +}e{sup -} {yields} Z{sub {gamma}} {yields} l{sup +}l{sup -}{gamma} to O({theta}) we have shown that ILC measurements are complementary to LHC measurements of the noncommutative parameters. In addition, the bounds on {lambda}{sub NC} derived from the ILC are significantly higher and reach {lambda}{sub NC} >or similar 6 TeV. In the second part of this work we expand the neutral current sector of the noncommutative SM to second order in {theta}. We found that, against the general expectation, the theory must be enlarged by additional parameters. The new parameters enter the theory as ambiguities of the Seiberg-Witten maps. The latter are not uniquely determined and differ by

  16. Numerical studies of the linear theta pinch

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Menzel, M.T.; Barnes, D.C.

    1975-01-01

    Aspects of several physical problems associated with linear theta pinches were studied using recently developed numerical methods for the solution of the nonlinear equations for time-dependent magnetohydrodynamic flow in two- and three-dimensions. The problems studied include the propagation of end-loss produced rarefaction waves, the flow produced in a proposed injection experiment geometry, and the linear growth and nonlinear saturation of instabilities in rotating plasmas, all in linear geometries. The studies illustrate how numerical computations aid in flow visualization, and how the small amplitude behavior and nonlinear fate of plasmas in unstable equilibria can be connected through the numerical solution of the dynamical equations. (auth)

  17. Theta-Gamma Coding Meets Communication-through-Coherence: Neuronal Oscillatory Multiplexing Theories Reconciled.

    Science.gov (United States)

    McLelland, Douglas; VanRullen, Rufin

    2016-10-01

    Several theories have been advanced to explain how cross-frequency coupling, the interaction of neuronal oscillations at different frequencies, could enable item multiplexing in neural systems. The communication-through-coherence theory proposes that phase-matching of gamma oscillations between areas enables selective processing of a single item at a time, and a later refinement of the theory includes a theta-frequency oscillation that provides a periodic reset of the system. Alternatively, the theta-gamma neural code theory proposes that a sequence of items is processed, one per gamma cycle, and that this sequence is repeated or updated across theta cycles. In short, both theories serve to segregate representations via the temporal domain, but differ on the number of objects concurrently represented. In this study, we set out to test whether each of these theories is actually physiologically plausible, by implementing them within a single model inspired by physiological data. Using a spiking network model of visual processing, we show that each of these theories is physiologically plausible and computationally useful. Both theories were implemented within a single network architecture, with two areas connected in a feedforward manner, and gamma oscillations generated by feedback inhibition within areas. Simply increasing the amplitude of global inhibition in the lower area, equivalent to an increase in the spatial scope of the gamma oscillation, yielded a switch from one mode to the other. Thus, these different processing modes may co-exist in the brain, enabling dynamic switching between exploratory and selective modes of attention.

  18. K-Band Traveling-Wave Tube Amplifier

    Science.gov (United States)

    Force, Dale A.; Simons, Rainee N.; Peterson, Todd T.; Spitsen, Paul C.

    2010-01-01

    A new space-qualified, high-power, high-efficiency, K-band traveling-wave tube amplifier (TWTA) will provide high-rate, high-capacity, direct-to-Earth communications for science data and video gathered by the Lunar Reconnaissance Orbiter (LRO) during its mission. Several technological advances were responsible for the successful demonstration of the K-band TWTA.

