WorldWideScience

Sample records for thermus thermophilus 16s

  1. Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus

    DEFF Research Database (Denmark)

    Demirci, Hasan; Larsen, Line H G; Hansen, Trine

    2010-01-01

    Cells devote a significant effort toward the production of multiple modified nucleotides in rRNAs, which fine tune the ribosome function. Here, we report that two methyltransferases, RsmB and RsmF, are responsible for all four 5-methylcytidine (m(5)C) modifications in 16S rRNA of Thermus...... thermophilus. Like Escherichia coli RsmB, T. thermophilus RsmB produces m(5)C967. In contrast to E. coli RsmF, which introduces a single m(5)C1407 modification, T. thermophilus RsmF modifies three positions, generating m(5)C1400 and m(5)C1404 in addition to m(5)C1407. These three residues are clustered near...

  2. Structural analysis of base substitutions in Thermus thermophilus 16S rRNA conferring streptomycin resistance.

    Science.gov (United States)

    Demirci, Hasan; Murphy, Frank V; Murphy, Eileen L; Connetti, Jacqueline L; Dahlberg, Albert E; Jogl, Gerwald; Gregory, Steven T

    2014-08-01

    Streptomycin is a bactericidal antibiotic that induces translational errors. It binds to the 30S ribosomal subunit, interacting with ribosomal protein S12 and with 16S rRNA through contacts with the phosphodiester backbone. To explore the structural basis for streptomycin resistance, we determined the X-ray crystal structures of 30S ribosomal subunits from six streptomycin-resistant mutants of Thermus thermophilus both in the apo form and in complex with streptomycin. Base substitutions at highly conserved residues in the central pseudoknot of 16S rRNA produce novel hydrogen-bonding and base-stacking interactions. These rearrangements in secondary structure produce only minor adjustments in the three-dimensional fold of the pseudoknot. These results illustrate how antibiotic resistance can occur as a result of small changes in binding site conformation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. A Mutation in the Decoding Center of Thermus thermophilus 16S rRNA Suggests a Novel Mechanism of Streptomycin Resistance

    Science.gov (United States)

    Gregory, Steven T.; Carr, Jennifer F.; Dahlberg, Albert E.

    2005-01-01

    A spontaneous kanamycin resistance and capreomycin resistance mutation, A1408G, in the decoding center of 16S rRNA, was identified in the extreme thermophile Thermus thermophilus. Unexpectedly, this mutation also confers resistance to streptomycin. We propose a novel mechanism of streptomycin resistance by which A1408G influences conformational changes in 16S rRNA during tRNA selection. PMID:15743969

  4. Structural Rearrangements in the Active Site of the Thermus thermophilus 16S rRNA Methyltransferase KsgA in a Binary Complex with 5'-Methylthioadenosine

    Energy Technology Data Exchange (ETDEWEB)

    Demirci, H.; Belardinelli, R; Seri, E; Gregory, S; Gualerzi, C; Dahlberg, A; Jogl, G

    2009-01-01

    Posttranscriptional modification of ribosomal RNA (rRNA) occurs in all kingdoms of life. The S-adenosyl-l-methionine-dependent methyltransferase KsgA introduces the most highly conserved rRNA modification, the dimethylation of A1518 and A1519 of 16S rRNA. Loss of this dimethylation confers resistance to the antibiotic kasugamycin. Here, we report biochemical studies and high-resolution crystal structures of KsgA from Thermus thermophilus. Methylation of 30S ribosomal subunits by T. thermophilus KsgA is more efficient at low concentrations of magnesium ions, suggesting that partially unfolded RNA is the preferred substrate. The overall structure is similar to that of other methyltransferases but contains an additional ?-helix in a novel N-terminal extension. Comparison of the apoenzyme with complex structures with 5?-methylthioadenosine or adenosine bound in the cofactor-binding site reveals novel features when compared with related enzymes. Several mobile loop regions that restrict access to the cofactor-binding site are observed. In addition, the orientation of residues in the substrate-binding site indicates that conformational changes are required for binding two adjacent residues of the substrate rRNA.

  5. Thermus thermophilus genome analysis: benefits and implications

    Directory of Open Access Journals (Sweden)

    Lioliou Efthimia E

    2004-05-01

    Full Text Available Abstract The genome sequence analysis of Thermus thermophilus HB27, a microorganism with high biotechnological potential, has recently been published. In that report, the chromosomal and the megaplasmid sequence were compared to those of other organisms and discussed on the basis of their physiological and metabolic features. Out of the 2,218 putative genes identified through the large genome sequencing project, a significant number has potential interest for biotechnology. The present communication will discuss the accumulating information on molecules participating in fundamental biological processes or having potential biotechnological importance.

  6. Crystal Structure of the Thermus thermophilus 16 S rRNA Methyltransferase RsmC in Complex with Cofactor and Substrate Guanosine

    Energy Technology Data Exchange (ETDEWEB)

    Demirci, H.; Gregory, S; Dahlberg, A; Jogl, G

    2008-01-01

    Post-transcriptional modification is a ubiquitous feature of ribosomal RNA in all kingdoms of life. Modified nucleotides are generally clustered in functionally important regions of the ribosome, but the functional contribution to protein synthesis is not well understood. Here we describe high resolution crystal structures for the N{sup 2}-guanine methyltransferase RsmC that modifies residue G1207 in 16 S rRNA near the decoding site of the 30 S ribosomal subunit. RsmC is a class I S-adenosyl-l-methionine-dependent methyltransferase composed of two methyltransferase domains. However, only one S-adenosyl-l-methionine molecule and one substrate molecule, guanosine, bind in the ternary complex. The N-terminal domain does not bind any cofactor. Two structures with bound S-adenosyl-l-methionine and S-adenosyl-l-homocysteine confirm that the cofactor binding mode is highly similar to other class I methyltransferases. Secondary structure elements of the N-terminal domain contribute to cofactor-binding interactions and restrict access to the cofactor-binding site. The orientation of guanosine in the active site reveals that G1207 has to disengage from its Watson-Crick base pairing interaction with C1051 in the 16 S rRNA and flip out into the active site prior to its modification. Inspection of the 30 S crystal structure indicates that access to G1207 by RsmC is incompatible with the native subunit structure, consistent with previous suggestions that this enzyme recognizes a subunit assembly intermediate.

  7. Thermus thermophilus Strains Active in Purine Nucleoside Synthesis

    Directory of Open Access Journals (Sweden)

    Marcos Almendros

    2009-03-01

    Full Text Available Several strains of Thermus thermophilus were tested in order to detect purine nucleoside synthase activity using pyrimidine nucleosides as the sugar-donor and adenine or hypoxanthine as bases. High productivity values (t =1 hr were obtained while completely avoiding adenosine-deaminase degradation of the products. N-2-deoxy-ribosyltransferase activity is described for the first time in hyperthermophilic bacteria.

  8. Streptomycin-resistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus.

    Science.gov (United States)

    Gregory, S T; Cate, J H; Dahlberg, A E

    2001-06-01

    We have isolated spontaneous streptomycin-resistant, streptomycin-dependent and streptomycin-pseudo-dependent mutants of the thermophilic bacterium Thermus thermophilus IB-21. All mutant phenotypes were found to result from single amino acid substitutions located in the rpsL gene encoding ribosomal protein S12. Spontaneous suppressors of streptomycin dependence were also readily isolated. Thermus rpsL mutations were found to be very similar to rpsL mutations identified in mesophilic organisms. This similarity affords greater confidence in the utility of the crystal structures of Thermus ribosomes to interpret biochemical and genetic data obtained with Escherichia coli ribosomes. In the X-ray crystal structure of the T. thermophilus HB8 30 S subunit, the mutated residues are located in close proximity to one another and to helices 18, 27 and 44 of 16 S rRNA. X-ray crystallographic analysis of ribosomes from streptomycin-resistant, streptomycin-pseudo-dependent and streptomycin-dependent mutants described here is expected to reveal fundamental insights into the mechanism of tRNA selection, translocation, and conformational dynamics of the ribosome. Copyright 2001 Academic Press.

  9. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommi A.; Tanner, John J., E-mail: tannerjj@missouri.edu [Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  10. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    International Nuclear Information System (INIS)

    White, Tommi A.; Tanner, John J.

    2005-01-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ 1 -pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2 1 2 1 2 1 , with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative

  11. STRUCTURE AND KINETICS OF MONOFUNCTIONAL PROLINE DEHYDROGENASE FROM THERMUS THERMOPHILUS

    Science.gov (United States)

    White, Tommi A.; Krishnan, Navasona; Becker, Donald F.; Tanner, John J.

    2009-01-01

    Proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyze the two-step oxidation of proline to glutamate. They are distinct monofunctional enzymes in all eukaryotes and some bacteria, but are fused into bifunctional enzymes known as Proline utilization A (PutA) in other bacteria. Here we report the first structure and biochemical data for a monofunctional PRODH. The 2.0 Å resolution structure of Thermus thermophilus PRODH reveals a distorted (βα)8 barrel catalytic core domain and a hydrophobic α-helical domain located above the carboxyl terminal ends of the strands of the barrel. Although the catalytic core is similar to that of the PutA PRODH domain, the FAD conformation of T. thermophilus PRODH is remarkably different and likely reflects unique requirements for membrane association and communication with P5CDH. Also, the FAD of T. thermophilus PRODH is highly solvent exposed compared to PutA due to a 4-Å shift of helix 8. Structure-based sequence analysis of the PutA/PRODH family led us to identify 9 conserved motifs involved in cofactor and substrate recognition. Biochemical studies show that the midpoint potential of the FAD is −75 mV and the kinetic parameters for proline are Km=27 mM and kcat=13 s−1. 3,4-dehydro-L-proline was found to be an efficient substrate and L-tetrahydro-2-furoic acid is a competitive inhibitor (KI=1.0 mM). Finally, we demonstrate that T. thermophilus PRODH reacts with O2 producing superoxide. This is significant because superoxide production underlies the role of human PRODH in p53-mediated apoptosis, implying commonalities between eukaryotic and bacterial monofunctional PRODHs. PMID:17344208

  12. Effects of Argonaute on Gene Expression in Thermus thermophilus.

    Directory of Open Access Journals (Sweden)

    Daan C Swarts

    Full Text Available Eukaryotic Argonaute proteins mediate RNA-guided RNA interference, allowing both regulation of host gene expression and defense against invading mobile genetic elements. Recently, it has become evident that prokaryotic Argonaute homologs mediate DNA-guided DNA interference, and play a role in host defense. Argonaute of the bacterium Thermus thermophilus (TtAgo targets invading plasmid DNA during and after transformation. Using small interfering DNA guides, TtAgo can cleave single and double stranded DNAs. Although TtAgo additionally has been demonstrated to cleave RNA targets complementary to its DNA guide in vitro, RNA targeting by TtAgo has not been demonstrated in vivo.To investigate if TtAgo also has the potential to control RNA levels, we analyzed RNA-seq data derived from cultures of four T. thermophilus strain HB27 variants: wild type, TtAgo knockout (Δago, and either strain transformed with a plasmid. Additionally we determined the effect of TtAgo on expression of plasmid-encoded RNA and plasmid DNA levels.In the absence of exogenous DNA (plasmid, TtAgo presence or absence had no effect on gene expression levels. When plasmid DNA is present, TtAgo reduces plasmid DNA levels 4-fold, and a corresponding reduction of plasmid gene transcript levels was observed. We therefore conclude that TtAgo interferes with plasmid DNA, but not with plasmid-encoded RNA. Interestingly, TtAgo presence stimulates expression of specific endogenous genes, but only when exogenous plasmid DNA was present. Specifically, the presence of TtAgo directly or indirectly stimulates expression of CRISPR loci and associated genes, some of which are involved in CRISPR adaptation. This suggests that TtAgo-mediated interference with plasmid DNA stimulates CRISPR adaptation.

  13. Cloning of alpha- and beta-galactosidase genes from an extreme thermophile, Thermus strain T2, and their expression in Thermus thermophilus HB27.

    Science.gov (United States)

    Koyama, Y; Okamoto, S; Furukawa, K

    1990-01-01

    The genes encoding thermostable alpha- and beta-galactosidases from an extremely thermophilic bacterium, Thermus strain T2, were cloned in Escherichia coli. The alpha-galactosidase gene was located just downstream from the beta-galactosidase gene. The genes were introduced into Thermus thermophilus HB27 with the aid of Thermus cryptic plasmid pTT8, and beta-galactosidases were expressed constitutively. PMID:2167630

  14. Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27.

    Science.gov (United States)

    Schwarzenlander, Cornelia; Averhoff, Beate

    2006-09-01

    Horizontal gene transfer has been a major force for genome plasticity over evolutionary history, and is largely responsible for fitness-enhancing traits, including antibiotic resistance and virulence factors. In particular, for adaptation of prokaryotes to extreme environments, lateral gene transfer seems to have played a crucial role. Recently, by performing a genome-wide mutagenesis approach with Thermus thermophilus HB27, we identified the first genes in a thermophilic bacterium for the uptake of free DNA, a process called natural transformation. Here, we present the first data on the biochemistry and bioenergetics of the DNA transport process in this thermophile. We report that linear and circular plasmid DNA are equally well taken up with a high maximal velocity of 1.5 microg DNA.(mg protein)(-1).min(-1), demonstrating an extremely efficient binding and uptake rate of 40 kb.s(-1).cell(-1). Uncouplers and ATPase inhibitors immediately inhibited DNA uptake, providing clear evidence that DNA translocation in HB27 is an energy-dependent process. DNA uptake studies with genomic DNA of Bacteria, Archaea and Eukarya revealed that Thermus thermophilus HB27 takes up DNA from members of all three domains of life. We propose that the extraordinary broad substrate specificity of the highly efficient Thermus thermophilus HB27 DNA uptake system may contribute significantly to thermoadaptation of Thermus thermophilus HB27 and to interdomain DNA transfer in hot environments.

  15. Identification and molecular modeling of a family 5 endocellulase from Thermus caldophilus GK24, a cellulolytic strain of Thermus thermophilus

    Directory of Open Access Journals (Sweden)

    Dae-Sil Lee

    2006-12-01

    Full Text Available The genome of T. caldophilus GK24 was recently sequenced and annotated as 14contigs, equivalent to 2.3 mega basepairs (Mbp of DNA. In the current study, we identifieda unique 13.7 kbp DNA sequence, which included the endocellulase gene of T. caldophilusGK24, which did not appear to be present in the complete genomic sequence of the closelyrelated species T. thermophilus HB27 and HB8. Congo-red staining revealed a uniquephenotype of cellulose degradation by strain GK24 that was distinct from other closelyrelated Thermus strains. The results showed that strain GK24 is an aerobic, thermophilic,cellulolytic eubacterium which belongs to the group T. thermophilus. In order to understandthe mechanism of production of cellobiose in T. caldophilus GK24, a three-dimensionalmodel of the endocellulase, TcCel5A, was generated based on known crystal structures.Using this model, we carried out a flexible cellotetraose docking study.

  16. Prosthetic joint infection due to Lysobacter thermophilus diagnosed by 16S rRNA gene sequencing

    OpenAIRE

    B Dhawan; S Sebastian; R Malhotra; A Kapil; D Gautam

    2016-01-01

    We report the first case of prosthetic joint infection caused by Lysobacter thermophilus which was identified by 16S rRNA gene sequencing. Removal of prosthesis followed by antibiotic treatment resulted in good clinical outcome. This case illustrates the use of molecular diagnostics to detect uncommon organisms in suspected prosthetic infections.

  17. Prosthetic joint infection due to Lysobacter thermophilus diagnosed by 16S rRNA gene sequencing

    Directory of Open Access Journals (Sweden)

    B Dhawan

    2016-01-01

    Full Text Available We report the first case of prosthetic joint infection caused by Lysobacter thermophilus which was identified by 16S rRNA gene sequencing. Removal of prosthesis followed by antibiotic treatment resulted in good clinical outcome. This case illustrates the use of molecular diagnostics to detect uncommon organisms in suspected prosthetic infections.

  18. Lateral Transfer of the Denitrification Pathway Genes among Thermus thermophilus Strains▿

    Science.gov (United States)

    Alvarez, Laura; Bricio, Carlos; José Gómez, Manuel; Berenguer, José

    2011-01-01

    Nitrate respiration is a common and strain-specific property in Thermus thermophilus encoded by the nitrate respiration conjugative element (NCE) that can be laterally transferred by conjugation. In contrast, nitrite respiration and further denitrification steps are restricted to a few isolates of this species. These later steps of the denitrification pathway are under the regulatory control of an NCE-encoded transcription factor, but nothing is known about their coding sequences or its putative genetic linkage to the NCE. In this study we examine the genetic linkage between nitrate and nitrite respiration through lateral gene transfer (LGT) assays and describe a cluster of genes encoding the nitrite-nitric oxide respiration in T. thermophilus PRQ25. We show that the whole denitrification pathway can be transferred from the denitrificant strain PRQ25 to an aerobic strain, HB27, and that the genes coding for nitrite and nitric oxide respiration are encoded near the NCE. Sequence data from the draft genome of PRQ25 confirmed these results and allowed us to describe the most compact nor-nir cluster known thus far and to demonstrate the expression and activities of the encoded enzymes in the HB27 denitrificant derivatives obtained by LGT. We conclude that this NCE nor-nir supercluster constitutes a whole denitrification island that can be spread by lateral transfer among Thermus thermophilus strains. PMID:21169443

  19. Role of Archaeal HerA Protein in the Biology of the Bacterium Thermus thermophilus

    Directory of Open Access Journals (Sweden)

    Alba Blesa

    2017-04-01

    Full Text Available Intense gene flux between prokaryotes result in high percentage of archaeal genes in the genome of the thermophilic bacteria Thermus spp. Among these archaeal genes a homolog to the Sulfolobus spp. HerA protein appears in all of the Thermus spp. strains so far sequenced (HepA. The role of HepA in Thermus thermophilus HB27 has been analyzed using deletion mutants, and its structure resolved at low resolution by electron microscopy. Recombinant HepA shows DNA-dependent ATPase activity and its structure revealed a double ring, conically-shaped hexamer with an upper diameter of 150 Å and a bottom module of 95 Å. A central pore was detected in the structure that ranges from 13 Å at one extreme, to 30 Å at the other. Mutants lacking HepA show defective natural competence and DNA donation capability in a conjugation-like process termed “transjugation”, and also high sensitivity to UV and dramatic sensitivity to high temperatures. These data support that acquisition of an ancestral archaeal HerA has been fundamental for the adaptation of Thermus spp. to high temperatures.

  20. Biobleaching of wheat straw pulp with recombinant laccase from the hyperthermophilic Thermus thermophilus.

    Science.gov (United States)

    Zheng, Zhiqiang; Li, Huazhong; Li, Lun; Shao, Weilan

    2012-03-01

    The recombinant laccase from Thermus thermophilus was applied to the biobleaching of wheat straw pulp. The best bleaching effect was when the pulp was treated with 3 U laccase g(-1) dry pulp at 90°C, pH 4.5, 8% consistency for 1.5 h. Under these conditions, the pulp brightness was increased by 3.3% ISO, and the pulp kappa number was decreased by 5.6 U. Enzymatic treatment improved the bleachability of wheat straw pulp but caused no damage to the pulp fibers. The use of enzyme-treated pulp saved 25% H(2)O(2) consumption in subsequent peroxide bleaching without decreasing the final brightness. Pulp biobleaching in the presence of 5 mM ABTS further increased the pulp brightness by 1.5% ISO. This is the first report on the application of laccase from T. thermophilus in the pulp and paper sector.

  1. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance

    Directory of Open Access Journals (Sweden)

    Daly Michael J

    2005-10-01

    Full Text Available Abstract Background Thermus thermophilus and Deinococcus radiodurans belong to a distinct bacterial clade but have remarkably different phenotypes. T. thermophilus is a thermophile, which is relatively sensitive to ionizing radiation and desiccation, whereas D. radiodurans is a mesophile, which is highly radiation- and desiccation-resistant. Here we present an in-depth comparison of the genomes of these two related but differently adapted bacteria. Results By reconstructing the evolution of Thermus and Deinococcus after the divergence from their common ancestor, we demonstrate a high level of post-divergence gene flux in both lineages. Various aspects of the adaptation to high temperature in Thermus can be attributed to horizontal gene transfer from archaea and thermophilic bacteria; many of the horizontally transferred genes are located on the single megaplasmid of Thermus. In addition, the Thermus lineage has lost a set of genes that are still present in Deinococcus and many other mesophilic bacteria but are not common among thermophiles. By contrast, Deinococcus seems to have acquired numerous genes related to stress response systems from various bacteria. A comparison of the distribution of orthologous genes among the four partitions of the Deinococcus genome and the two partitions of the Thermus genome reveals homology between the Thermus megaplasmid (pTT27 and Deinococcus megaplasmid (DR177. Conclusion After the radiation from their common ancestor, the Thermus and Deinococcus lineages have taken divergent paths toward their distinct lifestyles. In addition to extensive gene loss, Thermus seems to have acquired numerous genes from thermophiles, which likely was the decisive contribution to its thermophilic adaptation. By contrast, Deinococcus lost few genes but seems to have acquired many bacterial genes that apparently enhanced its ability to survive different kinds of environmental stresses. Notwithstanding the accumulation of

  2. The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation

    OpenAIRE

    Blesa, Alba; Baquedano, Ignacio; Quint?ns, Nieves G.; Mata, Carlos P.; Cast?n, Jos? R.; Berenguer, Jos?

    2017-01-01

    In addition to natural competence, some Thermus thermophilus strains show a high rate of DNA transfer via direct cell-to-cell contact. The process is bidirectional and follows a two-step model where the donor cell actively pushes out DNA and the recipient cell employs the natural competence system to take up the DNA, in a hybrid transformation-dependent conjugation process (transjugation). While the DNA uptake machinery is well known as in other bacterial species that undergo transformation, ...

  3. Thermus Thermophilus as a Model System for the Study of Ribosomal Antibiotic Resistance

    Science.gov (United States)

    Gregory, Steven T.

    2018-03-01

    Ribosomes are the intracellular ribonucleoprotein machines responsible for the translation of mRNA sequence into protein sequence. As an essential cell component, the ribosome is the target of numerous antibiotics that bind to critical functional sites to impair protein synthesis. Mutations causing resistance to antibiotics arise in antibiotic binding sites, and an understanding of the basis of resistance will be an essential component of efforts to develop new antibiotics by rational drug design. We have identified a number of antibiotic-resistance mutations in ribosomal genes of the thermophilic bacterium Thermus thermophilus. This species offers two primary advantages for examining the structural basis of antibiotic-resistance, in particular, its potential for genetic manipulation and the suitability of its ribosomes for analysis by X-ray crystallography. Mutations we have identified in this organism are in many instances identical to those found in other bacterial species, including important pathogens, a result of the extreme conservation of ribosome functional sites. Here I summarize the advantages of this organism as a model system to study antibiotic-resistance mechanisms at the molecular level.

  4. Active site dynamics in NADH oxidase from Thermus thermophilus studied by NMR spin relaxation

    International Nuclear Information System (INIS)

    Miletti, Teresa; Farber, Patrick J.; Mittermaier, Anthony

    2011-01-01

    We have characterized the backbone dynamics of NADH oxidase from Thermus thermophilus (NOX) using a recently-developed suite of NMR experiments designed to isolate exchange broadening, together with 15 N R 1 , R 1ρ , and { 1 H}- 15 N steady-state NOE relaxation measurements performed at 11.7 and 18.8 T. NOX is a 54 kDa homodimeric enzyme that belongs to a family of structurally homologous flavin reductases and nitroreductases with many potential biotechnology applications. Prior studies have suggested that flexibility is involved in the catalytic mechanism of the enzyme. The active site residue W47 was previously identified as being particularly important, as its level of solvent exposure correlates with enzyme activity, and it was observed to undergo “gating” motions in computer simulations. The NMR data are consistent with these findings. Signals from W47 are dynamically broadened beyond detection and several other residues in the active site have significant R ex contributions to transverse relaxation rates. In addition, the backbone of S193, whose side chain hydroxyl proton hydrogen bonds directly with the FMN cofactor, exhibits extensive mobility on the ns–ps timescale. We hypothesize that these motions may facilitate structural rearrangements of the active site that allow NOX to accept both FMN and FAD as cofactors.

  5. Functional significance of octameric RuvA for a branch migration complex from Thermus thermophilus

    International Nuclear Information System (INIS)

    Fujiwara, Yoshie; Mayanagi, Kouta; Morikawa, Kosuke

    2008-01-01

    The RuvAB complex promotes migration of Holliday junction at the late stage of homologous recombination. The RuvA tetramer specifically recognizes Holliday junction to form two types of complexes. A single tetramer is bound to the open configuration of the junction DNA in complex I, while the octameric RuvA core structure sandwiches the same junction in complex II. The hexameric RuvB rings, symmetrically bound to both sides of RuvA on Holliday junction, pump out DNA duplexes, depending upon ATP hydrolysis. We investigated functional differences between the wild-type RuvA from Thermus thermophilus and mutants impaired the ability of complex II formation. These mutant RuvA, exclusively forming complex I, reduced activities of branch migration and ATP hydrolysis, suggesting that the octameric RuvA is essential for efficient branch migration. Together with our recent electron microscopic analysis, this finding provides important insights into functional roles of complex II in the coordinated branch migration mechanism

  6. Characterisation of the DNA gyrase from the thermophilic eubacterium Thermus thermophilus.

    Science.gov (United States)

    Aung, Htin Lin; Samaranayaka, Chamil U K; Enright, Rochelle; Beggs, Kyle T; Monk, Brian C

    2015-03-01

    DNA gyrase is a type IIA topoisomerase found in bacteria but not in humans. The enzyme is required for bacterial DNA replication and transcription, and is an important antibacterial target that is sensitive to the widely-used fluoroquinolone drugs. Due to the emergence of fluoroquinolone resistance, the discovery of new classes of drugs that target DNA gyrase is urgent. The DNA gyrase holoenzyme is a heterodimer of subunit pairs (A2B2). The 90 kDa A subunits bind, cleave, and rejoin double stranded DNA. The enzyme introduces negative supercoils into closed circular bacterial DNA using ATP hydrolysis catalysed by the 70 kDa B subunits. Subdomains of DNA gyrase subunits have been crystallised for structural analysis and the resulting models used to improve drugs that target the DNA binding region and active site. While crystal structures are available for topoisomerase IV complexes with cleaved DNA, there is none for the complete DNA gyrase complex with substrate DNA bound. Thermophiles offer significant advantages in obtaining stable enzymes for structural and functional studies. In order to develop a capability for drug screening and structure-directed drug discovery we have reconstituted a functional and drug-sensitive DNA gyrase complex using heterologously expressed subunits from the thermophile Thermus thermophilus. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Zinc and ATP Binding of the Hexameric AAA-ATPase PilF from Thermus thermophilus

    Science.gov (United States)

    Salzer, Ralf; Herzberg, Martin; Nies, Dietrich H.; Joos, Friederike; Rathmann, Barbara; Thielmann, Yvonne; Averhoff, Beate

    2014-01-01

    The traffic AAA-ATPase PilF is essential for pilus biogenesis and natural transformation of Thermus thermophilus HB27. Recently, we showed that PilF forms hexameric complexes containing six zinc atoms coordinated by conserved tetracysteine motifs. Here we report that zinc binding is essential for complex stability. However, zinc binding is neither required for pilus biogenesis nor natural transformation. A number of the mutants did not exhibit any pili during growth at 64 °C but still were transformable. This leads to the conclusion that type 4 pili and the DNA translocator are distinct systems. At lower growth temperatures (55 °C) the zinc-depleted multiple cysteine mutants were hyperpiliated but defective in pilus-mediated twitching motility. This provides evidence that zinc binding is essential for the role of PilF in pilus dynamics. Moreover, we found that zinc binding is essential for complex stability but dispensable for ATPase activity. In contrast to many polymerization ATPases from mesophilic bacteria, ATP binding is not required for PilF complex formation; however, it significantly increases complex stability. These data suggest that zinc and ATP binding increase complex stability that is important for functionality of PilF under extreme environmental conditions. PMID:25202014

  8. Characterization of recombinant glyoxylate reductase from thermophile Thermus thermophilus HB27.

    Science.gov (United States)

    Ogino, Hiroyasu; Nakayama, Hitoshi; China, Hideyasu; Kawata, Takuya; Doukyu, Noriyuki; Yasuda, Masahiro

    2008-01-01

    A glyoxylate reductase gene from the thermophilic bacterium Thermus thermophilus HB27 (TthGR) was cloned and expressed in Escherichia coli cells. The recombinant enzyme was highly purified to homogeneity and characterized. The purified TthGR showed thermostability up to 70 degrees C. In contrast, the maximum reaction condition was relatively mild (45 degrees C and pH 6.7). Although the kcat values against co-enzyme NADH and NADPH were similar, the Km value against co-enzyme NADH was approximately 18 times higher than that against NADPH. TthGR prefers NADPH rather than NADH as an electron donor. These results indicate that a phosphate group of a co-enzyme affects the binding affinity rather than the reaction efficiency, and TthGR demands appropriate amount of phosphate for a high activity. Furthermore, it was found that the half-lives of TthGR in the presence of 25% dimethyl sulfoxide and diethylene glycol were significantly longer than that in the absence of an organic solvent.

  9. Crystal structure of ribosomal protein S8 from Thermus thermophilus reveals a high degree of structural conservation of a specific RNA binding site.

    Science.gov (United States)

    Nevskaya, N; Tishchenko, S; Nikulin, A; al-Karadaghi, S; Liljas, A; Ehresmann, B; Ehresmann, C; Garber, M; Nikonov, S

    1998-05-29

    S8 is one of the core ribosomal proteins. It binds to 16 S RNA with high affinity and independently of other ribosomal proteins. It also acts as a translational repressor in Escherichia coli by binding to its own mRNA. The structure of Thermus thermophilus S8 has been determined by the method of multiple isomorphous replacement at 2.9 A resolution and refined to a crystallographic R-factor of 16.2% (Rfree 27.5%). The two domains of the structure have an alpha/beta fold and are connected by a long protruding loop. The two molecules in the asymmetric unit of the crystal interact through an extensive hydrophobic core and form a tightly associated dimer, while symmetry-related molecules form a joint beta-sheet of mixed type. This type of protein-protein interaction could be realized within the ribosomal assembly. A comparison of the structures of T. thermophilus and Bacillus stearothermophilus S8 shows that the interdomain loop is eight residues longer in the former and reveals high structural conservation of an extensive region, located in the C-terminal domain. From mutational studies this region was proposed earlier to be involved in specific interaction with RNA. On the basis of these data and on the comparison of the two structures of S8, it is proposed that the three-dimensional structure of specific RNA binding sites in ribosomal proteins is highly conserved among different species.

  10. Structure of TTHA1623, a novel metallo-β-lactamase superfamily protein from Thermus thermophilus HB8

    International Nuclear Information System (INIS)

    Yamamura, Akihiro; Okada, Akitoshi; Kameda, Yasuhiro; Ohtsuka, Jun; Nakagawa, Noriko; Ebihara, Akio; Nagata, Koji; Tanokura, Masaru

    2009-01-01

    The crystal structures of TTHA1623 from T. thermophilus HB8 in an iron-bound and a zinc-bound form have been determined to 2.8 and 2.2 Å resolution, respectively. TTHA1623 is a metallo-β-lactamase superfamily protein from the extremely thermophilic bacterium Thermus thermophilus HB8. Homologues of TTHA1623 exist in a wide range of bacteria and archaea and one eukaryote, Giardia lamblia, but their function remains unknown. To analyze the structural properties of TTHA1623, the crystal structures of its iron-bound and zinc-bound forms have been determined to 2.8 and 2.2 Å resolution, respectively. TTHA1623 possesses an αββα-fold similar to that of other metallo-β-lactamase superfamily proteins with glyoxalase II-type metal coordination. However, TTHA1623 exhibits a putative substrate-binding pocket with a unique shape

  11. Structure and mechanism of the PilF DNA transformation ATPase from Thermus thermophilus.

    Science.gov (United States)

    Collins, Richard F; Hassan, Darin; Karuppiah, Vijaykumar; Thistlethwaite, Angela; Derrick, Jeremy P

    2013-03-01

    Many Gram-negative bacteria contain specific systems for uptake of foreign DNA, which play a critical role in the acquisition of antibiotic resistance. The TtPilF (PilF ATPase from Thermus thermophilus) is required for high transformation efficiency, but its mechanism of action is unknown. In the present study, we show that TtPilF is able to bind to both DNA and RNA. The structure of TtPilF was determined by cryoelectron microscopy in the presence and absence of the ATP analogue p[NH]ppA (adenosine 5'-[β,γ-imido]triphosphate), at 10 and 12 Å (1 Å=0.1 nm) resolutions respectively. It consists of two distinct N- and C-terminal regions, separated by a short stem-like structure. Binding of p[NH]ppA induces structural changes in the C-terminal domains, which are transmitted via the stem to the N-terminal domains. Molecular models were generated for the apoenzyme and p[NH]ppA-bound states in the C-terminal regions by docking of a model based on a crystal structure from a closely related enzyme. Analysis of DNA binding by electron microscopy, using gold labelling, localized the binding site to the N-terminal domains. The results suggest a model in which DNA uptake by TtPilF is powered by ATP hydrolysis, causing conformational changes in the C-terminal domains, which are transmitted via the stem to take up DNA into the cell.

  12. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8.

    Science.gov (United States)

    Swarup, Aditi; Lu, Jing; DeWoody, Kathleen C; Antoniewicz, Maciek R

    2014-07-01

    Thermus thermophilus is an extremely thermophilic bacterium with significant biotechnological potential. In this work, we have characterized aerobic growth characteristics of T. thermophilus HB8 at temperatures between 50 and 85°C, constructed a metabolic network model of its central carbon metabolism and validated the model using (13)C-metabolic flux analysis ((13)C-MFA). First, cells were grown in batch cultures in custom constructed mini-bioreactors at different temperatures to determine optimal growth conditions. The optimal temperature for T. thermophilus grown on defined medium with glucose was 81°C. The maximum growth rate was 0.25h(-1). Between 50 and 81°C the growth rate increased by 7-fold and the temperature dependence was described well by an Arrhenius model with an activation energy of 47kJ/mol. Next, we performed a (13)C-labeling experiment with [1,2-(13)C] glucose as the tracer and calculated intracellular metabolic fluxes using (13)C-MFA. The results provided support for the constructed network model and highlighted several interesting characteristics of T. thermophilus metabolism. We found that T. thermophilus largely uses glycolysis and TCA cycle to produce biosynthetic precursors, ATP and reducing equivalents needed for cells growth. Consistent with its proposed metabolic network model, we did not detect any oxidative pentose phosphate pathway flux or Entner-Doudoroff pathway activity. The biomass precursors erythrose-4-phosphate and ribose-5-phosphate were produced via the non-oxidative pentose phosphate pathway, and largely via transketolase, with little contribution from transaldolase. The high biomass yield on glucose that was measured experimentally was also confirmed independently by (13)C-MFA. The results presented here provide a solid foundation for future studies of T. thermophilus and its metabolic engineering applications. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Isolation and partial characterization of carotenoid underproducing and overproducing mutants from an extremely thermophilic Thermus thermophilus HB27

    International Nuclear Information System (INIS)

    Hoshino, T.; Yoshino, Y.; Guevarra, E.D.; Ishida, S.; Hiruta, T.; Fujii, R.; Nakahara, T.

    1994-01-01

    Twenty-two carotenoid underproducing and thirteen overproducing mutants were obtained from Thermus thermophilus HB27. The strain HB27 was found to produce at least seven colored carotenoids, believed to be identical to those produced by Thermus aquaticus YT1. Based on the results of the genetic analyses performed on twelve carotenoid underproducing mutants, they were classified into three groups; groups 1, 2 and 3. No colored carotenoid was extracted from the cells of mutants belonging to groups 2 and 3, although the accumulation of phytoene, a colorless carotenoid, was observed in group 2 strains. Group 1 was subdivided into groups 1-a and 1-b, where 1-a stains produced neither colored carotenoids nor phytoene and 1-b strains produced two polar colored carotenoids. All of the overproducing mutants produced about twelve times as much seven colored carotenoid mixtures as the parental strain. The mutation loci among all the overproducing mutants were very close to one another, possibly in the same gene. Carotenoid overproducing mutants showed an extensive resistance to UV-irradiation and showed poorer growth at higher temperatures. Carotenoid underproducing mutants were slightly more UV-sensitive but they grew almost normally at higher temperatures. These results suggest that carotenoids are secondary metabolites which are not essential for growth of T. thermophilus

  14. Mutations in conserved helix 69 of 23S rRNA of Thermus thermophilus that affect capreomycin resistance but not posttranscriptional modifications

    DEFF Research Database (Denmark)

    Monshupanee, Tanakarn; Gregory, Steven T; Douthwaite, Stephen

    2008-01-01

    Translocation during the elongation phase of protein synthesis involves the relative movement of the 30S and 50S ribosomal subunits. This movement is the target of tuberactinomycin antibiotics. Here, we describe the isolation and characterization of mutants of Thermus thermophilus selected for re...

  15. Cre/lox-based multiple markerless gene disruption in the genome of the extreme thermophile Thermus thermophilus.

    Science.gov (United States)

    Togawa, Yoichiro; Nunoshiba, Tatsuo; Hiratsu, Keiichiro

    2018-02-01

    Markerless gene-disruption technology is particularly useful for effective genetic analyses of Thermus thermophilus (T. thermophilus), which have a limited number of selectable markers. In an attempt to develop a novel system for the markerless disruption of genes in T. thermophilus, we applied a Cre/lox system to construct a triple gene disruptant. To achieve this, we constructed two genetic tools, a loxP-htk-loxP cassette and cre-expressing plasmid, pSH-Cre, for gene disruption and removal of the selectable marker by Cre-mediated recombination. We found that the Cre/lox system was compatible with the proliferation of the T. thermophilus HB27 strain at the lowest growth temperature (50 °C), and thus succeeded in establishing a triple gene disruptant, the (∆TTC1454::loxP, ∆TTC1535KpnI::loxP, ∆TTC1576::loxP) strain, without leaving behind a selectable marker. During the process of the sequential disruption of multiple genes, we observed the undesired deletion and inversion of the chromosomal region between multiple loxP sites that were induced by Cre-mediated recombination. Therefore, we examined the effects of a lox66-htk-lox71 cassette by exploiting the mutant lox sites, lox66 and lox71, instead of native loxP sites. We successfully constructed a (∆TTC1535::lox72, ∆TTC1537::lox72) double gene disruptant without inducing the undesired deletion of the 0.7-kbp region between the two directly oriented lox72 sites created by the Cre-mediated recombination of the lox66-htk-lox71 cassette. This is the first demonstration of a Cre/lox system being applicable to extreme thermophiles in a genetic manipulation. Our results indicate that this system is a powerful tool for multiple markerless gene disruption in T. thermophilus.

  16. Roles of Mn-catalase and a possible heme peroxidase homologue in protection from oxidative stress in Thermus thermophilus.

    Science.gov (United States)

    Ebihara, Akio; Manzoku, Miho; Fukui, Kenji; Shimada, Atsuhiro; Morita, Rihito; Masui, Ryoji; Kuramitsu, Seiki

    2015-07-01

    Hydrogen peroxide (H2O2) produces hydroxyl radicals that directly attack a variety of biomolecules and cause severe cellular dysfunction. An extremely thermophilic bacterium, Thermus thermophilus HB8, possesses at least three enzymes that can scavenge H2O2: manganese-containing catalase (TTHA0122, MnCAT), a possible peroxiredoxin homologue (TTHA1300), and a possible heme peroxidase (HPX) homologue (TTHA1714). To investigate the roles of these proteins, we attempted to disrupt each of these genes in T. thermophilus HB8. Although we were able to completely disrupt ttha1300, we were unable to completely delete ttha0122 and ttha1714 because of polyploidy. Quantitative real-time PCR showed that, compared to the wild type, 31 % of ttha0122 and 11 % of ttha1714 remained in the ∆ttha0122 and ∆ttha1714 disruption mutants, respectively. Mutants with reduced levels of ttha0122 or ttha1714 exhibited a significant increase in spontaneous mutation frequency. ∆ttha1714 grew slower than the wild type under normal conditions. ∆ttha0122 grew very poorly after exposure to H2O2. Moreover, ∆ttha0122 did not show H2O2-scavenging activity, whereas ∆ttha1300 and ∆ttha1714 scavenged H2O2, a property similar to that exhibited by the wild type. MnCAT purified from T. thermophilus HB8 cells scavenged H2O2 in vitro. The recombinant form of the possible HPX homologue, reconstituted with hemin, showed peroxidase activity with H2O2 as an oxidant substrate. Based on these results, we propose that not only MnCAT but also the possible HPX homologue is involved in protecting the cell from oxidative stress in T. thermophilus.

  17. The role of the PHP domain associated with DNA polymerase X from Thermus thermophilus HB8 in base excision repair.

    Science.gov (United States)

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2012-11-01

    Base excision repair (BER) is one of the most commonly used DNA repair pathways involved in genome stability. X-family DNA polymerases (PolXs) play critical roles in BER, especially in filling single-nucleotide gaps. In addition to a polymerase core domain, bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain with phosphoesterase activity which is also required for BER. However, the role of the PHP domain of PolX in bacterial BER remains unresolved. We found that the PHP domain of Thermus thermophilus HB8 PolX (ttPolX) functions as two types of phosphoesterase in BER, including a 3'-phosphatase and an apurinic/apyrimidinic (AP) endonuclease. Experiments using T. thermophilus HB8 cell lysates revealed that the majority of the 3'-phosphatase and AP endonuclease activities are attributable to the another phosphoesterase in T. thermophilus HB8, endonuclease IV (ttEndoIV). However, ttPolX possesses significant 3'-phosphatase activity in ΔttendoIV cell lysate, indicating possible complementation. Our experiments also reveal that there are only two enzymes that display the 3'-phosphatase activity in the T. thermophilus HB8 cell, ttPolX and ttEndoIV. Furthermore, phenotypic analysis of ΔttpolX, ΔttendoIV, and ΔttpolX/ΔttendoIV using hydrogen peroxide and sodium nitrite supports the hypothesis that ttPolX functions as a backup for ttEndoIV in BER. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Glutamate 270 plays an essential role in K(+)-activation and domain closure of Thermus thermophilus isopropylmalate dehydrogenase.

    Science.gov (United States)

    Gráczer, Éva; Palló, Anna; Oláh, Julianna; Szimler, Tamás; Konarev, Petr V; Svergun, Dmitri I; Merli, Angelo; Závodszky, Péter; Weiss, Manfred S; Vas, Mária

    2015-01-16

    The mutant E270A of Thermus thermophilus 3-isopropylmalate dehydrogenase exhibits largely reduced (∼1%) catalytic activity and negligible activation by K(+) compared to the wild-type enzyme. A 3-4 kcal/mol increase in the activation energy of the catalysed reaction upon this mutation could also be predicted by QM/MM calculations. In the X-ray structure of the E270A mutant a water molecule was observed to take the place of K(+). SAXS and FRET experiments revealed the essential role of E270 in stabilisation of the active domain-closed conformation of the enzyme. In addition, E270 seems to position K(+) into close proximity of the nicotinamide ring of NAD(+) and the electron-withdrawing effect of K(+) may help to polarise the aromatic ring in order to aid the hydride-transfer. Copyright © 2014. Published by Elsevier B.V.

  19. Identification and characterization of preferred DNA-binding sites for the Thermus thermophilus transcriptional regulator FadR.

    Directory of Open Access Journals (Sweden)

    Minwoo Lee

    Full Text Available One of the primary transcriptional regulators of fatty acid homeostasis in many prokaryotes is the protein FadR. To better understand its biological function in the extreme thermophile Thermus thermophilus HB8, we sought to first determine its preferred DNA-binding sequences in vitro using the combinatorial selection method Restriction Endonuclease Protection, Selection, and Amplification (REPSA and then use this information to bioinformatically identify potential regulated genes. REPSA determined a consensus FadR-binding sequence 5´-TTRNACYNRGTNYAA-3´, which was further characterized using quantitative electrophoretic mobility shift assays. With this information, a search of the T. thermophilus HB8 genome found multiple operons potentially regulated by FadR. Several of these were identified as encoding proteins involved in fatty acid biosynthesis and degradation; however, others were novel and not previously identified as targets of FadR. The role of FadR in regulating these genes was validated by physical and functional methods, as well as comparative genomic approaches to further characterize regulons in related organisms. Taken together, our study demonstrates that a systematic approach involving REPSA, biophysical characterization of protein-DNA binding, and bioinformatics can be used to postulate biological roles for potential transcriptional regulators.

  20. Low molecular weight thiols and thioredoxins are important players in Hg(II) resistance in Thermus thermophilus HB27.

    Science.gov (United States)

    Norambuena, J; Wang, Y; Hanson, T; Boyd, J M; Barkay, T

    2017-11-17

    Mercury (Hg), one of the most toxic and widely distributed heavy metals, has a high affinity for thiol groups. Thiol groups reduce and sequester Hg. Therefore, low molecular weight and protein thiols may be important cell components used in Hg resistance. To date, the role of low molecular weight thiols in Hg-detoxification remains understudied. The mercury resistance ( mer ) operon of Thermus thermophilus suggests an evolutionary link between Hg(II) resistance and low molecular weight thiol metabolism. This mer operon encodes for an enzyme involved in methionine biosynthesis, Oah. Challenge with Hg(II) resulted in increased expression of genes involved in the biosynthesis of multiple low molecular weight thiols (cysteine, homocysteine, and bacillithiol), as well as the thioredoxin system. Phenotypic analysis of gene replacement mutants indicated that Oah contributes to Hg resistance under sulfur limiting conditions, and strains lacking bacillithiol and/or thioredoxins are more sensitive to Hg(II) than the wild type. Growth in presence of either a thiol oxidizing agent or a thiol alkylating agent increased sensitivity to Hg(II). Furthermore, exposure to 3 μM Hg(II) consumed all intracellular reduced bacillithiol and cysteine. Database searches indicate that oah2 is present in all Thermus spp. mer operons. The presence of a thiol related gene was also detected in some alphaprotobacterial mer operons, in which a glutathione reductase gene was present, supporting the role of thiols in Hg(II) detoxification. These results have led to a working model in which LMW thiols act as Hg(II) buffering agents while Hg is reduced by MerA. Importance The survival of microorganisms in presence of toxic metals is central to life's sustainability. The affinity of thiol groups to toxic heavy metals drives microbe-metal interactions and modulate metal toxicity. Mercury detoxification ( mer ) genes likely originated early in microbial evolution among geothermal environments. Little is

  1. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    Directory of Open Access Journals (Sweden)

    Tina Y Liu

    Full Text Available CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus Type III-A Csm complex (TthCsm with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  2. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    Science.gov (United States)

    Liu, Tina Y; Iavarone, Anthony T; Doudna, Jennifer A

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  3. The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation.

    Science.gov (United States)

    Blesa, Alba; Baquedano, Ignacio; Quintáns, Nieves G; Mata, Carlos P; Castón, José R; Berenguer, José

    2017-03-01

    In addition to natural competence, some Thermus thermophilus strains show a high rate of DNA transfer via direct cell-to-cell contact. The process is bidirectional and follows a two-step model where the donor cell actively pushes out DNA and the recipient cell employs the natural competence system to take up the DNA, in a hybrid transformation-dependent conjugation process (transjugation). While the DNA uptake machinery is well known as in other bacterial species that undergo transformation, the pushing step of transjugation remains to be characterized. Here we have searched for hypothetical DNA translocases putatively involved in the pushing step of transjugation. Among candidates encoded by T. thermophilus HB27, the TdtA protein was found to be required for DNA pushing but not for DNA pulling during transjugation, without affecting other cellular processes. Purified TdtA shows ATPase activity and oligomerizes as hexamers with a central opening that can accommodate double-stranded DNA. The tdtA gene was found to belong to a mobile 14 kbp-long DNA element inserted within the 3' end of a tRNA gene, flanked by 47 bp direct repeats. The insertion also encoded a homolog of bacteriophage site-specific recombinases and actively self-excised from the chromosome at high frequency to form an apparently non-replicative circular form. The insertion also encoded a type II restriction endonuclease and a NurA-like nuclease, whose activities were required for efficient transjugation. All these data support that TdtA belongs to a new type of Integrative and Conjugative Element which promotes the generalized and efficient transfer of genetic traits that could facilitate its co-selection among bacterial populations.

  4. The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation.

    Directory of Open Access Journals (Sweden)

    Alba Blesa

    2017-03-01

    Full Text Available In addition to natural competence, some Thermus thermophilus strains show a high rate of DNA transfer via direct cell-to-cell contact. The process is bidirectional and follows a two-step model where the donor cell actively pushes out DNA and the recipient cell employs the natural competence system to take up the DNA, in a hybrid transformation-dependent conjugation process (transjugation. While the DNA uptake machinery is well known as in other bacterial species that undergo transformation, the pushing step of transjugation remains to be characterized. Here we have searched for hypothetical DNA translocases putatively involved in the pushing step of transjugation. Among candidates encoded by T. thermophilus HB27, the TdtA protein was found to be required for DNA pushing but not for DNA pulling during transjugation, without affecting other cellular processes. Purified TdtA shows ATPase activity and oligomerizes as hexamers with a central opening that can accommodate double-stranded DNA. The tdtA gene was found to belong to a mobile 14 kbp-long DNA element inserted within the 3' end of a tRNA gene, flanked by 47 bp direct repeats. The insertion also encoded a homolog of bacteriophage site-specific recombinases and actively self-excised from the chromosome at high frequency to form an apparently non-replicative circular form. The insertion also encoded a type II restriction endonuclease and a NurA-like nuclease, whose activities were required for efficient transjugation. All these data support that TdtA belongs to a new type of Integrative and Conjugative Element which promotes the generalized and efficient transfer of genetic traits that could facilitate its co-selection among bacterial populations.

  5. Crystallization and preliminary X-ray diffraction analysis of recombinant phosphoribosylpyrophosphate synthetase from the Thermophilic thermus thermophilus strain HB27

    Energy Technology Data Exchange (ETDEWEB)

    Abramchik, Yu. A. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Timofeev, V. I., E-mail: tostars@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Muravieva, T. I.; Sinitsyna, E. V.; Esipov, R. S., E-mail: esipov@mx.ibch.ru [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P., E-mail: inna@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-01-15

    Phosphoribosylpyrophosphate synthetases (PRPP synthetases) are among the key enzymes essential for vital functions of organisms and are involved in the biosynthesis of purine and pyrimidine nucleotides, coenzymes, and the amino acids histidine and tryptophan. These enzymes are used in biotechnology for the combined chemoenzymatic synthesis of natural nucleotide analogs. Recombinant phosphoribosylpyrophosphate synthetase I from the thermophilic strain HB27 of the bacterium Thermus thermophilus (T. th HB27) has high thermal stability and shows maximum activity at 75°Ð¡, due to which this enzyme holds promise for biotechnological applications. In order to grow crystals and study them by X-ray crystallography, an enzyme sample, which was produced using a highly efficient producer strain, was purified by affinity and gel-filtration chromatography. The screening of crystallization conditions was performed by the vapor-diffusion technique. The crystals of the enzyme suitable for X-ray diffraction were grown by the counter-diffusion method through a gel layer. These crystals were used to collect the X-ray diffraction data set at the SPring-8 synchrotron radiation facility (Japan) to 3-Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unitcell parameters: a = 107.7 Å, b = 112.6 Å, c = 110.2 Å, α = γ = 90°, β = 116.6°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the enzyme at 3.0-Å resolution.

  6. Pb2+Effects on Growth, Lipids, and Protein and DNA Profiles of the Thermophilic Bacterium Thermus Thermophilus.

    Science.gov (United States)

    Nicolaus, Barbara; Poli, Annarita; Di Donato, Paola; Romano, Ida; Laezza, Giusi; Gioiello, Alessia; Ulgiati, Sergio; Fratianni, Florinda; Nazzaro, Filomena; Orlando, Pierangelo; Dumontet, Stefano

    2016-12-06

    Extremophiles are organisms able to thrive in extreme environmental conditions and some of them show the ability to survive high doses of heavy metals thanks to defensive mechanisms provided by primary and secondary metabolic products, i.e., extremolytes, lipids, and extremozymes. This is why there is a growing scientific and industrial interest in the use of thermophilic bacteria in a host of tasks, from the environmental detoxification of heavy metal to industrial activities, such as bio-machining and bio-metallurgy. In this work Thermus thermophilus was challenged against increasing Pb 2+ concentrations spanning from 0 to 300 ppm in order to ascertain the sensitiveness of this bacteria to the Pb environmental pollution and to give an insight on its heavy metal resistance mechanisms. Analysis of growth parameters, enzyme activities, protein profiles, and lipid membrane modifications were carried out. In addition, genotyping analysis of bacteria grown in the presence of Pb 2+ , using random amplified polymorphic DNA-PCR and DNA melting evaluation, were also performed. A better knowledge of the response of thermophilic bacteria to the different pollutants, as heavy metals, is necessary for optimizing their use in remediation or decontamination processes.

  7. Exploring the proton pump and exit pathway for pumped protons in cytochrome ba3 from Thermus thermophilus.

    Science.gov (United States)

    Chang, Hsin-Yang; Choi, Sylvia K; Vakkasoglu, Ahmet Selim; Chen, Ying; Hemp, James; Fee, James A; Gennis, Robert B

    2012-04-03

    The heme-copper oxygen reductases are redox-driven proton pumps. In the current work, the effects of mutations in a proposed exit pathway for pumped protons are examined in the ba(3)-type oxygen reductase from Thermus thermophilus, leading from the propionates of heme a(3) to the interface between subunits I and II. Recent studies have proposed important roles for His376 and Asp372, both of which are hydrogen-bonded to propionate-A of heme a(3), and for Glu126(II) (subunit II), which is hydrogen-bonded to His376. Based on the current results, His376, Glu126(II), and Asp372 are not essential for either oxidase activity or proton pumping. In addition, Tyr133, which is hydrogen-bonded to propionate-D of heme a(3), was also shown not to be essential for function. However, two mutations of the residues hydrogen-bonded to propionate-A, Asp372Ile and His376Asn, retain high electron transfer activity and normal spectral features but, in different preparations, either do not pump protons or exhibit substantially diminished proton pumping. It is concluded that either propionate-A of heme a(3) or possibly the cluster of groups centered about the conserved water molecule that hydrogen-bonds to both propionates-A and -D of heme a(3) is a good candidate to be the proton loading site.

  8. Pb2+ Effects on Growth, Lipids, and Protein and DNA Profiles of the Thermophilic Bacterium Thermus Thermophilus

    Directory of Open Access Journals (Sweden)

    Barbara Nicolaus

    2016-12-01

    Full Text Available Extremophiles are organisms able to thrive in extreme environmental conditions and some of them show the ability to survive high doses of heavy metals thanks to defensive mechanisms provided by primary and secondary metabolic products, i.e., extremolytes, lipids, and extremozymes. This is why there is a growing scientific and industrial interest in the use of thermophilic bacteria in a host of tasks, from the environmental detoxification of heavy metal to industrial activities, such as bio-machining and bio-metallurgy. In this work Thermus thermophilus was challenged against increasing Pb2+ concentrations spanning from 0 to 300 ppm in order to ascertain the sensitiveness of this bacteria to the Pb environmental pollution and to give an insight on its heavy metal resistance mechanisms. Analysis of growth parameters, enzyme activities, protein profiles, and lipid membrane modifications were carried out. In addition, genotyping analysis of bacteria grown in the presence of Pb2+, using random amplified polymorphic DNA-PCR and DNA melting evaluation, were also performed. A better knowledge of the response of thermophilic bacteria to the different pollutants, as heavy metals, is necessary for optimizing their use in remediation or decontamination processes.

  9. Identification and characterization of a unique, zinc-containing transport ATPase essential for natural transformation in Thermus thermophilus HB27.

    Science.gov (United States)

    Rose, Ilona; Biuković, Goran; Aderhold, Patrick; Müller, Volker; Grüber, Gerhard; Averhoff, Beate

    2011-03-01

    Thermus thermophilus is a model strain to unravel the molecular basis of horizontal gene transfer in hot environments. Previous genetic studies led to the identification of a macromolecular transport machinery mediating DNA uptake in an energy-dependent manner. Here, we have addressed how the transporter is energized. Inspection of the genome sequence revealed four putative transport (AAA) ATPases but only the deletion of one, PilF, led to a transformation defect. PilF is similar to transport ATPases of type IV and type II secretions systems but has a unique N-terminal sequence that carries a triplicated GSPII domain. To characterize PilF biochemically it was produced in Escherichia coli and purified. The recombinant protein displayed NTPase activity with a preference for ATP. Gel filtration analyses combined with dynamic light scattering demonstrated that PilF is monodispersed in solution and forms a complex of 590 ± 30 kDa, indicating a homooligomer of six subunits. It contains a tetracysteine motif, previously shown to bind Zn(2+) in related NTPases. Using atomic absorption spectroscopy, indeed Zn(2+) was detected in the enzyme, but in contrast to all known zinc-binding traffic NTPases only one zinc atom was bound to the hexamer. Deletion of the four cysteine residues led to a loss of Zn(2+). Nevertheless, the mutant protein retained ATPase activity and hexameric complex formation.

  10. ns-μs Time-Resolved Step-Scan FTIR of ba3 Oxidoreductase from Thermus thermophilus: Protonic Connectivity of w941-w946-w927

    Directory of Open Access Journals (Sweden)

    Antonis Nicolaides

    2016-09-01

    Full Text Available Time-resolved step-scan FTIR spectroscopy has been employed to probe the dynamics of the ba3 oxidoreductase from Thermus thermophilus in the ns-μs time range and in the pH/pD 6–9 range. The data revealed a pH/pD sensitivity of the D372 residue and of the ring-A propionate of heme a3. Based on the observed transient changes a model in which the protonic connectivity of w941-w946-927 to the D372 and the ring-A propionate of heme a3 is described.

  11. High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment.

    Science.gov (United States)

    Tiefenbrunn, Theresa; Liu, Wei; Chen, Ying; Katritch, Vsevolod; Stout, C David; Fee, James A; Cherezov, Vadim

    2011-01-01

    The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO) superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H(+) and e(-) transport are coupled. Toward addressing this problem, we report wild type and A120F mutant structures of the ba(3)-type cytochrome c oxidase from Thermus thermophilus at 1.8 Å resolution. The enzyme has been crystallized from the lipidic cubic phase, which mimics the biological membrane environment. The structures reveal 20 ordered lipid molecules that occupy binding sites on the protein surface or mediate crystal packing interfaces. The interior of the protein encloses 53 water molecules, including 3 trapped in the designated K-path of proton transfer and 8 in a cluster seen also in A-type enzymes that likely functions in egress of product water and proton translocation. The hydrophobic O(2)-uptake channel, connecting the active site to the lipid bilayer, contains a single water molecule nearest the Cu(B) atom but otherwise exhibits no residual electron density. The active site contains strong electron density for a pair of bonded atoms bridging the heme Fe(a3) and Cu(B) atoms that is best modeled as peroxide. The structure of ba(3)-oxidase reveals new information about the positioning of the enzyme within the membrane and the nature of its interactions with lipid molecules. The atomic resolution details provide insight into the mechanisms of electron transfer, oxygen diffusion into the active site, reduction of oxygen to water, and pumping of protons across the membrane. The development of a robust system for production of ba(3)-oxidase crystals diffracting to high resolution, together with an established expression system for generating mutants, opens the door for

  12. Crystal structure studies of NADP{sup +} dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Pampa, K.J. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Manjula, M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Abdoh, M.M.M. [Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Kunishima, Naoki [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Lokanath, N.K., E-mail: lokanath@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India)

    2014-06-20

    Highlights: • We determined the structure of isocitrate dehydrogenase with citrate and cofactor. • The structure reveals a unique novel terminal domain involved in dimerization. • Clasp domain shows significant difference, and catalytic residues are conserved. • Oligomerization of the enzyme is quantized with subunit-subunit interactions. • Novel domain of this enzyme is classified as subfamily of the type IV. - Abstract: NADP{sup +} dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP{sup +} was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.

  13. Crystallization and preliminary X-ray crystallographic analysis of dihydrouridine synthase from Thermus thermophilus and its complex with tRNA

    International Nuclear Information System (INIS)

    Yu, Futao; Tanaka, Yoshikazu; Yamamoto, Shiho; Nakamura, Akiyoshi; Kita, Shunsuke; Hirano, Nagisa; Tanaka, Isao; Yao, Min

    2011-01-01

    Crystals of dihydrouridine synthase from Thermus thermophilus and its complex with tRNA were obtained and X-ray diffraction data were collected to 1.70 and 3.51 Å resolution, respectively. Dihydrouridine synthase (Dus) is responsible for catalyzing dihydrouridine formation in RNA by the reduction of uridine. To elucidate its RNA-recognition mechanism, Dus from Thermus thermophilus (TthDus) and its complex with tRNA were crystallized. Diffraction data sets were collected from crystals of native and selenomethionine-substituted TthDus to resolutions of 1.70 and 2.30 Å, respectively. These crystals belonged to space group P1. Preliminary X-ray crystallographic analysis showed that two molecules of TthDus were contained in an asymmetric unit. In addition, diffraction data were collected to 3.51 Å resolution from a crystal of selenomethionine-substituted TthDus in complex with tRNA, which belonged to space group P4 1 2 1 2. Preliminary structural analysis showed that the asymmetric unit contained two TthDus–tRNA complexes

  14. Functional expression of a penicillin acylase from the extreme thermophile Thermus thermophilus HB27 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Torres Leticia L

    2012-08-01

    Full Text Available Abstract Background Penicillin acylases (PACs are enzymes of industrial relevance in the manufacture of β-lactam antibiotics. Development of a PAC with a longer half-life under the reaction conditions used is essential for the improvement of the operational stability of the process. A gene encoding a homologue to Escherichia coli PAC was found in the genome of the thermophilic bacterium Thermus thermophilus (Tth HB27. Because of the nature of this PAC and its complex maturation that is crucial to reach its functional heterodimeric final conformation, the overexpression of this enzyme in a heterologous mesophilic host was a challenge. Here we describe the purification and characterization of the PAC protein from Tth HB27 overexpressed in Escherichia coli. Results Fusions to a superfolder green fluorescent protein and differential membrane solubilization assays indicated that the native enzyme remains attached through its amino-terminal end to the outer side of the cytoplasmic membrane of Tth cells. In order to overexpress this PAC in E. coli cells, a variant of the protein devoid of its membrane anchoring segment was constructed. The effect of the co-expression of chaperones and calcium supplementation of the culture medium was investigated. The total production of PAC was enhanced by the presence of DnaK/J and GrpE and even more by trigger factor and GroEL/ES. In addition, 10 mM calcium markedly improved both PAC specific and volumetric activities. Recombinant PAC was affinity-purified and proper maturation of the protein was confirmed by SDS-PAGE and MALDI-TOF analysis of the subunits. The recombinant protein was tested for activity towards several penicillins, cephalosporins and homoserine lactones. Hydrophobic acyl-chain penicillins were preferred over the rest of the substrates. Penicillin K (octanoyl penicillin was the best substrate, with the highest specificity constant value (16.12 mM-1.seg-1. The optimum pH was aprox. 4 and the optimum

  15. High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment.

    Directory of Open Access Journals (Sweden)

    Theresa Tiefenbrunn

    Full Text Available The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H(+ and e(- transport are coupled. Toward addressing this problem, we report wild type and A120F mutant structures of the ba(3-type cytochrome c oxidase from Thermus thermophilus at 1.8 Å resolution. The enzyme has been crystallized from the lipidic cubic phase, which mimics the biological membrane environment. The structures reveal 20 ordered lipid molecules that occupy binding sites on the protein surface or mediate crystal packing interfaces. The interior of the protein encloses 53 water molecules, including 3 trapped in the designated K-path of proton transfer and 8 in a cluster seen also in A-type enzymes that likely functions in egress of product water and proton translocation. The hydrophobic O(2-uptake channel, connecting the active site to the lipid bilayer, contains a single water molecule nearest the Cu(B atom but otherwise exhibits no residual electron density. The active site contains strong electron density for a pair of bonded atoms bridging the heme Fe(a3 and Cu(B atoms that is best modeled as peroxide. The structure of ba(3-oxidase reveals new information about the positioning of the enzyme within the membrane and the nature of its interactions with lipid molecules. The atomic resolution details provide insight into the mechanisms of electron transfer, oxygen diffusion into the active site, reduction of oxygen to water, and pumping of protons across the membrane. The development of a robust system for production of ba(3-oxidase crystals diffracting to high resolution, together with an established expression system for generating mutants, opens the

  16. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance

    Science.gov (United States)

    Schep, Daniel G.; Rubinstein, John L.

    2016-01-01

    Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases. PMID:26951669

  17. Flagellin gene (fliC) of Thermus thermophilus HB8: characterization of its product and involvement to flagella assembly and microbial motility.

    Science.gov (United States)

    Papaneophytou, Christos P; Papi, Rigini M; Pantazaki, Anastasia A; Kyriakidis, Dimitrios A

    2012-06-01

    Thermus thermophilus HB8 flagellin protein (FliC) is encoded by the TTHC004 (fliC) gene, which is located in the pTT8 plasmid of the bacterium. Flagellin monomer and flagella fibres were isolated from a culture of T. thermophilus grown in rich medium, or in mineral salt medium with sodium gluconate as the carbon source. Western blot immunodetection with anti-FliC revealed a stable complex (FliC)(1)(FliS)(2) of flagellin (FliC, 27.7 kDa) with a homodimer of FliS (FliS, 18.2 kDa) that are encoded by TTHC004 and TTHC003 genes, respectively. The complex is dissociable at low pHs and/or by heat treatment. Glycan staining of purified flagella and treatment with N-glycosidase F suggested that flagellin of T. thermophilus is a glycosylated protein. Size exclusion chromatography revealed that flagellar filaments (FliC) have a molecular mass higher than 200 kDa. The formation of flagella is enhanced after prolonged cultivation time where phosphate and other nutrient were depleted, giving in the bacterium considerable swimming motility in low viscosity media.

  18. Co-utilization of glucose and xylose by evolved Thermus thermophilus LC113 strain elucidated by 13C metabolic flux analysis and whole genome sequencing

    Science.gov (United States)

    Cordova, Lauren T.; Lu, Jing; Cipolla, Robert M.; Sandoval, Nicholas R.; Long, Christopher P.; Antoniewicz, Maciek R.

    2018-01-01

    We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and 13C-metabolic flux analysis (13C-MFA) with [1,6-13C]glucose, [5-13C]xylose, and [1,6-13C]glucose + [5-13C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~ 2-fold), increased biomass yield, increased tolerance to high temperatures up to 90 °C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81 °C, the maximum growth rate on glucose and xylose was 0.44 and 0.46 h−1, respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. 13C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, 13C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5× multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, 13C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain. PMID:27164561

  19. Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27

    Science.gov (United States)

    Sinitsyna, E. V.; Timofeev, V. I.; Tuzova, E. S.; Kostromina, M. A.; Murav'eva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2017-07-01

    Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P1211 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).

  20. Purification, crystallization and preliminary X-ray crystallographic study of the l-fuculose-1-phosphate aldolase (FucA) from Thermus thermophilus HB8

    Energy Technology Data Exchange (ETDEWEB)

    Jeyakanthan, Jeyaraman, E-mail: kanthan@spring8.or.jp; Taka, Junichiro; Kikuchi, Akihiro [Biometal Science Laboratory, RIKEN Harima Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kuroishi, Chizu; Yutani, Katsuhide [Advanced Protein Crystallography Research Group, RIKEN Harima Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan); Shiro, Yoshitugu [Biometal Science Laboratory, RIKEN Harima Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2005-12-01

    The crystallization and preliminary X-ray diffraction analysis of the l-fuculose-1-phosphate aldolase (FucA) from T. thermophilus HB8. Native diffraction data set was collected to a resolution of 1.9 Å. Fuculose phosphate aldolase catalyzes the reversible cleavage of l-fuculose-1-phosphate to dihydroxyacetone phosphate and l-lactaldehyde. The protein from Thermus thermophilus HB8 is a biological tetramer with a subunit molecular weight of 21 591 Da. Purified FucA has been crystallized using sitting-drop vapour-diffusion and microbatch techniques at 293 K. The crystals belong to space group P4, with unit-cell parameters a = b = 100.94, c = 45.87 Å. The presence of a dimer of the enzyme in the asymmetric unit was estimated to give a Matthews coefficient (V{sub M}) of 2.7 Å{sup 3} Da{sup −1} and a solvent content of 54.2%(v/v). Three-wavelength diffraction MAD data were collected to 2.3 Å from zinc-containing crystals. Native diffraction data to 1.9 Å resolution have been collected using synchrotron radiation at SPring-8.

  1. A Key Enzyme of the NAD+ Salvage Pathway in Thermus thermophilus: Characterization of Nicotinamidase and the Impact of Its Gene Deletion at High Temperatures.

    Science.gov (United States)

    Taniguchi, Hironori; Sungwallek, Sathidaphorn; Chotchuang, Phatcharin; Okano, Kenji; Honda, Kohsuke

    2017-09-01

    NAD (NAD + ) is a cofactor related to many cellular processes. This cofactor is known to be unstable, especially at high temperatures, where it chemically decomposes to nicotinamide and ADP-ribose. Bacteria, yeast, and higher organisms possess the salvage pathway for reconstructing NAD + from these decomposition products; however, the importance of the salvage pathway for survival is not well elucidated, except for in pathogens lacking the NAD + de novo synthesis pathway. Herein, we report the importance of the NAD + salvage pathway in the thermophilic bacterium Thermus thermophilus HB8 at high temperatures. We identified the gene encoding nicotinamidase (TTHA0328), which catalyzes the first reaction of the NAD + salvage pathway. This recombinant enzyme has a high catalytic activity against nicotinamide ( K m of 17 μM, k cat of 50 s -1 , k cat / K m of 3.0 × 10 3 s -1 · mM -1 ). Deletion of this gene abolished nicotinamide deamination activity in crude extracts of T. thermophilus and disrupted the NAD + salvage pathway in T. thermophilus Disruption of the salvage pathway led to the severe growth retardation at a higher temperature (80°C), owing to the drastic decrease in the intracellular concentrations of NAD + and NADH. IMPORTANCE NAD + and other nicotinamide cofactors are essential for cell metabolism. These molecules are unstable and decompose, even under the physiological conditions in most organisms. Thermophiles can survive at high temperatures where NAD + decomposition is, in general, more rapid. This study emphasizes that NAD + instability and its homeostasis can be one of the important factors for thermophile survival in extreme temperatures. Copyright © 2017 American Society for Microbiology.

  2. Co-utilization of glucose and xylose by evolved Thermus thermophilus LC113 strain elucidated by (13)C metabolic flux analysis and whole genome sequencing.

    Science.gov (United States)

    Cordova, Lauren T; Lu, Jing; Cipolla, Robert M; Sandoval, Nicholas R; Long, Christopher P; Antoniewicz, Maciek R

    2016-09-01

    We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and (13)C-metabolic flux analysis ((13)C-MFA) with [1,6-(13)C]glucose, [5-(13)C]xylose, and [1,6-(13)C]glucose+[5-(13)C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~2-fold), increased biomass yield, increased tolerance to high temperatures up to 90°C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81°C, the maximum growth rate on glucose and xylose was 0.44 and 0.46h(-1), respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. (13)C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, (13)C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5x multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, (13)C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. High-resolution structures of Thermus thermophilus enoyl-acyl carrier protein reductase in the apo form, in complex with NAD+ and in complex with NAD+ and triclosan

    International Nuclear Information System (INIS)

    Otero, José M.; Noël, Ann-Josée; Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Wende, Wolfgang; Schierling, Benno; Pingoud, Alfred; Raaij, Mark J. van

    2012-01-01

    T. thermophilus enoyl-acyl carrier protein reductase was crystallized in the apo form, with NAD + bound and with NAD + and the inhibitor triclosan bound. The structures were solved by molecular replacement and refined at 1.50, 1.86 and 1.90 Å resolution, respectively. The structures are described, analysed and compared with those of enoyl-acyl carrier protein reductases from other species. Enoyl-acyl carrier protein reductase (ENR; the product of the fabI gene) is an important enzyme that is involved in the type II fatty-acid-synthesis pathway of bacteria, plants, apicomplexan protozoa and mitochondria. Harmful pathogens such as Mycobacterium tuberculosis and Plasmodium falciparum use the type II fatty-acid-synthesis system, but not mammals or fungi, which contain a type I fatty-acid-synthesis pathway consisting of one or two multifunctional enzymes. For this reason, specific inhibitors of ENR are attractive antibiotic candidates. Triclosan, a broad-range antibacterial agent, binds to ENR, inhibiting fatty-acid synthesis. As humans do not have an ENR enzyme, they are not affected. Here, high-resolution structures of Thermus thermophilus (Tth) ENR in the apo form, bound to NAD + and bound to NAD + plus triclosan are reported. Differences from and similarities to other known ENR structures are reported; in general, the structures are very similar. The cofactor-binding site is also very similar to those of other ENRs and, as reported for other species, triclosan leads to greater ordering of the loop that covers the cofactor-binding site, which, together with the presence of triclosan itself, presumably provides tight binding of the dinucleotide, preventing cycling of the cofactor. Differences between the structures of Tth ENR and other ENRs are the presence of an additional β-sheet at the N-terminus and a larger number of salt bridges and side-chain hydrogen bonds. These features may be related to the high thermal stability of Tth ENR

  4. Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3'-5' exonuclease activity.

    Science.gov (United States)

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2009-04-01

    The X-family DNA polymerases (PolXs) comprise a highly conserved DNA polymerase family found in all kingdoms. Mammalian PolXs are known to be involved in several DNA-processing pathways including repair, but the cellular functions of bacterial PolXs are less known. Many bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain at their C-termini in addition to a PolX core (POLXc) domain, and possess 3'-5' exonuclease activity. Although both domains are highly conserved in bacteria, their molecular functions, especially for a PHP domain, are unknown. We found Thermus thermophilus HB8 PolX (ttPolX) has Mg(2+)/Mn(2+)-dependent DNA/RNA polymerase, Mn(2+)-dependent 3'-5' exonuclease and DNA-binding activities. We identified the domains of ttPolX by limited proteolysis and characterized their biochemical activities. The POLXc domain was responsible for the polymerase and DNA-binding activities but exonuclease activity was not detected for either domain. However, the POLXc and PHP domains interacted with each other and a mixture of the two domains had Mn(2+)-dependent 3'-5' exonuclease activity. Moreover, site-directed mutagenesis revealed catalytically important residues in the PHP domain for the 3'-5' exonuclease activity. Our findings provide a molecular insight into the functional domain organization of bacterial PolXs, especially the requirement of the PHP domain for 3'-5' exonuclease activity.

  5. A Flexible Domain-Domain Hinge Promotes an Induced-fit Dominant Mechanism for the Loading of Guide-DNA into Argonaute Protein in Thermus thermophilus.

    Science.gov (United States)

    Zhu, Lizhe; Jiang, Hanlun; Sheong, Fu Kit; Cui, Xuefeng; Gao, Xin; Wang, Yanli; Huang, Xuhui

    2016-03-17

    Argonaute proteins (Ago) are core components of the RNA Induced Silencing Complex (RISC) that load and utilize small guide nucleic acids to silence mRNAs or cleave foreign DNAs. Despite the essential role of Ago in gene regulation and defense against virus, the molecular mechanism of guide-strand loading into Ago remains unclear. We explore such a mechanism in the bacterium Thermus thermophilus Ago (TtAgo), via a computational approach combining molecular dynamics, bias-exchange metadynamics, and protein-DNA docking. We show that apo TtAgo adopts multiple closed states that are unable to accommodate guide-DNA. Conformations able to accommodate the guide are beyond the reach of thermal fluctuations from the closed states. These results suggest an induced-fit dominant mechanism for guide-strand loading in TtAgo, drastically different from the two-step mechanism for human Ago 2 (hAgo2) identified in our previous study. Such a difference between TtAgo and hAgo2 is found to mainly originate from the distinct rigidity of their L1-PAZ hinge. Further comparison among known Ago structures from various species indicates that the L1-PAZ hinge may be flexible in general for prokaryotic Ago's but rigid for eukaryotic Ago's.

  6. A Flexible Domain-Domain Hinge Promotes an Induced-fit Dominant Mechanism for the Loading of Guide-DNA into Argonaute Protein in Thermus thermophilus

    KAUST Repository

    Zhu, Lizhe

    2016-02-24

    Argonaute proteins (Ago) are core components of the RNA Induced Silencing Complex (RISC) that load and utilize small guide nucleic acids to silence mRNAs or cleave foreign DNAs. Despite the essential role of Ago in gene regulation and defense against virus, the molecular mechanism of guide-strand loading into Ago remains unclear. We explore such a mechanism in the bacterium Thermus thermophilus Ago (TtAgo), via a computational approach combining molecular dynamics, bias-exchange metadynamics, and protein-DNA docking. We show that apo TtAgo adopts multiple closed states that are unable to accommodate guide-DNA. Conformations able to accommodate the guide are beyond the reach of thermal fluctuations from the closed states. These results suggest an induced-fit dominant mechanism for guide-strand loading in TtAgo, drastically different from the two-step mechanism for human Ago 2 (hAgo2) identified in our previous study. Such a difference between TtAgo and hAgo2 is found to mainly originate from the distinct rigidity of their L1-PAZ hinge. Further comparison among known Ago structures from various species indicates that the L1-PAZ hinge may be flexible in general for prokaryotic Agos but rigid for eukaryotic Agos. © 2016 American Chemical Society.

  7. Zinc and ATP binding of the hexameric AAA-ATPase PilF from Thermus thermophilus: role in complex stability, piliation, adhesion, twitching motility, and natural transformation.

    Science.gov (United States)

    Salzer, Ralf; Herzberg, Martin; Nies, Dietrich H; Joos, Friederike; Rathmann, Barbara; Thielmann, Yvonne; Averhoff, Beate

    2014-10-31

    The traffic AAA-ATPase PilF is essential for pilus biogenesis and natural transformation of Thermus thermophilus HB27. Recently, we showed that PilF forms hexameric complexes containing six zinc atoms coordinated by conserved tetracysteine motifs. Here we report that zinc binding is essential for complex stability. However, zinc binding is neither required for pilus biogenesis nor natural transformation. A number of the mutants did not exhibit any pili during growth at 64 °C but still were transformable. This leads to the conclusion that type 4 pili and the DNA translocator are distinct systems. At lower growth temperatures (55 °C) the zinc-depleted multiple cysteine mutants were hyperpiliated but defective in pilus-mediated twitching motility. This provides evidence that zinc binding is essential for the role of PilF in pilus dynamics. Moreover, we found that zinc binding is essential for complex stability but dispensable for ATPase activity. In contrast to many polymerization ATPases from mesophilic bacteria, ATP binding is not required for PilF complex formation; however, it significantly increases complex stability. These data suggest that zinc and ATP binding increase complex stability that is important for functionality of PilF under extreme environmental conditions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Functional dissection of the three N-terminal general secretory pathway domains and the Walker motifs of the traffic ATPase PilF from Thermus thermophilus.

    Science.gov (United States)

    Kruse, Kerstin; Salzer, Ralf; Joos, Friederike; Averhoff, Beate

    2018-05-01

    The traffic ATPase PilF of Thermus thermophilus powers pilus assembly as well as uptake of DNA. PilF differs from other traffic ATPases by a triplicated general secretory pathway II, protein E, N-terminal domain (GSPIIABC). We investigated the in vivo and in vitro roles of the GSPII domains, the Walker A motif and a catalytic glutamate by analyzing a set of PilF deletion derivatives and pilF mutants. Here, we report that PilF variants devoid of the first two or all three GSPII domains do not form stable hexamers indicating a role of the triplicated GSPII domain in complex formation and/or stability. A pilFΔGSPIIC mutant was significantly impaired in piliation which leads to the conclusion that the GSPIIC domain plays a vital role in pilus assembly. Interestingly, the pilFΔGSPIIC mutant was hypertransformable. This suggests that GSPIIC strongly affects transformation efficiency. A pilF∆GSPIIA mutant exhibited wild-type piliation but reduced pilus-mediated twitching motility, suggesting that GSPIIA plays a role in pilus dynamics. Furthermore, we report that pilF mutants with a defect in the ATP binding Walker A motif or in the catalytic glutamate residue are defective in piliation and natural transformation. These findings show that both, ATP binding and hydrolysis, are essential for the dual function of PilF in natural transformation and pilus assembly.

  9. Thermus and the Pink Discoloration Defect in Cheese.

    Science.gov (United States)

    Quigley, Lisa; O'Sullivan, Daniel J; Daly, David; O'Sullivan, Orla; Burdikova, Zuzana; Vana, Rostislav; Beresford, Tom P; Ross, R Paul; Fitzgerald, Gerald F; McSweeney, Paul L H; Giblin, Linda; Sheehan, Jeremiah J; Cotter, Paul D

    2016-01-01

    A DNA sequencing-based strategy was applied to study the microbiology of Continental-type cheeses with a pink discoloration defect. The basis for this phenomenon has remained elusive, despite decades of research. The bacterial composition of cheese containing the defect was compared to that of control cheese using 16S rRNA gene and shotgun metagenomic sequencing as well as quantitative PCR (qPCR). Throughout, it was apparent that Thermus , a carotenoid-producing genus, was present at higher levels in defect-associated cheeses than in control cheeses. Prompted by this finding and data confirming the pink discoloration to be associated with the presence of a carotenoid, a culture-based approach was employed, and Thermus thermophilus was successfully cultured from defect-containing cheeses. The link between Thermus and the pinking phenomenon was then established through the cheese defect equivalent of Koch's postulates when the defect was recreated by the reintroduction of a T. thermophilus isolate to a test cheese during the manufacturing process. IMPORTANCE Pink discoloration in cheese is a defect affecting many cheeses throughout the world, leading to significant financial loss for the dairy industry. Despite decades of research, the cause of this defect has remained elusive. The advent of high-throughput, next-generation sequencing has revolutionized the field of food microbiology and, with respect to this study, provided a means of testing a possible microbial basis for this defect. In this study, a combined 16S rRNA, whole-genome sequencing, and quantitative PCR approach was taken. This resulted in the identification of Thermus , a carotenoid-producing thermophile, in defect-associated cheeses and the recreation of the problem in cheeses to which Thermus was added. This finding has the potential to lead to new strategies to eliminate this defect, and our method represents an approach that can be employed to investigate the role of microbes in other food defects

  10. Pulse Radiolysis Studies of Temperature Dependent Electron Transfers among Redox Centers in ba(3)-Cytochrome c Oxidase from Thermus thermophilus

    DEFF Research Database (Denmark)

    Farver, Ole; Wherland, Scot; Antholine, William E

    2010-01-01

    The functioning of cytochrome c oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the Cu(A)(r) site to the low-spin heme-(a)b(o) site, i.e., Cu(A)(r) + heme-a(b)(o) ......The functioning of cytochrome c oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the Cu(A)(r) site to the low-spin heme-(a)b(o) site, i.e., Cu(A)(r) + heme...... as described previously. Semiclassical Marcus theory revealed that λ varies from 0.74 to 1.1 eV, H(ab), varies from ∼2 × 10(-5) eV (0.16 cm(-1)) to ∼24 × 10(-5) eV (1.9 cm(-1)), and βD varies from 9.3 to 13.9. These parameters are consistent with diabatic electron tunneling. The II-Asp111Asn Cu(A) mutation...... of an electron from the low-spin heme to the high-spin heme, i.e., heme-a(b)(r) + heme-a(3)(o) → heme-a(b)(o) + heme-a(3)(r), was not observed with the A-type enzymes in our experiments but was observed with the Thermus ba(3); its Marcus parameters are λ = 1.5 eV, H(ab) = 26.6 × 10(-5) eV (2.14 cm(-1)), and β...

  11. A Density Functional Study for the Bridged Dinuclear Center Based on a High Resolution X-ray Crystal Structure of ba3 Cytochrome c Oxidase from Thermus thermophilus

    Science.gov (United States)

    Du, Wen-Ge Han; Noodleman, Louis

    2014-01-01

    Strong electron density for a peroxide type dioxygen species bridging the Fea3 and CuB dinuclear center (DNC) was observed in the high resolution (1.8 Å) X-ray crystal structures (PDB entries: 3S8G and 3S8F) of ba3 cytochrome c oxidase (CcO) from Thermus thermophilus (Tiefenbrunn et al. PLos ONE 2011, 7, e22348). The crystals represent the as-isolated X-ray photoreduced CcO structures. The bridging peroxide was proposed to arise from the recombination of two radiation produced HO· radicals formed either very near to or even in the space between the two metals of the DNC. It is unclear whether this peroxide species is in the O22−, O2·−, HO2−, or in the H2O2 form, and what is the detailed electronic structure and binding geometry including the DNC. In order to answer what form of this dioxygen species was observed in the DNC of the 1.8 Å X-ray CcO crystal structure (3S8G), we have applied broken-symmetry density functional theory (BS-DFT) geometric and energetic calculations (using OLYP potential) on large DNC cluster models with different Fea3-CuB oxidation and spin states and with either O22−, O2·−, HO2−, or H2O2 in the bridging position. By comparing the DFT optimized geometries with the X-ray crystal structure (3S8G), we propose that the bridging peroxide is HO2−. The X-ray crystal structure is likely to represent the superposition of the Fea32+-(HO2−)-CuB1+ DNC’s in different states (Fe2+ in low-spin (LS), intermediate-spin (IS), or high-spin (HS)) with the majority species having the proton of the HO2− residing on the oxygen atom (O1) which is closer to the Fea32+ site in the Fea32+-(HO-O)−-CuB1+ conformation. Our calculations show that the sidechain of Tyr237 is likely trapped in the deprotonated Tyr237− anion form in the 3S8G X-ray crystal structure. PMID:24262070

  12. Density functional study for the bridged dinuclear center based on a high-resolution X-ray crystal structure of ba3 cytochrome c oxidase from Thermus thermophilus.

    Science.gov (United States)

    Du, Wen-Ge Han; Noodleman, Louis

    2013-12-16

    Strong electron density for a peroxide type dioxygen species bridging the Fea3 and CuB dinuclear center (DNC) was observed in the high-resolution (1.8 Å) X-ray crystal structures (PDB entries 3S8G and 3S8F) of ba3 cytochrome c oxidase (CcO) from Thermus thermophilus. The crystals represent the as-isolated X-ray photoreduced CcO structures. The bridging peroxide was proposed to arise from the recombination of two radiation-produced HO(•) radicals formed either very near to or even in the space between the two metals of the DNC. It is unclear whether this peroxide species is in the O2(2-), O2(•)(-), HO2(-), or the H2O2 form and what is the detailed electronic structure and binding geometry including the DNC. In order to answer what form of this dioxygen species was observed in the DNC of the 1.8 Å X-ray CcO crystal structure (3S8G), we have applied broken-symmetry density functional theory (BS-DFT) geometric and energetic calculations (using OLYP potential) on large DNC cluster models with different Fea3-CuB oxidation and spin states and with O2(2-), O2(•)(-), HO2(-), or H2O2 in the bridging position. By comparing the DFT optimized geometries with the X-ray crystal structure (3S8G), we propose that the bridging peroxide is HO2(-). The X-ray crystal structure is likely to represent the superposition of the Fea3(2+)-(HO2(-))-CuB(+) DNC's in different states (Fe(2+) in low spin (LS), intermediate spin (IS), or high spin (HS)) with the majority species having the proton of the HO2(-) residing on the oxygen atom (O1) which is closer to the Fea3(2+) site in the Fea3(2+)-(HO-O)(-)-CuB(+) conformation. Our calculations show that the side chain of Tyr237 is likely trapped in the deprotonated Tyr237(-) anion form in the 3S8G X-ray crystal structure.

  13. Molecular docking and molecular dynamics simulation studies on Thermus thermophilus leucyl-tRNA synthetase complexed with different amino acids and pre-transfer editing substrates

    Directory of Open Access Journals (Sweden)

    Rayevsky A. V.

    2016-02-01

    Full Text Available Aim. To investigate the structural bases for the amino acid selectivity of the Thermus thermophilus leucyl-tRNA synthetase (LeuRSTT aminoacylation site and to disclose the binding pattern of pre-transfer editing substrates. Methods. Eight amino acids proposed as semi-cognate substrates for aminoacylation and eight aminoacyl-adenylates (formed from AMP and eight amino acids were prepared in zwitterions form. The protein structure with a co-crystallized substrate in the aminoacylation site [PDBID: 1OBH] was taken from RCSB. Docking settings and evaluation of substrate efficiency were followed by twofold docking function analysis for each conformation with Gold CCDC. The molecular dynamics simulation was performed using Gromacs. The procedures of relaxation and binding study were separated in two different subsequent simulations for 50ns and 5ns. Results. The evaluation of substrate efficiency for 8 amino acids by twofold docking function analysis, based on score values,has shown that the ligands of LeuRSTT can be positioned in the following order: Leu>Nva>Hcy>Nle>Met>Cys>Ile >Val. MD simulation has revealed lower electrostatic interactions of isoleucine with the active site of the enzyme compared with those for norvaline and leucine. In the case of aminoacyl-adenylates no significant differences were found based on score values for both GoldScore and Asp functions. Molecular dynamics of leucyl-, isoleucyl- and norvalyl-adenylates showed that the most stable and conformationally favorable is leucine, then follow norvaline and isoleucine. It has been also found that the TYR43 of the active site covers carboxyl group of leucine and norvaline like a shield and deflected towards isoleucine, allowing water molecules to come closer. Conclusions. In this study we revealed some structural basis for screening unfavorable substrates by shape, size and flexibility of a radical. The results obtained for different amino acids by molecular docking and MD studies

  14. Type IV pilus biogenesis, twitching motility, and DNA uptake in Thermus thermophilus: discrete roles of antagonistic ATPases PilF, PilT1, and PilT2.

    Science.gov (United States)

    Salzer, Ralf; Joos, Friederike; Averhoff, Beate

    2014-01-01

    Natural transformation has a large impact on lateral gene flow and has contributed significantly to the ecological diversification and adaptation of bacterial species. Thermus thermophilus HB27 has emerged as the leading model organism for studies of DNA transporters in thermophilic bacteria. Recently, we identified a zinc-binding polymerization nucleoside triphosphatase (NTPase), PilF, which is essential for the transport of DNA through the outer membrane. Here, we present genetic evidence that PilF is also essential for the biogenesis of pili. One of the most challenging questions was whether T. thermophilus has any depolymerization NTPase acting as a counterplayer of PilF. We identified two depolymerization NTPases, PilT1 (TTC1621) and PilT2 (TTC1415), both of which are required for type IV pilus (T4P)-mediated twitching motility and adhesion but dispensable for natural transformation. This suggests that T4P dynamics are not required for natural transformation. The latter finding is consistent with our suggestion that in T. thermophilus, T4P and natural transformation are linked but distinct systems.

  15. Thermostable proteins bioprocesses: The activity of restriction endonuclease-methyltransferase from Thermus thermophilus (RM.TthHB27I cloned in Escherichia coli is critically affected by the codon composition of the synthetic gene.

    Directory of Open Access Journals (Sweden)

    Daria Krefft

    Full Text Available Obtaining thermostable enzymes (thermozymes is an important aspect of biotechnology. As thermophiles have adapted their genomes to high temperatures, their cloned genes' expression in mesophiles is problematic. This is mainly due to their high GC content, which leads to the formation of unfavorable secondary mRNA structures and codon usage in Escherichia coli (E. coli. RM.TthHB27I is a member of a family of bifunctional thermozymes, containing a restriction endonuclease (REase and a methyltransferase (MTase in a single polypeptide. Thermus thermophilus HB27 (T. thermophilus produces low amounts of RM.TthHB27I with a unique DNA cleavage specificity. We have previously cloned the wild type (wt gene into E. coli, which increased the production of RM.TthHB27I over 100-fold. However, its enzymatic activities were extremely low for an ORF expressed under a T7 promoter. We have designed and cloned a fully synthetic tthHB27IRM gene, using a modified 'codon randomization' strategy. Codons with a high GC content and of low occurrence in E. coli were eliminated. We incorporated a stem-loop circuit, devised to negatively control the expression of this highly toxic gene by partially hiding the ribosome-binding site (RBS and START codon in mRNA secondary structures. Despite having optimized 59% of codons, the amount of produced RM.TthHB27I protein was similar for both recombinant tthHB27IRM gene variants. Moreover, the recombinant wt RM.TthHB27I is very unstable, while the RM.TthHB27I resulting from the expression of the synthetic gene exhibited enzymatic activities and stability equal to the native thermozyme isolated from T. thermophilus. Thus, we have developed an efficient purification protocol using the synthetic tthHB27IRM gene variant only. This suggests the effect of co-translational folding kinetics, possibly affected by the frequency of translational errors. The availability of active RM.TthHB27I is of practical importance in molecular biotechnology

  16. Thermostable proteins bioprocesses: The activity of restriction endonuclease-methyltransferase from Thermus thermophilus (RM.TthHB27I) cloned in Escherichia coli is critically affected by the codon composition of the synthetic gene.

    Science.gov (United States)

    Krefft, Daria; Papkov, Aliaksei; Zylicz-Stachula, Agnieszka; Skowron, Piotr M

    2017-01-01

    Obtaining thermostable enzymes (thermozymes) is an important aspect of biotechnology. As thermophiles have adapted their genomes to high temperatures, their cloned genes' expression in mesophiles is problematic. This is mainly due to their high GC content, which leads to the formation of unfavorable secondary mRNA structures and codon usage in Escherichia coli (E. coli). RM.TthHB27I is a member of a family of bifunctional thermozymes, containing a restriction endonuclease (REase) and a methyltransferase (MTase) in a single polypeptide. Thermus thermophilus HB27 (T. thermophilus) produces low amounts of RM.TthHB27I with a unique DNA cleavage specificity. We have previously cloned the wild type (wt) gene into E. coli, which increased the production of RM.TthHB27I over 100-fold. However, its enzymatic activities were extremely low for an ORF expressed under a T7 promoter. We have designed and cloned a fully synthetic tthHB27IRM gene, using a modified 'codon randomization' strategy. Codons with a high GC content and of low occurrence in E. coli were eliminated. We incorporated a stem-loop circuit, devised to negatively control the expression of this highly toxic gene by partially hiding the ribosome-binding site (RBS) and START codon in mRNA secondary structures. Despite having optimized 59% of codons, the amount of produced RM.TthHB27I protein was similar for both recombinant tthHB27IRM gene variants. Moreover, the recombinant wt RM.TthHB27I is very unstable, while the RM.TthHB27I resulting from the expression of the synthetic gene exhibited enzymatic activities and stability equal to the native thermozyme isolated from T. thermophilus. Thus, we have developed an efficient purification protocol using the synthetic tthHB27IRM gene variant only. This suggests the effect of co-translational folding kinetics, possibly affected by the frequency of translational errors. The availability of active RM.TthHB27I is of practical importance in molecular biotechnology, extending

  17. Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization.

    Directory of Open Access Journals (Sweden)

    Huiping Liu

    Full Text Available Laccases have been used for the decolorization and detoxification of synthetic dyes due to their ability to oxidize a wide variety of dyes with water as the sole byproduct. A putative laccase gene (LacTT from Thermus thermophilus SG0.5JP17-16 was screened using the genome mining approach, and it was highly expressed in Pichia pastoris, yielding a high laccase activity of 6130 U/L in a 10-L fermentor. The LacTT open reading frame encoded a protein of 466 amino acid residues with four putative Cu-binding regions. The optimal pH of the recombinant LacTT was 4.5, 6.0, 7.5 and 8.0 with 2,2'-azino-bis(3-ethylbenzothazoline-6-sulfonic acid (ABTS, syringaldazine (SGZ, guaiacol, and 2,6-dimethoxyphenol (2,6-DMP as the substrate, respectively. The optimal temperature of LacTT was 90°C with guaiacol as the substrate. LacTT was highly stable at pH 4.0-11.0 and thermostable at 40°C-90°C, confirming that it is a pH-stable and thermostable laccase. Furthermore, LacTT also exhibited high tolerance to halides such as NaCl, NaBr and NaF, and decolorized 100%, 94%, 94% and 73% of Congo Red, Reactive Black B and Reactive Black WNN, and Remazol Brilliant Blue R, respectively. Interestingly, addition of high concentration of NaCl increased the RBBR decolorization efficiency of LacTT. These results suggest that LacTT is a good candidate for industrial applications such as dyestuff processing and degradation of dyes in textile wastewaters.

  18. Broken Symmetry DFT Calculations/Analysis for Oxidized and Reduced Dinuclear Center in Cytochrome c Oxidase: Relating Structures, Protonation States, Energies, and Mössbauer Properties in ba3 Thermus thermophilus.

    Science.gov (United States)

    Han Du, Wen-Ge; Noodleman, Louis

    2015-08-03

    The Fea3(3+)···CuB(2+) dinuclear center (DNC) structure of the as-isolated oxidized ba3 cytochrome c oxidase (CcO) from Thermus thermophilus (Tt) is still not fully understood. When the proteins are initially crystallized in the oxidized state, they typically become radiolyticly reduced through X-ray irradiation. Several X-ray crystal structures of reduced ba3 CcO from Tt are available. However, depending on whether the crystals were prepared in a lipidic cubic phase environment or in detergent micelles, and whether the CcO's were chemically or radiolyticly reduced, the X-ray diffraction analysis of the crystals showed different Fea3(2+)···CuB(+) DNC structures. On the other hand, Mössbauer spectroscopic experiments on reduced and oxidized ba3 CcOs from Tt (Zimmermann et al., Proc. Natl. Acad. Sci. USA 1988, 85, 5779-5783) revealed multiple (57)Fea3(2+) and (57)Fea3(3+) components. Moreover, one of the (57)Fea3(3+) components observed at 4.2 K transformed from a proposed "low-spin" state to a different high-spin species when the temperature was increased above 190 K, whereas the other high-spin (57)Fea3(3+) component remained unchanged. In the current Article, in order to understand the heterogeneities of the DNC in both Mössbauer spectra and X-ray crystal structures, the spin crossover of one of the (57)Fea3(3+) components, and how the coordination and spin states of the Fea3(3+/2+) and Cu(2+/1+) sites relate to the heterogeneity of the DNC structures, we have applied density functional OLYP calculations to the DNC clusters established based on the different X-ray crystal structures of ba3 CcO from Tt. As a result, specific oxidized and reduced DNC structures related to the observed Mössbauer spectra and to spectral changes with temperature have been proposed. Our calculations also show that, in certain intermediate states, the His233 and His283 ligand side chains may dissociate from the CuB(+) site, and they may become potential proton loading sites

  19. A broken-symmetry density functional study of structures, energies, and protonation states along the catalytic O-O bond cleavage pathway in ba3 cytochrome c oxidase from Thermus thermophilus.