  19. Neurofeedback Effects on Evoked and Induced EEG Gamma Band Reactivity to Drug-related Cues in Cocaine Addiction

    Science.gov (United States)

    Horrell, Timothy; El-Baz, Ayman; Baruth, Joshua; Tasman, Allan; Sokhadze, Guela; Stewart, Christopher; Sokhadze, Estate

    2010-01-01

    in a lower EEG gamma reactivity to drug-related images in a post-neurofeedback cue reactivity test. In particular, evoked gamma showed decreases in power to non-target and to a lesser extent target drug-related cues at all topographies (left, right, frontal, parietal, medial, inferior); while induced gamma power decreased globally to both target and non-target drug cues. Our findings supported our hypothesis that gamma band cue reactivity measures are sufficiently sensitive functional outcomes of neurofeedback treatment. Both evoked and induced gamma measures were found capable to detect changes in responsiveness to both target and non-target drug cues. Conclusion Our study emphasizes the utility of cognitive neuroscience methods based on EEG gamma band measures for the assessment of the functional outcomes of neurofeedback-based biobehavioral interventions for cocaine use disorders. This approach may have significant potential for identifying both physiological and clinical markers of treatment progress. The results confirmed our prediction that EEG changes achieved with neurofeedback training will be accompanied by positive EEG outcomes in a cue reactivity and clinical improvements. PMID:20976131

  20. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal.

    Science.gov (United States)

    McConnell, Patrick A; Froeliger, Brett; Garland, Eric L; Ives, Jeffrey C; Sforzo, Gary A

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18-29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats ('wide-band' theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.

  1. Large power microwave nonlinear effects on multifunction amplifier chip for Ka-band T/R module of phased array radar

    Science.gov (United States)

    Guo, Guo; Gu, Ling; Wu, Ruowu; Xu, Xiong; Zhou, Taifu; Niu, Xinjian; Liu, Yinghui; Wang, Hui; Wei, Yanyu; Guo, Changyong

    2017-12-01

    Nonlinear effects of large power millimeter wave on critical chips for the T/R module of phased array radar is experimental studied and analyzed in this paper. A multifunction amplifier chip is selected for our experiments. A solid continuous wave (CW) source and a large power pulsed magnetron are both employed to generate the Ka-band microwave. The input-output characteristics, the degradation and destroy threshold of the chips are obtained through a series of experimental tests. At last, the results are given by figures and analyzed theoretically.

  2. On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes

    Science.gov (United States)

    Krider, E. P.

    1992-01-01

    The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.

  3. Theta and beta oscillatory dynamics in the dentate gyrus reveal a shift in network processing state during cue encounters

    Directory of Open Access Journals (Sweden)

    Lara Maria Rangel

    2015-07-01

    Full Text Available The hippocampus is an important structure for learning and memory processes, and has strong rhythmic activity. Although a large amount of research has been dedicated towards understanding the rhythmic activity in the hippocampus during exploratory behaviors, specifically in the theta (5-10 Hz frequency range, few studies have examined the temporal interplay of theta and other frequencies during the presentation of meaningful cues. We obtained in vivo electrophysiological recordings of local field potentials (LFP in the dentate gyrus (DG of the hippocampus as rats performed three different associative learning tasks. In each task, cue presentations elicited pronounced decrements in theta amplitude in conjunction with increases in beta (15-30Hz amplitude. These changes were often transient but were sustained from the onset of cue encounters until the occurrence of a reward outcome. This oscillatory profile shifted in time to precede cue encounters over the course of the session, and was not present during similar behavior in the absence of task relevant stimuli. The observed decreases in theta amplitude and increases in beta amplitude in the dentate gyrus may thus reflect a shift in processing state that occurs when encountering meaningful cues.

  4. Personalized features for attention detection in children with Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Fahimi, Fatemeh; Guan, Cuntai; Wooi Boon Goh; Kai Keng Ang; Choon Guan Lim; Tih Shih Lee

    2017-07-01

    Measuring attention from electroencephalogram (EEG) has found applications in the treatment of Attention Deficit Hyperactivity Disorder (ADHD). It is of great interest to understand what features in EEG are most representative of attention. Intensive research has been done in the past and it has been proven that frequency band powers and their ratios are effective features in detecting attention. However, there are still unanswered questions, like, what features in EEG are most discriminative between attentive and non-attentive states? Are these features common among all subjects or are they subject-specific and must be optimized for each subject? Using Mutual Information (MI) to perform subject-specific feature selection on a large data set including 120 ADHD children, we found that besides theta beta ratio (TBR) which is commonly used in attention detection and neurofeedback, the relative beta power and theta/(alpha+beta) (TBAR) are also equally significant and informative for attention detection. Interestingly, we found that the relative theta power (which is also commonly used) may not have sufficient discriminative information itself (it is informative only for 3.26% of ADHD children). We have also demonstrated that although these features (relative beta power, TBR and TBAR) are the most important measures to detect attention on average, different subjects have different set of most discriminative features.

  5. Broadband S-band class E HPA

    NARCIS (Netherlands)

    Wanum, M.; van Dijk, R.; de Hek, A.P.; van Vliet, Frank Edward

    2009-01-01

    A broadband class E High Power Amplifier (HPA) is presented. This HPA is designed to operate at S-band (2.75 to 3.75 GHz). A power added efficiency of 50% is obtained for the two stage amplifier with an output power of 35.5 dBm on a chip area of 5.25 times 2.8 mm2.

  6. Cusp Guns for Helical-Waveguide Gyro-TWTs of a High-Gain High-Power W-Band Amplifier Cascade

    Science.gov (United States)

    Manuilov, V. N.; Samsonov, S. V.; Mishakin, S. V.; Klimov, A. V.; Leshcheva, K. A.

    2018-02-01

    The evaluation, design, and simulations of two different electron guns generating the beams for W-band second cyclotron harmonic gyro-TWTs forming a high-gain powerful amplifier cascade are presented. The optimum configurations of the systems creating nearly axis-encircling electron beams having velocity pitch-factor up to 1.5, voltage/current of 40 kV/0.5 A, and 100 kV/13 A with acceptable velocity spreads have been found and are presented.

  7. Design, Fabrication and High Power RF Test of a C-band Accelerating Structure for Feasibility Study of the SPARC photo-injector energy upgrade

    CERN Document Server

    Alesini, D.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.; Higo, T.; Kakihara, K.; Matsumoto, S.; Campogiani, G.; Mostacci, A.; Palumbo, L.; Persichelli, S.; Spizzo, V.; Verdú-Andrés, S.

    2011-01-01

    The energy upgrade of the SPARC photo-injector from 160 to more than 260 MeV will be done by replacing a low gradient 3m S-Band structure with two 1.4m high gradient C-band structures. The structures are travelling wave, constant impedance sections, have symmetric waveguide input couplers and have been optimized to work with a SLED RF input pulse. A prototype with a reduced number of cells has been fabricated and tested at high power in KEK (Japan) giving very good performances in terms of breakdown rates (10^6 bpp/m) at high accelerating gradient (>50 MV/m). The paper illustrates the design criteria of the structures, the fabrication procedure and the high power RF test results.

  8. Neural dynamics during repetitive visual stimulation

    Science.gov (United States)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline

  9. Age-Related Inter-region EEG Coupling Changes during the Control of Bottom-up and Top-down Attention

    Directory of Open Access Journals (Sweden)

    Ling eLi

    2015-12-01

    Full Text Available We investigated age-related changes in electroencephalographic (EEG coupling of theta-, alpha-, and beta-frequency bands during bottom-up and top-down attention. Arrays were presented with either automatic pop-out (bottom-up or effortful search (top-down behavior to younger and older participants. The phase-locking value (PLV was used to estimate coupling strength between scalp recordings. Behavioral performance decreased with age, with a greater age-related decline in accuracy for the search than for the pop-out condition. Aging was associated with a declined coupling strength of theta and alpha frequency bands, with a greater age-related decline in whole-brain coupling values for the search than for the pop-out condition. Specifically, prefronto-frontal coupling in theta- and alpha-bands, fronto-parietal and parieto-occipital couplings in beta-band for younger group showed a right hemispheric dominance, which was reduced with aging to compensate for the inhibitory dysfunction. While pop-out target detection was mainly associated with greater parieto-occipital beta-coupling strength compared to search condition regardless of aging. Furthermore, prefronto-frontal coupling in theta-, alpha- and beta-bands, and parieto-occipital coupling in beta-band functioned as predictors of behavior for both groups. Taken together these findings provide evidence that prefronto-frontal coupling of theta-, alpha-, and beta-bands may serve as a possible basis of aging during visual attention, while parieto-occipital coupling in beta-band could serve for a bottom-up function and be vulnerable to top-down attention control for younger and older groups.