    Science.gov (United States)

    Han Du, Wen-Ge; Götz, Andreas W; Yang, Longhua; Walker, Ross C; Noodleman, Louis

    2016-08-21

    Broken-symmetry density functional calculations have been performed on the [Fea3, CuB] dinuclear center (DNC) of ba3 cytochrome c oxidase from Thermus thermophilus in the states of [Fea3(3+)-(HO2)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], using both PW91-D3 and OLYP-D3 functionals. Tyr237 is a special tyrosine cross-linked to His233, a ligand of CuB. The calculations have shown that the DNC in these states strongly favors the protonation of His376, which is above propionate-A, but not of the carboxylate group of propionate-A. The energies of the structures obtained by constrained geometry optimizations along the O-O bond cleavage pathway between [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] have also been calculated. The transition of [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] → [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] shows a very small barrier, which is less than 3.0/2.0 kcal mol(-1) in PW91-D3/OLYP-D3 calculations. The protonation state of His376 does not affect this O-O cleavage barrier. The rate limiting step of the transition from state A (in which O2 binds to Fea3(2+)) to state PM ([Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], where the O-O bond is cleaved) in the catalytic cycle is, therefore, the proton transfer originating from Tyr237 to O-O to form the hydroperoxo [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] state. The importance of His376 in proton uptake and the function of propionate-A/neutral-Asp372 as a gate to prevent the proton from back-flowing to the DNC are also shown.

  20. Sequence of the hyperplastic genome of the naturally competent Thermus scotoductus SA-01

    Directory of Open Access Journals (Sweden)

    Gounder Kamini

    2011-11-01

    Full Text Available Abstract Background Many strains of Thermus have been isolated from hot environments around the world. Thermus scotoductus SA-01 was isolated from fissure water collected 3.2 km below surface in a South African gold mine. The isolate is capable of dissimilatory iron reduction, growth with oxygen and nitrate as terminal electron acceptors and the ability to reduce a variety of metal ions, including gold, chromate and uranium, was demonstrated. The genomes from two different Thermus thermophilus strains have been completed. This paper represents the completed genome from a second Thermus species - T. scotoductus. Results The genome of Thermus scotoductus SA-01 consists of a chromosome of 2,346,803 bp and a small plasmid which, together are about 11% larger than the Thermus thermophilus genomes. The T. thermophilus megaplasmid genes are part of the T. scotoductus chromosome and extensive rearrangement, deletion of nonessential genes and acquisition of gene islands have occurred, leading to a loss of synteny between the chromosomes of T. scotoductus and T. thermophilus. At least nine large inserts of which seven were identified as alien, were found, the most remarkable being a denitrification cluster and two operons relating to the metabolism of phenolics which appear to have been acquired from Meiothermus ruber. The majority of acquired genes are from closely related species of the Deinococcus-Thermus group, and many of the remaining genes are from microorganisms with a thermophilic or hyperthermophilic lifestyle. The natural competence of Thermus scotoductus was confirmed experimentally as expected as most of the proteins of the natural transformation system of Thermus thermophilus are present. Analysis of the metabolic capabilities revealed an extensive energy metabolism with many aerobic and anaerobic respiratory options. An abundance of sensor histidine kinases, response regulators and transporters for a wide variety of compounds are indicative

  1. Novel highly thermostable endolysin from Thermus scotoductus MAT2119 bacteriophage Ph2119 with amino acid sequence similarity to eukaryotic peptidoglycan recognition proteins.

    Science.gov (United States)

    Plotka, Magdalena; Kaczorowska, Anna-Karina; Stefanska, Aleksandra; Morzywolek, Agnieszka; Fridjonsson, Olafur H; Dunin-Horkawicz, Stanislaw; Kozlowski, Lukasz; Hreggvidsson, Gudmundur O; Kristjansson, Jakob K; Dabrowski, Slawomir; Bujnicki, Janusz M; Kaczorowski, Tadeusz

    2014-02-01

    In this study, we present the discovery and characterization of a highly thermostable endolysin from bacteriophage Ph2119 infecting Thermus strain MAT2119 isolated from geothermal areas in Iceland. Nucleotide sequence analysis of the 16S rRNA gene affiliated the strain with the species Thermus scotoductus. Bioinformatics analysis has allowed identification in the genome of phage 2119 of an open reading frame (468 bp in length) coding for a 155-amino-acid basic protein with an Mr of 17,555. Ph2119 endolysin does not resemble any known thermophilic phage lytic enzymes. Instead, it has conserved amino acid residues (His(30), Tyr(58), His(132), and Cys(140)) that form a Zn(2+) binding site characteristic of T3 and T7 lysozymes, as well as eukaryotic peptidoglycan recognition proteins, which directly bind to, but also may destroy, bacterial peptidoglycan. The purified enzyme shows high lytic activity toward thermophiles, i.e., T. scotoductus (100%), Thermus thermophilus (100%), and Thermus flavus (99%), and also, to a lesser extent, toward mesophilic Gram-negative bacteria, i.e., Escherichia coli (34%), Serratia marcescens (28%), Pseudomonas fluorescens (13%), and Salmonella enterica serovar Panama (10%). The enzyme has shown no activity against a number of Gram-positive bacteria analyzed, with the exception of Deinococcus radiodurans (25%) and Bacillus cereus (15%). Ph2119 endolysin was found to be highly thermostable: it retains approximately 87% of its lytic activity after 6 h of incubation at 95°C. The optimum temperature range for the enzyme activity is 50°C to 78°C. The enzyme exhibits lytic activity in the pH range of 6 to 10 (maximum at pH 7.5 to 8.0) and is also active in the presence of up to 500 mM NaCl.

  2. Affinity of ribosomal protein S8 from mesophilic and (hyper)thermophilic archaea and bacteria for 16S rRNA correlates with the growth temperatures of the organisms.

    Science.gov (United States)

    Gruber, Thomas; Köhrer, Caroline; Lung, Birgit; Shcherbakov, Dmitri; Piendl, Wolfgang

    2003-08-14

    The ribosomal protein S8 plays a pivotal role in the assembly of the 30S ribosomal subunit. Using filter binding assays, S8 proteins from mesophilic, and (hyper)thermophilic species of the archaeal genus Methanococcus and from the bacteria Escherichia coli and Thermus thermophilus were tested for their affinity to their specific 16S rRNA target site. S8 proteins from hyperthermophiles exhibit a 100-fold and S8 from thermophiles exhibit a 10-fold higher affinity than their mesophilic counterparts. Thus, there is a striking correlation of affinity of S8 proteins for their specific RNA binding site and the optimal growth temperatures of the respective organisms. The stability of individual rRNA-protein complexes might modulate the stability of the ribosome, providing a maximum of thermostability and flexibility at the growth temperature of the organism.

  3. Effects of Argonaute on Gene Expression in Thermus thermophilus

    NARCIS (Netherlands)

    Swarts, D.C.; Koehorst, J.J.; Westra, E.R.; Schaap, P.J.; Oost, van der J.

    2015-01-01

    BACKGROUND: Eukaryotic Argonaute proteins mediate RNA-guided RNA interference, allowing both regulation of host gene expression and defense against invading mobile genetic elements. Recently, it has become evident that prokaryotic Argonaute homologs mediate DNA-guided DNA interference, and play a

  4. The location of protein S8 and surrounding elements of 16S rRNA in the 70S ribosome from combined use of directed hydroxyl radical probing and X-ray crystallography.

    Science.gov (United States)

    Lancaster, L; Culver, G M; Yusupova, G Z; Cate, J H; Yusupov, M M; Noller, H F

    2000-05-01

    Ribosomal protein S8, which is essential for the assembly of the central domain of 16S rRNA, is one of the most thoroughly studied RNA-binding proteins. To map its surrounding RNA in the ribosome, we carried out directed hydroxyl radical probing of 16S rRNA using Fe(II) tethered to nine different positions on the surface of protein S8 in 70S ribosomes. Hydroxyl radical-induced cleavage was observed near the classical S8-binding site in the 620 stem, and flanking the other S8-footprinted regions of the central domain at the three-helix junction near position 650 and the 825 and 860 stems. In addition, cleavage near the 5' terminus of 16S rRNA, in the 300 region of its 5' domain, and in the 1070 region of its 3'-major domain provide information about the proximity to S8 of RNA elements not directly involved in its binding. These data, along with previous footprinting and crosslinking results, allowed positioning of protein S8 and its surrounding RNA elements in a 7.8-A map of the Thermus thermophilus 70S ribosome. The resulting model is in close agreement with the extensive body of data from previous studies using protein-protein and protein-RNA crosslinking, chemical and enzymatic footprinting, and genetics.

  5. Exploration of Deinococcus-Thermus molecular diversity by novel group-specific PCR primers

    Science.gov (United States)

    Theodorakopoulos, Nicolas; Bachar, Dipankar; Christen, Richard; Alain, Karine; Chapon, Virginie

    2013-01-01

    The deeply branching Deinococcus-Thermus lineage is recognized as one of the most extremophilic phylum of bacteria. In previous studies, the presence of Deinococcus-related bacteria in the hot arid Tunisian desert of Tataouine was demonstrated through combined molecular and culture-based approaches. Similarly, Thermus-related bacteria have been detected in Tunisian geothermal springs. The present work was conducted to explore the molecular diversity within the Deinococcus-Thermus phylum in these extreme environments. A set of specific primers was designed in silico on the basis of 16S rRNA gene sequences, validated for the specific detection of reference strains, and used for the polymerase chain reaction (PCR) amplification of metagenomic DNA retrieved from the Tataouine desert sand and Tunisian hot spring water samples. These analyses have revealed the presence of previously undescribed Deinococcus-Thermus bacterial sequences within these extreme environments. The primers designed in this study thus represent a powerful tool for the rapid detection of Deinococcus-Thermus in environmental samples and could also be applicable to clarify the biogeography of the Deinococcus-Thermus phylum. PMID:23996915

  6. Complete Genome Analysis ofThermus parvatiensisand Comparative Genomics ofThermusspp. Provide Insights into Genetic Variability and Evolution of Natural Competence as Strategic Survival Attributes.

    Science.gov (United States)

    Tripathi, Charu; Mishra, Harshita; Khurana, Himani; Dwivedi, Vatsala; Kamra, Komal; Negi, Ram K; Lal, Rup

    2017-01-01

    Thermophilic environments represent an interesting niche. Among thermophiles, the genus Thermus is among the most studied genera. In this study, we have sequenced the genome of Thermus parvatiensis strain RL, a thermophile isolated from Himalayan hot water springs (temperature >96°C) using PacBio RSII SMRT technique. The small genome (2.01 Mbp) comprises a chromosome (1.87 Mbp) and a plasmid (143 Kbp), designated in this study as pTP143. Annotation revealed a high number of repair genes, a squeezed genome but containing highly plastic plasmid with transposases, integrases, mobile elements and hypothetical proteins (44%). We performed a comparative genomic study of the group Thermus with an aim of analysing the phylogenetic relatedness as well as niche specific attributes prevalent among the group. We compared the reference genome RL with 16 Thermus genomes to assess their phylogenetic relationships based on 16S rRNA gene sequences, average nucleotide identity (ANI), conserved marker genes (31 and 400), pan genome and tetranucleotide frequency. The core genome of the analyzed genomes contained 1,177 core genes and many singleton genes were detected in individual genomes, reflecting a conserved core but adaptive pan repertoire. We demonstrated the presence of metagenomic islands (chromosome:5, plasmid:5) by recruiting raw metagenomic data (from the same niche) against the genomic replicons of T. parvatiensis . We also dissected the CRISPR loci wide all genomes and found widespread presence of this system across Thermus genomes. Additionally, we performed a comparative analysis of competence loci wide Thermus genomes and found evidence for recent horizontal acquisition of the locus and continued dispersal among members reflecting that natural competence is a beneficial survival trait among Thermus members and its acquisition depicts unending evolution in order to accomplish optimal fitness.

  7. Galactose transport in Streptococcus thermophilus.

    OpenAIRE

    Hutkins, R; Morris, H A; McKay, L L

    1985-01-01

    Although Streptococcus thermophilus accumulated [14C]lactose in the absence of an endogenous energy source, galactose-fermenting (Gal+) cells were unable to accumulate [14C]galactose unless an additional energy source was added to the test system. Both Gal+ and galactose-nonfermenting (Gal-) strains transported galactose when preincubated with sucrose. Accumulation was inhibited 50 or 95% when 10 mM sodium fluoride or 1.0 mM iodoacetic acid, respectively, was added to sucrose-treated cells, i...

  8. Characterization of Exopolysaccharide Produced by Streptococcus thermophilus CC30

    Directory of Open Access Journals (Sweden)

    Sri Lakshmi Ramya Krishna Kanamarlapudi

    2017-01-01

    Full Text Available An exopolysaccharide (EPS producing strain CC30 was isolated from raw milk and identified as Streptococcus thermophilus with morphological and 16S sequencing analysis. The strain was shown to produce 1.95 g/L of EPS when grown in skim milk lactose medium at 30°C by increasing the viscosity of the medium. The EPS was isolated and purified, and it was shown to consist of glucose and galactose in 1 : 1 ratio, with molecular weights ranging from 58 to 180 kDa. FTIR spectroscopy indicated the EPS to have amide, hydroxyl, and carboxyl groups. Under Atomic Force Microscopy, EPS showed spike-like lumps of EPS. Scanning Electron Microscopy (SEM studies showed that it had irregular lumps with a coarse surface. The EPS displayed pseudoplastic nature. Thermogravimetric analysis (TGA reported a degradation temperature of 110.84°C. The purified EPS exhibited reducing activity, hydrogen peroxide radical scavenging activity, and emulsification activity. The results of the present study indicated that EPS producing Streptococcus thermophilus could serve as a promising candidate for further exploitation in food industry.

  9. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus.

    Science.gov (United States)

    Lal, Devi; Verma, Mansi; Lal, Rup

    2011-06-25

    Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus. 16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis. The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach. The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus.

  10. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus

    Directory of Open Access Journals (Sweden)

    Verma Mansi

    2011-06-01

    Full Text Available Abstract Background Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus. Methods 16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis. Results The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach. Conclusions The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus.

  11. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus

    Science.gov (United States)

    2011-01-01

    Background Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus. Methods 16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis. Results The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach. Conclusions The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus. PMID:21702978

  12. Evolutionary relationships among salivarius streptococci as inferred from multilocus phylogenies based on 16S rRNA-encoding, recA, secA, and secY gene sequences

    Directory of Open Access Journals (Sweden)

    Boissinot Maurice

    2009-10-01

    Full Text Available Abstract Background Streptococci are divided into six phylogenetic groups, i.e, anginosus, bovis, mitis, mutans, pyogenic, and salivarius, with the salivarius group consisting of only three distinct species. Two of these species, Streptococcus salivarius and Streptococcus vestibularis, are members of the normal human oral microflora whereas the third, Streptococcus thermophilus, is found in bovine milk. Given that S. salivarius and S. vestibularis share several physiological characteristics, in addition to inhabiting the same ecosystem, one would assume that they would be more closely related to each other than to S. thermophilus. However, the few phylogenetic trees published so far suggest that S. vestibularis is more closely related to S. thermophilus. To determine whether this phylogenetic relationship is genuine, we performed phylogenetic inferences derived from secA and secY, the general secretion housekeeping genes, recA, a gene from a separate genetic locus that encodes a major component of the homologous recombinational apparatus, and 16S rRNA-encoding gene sequences using other streptococcal species as outgroups. Results The maximum likelihood (ML and maximum parsimony (MP phylogenetic inferences derived from the secA and recA gene sequences provided strong support for the S. vestibularis/S. thermophilus sister-relationship, whereas 16S rRNA-encoding and secY-based analyses could not discriminate between alternate topologies. Phylogenetic analyses derived from the concatenation of these sequences unambiguously supported the close affiliation of S. vestibularis and S. thermophilus. Conclusion Our results corroborated the sister-relationship between S. vestibularis and S. thermophilus and the concomitant early divergence of S. salivarius at the base of the salivarius lineage.

  13. Evolutionary relationships among salivarius streptococci as inferred from multilocus phylogenies based on 16S rRNA-encoding, recA, secA, and secY gene sequences.

    Science.gov (United States)

    Pombert, Jean-François; Sistek, Viridiana; Boissinot, Maurice; Frenette, Michel

    2009-10-30

    Streptococci are divided into six phylogenetic groups, i.e, anginosus, bovis, mitis, mutans, pyogenic, and salivarius, with the salivarius group consisting of only three distinct species. Two of these species, Streptococcus salivarius and Streptococcus vestibularis, are members of the normal human oral microflora whereas the third, Streptococcus thermophilus, is found in bovine milk. Given that S. salivarius and S. vestibularis share several physiological characteristics, in addition to inhabiting the same ecosystem, one would assume that they would be more closely related to each other than to S. thermophilus. However, the few phylogenetic trees published so far suggest that S. vestibularis is more closely related to S. thermophilus. To determine whether this phylogenetic relationship is genuine, we performed phylogenetic inferences derived from secA and secY, the general secretion housekeeping genes, recA, a gene from a separate genetic locus that encodes a major component of the homologous recombinational apparatus, and 16S rRNA-encoding gene sequences using other streptococcal species as outgroups. The maximum likelihood (ML) and maximum parsimony (MP) phylogenetic inferences derived from the secA and recA gene sequences provided strong support for the S. vestibularis/S. thermophilus sister-relationship, whereas 16S rRNA-encoding and secY-based analyses could not discriminate between alternate topologies. Phylogenetic analyses derived from the concatenation of these sequences unambiguously supported the close affiliation of S. vestibularis and S. thermophilus. Our results corroborated the sister-relationship between S. vestibularis and S. thermophilus and the concomitant early divergence of S. salivarius at the base of the salivarius lineage.

  14. ORF Alignment: NC_006461 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available [Thermus thermophilus HB8] pdb|1FP9|A Chain A, Structure ... Of Amylomaltase From Thermus Thermophilus Hb8 In Space... ... Amylomaltase From Thermus Thermophilus Hb8 In Space ... Group P21212 ... Length = 500 ... Query

  15. ORF Alignment: NC_005835 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available [Thermus thermophilus HB8] pdb|1FP9|A Chain A, Structure ... Of Amylomaltase From Thermus Thermophilus Hb8 In Space... ... Amylomaltase From Thermus Thermophilus Hb8 In Space ... Group P21212 ... Length = 500 ... Query

  16. Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Siřišťová, L.; Sigler, Karel

    2011-01-01

    Roč. 15, č. 6 (2011), s. 697-709 ISSN 1431-0651 R&D Projects: GA ČR(CZ) GAP503/11/0215 Institutional research plan: CEZ:AV0Z50200510 Keywords : Thermus sp * T. aquaticus * Meiothermus ruber Subject RIV: EE - Microbiology, Virology Impact factor: 2.941, year: 2011

  17. High yields of active Thermus thermophilus proline dehydrogenase are obtained using maltose-binding protein as a solubility tag.

    NARCIS (Netherlands)

    Huijbers, M.M.E.; Berkel, van W.J.H.

    2015-01-01

    Proline dehydrogenase (ProDH) catalyzes the FAD-dependent oxidation of proline to ¿1-pyrroline-5-carboxylate, the first step of proline catabolism in many organisms. Next to being involved in a number of physiological processes, ProDH is of interest for practical applications because the proline

  18. New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme

    Directory of Open Access Journals (Sweden)

    Rocha-Martín Javier

    2011-11-01

    Full Text Available Abstract Background The number of biotransformations that use nicotinamide recycling systems is exponentially growing. For this reason one of the current challenges in biocatalysis is to develop and optimize more simple and efficient cofactor recycling systems. One promising approach to regenerate NAD+ pools is the use of NADH-oxidases that reduce oxygen to hydrogen peroxide while oxidizing NADH to NAD+. This class of enzymes may be applied to asymmetric reduction of prochiral substrates in order to obtain enantiopure compounds. Results The NADH-oxidase (NOX presented here is a flavoenzyme which needs exogenous FAD or FMN to reach its maximum velocity. Interestingly, this enzyme is 6-fold hyperactivated by incubation at high temperatures (80°C under limiting concentrations of flavin cofactor, a change that remains stable even at low temperatures (37°C. The hyperactivated form presented a high specific activity (37.5 U/mg at low temperatures despite isolation from a thermophile source. Immobilization of NOX onto agarose activated with glyoxyl groups yielded the most stable enzyme preparation (6-fold more stable than the hyperactivated soluble enzyme. The immobilized derivative was able to be reactivated under physiological conditions after inactivation by high solvent concentrations. The inactivation/reactivation cycle could be repeated at least three times, recovering full NOX activity in all cases after the reactivation step. This immobilized catalyst is presented as a recycling partner for a thermophile alcohol dehydrogenase in order to perform the kinetic resolution secondary alcohols. Conclusion We have designed, developed and characterized a heterogeneous and robust biocatalyst which has been used as recycling partner in the kinetic resolution of rac-1-phenylethanol. The high stability along with its capability to be reactivated makes this biocatalyst highly re-useable for cofactor recycling in redox biotransformations.

  19. Pb2+ Effects on Growth, Lipids, and Protein and DNA Profiles of the Thermophilic Bacterium Thermus Thermophilus

    OpenAIRE

    Nicolaus, Barbara; Poli, Annarita; Di Donato, Paola; Romano, Ida; Laezza, Giusi; Gioiello, Alessia; Ulgiati, Sergio; Fratianni, Florinda; Nazzaro, Filomena; Orlando, Pierangelo; Dumontet, Stefano

    2016-01-01

    Extremophiles are organisms able to thrive in extreme environmental conditions and some of them show the ability to survive high doses of heavy metals thanks to defensive mechanisms provided by primary and secondary metabolic products, i.e., extremolytes, lipids, and extremozymes. This is why there is a growing scientific and industrial interest in the use of thermophilic bacteria in a host of tasks, from the environmental detoxification of heavy metal to industrial activities, such as bio-ma...

  20. Stress fermentation strategies for the production of hyperthermostable superoxide dismutase from Thermus thermophilus HB27: effects of ions.

    Science.gov (United States)

    Zhu, Hu; Liu, Jianguo; Qu, Jianbo; Gao, Xinliang; Pan, Tao; Cui, Zhanfeng; Zhao, Xiubo; Lu, Jian R

    2013-11-01

    In this study, we explored how ammonium and metal ion stresses affected the production of recombinant hyperthermostable manganese superoxide dismutase (Mn-SOD). To improve Mn-SOD production, fed-batch culture in shake flasks and bioreactor fermentation were undertaken to examine the effects of [Formula: see text] and Mn(2+) feeding. Under the optimized feeding time and concentrations of [Formula: see text] and Mn(2+), the maximal SOD activity obtained from bioreactor fermentation reached some 480 U/ml, over 4 times higher than that in batch cultivation (113 U/ml), indicating a major enhancement of the concentration of Mn-SOD in the scale-up of hyperthermostable Mn-SOD production. In contrast, when the fed-batch culture with appropriate [Formula: see text] and Mn(2+) feeding was carried out in the same 5-L stirred tank bioreactor, a maximal SOD concentration of some 450 U/ml was obtained, again indicating substantial increase in SOD activity as a result of [Formula: see text] and Mn(2+) feeding. The isoelectric point (pI) of the sample was found to be 6.2. It was highly stable at 90 °C and circular dichroism measurements indicated a high α-helical content of 70 % as well, consistent with known SOD properties. This study indicates that [Formula: see text] and Mn(2+) play important roles in Mn-SOD expression. Stress fermentation strategies established in this study are useful for large-scale efficient production of hyperthermostable Mn-SOD and may also be valuable for the scale-up of other extremozymes.

  1. Proton transfer in the K-channel analog of B-type Cytochrome c oxidase from Thermus thermophilus.

    Science.gov (United States)

    Woelke, Anna Lena; Wagner, Anke; Galstyan, Gegham; Meyer, Tim; Knapp, Ernst-Walter

    2014-11-04

    A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers.

  2. Whole Genome Comparison of Thermus sp. NMX2.A1 Reveals Principle Carbon Metabolism Differences with Closest Relation Thermus scotoductus SA-01

    Directory of Open Access Journals (Sweden)

    Walter J. Müller

    2016-09-01

    Full Text Available Genome sequencing of the yellow-pigmented, thermophilic bacterium Thermus sp. NMX2.A1 resulted in a 2.29 Mb draft genome that encodes for 2312 proteins. The genetic relationship between various strains from the genus Thermus was assessed based on phylogenomic analyses using a concatenated set of conserved proteins. The resulting phylogenetic tree illustrated that Thermus sp. NMX2 A.1 clusters together with Thermus scotoductus SA-01, despite being isolated from vastly different geographical locations. The close evolutionary relationship and metabolic parallels between the two strains has previously been recognized; however, neither strain’s genome data were available at that point in time. Genomic comparison of the Thermus sp. NMX2.A1 and T. scotoductus SA-01, as well as other closely related Thermus strains, revealed a high degree of synteny at both the genomic and proteomic level, with processes such as denitrification and natural cell competence appearing to be conserved. However, despite this high level of similarity, analysis revealed a complete, putative Calvin–Benson–Bassham (CBB cycle in NMX2.A1 that is absent in SA-01. Analysis of horizontally transferred gene islands provide evidence that NMX2 selected these genes due to pressure from its HCO3- rich environment, which is in stark contrast to that of the deep subsurface isolated SA-01.

  3. Whole Genome Comparison of Thermus sp. NMX2.A1 Reveals Principle Carbon Metabolism Differences with Closest Relation Thermus scotoductus SA-01.

    Science.gov (United States)

    Müller, Walter J; Tlalajoe, Nokuthula; Cason, Errol D; Litthauer, Derek; Reva, Oleg; Brzuszkiewicz, Elzbieta; van Heerden, Esta

    2016-09-08

    Genome sequencing of the yellow-pigmented, thermophilic bacterium Thermus sp. NMX2.A1 resulted in a 2.29 Mb draft genome that encodes for 2312 proteins. The genetic relationship between various strains from the genus Thermus was assessed based on phylogenomic analyses using a concatenated set of conserved proteins. The resulting phylogenetic tree illustrated that Thermus sp. NMX2 A.1 clusters together with Thermus scotoductus SA-01, despite being isolated from vastly different geographical locations. The close evolutionary relationship and metabolic parallels between the two strains has previously been recognized; however, neither strain's genome data were available at that point in time. Genomic comparison of the Thermus sp. NMX2.A1 and T. scotoductus SA-01, as well as other closely related Thermus strains, revealed a high degree of synteny at both the genomic and proteomic level, with processes such as denitrification and natural cell competence appearing to be conserved. However, despite this high level of similarity, analysis revealed a complete, putative Calvin-Benson-Bassham (CBB) cycle in NMX2.A1 that is absent in SA-01. Analysis of horizontally transferred gene islands provide evidence that NMX2 selected these genes due to pressure from its HCO3 (-) rich environment, which is in stark contrast to that of the deep subsurface isolated SA-01. Copyright © 2016 Müller et al.

  4. A functional pseudoknot in 16S ribosomal RNA.

    OpenAIRE

    Powers, T; Noller, H F

    1991-01-01

    Several lines of evidence indicate that the universally conserved 530 loop of 16S ribosomal RNA plays a crucial role in translation, related to the binding of tRNA to the ribosomal A site. Based upon limited phylogenetic sequence variation, Woese and Gutell (1989) have proposed that residues 524-526 in the 530 hairpin loop are base paired with residues 505-507 in an adjoining bulge loop, suggesting that this region of 16S rRNA folds into a pseudoknot structure. Here, we demonstrate that Watso...

  5. Sequence analysis of mitochondrial 16S ribosomal RNA gene ...

    Indian Academy of Sciences (India)

    Unknown

    Sequence analysis of mitochondrial 16S ribosomal RNA gene fragment from seven mosquito species. YOGESH S SHOUCHE* and MILIND S PATOLE. National Center for Cell Science, Pune University Campus, Pune 411 007, India. *Corresponding author (Fax, 91-20-5672259; Email, yogesh@nccs.res.in). Mosquitoes are ...

  6. Complete Genome Sequence of Thermus aquaticus Y51MC23.

    Directory of Open Access Journals (Sweden)

    Phillip J Brumm

    Full Text Available Thermus aquaticus Y51MC23 was isolated from a boiling spring in the Lower Geyser Basin of Yellowstone National Park. Remarkably, this T. aquaticus strain is able to grow anaerobically and produces multiple morphological forms. Y51MC23 is a Gram-negative, rod-shaped organism that grows well between 50°C and 80°C with maximum growth rate at 65°C to 70°C. Growth studies suggest that Y51MC23 primarily scavenges protein from the environment, supported by the high number of secreted and intracellular proteases and peptidases as well as transporter systems for amino acids and peptides. The genome was assembled de novo using a 350 bp fragment library (paired end sequencing and an 8 kb long span mate pair library. A closed and finished genome was obtained consisting of a single chromosome of 2.15 Mb and four plasmids of 11, 14, 70, and 79 kb. Unlike other Thermus species, functions usually found on megaplasmids were identified on the chromosome. The Y51MC23 genome contains two full and two partial prophage as well as numerous CRISPR loci. The high identity and synteny between Y51MC23 prophage 2 and that of Thermus sp. 2.9 is interesting, given the 8,800 km separation of the two hot springs from which they were isolated. The anaerobic lifestyle of Y51MC23 is complex, with multiple morphologies present in cultures. The use of fluorescence microscopy reveals new details about these unusual morphological features, including the presence of multiple types of large and small spheres, often forming a confluent layer of spheres. Many of the spheres appear to be formed not from cell envelope or outer membrane components as previously believed, but from a remodeled peptidoglycan cell wall. These complex morphological forms may serve multiple functions in the survival of the organism, including food and nucleic acid storage as well as colony attachment and organization.

  7. High throughput 16S rRNA gene amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r......RNA gene amplicon sequencing can be used to reveal factors of importance for the operation of full-scale nutrient removal plants related to settling problems and floc properties. Using optimized DNA extraction protocols, indexed primers and our in-house Illumina platform, we prepared multiple samples...... be correlated to the presence of the species that are regarded as “strong” and “weak” floc formers. In conclusion, 16S rRNA gene amplicon sequencing provides a high throughput approach for a rapid and cheap community profiling of activated sludge that in combination with multivariate statistics can be used...

  8. Cracking Streptococcus thermophilus to stimulate the growth of the probiotic Lactobacillus casei in co-culture.

    Science.gov (United States)

    Ma, Chengjie; Ma, Aimin; Gong, Guangyu; Liu, Zhenmin; Wu, Zhengjun; Guo, Benheng; Chen, Zhengjun

    2015-10-01

    Lactobacillus casei, a probiotic, and Streptococcus thermophilus, a fast acidifying lactic acid bacterial strain, are both used in the food industry. The aim of this study was to investigate the interaction between L. casei and S. thermophilus in the presence or absence of S. thermophilus-specific bacteriophage during milk fermentation. The acidification capability of L. casei co-cultured with S. thermophilus was significantly higher than that observed for L. casei or S. thermophilus cultured alone. However, the probiotic content (i.e., L. casei cell viability) was low. The fastest acidification and the highest viable L. casei cell count were observed in co-cultures of L. casei and S. thermophilus with S. thermophilus phage. In these co-cultures, S. thermophilus compensated for the slow acid production of L. casei in the early exponential growth phase. Thereafter, phage-induced lysis of the S. thermophilus cells eliminated the competition for nutrients, allowing L. casei to grow well. Additionally, the ruptured S. thermophilus cells released intracellular factors, which further promoted the growth and function of the probiotic bacteria. Crude cellular extract isolated from S. thermophilus also significantly accelerated the growth and propagation of L. casei, supporting the stimulatory role of the phage on this micro-ecosystem. Copyright © 2015. Published by Elsevier B.V.

  9. Identification of Coccoidal Bacteria in Traditional Fermented Milk Products from Mongolia, and the Fermentation Properties of the Predominant Species, Streptococcus thermophilus

    Science.gov (United States)

    2015-01-01

    The objective of this study was to identify the coccoidal bacteria present in 188 samples of fermented yaks’, mares’ and cows’ milk products collected from 12 different regions in Mongolia. Furthermore, we evaluated the fermentation properties of ten selected isolates of the predominant species, Streptococcus (S.) thermophiles, during the process of milk fermentation and subsequent storage of the resulting yoghurt at 4℃. Overall, 159 isolates were obtained from 188 samples using M17 agar. These isolates were presumed to be lactic acid bacteria based on their gram-positive and catalase-negative properties, and were identified to species level using 16S rRNA gene sequence analysis. These coccoid isolates were distributed in four genera and six species: Enterococcus (E.) durans, Enterococcus (E.) faecalis, Lactococcus (Lac.) subsp. lactis, Leuconostoc (Leuc.) lactis, Leuconostoc (Leuc.) mesenteroides. subsp. mesenteroides and S. thermophilus. Among these S. thermophilus was the most common species in most samples. From evaluation of the fermentation characteristics (viable counts, pH, titratable acidity [TA]) of ten selected S. thermophilus isolates we could identify four isolates (IMAU 20246, IMAU20764, IMAU20729 and IMAU20738) that were fast acid producers. IMAU20246 produced the highest concentrations of lactic acid and formic acid. These isolates have potential as starter cultures for yoghurt production. PMID:26761898

  10. Diversity, Dynamics, and Activity of Bacterial Communities during Production of an Artisanal Sicilian Cheese as Evaluated by 16S rRNA Analysis†

    Science.gov (United States)

    Randazzo, Cinzia L.; Torriani, Sandra; Akkermans, Antoon D. L.; de Vos, Willem M.; Vaughan, Elaine E.

    2002-01-01

    The diversity and dynamics of the microbial communities during the manufacturing of Ragusano cheese, an artisanal cheese produced in Sicily (Italy), were investigated by a combination of classical and culture-independent approaches. The latter included PCR, reverse transcriptase-PCR (RT-PCR), and denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes (rDNA). Bacterial and Lactobacillus group-specific primers were used to amplify the V6 to V8 and V1 to V3 regions of the 16S rRNA gene, respectively. DGGE profiles from samples taken during cheese production indicated dramatic shifts in the microbial community structure. Cloning and sequencing of rDNA amplicons revealed that mesophilic lactic acid bacteria (LAB), including species of Leuconostoc, Lactococcus lactis, and Macrococcus caseolyticus were dominant in the raw milk, while Streptococcus thermophilus prevailed during lactic fermentation. Other thermophilic LAB, especially Lactobacillus delbrueckii and Lactobacillus fermentum, also flourished during ripening. Comparison of the rRNA-derived patterns obtained by RT-PCR to the rDNA DGGE patterns indicated a substantially different degree of metabolic activity for the microbial groups detected. Identification of cultivated LAB isolates by phenotypic characterization and 16S rDNA analysis indicated a variety of species, reflecting to a large extent the results obtained from the 16S rDNA clone libraries, with the significant exception of the Lactobacillus delbrueckii species, which dominated in the ripening cheese but was not detected by cultivation. The present molecular approaches combined with culture can effectively describe the complex ecosystem of natural fermented dairy products, giving useful information for starter culture design and preservation of artisanal fermented food technology. PMID:11916708

  11. Catabolite control of sugar metabolism in Streptococcus thermophilus

    NARCIS (Netherlands)

    Bogaard, van den P.T.C.

    2002-01-01

    Streptococcus thermophilus is used in many industrial dairy fermentations that require processing of milk at elevated temperatures. Its primary function is the rapid conversion of lactose to lactate while it also contributes to important sensory qualities. S.

  12. Identification of pathogenic Nocardia species by reverse line blot hybridization targeting the 16S rRNA and 16S-23S rRNA gene spacer regions.

    Science.gov (United States)

    Xiao, Meng; Kong, Fanrong; Sorrell, Tania C; Cao, Yongyan; Lee, Ok Cha; Liu, Ying; Sintchenko, Vitali; Chen, Sharon C A

    2010-02-01

    Although 16S rRNA gene sequence analysis is employed most often for the definitive identification of Nocardia species, alternate molecular methods and polymorphisms in other gene targets have also enabled species determinations. We evaluated a combined Nocardia PCR-based reverse line blot (RLB) hybridization assay based on 16S and 16S-23S rRNA gene spacer region polymorphisms to identify 12 American Type Culture Collection and 123 clinical Nocardia isolates representing 14 species; results were compared with results from 16S rRNA gene sequencing. Thirteen 16S rRNA gene-based (two group-specific and 11 species-specific) and five 16S-23S spacer-targeted (two taxon-specific and three species-specific) probes were utilized. 16S rRNA gene-based probes correctly identified 124 of 135 isolates (sensitivity, 92%) but were unable to identify Nocardia paucivorans strains (n = 10 strains) and a Nocardia asteroides isolate with a novel 16S rRNA gene sequence. Nocardia farcinica and Nocardia cyriacigeorgica strains were identified by the sequential use of an N. farcinica-"negative" probe and a combined N. farcinica/N. cyriacigeorgica probe. The assay specificity was high (99%) except for weak cross-reactivity between the Nocardia brasiliensis probe with the Nocardia thailandica DNA product; however, cross-hybridization with closely related nontarget species may occur. The incorporation of 16S-23S rRNA gene spacer-based probes enabled the identification of all N. paucivorans strains. The overall sensitivity using both probe sets was >99%. Both N. farcinica-specific 16S-23S rRNA gene spacer-directed probes were required to identify all N. farcinica stains by using this probe set. The study demonstrates the utility of a combined PCR/RLB assay for the identification of clinically relevant Nocardia species and its potential for studying subtypes of N. farcinica. Where species assignment is ambiguous or not possible, 16S rRNA gene sequencing is recommended.

  13. [TYPING OF LEPTOSPIRA SPP. STRAINS BASED ON 16S rRNA].

    Science.gov (United States)

    Ostankova, Yu V; Semenov, A V; Stoyanova, N A; Tokarevich, N K; Lyubimova, N E; Petrova, O A; Ananina, Yu V; Petrov, E M

    2016-01-01

    Comparative typing of Leptospira spp. strain collection based on analysis of 16S RNA fragment. 2 pairs of primers were used for PCR, that jointly flank 1423b.p. sized fragment. Sequences of Leptospira spp. strain 16S rRNA, presented in the international database, were used for phylogenetic analysis. A high similarity, including interspecies, of the 16S fragment in Leptospira spp. strains was shown independently of the source, serovar and serogroup. Heterogeneity of the primary matrix, spontaneous mutations of hotspots and erroneous nucleotide couplings, characteristic for 16S sequence of pathogenic Leptospira spp. strains, are discussed. Molecular-genetic characteristic of certain reference Leptospira spp. strains by 16S sequence is obtained. Results of the studies give evidence on expedience of introduction into clinical practice of identification of Leptospira spp. by 16S sequence directly from the clinical material, that would allow to significantly reduce identification time, dismiss complex type-specific sera and other labor-intensive methods.

  14. ORF Alignment: NC_005835 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... Chain M, Structure Of The Thermus Thermophilus 30s ... Ribosomal Subunit In The Presence Of ... Crystallograph... ... The Thermus Thermophilus 30s Ribosomal Subunit In The ... Presence Of Codon And Crystallograph

  15. Thermophilin 110: a bacteriocin of Streptococcus thermophilus ST110.

    Science.gov (United States)

    Gilbreth, Stefanie E; Somkuti, George A

    2005-09-01

    A screen of thermophilic lactic acid bacteria identified Streptococcus thermophilus strain ST110 as the putative producer of a bacteriocin with high level of activity against pediococci. Thermophilin 110 was isolated from culture supernatant after 16 h of growth and partially purified by a chloroform extraction procedure. The bacteriocin inhibited the growth of several lactic acid bacteria and in the case of Pediococcus acidilactici, it induced cell lysis with the concomitant release of OD260-absorbing material and intracellular enzymes. SDS-PAGE analysis revealed two components with estimated sizes between 4.0 kDa and 4.5 kDa, respectively, with possible involvement in bacteriocin activity as indicated by agar overlay assays with P. acidilactici as the target organism. Thermophilin 110 was inactivated by several proteolytic enzymes and also by alpha-amylase, which indicated the putative requirement of a glycosidic component for activity. The bacteriocin produced by S. thermophilus may be especially useful in the food processing industries to control spoilage caused by pediococci.

  16. Utility of 16S rRNA PCR performed on clinical specimens in patient management

    Directory of Open Access Journals (Sweden)

    A. Akram

    2017-04-01

    Conclusions: Despite the low diagnostic yield, results of 16S rRNA PCR can still have a significant impact on patient management due to rationalization or cessation of the antimicrobial therapy. The yield of 16S rRNA PCR was highest for heart valves.

  17. Novel mutation in 16S rRNA associated with streptomycin dependence in Mycobacterium tuberculosis.

    OpenAIRE

    Honoré, N; Marchal, G; Cole, S T

    1995-01-01

    Molecular characterization of a streptomycin-dependent mutant of Mycobacterium tuberculosis revealed the presence of a novel mutation in the rrs gene encoding 16S rRNA. Insertion of an additional cytosine in the 530 loop of 16S rRNA, a region known to be involved in streptomycin susceptibility and resistance, was associated with streptomycin dependence.

  18. Antibiotic Resistances of Yogurt Starter Cultures Streptococcus thermophilus and Lactobacillus bulgaricus

    OpenAIRE

    Sozzi, Tommaso; Smiley, Martin B.

    1980-01-01

    Twenty-nine strains of Lactobacillus bulgaricus and 15 strains of Streptococcus thermophilus were tested for resistance to 35 antimicrobial agents by using commercially available sensitivity disks. Approximately 35% of the isolates had uncharacteristic resistance patterns.

  19. Recovery of Lactobacillus bulgaricus and Streptococcus thermophilus on Nine Commonly Used Agar Media1

    Science.gov (United States)

    Moon, Nancy J.; Hamann, A. C.; Reinbold, G. W.

    1974-01-01

    Of the nine media tested, Eugon, Elliker's lactic agar, pH 6.8, and modified tryptic soy broth agars showed superior recovery of Lactobacillus bulgaricus and Streptococcus thermophilus strains. PMID:16350006

  20. Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A

    NARCIS (Netherlands)

    Rodrigues, Ligia R.; Teixeira, Jose A.; van der Mei, Henny C.; Oliveira, Rosario

    2006-01-01

    Isolation and characterization of the surface active components from the crude biosurfactant produced by Streptococcus thermophilus A was studied. A fraction rich in glycolipids was obtained by the fractionation of crude biosurfactant using hydrophobic interaction chromatography. Molecular (by

  1. Activation of Silent gal Genes in the lac-gal Regulon of Streptococcus thermophilus

    NARCIS (Netherlands)

    Vaughan, Elaine E.; Bogaard, Patrick T.C. van den; Catzeddu, Pasquale; Kuipers, Oscar P.; Vos, Willem M. de

    2001-01-01

    Streptococcus thermophilus strain CNRZ 302 is unable to ferment galactose, neither that generated intracellularly by lactose hydrolysis nor the free sugar. Nevertheless, sequence analysis and complementation studies with Escherichia coli demonstrated that strain CNRZ 302 contained structurally

  2. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus

    NARCIS (Netherlands)

    Vaughan, E.E.; Bogaard, van den P.T.C.; Catzeddu, P.; Kuipers, O.P.; Vos, de W.M.

    2001-01-01

    Streptococcus thermophilus strain CNRZ 302 is unable to ferment galactose, neither that generated intracellularly by lactose hydrolysis nor the free sugar. Nevertheless, sequence analysis and complementation studies with Escherichia coli demonstrated that strain CNRZ 302 contained structurally

  3. Intragenomic Variation Among 16S rRNA Copies in Vibrio - Significance of Lifestyle

    OpenAIRE

    Karlsholm, Line Strand

    2017-01-01

    Intragenomic heterogeneity among 16S rRNA gene copies has been found in several species of bacteria. In this thesis, the presence of different 16S rRNA gene copies and the differences in the relative abundance of these 16S rRNA gene variants for different lifestyles was examined for three species of Vibrio. The Vibrio strains used were Vibrio anguillarum strain HI610, Vibrio campbellii strain BB120 and the Vibrio sp. strain RD5-30. The methods used to examine this were denaturing gradient g...

  4. Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber.

    OpenAIRE

    Busscher, H J; van Hoogmoed, C G; Geertsema-Doornbusch, G I; van der Kuijl-Booij, M; van der Mei, H C

    1997-01-01

    The adhesion of yeasts, two Candida albicans and two Candida tropicalis strains isolated from naturally colonized voice prostheses, to silicone rubber with and without a salivary conditioning film in the absence and presence of adhering Streptococcus thermophilus B, a biosurfactant-releasing dairy isolate, was studied. Coverage of 1 to 4% of the surface of silicone rubber substrata with adhering S. thermophilus B gave significant reductions in the initial yeast adhesion regardless of the pres...

  5. Short communication: effect of oxygen on symbiosis between Lactobacillus bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    Horiuchi, H; Sasaki, Y

    2012-06-01

    Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) and Streptococcus thermophilus are traditionally used for the manufacture of yogurt. It is said that a symbiotic relationship exists between Strep. thermophilus and L. bulgaricus and this decreases fermentation time. It is well known that L. bulgaricus is stimulated by the formate produced by Strep. thermophilus, and Strep. thermophilus is stimulated by free amino acids and peptides liberated from milk proteins by L. bulgaricus in symbiotic fermentation. We found that acid production by starter culture LB81 composed of L. bulgaricus 2038 and Strep. thermophilus 1131 was greatly accelerated by decreasing dissolved oxygen (DO) to almost 0 mg/kg in the yogurt mix (reduced dissolved oxygen fermentation) and that DO interferes with the symbiotic relationship between L. bulgaricus 2038 and Strep. thermophilus 1131. We attributed the acceleration of acid production of LB81 by reduced dissolved oxygen fermentation mainly to the acceleration of formate production and the suppression of acid production of LB81 by DO mainly to the suppression of formate production. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Phylogenetic positions of Clostridium novyi and Clostridium haemolyticum based on 16S rDNA sequences.

    Science.gov (United States)

    Sasaki, Y; Takikawa, N; Kojima, A; Norimatsu, M; Suzuki, S; Tamura, Y

    2001-05-01

    The partial sequences (1465 bp) of the 16S rDNA of Clostridium novyi types A, B and C and Clostridium haemolyticum were determined. C. novyi types A, B and C and C. haemolyticum clustered with Clostridium botulinum types C and D. Moreover, the 16S rDNA sequences of C. novyi type B strains and C. haemolyticum strains were completely identical; they differed by 1 bp (level of similarity > 99.9%) from that of C. novyi type C, they were 98.7% homologous to that of C. novyi type A (relative positions 28-1520 of the Escherichia coli 16S rDNA sequence) and they exhibited a higher similarity to the 16S rDNA sequence of C. botulinum types D and C than to that of C. novyi type A. These results suggest that C. novyi types B and C and C. haemolyticum may be one independent species generated from the same phylogenetic origin.

  7. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria

    Czech Academy of Sciences Publication Activity Database

    Ságová-Marečková, M.; Ulanová, Dana; Šanderová, P.; Omelka, M.; Kameník, Zdeněk; Olšovská, J.; Kopecký, J.

    2015-01-01

    Roč. 15, APR 2015 (2015) ISSN 1471-2180 Institutional support: RVO:61388971 Keywords : Actinobacteria * 16S rRNA diversity * Resistance genes Subject RIV: EH - Ecology, Behaviour Impact factor: 2.581, year: 2015

  8. Tsukamurella tyrosinosolvens intravascular catheter infection identified using 16S ribosomal DNA sequencing.

    Science.gov (United States)

    Sheridan, Elizabeth A S; Warwick, Simon; Chan, Anthony; Dall'Antonia, Martino; Koliou, Maria; Sefton, Armine

    2003-03-01

    Cultures of blood from a hemodialysis line repeatedly yielded a gram-positive rod. The organism was identified as Tsukamurella tyrosinosolvens by 16S ribosomal DNA sequencing, and the patient was treated successfully by removal of the line.

  9. Prevalence of 16S rRNA methylase genes among β-lactamase ...

    African Journals Online (AJOL)

    Background: Co production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide. Methods: To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and ...

  10. The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline

    OpenAIRE

    Lluch, J?r?me; Servant, Florence; Pa?ss?, Sandrine; Valle, Carine; Vali?re, Sophie; Kuchly, Claire; Vilchez, Ga?lle; Donnadieu, C?cile; Courtney, Michael; Burcelin, R?my; Amar, Jacques; Bouchez, Olivier; Lelouvier, Benjamin

    2015-01-01

    Background Substantial progress in high-throughput metagenomic sequencing methodologies has enabled the characterisation of bacteria from various origins (for example gut and skin). However, the recently-discovered bacterial microbiota present within animal internal tissues has remained unexplored due to technical difficulties associated with these challenging samples. Results We have optimized a specific 16S rDNA-targeted metagenomics sequencing (16S metabarcoding) pipeline based on the Illu...

  11. Community analysis of picocyanobacteria in an oligotrophic lake by cloning 16S rRNA gene and 16S rRNA gene amplicon sequencing.

    Science.gov (United States)

    Fujimoto, Naoshi; Mizuno, Keigo; Yokoyama, Tomoki; Ohnishi, Akihiro; Suzuki, Masaharu; Watanabe, Satoru; Komatsu, Kenji; Sakata, Yoichi; Kishida, Naohiro; Akiba, Michihiro; Matsukura, Satoko

    2015-01-01

    In this study, the picocyanobacterial species composition of Lake Miyagase was examined by analyzing the 16S rRNA gene in a clone library and by amplicon sequencing using a benchtop next-generation sequencer. Five separate samples were analyzed from different days over a ten-month period. In the picocyanobacterial lineage, 9 and 12 OTUs were identified from a clone library and by amplicon sequencing, respectively. Both analyses suggested that a picocyanobacterium related to Synechococcus sp. MW6B4 was dominant in Lake Miyagase. Our findings suggest that 16S rRNA gene amplicon sequencing enables detailed evaluation of picocyanobacteria composition. One OTU identified was found to be a novel cluster that does not group with any of the known freshwater picocyanobacteria.

  12. Homogeneity of the 16S rDNA sequence among geographically disparate isolates of Taylorella equigenitalis.

    Science.gov (United States)

    Matsuda, M; Tazumi, A; Kagawa, S; Sekizuka, T; Murayama, O; Moore, J E; Millar, B C

    2006-01-06

    At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis) are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences. Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences. High sequence similarity (99.5% or more) was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted.

  13. Homogeneity of the 16S rDNA sequence among geographically disparate isolates of Taylorella equigenitalis

    Directory of Open Access Journals (Sweden)

    Moore JE

    2006-01-01

    Full Text Available Abstract Background At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences. Results Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences. Conclusion High sequence similarity (99.5% or more was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted.

  14. Comparison of two approaches for the classification of 16S rRNA gene sequences.

    Science.gov (United States)

    Chatellier, Sonia; Mugnier, Nathalie; Allard, Françoise; Bonnaud, Bertrand; Collin, Valérie; van Belkum, Alex; Veyrieras, Jean-Baptiste; Emler, Stefan

    2014-10-01

    The use of 16S rRNA gene sequences for microbial identification in clinical microbiology is accepted widely, and requires databases and algorithms. We compared a new research database containing curated 16S rRNA gene sequences in combination with the lca (lowest common ancestor) algorithm (RDB-LCA) to a commercially available 16S rDNA Centroid approach. We used 1025 bacterial isolates characterized by biochemistry, matrix-assisted laser desorption/ionization time-of-flight MS and 16S rDNA sequencing. Nearly 80 % of isolates were identified unambiguously at the species level by both classification platforms used. The remaining isolates were mostly identified correctly at the genus level due to the limited resolution of 16S rDNA sequencing. Discrepancies between both 16S rDNA platforms were due to differences in database content and the algorithm used, and could amount to up to 10.5 %. Up to 1.4 % of the analyses were found to be inconclusive. It is important to realize that despite the overall good performance of the pipelines for analysis, some inconclusive results remain that require additional in-depth analysis performed using supplementary methods. © 2014 The Authors.

  15. Lactobacillus plantarum and Streptococcus thermophilus as starter cultures for a donkey milk fermented beverage.

    Science.gov (United States)

    Turchi, Barbara; Pedonese, Francesca; Torracca, Beatrice; Fratini, Filippo; Mancini, Simone; Galiero, Alessia; Montalbano, Benedetta; Cerri, Domenico; Nuvoloni, Roberta

    2017-09-01

    Donkey milk is recently gaining attention due to its nutraceutical properties. Its low casein content does not allow caseification, so the production of a fermented milk would represent an alternative way to increase donkey milk shelf life. The aim of this study was to investigate the possibility of employing selected Streptococcus thermophilus and Lactobacillus plantarum isolates for the production of a novel donkey milk fermented beverage. Lysozyme resistance and the ability to acidify donkey milk were chosen as main selection parameters. Different fermented beverages (C1-C9) were produced, each with a specific combination of isolates, and stored at refrigerated conditions for 35days. The pH values and viability of the isolates were weekly assessed. In addition, sensory analysis was performed. Both S. thermophilus and L.plantarum showed a high degree of resistance to lysozyme with a Minimum Bactericidal Concentration>6.4mg/mL for 100% of S. thermophilus and 96% of L. plantarum. S. thermophilus and L. plantarum showed the ability to acidify donkey milk in 24h at 37°C, with an average ΔpH value of 2.91±0.16 and 1.78±0.66, respectively. Four L. plantarum and two S. thermophilus were chosen for the production of fermented milks. Those containing the association S. thermophilus/L. plantarum (C1-C4) reached a pH lower than 4.5 after 18h of fermentation and showed microbial loads higher than 7.00logcfu/mL until the end of the storage period. Moreover, comparing the microbial loads of samples containing both species and those containing S. thermophilus alone (C5), we highlighted the ability of L. plantarum to stimulate S. thermophilus replication. This boosted replication of S. thermophilus allowed to reach an appropriate pH in a time frame fitting the production schedule. This was not observed for samples containing a single species (C5-C9). Thus, L. plantarum strains seem to be good candidates in the production of a novel type of fermented milk, not only for their

  16. FastGroup: A program to dereplicate libraries of 16S rDNA sequences

    Directory of Open Access Journals (Sweden)

    Rohwer Forest

    2001-10-01

    Full Text Available Abstract Background Ribosomal 16S DNA sequences are an essential tool for identifying and classifying microbes. High-throughput DNA sequencing now makes it economically possible to produce very large datasets of 16S rDNA sequences in short time periods, necessitating new computer tools for analyses. Here we describe FastGroup, a Java program designed to dereplicate libraries of 16S rDNA sequences. By dereplication we mean to: 1 compare all the sequences in a data set to each other, 2 group similar sequences together, and 3 output a representative sequence from each group. In this way, duplicate sequences are removed from a library. Results FastGroup was tested using a library of single-pass, bacterial 16S rDNA sequences cloned from coral-associated bacteria. We found that the optimal strategy for dereplicating these sequences was to: 1 trim ambiguous bases from the 5' end of the sequences and all sequence 3' of the conserved Bact517 site, 2 match the sequences from the 3' end, and 3 group sequences >=97% identical to each other. Conclusions The FastGroup program simplifies the dereplication of 16S rDNA sequence libraries and prepares the raw sequences for subsequent analyses.

  17. The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science.

    Science.gov (United States)

    Ames, Nancy J; Ranucci, Alexandra; Moriyama, Brad; Wallen, Gwenyth R

    As more is understood regarding the human microbiome, it is increasingly important for nurse scientists and healthcare practitioners to analyze these microbial communities and their role in health and disease. 16S rRNA sequencing is a key methodology in identifying these bacterial populations that has recently transitioned from use primarily in research to having increased utility in clinical settings. The objectives of this review are to (a) describe 16S rRNA sequencing and its role in answering research questions important to nursing science; (b) provide an overview of the oral, lung, and gut microbiomes and relevant research; and (c) identify future implications for microbiome research and 16S sequencing in translational nursing science. Sequencing using the 16S rRNA gene has revolutionized research and allowed scientists to easily and reliably characterize complex bacterial communities. This type of research has recently entered the clinical setting, one of the best examples involving the use of 16S sequencing to identify resistant pathogens, thereby improving the accuracy of bacterial identification in infection control. Clinical microbiota research and related requisite methods are of particular relevance to nurse scientists-individuals uniquely positioned to utilize these techniques in future studies in clinical settings.

  18. Mitochondrial 16S ribosomal RNA gene for forensic identification of crocodile species.

    Science.gov (United States)

    Naga Jogayya, K; Meganathan, P R; Dubey, Bhawna; Haque, I

    2013-05-01

    All crocodilians are under various threats due to over exploitation and these species have been listed in Appendix I or II of CITES. Lack of molecular techniques for the forensic identification of confiscated samples makes it difficult to enforce the law. Therefore, we herein present a molecular method developed on the basis on 16S rRNA gene of mitochondrial DNA for identification of crocodile species. We have developed a set of 16S rRNA primers for PCR based identification of crocodilian species. These novel primers amplify partial 16S rRNA sequences of six crocodile species which can be later combined to obtain a larger region (1290 bp) of 16S rRNA gene. This 16S rRNA gene could be used as an effective tool for forensic authentication of crocodiles. The described primers hold great promise in forensic identification of crocodile species, which can aid in the effective enforcement of law and conservation of these species. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. Presence of bacterial 16S ribosomal RNA gene segments in human intestinal lymph follicles.

    Science.gov (United States)

    Chiba, M; Kono, M; Hoshina, S; Komatsu, M; Kitagawa, Y; Iizuka, M; Watanabe, S

    2000-08-01

    There is currently no information regarding microbial agents inside the intestinal lymph follicles. Biopsy or resected specimens, mostly from macroscopically normal areas, were sectioned with a cryostat. DNA was extracted from microdissected samples, exclusively from the lymph follicle. Amplification of DNA was performed using universal primers designed from conserved regions of bacterial 16S ribosomal RNA (rRNA). Several clones with inserts of around 400 base pairs were subjected to DNA sequence analysis followed by a database homology search. Bacterial 16S rRNA gene segments were detected in the lymph follicle in 2 of 14 (14%) non-inflammatory bowel disease (IBD) cases, 4 of 14 (28%) Crohn disease cases, and in 2 of 5 (40%) ulcerative colitis cases. Nineteen 16S rRNA gene segments were recognized in the eight positive cases. Five segments showed 100% identity to known bacterial 16S rRNAs, namely staphylococcus species, Streptococcus sanguis, and Paracoccus marcusii. However, the other 14 segments showed below 100% identity, indicating either the presence of unknown bacteria or of bacteria without known DNA data. No single identified or unidentified bacterium, characteristic of IBD, including Mycobacterium paratuberculosis and Listeria monocytogenes, was detected. The present study confirms the presence of bacterial 16S rRNA gene segments in human intestinal lymph follicles and paves the way for new investigations into the microbiology of the lymph follicle. Whether or not bacteria inside the lymph follicle is a primary stimulus in IBD has yet to be clarified.

  20. Direct detection and amplification of Helicobacter pylori ribosomal 16S gene segments from gastric endoscopic biopsies.

    Science.gov (United States)

    Hoshina, S; Kahn, S M; Jiang, W; Green, P H; Neu, H C; Chin, N; Morotomi, M; LoGerfo, P; Weinstein, I B

    1990-01-01

    Helicobacter pylori is an organism thought to play an important causative role in gastritis and peptic ulcer diseases. We have designed an RNA dot blot assay for the detection of H. pylori, using as probe a synthetic oligonucleotide complementary to its 16S rRNA. We have also used oligonucleotide primers, complementary to conserved sequences within bacterial ribosomal 16S genes, to amplify a H. pylori ribosomal 16S DNA fragment via the polymerase chain reaction (PCR). After determining the DNA sequence of this amplified H. pylori fragment, primers were designed for specific PCR amplification of H. pylori ribosomal 16S DNA sequences. Samples from clinical endoscopic biopsies were PCR amplified with universal 16S ribosomal primers to detect the presence of bacteria and with H. pylori-specific primers to uniquely detect H. pylori. Finally, by comparing the H. pylori-specific PCR assay to commonly used diagnostic tests, we demonstrate that the molecular technique of PCR amplification shows promising applications for the clinical detection of H. pylori.

  1. Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Johansen

    Full Text Available A highly divergent 16S rRNA gene was found in one of the five ribosomal operons present in a species complex currently circumscribed as Scytonema hyalinum (Nostocales, Cyanobacteria using clone libraries. If 16S rRNA sequence macroheterogeneity among ribosomal operons due to insertions, deletions or truncation is excluded, the sequence heterogeneity observed in S. hyalinum was the highest observed in any prokaryotic species thus far (7.3-9.0%. The secondary structure of the 16S rRNA molecules encoded by the two divergent operons was nearly identical, indicating possible functionality. The 23S rRNA gene was examined for a few strains in this complex, and it was also found to be highly divergent from the gene in Type 2 operons (8.7%, and likewise had nearly identical secondary structure between the Type 1 and Type 2 operons. Furthermore, the 16S-23S ITS showed marked differences consistent between operons among numerous strains. Both operons have promoter sequences that satisfy consensus requirements for functional prokaryotic transcription initiation. Horizontal gene transfer from another unknown heterocytous cyanobacterium is considered the most likely explanation for the origin of this molecule, but does not explain the ultimate origin of this sequence, which is very divergent from all 16S rRNA sequences found thus far in cyanobacteria. The divergent sequence is highly conserved among numerous strains of S. hyalinum, suggesting adaptive advantage and selective constraint of the divergent sequence.

  2. Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli

    DEFF Research Database (Denmark)

    Triman, K; Becker, E; Dammel, C

    1989-01-01

    Temperature-sensitive mutants have been isolated following hydroxylamine mutagenesis of a plasmid containing Escherichia coli rRNA genes carrying selectable markers for spectinomycin resistance (U1192 in 16 S rRNA) and erythromycin resistance (G2058 in 23 S rRNA). These antibiotic resistance...... alleles, originally identified by Morgan and co-workers, enable us to follow expression of cloned rRNA genes in vivo. Recessive mutations causing the loss of expression of the cloned 16 S rRNA gene were identified by the loss of the ability of cells to survive on media containing spectinomycin....... The mutations were localized by in vitro restriction fragment replacement followed by in vivo marker rescue and were identified by DNA sequence analysis. We report here seven single-base alterations in 16 S rRNA (A146, U153, A350, A359, A538, A1292 and U1293), five of which produce temperature...

  3. Cross-linking of streptomycin to the 16S ribosomal RNA of Escherichia coli

    International Nuclear Information System (INIS)

    Gravel, M.; Melancon, P.; Barkier-Gingras, L.

    1987-01-01

    [ 3 H]Dihydrostreptomycin was cross-linked to the 30S ribosomal subunit from Escherichia coli with the bifunctional reagent nitrogen mustard. The cross-linking primarily involved the 16S RNA. To localize the site of cross-linking of streptomycin to the 16S RNA, the authors hybridized RNA labeled with streptomycin to restriction fragments of the 16S RNA gene. Labeled RNA hybridized to DNA fragments corresponding to bases 892-917 and bases 1394-1415. These two segments of the ribosomal RNA must by juxtaposed in the ribosome, since there is a single binding site for streptomycin. This region has been implicated both in the decoding site and in the binding of initiation factor IF-3, indicating its functional importance

  4. Multilocus sequence typing of Streptococcus thermophilus from naturally fermented dairy foods in China and Mongolia.

    Science.gov (United States)

    Yu, Jie; Sun, Zhihong; Liu, Wenjun; Xi, Xiaoxia; Song, Yuqin; Xu, Haiyan; Lv, Qiang; Bao, Qiuhua; Menghe, Bilige; Sun, Tiansong

    2015-10-26

    Streptococcus thermophilus is a major dairy starter used for manufacturing of dairy products. In the present study, we developed a multilocus sequence typing (MLST) scheme for this important food bacterium. Sequences of 10 housekeeping genes (carB, clpX, dnaA, murC, murE, pepN, pepX, pyrG, recA, and rpoB) were obtained for 239 S. thermophilus strains, which were isolated from home-made fermented dairy foods in 18 different regions of Mongolia and China. All 10 genes of S. thermophilus were sequenced, aligned, and defined sequence types (STs) using the BioNumerics Software. The nucleotide diversity was calculated by START v2.0. The population structure, phylogenetic relationships and the role of recombination were inferred using ClonalFrame v1.2, SplitsTree 4.0 and Structure v2.3. The 239 S. thermophilus isolates and 18 reference strains could be assigned into 119 different STs, which could be further separated into 16 clonal complexes (CCs) and 38 singletons. Among the 10 loci, a total of 132 polymorphic sites were detected. The standardized index of association (IAS=0.0916), split-decomposition and ρ/θ (relative frequency of occurrence of recombination and mutation) and r/m value (relative impact of recombination and mutation in the diversification) confirms that recombination may have occurred, but it occurred at a low frequency in these 10 loci. Phylogenetic trees indicated that there were five lineages in the S. thermophilus isolates used in our study. MSTree and ClonalFrame tree analyses suggest that the evolution of S. thermophilus isolates have little relationship with geographic locality, but revealed no association with the types of fermented dairy product. Phylogenetic analysis of 36 whole genome strains (18 S. thermophilus, 2 S. vestibularis and 16 S. salivarius strains) indicated that our MLST scheme could clearly separate three closely related species within the salivarius group and is suitable for analyzing the population structure of the

  5. Analysis of bacterial genetic diversity in biofloc by using ARDRA 16S-rRNA gene

    Directory of Open Access Journals (Sweden)

    , Widanarni

    2015-05-01

    Full Text Available ABSTRACT This study aimed to analyze the genetic diversity of bacteria associated in bioflocs using 16S-rRNA polymerase chain reaction (PCR with ARDRA technique. A total of 38 dominant bacterial isolates was obtained from bioflocs samples and of these isolates, 16S-rRNA gene was then isolated and amplified using PCR. The 16S-rRNA gene of the isolates was then cut using HaeIII (5’-GG↓CC and HhaI (5’-GCG↓C restriction enzymes resulting an ARDRA pattern which was further used as the binary data for the construction of phylogenetics tree that was used to estimate the group of bacteria. The result with HaeIII cut restriction enzyme from biofloc-associated bacteria gave 11 ARDRA patterns, while with the restriction enzyme HhaI gave eight ARDRA patterns. Phylogenetics of bacterial populations from biofloc-based cultivation system water consisted of at least 13 different bacterial species. Result of sequencing from two gene sample 16S-rRNA were identified as Microbacterium foliorumand and Pseudomonas putida. Keywords: bacterial diversity, ARDRA, biofloc, phylogeny  ABSTRAK Penelitian ini bertujuan untuk menganalisis keragaman genetika bakteri bioflok menggunakan metode polymerase chain reaction (PCR 16S-rRNA dengan teknik ARDRA. Sebanyak 38 isolat bakteri dominan yang diperoleh diamplifikasi gen 16S-rRNAnya dengan PCR, kemudian dipotong dengan enzim restriksi HaeIII (5’-GG↓CC dan HhaI (5’-GCG↓C. Pola ARDRA ini dijadikan data biner sebagai input untuk konstruksi pohon filogenetika yang dapat digunakan untuk memerkirakan jenis bakteri yang ada. Gen 16S-rRNA hasil PCR setelah dipotong dengan enzim restriksi HaeIII didapatkan 11 pola ARDRA, sedangkan dengan enzim restriksi HhaI menghasilkan delapan pola ARDRA. Berdasarkan pohon filogenetika, diketahui populasi bakteri pada air sistem budidaya bioflok sedikitnya terdiri atas 13 jenis bakteri. Berdasarkan sekuensing dari dua sampel gen 16S-rRNA teridentifikasi jenis bakteri Microbacterium

  6. Enzymatic hydrolysis of Grass Carp fish skin hydrolysates able to promote the proliferation of Streptococcus thermophilus.

    Science.gov (United States)

    Wang, Xiao-Nan; Qin, Mei; Feng, Yu-Ying; Chen, Jian-Kang; Song, Yi-Shan

    2017-09-01

    The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated. Grass Carp fish skin was hydrolysed to peptides by enzymatic hydrolysis using protease ProteAX, and for the S. thermophilus growth, the optimal enzymatic hydrolysis conditions were temperature of 60 °C, initial pH of 9.0, enzyme concentration of 10 g kg -1 , hydrolysis time of 80 min, and ratio of material to liquid of 1:2. The Grass Carp fish skin hydrolysate (GCFSH) prepared under the optimum conditions was fractionated to five fragments (GCFSH 1, GCFSH 2, GCFSH 3, GCFSH 4, GCFSH 5) according to molecular weight sizes, in which the fragments GCFSH 4 and GCFSH 5, with molecular weights of less than 1000 Da, significantly promoted the growth of S. thermophilus. The hydrolysis process of Grass Carp fish skin can be simplified, and the peptides with molecular weights below 1000 Da in the hydrolysates are the best nitrogen source for proliferation of S. thermophilus. This work can provide a fundamental theoretical basis for the production of multi-component functional foods, especially in milk drinks or yogurt. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Carbohydrate Utilization in Streptococcus thermophilus : Characterization of the Genes for Aldose 1-Epimerase (Mutarotase) and UDPglucose 4-Epimerase

    NARCIS (Netherlands)

    Poolman, Bert; Royer, Theresa J.; Mainzer, Stanley E.; Schmidt, Brian F.

    1990-01-01

    The complete nucleotide sequences of the genes encoding aldose 1-epimerase (mutarotase) (galM) and UDPglucose 4-epimerase (galE) and flanking regions of Streptococcus thermophilus have been determined. Both genes are located immediately upstream of the S. thermophilus lac operon. To facilitate the

  8. Draft genome sequences of three virulent Streptococcus thermophilus bacteriophages isolated from the dairy environment in the Veneto region of Italy

    DEFF Research Database (Denmark)

    Duarte, Viní­cius da Silva; Giaretta, Sabrina; Treu, Laura

    2018-01-01

    Streptococcus thermophilus, a very important dairy species, is constantly threatened by phage infection. We report the genome sequences of three S. thermophilus bacteriophages isolated from a dairy environment in the Veneto region of Italy. These sequences will be used for the development of new...

  9. Molecular Characterization and Analysis of 16S Ribosomal DNA in some Isolates of Demodex folliculorum

    Directory of Open Access Journals (Sweden)

    Afrooz DANESHPARVAR

    2017-06-01

    Full Text Available Background: Demodicosis is one of the most prevalent skin diseases resulting from infestation by Demodex mites. This parasite usually inhabits in follicular infundibulum or sebaceous duct transmitted through close contact with an infested host.Methods: This study was carried from September 2014 to January 2016 at Tehran University of Medical Sciences, Tehran, Iran. DNA extraction and amplification of 16S ribosomal RNA was performed on four isolates, obtained from four patients and identified morphologically through clearing with 10% Potassium hydroxide (KOH and microscopical examination. Amplified fragments from the isolates were compared with GenBank database and phylogenetic analysis was carried out using MEGA6 software.Results: A 390 bp fragment of 16S rDNA was obtained in all isolates and analysis of generated sequences showed high similarity with those submitted to GenBank, previously. Intra-species similarity and distance also showed 99.983% and 0.017, respectively, for the studied isolates. Multiple alignments of the isolates showed Single Nucleotide Polymorphisms (SNPs in 16S rRNA fragment. Phylogenetic analysis revealed that all 4 isolates clustered with other D. folliculorum, recovered from GenBank database. Our accession numbers KF875587 and KF875589 showed more similarity together in comparison with two other studied isolates. Conclusion: Mitochondrial 16S rDNA is one of the most suitable molecular barcodes for identification D. folliculorum and this fragment can use for intra-species characterization of the most human-infected mites.

  10. The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline.

    Science.gov (United States)

    Lluch, Jérôme; Servant, Florence; Païssé, Sandrine; Valle, Carine; Valière, Sophie; Kuchly, Claire; Vilchez, Gaëlle; Donnadieu, Cécile; Courtney, Michael; Burcelin, Rémy; Amar, Jacques; Bouchez, Olivier; Lelouvier, Benjamin

    2015-01-01

    Substantial progress in high-throughput metagenomic sequencing methodologies has enabled the characterisation of bacteria from various origins (for example gut and skin). However, the recently-discovered bacterial microbiota present within animal internal tissues has remained unexplored due to technical difficulties associated with these challenging samples. We have optimized a specific 16S rDNA-targeted metagenomics sequencing (16S metabarcoding) pipeline based on the Illumina MiSeq technology for the analysis of bacterial DNA in human and animal tissues. This was successfully achieved in various mouse tissues despite the high abundance of eukaryotic DNA and PCR inhibitors in these samples. We extensively tested this pipeline on mock communities, negative controls, positive controls and tissues and demonstrated the presence of novel tissue specific bacterial DNA profiles in a variety of organs (including brain, muscle, adipose tissue, liver and heart). The high throughput and excellent reproducibility of the method ensured exhaustive and precise coverage of the 16S rDNA bacterial variants present in mouse tissues. This optimized 16S metagenomic sequencing pipeline will allow the scientific community to catalogue the bacterial DNA profiles of different tissues and will provide a database to analyse host/bacterial interactions in relation to homeostasis and disease.

  11. The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline.

    Directory of Open Access Journals (Sweden)

    Jérôme Lluch

    Full Text Available Substantial progress in high-throughput metagenomic sequencing methodologies has enabled the characterisation of bacteria from various origins (for example gut and skin. However, the recently-discovered bacterial microbiota present within animal internal tissues has remained unexplored due to technical difficulties associated with these challenging samples.We have optimized a specific 16S rDNA-targeted metagenomics sequencing (16S metabarcoding pipeline based on the Illumina MiSeq technology for the analysis of bacterial DNA in human and animal tissues. This was successfully achieved in various mouse tissues despite the high abundance of eukaryotic DNA and PCR inhibitors in these samples. We extensively tested this pipeline on mock communities, negative controls, positive controls and tissues and demonstrated the presence of novel tissue specific bacterial DNA profiles in a variety of organs (including brain, muscle, adipose tissue, liver and heart.The high throughput and excellent reproducibility of the method ensured exhaustive and precise coverage of the 16S rDNA bacterial variants present in mouse tissues. This optimized 16S metagenomic sequencing pipeline will allow the scientific community to catalogue the bacterial DNA profiles of different tissues and will provide a database to analyse host/bacterial interactions in relation to homeostasis and disease.

  12. ANALISA URUTAN GEN 16S rRNA DARI BAKTERI ORAL YANG TIDAK DIKENAL

    Directory of Open Access Journals (Sweden)

    Ariana Djais

    2015-07-01

    Full Text Available The purpose of this study was to identify five unknown bacterial strains by using 16S rRNA gene sequencing. These strains isolated from endodontic lesions and periodontal pocket are culture-difficult and inert in most biochemical tests, and could not be classified to any established bacterial species by conventional bacteriological method. In the present study, genomic DNA was extracted from the cultured bacterial cells with InstaGene (BIO-RAD, and the 16S rRNA gene was amplified by PCR with universal primers (27F and 1492R and Premix Taq (Ex Taq version, Takara, then was sequenced by using a Thermo Sequence Fluorescent Labelled Primer Cycle Sequencing Kit (Amersham and an ALFexpress DNA sequencer (Pharmacin LKB. The segmented nucleotide sequences of 16S rDNA were integrated by using SEQMAN in LASERGENE computer program (DNASTAR. The 16S rDNA sequences of the unknown bacterial strain were applied to GenBank by using BLAST program to search the suspected bacterial species . The MEGALIGN search program showed that the sequence similarities were 89.5% - 91.3% to a type strain of Dialister pneumosintes among the established bacterial species. Based on the phylogenetic data, it is considered that the five unknown strains have to be presented a new bacterial species as Dialister-like bacterium.

  13. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects

    Directory of Open Access Journals (Sweden)

    Vasco Elbrecht

    2016-04-01

    Full Text Available Cytochrome c oxidase I (COI is a powerful marker for DNA barcoding of animals, with good taxonomic resolution and a large reference database. However, when used for DNA metabarcoding, estimation of taxa abundances and species detection are limited due to primer bias caused by highly variable primer binding sites across the COI gene. Therefore, we explored the ability of the 16S ribosomal DNA gene as an alternative metabarcoding marker for species level assessments. Ten bulk samples, each containing equal amounts of tissue from 52 freshwater invertebrate taxa, were sequenced with the Illumina NextSeq 500 system. The 16S primers amplified three more insect species than the Folmer COI primers and amplified more equally, probably due to decreased primer bias. Estimation of biomass might be less biased with 16S than with COI, although variation in read abundances of two orders of magnitudes is still observed. According to these results, the marker choice depends on the scientific question. If the goal is to obtain a taxonomic identification at the species level, then COI is more appropriate due to established reference databases and known taxonomic resolution of this marker, knowing that a greater proportion of insects will be missed using COI Folmer primers. If the goal is to obtain a more comprehensive survey the 16S marker, which requires building a local reference database, or optimised degenerated COI primers could be more appropriate.

  14. Intraspecific sequence variation in 16S rRNA gene of Ureaplasma diversum isolates.

    Science.gov (United States)

    Marques, L M; Buzinhani, M; Guimaraes, A M S; Marques, R C P; Farias, S T; Neto, R L; Yamaguti, M; Oliveira, R C; Timenetsky, J

    2011-08-26

    Ureaplasma diversum infection in bulls may result in seminal vesiculitis, balanoposthitis and alterations in spermatozoids. In cows, it can cause placentitis, fetal alveolitis, abortion and the birth of weak calves. U. diversum ATCC 49782 (serogroups A), ATCC 49783 (serogroup C) and 34 field isolates were used for this study. These microorganisms were submitted to Polymerase Chain Reaction for 16S gene sequence determination using Taq High Fidelity and the products were purified and bi-directionally sequenced. Using the sequence obtained, a fragment containing four hypervariable regions was selected and nucleotide polymorphisms were identified based on their position within the 16S rRNA gene. Forty-four single nucleotide polymorphisms (SNP) were detected. The genotypic variability of the 16S rRNA gene of U. diversum isolates shows that the taxonomy classification of these organisms is likely much more complex than previously described and that 16S rRNA gene sequencing may be used to suggest an epidemiologic pattern of different origin strains. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Modulation of 16S rRNA function by ribosomal protein S12.

    Science.gov (United States)

    Vila-Sanjurjo, Anton; Lu, Ying; Aragonez, Jamie L; Starkweather, Rebekah E; Sasikumar, Manoj; O'Connor, Michael

    2007-01-01

    Ribosomal protein S12 is a critical component of the decoding center of the 30S ribosomal subunit and is involved in both tRNA selection and the response to streptomycin. We have investigated the interplay between S12 and some of the surrounding 16S rRNA residues by examining the phenotypes of double-mutant ribosomes in strains of Escherichia coli carrying deletions in all chromosomal rrn operons and expressing total rRNA from a single plasmid-borne rrn operon. We show that the combination of S12 and otherwise benign mutations at positions C1409-G1491 in 16S rRNA severely compromises cell growth while the level and range of aminoglycoside resistances conferred by the G1491U/C substitutions is markedly increased by a mutant S12 protein. The G1491U/C mutations in addition confer resistance to the unrelated antibiotic, capreomycin. S12 also interacts with the 912 region of 16S rRNA. Genetic selection of suppressors of streptomycin dependence caused by mutations at proline 90 in S12 yielded a C912U substitution in 16S rRNA. The C912U mutation on its own confers resistance to streptomycin and restricts miscoding, properties that distinguish it from a majority of the previously described error-promoting ram mutants that also reverse streptomycin dependence.

  16. Global Perspectives on Activated Sludge Community Composition analyzed using 16S rRNA amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Saunders, Aaron Marc; Albertsen, Mads

    Activated sludge is the most commonly applied bioprocess throughout the world for wastewater treatment. Microorganisms are key to the process, yet our knowledge of their identity and function is still limited. High-througput16S rRNA amplicon sequencing can reliably characterize microbial...

  17. Comparison of broad range 16S rDNA PCR to conventional blood ...

    African Journals Online (AJOL)

    Comparison of broad range 16S rDNA PCR to conventional blood culture for diagnosis of sepsis in the newborn. ... The most frequently isolated microorganisms were Staphylococcus aureus (n= 17, 56.7%), followed by Coagulase negative Staphylococci (n=7, 23.3%), Escherichia coli (n= 4, 13.3%), and Candida spp. (n=2 ...

  18. Comparison of ViTEK 2, MALDI-TOF and Partial Sequencing of 16S ...

    African Journals Online (AJOL)

    Methods – Ten Brevibacterium spp. were presumptively identified from staphylococci collections due to their characteristic cheesy smell. The selected isolates were identified by MALDI TOF, Vitek 2 identification system and partial sequencing of 16S rRNA gene by standard procedures. The antibiotic susceptibility was ...

  19. Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents

    DEFF Research Database (Denmark)

    Licht, Tine Rask; Tolker-Nielsen, Tim; Holmstrøm, Kim

    1999-01-01

    growth. The amounts of 23S rRNA and pre-16S rRNA measured for E. coli growing in intestinal mucus corresponded to that expected for bacteria with the observed growth rate. In contrast, the slow-growing E. coli cells present in intestinal contents turned out to have an approximately ninefold higher...

  20. Problem-Based Test: Functional Analysis of Mutant 16S rRNAs

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: ribosome, ribosomal subunits, antibiotics, point mutation, 16S, 5S, and 23S rRNA, Shine-Dalgarno sequence, mRNA, tRNA, palindrome, hairpin, restriction endonuclease, fMet-tRNA, peptidyl transferase, initiation, elongation, termination of translation, expression plasmid, transformation,…

  1. Molecular phylogeny of silk-producing insects based on 16S ...

    Indian Academy of Sciences (India)

    Weighted parsimony analysis weighted towards transversions relative to transitions (ts, tv4) for coxI resulted in more robust bootstrap support over unweighted parsimony and favours the 16S rRNA tree topology. Combined analysis reflected clear biogeographic pattern, and agrees with morphological and cytological data.

  2. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    NARCIS (Netherlands)

    Ziesemer, K.A.; Mann, A.E.; Sankaranarayanan, K.; Schroeder, H.; Ozga, A.T.; Brandt, B.W.; Zaura, E.; Waters-Rist, A.; Hoogland, M.; Salazar-García, D.C.; Aldenderfer, M.; Speller, C.; Hendy, J.; Weston, D.A.; MacDonald, S.J.; Thomas, G.H.; Collins, M.J.; Lewis, C.M.; Hofman, C.; Warinner, C.

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this

  3. Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli

    DEFF Research Database (Denmark)

    Triman, K; Becker, E; Dammel, C

    1989-01-01

    Temperature-sensitive mutants have been isolated following hydroxylamine mutagenesis of a plasmid containing Escherichia coli rRNA genes carrying selectable markers for spectinomycin resistance (U1192 in 16 S rRNA) and erythromycin resistance (G2058 in 23 S rRNA). These antibiotic resistance...

  4. Riboprinting and 16S rRNA Gene Sequencing for Identification of Brewery Pediococcus Isolates

    Science.gov (United States)

    Barney, Michael; Volgyi, Antonia; Navarro, Alfonso; Ryder, David

    2001-01-01

    A total of 46 brewery and 15 ATCC Pediococcus isolates were ribotyped using a Qualicon RiboPrinter. Of these, 41 isolates were identified as Pediococcus damnosus using EcoRI digestion. Three ATCC reference strains had patterns similar to each other and matched 17 of the brewery isolates. Six other brewing isolates were similar to ATCC 25249. The other 18 P. damnosus brewery isolates had unique patterns. Of the remaining brewing isolates, one was identified as P. parvulus, two were identified as P. acidilactici, and two were identified as unique Pediococcus species. The use of alternate restriction endonucleases indicated that PstI and PvuII could further differentiate some strains having identical EcoRI profiles. An acid-resistant P. damnosus isolate could be distinguished from non-acid-resistant varieties of the same species using PstI instead of EcoRI. 16S rRNA gene sequence analysis was compared to riboprinting for identifying pediococci. The complete 16S rRNA gene was PCR amplified and sequenced from seven brewery isolates and three ATCC references with distinctive riboprint patterns. The 16S rRNA gene sequences from six different brewery P. damnosus isolates were homologous with a high degree of similarity to the GenBank reference strain but were identical to each other and one ATCC strain with the exception of 1 bp in one strain. A slime-producing, beer spoilage isolate had 16S rRNA gene sequence homology to the P. acidilactici reference strain, in agreement with the riboprint data. Although 16S rRNA gene sequencing correctly identified the genus and species of the test Pediococcus isolates, riboprinting proved to be a better method for subspecies differentiation. PMID:11157216

  5. Genotypic Characterization of Bradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-Restriction Fragment Length Polymorphism Analysis of Genes Encoding 16S rRNA (16S rDNA) and 16S-23S rDNA Intergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial 16S rDNA Sequencing

    Science.gov (United States)

    Vinuesa, Pablo; Rademaker, Jan L. W.; de Bruijn, Frans J.; Werner, Dietrich

    1998-01-01

    We present a phylogenetic analysis of nine strains of symbiotic nitrogen-fixing bacteria isolated from nodules of tagasaste (Chamaecytisus proliferus) and other endemic woody legumes of the Canary Islands, Spain. These and several reference strains were characterized genotypically at different levels of taxonomic resolution by computer-assisted analysis of 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphisms (PCR-RFLPs), 16S-23S rDNA intergenic spacer (IGS) RFLPs, and repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprints with BOX, ERIC, and REP primers. Cluster analysis of 16S rDNA restriction patterns with four tetrameric endonucleases grouped the Canarian isolates with the two reference strains, Bradyrhizobium japonicum USDA 110spc4 and Bradyrhizobium sp. strain (Centrosema) CIAT 3101, resolving three genotypes within these bradyrhizobia. In the analysis of IGS RFLPs with three enzymes, six groups were found, whereas rep-PCR fingerprinting revealed an even greater genotypic diversity, with only two of the Canarian strains having similar fingerprints. Furthermore, we show that IGS RFLPs and even very dissimilar rep-PCR fingerprints can be clustered into phylogenetically sound groupings by combining them with 16S rDNA RFLPs in computer-assisted cluster analysis of electrophoretic patterns. The DNA sequence analysis of a highly variable 264-bp segment of the 16S rRNA genes of these strains was found to be consistent with the fingerprint-based classification. Three different DNA sequences were obtained, one of which was not previously described, and all belonged to the B. japonicum/Rhodopseudomonas rDNA cluster. Nodulation assays revealed that none of the Canarian isolates nodulated Glycine max or Leucaena leucocephala, but all nodulated Acacia pendula, C. proliferus, Macroptilium atropurpureum, and Vigna unguiculata. PMID:9603820

  6. Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison.

    Directory of Open Access Journals (Sweden)

    Jiyoung Ahn

    Full Text Available The human oral microbiome is potentially related to diverse health conditions and high-throughput technology provides the possibility of surveying microbial community structure at high resolution. We compared two oral microbiome survey methods: broad-based microbiome identification by 16S rRNA gene sequencing and targeted characterization of microbes by custom DNA microarray.Oral wash samples were collected from 20 individuals at Memorial Sloan-Kettering Cancer Center. 16S rRNA gene survey was performed by 454 pyrosequencing of the V3-V5 region (450 bp. Targeted identification by DNA microarray was carried out with the Human Oral Microbe Identification Microarray (HOMIM. Correlations and relative abundance were compared at phylum and genus level, between 16S rRNA sequence read ratio and HOMIM hybridization intensity.The major phyla, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria were identified with high correlation by the two methods (r = 0.70∼0.86. 16S rRNA gene pyrosequencing identified 77 genera and HOMIM identified 49, with 37 genera detected by both methods; more than 98% of classified bacteria were assigned in these 37 genera. Concordance by the two assays (presence/absence and correlations were high for common genera (Streptococcus, Veillonella, Leptotrichia, Prevotella, and Haemophilus; Correlation = 0.70-0.84.Microbiome community profiles assessed by 16S rRNA pyrosequencing and HOMIM were highly correlated at the phylum level and, when comparing the more commonly detected taxa, also at the genus level. Both methods are currently suitable for high-throughput epidemiologic investigations relating identified and more common oral microbial taxa to disease risk; yet, pyrosequencing may provide a broader spectrum of taxa identification, a distinct sequence-read record, and greater detection sensitivity.

  7. Cloning of a gene from Thermus filiformis and characterization of the thermostable nuclease.

    Science.gov (United States)

    Fomenkov, A; Xu, S Y

    1995-09-22

    A gene coding for a thermostable nuclease was cloned from the thermophilic microorganism, Thermus filiformis (Tf), using an indicator strain containing a dinD::lacZ fusion. The gene, designated nuc17, has been mapped within a 2300-bp fragment. The 55-kDa Tf nuclease was purified to over 95% homogeneity. Single-stranded (ss) DNA is the preferred substrate for the Tf nuclease, although double-stranded (ds) DNA can also be digested. Nuclease activity increases with increasing temperature up to 80 degrees C and requires the metal ions Ca++ or Mg++ for catalysis. Tf nuclease is primarily an endonuclease that leaves 5' phosphates in the digested products. The ssDNA extensions remaining after exonuclease III digestion of dsDNA can be removed by the Tf nuclease, making it a useful reagent to generate unidirectional deletions.

  8. Complete genome sequence of Thermus brockianus GE-1 reveals key enzymes of xylan/xylose metabolism.

    Science.gov (United States)

    Schäfers, Christian; Blank, Saskia; Wiebusch, Sigrid; Elleuche, Skander; Antranikian, Garabed

    2017-01-01

    Thermus brockianus strain GE-1 is a thermophilic, Gram-negative, rod-shaped and non-motile bacterium that was isolated from the Geysir geothermal area, Iceland. Like other thermophiles, Thermus species are often used as model organisms to understand the mechanism of action of extremozymes, especially focusing on their heat-activity and thermostability. Genome-specific features of T. brockianus GE-1 and their properties further help to explain processes of the adaption of extremophiles at elevated temperatures. Here we analyze the first whole genome sequence of T. brockianus strain GE-1. Insights of the genome sequence and the methodologies that were applied during de novo assembly and annotation are given in detail. The finished genome shows a phred quality value of QV50. The complete genome size is 2.38 Mb, comprising the chromosome (2,035,182 bp), the megaplasmid pTB1 (342,792 bp) and the smaller plasmid pTB2 (10,299 bp). Gene prediction revealed 2,511 genes in total, including 2,458 protein-encoding genes, 53 RNA and 66 pseudo genes. A unique genomic region on megaplasmid pTB1 was identified encoding key enzymes for xylan depolymerization and xylose metabolism. This is in agreement with the growth experiments in which xylan is utilized as sole source of carbon. Accordingly, we identified sequences encoding the xylanase Xyn10, an endoglucanase, the membrane ABC sugar transporter XylH, the xylose-binding protein XylF, the xylose isomerase XylA catalyzing the first step of xylose metabolism and the xylulokinase XylB, responsible for the second step of xylose metabolism. Our data indicate that an ancestor of T. brockianus obtained the ability to use xylose as alternative carbon source by horizontal gene transfer.

  9. A renaissance for the pioneering 16S rRNA gene.

    Science.gov (United States)

    Tringe, Susannah G; Hugenholtz, Philip

    2008-10-01

    Culture-independent molecular surveys using the 16S rRNA gene have become a mainstay for characterizing microbial community structure over the past quarter century. More recently this approach has been overshadowed by metagenomics, which provides a global overview of a community's functional potential rather than just an inventory of its inhabitants. However, the pioneering 16S rRNA gene is making a comeback in its own right thanks to a number of methodological advancements including higher resolution (more sequences), analysis of multiple related samples (e.g. spatial and temporal series) and improved metadata, and use of metadata. The standard conclusion that microbial ecosystems are remarkably complex and diverse is now being replaced by detailed insights into microbial ecology and evolution based only on this one historically important marker gene.

  10. A renaissance for the pioneering 16S rRNA gene

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Susannah; Hugenholtz, Philip

    2008-09-07

    Culture-independent molecular surveys using the 16S rRNA gene have become a mainstay for characterizing microbial community structure over the last quarter century. More recently this approach has been overshadowed by metagenomics, which provides a global overview of a community's functional potential rather than just an inventory of its inhabitants. However, the pioneering 16S rRNA gene is making a comeback in its own right thanks to a number of methodological advancements including higher resolution (more sequences), analysis of multiple related samples (e.g. spatial and temporal series) and improved metadata and use of metadata. The standard conclusion that microbial ecosystems are remarkably complex and diverse is now being replaced by detailed insights into microbial ecology and evolution based only on this one historically important marker gene.

  11. Greengenes: Chimera-checked 16S rRNA gene database and workbenchcompatible in ARB

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie,E.L; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L.

    2006-02-01

    A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that incongruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3% of environmental sequences and 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  12. [Characterization of Black and Dichothrix Cyanobacteria Based on the 16S Ribosomal RNA Gene Sequence

    Science.gov (United States)

    Ortega, Maya

    2010-01-01

    My project focuses on characterizing different cyanobacteria in thrombolitic mats found on the island of Highborn Cay, Bahamas. Thrombolites are interesting ecosystems because of the ability of bacteria in these mats to remove carbon dioxide from the atmosphere and mineralize it as calcium carbonate. In the future they may be used as models to develop carbon sequestration technologies, which could be used as part of regenerative life systems in space. These thrombolitic communities are also significant because of their similarities to early communities of life on Earth. I targeted two cyanobacteria in my research, Dichothrix spp. and whatever black is, since they are believed to be important to carbon sequestration in these thrombolitic mats. The goal of my summer research project was to molecularly identify these two cyanobacteria. DNA was isolated from each organism through mat dissections and DNA extractions. I ran Polymerase Chain Reactions (PCR) to amplify the 16S ribosomal RNA (rRNA) gene in each cyanobacteria. This specific gene is found in almost all bacteria and is highly conserved, meaning any changes in the sequence are most likely due to evolution. As a result, the 16S rRNA gene can be used for bacterial identification of different species based on the sequence of their 16S rRNA gene. Since the exact sequence of the Dichothrix gene was unknown, I designed different primers that flanked the gene based on the known sequences from other taxonomically similar cyanobacteria. Once the 16S rRNA gene was amplified, I cloned the gene into specialized Escherichia coli cells and sent the gene products for sequencing. Once the sequence is obtained, it will be added to a genetic database for future reference to and classification of other Dichothrix sp.

  13. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing.

    Science.gov (United States)

    Païssé, Sandrine; Valle, Carine; Servant, Florence; Courtney, Michael; Burcelin, Rémy; Amar, Jacques; Lelouvier, Benjamin

    2016-05-01

    Recent studies have revealed that the blood of healthy humans is not as sterile as previously supposed. The objective of this study was to provide a comprehensive description of the microbiome present in different fractions of the blood of healthy individuals. The study was conducted in 30 healthy blood donors to the French national blood collection center (Établissement Français du Sang). We have set up a 16S rDNA quantitative polymerase chain reaction assay as well as a 16S targeted metagenomics sequencing pipeline specifically designed to analyze the blood microbiome, which we have used on whole blood as well as on different blood fractions (buffy coat [BC], red blood cells [RBCs], and plasma). Most of the blood bacterial DNA is located in the BC (93.74%), and RBCs contain more bacterial DNA (6.23%) than the plasma (0.03%). The distribution of 16S DNA is different for each fraction and spreads over a relatively broad range among donors. At the phylum level, blood fractions contain bacterial DNA mostly from the Proteobacteria phylum (more than 80%) but also from Actinobacteria, Firmicutes, and Bacteroidetes. At deeper taxonomic levels, there are striking differences between the bacterial profiles of the different blood fractions. We demonstrate that a diversified microbiome exists in healthy blood. This microbiome has most likely an important physiologic role and could be implicated in certain transfusion-transmitted bacterial infections. In this regard, the amount of 16S bacterial DNA or the microbiome profile could be monitored to improve the safety of the blood supply. © 2016 AABB.

  14. Distinct Genetic Lineages of Bactrocera caudata (Insecta: Tephritidae) Revealed by COI and 16S DNA Sequences

    Science.gov (United States)

    Lim, Phaik-Eem; Tan, Ji; Suana, I. Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected ‘p’ distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The ‘p’ values are distinctly different from intraspecific ‘p’ distance (0–0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus – B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies. PMID:22615962

  15. Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae revealed by COI and 16S DNA sequences.

    Directory of Open Access Journals (Sweden)

    Phaik-Eem Lim

    Full Text Available The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%. Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies.

  16. Prevalence of 16S rRNA methylase genes among b-lactamase ...

    African Journals Online (AJOL)

    2014-07-07

    Jul 7, 2014 ... 16S rRNA methylase genes bla genes were detected in b-lactamase-producing isolates by PCR using the previously reported oligonucleotide primers for blaTEM-1, blaSHV-12, blaCTX-M-14 (18), and the. armA, rmtA, rmtB, rmtC, rmtD, and npmA genes by using the following previously described primers ...

  17. Culture-Negative Endocarditis Diagnosed Using 16S DNA Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Stephen Duffett

    2012-01-01

    Full Text Available 16S DNA polymerase chain reaction (PCR is a molecular amplification technique that can be used to identify bacterial pathogens in culture-negative endocarditis. Bacterial DNA can be isolated from surgically excised valve tissue or from blood collected in EDTA vials. Use of this technique is particularly helpful in identifying the bacterial pathogen in cases of culture-negative endocarditis. A case involving a 48-year-old man who presented with severe aortic regurgitation and a four-month prodrome of low-grade fever is reported. Blood and valve tissue cultures following valve replacement were negative. A valve tissue sample was sent for investigation with 16S DNA PCR, which successfully identified Streptococcus salivarius and was interpreted as the true diagnosis. A review of the literature suggests that 16S DNA PCR from valve tissue is a more sensitive diagnostic test than culture. It is also extremely specific, based on a sequence match of at least 500 base pairs.

  18. How conserved are the conserved 16S-rRNA regions?

    Directory of Open Access Journals (Sweden)

    Marcel Martinez-Porchas

    2017-02-01

    Full Text Available The 16S rRNA gene has been used as master key for studying prokaryotic diversity in almost every environment. Despite the claim of several researchers to have the best universal primers, the reality is that no primer has been demonstrated to be truly universal. This suggests that conserved regions of the gene may not be as conserved as expected. The aim of this study was to evaluate the conservation degree of the so-called conserved regions flanking the hypervariable regions of the 16S rRNA gene. Data contained in SILVA database (release 123 were used for the study. Primers reported as matches of each conserved region were assembled to form contigs; sequences sizing 12 nucleotides (12-mers were extracted from these contigs and searched into the entire set of SILVA sequences. Frequency analysis shown that extreme regions, 1 and 10, registered the lowest frequencies. 12-mer frequencies revealed segments of contigs that were not as conserved as expected (≤90%. Fragments corresponding to the primer contigs 3, 4, 5b and 6a were recovered from all sequences in SILVA database. Nucleotide frequency analysis in each consensus demonstrated that only a small fraction of these so-called conserved regions is truly conserved in non-redundant sequences. It could be concluded that conserved regions of the 16S rRNA gene exhibit considerable variation that has to be considered when using this gene as biomarker.

  19. Development of Faecalibacterium 16S rRNA gene marker for identification of human faeces.

    Science.gov (United States)

    Zheng, G; Yampara-Iquise, H; Jones, J E; Andrew Carson, C

    2009-02-01

    The focus of this study was to identify a bacterial 16S rRNA gene sequence, unique to microbiota in the human gut, for use in development of a dependable PCR assay to detect human faecal pollution in water. Suppression subtractive hybridization (SSH) and bioinformatics were used to identify a genetic marker, within the 16S rRNA gene of Faecalibacterium, for the detection of human faeces. DNA sequencing analysis demonstrated that a majority (16) of 74 clones of the SSH library contained insertion sequences identified as Faecalibacterium 16S rRNA genes. Human faeces-specific sequences were derived and six PCR primer sets designed and tested against faecal DNA samples from human and nonhuman sources. One PCR primer set, HFB-F3 and HFB-R5, was exclusively associated with human faeces. These primers generated a human faeces-specific amplicon of 399 bp from 60.2% of human faecal samples and 100% of sewage samples. The subject Faecalibacterium marker is specific for sewage. This study represents the initial report of a Faecalibacterium marker for human faeces, which may prove useful for microbial source tracking.

  20. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    Science.gov (United States)

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  1. NADH Oxidase of Streptococcus thermophilus 1131 is Required for the Effective Yogurt Fermentation with Lactobacillus delbrueckii subsp. bulgaricus 2038.