  10. The UNICAMP theta-pinch for spectroscopic study of plasma radiations

    International Nuclear Information System (INIS)

    Trigueiros, A.G.; Luna, F.R.T.; Holanda Cavalcanti, G. de; Mania, A.J.

    1993-01-01

    The emission spectrum of six times ionized xenon (Xe VII), has been observed in the vacuum ultraviolet (VUV) using a theta-pinch discharge. The spectrum was recorded with a 2-meter normal incidence spectrograph in the 300-2000 A region. Preliminary results allow the identification of transitions in the n=5 complex. Ten of these transitions were identified. The identifications are supported by relativistic Hartree-Fock calculations. (author)

  11. Medial septal GABAergic projection neurons promote object exploration behavior and type 2 theta rhythm

    Science.gov (United States)

    Gangadharan, Gireesh; Shin, Jonghan; Kim, Seong-Wook; Kim, Angela; Paydar, Afshin; Kim, Duk-Soo; Miyazaki, Taisuke; Watanabe, Masahiko; Yanagawa, Yuchio; Kim, Jinhyun; Kim, Yeon-Soo; Kim, Daesoo; Shin, Hee-Sup

    2016-01-01

    Exploratory drive is one of the most fundamental emotions, of all organisms, that are evoked by novelty stimulation. Exploratory behavior plays a fundamental role in motivation, learning, and well-being of organisms. Diverse exploratory behaviors have been described, although their heterogeneity is not certain because of the lack of solid experimental evidence for their distinction. Here we present results demonstrating that different neural mechanisms underlie different exploratory behaviors. Localized Cav3.1 knockdown in the medial septum (MS) selectively enhanced object exploration, whereas the null mutant (KO) mice showed enhanced-object exploration as well as open-field exploration. In MS knockdown mice, only type 2 hippocampal theta rhythm was enhanced, whereas both type 1 and type 2 theta rhythm were enhanced in KO mice. This selective effect was accompanied by markedly increased excitability of septo-hippocampal GABAergic projection neurons in the MS lacking T-type Ca2+ channels. Furthermore, optogenetic activation of the septo-hippocampal GABAergic pathway in WT mice also selectively enhanced object exploration behavior and type 2 theta rhythm, whereas inhibition of the same pathway decreased the behavior and the rhythm. These findings define object exploration distinguished from open-field exploration and reveal a critical role of T-type Ca2+ channels in the medial septal GABAergic projection neurons in this behavior. PMID:27208094

  12. Early and late beta-band power reflect audiovisual perception in the McGurk illusion.

    Science.gov (United States)

    Roa Romero, Yadira; Senkowski, Daniel; Keil, Julian

    2015-04-01

    The McGurk illusion is a prominent example of audiovisual speech perception and the influence that visual stimuli can have on auditory perception. In this illusion, a visual speech stimulus influences the perception of an incongruent auditory stimulus, resulting in a fused novel percept. In this high-density electroencephalography (EEG) study, we were interested in the neural signatures of the subjective percept of the McGurk illusion as a phenomenon of speech-specific multisensory integration. Therefore, we examined the role of cortical oscillations and event-related responses in the perception of congruent and incongruent audiovisual speech. We compared the cortical activity elicited by objectively congruent syllables with incongruent audiovisual stimuli. Importantly, the latter elicited a subjectively congruent percept: the McGurk illusion. We found that early event-related responses (N1) to audiovisual stimuli were reduced during the perception of the McGurk illusion compared with congruent stimuli. Most interestingly, our study showed a stronger poststimulus suppression of beta-band power (13-30 Hz) at short (0-500 ms) and long (500-800 ms) latencies during the perception of the McGurk illusion compared with congruent stimuli. Our study demonstrates that auditory perception is influenced by visual context and that the subsequent formation of a McGurk illusion requires stronger audiovisual integration even at early processing stages. Our results provide evidence that beta-band suppression at early stages reflects stronger stimulus processing in the McGurk illusion. Moreover, stronger late beta-band suppression in McGurk illusion indicates the resolution of incongruent physical audiovisual input and the formation of a coherent, illusory multisensory percept. Copyright © 2015 the American Physiological Society.