    Science.gov (United States)

    Sasaki, Yasuko; Horiuchi, Hiroshi; Kawashima, Hiroko; Mukai, Takao; Yamamoto, Yuji

    2014-01-01

    We previously reported that dissolved oxygen (DO) suppresses yogurt fermentation with an industrial starter culture composed of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) 2038 and Streptococcus thermophilus 1131, and also found that reducing the DO in the medium prior to fermentation (deoxygenated fermentation) shortens the fermentation time. In this study, we found that deoxygenated fermentation primarily increased the cell number of S. thermophilus 1131 rather than that of L. bulgaricus 2038, resulting in earlier l-lactate and formate accumulation. Measurement of the DO concentration and hydrogen peroxide generation in the milk medium suggested that DO is mainly removed by S. thermophilus 1131. The results using an H2O-forming NADH oxidase (Nox)-defective mutant of S. thermophilus 1131 revealed that Nox is the major oxygen-consuming enzyme of the bacterium. Yogurt fermentation with the S. thermophilus Δnox mutant and L. bulgaricus 2038 was significantly slower than with S. thermophilus 1131 and L. bulgaricus 2038, and the DO concentrations of the mixed culture did not decrease to less than 2 mg/kg within 3 hr. These observations suggest that Nox of S. thermophilus 1131 contributes greatly to yogurt fermentation, presumably by removing the DO in milk.

  2. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available Bacterial 16S ribosomal DNA (rDNA amplicons have been widely used in the classification of uncultured bacteria inhabiting environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant regions that are informative in taxonomic assignment. One problem is that the percentage coverage and application scope of the primers used in previous studies are largely unknown. In this study, conservative fragments of available rDNA sequences were first mined and then used to search for candidate primers within the fragments by measuring the coverage rate defined as the percentage of bacterial sequences containing the target. Thirty predicted primers with a high coverage rate (>90% were identified, which were basically located in the same conservative regions as known primers in previous reports, whereas 30% of the known primers were associated with a coverage rate of <90%. The application scope of the primers was also examined by calculating the percentages of failed detections in bacterial phyla. Primers A519-539, E969-983, E1063-1081, U515 and E517, are highly recommended because of their high coverage in almost all phyla. As expected, the three predominant phyla, Firmicutes, Gemmatimonadetes and Proteobacteria, are best covered by the predicted primers. The primers recommended in this report shall facilitate a comprehensive and reliable survey of bacterial diversity in metagenomic studies.

  3. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies

    KAUST Repository

    Wang, Yong

    2009-10-09

    Bacterial 16S ribosomal DNA (rDNA) amplicons have been widely used in the classification of uncultured bacteria inhabiting environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant regions that are informative in taxonomic assignment. One problem is that the percentage coverage and application scope of the primers used in previous studies are largely unknown. In this study, conservative fragments of available rDNA sequences were first mined and then used to search for candidate primers within the fragments by measuring the coverage rate defined as the percentage of bacterial sequences containing the target. Thirty predicted primers with a high coverage rate (>90%) were identified, which were basically located in the same conservative regions as known primers in previous reports, whereas 30% of the known primers were associated with a coverage rate of <90%. The application scope of the primers was also examined by calculating the percentages of failed detections in bacterial phyla. Primers A519-539, E969- 983, E1063-1081, U515 and E517, are highly recommended because of their high coverage in almost all phyla. As expected, the three predominant phyla, Firmicutes, Gemmatimonadetes and Proteobacteria, are best covered by the predicted primers. The primers recommended in this report shall facilitate a comprehensive and reliable survey of bacterial diversity in metagenomic studies. © 2009 Wang, Qian.

  4. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in streptococcus thermophilus

    Science.gov (United States)

    The integrative vector pINTRS was used to transfer glutamate decarboxylase (GAD) activity to Streptococcus thermophilus ST128, thus allowing for the production of '-aminobutyric acid (GABA). In pINTRS, the gene encoding glutamate decarboxylase, gadB, was flanked by DNA fragments homologous to a S. ...

  5. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison.

    NARCIS (Netherlands)

    Pastink, M.I.; Teusink, B.; Hols, P.; Visser, S.; Vos, W.M.; Hugenholtz, J.

    2009-01-01

    In this report, we describe the amino acid metabolism and amino acid dependency of the dairy bacterium Streptococcus thermophilus LMG18311 and compare them with those of two other characterized lactic acid bacteria, Lactococcus lactis and Lactobacillus plantarum. Through the construction of a

  6. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A

    NARCIS (Netherlands)

    Rodrigues, L; van der Mei, H; Banat, IM; Teixeira, J; Oliveira, R

    Microbial adhesion of four bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber before and after conditioning with a biosurfactant obtained from the probiotic bacterium Streptococcus thermophilus A was investigated in a parallel plate flow chamber. The silicone

  7. Evaluating acetaldehyde synthesis from L-14C(U)] threonine by Streptococcus thermophilus and Lactobacillus bulgaricus

    International Nuclear Information System (INIS)

    Wilkins, D.W.; Schmidt, R.H.; Shireman, R.B.; Smith, K.L.; Jezeski, J.J.

    1986-01-01

    To evaluate the synthesis of acetaldehyde from threonine during growth of yogurt cultures, Streptococcus thermophilus MS1 and Lactobacillus bulgaricus MR1 were grown in defined medium in which 10% of the total threonine was composed of L-[carbon-14(U)]threonine. Acetaldehyde production was monitored by formation of 2,4-dinitrophenylhydrazone followed by separation and analysis using high performance liquid chromatography. After growth for 8 h at 42 0 C, approximately 2.0% of the total acetaldehyde (780.4 nmol) produced was from L-[carbon-14]threonine. Threonine aldolase activity was determined in cell-free extracts from S. thermophilus and L. bulgaricus grown in Elliker broth. Increasing incubation temperature from 30 to 42 0 C decreased threonine aldolase activity in cells of the streptococcus harvested after 8 h of incubation. Effect of incubation temperature was more dramatic in cells harvested after 18 h where the activity of cells grown at 48 0 C was 89% lower than that of cells grown at 30 0 C. Cell extracts from S. thermophilus MS1 possessed higher threonine aldolase activity than did those from L. bulgaricus MR1. Increased assay temperature from 30 to 42 0 C increased threonine aldolase activity in S. thermophilus MS1

  8. Genome Sequences of Four Italian Streptococcus thermophilus Strains of Dairy Origin

    DEFF Research Database (Denmark)

    Treu, Laura; Vendramin, Veronica; Bovo, Barbara

    2014-01-01

    This report describes the genome sequences of four Streptococcus thermophilus strains, namely, TH982, TH985, TH1477, and 1F8CT, isolated from different dairy environments from the Campania and the Veneto regions in Italy. These data are aimed at increasing the genomic information available on thi...

  9. Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber

    NARCIS (Netherlands)

    Busscher, HJ; vanHoogmoed, CG; GeertsemaDoornbusch, GI; vanderKuijlBooij, M; vanderMei, HC

    1997-01-01

    The adhesion of yeasts, two Candida albicans and two Candida tropicalis strains isolated from naturally colonized voice prostheses, to silicone rubber with and without a salivary conditioning film in the absence and presence of adhering Streptococcus thermophilus B, a biosurfactant-releasing dairy

  10. Directed Genomic Integration, Gene Replacement, and Integrative Gene Expression in Streptococcus thermophilus

    NARCIS (Netherlands)

    Mollet, Beat; Poolman, Bert; Marciset, Olivier; Delley, Michèle

    Several pGEM5- and pUC19-derived plasmids containing a selectable erythromycin resistance marker were integrated into the chromosome of Streptococcus thermophilus at the loci of the lactose-metabolizing genes. Integration occurred via homologous recombination and resulted in cointegrates between

  11. Genome-Scale Model of Streptococcus thermophilus LMG18311 for Metabolic Comparison of Lactic Acid Bacteria

    NARCIS (Netherlands)

    Pastink, M.I.; Teusink, B.; Hols, P.; Visser, S.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    In this report we describe amino acid-metabolism and amino acid-dependency of the dairy bacterium Streptococcus thermophilus LMG18311 and compare that with two other characterized lactic acid bacteria, Lactococcus lactis and Lactobacillus plantarum. Through the construction of a genome-scale

  12. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR

    Directory of Open Access Journals (Sweden)

    Wang Nian

    2009-03-01

    Full Text Available Abstract Background Citrus Huanglongbing (HLB is one of the most devastating diseases on citrus and is associated with Candidatus Liberibacter spp.. The pathogens are phloem limited and have not been cultured in vitro. The current management strategy of HLB is to remove infected citrus trees and reduce psyllid populations with insecticides to prevent the spreading. This strategy requires sensitive and reliable diagnostic methods for early detection. Results We investigated the copy numbers of the 16S rDNA and 16S rRNA of the HLB pathogen and the implication of improving the diagnosis of HLB for early detection using Quantitative PCR. We compared the detection of HLB with different Quantitative PCR based methods with primers/probe targeting either 16S rDNA, beta-operon DNA, 16S rRNA, or beta-operon RNA. The 16S rDNA copy number of Ca. Liberibacter asiaticus was estimated to be three times of that of the beta-operon region, thus allowing detection of lower titer of Ca. L. asiaticus. Quantitative reverse transcriptional PCR (QRT-PCR indicated that the 16S rRNA averaged 7.83 times more than that of 16S rDNA for the same samples. Dilution analysis also indicates that QRT-PCR targeting 16S rRNA is 10 time more sensitive than QPCR targeting 16S rDNA. Thus QRT-PCR was able to increase the sensitivity of detection by targeting 16S rRNA. Conclusion Our result indicates that Candidatus Liberibacter asiaticus contains three copies of 16S rDNA. The copy number of 16S rRNA of Ca. L. asiaticus in planta averaged about 7.8 times of 16S rDNA for the same set of samples tested in this study. Detection sensitivity of HLB could be improved through the following approaches: using 16S rDNA based primers/probe in the QPCR assays; and using QRT-PCR assays targeting 16S rRNA.

  13. The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales.

    Science.gov (United States)

    Jay, Zackary J; Inskeep, William P

    2015-07-09

    Intron sequences are common in 16S rRNA genes of specific thermophilic lineages of Archaea, specifically the Thermoproteales (phylum Crenarchaeota). Environmental sequencing (16S rRNA gene and metagenome) from geothermal habitats in Yellowstone National Park (YNP) has expanded the available datasets for investigating 16S rRNA gene introns. The objectives of this study were to characterize and curate archaeal 16S rRNA gene introns from high-temperature habitats, evaluate the conservation and distribution of archaeal 16S rRNA introns in geothermal systems, and determine which "universal" archaeal 16S rRNA gene primers are impacted by the presence of intron sequences. Several new introns were identified and their insertion loci were constrained to thirteen locations across the 16S rRNA gene. Many of these introns encode homing endonucleases, although some introns were short or partial sequences. Pyrobaculum, Thermoproteus, and Caldivirga 16S rRNA genes contained the most abundant and diverse intron sequences. Phylogenetic analysis of introns revealed that sequences within the same locus are distributed biogeographically. The most diverse set of introns were observed in a high-temperature, circumneutral (pH 6) sulfur sediment environment, which also contained the greatest diversity of different Thermoproteales phylotypes. The widespread presence of introns in the Thermoproteales indicates a high probability of misalignments using different "universal" 16S rRNA primers employed in environmental microbial community analysis.

  14. Selection and characterization of naturally occurring high acidification rate Streptococcus thermophilus strains.

    Science.gov (United States)

    Urshev, Zoltan; Ninova-Nikolova, Nadya; Ishlimova, Daniela; Pashova-Baltova, Kalinka; Michaylova, Michaela; Savova, Tatyana

    2014-09-03

    Among Streptococcus thermophilus cultures, the principle component of yoghurt and cheese starters, a minority of strains forms the group of 'H'-strains which show an unusually high acidification rate, grow faster and coagulate milk 3-5 hours earlier than the typical S. thermophilus cultures. A large-scale screening study was performed to select 'H'-strains of S. thermophilus from more than 100 samples of home-made yoghurt, industrial yoghurt starters and single cultures, maintained in the LBB culture collection. Only four strains - LBB.TN1, LBB.M23, LBB.M34 and LBB.M60 - were isolated/selected due to their ability to form large yellowish colonies on milk agar, supplemented with beta-glycerophosphate and bromocresol purple. While in general S. thermophilus is described as a species with limited proteolytic capacity and in contrast to all other tested S. thermophilus cultures, the four selected strains invariably gave positive amplification product with the polymerase chain reaction when primers, specific for the membrane proteinase-coding gene prt S were used. The macrorestriction profiles of the genomic DNA of the four strains confirmed that they are non-isogenic and not related to each other. When grown in milk and compared to the control industrial strain LBB.A, the four strains showed a dramatically faster acidification, coagulating milk within four hours. The application of strain TN1 or M23 as adjunct culture to industrial yoghurt starter LBB.BY5-12 resulted in shortening the fermentation time with more than 30 min.

  15. CORE: a phylogenetically-curated 16S rDNA database of the core oral microbiome.

    Directory of Open Access Journals (Sweden)

    Ann L Griffen

    2011-04-01

    Full Text Available Comparing bacterial 16S rDNA sequences to GenBank and other large public databases via BLAST often provides results of little use for identification and taxonomic assignment of the organisms of interest. The human microbiome, and in particular the oral microbiome, includes many taxa, and accurate identification of sequence data is essential for studies of these communities. For this purpose, a phylogenetically curated 16S rDNA database of the core oral microbiome, CORE, was developed. The goal was to include a comprehensive and minimally redundant representation of the bacteria that regularly reside in the human oral cavity with computationally robust classification at the level of species and genus. Clades of cultivated and uncultivated taxa were formed based on sequence analyses using multiple criteria, including maximum-likelihood-based topology and bootstrap support, genetic distance, and previous naming. A number of classification inconsistencies for previously named species, especially at the level of genus, were resolved. The performance of the CORE database for identifying clinical sequences was compared to that of three publicly available databases, GenBank nr/nt, RDP and HOMD, using a set of sequencing reads that had not been used in creation of the database. CORE offered improved performance compared to other public databases for identification of human oral bacterial 16S sequences by a number of criteria. In addition, the CORE database and phylogenetic tree provide a framework for measures of community divergence, and the focused size of the database offers advantages of efficiency for BLAST searching of large datasets. The CORE database is available as a searchable interface and for download at http://microbiome.osu.edu.

  16. Phylogenetic inference of Coxiella burnetii by 16S rRNA gene sequencing.

    Directory of Open Access Journals (Sweden)

    Heather P McLaughlin

    Full Text Available Coxiella burnetii is a human pathogen that causes the serious zoonotic disease Q fever. It is ubiquitous in the environment and due to its wide host range, long-range dispersal potential and classification as a bioterrorism agent, this microorganism is considered an HHS Select Agent. In the event of an outbreak or intentional release, laboratory strain typing methods can contribute to epidemiological investigations, law enforcement investigation and the public health response by providing critical information about the relatedness between C. burnetii isolates collected from different sources. Laboratory cultivation of C. burnetii is both time-consuming and challenging. Availability of strain collections is often limited and while several strain typing methods have been described over the years, a true gold-standard method is still elusive. Building upon epidemiological knowledge from limited, historical strain collections and typing data is essential to more accurately infer C. burnetii phylogeny. Harmonization of auspicious high-resolution laboratory typing techniques is critical to support epidemiological and law enforcement investigation. The single nucleotide polymorphism (SNP -based genotyping approach offers simplicity, rapidity and robustness. Herein, we demonstrate SNPs identified within 16S rRNA gene sequences can differentiate C. burnetii strains. Using this method, 55 isolates were assigned to six groups based on six polymorphisms. These 16S rRNA SNP-based genotyping results were largely congruent with those obtained by analyzing restriction-endonuclease (RE-digested DNA separated by SDS-PAGE and by the high-resolution approach based on SNPs within multispacer sequence typing (MST loci. The SNPs identified within the 16S rRNA gene can be used as targets for the development of additional SNP-based genotyping assays for C. burnetii.

  17. Phylogenetic position of Taylorella equigenitalis determined by analysis of amplified 16S ribosomal DNA sequences.

    Science.gov (United States)

    Bleumink-Pluym, N M; van Dijk, L; van Vliet, A H; van der Giessen, J W; van der Zeijst, B A

    1993-07-01

    The 16S ribosomal DNA sequence of Taylorella equigenitalis (formerly Haemophilus equigenitalis), the causative organism of contagious equine metritis, was determined. A phylogenetic analysis of this sequence revealed a phylogenetic position of T. equigenitalis in the beta subclass of the class Proteobacteria apart from the position of Haemophilus influenzae, which belongs to the gamma subclass of Proteobacteria. A close phylogenetic relationship among T. equigenitalis, Alcaligenes xylosoxidans, and Bordetella bronchiseptica was detected; Spirillum volutans and Chromobacterium fluviatile (Iodobacter fluviatile) were in the same group but slightly removed. This relationship is surprising in view of the considerable differences in the G + C contents of the genomes of these bacteria.

  18. Globicatella sanguinis bacteraemia identified by partial 16S rRNA gene sequencing

    DEFF Research Database (Denmark)

    Abdul-Redha, Rawaa Jalil; Balslew, Ulla; Christensen, Jens Jørgen

    2007-01-01

    Globicatella sanguinis is a gram-positive coccus, resembling non-haemolytic streptococci. The organism has been isolated infrequently from normally sterile sites of humans. Three isolates obtained by blood culture could not be identified by Rapid 32 ID Strep, but partial sequencing of the 16S r......RNA gene revealed the identity of the isolated bacteria, and supplementary biochemical tests confirmed the species identification. The cases histories illustrate the dilemma of finding relevant, newly recognized, opportunistic pathogens and the identification achievement (s) that can be obtained by using...

  19. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus

    NARCIS (Netherlands)

    Sieuwerts, S.; Molenaar, D.; Hijum, van S.A.F.T.; Beerthuyzen, M.; Stevens, M.J.A.; Janssen, P.W.; Ingham, C.J.; Bok, de F.A.M.; Vos, de W.M.; Hylckama Vlieg, van J.E.T.

    2010-01-01

    Many food fermentations are performed using mixed cultures of lactic acid bacteria. Interactions between strains are of key importance for the performance of these fermentations. Yogurt fermentation by Streptococcus thermophilus and Lactobacillus bulgaricus (basonym, Lactobacillus delbrueckii subsp.

  20. Phylogenetic analysis of 16S mitochondrial DNA data in sloths and anteaters

    Directory of Open Access Journals (Sweden)

    Barros Maria Claudene

    2003-01-01

    Full Text Available We sequenced part of the 16S rRNA mitochondrial gene in 17 extant taxa of Pilosa (sloths and anteaters and used these sequences along with GenBank sequences of both extant and extinct sloths to perform phylogenetic analysis based on parsimony, maximum-likelihood and Bayesian methods. By increasing the taxa density for anteaters and sloths we were able to clarify some points of the Pilosa phylogenetic tree. Our mitochondrial 16S results show Bradypodidae as a monophyletic and robustly supported clade in all the analysis. However, the Pleistocene fossil Mylodon darwinii does not group significantly to either Bradypodidae or Megalonychidae which indicates that trichotomy best represents the relationship between the families Mylodontidae, Bradypodidae and Megalonychidae. Divergence times also allowed us to discuss the taxonomic status of Cyclopes and the three species of three-toed sloths, Bradypus tridactylus, Bradypus variegatus and Bradypus torquatus. In the Bradypodidae the split between Bradypus torquatus and the proto-Bradypus tridactylus / B. variegatus was estimated as about 7.7 million years ago (MYA, while in the Myrmecophagidae the first offshoot was Cyclopes at about 31.8 MYA followed by the split between Myrmecophaga and Tamandua at 12.9 MYA. We estimate the split between sloths and anteaters to have occurred at about 37 MYA.

  1. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences

    Directory of Open Access Journals (Sweden)

    Robert C. Edgar

    2018-04-01

    Full Text Available Prediction of taxonomy for marker gene sequences such as 16S ribosomal RNA (rRNA is a fundamental task in microbiology. Most experimentally observed sequences are diverged from reference sequences of authoritatively named organisms, creating a challenge for prediction methods. I assessed the accuracy of several algorithms using cross-validation by identity, a new benchmark strategy which explicitly models the variation in distances between query sequences and the closest entry in a reference database. When the accuracy of genus predictions was averaged over a representative range of identities with the reference database (100%, 99%, 97%, 95% and 90%, all tested methods had ≤50% accuracy on the currently-popular V4 region of 16S rRNA. Accuracy was found to fall rapidly with identity; for example, better methods were found to have V4 genus prediction accuracy of ∼100% at 100% identity but ∼50% at 97% identity. The relationship between identity and taxonomy was quantified as the probability that a rank is the lowest shared by a pair of sequences with a given pair-wise identity. With the V4 region, 95% identity was found to be a twilight zone where taxonomy is highly ambiguous because the probabilities that the lowest shared rank between pairs of sequences is genus, family, order or class are approximately equal.

  2. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing

    Directory of Open Access Journals (Sweden)

    Muhammad Naveed

    2014-09-01

    Full Text Available In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ. Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization.

  3. An Unusual Case of Streptococcus anginosus Group Pyomyositis Diagnosed Using Direct 16S Ribosomal DNA Sequencing

    Directory of Open Access Journals (Sweden)

    Andrew Walkty

    2014-01-01

    Full Text Available Bacteria belonging to the Streptococcus anginosus group (Streptococcus intermedius, Streptococcus constellatus and Streptococcus anginosus are capable of causing serious pyogenic infections, with a tendency for abscess formation. The present article reports a case of S anginosus group pyomyositis in a 47-year-old man. The pathogen was recovered from one of two blood cultures obtained from the patient, but speciation was initially not performed because the organism was considered to be a contaminant (viridans streptococci group. The diagnosis was ultimately confirmed using 16S ribosomal DNA sequencing of purulent fluid obtained from a muscle abscess aspirate. The present case serves to emphasize that finding even a single positive blood culture of an organism belonging to the S anginosus group should prompt careful evaluation of the patient for a pyogenic focus of infection. It also highlights the potential utility of 16S ribosomal DNA amplification and sequencing in direct pathogen detection from aspirated fluid in cases of pyomyositis in which antimicrobial therapy was initiated before specimen collection.

  4. Carbohydrate metabolism is essential for the colonization of Streptococcus thermophilus in the digestive tract of gnotobiotic rats.

    Directory of Open Access Journals (Sweden)

    Muriel Thomas

    Full Text Available Streptococcus thermophilus is the archetype of lactose-adapted bacterium and so far, its sugar metabolism has been mainly investigated in vitro. The objective of this work was to study the impact of lactose and lactose permease on S. thermophilus physiology in the gastrointestinal tract (GIT of gnotobiotic rats. We used rats mono-associated with LMD-9 strain and receiving 4.5% lactose. This model allowed the analysis of colonization curves of LMD-9, its metabolic profile, its production of lactate and its interaction with the colon epithelium. Lactose induced a rapid and high level of S. thermophilus in the GIT, where its activity led to 49 mM of intra-luminal L-lactate that was related to the induction of mono-carboxylic transporter mRNAs (SLC16A1 and SLC5A8 and p27(Kip1 cell cycle arrest protein in epithelial cells. In the presence of a continuous lactose supply, S. thermophilus recruited proteins involved in glycolysis and induced the metabolism of alternative sugars as sucrose, galactose, and glycogen. Moreover, inactivation of the lactose transporter, LacS, delayed S. thermophilus colonization. Our results show i/that lactose constitutes a limiting factor for colonization of S. thermophilus, ii/that activation of enzymes involved in carbohydrate metabolism constitutes the metabolic signature of S. thermophilus in the GIT, iii/that the production of lactate settles the dialogue with colon epithelium. We propose a metabolic model of management of carbohydrate resources by S. thermophilus in the GIT. Our results are in accord with the rationale that nutritional allegation via consumption of yogurt alleviates the symptoms of lactose intolerance.

  5. Combining 16S rRNA gene variable regions enables high-resolution microbial community profiling.

    Science.gov (United States)

    Fuks, Garold; Elgart, Michael; Amir, Amnon; Zeisel, Amit; Turnbaugh, Peter J; Soen, Yoav; Shental, Noam

    2018-01-26

    Most of our knowledge about the remarkable microbial diversity on Earth comes from sequencing the 16S rRNA gene. The use of next-generation sequencing methods has increased sample number and sequencing depth, but the read length of the most widely used sequencing platforms today is quite short, requiring the researcher to choose a subset of the gene to sequence (typically 16-33% of the total length). Thus, many bacteria may share the same amplified region, and the resolution of profiling is inherently limited. Platforms that offer ultra-long read lengths, whole genome shotgun sequencing approaches, and computational frameworks formerly suggested by us and by others all allow different ways to circumvent this problem yet suffer various shortcomings. There is a need for a simple and low-cost 16S rRNA gene-based profiling approach that harnesses the short read length to provide a much larger coverage of the gene to allow for high resolution, even in harsh conditions of low bacterial biomass and fragmented DNA. This manuscript suggests Short MUltiple Regions Framework (SMURF), a method to combine sequencing results from different PCR-amplified regions to provide one coherent profiling. The de facto amplicon length is the total length of all amplified regions, thus providing much higher resolution compared to current techniques. Computationally, the method solves a convex optimization problem that allows extremely fast reconstruction and requires only moderate memory. We demonstrate the increase in resolution by in silico simulations and by profiling two mock mixtures and real-world biological samples. Reanalyzing a mock mixture from the Human Microbiome Project achieved about twofold improvement in resolution when combing two independent regions. Using a custom set of six primer pairs spanning about 1200 bp (80%) of the 16S rRNA gene, we were able to achieve ~ 100-fold improvement in resolution compared to a single region, over a mock mixture of common human gut

  6. Thermal adaptation strategies of the extremophile bacterium Thermus filiformis based on multi-omics analysis.

    Science.gov (United States)

    Mandelli, F; Couger, M B; Paixão, D A A; Machado, C B; Carnielli, C M; Aricetti, J A; Polikarpov, I; Prade, R; Caldana, C; Paes Leme, A F; Mercadante, A Z; Riaño-Pachón, D M; Squina, Fabio Marcio

    2017-07-01

    Thermus filiformis is an aerobic thermophilic bacterium isolated from a hot spring in New Zealand. The experimental study of the mechanisms of thermal adaptation is important to unveil response strategies of the microorganism to stress. In this study, the main pathways involved on T. filiformis thermoadaptation, as well as, thermozymes with potential biotechnological applications were revealed based on omics approaches. The strategy adopted in this study disclosed that pathways related to the carbohydrate metabolism were affected in response to thermoadaptation. High temperatures triggered oxidative stress, leading to repression of genes involved in glycolysis and the tricarboxylic acid cycle. During heat stress, the glucose metabolism occurred predominantly via the pentose phosphate pathway instead of the glycolysis pathway. Other processes, such as protein degradation, stringent response, and duplication of aminoacyl-tRNA synthetases, were also related to T. filiformis thermoadaptation. The heat-shock response influenced the carotenoid profile of T. filiformis, favoring the synthesis of thermozeaxanthins and thermobiszeaxanthins, which are related to membrane stabilization at high temperatures. Furthermore, antioxidant enzymes correlated with free radical scavenging, including superoxide dismutase, catalase and peroxidase, and metabolites, such as oxaloacetate and α-ketoglutarate, were accumulated at 77 °C.

  7. X-ray structure of a dihydropyrimidinase from Thermus sp. at 1.3 A resolution.

    Science.gov (United States)

    Abendroth, Jan; Niefind, Karsten; Schomburg, Dietmar

    2002-06-28

    Dihydropyrimidinases (hydantoinases) catalyse the reversible hydrolytic ring-opening of cyclic diamides such as dihydropyrimidines in the catabolism of pyrimidines. In biotechnology, these enzymes find application in the enantiospecific production of amino acids from racemic hydantoins. The crystal structure of a D-enantio-specific dihydropyrimidinase from Thermus sp. (D-hydantoinase) was solved de novo by multiwavelength anomalous diffraction phasing. In spite of a large unit cell the D-hydantoinase crystals exhibit excellent diffraction properties. The structure was subsequently refined at 1.30 A resolution against native data. The core of D-hydantoinase consists of a (alpha/beta)(8)-barrel, which is flanked by a beta-sheet domain and some additional helices. In the active site, a carboxylated lysine residue and the catalytically active hydroxide ion bridge a binuclear zinc centre. The tertiary structure and shape of the active site show strong homology to that of ureases, dihydroorotases, and phosphotriesterases. The homology of the active site was exploited for in silicio docking of substrates in the active site. This could shed light both on the substrate binding in hydantoinases and on the recently highly discussed origin of the proton in the course of hydantoinase catalysis. (c) 2002 Elsevier Science Ltd.

  8. Growth advantage of Streptococcus thermophilus over Lactobacillus bulgaricus in vitro and in the gastrointestinal tract of gnotobiotic rats.

    Science.gov (United States)

    Ben-Yahia, L; Mayeur, C; Rul, F; Thomas, M

    2012-09-01

    The yoghurt bacteria, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, are alleged to have beneficial effects on human health. The objective of this study was to characterise growth, biochemical activity and competitive behaviour of these two bacteria in vitro and in vivo. S. thermophilus LMD-9 and L. bulgaricus ATCC 11842 growth and lactate production were monitored in different media and in the gastrointestinal tract (GIT) of germ-free rats. In vitro, particularly in milk, S. thermophilus had a selective growth advantage over L. bulgaricus. The GIT of germ-free rats not supplemented with lactose was colonised by S. thermophilus but not by L. bulgaricus. Both bacteria were able to colonise the GIT of germ-free rats supplemented with 45 g/l lactose in their drinking water. However, if germ-free rats were inoculated with a mixture of the two bacteria and were supplemented with lactose, S. thermophilus rapidly and extensively colonised the GIT (1010 cfu/g faeces) at the expense of L. bulgaricus, which remained in most cases at levels bulgaricus produced only D-lactate, both in vitro and in vivo. S. thermophilus showed competitive and growth advantage over L. bulgaricus in vitro as well as in vivo in the GIT of germ-free rats and, accordingly, L-lactate was the main lactate isomer produced.

  9. Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber.

    Science.gov (United States)

    Busscher, H J; van Hoogmoed, C G; Geertsema-Doornbusch, G I; van der Kuijl-Booij, M; van der Mei, H C

    1997-10-01

    The adhesion of yeasts, two Candida albicans and two Candida tropicalis strains isolated from naturally colonized voice prostheses, to silicone rubber with and without a salivary conditioning film in the absence and presence of adhering Streptococcus thermophilus B, a biosurfactant-releasing dairy isolate, was studied. Coverage of 1 to 4% of the surface of silicone rubber substrata with adhering S. thermophilus B gave significant reductions in the initial yeast adhesion regardless of the presence of a conditioning film. Mechanistically, this interference in yeast adhesion by S. thermophilus B was not due to direct physical effects but to biosurfactant release by the adhering bacteria, because experiments with S. thermophilus B cells that had released their biosurfactants prior to adhesion to silicone rubber and competition with yeasts did not show interference with initial yeast adhesion. The amounts of biosurfactants released were highest for mid-exponential- and early-stationary-phase bacteria (37 mg.g of cells-1 [dry weight]), but biosurfactants released by stationary-phase bacteria (14 mg.g of cells-1 [dry weight]) were the most surface active. The crude biosurfactants released were mixtures of various components, with a glycolipid-like component being the most surface active. A lipid-enriched biosurfactant fraction reduced the surface tension of an aqueous solution to about 35 mJ.m-2 at a concentration of only 0.5 mg.ml-1. The amount of biosurfactant released per S. thermophilus B cell was estimated to be sufficient to cover approximately 12 times the area of the cross section of the bacterium, making biosurfactant release a powerful defense weapon in the postadhesion competition of the bacterium with microorganisms such as yeasts. Preadsorption of biosurfactants to the silicone rubber prior to allowing yeasts to adhere was as effective against C. albicans GB 1/2 adhesion as covering 1 to 2% of the silicone rubber surface with adhering S. thermophilus B, but a

  10. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis

    International Nuclear Information System (INIS)

    Sun Xingmin; Goehler, Andre; Heller, Knut J.; Neve, Horst

    2006-01-01

    The ltp gene, located within the lysogeny module of temperate Streptococcus thermophilus phage TP-J34, has been shown to be expressed in lysogenic strain S. thermophilus J34. It codes for a lipoprotein, as demonstrated by inhibition of cleavage of the signal sequence by globomycin. Exposure of Ltp on the surface of Lactococcus lactis protoplasts bearing a plasmid-encoded copy of ltp has been demonstrated by immunogold labeling and electron microscopy. Expression of ltp in prophage- and plasmid-cured S. thermophilus J34-6f interfered with TP-J34 infection. While plating efficiency was reduced by a factor of about 40 and lysis of strain J34-6f in liquid medium was delayed considerably, phage adsorption was not affected at all. Intracellular accumulation of phage DNA was shown to be inhibited by Ltp. This indicates interference of Ltp with infection at the stage of triggering DNA release and injection into the cell, indicating a role of Ltp in superinfection exclusion. Expression of ltp in L. lactis Bu2-60 showed that the same superinfection exclusion mechanism was strongly effective against phage P008, a member of the lactococcal 936 phage species: no plaque-formation was detectable with even 10 9 phage per ml applied, and lysis in liquid medium did not occur. In Lactococcus also, Ltp apparently inhibited phage DNA release and/or injection. Ltp appears to be a member of a family of small, secreted proteins with a 42 amino acids repeat structure encoded by genes of Gram-positive bacteria. Some of these homologous genes are part of the genomes of prophages

  11. Structure of E. coli 16S RNA elucidated by psoralen crosslinking

    International Nuclear Information System (INIS)

    Thompson, J.F.; Hearst, J.E.

    1983-01-01

    E. coli 16S RNA in solution was photoreacted with hydroxymethyltrimethylpsoralen and long wave ultraviolet light. Positions of crosslinks were determined to high resolution by partially digesting the RNA with T 1 RNase, separating the crosslinked fragments by two-dimensional gel electrophoresis, reversing the crosslink, and sequencing the separated fragments. This method yielded the locations of crosslinks to +/-15 nucleotides. Even finer placement has been made on the basis of our knowledge of psoralen reactivity. Thirteen unique crosslinks were mapped. Seven crosslinks confirmed regions of secondary structure which had been predicted in published phylogenetic models, three crosslinks discriminated between phylogenetic models, and three proved the existence of new structures. The new structures were all long-range interactions which appear to be in dynamic equilibrium with local secondary structure. Because this technique yields direct information about the secondary structure of large RNAs, it should prove invaluable in studying the structure of other RNAs of all sizes

  12. Preliminary study on mitochondrial 16S rRNA gene sequences and phylogeny of flatfishes (Pleuronectiformes)

    Science.gov (United States)

    You, Feng; Liu, Jing; Zhang, Peijun; Xiang, Jianhai

    2005-09-01

    A 605 bp section of mitochondrial 16S rRNA gene from Paralichthys olivaceus, Pseudorhombus cinnamomeus, Psetta maxima and Kareius bicoloratus, which represent 3 families of Order Pleuronectiformes was amplified by PCR and sequenced to show the molecular systematics of Pleuronectiformes for comparison with related gene sequences of other 6 flatfish downloaded from GenBank. Phylogenetic analysis based on genetic distance from related gene sequences of 10 flatfish showed that this method was ideal to explore the relationship between species, genera and families. Phylogenetic trees set-up is based on neighbor-joining, maximum parsimony and maximum likelihood methods that accords to the general rule of Pleuronectiformes evolution. But they also resulted in some confusion. Unlike data from morphological characters, P. olivaceus clustered with K. bicoloratus, but P. cinnamomeus did not cluster with P. olivaceus, which is worth further studying.

  13. Hosts, distribution and genetic divergence (16S rDNA) of Amblyomma dubitatum (Acari: Ixodidae).

    Science.gov (United States)

    Nava, Santiago; Venzal, José M; Labruna, Marcelo B; Mastropaolo, Mariano; González, Enrique M; Mangold, Atilio J; Guglielmone, Alberto A

    2010-08-01

    We supply information about hosts and distribution of Amblyomma dubitatum. In addition, we carry out an analysis of genetic divergence among specimens of A. dubitatum from different localities and with respect to other Neotropical Amblyomma species, using sequences of 16S rDNA gene. Although specimens of A. dubitatum were collected on several mammal species as cattle horse, Tapirus terrestris, Mazama gouazoubira, Tayassu pecari, Sus scrofa, Cerdocyon thous, Myocastor coypus, Allouata caraya, Glossophaga soricina and man, most records of immature and adult stages of A. dubitatum were made on Hydrochoerus hydrochaeris, making this rodent the principal host for all parasitic stages of this ticks. Cricetidae rodents (Lundomys molitor, Scapteromys tumidus), opossums (Didelphis albiventris) and vizcacha (Lagostomus maximus) also were recorded as hosts for immature stages. All findings of A. dubitatum correspond to localities of Argentina, Brazil, Paraguay and Uruguay, and they were concentrated in the Biogeographical provinces of Pampa, Chaco, Cerrado, Brazilian Atlantic Forest, Parana Forest and Araucaria angustifolia Forest. The distribution of A. dubitatum is narrower than that of its principal host, therefore environmental variables rather than hosts determine the distributional ranges of this tick. The intraspecific genetic divergence among 16S rDNA sequences of A. dubitatum ticks collected in different localities from Argentina, Brazil and Uruguay was in all cases lower than 0.8%, whereas the differences with the remaining Amblyomma species included in the analysis were always bigger than 6.8%. Thus, the taxonomic status of A. dubitatum along its distribution appears to be certain at the specific level.

  14. Partial Sequencing of 16S rRNA Gene of Selected Staphylococcus aureus Isolates and its Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Harsi Dewantari Kusumaningrum

    2016-08-01

    Full Text Available The choice of primer used in 16S rRNA sequencing for identification of Staphylococcus species found in food is important. This study aimed to characterize Staphylococcus aureus isolates by partial sequencing based on 16S rRNA gene employing primers 16sF, 63F or 1387R. The isolates were isolated from milk, egg dishes and chicken dishes and selected based on the presence of sea gene that responsible for formation of enterotoxin-A. Antibiotic susceptibility of the isolates towards six antibiotics was also tested. The use of 16sF resulted generally in higher identity percentage and query coverage compared to the sequencing by 63F or 1387R. BLAST results of all isolates, sequenced by 16sF, showed 99% homology to complete genome of four S. aureus strains, with different characteristics on enterotoxin production and antibiotic resistance. Considering that all isolates were carrying sea gene, indicated by the occurence of 120 bp amplicon after PCR amplification using primer SEA1/SEA2,  the isolates were most in agreeing to S. aureus subsp. aureus ST288. This study indicated that 4 out of 8 selected isolates were resistant towards streptomycin. The 16S rRNA gene sequencing using 16sF is useful for identification of S. aureus. However, additional analysis such as PCR employing specific gene target, should give a valuable supplementary information, when specific characteristic is expected.

  15. Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples.

    Science.gov (United States)

    Chen, Yi-Lin; Lee, Chuan-Chun; Lin, Ya-Lan; Yin, Kai-Min; Ho, Chung-Liang; Liu, Tsunglin

    2015-01-01

    Next-generation sequencing (NGS) technology has transformed metagenomics because the high-throughput data allow an in-depth exploration of a complex microbial community. However, accurate species identification with NGS data is challenging because NGS sequences are relatively short. Assembling 16S rDNA segments into longer sequences has been proposed for improving species identification. Current approaches, however, either suffer from amplification bias due to one single primer or insufficient 16S rDNA reads in whole genome sequencing data. Multiple primers were used to amplify different 16S rDNA segments for 454 sequencing, followed by 454 read classification and assembly. This permitted targeted sequencing while reducing primer bias. For test samples containing four known bacteria, accurate and near full-length 16S rDNAs of three known bacteria were obtained. For real soil and sediment samples containing dioxins in various concentrations, 16S rDNA sequences were lengthened by 50% for about half of the non-rare microbes, and 16S rDNAs of several microbes reached more than 1000 bp. In addition, reduced primer bias using multiple primers was illustrated. A new experimental and computational pipeline for obtaining long 16S rDNA sequences was proposed. The capability of the pipeline was validated on test samples and illustrated on real samples. For dioxin-containing samples, the pipeline revealed several microbes suitable for future studies of dioxin chemistry.

  16. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing.

    Science.gov (United States)

    Tourlousse, Dieter M; Yoshiike, Satowa; Ohashi, Akiko; Matsukura, Satoko; Noda, Naohiro; Sekiguchi, Yuji

    2017-02-28

    High-throughput sequencing of 16S rRNA gene amplicons (16S-seq) has become a widely deployed method for profiling complex microbial communities but technical pitfalls related to data reliability and quantification remain to be fully addressed. In this work, we have developed and implemented a set of synthetic 16S rRNA genes to serve as universal spike-in standards for 16S-seq experiments. The spike-ins represent full-length 16S rRNA genes containing artificial variable regions with negligible identity to known nucleotide sequences, permitting unambiguous identification of spike-in sequences in 16S-seq read data from any microbiome sample. Using defined mock communities and environmental microbiota, we characterized the performance of the spike-in standards and demonstrated their utility for evaluating data quality on a per-sample basis. Further, we showed that staggered spike-in mixtures added at the point of DNA extraction enable concurrent estimation of absolute microbial abundances suitable for comparative analysis. Results also underscored that template-specific Illumina sequencing artifacts may lead to biases in the perceived abundance of certain taxa. Taken together, the spike-in standards represent a novel bioanalytical tool that can substantially improve 16S-seq-based microbiome studies by enabling comprehensive quality control along with absolute quantification. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Improved identification of Gordonia, Rhodococcus and Tsukamurella species by 5'-end 16S rRNA gene sequencing.

    Science.gov (United States)

    Wang, Tao; Kong, Fanrong; Chen, Sharon; Xiao, Meng; Sorrell, Tania; Wang, Xiaoyan; Wang, Shuo; Sintchenko, Vitali

    2011-01-01

    The identification of fastidious aerobic Actinomycetes such as Gordonia, Rhodococcus, and Tsukamurella has remained a challenge leading to clinically significant misclassifications. This study is intended to examine the feasibility of partial 5'-end 16S rRNA gene sequencing for the identification of Gordonia, Rhodococcus, and Tsukamurella, and defined potential reference sequences for species from each of these genera. The 16S rRNA gene sequence based identification algorithm for species identification was used and enhanced by aligning test sequences with reference sequences from the List of Prokaryotic Names with Standing in Nomenclature. Conventional PCR based 16S rRNA gene sequencing and the alignment of the isolate 16S rRNA gene sequence with reference sequences accurately identified 100% of clinical strains of aerobic Actinomycetes. While partial 16S rRNA gene sequences of reference type strains matched with the 16S rRNA gene sequences of 19 isolates in our data set, another 13 strains demonstrated a degree of polymorphism with a 1-4 bp difference in the regions of difference. 5'-end 606 bp 16S rRNA gene sequencing, coupled with the assignment of well defined reference sequences to clinically relevant species of bacteria, can be a useful strategy for improving the identification of clinically relevant aerobic Actinomycetes.

  18. [Phylogenetic comparison between Spirulina and Arthrospira based on 16S rRNA and rpoC1 gene].

    Science.gov (United States)

    Wu, Yuemei; Wang, Suying; Dong, Shirui

    2016-02-04

    Based on 16S rRNA and rpoC1 gene sequences, the phylogenetic relationship between Spirulina and Arthrospira were studied and compared. We amplified, sequenced and analyzed 16S rRNA and rpoC1 of 84 strains. Then the phylogenetic trees were constructed and compared. The conserved sites percentage, average G+C content and sequence identity of rpoC1 were 49.7%, 47.7%, 76%-100% respectively, significantly lower than 79.4%, 55.6% and 91%-100% of 16S rRNA, and the heterogeneity degree was higher. The trees generated with two different genes showed similar topologies and thus inferred consistent phylogenetic relationships. Eighty-four experimental strains were divided into 3 groups belonging to 2 genera: F-35 1, F-904-2, F-1070 and TJBC14 were Spirulina and the rest were Arthrospira. Although morphospecies and geographical species could not be distinguished based on 16S rRNA and rpoC1 gene sequences, the bootstrap value of rpoC1 (100%) was higher than that of 16S rRNA (99%). Moreover, clustering effect of rpoC1 for Spirulina and Arthrospirai was better than 16S rRNA. Spirulina and Arthrospira were different genera, rpoC1 gene has more advantage to distinguish the strains in the same genus than that of 16S rRNA gene.

  19. Analysis of CRISPR-Cas System in Streptococcus thermophilus and Its Application

    Directory of Open Access Journals (Sweden)

    Mengyuan Hao

    2018-02-01

    Full Text Available CRISPR-Cas (Clustered regularly interspaced short palindromic repeats-CRISPR associated proteins loci, which provide a specific immunity against exogenous elements, are hypervariable among distinct prokaryotes. Based on previous researches, this review focuses on concluding systematical genome editing protocols in Streptococcus thermophilus. Firstly, its protocols and optimized conditions in gene editing are introduced. What’s more, classification and diversity analyses of S. thermophilus CRISPR-Cas benefit the further understanding of evolution relationship among Streptococcus. Ability of its foreign segment integration and spacer source analyses also indicate a new direction of phage resistance. Above all, all of these point out its potential to be regarded as another model system other than type II CRISPR-Cas in Streptococcus pyogenes.

  20. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A

    OpenAIRE

    Rodrigues, L. R.; Mei, Henny van der; Banat, Ibrahim M.; Teixeira, J. A.; Oliveira, Rosário

    2006-01-01

    Prova tipográfica (In Press) Microbial adhesion of four bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber before and after conditioning with a biosurfactant obtained from the probiotic bacterium Streptococcus thermophilus A was investigated in a parallel plate flow chamber. The silicone rubber with and without an adsorbed biosurfactant layer was characterized using contact angle measurements. Water contact angles indicated that the s...

  1. Effect of Capsule Storage on Viability of Lactobacillus bulgaricus and Streptococcus thermophilus in Yogurt Powder

    OpenAIRE

    Kanchana Sitlaothaworn

    2016-01-01

    Yogurt capsule was made by mixing 14% w/v of reconstitution of skim milk with 2% FOS. The mixture was fermented by commercial yogurt starter comprising Lactobacillus bulgaricus and Streptococcus thermophilus. These yogurts were made as yogurt powder by freeze-dried. Yogurt powder was put into capsule then stored for 28 days at 4oc. 8ml of commercial yogurt was found to be the most suitable inoculum size in yogurt production. After freeze-dried, the viability of L. bulgari...

  2. Streptococcus thermophilus : From yogurt starter to a new promising probiotic candidate?

    OpenAIRE

    Uriot, Ophélie; Denis, Sylvain; Khan, Maira; Roussel, Yvonne; Blanquet Diot, Stéphanie

    2017-01-01

    Probiotics are defined as live microorganisms that when administered in adequate amount confer a health benefit to the host. To be considered as a probiotic, a bacterial strain must not only be safe but should also survive in the human gastrointestinal tract and exert health benefits on its host. Streptococcus thermophilus is a Gram positive bacterium widely used in dairy fermentations for the production of yogurt and cheese. In contrast with other lactic acid bacteria, the probiotic status o...

  3. Occurrence, isolation and DNA identification of streptococcus thermophilus involved in algerian traditional butter 'Smen'

    OpenAIRE

    Labtar, Asmaa; Delorme, Christine; Renault, Pierre

    2011-01-01

    Streptococcus thermophilus isolates from traditional butter 'Smen', a fermented product from cow's and ewe's milk in arid area was subjected to taxonomical investigations. The identification procedure included phenotypic approaches, molecular characterization by using genus polymerase chain reaction (PCR) amplifications for sodA gene encoding the manganese-dependant superoxide dismutase A, and species-specific primers from gene encoding glucose kinase (glcK), gene encoding DNA polymerase III ...

  4. Novel Streptococcus infantarius subsp. infantarius variants harboring lactose metabolism genes homologous to Streptococcus thermophilus.

    Science.gov (United States)

    Jans, Christoph; Gerber, Andrea; Bugnard, Joséphine; Njage, Patrick Murigu Kamau; Lacroix, Christophe; Meile, Leo

    2012-08-01

    Streptococcus infantarius subsp. infantarius belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC) commonly associated with human and animal infections. We elucidated the lactose metabolism of S. infantarius subsp. infantarius predominant in African fermented milk products. S. infantarius subsp. infantarius isolates (n = 192) were identified in 88% of spontaneously fermented camel milk suusac samples (n = 24) from Kenya and Somalia at log₁₀ 8.2-8.5 CFU mL⁻¹. African S. infantarius isolates excreted stoichiometric amounts of galactose when grown on lactose, exhibiting a metabolism similar to Streptococcus thermophilus and distinct from their type strain. African S. infantarius subsp. infantarius CJ18 harbors a regular gal operon with 99.7-100% sequence identity to S. infantarius subsp. infantarius ATCC BAA-102(T) and a gal-lac operon with 91.7-97.6% sequence identity to S. thermophilus, absent in all sequenced SBSEC strains analyzed. The expression and functionality of lacZ was demonstrated in a β-galactosidase assay. The gal-lac operon was identified in 100% of investigated S. infantarius isolates (n = 46) from suusac samples and confirmed in Malian fermented cow milk isolates. The African S. infantarius variant potentially evolved through horizontal gene transfer of an S. thermophilus-homologous lactose pathway. Safety assessments are needed to identify any putative health risks of this novel S. infantarius variant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Streptococcus thermophilus urease activity boosts Lactobacillus delbrueckii subsp. bulgaricus homolactic fermentation.