  13. Computer simulation of plasma behavior in open-ended linear theta machines. Scientific report 81-5

    International Nuclear Information System (INIS)

    Stover, E.K.

    1981-04-01

    Zero-dimensional and one-dimensional fluid plasma computer models have been developed to study the behavior of linear theta pinch plasmas. Computer simulation results generated from these codes are compared with data obtained from two theta pinch experiments so that significant machine plasma behavior can be identified. The experiments examined are a collisional experiment, T/sub i/ approx. 50 eV, n/sub e/ approx. 10 17 cm -3 , where the plasma mean-free-path was significantly less than the plasma column length, and a hot ion species experiment, T/sub i/ approx. 3 keV, n/sub e/ approx. 10 16 cm -3 , where the ion mean-free-path was on the order of the plasma column length

  14. Childhood Trauma Associated with Enhanced High Frequency Band Powers and Induced Subjective Inattention of Adults

    Directory of Open Access Journals (Sweden)

    Seung-Hwan Lee

    2017-08-01

    Full Text Available Childhood trauma can lead to various psychological and cognitive symptoms. It has been demonstrated that high frequency electroencephalogram (EEG powers could be closely correlated with inattention. In this study, we explored the relationship between high frequency EEG powers, inattention, symptoms of adult attention deficit hyperactivity disorder (ADHD, and childhood traumatic experiences. A total of 157 healthy Korean adult volunteers were included and divided into two groups using the Childhood Trauma Questionnaire (CTQ score. The subjective inattention scores, ADHD scale, and anxiety and depression symptom were evaluated. EEG was recorded and quantitative band powers were analyzed. The results were as follows: (1 the high CTQ group showed significantly increased delta, beta1, beta2, beta3 and gamma, and significantly decreased low alpha power compared to the low CTQ group; (2 the high CTQ group had higher inattention score compared to the low CTQ group; (3 the high CTQ group had higher adult ADHD scores; (4 CTQ scores showed significant positive correlations with inattention scores, and adult ADHD scores; (5 unexpectedly, the inattention scores showed significant positive correlations with beta powers and a negative correlation with low alpha power; and (6 the moderated mediation model was confirmed: the depression fully mediated the path from state anxiety to inattention, and the CTQ significantly moderated the pathway between anxiety and depression. Our results show the possibility that childhood adversity may cause subjective inattention and adult ADHD symptoms. Depressive symptoms fully mediated the path from anxiety to inattention, especially in those who report severe childhood traumatic experiences.

  15. High power klystrons for efficient reliable high power amplifiers

    Science.gov (United States)

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  16. Optimization and Design of a Low Power Switched Current A/D Sigma-Delta-Modulator for Voice Band Applications

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur

    1998-01-01

    This paper presents a third order switched current sigma delta-modulator. The modulator is optimized at the system level for minimum power consumption by careful design of the noise transfer function. A thorough noise analysis of the cascode type current copiers used to implement the modulator......, together with a new methodology for evaluating the nonlinear settling behavior is presented. This leads to a new optimization methodology that minimize the power consumption in switched current circuits for given design parameters. The optimization methodology takes process variations into account....... The modulator is implemented in a standard 2.4 mu m CMOS process only using MOS capacitors. For a power supply of 3.3 V the power consumption is approximately 2.5 mW when operating at a sampling rate of 600 kHz. Under these condition the peak SNR it measured to 74.5 dB with a signal band width of 5.5 kHz. Due...

  17. Search for the Theta+ pentaquark in the reactions gammap-->[overline K]0K+n and gammap-->[overline K]0K0p

    Energy Technology Data Exchange (ETDEWEB)

    Raffaella De Vita; Marco Battaglieri; V. Kubarovsky; Nathan Baltzell; Matthew Bellis; John Goett; Lei Guo; Gordon Mutchler; Paul Stoler; Maurizio Ungaro; Dennis Weygand; Moscov Amaryan; Pawel Ambrozewicz; Marco Anghinolfi; Gegham Asryan; Harutyun AVAKIAN; Harutyun Avakian; Hovhannes Baghdasaryan; Nathan Baillie; Jacques Ball; Vitaly Baturin; Ivan Bedlinski; Ivan Bedlinskiy; Nawal Benmouna; Barry Berman; Angela Biselli; Sergey Boyarinov; Sylvain Bouchigny; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Shifeng Chen; Eric Clinton; Philip Cole; Patrick Collins; Philip Coltharp; Donald Crabb; Hall Crannell; Volker Crede; John Cummings; D. Dale; Raffaella De Vita; Enzo De Sanctis; Pavel Degtiarenko; Alexandre Deur; Kahanawita Dharmawardane; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Lamiaa Elfassi; Latifa Elouadrhiri; Paul Eugenio; Gleb Fedotov; Herbert Funsten; Marianna Gabrielyan; Liping Gan; Michel Garcon; Ashot Gasparian; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; Oleksandr Glamazdin; John Goetz; Evgueni Golovatch; Atilla Gonenc; Christopher Gordon; Ralf Gothe; Keith Griffioen; Michel Guidal; Nevzat Guler; Harutyun Gyurjyan; Cynthia Hadjidakis; Kawtar Hafidi; Hayk Hakobyan; Rafael Hakobyan; John Hardie; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; D. Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mikhail Kossov; Laird Kramer; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; Dave Lawrence; Tsung-shung Lee; Ji Li; K. Livingston; Haiyun Lu; Marion MacCormick; Nikolai Markov; Bryan McKinnon; Bernhard Mecking; Joseph Melone; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; R. Miskimen; Vasiliy Mochalov; Viktor Mokeev; Ludyvine Morand; Steven Morrow; Maryam Moteabbed; Pawel Nadel-Turonski; Itaru Nakagawa; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Sergey Pozdnyakov; John Price; Yelena Prok; Dan Protopopescu; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Nikolay Shvedunov; Elton Smith; Lee Smith; Daniel Sober; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Igor Strakovski; Steffen Strauch; Mauro Taiuti; David Tedeschi; Aram Teymurazyan; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Michael Vineyard; Alexander Vlassov; Daniel Watts; Lawrence Weinstein; M. Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao

    2006-11-16

    The exclusive reactions {gamma}p {yields} {bar K}{sup 0} K{sup +} n and {gamma}p {yields} {bar K}{sup 0} K{sup 0} p have been studied in the photon energy range 1.6--3.8 GeV, searching for evidence of the exotic baryon {Theta}{sup +}(1540) in the decays {Theta}{sup +} {yields} nK{sup +} and {Theta}{sup +} {yields} pK{sup 0}. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The integrated luminosity was about 70 pb{sup -1}. The reactions have been isolated by detecting the K{sup +} and proton directly, the neutral kaon via its decay to K{sub S} {yields} {pi}{sup +}{pi}{sup -} and the neutron or neutral kaon via the missing mass technique. The mass and width of known hyperons such as {Sigma}{sup +}, {Sigma}{sup -} and {Lambda}(1116) were used as a check of the mass determination accuracy and experimental resolution. Approximately 100,000 {Lambda}*(1520)'s and 150,000 {phi}'s were observed in the {bar K}{sup 0} K{sup +} n and {bar K}{sup 0} K{sup 0} p final state respectively. No evidence for the {Theta}{sup +} pentaquark was found in the nK{sup +} or pK{sub S} invariant mass spectra. Upper limits were set on the production cross section of the reaction {gamma}p {yields} {Theta}{sup +} {bar K}{sup 0} as functions of center-of-mass angle, nK{sup +} and pK{sub S} masses. Combining the results of the two reactions, the 95% C.L. upper limit on the total cross section for a resonance peaked at 1540 MeV was found to be 0.7 nb. Within most of the available theoretical models, this corresponds to an upper limit on the {Theta}{sup +} width, {Gamma}{sub {Theta}{sup +}}, ranging between 0.01 and 7 MeV.