    Science.gov (United States)

    Arioli, Stefania; Della Scala, Giulia; Remagni, Maria Chiara; Stuknyte, Milda; Colombo, Stefano; Guglielmetti, Simone; De Noni, Ivano; Ragg, Enzio; Mora, Diego

    2017-04-17

    The proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in the yogurt consortium enhances the growth rate and size of each population. In contrast, the independent growth of the two species in milk leads to a slower growth rate and a smaller population size. In this study, we report the first evidence that the urease activity of S. thermophilus increases the intracellular pH of L. delbrueckii in the absence of carbon source. However, in milk, in the presence of lactose the alkalizing effect of urea-derived ammonia was not detectable. Nevertheless, based on glucose consumption and lactic acid production at different pH in , L. delbrueckii showed an optimum of glycolysis and homolactic fermentation at alkaline pH values. In milk, we observed that ammonia provided by urea hydrolysis boosted lactic acid production in S. thermophilus and in L. delbrueckii when the species were grown alone or in combination. Therefore, we propose that urease activity acts as an altruistic cooperative trait, which is costly for urease-positive individuals but provides a local benefit because other individuals can take advantage of urease-dependent ammonia release. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Diversity of Streptococcus thermophilus in bacteriocin production; inhibitory spectrum and occurrence of thermophilin genes.

    Science.gov (United States)

    Rossi, Franca; Marzotto, Marta; Cremonese, Silvia; Rizzotti, Lucia; Torriani, Sandra

    2013-08-01

    The bacteriocin-producing Streptococcus thermophilus strains that can dominate in natural dairy ecosystems, may also enhance safety in products obtained from natural cultures. In this study, we sought to identify bacteriocin production and bacteriocin genes in 75 strains of dairy and plant origin. The strains were tested for antimicrobial activity against pathogens or pathogen models, spoiling bacteria, and lactic acid bacteria associated with dairy products. All strains moderately inhibited Staphylococcus aureus P310, none inhibited Listeria innocua LMG 11387(T) or Clostridium tyrobutyricum LMG 1285(T). In addition, 14 were active against one or more indicators in addition to S. aureus P310. Inhibition of other starter bacteria was more common than the inhibition of unwanted microorganisms. The involvement of a proteinaceous compound was ascertained in all cases. Results suggested that the selection of bacteriocinogenic S. thermophilus strains for use in biopreservation must take into account the effects exerted on other lactic acid bacteria. PCR detection of thermophilin genes proved unreliable in predicting antimicrobial activity. For S. thermophilus PRI36 and PRI45, with relevant inhibitory features, the identity of the bacteriocin genes present in the thermophilin 9 cluster was defined, thus revealing novel variants for this genome region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Small-scale analysis of exopolysaccharides from Streptococcus thermophilus grown in a semi-defined medium

    Directory of Open Access Journals (Sweden)

    Rådström Peter

    2001-09-01

    Full Text Available Abstract Background Exopolysaccharides (EPSs produced by lactic acid bacteria are important for the texture of fermented foods and have received a great deal of interest recently. However, the low production levels of EPSs in combination with the complex media used for growth of the bacteria have caused problems in the accurate analysis of the EPS. The purpose of this study was to find a growth medium for physiological studies of the lactic acid bacterium Streptococcus thermophilus, and to develop a simple method for qualitative and quantitative analysis of EPSs produced in this medium. Results A semi-defined polysaccharide medium was developed and evaluated on six strains of Streptococcus thermophilus. The EPSs were analysed using a novel protocol incorporating ultracentrifugation for the removal of interfering sugars, hydrolysis and analysis of the monomer composition by High Performance Anion-Exchange Chromatography with pulsed amperometric detection. The medium and analysis method allowed accurate quantification and monomer analysis of 0.5 ml samples of EPSs from tube cultures. Conclusions The presented medium should be useful for physiological studies of S. thermophilus, and, in combination with the method of analysis of EPS, will allow downscaling of physiological studies and screening for EPSs.

  8. Crystal structure of a thermostable Old Yellow Enzyme from Thermus scotoductus SA-01

    International Nuclear Information System (INIS)

    Opperman, Diederik J.; Sewell, Bryan T.; Litthauer, Derek; Isupov, Mikhail N.; Littlechild, Jennifer A.; Heerden, Esta van

    2010-01-01

    Recent characterization of the chromate reductase (CrS) from the thermophile Thermus scotoductus SA-01 revealed this enzyme to be related to the Old Yellow Enzyme (OYE) family. Here, we report the structure of a thermostable OYE homolog in its holoform at 2.2 A as well as its complex with p-hydroxybenzaldehyde (pHBA). The enzyme crystallized as octamers with the monomers showing a classical TIM barrel fold which upon dimerization yields the biologically active form of the protein. A sulfate ion is bound above the si-side of the non-covalently bound FMN cofactor in the oxidized solved structure but is displaced upon pHBA binding. The active-site architecture is highly conserved as with other members of this enzyme family. The pHBA in the CrS complex is positioned by hydrogen bonding to the two conserved catalytic-site histidines. The most prominent structural difference between CrS and other OYE homologs is the size of the 'capping domain'. Thermostabilization of the enzyme is achieved in part through increased proline content within loops and turns as well as increased intersubunit interactions through hydrogen bonding and complex salt bridge networks. CrS is able to reduce the C=C bonds of α,β-unsaturated carbonyl compounds with a preference towards cyclic substrates however no activity was observed towards β-substituted substrates. Mutational studies have confirmed the role of Tyr177 as the proposed proton donor although reduction could still occur at a reduced rate when this residue was mutated to phenylalanine.

  9. Sequence of the chloroplast 16S rRNA gene and its surrounding regions of Chlamydomonas reinhardii.

    Science.gov (United States)

    Dron, M; Rahire, M; Rochaix, J D

    1982-01-01

    The sequence of a 2 kb DNA fragment containing the chloroplast 16S ribosomal RNA gene from Chlamydomonas reinhardii and its flanking regions has been determined. The algal 16S rRNA sequence (1475 nucleotides) and secondary structure are highly related to those found in bacteria and in the chloroplasts of higher plants. In contrast, the flanking regions are very different. In C. reinhardii the 16S rRNA gene is surrounded by AT rich segments of about 180 bases, which are followed by a long stretch of complementary bases separated from each other by 1833 nucleotides. It is likely that these structures play an important role in the folding and processing of the precursor of 16S rRNA. The primary and secondary structures of the binding sites of two ribosomal proteins in the 16SrRNAs of E. coli and C. reinhardii are considerably related. Images PMID:6296784

  10. Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification.

    Science.gov (United States)

    Wagner, Josef; Coupland, Paul; Browne, Hilary P; Lawley, Trevor D; Francis, Suzanna C; Parkhill, Julian

    2016-11-14

    Currently, bacterial 16S rRNA gene analyses are based on sequencing of individual variable regions of the 16S rRNA gene (Kozich, et al Appl Environ Microbiol 79:5112-5120, 2013).This short read approach can introduce biases. Thus, full-length bacterial 16S rRNA gene sequencing is needed to reduced biases. A new alternative for full-length bacterial 16S rRNA gene sequencing is offered by PacBio single molecule, real-time (SMRT) technology. The aim of our study was to validate PacBio P6 sequencing chemistry using three approaches: 1) sequencing the full-length bacterial 16S rRNA gene from a single bacterial species Staphylococcus aureus to analyze error modes and to optimize the bioinformatics pipeline; 2) sequencing the full-length bacterial 16S rRNA gene from a pool of 50 different bacterial colonies from human stool samples to compare with full-length bacterial 16S rRNA capillary sequence; and 3) sequencing the full-length bacterial 16S rRNA genes from 11 vaginal microbiome samples and compare with in silico selected bacterial 16S rRNA V1V2 gene region and with bacterial 16S rRNA V1V2 gene regions sequenced using the Illumina MiSeq. Our optimized bioinformatics pipeline for PacBio sequence analysis was able to achieve an error rate of 0.007% on the Staphylococcus aureus full-length 16S rRNA gene. Capillary sequencing of the full-length bacterial 16S rRNA gene from the pool of 50 colonies from stool identified 40 bacterial species of which up to 80% could be identified by PacBio full-length bacterial 16S rRNA gene sequencing. Analysis of the human vaginal microbiome using the bacterial 16S rRNA V1V2 gene region on MiSeq generated 129 operational taxonomic units (OTUs) from which 70 species could be identified. For the PacBio, 36,000 sequences from over 58,000 raw reads could be assigned to a barcode, and the in silico selected bacterial 16S rRNA V1V2 gene region generated 154 OTUs grouped into 63 species, of which 62% were shared with the MiSeq dataset. The Pac

  11. 16S rRNA Amplicon Sequencing for Epidemiological Surveys of Bacteria in Wildlife.

    Science.gov (United States)

    Galan, Maxime; Razzauti, Maria; Bard, Emilie; Bernard, Maria; Brouat, Carine; Charbonnel, Nathalie; Dehne-Garcia, Alexandre; Loiseau, Anne; Tatard, Caroline; Tamisier, Lucie; Vayssier-Taussat, Muriel; Vignes, Helene; Cosson, Jean-François

    2016-01-01

    The human impact on natural habitats is increasing the complexity of human-wildlife interactions and leading to the emergence of infectious diseases worldwide. Highly successful synanthropic wildlife species, such as rodents, will undoubtedly play an increasingly important role in transmitting zoonotic diseases. We investigated the potential for recent developments in 16S rRNA amplicon sequencing to facilitate the multiplexing of the large numbers of samples needed to improve our understanding of the risk of zoonotic disease transmission posed by urban rodents in West Africa. In addition to listing pathogenic bacteria in wild populations, as in other high-throughput sequencing (HTS) studies, our approach can estimate essential parameters for studies of zoonotic risk, such as prevalence and patterns of coinfection within individual hosts. However, the estimation of these parameters requires cleaning of the raw data to mitigate the biases generated by HTS methods. We present here an extensive review of these biases and of their consequences, and we propose a comprehensive trimming strategy for managing these biases. We demonstrated the application of this strategy using 711 commensal rodents, including 208 Mus musculus domesticus , 189 Rattus rattus , 93 Mastomys natalensis , and 221 Mastomys erythroleucus , collected from 24 villages in Senegal. Seven major genera of pathogenic bacteria were detected in their spleens: Borrelia , Bartonella , Mycoplasma , Ehrlichia , Rickettsia , Streptobacillus , and Orientia . Mycoplasma , Ehrlichia , Rickettsia , Streptobacillus , and Orientia have never before been detected in West African rodents. Bacterial prevalence ranged from 0% to 90% of individuals per site, depending on the bacterial taxon, rodent species, and site considered, and 26% of rodents displayed coinfection. The 16S rRNA amplicon sequencing strategy presented here has the advantage over other molecular surveillance tools of dealing with a large spectrum of

  12. Comparison of 16S ribosomal RNA gene sequence analysis and conventional culture in the environmental survey of a hospital

    OpenAIRE

    Manaka, Akihiro; Tokue, Yutaka; Murakami, Masami

    2017-01-01

    Background Nosocomial infection is one of the most common complications within health care facilities. Certain studies have reported outbreaks resulting from contaminated hospital environments. Although the identification of bacteria in the environment can readily be achieved using culturing methods, these methods detect live bacteria. Sequencing of the 16S ribosomal RNA (16S rRNA) gene is recognized to be effective for bacterial identification. In this study, we surveyed wards where drug-res...

  13. Therapeutic effect of Streptococcus thermophilus CRL 1190-fermented milk on chronic gastritis

    Science.gov (United States)

    Rodríguez, Cecilia; Medici, Marta; Mozzi, Fernanda; de Valdez, Graciela Font

    2010-01-01

    AIM: To investigate the potential therapeutic effect of exopolysaccharide (EPS)-producing Streptococcus thermophilus (S. thermophilus) CRL 1190 fermented milk on chronic gastritis in Balb/c mice. METHODS: Balb/c mice were fed with the fermented milk for 7 d after inducing gastritis with acetyl-salicylic acid (ASA, 400 mg/kg body weight per day for 10 d). Omeprazole was included in this study as a positive therapeutic control. The gastric inflammatory activity was evaluated from gastric histology and inflammation score, number of interleukin-10 (IL-10), interferon-γ (INFγ) and tumor necrosis factor-α (TNF-α) cytokine-producing cells in the gastric mucosa, and thickness of the mucus layer. RESULTS: Animals receiving treatment with the EPS-producing S. thermophilus CRL 1190 fermented milk showed a conserved gastric mucosa structure similar to that of healthy animals. Inflammation scores of the fermented milk-treated mice were lower than those of mice in the gastritis group (0.2 ± 0.03 vs 2.0 ± 0.6, P < 0.05). A marked decrease in INFγ+ (15 ± 1.0 vs 28 ± 1.2, P < 0.05) and TNF-α+ (16 ± 3.0 vs 33 ± 3.0, P < 0.05) cells and an increase in IL-10+ (28 ± 1.5 vs 14 ± 1.3, P < 0.05) cells compared to the gastritis group, was observed. Also, an increase in the thickness of the mucus gel layer (2.2 ± 0.6 vs 1.0 ± 0.3; 5.1 ± 0.8 vs 1.5 ± 0.4 in the corpus and antrum mucosa, respectively, P < 0.05) compared with the gastritis group was noted. A milk suspension of the purified EPS from S. thermophilus CRL1190 was also effective as therapy for gastritis. CONCLUSION: This study suggests that fermented milk with S. thermophilus CRL 1190 and/or its EPS could be used in novel functional foods as an alternative natural therapy for chronic gastritis induced by ASA. PMID:20355240

  14. Comparison of 16S and COX1 genes mitochondrial regions and their usefulness for genetic analysis of ticks (Acari: Ixodidae).

    Science.gov (United States)

    Paternina, Luis Enrique; Verbel-Vergara, Daniel; Bejarano, Eduar Elías

    2016-06-03

    In recent decades the analysis of mitochondrial genes has been used for population and phylogenetic studies of ticks allowing many advances in their systematics. Mitochondrial ribosomal 16S (16S) subunit is one of the most frequently used among those genes available for tick analysis, whereas cytochrome oxidase gene 1 (COX1) has recently been used and proposed as an alternative to the traditional 16S gene marker.  To evaluate the usefulness of 16S and COX1 in genetic studies of ticks by analyzing sequences of three species commonly found in the Caribbean region of Colombia.  The analysis of both genes sequences allowed us to identify the three species with high levels of confidence and interspecific genetic divergence (19-22%), although only COX1 allowed us to detect intraspecific genetic variability (up to ~0.8%). A substitution saturation analysis indicated that the 16S gene was not saturated with transitions while the COX1 gene showed saturation distances starting at ~17%.  Our results indicated that the 16S gene seems to have better features for interspecific phylogenetic analyses because of its high level of genetic divergence and low saturation pattern, while the COX1 gene appears to be more useful for intraspecific genetic variability studies. However, as our study was conducted at a local scale, future studies at different biogeographical scales would help to establish its usefulness in wider and more complex scenarios.

  15. IDENTIFIKASI BAKTERI PENGOKSIDASI BESI DAN SULFUR BERDASARKAN GEN 16S rRNA DARI LAHAN TAMBANG TIMAH DI BELITUNG

    Directory of Open Access Journals (Sweden)

    Dhewanti Puspitasari

    2014-03-01

    Full Text Available Heavy metals contamination disturb balance and diversity of microorganism in soil. Microorganisms which can able to survive in those conditions are bacteria capable of oxidizing heavy metals. Identification based on 16S rRNA was used to determine characteristics and phylogenetic relationship of bacteria which can oxidize iron and sulphur in tin mining areas. The aim of this research was able to determine the bacterias characteristics isolated from tin mining areas and determine the phylogenetic relation of iron-sulphur oxidizing bacteria on tin mining soil in Belitung based on 16S rRNA sequences. This research was done using descriptive method, including isolation, morphological characterization, and identification based on 16S rRNA sequences. Morphology characterization includes colony and cell morphology through Gram staining. Molecular characterization includes amplification of 16S rRNA gene (Polymerase Chain Reaction/ PCR, electrophoresis amplicon and sequencing. Bacteria identification was done by comparing the 16S rRNA gene sequence in GenBank. The result showed three bacterias were identified by 16S rRNA have a similarity with Bacillus anthracis strain Ames, Bacillus cereus ATCC 14579, Staphylococcus sciuri subsp. Sciuri strains DSM 20345 and Micrococcus luteus NCTC 2665.

  16. A pseudogene cluster in the leader region of the Euglena chloroplast 16S-23S rRNA genes.

    Science.gov (United States)

    Miyata, T; Kikuno, R; Ohshima, Y

    1982-01-01

    The nucleotide sequence of a region (leader region) preceding the 5'-end of 16S-23S rRNA gene region of Euglena gracilis chloroplast DNA was compared with the homologous sequences that code for the 16S-23S rRNA operons of Euglena and E. coli. The leader region shows close homology in sequence to the 16S-23S rRNA gene region of Euglena (Orozco et al. (1980) J. Biol.Chem. 255, 10997-11003) as well as to the rrnD operon of E. coli, suggesting that it was derived from the 16S-23S rRNA gene region by gene duplication. It was shown that the leader region had accumulated nucleotide substitutions at an extremely rapid rate in its entirety, similar to the rate of tRNAIle pseudogene identified in the leader region. In addition, the leader region shows an unique base content which is quite distinct from those of 16S-23S rRNA gene regions of Euglena and E. coli, but again is similar to that of the tRNAIle pseudogene. The above two results strongly suggest that the leader region contains a pseudogene cluster which was derived from a gene cluster coding for the functional 16S-23S rRNA operon possibly by imperfect duplication during evolution of Euglena chloroplast DNA. PMID:7041094

  17. 16S rRNA partial gene sequencing for the differentiation and molecular subtyping of Listeria species.

    Science.gov (United States)

    Hellberg, Rosalee S; Martin, Keely G; Keys, Ashley L; Haney, Christopher J; Shen, Yuelian; Smiley, R Derike

    2013-12-01

    Use of 16S rRNA partial gene sequencing within the regulatory workflow could greatly reduce the time and labor needed for confirmation and subtyping of Listeria monocytogenes. The goal of this study was to build a 16S rRNA partial gene reference library for Listeria spp. and investigate the potential for 16S rRNA molecular subtyping. A total of 86 isolates of Listeria representing L. innocua, L. seeligeri, L. welshimeri, and L. monocytogenes were obtained for use in building the custom library. Seven non-Listeria species and three additional strains of Listeria were obtained for use in exclusivity and food spiking tests. Isolates were sequenced for the partial 16S rRNA gene using the MicroSeq ID 500 Bacterial Identification Kit (Applied Biosystems). High-quality sequences were obtained for 84 of the custom library isolates and 23 unique 16S sequence types were discovered for use in molecular subtyping. All of the exclusivity strains were negative for Listeria and the three Listeria strains used in food spiking were consistently recovered and correctly identified at the species level. The spiking results also allowed for differentiation beyond the species level, as 87% of replicates for one strain and 100% of replicates for the other two strains consistently matched the same 16S type. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Updated 16S rRNA-RFLP method for the identification of all currently characterised Arcobacter spp

    Directory of Open Access Journals (Sweden)

    Figueras María José

    2012-12-01

    Full Text Available Abstract Background Arcobacter spp. (family Campylobacteraceae are ubiquitous zoonotic bacteria that are being increasingly recognised as a threat to human health. A previously published 16S rRNA-RFLP Arcobacter spp. identification method produced specific RFLP patterns for the six species described at that time, using a single endonuclease (MseI. The number of characterised Arcobacter species has since risen to 17. The aim of the present study was to update the 16S rRNA-RFLP identification method to include all currently characterised species of Arcobacter. Results Digestion of the 16S rRNA gene with the endonuclease MseI produced clear, distinctive patterns for 10 of the 17 species, while the remaining species shared a common or very similar RFLP pattern. Subsequent digestion of the 16S rRNA gene from these species with the endonucleases MnlI and/or BfaI generated species-specific RFLP patterns. Conclusions 16S rRNA-RFLP analysis identified 17 Arcobacter spp. using either polyacrylamide or agarose gel electrophoresis. Microheterogeneities within the 16S rRNA gene, which interfered with the RFLP identification, were also documented for the first time in this genus, particularly in strains of Arcobacter cryaerophilus isolated from animal faeces and aborted foetuses.

  19. Phylogenetic Relationship of Phosphate Solubilizing Bacteria according to 16S rRNA Genes

    Directory of Open Access Journals (Sweden)

    Mohammad Bagher Javadi Nobandegani

    2015-01-01

    Full Text Available Phosphate solubilizing bacteria (PSB can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang oil palm field (University Putra Malaysia. Identification and phylogenetic analysis of 8 better isolates were carried out by 16S rRNA gene sequencing in which as a result five isolates belong to the Beta subdivision of Proteobacteria, one isolate was related to the Gama subdivision of Proteobacteria, and two isolates were related to the Firmicutes. Bacterial isolates of 6upmr, 2upmr, 19upmnr, 10upmr, and 24upmr were identified as Alcaligenes faecalis. Also, bacterial isolates of 20upmnr and 17upmnr were identified as Bacillus cereus and Vagococcus carniphilus, respectively, and bacterial isolates of 31upmr were identified as Serratia plymuthica. Molecular identification and characterization of oil palm strains as the specific phosphate solubilizer can reduce the time and cost of producing effective inoculate (biofertilizer in an oil palm field.

  20. 16S rRNA-based detection of oral pathogens in coronary atherosclerotic plaque

    Directory of Open Access Journals (Sweden)

    Mahendra Jaideep

    2010-01-01

    Full Text Available Background: Atherosclerosis develops as a response of the vessel wall to injury. Chronic bacterial infections have been associated with an increased risk for atherosclerosis and coronary artery disease. The ability of oral pathogens to colonize in coronary atheromatous plaque is well known. Aim: The aim of this study was to detect the presence of Treponema denticola, Porphyromonas gingivalis and Campylobacter rectus in the subgingival and atherosclerotic plaques of patients with coronary artery disease. Materials and Methods: Fifty-one patients in the age group of 40-80 years with coronary artery disease were selected for the study. DNA was extracted from the plaque samples. The specific primers for T. denticola, C. rectus and P. gingivalis were used to amplify a part of the 16S rRNA gene by polymerase chain reaction. Statistical Analysis Used: Chi-square analysis, correlation coefficient and prevalence percentage of the microorganisms were carried out for the analysis. Results: Of the 51 patients, T. denticola, C. rectus and P. gingivalis were detected in 49.01%, 21.51% and 45.10% of the atherosclerotic plaque samples. Conclusions: Our study revealed the presence of bacterial DNA of the oral pathogenic microorganisms in coronary atherosclerotic plaques. The presence of the bacterial DNA in the coronary atherosclerotic plaques in significant proportion may suggest the possible relationship between periodontal bacterial infection and genesis of coronary atherosclerosis.

  1. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences.

    Science.gov (United States)

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K; Maitra, S S

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about "methanogenic archaea composition" and "abundance" in the contrasting ecosystems like "landfill" and "marshland" may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process.

  2. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    Directory of Open Access Journals (Sweden)

    Shailendra Yadav

    2015-01-01

    Full Text Available Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic and Thaumarchaeota (mesophilic, were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process.

  3. Prokaryotic community profiling of local algae wastewaters using advanced 16S rRNA gene sequencing.

    Science.gov (United States)

    Limayem, Alya; Micciche, Andrew; Nayak, Bina; Mohapatra, Shyam

    2018-01-01

    Algae biomass-fed wastewaters are a promising source of lipid and bioenergy manufacture, revealing substantial end-product investment returns. However, wastewaters would contain lytic pathogens carrying drug resistance detrimental to algae yield and environmental safety. This study was conducted to simultaneously decipher through high-throughput advanced Illumina 16S ribosomal RNA (rRNA) gene sequencing, the cultivable and uncultivable bacterial community profile found in a single sample that was directly recovered from the local wastewater systems. Samples were collected from two previously documented sources including anaerobically digested (AD) municipal wastewater and swine wastewater with algae namely Chlorella spp. in addition to control samples, swine wastewater, and municipal wastewater without algae. Results indicated the presence of a significant level of Bacteria in all samples with an average of approximately 95.49% followed by Archaea 2.34%, in local wastewaters designed for algae cultivation. Taxonomic genus identification indicated the presence of Calothrix, Pseudomonas, and Clostridium as the most prevalent strains in both local municipal and swine wastewater samples containing algae with an average of 17.37, 12.19, and 7.84%, respectively. Interestingly, swine wastewater without algae displayed the lowest level of Pseudomonas strains algae indicates potential coexistence between these strains and algae microenvironment, suggesting further investigations. This finding was particularly relevant for the earlier documented adverse effects of some nosocomial Pseudomonas strains on algae growth and their multidrug resistance potential, requiring the development of targeted bioremediation with regard to the beneficial flora.

  4. Investigation of the koala (Phascolarctos cinereus) hindgut microbiome via 16S pyrosequencing.

    Science.gov (United States)

    Barker, Christopher J; Gillett, Amber; Polkinghorne, Adam; Timms, Peter

    2013-12-27

    As a dietary source, the foliage of Eucalyptus spp. is low in available protein and carbohydrate while containing polyphenolic compounds that interfere with enzymatic digestion. To overcome this, the koala (Phascolarctos cinereus) has evolved a range of anatomical and physiological adaptations to assist with digestion and absorption of nutrients from this food source. Microbial fermentation of partially digested eucalyptus leaves is thought to be critical in this process, however, little is known about the composition and diversity of microorganisms that are associated with digestive health in this native species. In this study, we performed 16S rRNA gene pyrosequencing of caecum, colon and faecal pellet samples from two wild, free ranging, Queensland koalas. Our results reveal a highly complex and diverse ecosystem with considerable intra-individual variation. Although samples were dominated by sequences from the Bacteroidetes and Firmicutes phyla there was considerable variation at the genus level. This study is the first non-culture based microbiota analysis, using 454-amplicon pyrosequencing, and provides preliminary data to expand our understanding of the koala hindgut. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. 16S rRNA analysis of diversity of manure microbial community in dairy farm environment.

    Science.gov (United States)

    Pandey, Pramod; Chiu, Colleen; Miao, Max; Wang, Yi; Settles, Matthew; Del Rio, Noelia Silva; Castillo, Alejandro; Souza, Alex; Pereira, Richard; Jeannotte, Richard

    2018-01-01

    Dairy farms generate a considerable amount of manure, which is applied in cropland as fertilizer. While the use of manure as fertilizer reduces the application of chemical fertilizers, the main concern with regards to manure application is microbial pollution. Manure is a reservoir of a broad range of microbial populations, including pathogens, which have potential to cause contamination and pose risks to public and animal health. Despite the widespread use of manure fertilizer, the change in microbial diversity of manure under various treatment processes is still not well-understood. We hypothesize that the microbial population of animal waste changes with manure handling used in a farm environment. Consequential microbial risk caused by animal manure may depend on manure handling. In this study, a reconnaissance effort for sampling dairy manure in California Central Valley followed by 16S rRNA analysis of content and diversity was undertaken to understand the microbiome of manure after various handling processes. The microbial community analysis of manure revealed that the population in liquid manure differs from that in solid manure. For instance, the bacteria of genus Sulfuriomonas were unique in liquid samples, while the bacteria of genus Thermos were observed only in solid samples. Bacteria of genus Clostridium were present in both solid and liquid samples. The population among liquid samples was comparable, as was the population among solid samples. These findings suggest that the mode of manure application (i.e., liquid versus solid) could have a potential impact on the microbiome of cropland receiving manure as fertilizers.

  6. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers.

    Science.gov (United States)

    Amit-Romach, E; Sklan, D; Uni, Z

    2004-07-01

    The microflora in the gastrointestinal tract of broiler chickens influences digestion, health, and wellbeing. Analysis of chicken gut microflora has been mainly by culture-based methods. Studies using these techniques have been useful for identification and analysis of specific groups of bacteria, however, the use of enrichment medium precludes even relative quantitation of bacterial species. Recent advances in ribosomal DNA-based molecular techniques make it possible to identify different bacterial populations in environmental samples without cultivation. In this study, the intestinal microflora was examined using 16S ribosomal DNA (rDNA) targeted probes from bacterial DNA isolated from intestinal and cecal contents of chickens at 4, 14, and 25 d of age. The ribosomal gene sequence was amplified using PCR with universal primers to determine total bacterial DNA and specific primers directed at 6 bacterial species: Lactobacillus, Bifidobacterium, Salmonella, Campylobacter, Escherichia coli, and Clostridium. The use of universal primers extends these methods to allow determination of relative proportions of different bacterial species. The results indicated that in young chicks the major species present in the small intestines and ceca was Lactobacilli, with a Bifidobacteria population becoming more dominant in the ceca at older age. Clostridium was detected in some segments of the small intestine in young chicks. In older chickens, Salmonella, Campylobacter, and E. coli species were found in the ceca. This study has demonstrated the use of molecular techniques for determining relative proportions of bacterial species and monitoring pathogens in the chick gastrointestinal tract.

  7. Characterization of cucumber fermentation spoilage bacteria by enrichment culture and 16S rDNA cloning.

    Science.gov (United States)

    Breidt, Fred; Medina, Eduardo; Wafa, Doria; Pérez-Díaz, Ilenys; Franco, Wendy; Huang, Hsin-Yu; Johanningsmeier, Suzanne D; Kim, Jae Ho

    2013-03-01

    Commercial cucumber fermentations are typically carried out in 40000 L fermentation tanks. A secondary fermentation can occur after sugars are consumed that results in the formation of acetic, propionic, and butyric acids, concomitantly with the loss of lactic acid and an increase in pH. Spoilage fermentations can result in significant economic loss for industrial producers. The microbiota that result in spoilage remain incompletely defined. Previous studies have implicated yeasts, lactic acid bacteria, enterobacteriaceae, and Clostridia as having a role in spoilage fermentations. We report that Propionibacterium and Pectinatus isolates from cucumber fermentation spoilage converted lactic acid to propionic acid, increasing pH. The analysis of 16S rDNA cloning libraries confirmed and expanded the knowledge gained from previous studies using classical microbiological methods. Our data show that Gram-negative anaerobic bacteria supersede Gram-positive Fermincutes species after the pH rises from around 3.2 to pH 5, and propionic and butyric acids are produced. Characterization of the spoilage microbiota is an important first step in efforts to prevent cucumber fermentation spoilage. An understanding of the microorganisms that cause commercial cucumber fermentation spoilage may aid in developing methods to prevent the spoilage from occurring. © 2013 Institute of Food Technologists®

  8. PRODUCCIÓN DE α-AMILASA CON CÉLULAS LIBRES E INMOVILIZADAS DE Thermus sp.

    Directory of Open Access Journals (Sweden)

    Sarmiento VC

    2003-12-01

    Full Text Available Se compara la producción de á-amilasa termoestable a partir de almidón, empleando una cepa autóctona deThermus sp., en cultivo discontinuo con células libres e inmovilizadas en 3% p/v de alginato de sodio. Laproducción se llevó a cabo en medio PAP2 modificado por la adición de almidón de maíz a 3.024g/l. Losresultados obtenidos en el fermentador, reportaron mayor eficiencia debido a la configuración geométrica;concentración de la fuente de carbono, oxigenación y temperatura; lo que permite mejor aprovechamiento delsustrato. La máxima producción de alpha amilasa se obtuvo con células inmovilizadas en fermentador con 1lde caldo de cultivo (cultivo fluidizado, a las 24 horas de fermentación (360.97UA/min l y 149.09 de actividadespecífica, vs., 60.31UA/min l y 18.40 de actividad específica, obtenida en fermentador con 10l de volumende trabajo a las 14h. Es importante resaltar de este trabajo, que por primera vez en Colombia son utilizadascélulas inmovilizadas de Thermus sp., para la producción de alpha amilasa termoestable.

  9. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    Dan, Tong; Wang, Dan; Wu, Shimei; Jin, Rulin; Ren, Weiyi; Sun, Tiansong

    2017-09-29

    Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus are key factors in the fermentation process and the final quality of dairy products worldwide. This study was performed to investigate the effects of the proportions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus isolated from traditionally fermented dairy products in China and Mongolia on the profile of volatile compounds produced in samples. Six proportional combinations (1:1, 1:10, 1:50, 1:100, 1:1000, and 1:10,000) of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 were considered, and the volatiles were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) against an internal standard. In total, 89 volatile flavor compounds, consisting of aldehydes, ketones, acids, alcohols, esters, and aromatic hydrocarbons, were identified. Among these, some key flavor volatile compounds were identified, including acetaldehyde, 3-methylbutanal, acetoin, 2-heptanone, acetic acid, butanoic acid, and 3-methyl-1-butanol. The of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 influenced the type and concentration of volatiles produced. In particular, aldehydes and ketones were present at higher concentrations in the 1:1000 treatment combination than in the other combinations. Our findings emphasize the importance of selecting the appropriate proportions of L. delbrueckii subsp. bulgaricus and S. thermophilus for the starter culture in determining the final profile of volatiles and the overall flavor of dairy products.

  10. Nucleotide sequencing and analysis of 16S rDNA and 16S-23S rDNA internal spacer region (ISR) of Taylorella equigenitalis, as an important pathogen for contagious equine metritis (CEM).

    Science.gov (United States)

    Kagawa, S; Nagano, Y; Tazumi, A; Murayama, O; Millar, B C; Moore, J E; Matsuda, M

    2006-05-01

    The primer set for 16S rDNA amplified an amplicon of about 1500 bp in length for three strains of Taylorella equigenitalis (NCTC11184(T), Kentucky188 and EQ59). Sequence differences of the 16S rDNA among the six sequences, including three reference sequences, occurred at only a few nucleotide positions and thus, an extremely high sequence similarity of the 16S rDNA was first demonstrated among the six sequences. In addition, the primer set for 16S-23S rDNA internal spacer region (ISR) amplified two amplicons about 1300 bp and 1200 bp in length for the three strains. The ISRs were estimated to be about 920 bp in length for large ISR-A and about 830 bp for small ISR-B. Sequence alignment of the ISR-A and ISR-B demonstrated about 10 base differences between NCTC11184(T) and EQ59 and between Kentucky188 and EQ59. However, only minor sequence differences were demonstrated between the ISR-A and ISR-B from NCTC11184(T) and Kentucky188, respectively. A typical order of the intercistronic tRNAs with the 29 nucleotide spacer of 5'-16S rDNA-tRNA(Ile)-tRNA(Ala)-23S rDNA-3' was demonstrated in the all ISRs. The ISRs may be useful for the discrimination amongst isolates of T. equigenitalis if sequencing is employed.

  11. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt

    NARCIS (Netherlands)

    Settachaimongkon, S.; Nout, M.J.R.; Antunes Fernandes, E.C.; Hettinga, K.A.; Vervoort, J.J.M.; Hooijdonk, van A.C.M.; Zwietering, M.H.; Smid, E.J.; Valenberg, van H.J.F.

    2014-01-01

    Proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus is one of the key factors that determine the fermentation process and final quality of yoghurt. In this study, the interaction between different proteolytic strains of S. thermophilus and L.

  12. Genome Sequences of Streptococcus thermophilus Strains MTH17CL396 and M17PTZA496 from Fontina, an Italian PDO Cheese

    DEFF Research Database (Denmark)

    Treu, Laura; Vendramin, Veronica; Bovo, Barbara

    2014-01-01

    Here is presented the whole-genome sequences of Streptococcus thermophilus strains MTH17CL396 and M17PTZA496, isolated from fontina protected designation of origin (PDO) cheese in the Valle d'Aosta Region (Italy). S. thermophilus is a lactic acid bacterium widely present in dairy products...

  13. Technologically important extremophile 16S rRNA sequence Shannon entropy and fractal property comparison with long term dormant microbes

    Science.gov (United States)

    Holden, Todd; Gadura, N.; Dehipawala, S.; Cheung, E.; Tuffour, M.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.

    2011-10-01

    Technologically important extremophiles including oil eating microbes, uranium and rocket fuel perchlorate reduction microbes, electron producing microbes and electrode electrons feeding microbes were compared in terms of their 16S rRNA sequences, a standard targeted sequence in comparative phylogeny studies. Microbes that were reported to have survived a prolonged dormant duration were also studied. Examples included the recently discovered microbe that survives after 34,000 years in a salty environment while feeding off organic compounds from other trapped dead microbes. Shannon entropy of the 16S rRNA nucleotide composition and fractal dimension of the nucleotide sequence in terms of its atomic number fluctuation analyses suggest a selected range for these extremophiles as compared to other microbes; consistent with the experience of relatively mild evolutionary pressure. However, most of the microbes that have been reported to survive in prolonged dormant duration carry sequences with fractal dimension between 1.995 and 2.005 (N = 10 out of 13). Similar results are observed for halophiles, red-shifted chlorophyll and radiation resistant microbes. The results suggest that prolonged dormant duration, in analogous to high salty or radiation environment, would select high fractal 16S rRNA sequences. Path analysis in structural equation modeling supports a causal relation between entropy and fractal dimension for the studied 16S rRNA sequences (N = 7). Candidate choices for high fractal 16S rRNA microbes could offer protection for prolonged spaceflights. BioBrick gene network manipulation could include extremophile 16S rRNA sequences in synthetic biology and shed more light on exobiology and future colonization in shielded spaceflights. Whether the high fractal 16S rRNA sequences contain an asteroidlike extra-terrestrial source could be speculative but interesting.

  14. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota.

    Science.gov (United States)

    Ellegaard, Kirsten M; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities.

  15. 16S rRNA analysis of diversity of manure microbial community in dairy farm environment.

    Directory of Open Access Journals (Sweden)

    Pramod Pandey

    Full Text Available Dairy farms generate a considerable amount of manure, which is applied in cropland as fertilizer. While the use of manure as fertilizer reduces the application of chemical fertilizers, the main concern with regards to manure application is microbial pollution. Manure is a reservoir of a broad range of microbial populations, including pathogens, which have potential to cause contamination and pose risks to public and animal health. Despite the widespread use of manure fertilizer, the change in microbial diversity of manure under various treatment processes is still not well-understood. We hypothesize that the microbial population of animal waste changes with manure handling used in a farm environment. Consequential microbial risk caused by animal manure may depend on manure handling. In this study, a reconnaissance effort for sampling dairy manure in California Central Valley followed by 16S rRNA analysis of content and diversity was undertaken to understand the microbiome of manure after various handling processes. The microbial community analysis of manure revealed that the population in liquid manure differs from that in solid manure. For instance, the bacteria of genus Sulfuriomonas were unique in liquid samples, while the bacteria of genus Thermos were observed only in solid samples. Bacteria of genus Clostridium were present in both solid and liquid samples. The population among liquid samples was comparable, as was the population among solid samples. These findings suggest that the mode of manure application (i.e., liquid versus solid could have a potential impact on the microbiome of cropland receiving manure as fertilizers.

  16. A core human microbiome as viewed through 16S rRNA sequence clusters.

    Directory of Open Access Journals (Sweden)

    Susan M Huse

    Full Text Available We explore the microbiota of 18 body sites in over 200 individuals using sequences amplified V1-V3 and the V3-V5 small subunit ribosomal RNA (16S hypervariable regions as part of the NIH Common Fund Human Microbiome Project. The body sites with the greatest number of core OTUs, defined as OTUs shared amongst 95% or more of the individuals, were the oral sites (saliva, tongue, cheek, gums, and throat followed by the nose, stool, and skin, while the vaginal sites had the fewest number of OTUs shared across subjects. We found that commonalities between samples based on taxonomy could sometimes belie variability at the sub-genus OTU level. This was particularly apparent in the mouth where a given genus can be present in many different oral sites, but the sub-genus OTUs show very distinct site selection, and in the vaginal sites, which are consistently dominated by the Lactobacillus genus but have distinctly different sub-genus V1-V3 OTU populations across subjects. Different body sites show approximately a ten-fold difference in estimated microbial richness, with stool samples having the highest estimated richness, followed by the mouth, throat and gums, then by the skin, nasal and vaginal sites. Richness as measured by the V1-V3 primers was consistently higher than richness measured by V3-V5. We also show that when such a large cohort is analyzed at the genus level, most subjects fit the stool "enterotype" profile, but other subjects are intermediate, blurring the distinction between the enterotypes. When analyzed at the finer-scale, OTU level, there was little or no segregation into stool enterotypes, but in the vagina distinct biotypes were apparent. Finally, we note that even OTUs present in nearly every subject, or that dominate in some samples, showed orders of magnitude variation in relative abundance emphasizing the highly variable nature across individuals.

  17. Analysis of the unexplored features of rrs (16S rDNA of the Genus Clostridium

    Directory of Open Access Journals (Sweden)

    Shankar Pratap

    2011-01-01

    Full Text Available Abstract Background Bacterial taxonomy and phylogeny based on rrs (16S rDNA sequencing is being vigorously pursued. In fact, it has been stated that novel biological findings are driven by comparison and integration of massive data sets. In spite of a large reservoir of rrs sequencing data of 1,237,963 entries, this analysis invariably needs supplementation with other genes. The need is to divide the genetic variability within a taxa or genus at their rrs phylogenetic boundaries and to discover those fundamental features, which will enable the bacteria to naturally fall within them. Within the large bacterial community, Clostridium represents a large genus of around 110 species of significant biotechnological and medical importance. Certain Clostridium strains produce some of the deadliest toxins, which cause heavy economic losses. We have targeted this genus because of its high genetic diversity, which does not allow accurate typing with the available molecular methods. Results Seven hundred sixty five rrs sequences (> 1200 nucleotides, nts belonging to 110 Clostridium species were analyzed. On the basis of 404 rrs sequences belonging to 15 Clostridium species, we have developed species specific: (i phylogenetic framework, (ii signatures (30 nts and (iii in silico restriction enzyme (14 Type II REs digestion patterns. These tools allowed: (i species level identification of 95 Clostridium sp. which are presently classified up to genus level, (ii identification of 84 novel Clostridium spp. and (iii potential reduction in the number of Clostridium species represented by small populations. Conclusions This integrated approach is quite sensitive and can be easily extended as a molecular tool for diagnostic and taxonomic identification of any microbe of importance to food industries and health services. Since rapid and correct identification allows quicker diagnosis and consequently treatment as well, it is likely to lead to reduction in economic

  18. 16S rRNA gene survey of microbial communities in Winogradsky columns.

    Directory of Open Access Journals (Sweden)

    Ethan A Rundell

    Full Text Available A Winogradsky column is a clear glass or plastic column filled with enriched sediment. Over time, microbial communities in the sediment grow in a stratified ecosystem with an oxic top layer and anoxic sub-surface layers. Winogradsky columns have been used extensively to demonstrate microbial nutrient cycling and metabolic diversity in undergraduate microbiology labs. In this study, we used high-throughput 16s rRNA gene sequencing to investigate the microbial diversity of Winogradsky columns. Specifically, we tested the impact of sediment source, supplemental cellulose source, and depth within the column, on microbial community structure. We found that the Winogradsky columns were highly diverse communities but are dominated by three phyla: Proteobacteria, Bacteroidetes, and Firmicutes. The community is structured by a founding population dependent on the source of sediment used to prepare the columns and is differentiated by depth within the column. Numerous biomarkers were identified distinguishing sample depth, including Cyanobacteria, Alphaproteobacteria, and Betaproteobacteria as biomarkers of the soil-water interface, and Clostridia as a biomarker of the deepest depth. Supplemental cellulose source impacted community structure but less strongly than depth and sediment source. In columns dominated by Firmicutes, the family Peptococcaceae was the most abundant sulfate reducer, while in columns abundant in Proteobacteria, several Deltaproteobacteria families, including Desulfobacteraceae, were found, showing that different taxonomic groups carry out sulfur cycling in different columns. This study brings this historical method for enrichment culture of chemolithotrophs and other soil bacteria into the modern era of microbiology and demonstrates the potential of the Winogradsky column as a model system for investigating the effect of environmental variables on soil microbial communities.

  19. 16S rRNA analysis of diversity of manure microbial community in dairy farm environment

    Science.gov (United States)

    Miao, Max; Wang, Yi; Settles, Matthew; del Rio, Noelia Silva; Castillo, Alejandro; Souza, Alex; Pereira, Richard

    2018-01-01

    Dairy farms generate a considerable amount of manure, which is applied in cropland as fertilizer. While the use of manure as fertilizer reduces the application of chemical fertilizers, the main concern with regards to manure application is microbial pollution. Manure is a reservoir of a broad range of microbial populations, including pathogens, which have potential to cause contamination and pose risks to public and animal health. Despite the widespread use of manure fertilizer, the change in microbial diversity of manure under various treatment processes is still not well-understood. We hypothesize that the microbial population of animal waste changes with manure handling used in a farm environment. Consequential microbial risk caused by animal manure may depend on manure handling. In this study, a reconnaissance effort for sampling dairy manure in California Central Valley followed by 16S rRNA analysis of content and diversity was undertaken to understand the microbiome of manure after various handling processes. The microbial community analysis of manure revealed that the population in liquid manure differs from that in solid manure. For instance, the bacteria of genus Sulfuriomonas were unique in liquid samples, while the bacteria of genus Thermos were observed only in solid samples. Bacteria of genus Clostridium were present in both solid and liquid samples. The population among liquid samples was comparable, as was the population among solid samples. These findings suggest that the mode of manure application (i.e., liquid versus solid) could have a potential impact on the microbiome of cropland receiving manure as fertilizers. PMID:29304047

  20. ORF Alignment: NC_005835 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_005835 gi|46199906 >1vz0B 1 192 23 214 2e-58 ... pdb|1VZ0|H Chain H, Chromosome Segregation... Protein Spo0j From Thermus ... Thermophilus pdb|1VZ0|G Chain G, Chromosome Segregation ... ... ... Protein Spo0j From Thermus Thermophilus pdb|1VZ0|F Chain ... F, Chromosome Segregation Protein... Spo0j From Thermus ... Thermophilus pdb|1VZ0|E Chain E, Chromosome Segregation... ... Protein Spo0j From Thermus Thermophilus pdb|1VZ0|D Chain ... D, Chromosome Segregation

  1. ORF Alignment: NC_006461 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_006461 gi|55981938 >1vz0B 1 192 23 214 2e-58 ... pdb|1VZ0|H Chain H, Chromosome Segregation... Protein Spo0j From Thermus ... Thermophilus pdb|1VZ0|G Chain G, Chromosome Segregation ... ... ... Protein Spo0j From Thermus Thermophilus pdb|1VZ0|F Chain ... F, Chromosome Segregation Protein... Spo0j From Thermus ... Thermophilus pdb|1VZ0|E Chain E, Chromosome Segregation... ... Protein Spo0j From Thermus Thermophilus pdb|1VZ0|D Chain ... D, Chromosome Segregation

  2. ORF Alignment: NC_006461 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available protein ... [Thermus thermophilus HB8] ... Length = 104 ... Query: 1 ... MEYPELAPVLEAILKTVPAQKVILFGSRARGEARPES...DYDLLVVVPPEYKTMRVWKDLYL 60 ... MEYPELAPVLEAILKTVPAQKVILFGSRARGEARPES...DYDLLVVVPPEYKTMRVWKDLYL Sbjct: 1 ... MEYPELAPVLEAILKTVPAQKVILFGSRARGEARPESDYDLLVVVPPEYKTMRVWKDLYL 60 ...

  3. 16S rRNA gene sequencing as a tool to study microbial populations in foods and process environments

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Hansen, Tina Beck; Bahl, Martin Iain

    2015-01-01

    Introduction: Methodological constraints during culturing and biochemical testing have left the true microbiological diversity of foods and process environments unexplored. Culture-independent molecular methods, such as 16S rRNA gene sequencing, may provide deeper insight into microbial communities...... reference. Results: Taxonomic assignments and abundances of sequences in the total community and in the Enterobacteriaceae subpopulation were affected by the 16S rRNA gene variable region, DNA extraction methods, and polymerases chosen. However, community compositions were very reproducible when the same...... methods were used. Conclusions: Altogether, we have shown that conclusions from population studies based on 16S rRNA gene sequencing need to be made with caution. Overcoming the constraints, we believe that population studies can give new research possibilities for e.g. interaction studies, identification...

  4. [Cloning and sequencing of 16S rRNA gene of Phytoplasma CWB1 strain associated with cactus witches' broom].

    Science.gov (United States)

    Cai, H; Li, F; Kong, B; Chen, H

    2001-12-01

    A 1.5 kb DNA fragment was amplified in DNA samples extracted from Opuntia salmiana porm showed witches'-broom symptom. The result indicates the existence of phytoplasma associated with this disease and this phytoplasma was designated as CWB1. The amplified fragment was ligated to pGEM-T easy vector and then transformed into JM109 strain of E. coli. Cloned DNA fragments were verified by PCR, restriction endonuclease (EcoRI) digestion and sequence analysis. The result revealed that the 16S rRNA gene of CWB1 consists of 1489 bp and shared 99.7% homology with Faba bean phyllody which belongs to phytoplasma 16S rII-C subgroup. So we can classify this strain into phytoplasma 16S rII-C subgroup.

  5. A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods.

    Science.gov (United States)

    Kort, Remco; Westerik, Nieke; Mariela Serrano, L; Douillard, François P; Gottstein, Willi; Mukisa, Ivan M; Tuijn, Coosje J; Basten, Lisa; Hafkamp, Bert; Meijer, Wilco C; Teusink, Bas; de Vos, Willem M; Reid, Gregor; Sybesma, Wilbert

    2015-12-08

    The lactic acid bacterium Lactobacillus rhamnosus GG is the most studied probiotic bacterium with proven health benefits upon oral intake, including the alleviation of diarrhea. The mission of the Yoba for Life foundation is to provide impoverished communities in Africa increased access to Lactobacillus rhamnosus GG under the name Lactobacillus rhamnosus yoba 2012, world's first generic probiotic strain. We have been able to overcome the strain's limitations to grow in food matrices like milk, by formulating a dried starter consortium with Streptococcus thermophilus that enables the propagation of both strains in milk and other food matrices. The affordable seed culture is used by people in resource-poor communities. We used S. thermophilus C106 as an adjuvant culture for the propagation of L. rhamnosus yoba 2012 in a variety of fermented foods up to concentrations, because of its endogenous proteolytic activity, ability to degrade lactose and other synergistic effects. Subsequently, L. rhamnosus could reach final titers of 1E+09 CFU ml(-1), which is sufficient to comply with the recommended daily dose for probiotics. The specific metabolic interactions between the two strains were derived from the full genome sequences of L. rhamnosus GG and S. thermophilus C106. The piliation of the L. rhamnosus yoba 2012, required for epithelial adhesion and inflammatory signaling in the human host, was stable during growth in milk for two rounds of fermentation. Sachets prepared with the two strains, yoba 2012 and C106, retained viability for at least 2 years. A stable dried seed culture has been developed which facilitates local and low-cost production of a wide range of fermented foods that subsequently act as delivery vehicles for beneficial bacteria to communities in east Africa.