  18. tACS phase locking of frontal midline theta oscillations disrupts working memory performance

    Directory of Open Access Journals (Sweden)

    Bankim Subhash Chander

    2016-05-01

    Full Text Available Frontal midline theta (FMT oscillations (4-8Hz are strongly related to cognitive and executive control during mental tasks such as memory processing, arithmetic problem solving or sustained attention. While maintenance of temporal order information during a working memory (WM task was recently linked to FMT phase, a positive correlation between FMT power, WM demand and WM performance was shown. However, the relationship between these measures is not well understood, and it is unknown whether purposeful FMT phase manipulation during a WM task impacts FMT power and WM performance. Here we present evidence that FMT phase manipulation mediated by transcranial alternating current stimulation (tACS can block WM demand-related FMT power increase and disrupt normal WM performance. Methods: 20 healthy volunteers were assigned to one of two groups (group A, group B and performed a 2-back task across a baseline block (block 1 and an intervention block (block 2 while 275-sensor magnetoencephalography (MEG was recorded. After no stimulation was applied during block 1, participants in group A received tACS oscillating at their individual FMT frequency over the prefrontal cortex (PFC while group B received sham stimulation during block 2. After assessing and mapping phase locking values (PLV between the tACS signal and brain oscillatory activity across the whole brain, FMT power and WM performance were assessed and compared between blocks and groups. Results: During block 2 of group A but not B, FMT oscillations showed increased PLV across task-related cortical areas underneath the frontal tACS electrode. While WM task-related FMT power increase (FMTpower and WM performance were comparable across groups in block 1, tACS resulted in lower FMTpower and WM performance compared to sham stimulation in block 2. Conclusion: tACS-related manipulation of FMT phase can disrupt WM performance and influence WM task-related FMT power increase. This finding may have

  19. Wide-band segmented power distribution networks

    NARCIS (Netherlands)

    Tereshchenko, O.V.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2013-01-01

    This paper discusses a novel design of Power Distribution Network (PDN). By physical structuring of the power plane into repetitive symmetrical and asymmetrical segments of varying size, suppression of the propagation of unwanted noise throughout the PDN over a wide frequency range is achieved.

  20. Plasma experiments on staged theta pinch, implosion heating experiment and Scyllac feedback-sector experiment

    International Nuclear Information System (INIS)

    Bartsch, R.R.; Buchenauer, C.J.; Cantrell, E.L.

    1977-01-01

    Results of the Los Alamos theta-pinch program in three areas of investigation are summarized: 1) In the Staged Theta Pinch, results are reported on the effects of magnetic field amplitude and time history of plasma formation. 2) In the Implosion Heating Experiment, density, internal-magnetic field and neutron measurements yield a consistent picture of the implosion which agrees with kinetic computations and with a simple dynamic model of the ions and magnetic piston. 3) In the Scyllac Feedback-Sector Experiment, the l=1, 0 equilibrium plasma parameters have been adjusted to accommodate the feedback stabilization system. With a uniform toroidal discharge tube the m=1 instability is feedback-stabilized in the vertical direction, and confinement in the toroidal direction is extended by feedback control. Results with a helical discharge tube are also reported. (author)