  6. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    Science.gov (United States)

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  7. Extensive 16S rRNA gene sequence diversity in Campylobacter hyointestinalis strains: taxonomic and applied implications

    DEFF Research Database (Denmark)

    Harrington, C.S.; On, Stephen L.W.

    1999-01-01

    Phylogenetic relationships of Campylobacter hyointestinalis subspecies were examined by means of 16S rRNA gene sequencing. Sequence similarities among C. hyointestinalis subsp. lawsonii strains exceeded 99.0 %, but values among C. hyointestinalis subsp. hyointestinalis strains ranged from 96...... of the genus Campylobacter, emphasizing the need for multiple strain analysis when using 16S rRNA gene sequence comparisons for taxonomic investigations........4 to 100 %. Sequence similarites between strains representing the two different subspecies ranged from 95.7 to 99.0 %. An intervening sequence was identified in certain of the C. hyointestinalis subsp. lawsonii strains. C. hyointestinalis strains occupied two distinct branches in a phylogenetic analysis...

  8. Defining reference sequences for Nocardia species by similarity and clustering analyses of 16S rRNA gene sequence data.

    Directory of Open Access Journals (Sweden)

    Manal Helal

    Full Text Available BACKGROUND: The intra- and inter-species genetic diversity of bacteria and the absence of 'reference', or the most representative, sequences of individual species present a significant challenge for sequence-based identification. The aims of this study were to determine the utility, and compare the performance of several clustering and classification algorithms to identify the species of 364 sequences of 16S rRNA gene with a defined species in GenBank, and 110 sequences of 16S rRNA gene with no defined species, all within the genus Nocardia. METHODS: A total of 364 16S rRNA gene sequences of Nocardia species were studied. In addition, 110 16S rRNA gene sequences assigned only to the Nocardia genus level at the time of submission to GenBank were used for machine learning classification experiments. Different clustering algorithms were compared with a novel algorithm or the linear mapping (LM of the distance matrix. Principal Components Analysis was used for the dimensionality reduction and visualization. RESULTS: The LM algorithm achieved the highest performance and classified the set of 364 16S rRNA sequences into 80 clusters, the majority of which (83.52% corresponded with the original species. The most representative 16S rRNA sequences for individual Nocardia species have been identified as 'centroids' in respective clusters from which the distances to all other sequences were minimized; 110 16S rRNA gene sequences with identifications recorded only at the genus level were classified using machine learning methods. Simple kNN machine learning demonstrated the highest performance and classified Nocardia species sequences with an accuracy of 92.7% and a mean frequency of 0.578. CONCLUSION: The identification of centroids of 16S rRNA gene sequence clusters using novel distance matrix clustering enables the identification of the most representative sequences for each individual species of Nocardia and allows the quantitation of inter- and intra

  9. DNA sequencing reveals limited heterogeneity in the 16S rRNA gene from the rrnB operon among five Mycoplasma hominis isolates

    DEFF Research Database (Denmark)

    Mygind, T; Birkelund, Svend; Christiansen, Gunna

    1998-01-01

    To investigate the intraspecies heterogeneity within the 16S rRNA gene of Mycoplasma hominis, five isolates with diverse antigenic profiles, variable/identical P120 hypervariable domains, and different 16S rRNA gene RFLP patterns were analysed. The 16S rRNA gene from the rrnB operon was amplified...

  10. Crystallization and preliminary X-ray diffraction study of recombinant ribokinase from Thermus Species 2.9

    Energy Technology Data Exchange (ETDEWEB)

    Abramchik, Yu. A. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Timofeev, V. I., E-mail: tostars@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Muravieva, T. I.; Esipov, R. S., E-mail: espiov@mx.ibch.ru [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P., E-mail: inna@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation)

    2016-11-15

    Ribokinase from a thermophilic strain of Thermus species 2.9 belonging to the carbohydrate ribokinase family (EC 2.7.1.15) was isolated, purified, and crystallized. The crystallization conditions were found by the vapor-diffusion technique and were then optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals, which were grown by the counter-diffusion technique, at the SPring-8 synchrotron radiation facility to 2.87 Å resolution. The crystals belong to sp. gr. P12{sub 1}1 and have the following unit-cell parameters: a = 81.613 Å, b = 156.132 Å, c = 87.714 Å, α = γ = 90°, β = 103.819°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the protein by the molecular-replacement method.

  11. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences.

    Science.gov (United States)

    Zhao, Ya-E; Wu, Li-Ping

    2012-09-01

    To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.

  12. Genera Chroococcus and Limnococcus (Cyanobacteria) on the basis of 16S rRNA sequences and strains morphology

    Czech Academy of Sciences Publication Activity Database

    Komárková, Jaroslava; Jezberová, Jitka; Komárek, Ondřej; Zapomělová, Eliška

    2009-01-01

    Roč. 48, č. 4 (2009), s. 64-65 ISSN 0031-8884. [International Phycological Congress /9./. 02.08.2009-08.08.2009, Tokyo ] Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z60170517; CEZ:AV0Z60870520 Keywords : Chroococcus * Limnococcus * 16S rRNA Subject RIV: EF - Botanics

  13. Obtaining representative community profiles of anaerobic digesters through optimisation of 16S rRNA amplicon sequencing protocols

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Karst, Søren Michael

    A reliable and reproducible method for identification and quantification of the microorganisms involved in biogas production is important for the study and understanding of the microbial communities responsible for the function of anaerobic digester systems. DNA based identification using 16S rRN...

  14. Optimisation of 16S rDNA amplicon sequencing protocols for microbial community profiling of anaerobic digesters

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Larsen, Poul

    A reliable and reproducible method for identification and quantification of the microorganisms involved in biogas production is important for the study and understanding of the microbial communities responsible for the function of anaerobic digester systems. DNA based identification using 16S rRN...

  15. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin.

    Science.gov (United States)

    Melançon, P; Lemieux, C; Brakier-Gingras, L

    1988-01-01

    Oligonucleotide-directed mutagenesis was used to introduce an A to C transversion at position 523 in the 16S ribosomal RNA gene of Escherichia coli rrnB operon cloned in plasmid pKK3535. E. coli cells transformed with the mutated plasmid were resistant to streptomycin. The mutated ribosomes isolated from these cells were not stimulated by streptomycin to misread the message in a poly(U)-directed assay. They were also restrictive to the stimulation of misreading by other error-promoting related aminoglycoside antibiotics such as neomycin, kanamycin or gentamicin, which do not compete for the streptomycin binding site. The 530 loop where the mutation in the 16S rRNA is located has been mapped at the external surface of the 30S subunit, and is therefore distal from the streptomycin binding site at the subunit interface. Our results support the conclusion that the mutation at position 523 in the 16S rRNA does not interfere with the binding of streptomycin, but prevents the drug from inducing conformational changes in the 530 loop which account for its miscoding effect. Since this effect primarily results from a perturbation of the translational proofreading control, our results also provide evidence that the 530 loop of the 16S rRNA is involved in this accuracy control. Images PMID:3054810

  16. A Web-Hosted R Workflow to Simplify and Automate the Analysis of 16S NGS Data

    Science.gov (United States)

    Next-Generation Sequencing (NGS) produces large data sets that include tens-of-thousands of sequence reads per sample. For analysis of bacterial diversity, 16S NGS sequences are typically analyzed in a workflow that containing best-of-breed bioinformatics packages that may levera...

  17. TaxCollector: Modifying Current 16S rRNA Databases for the Rapid Classification at Six Taxonomic Levels

    Directory of Open Access Journals (Sweden)

    Eric W. Triplett

    2010-07-01

    Full Text Available The high level of conservation of 16S ribosomal RNA gene (16S rRNA in all Prokaryotes makes this gene an ideal tool for the rapid identification and classification of these microorganisms. Databases such as the Ribosomal Database Project II (RDP-II and the Greengenes Project offer access to sets of ribosomal RNA sequence databases useful in identification of microbes in a culture-independent analysis of microbial communities. However, these databases do not contain all of the taxonomic levels attached to the published names of the bacterial and archaeal sequences. TaxCollector is a set of scripts developed in Python language that attaches taxonomic information to all 16S rRNA sequences in the RDP-II and Greengenes databases. These modified databases are referred to as TaxCollector databases, which when used in conjunction with BLAST allow for rapid classification of sequences from any environmental or clinical source at six different taxonomic levels, from domain to species. The TaxCollector database prepared from the RDP-II database is an important component of a new 16S rRNA pipeline called PANGEA. The usefulness of TaxCollector databases is demonstrated with two very different datasets obtained using samples from a clinical setting and an agricultural soil. The six TaxCollector scripts are freely available on http://taxcollector.sourceforge.net and on http://www.microgator.org.

  18. Variation in secondary structure of the 16S rRNA molecule in cyanobacteria with implications for phylogenetic analysis

    Czech Academy of Sciences Publication Activity Database

    Řeháková, Klára; Johansen, J. R.; Bowen, M.B.; Martin, M.P.; Sheil, C.A.

    2014-01-01

    Roč. 14, č. 2 (2014), s. 161-178 ISSN 1802-5439 Institutional support: RVO:60077344 Keywords : 16S rRNA secondary structure * cyanobacteria * phylogeny Subject RIV: EE - Microbiology, Virology Impact factor: 1.930, year: 2014

  19. Flow cytometry-assisted cloning of specific sequence motifs from complex 16S rRNA gene libraries

    DEFF Research Database (Denmark)

    Nielsen, J. L.; Schramm, A.; Engh, G. van den

    2004-01-01

    A How cytometry method was developed for rapid screening and recovery of cloned DNA containing common sequence motifs. This approach, termed fluorescence-activated cell sorting-assisted cloning, was used to recover sequences affiliated with a unique lineage within the Bacteroidetes not abundant i...... in a clone library of environmental 16S rRNA genes....

  20. Improving the microbial community reconstruction at the genus level by multiple 16S rRNA regions.

    Science.gov (United States)

    Wang, Shengqin; Sun, Beili; Tu, Jing; Lu, Zuhong

    2016-06-07

    16S rRNA genes have been widely used for phylogenetic reconstruction and the quantification of microbial diversity through the application of next-generation sequencing technology. However, long-read sequencing is still costly, while short-read sequencing carries less information for complex microbial community profiling; therefore, the applications of high throughput sequencing platforms still remain challenging in microbial community reconstruction analysis. Here, we developed a method to investigate the profile of aligned 16S rRNA gene sequences and to measure the proper region for microbial community reconstruction, as a step in creating a more efficient way to detect microorganism at the genus level. Finally, we found that each genus has its own preferential genus-specific amplicons for a genus assignment, which are not always located in hyper variable regions (HVRs). It was also noted that the rare genera should contribute less than dominant ones to the common profile of the aligned 16S rRNA sequences and have lower affinity to the common universal primer. Therefore, using multiple 16S rRNA regions rather than one "universal" region can significantly improve the ability of microbial community reconstruction. In addition, we found that a short fragment is suitable for most genera identifications, and the proper conserved regions used for primer design are larger than before. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Phylogenetic analysis of Thai oyster (Ostreidae) based on partial sequences of the mitochondrial 16S rDNA gene

    DEFF Research Database (Denmark)

    Bussarawit, Somchai; Gravlund, Peter; Glenner, Henrik

    2006-01-01

    Ten oyster species of the family Ostreidae (Subfamilies Crassostreinae and Lophinae) from Thailand were studied using morphological data and mitochondrial 16S rDNA gene sequences. Additional sequence data from five specimens of Ostreidae and one specimen of Tridacna gigas were downloaded from GenBank...

  2. Unexpected Diagnosis of Cerebral Toxoplasmosis by 16S and D2 Large-Subunit Ribosomal DNA PCR and Sequencing

    DEFF Research Database (Denmark)

    Kruse, Alexandra Yasmin Collin; Kvich, Lasse Andersson; Eickhardt-Dalbøge, Steffen Robert

    2015-01-01

    The protozoan parasite Toxoplasma gondii causes severe opportunistic infections. Here, we report an unexpected diagnosis of cerebral toxoplasmosis. T. gondii was diagnosed by 16S and D2 large-subunit (LSU) ribosomal DNA (rDNA) sequencing of a cerebral biopsy specimen and confirmed by T. gondii...

  3. Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction

    DEFF Research Database (Denmark)

    Recht, M I; Douthwaite, S; Dahlquist, K D

    1999-01-01

    of universally conserved nucleotides at 1406 to 1408 and 1494 to 1495 in the decoding region of plasmid-encoded bacterial 16 S rRNA. Phenotypic changes range from the benign effect of U1406-->A or A1408-->G substitutions, to the highly deleterious 1406G and 1495 mutations that assemble into 30 S subunits...

  4. 16SPIP: a comprehensive analysis pipeline for rapid pathogen detection in clinical samples based on 16S metagenomic sequencing.

    Science.gov (United States)

    Miao, Jiaojiao; Han, Na; Qiang, Yujun; Zhang, Tingting; Li, Xiuwen; Zhang, Wen

    2017-12-28

    Pathogen detection in clinical samples based on 16S metagenomic sequencing technology in microbiology laboratories is an important strategy for clinical diagnosis, public health surveillance, and investigations of outbreaks. However, the implementation of the technology is limited by its accuracy and the time required for bioinformatics analysis. Therefore, a simple, standardized, and rapid analysis pipeline from the receipt of clinical samples to the generation of a test report is needed to increase the use of metagenomic analyses in clinical settings. We developed a comprehensive bioinformatics analysis pipeline for the identification of pathogens in clinical samples based on 16S metagenomic sequencing data, named 16SPIP. This pipeline offers two analysis modes (fast and sensitive mode) for the rapid conversion of clinical 16S metagenomic data to test reports for pathogen detection. The pipeline includes tools for data conversion, quality control, merging of paired-end reads, alignment, and pathogen identification. We validated the feasibility and accuracy of the pipeline using a combination of culture and whole-genome shotgun (WGS) metagenomic analyses. 16SPIP may be effective for the analysis of 16S metagenomic sequencing data for real-time, rapid, and unbiased pathogen detection in clinical samples.

  5. IDENTIFICATION OF ACTIVE BACTERIAL COMMUNITIES IN A MODEL DRINKING WATER BIOFILM SYSTEM USING 16S RRNA-BASED CLONE LIBRARIES

    Science.gov (United States)

    Recent phylogenetic studies have used DNA as the target molecule for the development of environmental 16S rDNA clone libraries. As DNA may persist in the environment, DNA-based libraries cannot be used to identify metabolically active bacteria in water systems. In this study, a...

  6. 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from blood cultures

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Skov, Marianne Nielsine; Knudsen, Elisa

    2010-01-01

    A comparison between conventional identification and 16S rRNA gene sequencing of anaerobic bacteria isolated from blood cultures in a routine setting was performed (n = 127). With sequencing, 89% were identified to the species level, versus 52% with conventional identification. The times...

  7. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene

    DEFF Research Database (Denmark)

    Bowman, Jeff S.; Rasmussen, Simon; Blom, Nikolaj

    2011-01-01

    community in MYI at two sites near the geographic North Pole using parallel tag sequencing of the 16S rRNA gene. Although the composition of the MYI microbial community has been characterized by previous studies, microbial community structure has not been. Although richness was lower in MYI than...

  8. Direct 16S rRNA gene sequencing of polymicrobial culture-negative samples with analysis of mixed chromatograms

    DEFF Research Database (Denmark)

    Hartmeyer, Gitte N; Justesen, Ulrik S

    2010-01-01

    Two cases involving polymicrobial culture-negative samples were investigated by 16S rRNA gene sequencing, with analysis of mixed chromatograms. Fusobacterium necrophorum, Prevotella intermedia and Streptococcus constellatus were identified from pleural fluid in a patient with Lemierre's syndrome...

  9. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, Human Papilloma Virus infection and surgical treatment

    NARCIS (Netherlands)

    Guerrero-Preston, Rafael; Godoy-Vitorino, Filipa; Jedlicka, Anne; Rodriguez-Hilario, Arnold; Gonzalez, Herminio; Bondy, Jessica; Lawson, Fahcina; Folawiyo, Oluwasina; Michailidi, Christina; Dziedzic, Amanda; Thangavel, Rajagowthamee; Hadar, Tal; Noordhuis, Maartje G.; Westra, William; Koch, Wayne; Sidransky, David

    2016-01-01

    Systemic inflammatory events and localized disease, mediated by the microbiome, may be measured in saliva as head and neck squamous cell carcinoma (HNSCC) diagnostic and prognostic biomonitors. We used a 16S rRNA V3-V5 marker gene approach to compare the saliva microbiome in DNA isolated from

  10. Comparison of gull-specific assays targeting 16S rRNA gene of Catellicoccus marimammalium and Streptococcus spp.

    Science.gov (United States)

    Gulls have been implicated as a source of fecal contamination in inland and coastal waters. Only one gull-specific assay is currently available (i.e., gull2 qPCR assay). This assay is based on the 16S rRNA gene of Catellicocclls marimammalium and has showed a high level of host-s...

  11. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses

    Science.gov (United States)

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Background Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. Methods The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Results Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Conclusion Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3–100%. However, the

  12. Lactose uptake driven by galactose efflux in Streptococcus thermophilus: Evidence for a galactose-lactose antiporter

    International Nuclear Information System (INIS)

    Hutkins, R.W.; Ponne, C.

    1991-01-01

    Galactose-nonfermenting (Gal - ) Streptococcus thermophilus TS2 releases galactose into the extracellular medium when grown in medium containing excess lactose. Starved and de-energized Gal - cells, however, could be loaded with galactose to levels approximately equal to the extracellular concentration (0 to 50 mM). When loaded cells were separated from the medium and resuspended in fresh broth containing 5 mM lactose, galactose efflux occurred. De-energized, galactose-loaded cells, resuspended in buffer or medium, accumulated [ 14 C]lactose at a greater rate and to significantly higher intracellular concentrations than unloaded cells. Uptake of lactose by loaded cells was inhibited more than that by unloaded cells in the presence of extracellular galactose, indicating that a galactose gradient was involved in the exchange system. When de-energized, galactose-loaded cells were resuspended in carbohydrate-free medium at pH 6.7, a proton motive force (Δp) of 86 to 90 mV was formed, whereas de-energized, nonloaded cells maintained a Δp of about 56 mV. However, uptake of lactose by loaded cells occurred when the proton motive force was abolished by the addition of an uncoupler or in the presence of a proton-translocating ATPase inhibitor. These results support the hypothesis that galactose efflux in Gal - S. thermophilus is electrogenic and that the exchange reaction (lactose uptake and galactose efflux) probably occurs via an antiporter system

  13. Complete genome sequence of Hydrogenobacter thermophilus type strain (TK-6T)

    Energy Technology Data Exchange (ETDEWEB)

    Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Han, James [Joint Genome Institute; Tice, Hope [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Ngatchou, Olivier Duplex [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Ubler, Susanne [Universitat Regensburg, Regensburg, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California

    2011-01-01

    Hydrogenobacter thermophilus Kawasumi et al. 1984 is the type species of the genus Hydrogenobacter. H. thermophilus was the first obligate autotrophic organism reported among aerobic hydrogen-oxidizing bacteria. Strain TK-6T is of interest because of the unusually efficient hydrogen-oxidizing ability of this strain, which results in a faster generation time compared to other autotrophs. It is also able to grow anaerobically using nitrate as an electron acceptor when molecular hydrogen is used as the energy source, and able to aerobically fix CO2 via the reductive tricarboxylic acid cycle. This is the fifth completed genome sequence in the family Aquificaceae, and the second genome sequence determined from a strain derived from the original isolate. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,742,932 bp long genome with its 1,899 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  14. Production of lactic acid from whey using Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus

    Directory of Open Access Journals (Sweden)

    Adriana M. Rojas

    2015-09-01

    Full Text Available The main objective of this research was to determine the proper growth conditions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus for the production of lactic acid using serum as substract. This serum was obtain from the department of Cesar, Colombia. Lactic acid is the result of the extraction and purification of fermentation broths in which bacteria Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus are used, which are usually used for the production of yogurt. The substrate was supplemented with yeast extract, ammonium phosphate as a nitrogen source, and calcium carbonate as a neutralizer, in order to optimize the consumption, by the bacteria, of the main carbohydrate present in serum (lactose. During the fermentation (up to 72 h the inoculums concentration, and temperature were controlled. Purification consisted in esterification, filtration of solids formed during the reaction, and removing of water by evaporation and nitrogen influx. Finally, lactic acid was obtained with 78,0% purity (36.7 g/L, which was characterized by infrared spectroscopy

  15. Influence of organic buffers on bacteriocin production by Streptococcus thermophilus ST110.

    Science.gov (United States)

    Somkuti, George A; Gilbreth, Stefanie E

    2007-08-01

    The effect of the organic buffer salts MES, MOPS, and PIPES on the growth of S. thermophilus ST110, medium pH, and accumulation of the antipediococcal bacteriocin thermophilin 110 were evaluated in whey permeate media over a period of 24 h. In nonbuffered medium, thermophilin 110 production at 37 degrees C paralleled the growth of S. thermophilus ST110 and reached a maximum after 8-10 h. Addition of organic buffer salts decreased the drop in medium pH and resulted in increased biomass (dry cells; microg/mL) and higher yields of thermophilin 110 (units/microg cells). The best results were obtained by the addition of 1% (w/v) MES to the medium, which reduced the pH drop to 1.8 units after 10 h of growth (compared to 2.3 pH units in the control) and resulted in a 1.5-fold increase in cell mass (495 microg/mL) and a 7-fold increase in thermophilin 110 yield (77 units/microg dry cells) over the control. The results showed that whey permeate-based media may be suitable for producing large amounts of thermophilin 110 needed for controlling spoilage pediococci in industrial wine and beer fermentations.

  16. Bioremediation potential of a newly isolate solvent tolerant strain Bacillus thermophilus PS11

    Directory of Open Access Journals (Sweden)

    PAYEL SARKAR

    2012-01-01

    Full Text Available The increased generation of solvent waste has been stated as one of the most critical environmental problems. Though microbial bioremediation has been widely used for waste treatment but their application in solvent waste treatment is limited since the solvents have toxic effects on the microbial cells. A solvent tolerant strain of Bacillus thermophilus PS11 was isolated from soil by cyclohexane enrichment. Transmission electron micrograph of PS11 showed convoluted cell membrane and accumulation of solvents in the cytoplasm, indicating the adaptation of the bacterial strain to the solvent after 48h of incubation. The strain was also capable of growing in presence of wide range of other hydrophobic solvents with log P-values below 3.5. The isolate could uptake 50 ng/ml of uranium in its initial 12h of growth, exhibiting both solvent tolerance and metal resistance property. This combination of solvent tolerance and metal resistance will make the isolated Bacillus thermophilus PS11 a potential tool for metal bioremediation in solvent rich wastewaters.

  17. The Identification of Discriminating Patterns from 16S rRNA Gene to Generate Signature for Bacillus Genus.

    Science.gov (United States)

    More, Ravi P; Purohit, Hemant J

    2016-08-01

    The 16S ribosomal RNA (16S rRNA) gene has been widely used for the taxonomic classification of bacteria. A molecular signature is a set of nucleotide patterns, which constitute a regular expression that is specific to each particular taxon. Our main goal was to identify discriminating nucleotide patterns in 16S rRNA gene and then to generate signatures for taxonomic classification. To demonstrate our approach, we used the phylum Firmicutes as a model using representative taxa Bacilli (class), Bacillales (order), Bacillaceae (family), and Bacillus (genus), according to their dominance at each hierarchical taxonomic level. We applied combined composite vector and multiple sequence alignment approaches to generate gene-specific signatures. Further, we mapped all the patterns into the different hypervariable regions of 16S rRNA gene and confirmed the most appropriate distinguishing region as V3-V4 for targeted taxa. We also examined the evolution in discriminating patterns of signatures across taxonomic levels. We assessed the comparative classification accuracy of signatures with other methods (i.e., RDP Classifier, KNN, and SINA). Results revealed that the signatures for taxa Bacilli, Bacillales, Bacillaceae, and Bacillus could correctly classify isolate sequences with sensitivity of 0.99, 0.97, 0.94, and 0.89, respectively, and specificity close to 0.99. We developed signature-based software DNA Barcode Identification (DNA BarID) for taxonomic classification that is available at website http://www.neeri.res.in/DNA_BarID.htm . This pattern-based study provides a deeper understanding of taxon-specific discriminating patterns in 16S rRNA gene with respect to taxonomic classification.

  18. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Xiao Li Shi

    Full Text Available The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX, which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  19. Identification of Propionibacterium acnes by polymerase chain reaction for amplification of 16S ribosomal RNA and lipase genes.

    Science.gov (United States)

    Nakamura, Masahiko; Kametani, Ikuyo; Higaki, Shuichi; Yamagishi, Takayoshi

    2003-02-01

    Propionibacterium acnes belongs to the cutaneous flora and is present in sebaceous follicles. The fatty acids that are released from sebum triglycerides by the action of this bacterial lipase play an important role in the pathogenesis of acne vulgaris. P. acnes is also involved in postoperative disorders and opportunistic infections in immunosuppressed hosts. Recently, it has been proposed that P. acnes causes sarcoidosis. Therefore, rapid isolation and identification of P. acnes is important. This study evaluated the polymerase chain reaction (PCR) for the detection of the 16S rRNA and lipase genes of P. acnes. The PCR used to detect the 16S rRNA gene could amplify the gene of P. acnes, but not the genes of the other tested strains of P. avidum, P. granulosum, P. lymphophilum, P. jensenii, P. acidipropionici and P. thoenii. The PCR to detect the lipase gene of P. acnes, however, could amplify not only the gene of P. acnes but also that of P. avidum. The PCR product of this lipase gene was not found in the strains of the other species tested. Therefore, the organism that has both the 16S rRNA gene and lipase gene was identified as P. acnes, while the strain with the lipase gene but not the 16S rRNA gene of P. acnes was characterized as P. avidum. These findings were confirmed by the conventional biochemical tests including lipase activity. Furthermore, out of the seven clinical isolates from acne vulgaris, four were identified as P. acnes and three as P. avidum by the PCR method and biochemical tests. The combination of two PCR, one for the detection of the 16S rRNA and the other of lipase genes was shown to be an easier, faster and more accurate method to identify P. acnes and P. avidum than conventional methods.

  20. A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates.

    Science.gov (United States)

    Helbling, Damian E; Johnson, David R; Lee, Tae Kwon; Scheidegger, Andreas; Fenner, Kathrin

    2015-03-01

    The rates at which wastewater treatment plant (WWTP) microbial communities biotransform specific substrates can differ by orders of magnitude among WWTP communities. Differences in taxonomic compositions among WWTP communities may predict differences in the rates of some types of biotransformations. In this work, we present a novel framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. We selected ten WWTPs with substantial variation in their environmental and operational metrics and measured the in situ ammonia biotransformation rate constants in nine of them. We isolated total RNA from samples from each WWTP and analyzed 16S rRNA sequence reads. We then developed multivariate models between the measured abundances of specific bacterial 16S rRNA sequence reads and the ammonia biotransformation rate constants. We constructed model scenarios that systematically explored the effects of model regularization, model linearity and non-linearity, and aggregation of 16S rRNA sequences into operational taxonomic units (OTUs) as a function of sequence dissimilarity threshold (SDT). A large percentage (greater than 80%) of model scenarios resulted in well-performing and significant models at intermediate SDTs of 0.13-0.14 and 0.26. The 16S rRNA sequences consistently selected into the well-performing and significant models at those SDTs were classified as Nitrosomonas and Nitrospira groups. We then extend the framework by applying it to the biotransformation rate constants of ten micropollutants measured in batch reactors seeded with the ten WWTP communities. We identified phylogenetic groups that were robustly selected into all well-performing and significant models constructed with biotransformation rates of isoproturon, propachlor, ranitidine, and venlafaxine. These phylogenetic groups can be used as predictive biomarkers of WWTP microbial community activity towards these specific

  1. In Silico Prediction of Horizontal Gene Transfer Events in Lactobacillus bulgaricus and Streptococcus thermophilus Reveals Protocooperation in Yogurt Manufacturing▿ †

    Science.gov (United States)

    Liu, Mengjin; Siezen, Roland J.; Nauta, Arjen

    2009-01-01

    Lactobacillus bulgaricus and Streptococcus thermophilus, used in yogurt starter cultures, are well known for their stability and protocooperation during their coexistence in milk. In this study, we show that a close interaction between the two species also takes place at the genetic level. We performed an in silico analysis, combining gene composition and gene transfer mechanism-associated features, and predicted horizontally transferred genes in both L. bulgaricus and S. thermophilus. Putative horizontal gene transfer (HGT) events that have occurred between the two bacterial species include the transfer of exopolysaccharide (EPS) biosynthesis genes, transferred from S. thermophilus to L. bulgaricus, and the gene cluster cbs-cblB(cglB)-cysE for the metabolism of sulfur-containing amino acids, transferred from L. bulgaricus or Lactobacillus helveticus to S. thermophilus. The HGT event for the cbs-cblB(cglB)-cysE gene cluster was analyzed in detail, with respect to both evolutionary and functional aspects. It can be concluded that during the coexistence of both yogurt starter species in a milk environment, agonistic coevolution at the genetic level has probably been involved in the optimization of their combined growth and interactions. PMID:19395564

  2. In silico prediction of horizontal gene transfer events in Lactobacillus bulgaricus and Streptococcus thermophilus reveals protocooperation in yogurt manufacturing.

    NARCIS (Netherlands)

    Liu, M.; Siezen, R.J.; Nauta, A.

    2009-01-01

    Lactobacillus bulgaricus and Streptococcus thermophilus, used in yogurt starter cultures, are well known for their stability and protocooperation during their coexistence in milk. In this study, we show that a close interaction between the two species also takes place at the genetic level. We

  3. In silico prediction of horizontal gene transfer events in Lactobacillus bulgaricus and Streptococcus thermophilus reveals protocooperation in yogurt manufacturing.

    Science.gov (United States)

    Liu, Mengjin; Siezen, Roland J; Nauta, Arjen

    2009-06-01

    Lactobacillus bulgaricus and Streptococcus thermophilus, used in yogurt starter cultures, are well known for their stability and protocooperation during their coexistence in milk. In this study, we show that a close interaction between the two species also takes place at the genetic level. We performed an in silico analysis, combining gene composition and gene transfer mechanism-associated features, and predicted horizontally transferred genes in both L. bulgaricus and S. thermophilus. Putative horizontal gene transfer (HGT) events that have occurred between the two bacterial species include the transfer of exopolysaccharide (EPS) biosynthesis genes, transferred from S. thermophilus to L. bulgaricus, and the gene cluster cbs-cblB(cglB)-cysE for the metabolism of sulfur-containing amino acids, transferred from L. bulgaricus or Lactobacillus helveticus to S. thermophilus. The HGT event for the cbs-cblB(cglB)-cysE gene cluster was analyzed in detail, with respect to both evolutionary and functional aspects. It can be concluded that during the coexistence of both yogurt starter species in a milk environment, agonistic coevolution at the genetic level has probably been involved in the optimization of their combined growth and interactions.

  4. Evaluating acetaldehyde synthesis from L-/sup 14/C(U)) threonine by Streptococcus thermophilus and Lactobacillus bulgaricus

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, D.W.; Schmidt, R.H.; Shireman, R.B.; Smith, K.L.; Jezeski, J.J.

    1986-05-01

    To evaluate the synthesis of acetaldehyde from threonine during growth of yogurt cultures, Streptococcus thermophilus MS1 and Lactobacillus bulgaricus MR1 were grown in defined medium in which 10% of the total threonine was composed of L-(carbon-14(U))threonine. Acetaldehyde production was monitored by formation of 2,4-dinitrophenylhydrazone followed by separation and analysis using high performance liquid chromatography. After growth for 8 h at 42/sup 0/C, approximately 2.0% of the total acetaldehyde (780.4 nmol) produced was from L-(carbon-14)threonine. Threonine aldolase activity was determined in cell-free extracts from S. thermophilus and L. bulgaricus grown in Elliker broth. Increasing incubation temperature from 30 to 42/sup 0/C decreased threonine aldolase activity in cells of the streptococcus harvested after 8 h of incubation. Effect of incubation temperature was more dramatic in cells harvested after 18 h where the activity of cells grown at 48/sup 0/C was 89% lower than that of cells grown at 30/sup 0/C. Cell extracts from S. thermophilus MS1 possessed higher threonine aldolase activity than did those from L. bulgaricus MR1. Increased assay temperature from 30 to 42/sup 0/C increased threonine aldolase activity in S. thermophilus MS1.

  5. Survival of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in the Terminal Ileum of Fistulated Göttingen Minipigs

    Science.gov (United States)

    Lick, Sonja; Drescher, Karsten; Heller, Knut J.

    2001-01-01

    The ability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus administered in yogurt to survive the passage through the upper gastrointestinal tract was investigated with Göttingen minipigs that were fitted with ileum T-cannulas. After ingestion of yogurt containing viable microorganisms, ileostomy samples were collected nearly every hour beginning 3 h after food uptake. Living L. delbrueckii subsp. bulgaricus and S. thermophilus were detected in the magnitude of 106 to 107 per gram of intestinal contents (wet weight) in all animals under investigation. A calculation of the minimum amount of surviving bacteria that had been administered is presented. Total DNA extracted from ileostomy samples was subjected to PCR, which was species specific for L. delbrueckii and S. thermophilus and subspecies specific for L. delbrueckii subsp. bulgaricus. All three bacterial groups could be detected by PCR after yogurt uptake but not after uptake of a semisynthetic diet. One pig apparently had developed an endogenous L. delbrueckii flora. When heat-treated yogurt was administered, L. delbrueckii was detected in all animals. S. thermophilus or L. delbrueckii subsp. bulgaricus was not detected, indicating that heat-inactivated cells and their DNAs had already been digested and their own L. delbrueckii flora had been stimulated for growth. PMID:11526016

  6. Optimization of a cryoprotective medium to increase the viability of freeze-dried Streptococcus thermophilus by response surface methodology

    Science.gov (United States)

    Streptococcus thermophilus normally exhibits different survival rates in different bacteria medium during freeze-drying. In this study, response surface methodology (RSM) was applied on the design of experiments for optimizing the cryoprotective medium. Results showed that the most significant facto...

  7. PepS from Streptococcus thermophilus. A new member of the aminopeptidase T family of thermophilic bacteria.

    Science.gov (United States)

    Fernandez-Espla, M D; Rul, F

    1999-07-01

    The proteolytic system of lactic acid bacteria is essential for bacterial growth in milk but also for the development of the organoleptic properties of dairy products. Streptococcus thermophilus is widely used in the dairy industry. In comparison with the model lactic acid bacteria Lactococcus lactis, S. thermophilus possesses two additional peptidases (an oligopeptidase and the aminopeptidase PepS). To understand how S. thermophilus grows in milk, we purified and characterized this aminopeptidase. PepS is a monomeric metallopeptidase of approximately 45 kDa with optimal activity in the range pH 7.5-8.5 and at 55 degrees C on Arg-paranitroanilide as substrate. PepS exhibits a high specificity towards peptides possessing arginine or aromatic amino acids at the N-terminus. From the N-terminal protein sequence of PepS, we deduced degenerate oligonucleotides and amplified the corresponding gene by successive PCR reactions. The deduced amino-acid sequence of the PepS gene has high identity (40-50%) with the aminopeptidase T family from thermophilic and extremophilic bacteria; we thus propose the classification of PepS from S. thermophilus as a new member of this family. In view of its substrate specificity, PepS could be involved both in bacterial growth by supplying amino acids, and in the development of dairy products' flavour, by hydrolysing bitter peptides and liberating aromatic amino acids which are important precursors of aroma compounds.

  8. Development of the recombinase-based in vivo expression technology in Streptococcus thermophilus and validation using the lactose operon promoter

    NARCIS (Netherlands)

    Junjua, M.; Galia, W.; Gaci, N.; Uriot, O.; Genay, M.; Bachmann, H.; Kleerebezem, M.; Dary, A.; Roussel, Y.

    2014-01-01

    AIMS: To construct and validate the recombinase-based in vivo expression technology (R-IVET) tool in Streptococcus thermophilus (ST). METHODS AND RESULTS: The R-IVET system we constructed in the LMD-9 strain includes the plasmid pULNcreB allowing transcriptional fusion with the gene of the

  9. Development of the recombinase-based in vivo expression technology in Streptococcus thermophilus and validation using the lactose operon promoter

    NARCIS (Netherlands)

    Junjua, M.; Galia, W.; Gaci, N.; Uriot, O.; Genay, M.; Bachmann, H.; Kleerebezem, M.; Dary, A.; Roussel, Y.

    2014-01-01


    Aims

    To construct and validate the recombinase-based in vivo expression technology (R-IVET) tool in Streptococcus thermophilus (ST).

    Methods and Results

    The R-IVET system we constructed in the LMD-9 strain includes the plasmid pULNcreB allowing transcriptional fusion

  10. Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species

    DEFF Research Database (Denmark)

    Szymczak, Paula; Janzen, Thomas; Neves, Ana Rute

    2017-01-01

    Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S...

  11. Biochemical Characterization and Validation of a Catalytic Site of a Highly Thermostable Ts2631 Endolysin from the Thermus scotoductus Phage vB_Tsc2631

    OpenAIRE

    Plotka, Magdalena; Kaczorowska, Anna-Karina; Morzywolek, Agnieszka; Makowska, Joanna; Kozlowski, Lukasz P.; Thorisdottir, Audur; Skírnisdottir, Sigurlaug; Hjörleifsdottir, Sigridur; Fridjonsson, Olafur H.; Hreggvidsson, Gudmundur O.; Kristjansson, Jakob K.; Dabrowski, Slawomir; Bujnicki, Janusz M.; Kaczorowski, Tadeusz

    2015-01-01

    Phage vB_Tsc2631 infects the extremophilic bacterium Thermus scotoductus MAT2631 and uses the Ts2631 endolysin for the release of its progeny. The Ts2631 endolysin is the first endolysin from thermophilic bacteriophage with an experimentally validated catalytic site. In silico analysis and computational modelling of the Ts2631 endolysin structure revealed a conserved Zn2+ binding site (His30, Tyr58, His131 and Cys139) similar to Zn2+ binding site of eukaryotic peptidoglycan recognition protei...

  12. Pressure-induced magnetic collapse and metallization of TlF e1.6S e2

    Science.gov (United States)

    Naumov, P. G.; Filsinger, K.; Shylin, S. I.; Barkalov, O. I.; Ksenofontov, V.; Qi, Y.; Palasyuk, T.; Schnelle, W.; Medvedev, S. A.; Greenblatt, M.; Felser, C.

    2017-08-01

    The crystal structure, magnetic ordering, and electrical resistivity of TlF e1.6S e2 were studied at high pressures. Below ˜7 GPa , TlF e1.6S e2 is an antiferromagnetically ordered semiconductor with a ThC r2S i2 -type structure. The insulator-to-metal transformation observed at a pressure of ˜7 GPa is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range ˜7.5 -11 GPa a remarkable downturn in resistivity, which resembles a superconducting transition, is observed below 15 K. We discuss this feature as the possible onset of superconductivity originating from a phase separation in a small fraction of the sample in the vicinity of the magnetic transition.

  13. Isolation and 16S DNA characterization of soil microorganisms from tropical soils capable of utilizing the herbicides hexazinone and tebuthiuron.

    Science.gov (United States)

    Mostafa, Fadwa I Y; Helling, Charles S

    2003-11-01

    Six non-fermentative bacteria were isolated from Colombian (South America) and Hawaiian (USA) soils after enrichment with minimal medium supplemented with two herbicides, hexazinone (Hex) and tebuthiuron (Teb). Microscopic examination and physiological tests were followed by partial 16S DNA sequence analysis, using the first 527 bp of the 16S rRNA gene for bacterial identification. The isolated microorganisms (and in brackets, the herbicide that each degraded) were identified as: from Colombia. Methylobacterium organophilum [Teb], Paenibacillus pabuli [Teb], and Micrmbacterium foliorum [Hex]; and from Hawaii, Methylobacterium radiotolerans [Teb], Paenibacillus illinoisensis [Hex], and Rhodococcus equi [Hex]. The findings further explain how these herbicides, which have potential for illicit coca (Erythroxylum sp.) control, dissipate following their application to tropical soils.

  14. Recombination drives evolution of the Clostridium difficile 16S-23S rRNA intergenic spacer region.

    Science.gov (United States)

    Janezic, Sandra; Indra, Alexander; Rattei, Thomas; Weinmaier, Thomas; Rupnik, Maja

    2014-01-01

    PCR-ribotyping, a typing method based on size variation in 16S-23S rRNA intergenic spacer region (ISR), has been used widely for molecular epidemiological investigations of C. difficile infections. In the present study, we describe the sequence diversity of ISRs from 43 C. difficile strains, representing different PCR-ribotypes and suggest homologous recombination as a possible mechanism driving the evolution of 16S-23S rRNA ISRs. ISRs of 45 different lengths (ranging from 185 bp to 564 bp) were found among 458 ISRs. All ISRs could be described with one of the 22 different structural groups defined by the presence or absence of different sequence modules; tRNAAla genes and different combinations of spacers of different lengths (33 bp, 53 bp or 20 bp) and 9 bp direct repeats separating the spacers. The ISR structural group, in most cases, coincided with the sequence length. ISRs that were of the same lengths had also very similar nucleotide sequence, suggesting that ISRs were not suitable for discriminating between different strains based only on the ISR sequence. Despite large variations in the length, the alignment of ISR sequences, based on the primary sequence and secondary structure information, revealed many conserved regions which were mainly involved in maturation of pre-rRNA. Phylogenetic analysis of the ISR alignment yielded strong evidence for intra- and inter-homologous recombination which could be one of the mechanisms driving the evolution of C. difficile 16S-23S ISRs. The modular structure of the ISR, the high sequence similarities of ISRs of the same sizes and the presence of homologous recombination also suggest that different copies of C. difficile 16S-23S rRNA ISR are evolving in concert.

  15. Recombination drives evolution of the Clostridium difficile 16S-23S rRNA intergenic spacer region.

    Directory of Open Access Journals (Sweden)

    Sandra Janezic

    Full Text Available PCR-ribotyping, a typing method based on size variation in 16S-23S rRNA intergenic spacer region (ISR, has been used widely for molecular epidemiological investigations of C. difficile infections. In the present study, we describe the sequence diversity of ISRs from 43 C. difficile strains, representing different PCR-ribotypes and suggest homologous recombination as a possible mechanism driving the evolution of 16S-23S rRNA ISRs. ISRs of 45 different lengths (ranging from 185 bp to 564 bp were found among 458 ISRs. All ISRs could be described with one of the 22 different structural groups defined by the presence or absence of different sequence modules; tRNAAla genes and different combinations of spacers of different lengths (33 bp, 53 bp or 20 bp and 9 bp direct repeats separating the spacers. The ISR structural group, in most cases, coincided with the sequence length. ISRs that were of the same lengths had also very similar nucleotide sequence, suggesting that ISRs were not suitable for discriminating between different strains based only on the ISR sequence. Despite large variations in the length, the alignment of ISR sequences, based on the primary sequence and secondary structure information, revealed many conserved regions which were mainly involved in maturation of pre-rRNA. Phylogenetic analysis of the ISR alignment yielded strong evidence for intra- and inter-homologous recombination which could be one of the mechanisms driving the evolution of C. difficile 16S-23S ISRs. The modular structure of the ISR, the high sequence similarities of ISRs of the same sizes and the presence of homologous recombination also suggest that different copies of C. difficile 16S-23S rRNA ISR are evolving in concert.

  16. Determination of Active Marine Bacterioplankton: a Comparison of Universal 16S rRNA Probes, Autoradiography, and Nucleoid Staining

    OpenAIRE

    Karner, M.; Fuhrman, J. A.

    1997-01-01

    We compared several currently discussed methods for the assessment of bacterial numbers and activity in marine waters, using samples from a variety of marine environments, from aged offshore seawater to rich harbor water. Samples were simultaneously tested for binding to a fluorescently labeled universal 16S rRNA probe; (sup3)H-labeled amino acid uptake via autoradiography; nucleoid-containing bacterial numbers by modified DAPI (4(prm1),6-diamidino-2-phenylindole) staining; staining with 5-cy...

  17. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing.

    Science.gov (United States)

    Arfken, Ann M; Song, Bongkeun; Mallin, Michael A

    2015-09-01

    Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds.

  18. Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform.

    Directory of Open Access Journals (Sweden)

    Hideyuki Tamaki

    Full Text Available BACKGROUND: 16S rRNA gene pyrosequencing approach has revolutionized studies in microbial ecology. While primer selection and short read length can affect the resulting microbial community profile, little is known about the influence of pyrosequencing methods on the sequencing throughput and the outcome of microbial community analyses. The aim of this study is to compare differences in output, ease, and cost among three different amplicon pyrosequencing methods for the Roche/454 Titanium platform METHODOLOGY/PRINCIPAL FINDINGS: The following three pyrosequencing methods for 16S rRNA genes were selected in this study: Method-1 (standard method is the recommended method for bi-directional sequencing using the LIB-A kit; Method-2 is a new option designed in this study for unidirectional sequencing with the LIB-A kit; and Method-3 uses the LIB-L kit for unidirectional sequencing. In our comparison among these three methods using 10 different environmental samples, Method-2 and Method-3 produced 1.5-1.6 times more useable reads than the standard method (Method-1, after quality-based trimming, and did not compromise the outcome of microbial community analyses. Specifically, Method-3 is the most cost-effective unidirectional amplicon sequencing method as it provided the most reads and required the least effort in consumables management. CONCLUSIONS: Our findings clearly demonstrated that alternative pyrosequencing methods for 16S rRNA genes could drastically affect sequencing output (e.g. number of reads before and after trimming but have little effect on the outcomes of microbial community analysis. This finding is important for both researchers and sequencing facilities utilizing 16S rRNA gene pyrosequencing for microbial ecological studies.

  19. Gordonia species: emerging pathogens in pediatric patients that are identified by 16S ribosomal RNA gene sequencing.

    Science.gov (United States)

    Blaschke, Anne J; Bender, Jeffrey; Byington, Carrie L; Korgenski, Kent; Daly, Judy; Petti, Cathy A; Pavia, Andrew T; Ampofo, Krow

    2007-08-15

    Gordonia species are emerging pathogens that are often misidentified as Rhodococcus or Nocardia species but are reliably distinguished by 16S ribosomal RNA gene sequencing. We present a case series of 6 episodes of catheter-associated infection caused by Gordonia species in 5 patients seen at a tertiary care pediatric hospital and describe the management and outcomes of this infection in adults and children.

  20. Identifikasi Bakteri Pengoksidasi Besi dan Sulfur Berdasarkan Gen 16s Rrna dari Lahan Tambang Timah di Belitung

    OpenAIRE

    Puspitasari, Dhewanti; Pramono, Hendro; Oedjijono, Oedjijono

    2014-01-01

    Heavy metals contamination disturb balance and diversity of microorganism in soil. Microorganisms which can able to survive in those conditions are bacteria capable of oxidizing heavy metals. Identification based on 16S rRNA was used to determine characteristics and phylogenetic relationship of bacteria which can oxidize iron and sulphur in tin mining areas. The aim of this research was able to determine the bacterias characteristics isolated from tin mining areas and determine the phylogenet...

  1. IDENTIFIKASI BAKTERI PENGOKSIDASI BESI DAN SULFUR BERDASARKAN GEN 16S rRNA DARI LAHAN TAMBANG TIMAH DI BELITUNG

    OpenAIRE

    Dhewanti Puspitasari; Hendro Pramono; Oedjijono Oedjijono

    2014-01-01

    Heavy metals contamination disturb balance and diversity of microorganism in soil. Microorganisms which can able to survive in those conditions are bacteria capable of oxidizing heavy metals. Identification based on 16S rRNA was used to determine characteristics and phylogenetic relationship of bacteria which can oxidize iron and sulphur in tin mining areas. The aim of this research was able to determine the bacterias characteristics isolated from tin mining areas and determine the phylogenet...

  2. Predictive microbiology combined with metagenomic analysis targeted on the 16S rDNA : A new approach for food quality

    OpenAIRE

    Delhalle, Laurent; Taminiau, Bernard; Ellouze, Mariem; Nezer, Carine; Daube, Georges

    2013-01-01

    OBJECTIVES The food spoilage process is mainly caused by alteration micro-organisms and classical culture-based methods have therefore been used to assess the microbiological quality of food. These techniques are simple to implement but may not be relevant to understand the modifications of the microbial ecology which occur in the food product in response to different changes in the environmental conditions. Metagenomic analysis targeted on 16S ribosomal DNA can bring about a solution to t...

  3. FILOGENETIK POPULASI UDANG JERBUNG (Fenneropenaeus merguiensis de Man DI INDONESIA BERDASARKAN SEKUENS 16S-rRNA DNA MITOKONDRIA

    Directory of Open Access Journals (Sweden)

    Eni Kusrini

    2016-11-01

    Full Text Available Penelitian ini dilakukan untuk mengetahui hubungan kekerabatan stok udang jerbung Indonesia sebagai informasi dasar bagi program pemuliaan. Udang jerbung uji berasal dari Pantai Bengkulu, Selat Sunda (Banten, Pantai Cilacap (Jawa Tengah, Selat Lombok (NTB, dan Pontianak (Kalimantan Barat. Amplifikasi PCR dan sekuensing daerah 16S-rRNA DNA mitokondria dilakukan menggunakan primer 5’-CGCCTGTTTAAC-AAAAACAT-3’ dan 5’-CCGGTCTGAACTCAGATCATGT-3’. Hasil analisis homologi susunan nukleotida 16S-rRNA DNA mitokondria menunjukkan bahwa udang jerbung yang digunakan dalam penelitian merupakan Fenneropenaeus merguiensis. Hasil analisis kekerabatan menunjukkan bahwa 5 populasi udang jerbung uji dapat dibagi menjadi 2 kelompok besar, yaitu kelompok Kalimantan Barat dan kelompok Bengkulu-Banten-Jawa Tengah-NTB. Populasi udang jerbung Kalimantan dan Bengkulu masing-masing memiliki sekuens spesifik, yaitu ACTGACT dan C-GAC di terminal 5. Sekuens tersebut mungkin dapat digunakan sebagai penanda dalam program pemuliaan udang jerbung Indonesia. The experiment was conducted to understand the family relationship of banana prawn in Indonesia and to provide basic information for breeding program. Prawns were obtained from Bengkulu Coast, Sunda Strait (Banten, Cilacap Coast (Central Java, Lombok Strait (West Nusa Tenggara, Pontianak Coast (West Kalimantan. PCR amplification and sequencing of 16S-rRNA mitochondrial DNA region were performed using 5’-CGCCTGTTTAAC-AAAAACAT-3’ and 5’-CCGGTCTGAACTCAGATCATGT-3’. Analysis of homology sequences of 16S-rRNA mtDNA showed that banana prawn used in this study was Fenneropenaeus merguiensis. Result of family relationship analysis indicated that five populations of banana prawn can be divided into two groups, i.e. West Kalimantan and Bengkulu-Banten-Central Java-NTB groups. Banana prawns from West Kalimantan and Bengkulu have specific sequences at 5’ terminal, ACTGACT and C-GAC, respectively. Those sequences can

  4. Simultaneous Detection of Bacteroides forsythus and Prevotella intermedia by 16S rRNA Gene-Directed Multiplex PCR

    Science.gov (United States)

    Conrads, Georg; Flemmig, Thomas F.; Seyfarth, Ilse; Lampert, Friedrich; Lütticken, Rudolf

    1999-01-01

    In a 16S rRNA gene-directed multiplex PCR, Prevotella intermedia- and Bacteroides forsythus-specific reverse primers were combined with a single conserved forward primer. A 660-bp fragment and an 840-bp fragment that were specific for both species could be amplified simultaneously. A total of 152 clinical samples, subgingival plaque and swabs of three different oral mucosae, from 38 periodontitis patients were used for the evaluation. PMID:10203541

  5. A comprehensive evaluation of the sl1p pipeline for 16S rRNA gene sequencing analysis.

    Science.gov (United States)

    Whelan, Fiona J; Surette, Michael G

    2017-08-14

    Advances in next-generation sequencing technologies have allowed for detailed, molecular-based studies of microbial communities such as the human gut, soil, and ocean waters. Sequencing of the 16S rRNA gene, specific to prokaryotes, using universal PCR primers has become a common approach to studying the composition of these microbiota. However, the bioinformatic processing of the resulting millions of DNA sequences can be challenging, and a standardized protocol would aid in reproducible analyses. The short-read library 16S rRNA gene sequencing pipeline (sl1p, pronounced "slip") was designed with the purpose of mitigating this lack of reproducibility by combining pre-existing tools into a computational pipeline. This pipeline automates the processing of raw 16S rRNA gene sequencing data to create human-readable tables, graphs, and figures to make the collected data more readily accessible. Data generated from mock communities were compared using eight OTU clustering algorithms, two taxon assignment approaches, and three 16S rRNA gene reference databases. While all of these algorithms and options are available to sl1p users, through testing with human-associated mock communities, AbundantOTU+, the RDP Classifier, and the Greengenes 2011 reference database were chosen as sl1p's defaults based on their ability to best represent the known input communities. sl1p promotes reproducible research by providing a comprehensive log file, and reduces the computational knowledge needed by the user to process next-generation sequencing data. sl1p is freely available at https://bitbucket.org/fwhelan/sl1p .

  6. Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe.

    OpenAIRE

    Moran, M A; Rutherford, L T; Hodson, R E

    1995-01-01

    A 16S rRNA genus-specific probe was used to determine whether Streptomyces populations are an indigenous component of marine sediment bacterial communities. Previous debates have suggested that marine Streptomyces isolates are derived not from resident populations but from spores of terrestrial species which have been physically transported to marine ecosystems but remain dormant until isolation. Rigorously controlled hybridization of rRNA extracted from coastal marsh sediments with the genus...

  7. Phenotypic and 16S ribosomal RNA gene diversity of Taylorella asinigenitalis strains isolated between 1995 and 2008.

    Science.gov (United States)

    Breuil, M-F; Duquesne, F; Laugier, C; Petry, S

    2011-03-24

    The objective of this study was to examine the degree of phenotypic and genotypic diversity between 43 French Taylorella asinigenitalis strains isolated from 22 jacks, two stallions and one mare between 1995 and 2008 by culturing genital swabs obtained during routine diagnosis for contagious equine metritis. This retrospective analysis revealed the existence of T. asinigenitalis species since 1995 and the natural colonization of a mare's genital tract in 2001. Despite the presence of 27 different patterns revealed by the combination of API ZYM, antibiogram and 16S rDNA profiles, we show that T. asinigenitalis is a highly homogeneous species. API ZYM diversity only concerns acid phosphatase and naphthol-AS-BI-phosphohydrolase activity. The majority of strains are susceptible to a wide range of antimicrobial agents but most are streptomycin-resistant (95.5%), ampicillin-resistant (88.4%), and four strains are atypical due to a high degree of resistance to at least eight antimicrobial agents. 16S rDNA sequence analysis showed only two clusters and revealed similarity of 99.3-100% between T. asinigenitalis strains. The geographic origin of the 43 isolates correlates to the two 16S rDNA clusters. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing.

    Science.gov (United States)

    Chan, Chia Sing; Chan, Kok-Gan; Tay, Yea-Ling; Chua, Yi-Heng; Goh, Kian Mau

    2015-01-01

    The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0-9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community.

  9. Structure of ERA in Complex with the 3 End of 16s rRNBA Implications for Ribosome Biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tu, C.; Zhou, X; Tropea, J; Austin, B; Waugh, D; Court, D; Ji, X

    2009-01-01

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the 1531AUCACCUCCUUA1542 sequence at the 3? end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  10. Structure of ERA in complex with the 3′ end of 16S rRNA: Implications for ribosome biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Chao; Zhou, Xiaomei; Tropea, Joseph E.; Austin, Brian P.; Waugh, David S.; Court, Donald L.; Ji, Xinhua; (NCI)

    2009-10-09

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the {sub 1531}AUCACCUCCUUA{sub 1542} sequence at the 3' end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  11. Identification and characterization of alkaline protease producing Bacillus firmus species EMBS023 by 16S rRNA gene sequencing.

    Science.gov (United States)

    Wishard, Rohan; wishard, Rohan; Jaiswal, Mahak; Parveda, Maheshwari; Amareshwari, P; Bhadoriya, Sneha Singh; Rathore, Pragya; Yadav, Mukesh; Nayarisseri, Anuraj; Nair, Achuthsankar S

    2014-12-01

    Probiotic microorganisms are those which exert a positive exect on the growth of the host, when administered as a dietary mixture in an adequate amount. They form the best alternative to the use of antibiotics for controlling enteric diseases in poultry farm animals, especially in the light of the gruesome problems of development of antibiotic resistance in enteric pathogens and the contamination of poultry products with antibiotics. 16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). It's most important advantage over the traditional biochemical characterization methods are that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel, alkaline protease producing bacteria, from poultry farm waste. The sample was collected from a local poultry farm in the Guntur district, Andhra Pradesh, India. Subsequently the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The results showed the isolate to be a novel, high alkaline protease producing bacteria, which was named Bacillus firmus isolate EMBS023, after characterization the sequence of isolate was deposited in GenBank with accession number JN990980.

  12. Metagenomic Analysis of Slovak Bryndza Cheese Using Next-Generation 16S rDNA Amplicon Sequencing

    Directory of Open Access Journals (Sweden)

    Planý Matej

    2016-06-01

    Full Text Available Knowledge about diversity and taxonomic structure of the microbial population present in traditional fermented foods plays a key role in starter culture selection, safety improvement and quality enhancement of the end product. Aim of this study was to investigate microbial consortia composition in Slovak bryndza cheese. For this purpose, we used culture-independent approach based on 16S rDNA amplicon sequencing using next generation sequencing platform. Results obtained by the analysis of three commercial (produced on industrial scale in winter season and one traditional (artisanal, most valued, produced in May Slovak bryndza cheese sample were compared. A diverse prokaryotic microflora composed mostly of the genera Lactococcus, Streptococcus, Lactobacillus, and Enterococcus was identified. Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris were the dominant taxons in all tested samples. Second most abundant species, detected in all bryndza cheeses, were Lactococcus fujiensis and Lactococcus taiwanensis, independently by two different approaches, using different reference 16S rRNA genes databases (Greengenes and NCBI respectively. They have been detected in bryndza cheese samples in substantial amount for the first time. The narrowest microbial diversity was observed in a sample made with a starter culture from pasteurised milk. Metagenomic analysis by high-throughput sequencing using 16S rRNA genes seems to be a powerful tool for studying the structure of the microbial population in cheeses.

  13. A 16S rDNA-based nested PCR protocol to detect Campylobacter gracilis in oral infections

    Directory of Open Access Journals (Sweden)

    Siqueira Júnior José Freitas

    2003-01-01

    Full Text Available The aim of this study was to describe a 16S rDNA-based nested polymerase chain reaction (nPCR assay to investigate the occurrence of Campylobacter gracilis in oral infections. Samples were collected from ten infected root canals, ten cases of acute periradicular abscesses and eight cases of adult marginal periodontitis. DNA extracted from the samples was initially amplified using universal 16S rDNA primers. A second round of amplification used the first PCR products to detect C. gracilis using oligonucleotide primers designed from species-specific 16S rDNA signature sequences. The nPCR assay used in this study showed a detection limit of 10 C. gracilis cells and no cross-reactivity was observed with nontarget bacteria. C. gracilis was detected in the three types of oral infections investigated - 4/10 infected root canals; 2/10 acute periradicular abscesses; and 1/8 subgingival specimens from adult periodontitis. The method proposed in this study showed both high sensitivity and high specificity to directly detect C. gracilis in samples from root canal infections, abscesses, and subgingival plaque. Our findings confirmed that C. gracilis may be a member of the microbiota associated with distinct oral infections, and its specific role in such diseases requires further clarification.

  14. Development of an Analysis Pipeline Characterizing Multiple Hypervariable Regions of 16S rRNA Using Mock Samples.

    Directory of Open Access Journals (Sweden)

    Jennifer J Barb

    Full Text Available There is much speculation on which hypervariable region provides the highest bacterial specificity in 16S rRNA sequencing. The optimum solution to prevent bias and to obtain a comprehensive view of complex bacterial communities would be to sequence the entire 16S rRNA gene; however, this is not possible with second generation standard library design and short-read next-generation sequencing technology.This paper examines a new process using seven hypervariable or V regions of the 16S rRNA (six amplicons: V2, V3, V4, V6-7, V8, and V9 processed simultaneously on the Ion Torrent Personal Genome Machine (Life Technologies, Grand Island, NY. Four mock samples were amplified using the 16S Ion Metagenomics Kit™ (Life Technologies and their sequencing data is subjected to a novel analytical pipeline.Results are presented at family and genus level. The Kullback-Leibler divergence (DKL, a measure of the departure of the computed from the nominal bacterial distribution in the mock samples, was used to infer which region performed best at the family and genus levels. Three different hypervariable regions, V2, V4, and V6-7, produced the lowest divergence compared to the known mock sample. The V9 region gave the highest (worst average DKL while the V4 gave the lowest (best average DKL. In addition to having a high DKL, the V9 region in both the forward and reverse directions performed the worst finding only 17% and 53% of the known family level and 12% and 47% of the genus level bacteria, while results from the forward and reverse V4 region identified all 17 family level bacteria.The results of our analysis have shown that our sequencing methods using 6 hypervariable regions of the 16S rRNA and subsequent analysis is valid. This method also allowed for the assessment of how well each of the variable regions might perform simultaneously. Our findings will provide the basis for future work intended to assess microbial abundance at different time points

  15. Paenibacillus larvae 16S-23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization.

    Science.gov (United States)

    Dingman, Douglas W

    2012-07-01

    Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions. Copyright © 2012 Elsevier Inc

  16. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275.

    Science.gov (United States)

    Li, Siqian; Shah, Nagendra P

    2014-12-15

    Polysaccharides from Pleurotus eryngii (PEPS) and exopolysaccharides from Streptococcus thermophilus ASCC 1275 (ST1275 EPS) were sulphated, and antioxidant and antibacterial activities of sulphated and crude polysaccharides were determined. Degree of sulphonation of PEPS and ST1275 EPS was 0.69 and 0.31, respectively. Characteristic bands in FT-IR spectra indicated that the sulphate group was at the C6 position of the galactose skeleton. Antioxidant activities of PEPS and ST1275 EPS were significantly (PPEPS had the largest inhibition zone against Escherichia coli ATCC 25922 and Staphylococcus aureus CMCC 26003 while sulphated ST1275 EPS had the largest inhibition zone against Listeria monocytogenes CMCC 54001. Furthermore, sulphated PEPS had the lowest minimum inhibitory concentration (MIC) for E. coli ATCC 25922, and both sulphated PEPS and sulphated ST1275 EPS had the lowest MICs on S. aureus CMCC 26003 and L. monocytogenes CMCC 54001. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.

    Science.gov (United States)

    Guo, Lijun; Xu, Kun; Liu, Zhiyuan; Zhang, Cunfang; Xin, Ying; Zhang, Zhiying

    2015-06-01

    In addition to the advantages of scalable, affordable, and easy to engineer, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology is superior for multiplex targeting, which is laborious and inconvenient when achieved by cloning multiple gRNA expressing cassettes. Here, we report a simple CRISPR array assembling method which will facilitate multiplex targeting usage. First, the Streptococcus thermophilus CRISPR3/Cas locus was cloned. Second, different CRISPR arrays were assembled with different crRNA spacers. Transformation assays using different Escherichia coli strains demonstrated efficient plasmid DNA targeting, and we achieved targeting efficiency up to 95% with an assembled CRISPR array with three crRNA spacers. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A novel enzymatic system against oxidative stress in the thermophilic hydrogen-oxidizing bacterium Hydrogenobacter thermophilus.

    Directory of Open Access Journals (Sweden)

    Yuya Sato

    Full Text Available Rubrerythrin (Rbr is a non-heme iron protein composed of two distinctive domains and functions as a peroxidase in anaerobic organisms. A novel Rbr-like protein, ferriperoxin (Fpx, was identified in Hydrogenobacter thermophilus and was found not to possess the rubredoxin-like domain that is present in typical Rbrs. Although this protein is widely distributed among aerobic organisms, its function remains unknown. In this study, Fpx exhibited ferredoxin:NADPH oxidoreductase (FNR-dependent peroxidase activity and reduced both hydrogen peroxide (H(2O(2 and organic hydroperoxide in the presence of NADPH and FNR as electron donors. The calculated K(m and V(max values of Fpx for organic hydroperoxides were comparable to that for H(2O(2, demonstrating a multiple reactivity of Fpx towards hydroperoxides. An fpx gene disruptant was unable to grow under aerobic conditions, whereas its growth profiles were comparable to those of the wild-type strain under anaerobic and microaerobic conditions, clearly indicating the indispensability of Fpx as an antioxidant of H. thermophilus in aerobic environments. Structural analysis suggested that domain-swapping occurs in Fpx, and this domain-swapped structure is well conserved among thermophiles, implying the importance of structural stability of domain-swapped conformation for thermal environments. In addition, Fpx was located on a deep branch of the phylogenetic tree of Rbr and Rbr-like proteins. This finding, taken together with the wide distribution of Fpx among Bacteria and Archaea, suggests that Fpx is an ancestral type of Rbr homolog that functions as an essential antioxidant and may be part of an ancestral peroxide-detoxification system.

  19. Biotic interactions at hydrothermal vents: Recruitment inhibition by the mussel Bathymodiolus thermophilus

    Science.gov (United States)

    Lenihan, H. S.; Mills, S. W.; Mullineaux, L. S.; Peterson, C. H.; Fisher, C. R.; Micheli, F.

    2008-12-01

    The structure and dynamics of marine communities are regulated in part by variation in recruitment. As in other ecosystems, recruitment at deep-sea hydrothermal vents is controlled by the interplay of propagule supply and behavior, gradients in physical-chemical conditions, and biotic interactions during pre- and post-settlement periods. Recent research along the East Pacific Rise indicates that inhibition of recently settled larvae by mobile predators (mainly limpets) influences patterns of recruitment and subsequent community succession. We conducted a manipulative experiment at the same sites (˜2510 m water depth) to test whether high-density assemblages of the mussel Bathymodiolus thermophilus also inhibit recruitment. In a preliminary study, recruitment of vent invertebrates within the faunal zone dominated by B. thermophilus was strikingly different at two sites, East Wall and Worm Hole. East Wall had high densities of mussels but very low total recruitment. In contrast, Worm Hole had few mussels but high recruitment. Using the submersible Alvin, we transplanted a large number of mussels from East Wall to Worm Hole and quantified recruitment on basalt blocks placed in three treatments: (1) naturally high densities of mussels at East Wall; (2) naturally low densities of mussels at Worm Hole; and (3) high densities of transplanted mussels at Worm Hole. After 11 months, a total of 24 taxa had recruited to the basalt blocks. Recruitment was 44-60% lower in the transplanted high-density mussel patch at Worm Hole and the natural high-density patch at East Wall than within the natural low-density patch at Worm Hole. Biotic processes that may have caused the pattern of recruitment observed included predation of larvae via water filtration by mussels, larval avoidance of superior competitors, interference competition, and enhanced predation by species within the mussel-bed community. Our results indicate that biotic interactions affecting recruitment must be

  20. Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type

    Directory of Open Access Journals (Sweden)

    Yahya eAli

    2014-03-01

    Full Text Available Lipoprotein Ltp encoded by temperate Streptococcus thermophilus phage TP-J34 is the prototype of the wide-spread family of host cell surface-exposed lipoproteins involved in superinfection exclusion. When screening for other S. thermophilus phages expressing this type of lipoprotein, three temperate phages - TP-EW, TP-DSM20617 and TP-778 - were isolated. In this communication we present the total nucleotide sequences of TP-J34 and TP-778L. For TP-EW, a phage almost identical to TP-J34, besides the ltp gene only the two regions of deviation from TP-J34 DNA were analyzed: the gene encoding the tail protein causing an assembly defect in TP-J34 and the gene encoding the lysin, which in TP-EW contains an intron. For TP-DSM20617 only the sequence of the lysogeny module containing the ltp gene was determined. The region showed high homology to the same region of TP-778. For TP-778 we could show that absence of the attR region resulted in aberrant excision of phage DNA. The amino acid sequence of mature LtpTP-EW was shown to be identical to that of mature LtpTP-J34, whereas the amino acid sequence of mature LtpTP-778 was shown to differ from mature LtpTP-J34 in eight amino acid positions. LtpTP-DSM20617 was shown to differ from LtpTP-778 in just one amino acid position. In contrast to LtpTP-J34, LtpTP-778 did not affect infection of lactococcal phage P008 instead increased activity against phage P001 was noticed.

  1. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus.

    Science.gov (United States)

    Sieuwerts, Sander; Molenaar, Douwe; van Hijum, Sacha A F T; Beerthuyzen, Marke; Stevens, Marc J A; Janssen, Patrick W M; Ingham, Colin J; de Bok, Frank A M; de Vos, Willem M; van Hylckama Vlieg, Johan E T

    2010-12-01

    Many food fermentations are performed using mixed cultures of lactic acid bacteria. Interactions between strains are of key importance for the performance of these fermentations. Yogurt fermentation by Streptococcus thermophilus and Lactobacillus bulgaricus (basonym, Lactobacillus delbrueckii subsp. bulgaricus) is one of the best-described mixed-culture fermentations. These species are believed to stimulate each other's growth by the exchange of metabolites such as folic acid and carbon dioxide. Recently, postgenomic studies revealed that an upregulation of biosynthesis pathways for nucleotides and sulfur-containing amino acids is part of the global physiological response to mixed-culture growth in S. thermophilus, but an in-depth molecular analysis of mixed-culture growth of both strains remains to be established. We report here the application of mixed-culture transcriptome profiling and a systematic analysis of the effect of interaction-related compounds on growth, which allowed us to unravel the molecular responses associated with batch mixed-culture growth in milk of S. thermophilus CNRZ1066 and L. bulgaricus ATCC BAA-365. The results indicate that interactions between these bacteria are primarily related to purine, amino acid, and long-chain fatty acid metabolism. The results support a model in which formic acid, folic acid, and fatty acids are provided by S. thermophilus. Proteolysis by L. bulgaricus supplies both strains with amino acids but is insufficient to meet the biosynthetic demands for sulfur and branched-chain amino acids, as becomes clear from the upregulation of genes associated with these amino acids in mixed culture. Moreover, genes involved in iron uptake in S. thermophilus are affected by mixed-culture growth, and genes coding for exopolysaccharide production were upregulated in both organisms in mixed culture compared to monocultures. The confirmation of previously identified responses in S. thermophilus using a different strain combination

  2. Bacterial diversity of soil under eucalyptus assessed by 16S rDNA sequencing analysis Diversidade bacteriana de solo sob eucaliptos obtida por seqüenciamento do 16S rDNA

    Directory of Open Access Journals (Sweden)

    Érico Leandro da Silveira

    2006-10-01

    Full Text Available Studies on the impact of Eucalyptus spp. on Brazilian soils have focused on soil chemical properties and isolating interesting microbial organisms. Few studies have focused on microbial diversity and ecology in Brazil due to limited coverage of traditional cultivation and isolation methods. Molecular microbial ecology methods based on PCR amplified 16S rDNA have enriched the knowledge of soils microbial biodiversity. The objective of this work was to compare and estimate the bacterial diversity of sympatric communities within soils from two areas, a native forest (NFA and an eucalyptus arboretum (EAA. PCR primers, whose target soil metagenomic 16S rDNA were used to amplify soil DNA, were cloned using pGEM-T and sequenced to determine bacterial diversity. From the NFA soil 134 clones were analyzed, while 116 clones were analyzed from the EAA soil samples. The sequences were compared with those online at the GenBank. Phylogenetic analyses revealed differences between the soil types and high diversity in both communities. Soil from the Eucalyptus spp. arboretum was found to have a greater bacterial diversity than the soil investigated from the native forest area.Estudos sobre impacto do Eucalyptus spp. em solos brasileiros têm focalizado propriedades químicas do solo e isolamento de microrganismos de interesse. No Brasil há pouco enfoque em ecologia e diversidade microbiana, devido às limitações dos métodos tradicionais de cultivo e isolamento. A utilização de métodos moleculares no estudo da ecologia microbiana baseados na amplificação por PCR do 16S rDNA têm enriquecido o conhecimento da biodiversidade microbiana dos solos. O objetivo deste trabalho foi comparar e estimar a diversidade bacteriana de comunidades simpátricas em solos de duas áreas: uma floresta nativa (NFA e outra adjacente com arboreto de eucaliptos (EAA. Oligonucleotídeos iniciadores foram utilizados para amplificar o 16S rDNA metagenômico do solo, o qual foi

  3. DNA sequencing reveals limited heterogeneity in the 16S rRNA gene from the rrnB operon among five Mycoplasma hominis isolates

    DEFF Research Database (Denmark)

    Mygind, T; Birkelund, Svend; Christiansen, Gunna

    1998-01-01

    To investigate the intraspecies heterogeneity within the 16S rRNA gene of Mycoplasma hominis, five isolates with diverse antigenic profiles, variable/identical P120 hypervariable domains, and different 16S rRNA gene RFLP patterns were analysed. The 16S rRNA gene from the rrnB operon was amplified...... by PCR and the PCR products were sequenced. Three isolates had identical 16S rRNA sequences and two isolates had sequences that differed from the others by only one nucleotide....

  4. Yoghurt fermentation at elevated temperatures by strains of Streptococcus thermophilus expressing a small heat-shock protein: application of a two-plasmid system for constructing food-grade strains of Streptococcus thermophilus.

    Science.gov (United States)

    El Demerdash, Hassan A; Oxmann, Julian; Heller, Knut J; Geis, Arnold

    2006-04-01

    Streptococcus thermophilus S4 expressing a small heat-shock protein from the plasmid pSt04-encoded copy of shsp, is able to carry out fermentation at elevated temperature, i.e., at 50 degrees C. In yoghurt culture together with Lactobacillus delbrueckii subsp. bulgaricus, fermentation at elevated temperature results in a mild yoghurt with low post-acidification and improved stability of the starter bacteria during storage at 4 degrees C. To transfer pSt04 into commercial S. thermophilus yoghurt starter strains, a two-plasmid system was constructed. A helper plasmid providing a selectable antibiotic marker, but relying on the repA gene of pSt04, was transformed together with pSt04. After isolation of transformants, the helper plasmid was readily lost upon incubation of transformants in antibiotic-free medium, thus yielding food-grade strains carrying pSt04 only. Successful application of the system was demonstrated.

  5. NCBI nr-aa BLAST: CBRC-XTRO-01-2304 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-2304 ref|YP_004128.1| hypothetical membrane spanning protein [Thermus ...thermophilus HB27] gb|AAS80501.1| hypothetical membrane spanning protein [Thermus thermophilus HB27] YP_004128.1 0.083 35% ...

  6. NCBI nr-aa BLAST: CBRC-LAFR-01-0754 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-0754 ref|YP_006106.1| hypothetical membrane spanning protein [Thermus ...thermophilus HB27] gb|AAS82453.1| hypothetical membrane spanning protein [Thermus thermophilus HB27] YP_006106.1 0.51 33% ...

  7. ORF Alignment: NC_005835 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ure Of ... The Thermus Thermophilus 30s Ribosomal Subunit In The ... Presence Of Codon And Crystallograph... ... pdb|1N36|P Chain P, Structure Of The Thermus ... Thermophilus 30s Ribosomal Subunit In The Presence Of ... Crystallog...raphically Disordered Codon And Near-Cognate ... T

  8. ORF Alignment: NC_006461 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ure Of ... The Thermus Thermophilus 30s Ribosomal Subunit In The ... Presence Of Codon And Crystallograph... ... pdb|1N36|P Chain P, Structure Of The Thermus ... Thermophilus 30s Ribosomal Subunit In The Presence Of ... Crystallog...raphically Disordered Codon And Near-Cognate ... T

  9. Properties of Streptococcus thermophilus fermented milk containing variable concentrations of Bifidobacterium longum and Lactobacillus acidophilus Propriedades de leites fermentados por Streptococcus thermophilus contendo concentrações variáveis de Bifidobacterium longum e Lactobacillus acidophilus

    Directory of Open Access Journals (Sweden)

    Patrícia Blumer Zacarchenco

    2006-09-01

    Full Text Available Sensory evaluation and analysis of pH, titratable acidity and microbial counts after 1, 7, 14 and 21 days of storage of five combinations of lyophilized Bifidobacterium longum and/or Lactobacillus acidophilus added to milk fermented with Streptococcus thermophilus were studied during storage at 4ºC. The taste and acidity sensory attributes were significantly (PForam estudadas as características sensoriais, de pH e acidez de cinco combinações de leites fermentados por Streptococcus thermophilus, adicionados de Bifidobacterium longum e/ou Lactobacillus acidophilus liofilizados. Os efeitos sobre as características sensoriais tornaram-se significantes (p < 0,05 com o aumento do tempo de estocagem. As combinações favoritas continham, inicialmente, Bif. longum e L. acidophilus (10(8 e 10(7ufc/mL, respectivamente e Bif. longum apenas (10(8ufc/mL. Estas combinações não diferiram significativamente do leite fermentado padrão, nem entre si. As notas mais baixas e os maiores valores de acidez titulável foram apresentados pelo leite fermentado por Streptococcus thermophilus contendo apenas L. acidophilus (10(8ufc/mL, concentração inicial. Durante 21 dias de estocagem a 4ºC, as contagens de células viáveis de Str. thermophilus não mudaram, as de Bif. longum mantiveram-se constantes ou reduziram em um ciclo logarítmico e, as de L. acidophilus reduziram de 1 a 2 ciclos logarítmicos. Não foi observada inibição da pós-acidificação resultante da presença de bifidobactéria ou L. acidophilus.

  10. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing

    Directory of Open Access Journals (Sweden)

    Chia Sing eChan

    2015-03-01

    Full Text Available The Sungai Klah (SK hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-meter-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0 to 9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC. In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3−V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream and geochemical parameters (broad temperature and pH range. It is speculated that symbiotic relationships occur between the members of the community.

  11. Distribution, hosts, 16S rDNA sequences and phylogenetic position of the Neotropical tick Amblyomma parvum (Acari: Ixodidae).

    Science.gov (United States)

    Nava, S; Szabó, M P J; Mangold, A J; Guglielmone, A A

    2008-07-01

    The hosts, distribution, intraspecific genetic variation and phylogenetic position of Amblyomma parvum (Acari: Ixodidae) have recently been re-assessed. Data on this tick's hosts and distribution were obtained not only from existing literature but also from unpublished records. Sequences of the ticks' mitochondrial 16S ribosomal DNA (rDNA) were used to evaluate genetic variation among specimens of A. parvum from different localities in Argentina and Brazil, and to explore the phylogenetic relationships between this tick and other Amblyomma species. Although several species of domestic and wild mammal act as hosts for adult A. parvum, most collected adults of this species have come from cattle and goats. Caviid rodents of the subfamily Caviinae appear to be the hosts for the immature stages. So far, A. parvum has been detected in 12 Neotropical biogeographical provinces (Chaco, Cerrado, Eastern Central America, Venezuelan Coast, Pantanal, Parana Forest, Caatinga, Chiapas, Venezuelan Llanos, Monte, Western Panamanian Isthmus, and Roraima) but the Chaco province has provided significantly more specimens than any other (P<0.0001). The 16S rDNA sequences showed just 0.0%-1.1% divergence among the Argentinean A. parvum investigated and no more than 0.2% divergence among the Brazilian specimens. The observed divergence between the Argentinean and Brazilian specimens was, however, greater (3.0%-3.7%). Although there is now molecular and morphological evidence to indicate that A. parvum, A. pseudoparvum, A. auricularium and A. pseudoconcolor are members of a natural group, previous subgeneric classifications do not reflect this grouping. The subgeneric status of these tick species therefore needs to be re-evaluated. The 16S-rDNA-based evaluation of divergence indicates that the gene flow between Argentinean and Brazilian 'A. parvum' is very limited and that the Argentinean 'A. parvum' may be a different species to the Brazilian.

  12. Evaluation of Faecalibacterium 16S rDNA genetic markers for accurate identification of swine faecal waste by quantitative PCR.

    Science.gov (United States)

    Duan, Chuanren; Cui, Yamin; Zhao, Yi; Zhai, Jun; Zhang, Baoyun; Zhang, Kun; Sun, Da; Chen, Hang

    2016-10-01

    A genetic marker within the 16S rRNA gene of Faecalibacterium was identified for use in a quantitative PCR (qPCR) assay to detect swine faecal contamination in water. A total of 146,038 bacterial sequences were obtained using 454 pyrosequencing. By comparative bioinformatics analysis of Faecalibacterium sequences with those of numerous swine and other animal species, swine-specific Faecalibacterium 16S rRNA gene sequences were identified and Polymerase Chain Okabe (PCR) primer sets designed and tested against faecal DNA samples from swine and non-swine sources. Two PCR primer sets, PFB-1 and PFB-2, showed the highest specificity to swine faecal waste and had no cross-reaction with other animal samples. PFB-1 and PFB-2 amplified 16S rRNA gene sequences from 50 samples of swine with positive ratios of 86 and 90%, respectively. We compared swine-specific Faecalibacterium qPCR assays for the purpose of quantifying the newly identified markers. The quantification limits (LOQs) of PFB-1 and PFB-2 markers in environmental water were 6.5 and 2.9 copies per 100 ml, respectively. Of the swine-associated assays tested, PFB-2 was more sensitive in detecting the swine faecal waste and quantifying the microbial load. Furthermore, the microbial abundance and diversity of the microbiomes of swine and other animal faeces were estimated using operational taxonomic units (OTUs). The species specificity was demonstrated for the microbial populations present in various animal faeces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Microbial Dark Matter: Unusual intervening sequences in 16S rRNA genes of candidate phyla from the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Jarett, Jessica; Stepanauskas, Ramunas; Kieft, Thomas; Onstott, Tullis; Woyke, Tanja

    2014-03-17

    The Microbial Dark Matter project has sequenced genomes from over 200 single cells from candidate phyla, greatly expanding our knowledge of the ecology, inferred metabolism, and evolution of these widely distributed, yet poorly understood lineages. The second phase of this project aims to sequence an additional 800 single cells from known as well as potentially novel candidate phyla derived from a variety of environments. In order to identify whole genome amplified single cells, screening based on phylogenetic placement of 16S rRNA gene sequences is being conducted. Briefly, derived 16S rRNA gene sequences are aligned to a custom version of the Greengenes reference database and added to a reference tree in ARB using parsimony. In multiple samples from deep subsurface habitats but not from other habitats, a large number of sequences proved difficult to align and therefore to place in the tree. Based on comparisons to reference sequences and structural alignments using SSU-ALIGN, many of these ?difficult? sequences appear to originate from candidate phyla, and contain intervening sequences (IVSs) within the 16S rRNA genes. These IVSs are short (39 - 79 nt) and do not appear to be self-splicing or to contain open reading frames. IVSs were found in the loop regions of stem-loop structures in several different taxonomic groups. Phylogenetic placement of sequences is strongly affected by IVSs; two out of three groups investigated were classified as different phyla after their removal. Based on data from samples screened in this project, IVSs appear to be more common in microbes occurring in deep subsurface habitats, although the reasons for this remain elusive.

  14. Detection of transient bacteraemia following dental extractions by 16S rDNA pyrosequencing: a pilot study.

    Directory of Open Access Journals (Sweden)

    Alfonso Benítez-Páez

    Full Text Available OBJECTIVE: The current manuscript aims to determine the prevalence, duration and bacterial diversity of bacteraemia following dental extractions using conventional culture-dependent methods and 16S rDNA pyrosequencing. METHODS: The study group included 8 patients undergoing dental extractions under general anaesthesia. Peripheral venous blood samples were collected at baseline, 30 seconds and 15 minutes after the dental extractions. Blood samples were analysed for bacteraemia applying conventional microbiological cultures under aerobic and anaerobic conditions as well as pyrosequencing using universal bacterial primers that target the 16S ribosomal DNA gene. RESULTS: Transient bacteremia was detected by culture-based methods in one sample at baseline time, in eight samples at 30 seconds, and in six samples at 15 minutes after surgical procedure; whereas bacteraemia was detected only in five blood samples at 30 seconds after dental extraction by using pyrosequencing. By applying conventional microbiological methods, a single microbial species was detected in six patients, and Streptococcus viridans was the most frequently cultured identified bacterium. By using pyrosequencing approaches however, the estimated blood microbial diversity after dental extractions was 13.4±1.7 bacterial families and 22.8±1.1 genera per sample. CONCLUSION: The application of 16S rDNA pyrosequencing underestimated the prevalence and duration of bacteraemia following dental extractions, presumably due to not reaching the minimum DNA required for PCR amplification. However, this molecular technique, unlike conventional culture-dependent methods, revealed an extraordinarily high bacterial diversity of post-extraction bacteraemia. We propose that microorganisms recovered by culture may be only the tip of an iceberg of a really diverse microbiota whose viability and potential pathogenicity should be further studied.

  15. Lyme disease caused by Borrelia burgdorferi with two homeologous 16S rRNA genes: a case report

    Directory of Open Access Journals (Sweden)

    Lee SH

    2016-04-01

    Full Text Available Sin Hang Lee,1,21Pathology Department, Milford Hospital, Milford, CT, USA; 2Milford Molecular Diagnostics, Milford, CT, USA Abstract: Lyme disease (LD, the most common tick-borne disease in North America, is believed to be caused exclusively by Borrelia burgdorferi sensu stricto and is usually diagnosed by clinical evaluation and serologic assays. As reported previously in a peer-reviewed article, a 13-year-old boy living in the Northeast of the USA was initially diagnosed with LD based on evaluation of his clinical presentations and on serologic test results. The patient was treated with a course of oral doxycycline for 28 days, and the symptoms resolved. A year later, the boy developed a series of unusual symptoms and did not attend school for 1 year. A LD specialist reviewed the case and found the serologic test band patterns nondiagnostic of LD. The boy was admitted to a psychiatric hospital. After discharge from the psychiatric hospital, a polymerase chain reaction test performed in a winter month when the boy was 16 years old showed a low density of B. burgdorferi sensu lato in the blood of the patient, confirmed by partial 16S rRNA (ribosomal RNA gene sequencing. Subsequent DNA sequencing analysis presented in this report demonstrated that the spirochete isolate was a novel strain of B. burgdorferi with two homeologous 16S rRNA genes, which has never been reported in the world literature. This case report shows that direct DNA sequencing is a valuable tool for reliable molecular diagnosis of Lyme and related borrelioses, as well as for studies of the diversity of the causative agents of LD because LD patients infected by a rare or novel borrelial variant may produce an antibody pattern that can be different from the pattern characteristic of an infection caused by a typical B. burgdorferi sensu stricto strain. Keywords: Lyme disease, Borrelia burgdorferi, homeologous 16S rRNA genes, DNA sequencing

  16. Mechanisms of Streptomycin Resistance: Selection of Mutations in the 16S rRNA Gene Conferring Resistance

    Science.gov (United States)

    Springer, Burkhard; Kidan, Yishak G.; Prammananan, Therdsak; Ellrott, Kerstin; Böttger, Erik C.; Sander, Peter

    2001-01-01

    Chromosomally acquired streptomycin resistance is frequently due to mutations in the gene encoding the ribosomal protein S12, rpsL. The presence of several rRNA operons (rrn) and a single rpsL gene in most bacterial genomes prohibits the isolation of streptomycin-resistant mutants in which resistance is mediated by mutations in the 16S rRNA gene (rrs). Three strains were constructed in this investigation: Mycobacterium smegmatis rrnB, M. smegmatis rpsL3+, and M. smegmatis rrnB rpsL3+. M. smegmatis rrnB carries a single functional rrn operon, i.e., rrnA (comprised of 16S, 23S, and 5S rRNA genes) and a single rpsL+ gene; M. smegmatis rpsL3+ is characterized by the presence of two rrn operons (rrnA and rrnB) and three rpsL+ genes; and M. smegmatis rrnB rpsL3+ carries a single functional rrn operon (rrnA) and three rpsL+ genes. By genetically altering the number of rpsL and rrs alleles in the bacterial genome, mutations in rrs conferring streptomycin resistance could be selected, as revealed by analysis of streptomycin-resistant derivatives of M. smegmatis rrnB rpsL3+. Besides mutations well known to confer streptomycin resistance, novel streptomycin resistance conferring mutations were isolated. Most of the mutations were found to map to a functional pseudoknot structure within the 530 loop region of the 16S rRNA. One of the mutations observed, i.e., 524G→C, severely distorts the interaction between nucleotides 524G and 507C, a Watson-Crick interaction which has been thought to be essential for ribosome function. The use of the single rRNA allelic M. smegmatis strain should help to elucidate the principles of ribosome-drug interactions. PMID:11557484

  17. Molecular diversity of leuconostoc mesenteroides and leuconostoc citreum isolated from traditional french cheeses as revealed by RAPD fingerprinting, 16S rDNA sequencing and 16S rDNA fragment amplification.

    Science.gov (United States)

    Cibik, R; Lepage, E; Talliez, P

    2000-06-01

    For a long time, the identification of the Leuconostoc species has been limited by a lack of accurate biochemical and physiological tests. Here, we use a combination of RAPD, 16S rDNA sequencing, and 16S rDNA fragment amplification with specific primers to classify different leuconostocs at the species and strain level. We analysed the molecular diversity of a collection of 221 strains mainly isolated from traditional French cheeses. The majority of the strains were classified as Leuconostoc mesenteroides (83.7%) or Leuconostoc citreum (14%) using molecular techniques. Despite their presence in French cheeses, the role of L. citreum in traditional technologies has not been determined, probably because of the lack of strain identification criteria. Only one strain of Leuconostoc lactis and Leuconostoc fallax were identified in this collection, and no Weissella paramesenteroides strain was found. However, dextran negative variants of L. mesenteroides, phenotypically misclassified as W. paramesenteroides, were present. The molecular techniques used did not allow us to separate strains of the three L. mesenteroides subspecies (mesenteroides, dextranicum and cremoris). In accordance with previously published results, our findings suggest that these subspecies may be classified as biovars. Correlation found between phenotypes dextranicum and mesenteroides of L. mesenteroides and cheese technology characteristics suggests that certain strains may be better adapted to particular technological environments.

  18. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin.

    OpenAIRE

    Melançon, P; Lemieux, C; Brakier-Gingras, L

    1988-01-01

    Oligonucleotide-directed mutagenesis was used to introduce an A to C transversion at position 523 in the 16S ribosomal RNA gene of Escherichia coli rrnB operon cloned in plasmid pKK3535. E. coli cells transformed with the mutated plasmid were resistant to streptomycin. The mutated ribosomes isolated from these cells were not stimulated by streptomycin to misread the message in a poly(U)-directed assay. They were also restrictive to the stimulation of misreading by other error-promoting relate...

  19. Structure, dynamics, and elasticity of free 16S rRNA helix 44 studied by molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Réblová, Kamila; Lankaš, F.; Rázga, Filip; Krasovská, Maryna V.; Koča, J.; Šponer, Jiří

    2006-01-01

    Roč. 82, č. 5 (2006), s. 504-520 ISSN 0006-3525 R&D Projects: GA ČR(CZ) GA203/05/0388; GA ČR(CZ) GA203/05/0009; GA ČR(CZ) GD204/03/H016; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z50040507 Keywords : molecular dynamics * helix 44 * 16S rRNA Subject RIV: BO - Biophysics Impact factor: 2.480, year: 2006

  20. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy.

    Science.gov (United States)

    Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng

    2017-05-10

    Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite

  1. Variants of a Thermus aquaticus DNA polymerase with increased selectivity for applications in allele- and methylation-specific amplification.

    Directory of Open Access Journals (Sweden)

    Matthias Drum

    Full Text Available The selectivity of DNA polymerases is crucial for many applications. For example, high discrimination between the extension of matched versus mismatched primer termini is desired for the detection of a single nucleotide variation at a particular locus within the genome. Here we describe the generation of thermostable mutants of the large fragment of Thermus aquaticus DNA polymerase (KlenTaq with increased mismatch extension selectivity. In contrast to previously reported much less active KlenTaq mutants with mismatch discrimination abilities, many of the herein discovered mutants show conserved wild-type-like high activities. We demonstrate for one mutant containing the single amino acid exchange R660V the suitability for application in allele-specific amplifications directly from whole blood without prior sample purification. Also the suitability of the mutant for methylation specific amplification in the diagnostics of 5-methyl cytosines is demonstrated. Furthermore, the identified mutant supersedes other commercially available enzymes in human leukocyte antigen (HLA analysis by sequence-specific primed polymerase chain reactions (PCRs.

  2. Thermus thermophilis dnaX homolog encoding gamma- and tau-like proteins of the chromosomal replicase.

    Science.gov (United States)

    Yurieva, O; Skangalis, M; Kuriyan, J; O'Donnell, M

    1997-10-24

    This report identifies the dnaX homolog from Thermus thermophilis. Replicases from bacteria to humans contain subunits that are homologous to one another. These homologs are subunits of a clamp loading apparatus that loads sliding clamps onto DNA, which in turn act as mobile tethers for the replication machinery. In Escherichia coli, two of these subunits (gamma and tau) are encoded by one gene (dnaX) in nearly equal amounts by way of an efficient translational frameshift. The gamma and tau subunits form the central touchpoint that holds together two DNA polymerases with one clamp loading apparatus to form the E. coli chromosomal replicase, DNA polymerase III holoenzyme. The E. coli holoenzyme is an efficient replication machine that simultaneously replicates both strands of duplex DNA. The T. thermophilis dnaX homolog also contains a frameshift signature and produces both tau- and gamma-like proteins. Recombinant T. thermophilis tau- and gamma-like proteins, expressed in E. coli, have an oligomeric state similar to that of their E. coli counterparts and display ATPase activity that is stimulated by DNA. These results imply that T. thermophilis utilizes a DNA polymerase III holoenzyme replication machinery similar to that of E. coli.

  3. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression

    DEFF Research Database (Denmark)

    Calles-Enríquez, Marina; Hjort, Benjamin Benn; Andersen, Pia Skov

    2010-01-01

    to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended...... with the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible...... acquisition through a horizontal transfer mechanism. Transcriptional analysis of the hdc cluster revealed the existence of a polycistronic mRNA covering the three genes. The histidine-decarboxylating gene (hdcA) of S. thermophilus demonstrated maximum expression during the stationary growth phase, with high...

  4. Phage-Induced Expression of CRISPR-Associated Proteins is Revealed by Shotgun Proteomics in Streptococcus thermophilus

    Energy Technology Data Exchange (ETDEWEB)

    Young, Jacque C [ORNL; Dill, Brian [ORNL; Pan, Chongle [ORNL; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley; Shah, Manesh B [ORNL; Fremaux, Christophe [Danisco France SAS; Horvath, Philippe [Danisco France SAS; Barrangou, Rodolphe [Danisco USA; Verberkmoes, Nathan C [ORNL

    2012-01-01

    The CRISPR/Cas system, comprised of clustered regularly interspaced short palindromic repeats along with their associated (Cas) proteins, protects bacteria and archaea from viral predation and invading nucleic acids. While the mechanism of action for this acquired immunity is currently under investigation, the response of Cas protein expression to phage infection has yet to be elucidated. In this study, we employed shotgun proteomics to measure the global proteome expression in a model system for studying the CRISPR/Cas response: infection of S. thermophilus DGCC7710 with phage 2972. Host and viral proteins were simultaneously measured following inoculation at two different multiplicities of infection and across various time points using two-dimensional liquid chromatography tandem mass spectroscopy. Thirty-seven out of forty predicted viral proteins were detected, including all proteins of the structural virome and viral effector proteins. In total, 1,013 of 2,079 predicted S. thermophilus proteins were detected, facilitating the monitoring of host protein synthesis changes in response to virus infection. Importantly, Cas proteins from all four CRISPR loci in the S. thermophilus DGCC7710 genome were detected, including loci previously thought to be inactive. Many Cas proteins were found to be constitutively expressed, but several demonstrated increased abundance during peak infection, including the Cas9 proteins from the CRISPR1 and CRISPR3 loci, which are key players in the interference phase of the CRISPR/Cas response. Altogether, these results provide novel insights into the proteomic response of S. thermophilus, specifically CRISPR-associated proteins, upon phage 2972 infection.

  5. Comparison of statistical methods for identification of Streptococcus thermophilus, Enterococcus faecalis, and Enterococcus faecium from randomly amplified polymorphic DNA patterns.

    Science.gov (United States)

    Moschetti, G; Blaiotta, G; Villani, F; Coppola, S; Parente, E

    2001-05-01

    Thermophilic streptococci play an important role in the manufacture of many European cheeses, and a rapid and reliable method for their identification is needed. Randomly amplified polymorphic DNA (RAPD) PCR (RAPD-PCR) with two different primers coupled to hierarchical cluster analysis has proven to be a powerful tool for the classification and typing of Streptococcus thermophilus, Enterococcus faecium, and Enterococcus faecalis (G. Moschetti, G. Blaiotta, M. Aponte, P. Catzeddu, F. Villani, P. Deiana, and S. Coppola, J. Appl. Microbiol. 85:25-36, 1998). In order to develop a fast and inexpensive method for the identification of thermophilic streptococci, RAPD-PCR patterns were generated with a single primer (XD9), and the results were analyzed using artificial neural networks (Multilayer Perceptron, Radial Basis Function network, and Bayesian network) and multivariate statistical techniques (cluster analysis, linear discriminant analysis, and classification trees). Cluster analysis allowed the identification of S. thermophilus but not of enterococci. A Bayesian network proved to be more effective than a Multilayer Perceptron or a Radial Basis Function network for the identification of S. thermophilus, E. faecium, and E. faecalis using simplified RAPD-PCR patterns (obtained by summing the bands in selected areas of the patterns). The Bayesian network also significantly outperformed two multivariate statistical techniques (linear discriminant analysis and classification trees) and proved to be less sensitive to the size of the training set and more robust in the response to patterns belonging to unknown species.

  6. Persistence of wild Streptococcus thermophilus strains on wooden vat and during the manufacture of a traditional Caciocavallo type cheese.

    Science.gov (United States)

    Settanni, L; Di Grigoli, A; Tornambé, G; Bellina, V; Francesca, N; Moschetti, G; Bonanno, A

    2012-04-02

    The present work was undertaken to evaluate the influence of the wooden dairy plant equipment on the microbiological characteristics of curd to be transformed into Caciocavallo Palermitano cheese. Traditional raw milk productions were performed concomitantly with standard cheese making trials carried out in stainless steel vat inoculated with a commercial starter. Milk from two different farms (A and B) was separately processed. The wooden vat was found to be a reservoir of lactic acid bacteria (LAB), while unwanted (spoilage and/or pathogenic) microorganisms were not hosted or were present at very low levels. All microbial groups were numerically different in bulk milks, showing higher levels for the farm B. LAB, especially thermophilic cocci, dominated the whole cheese making process of all productions. Undesired microorganisms decreased in number or disappeared during transformation, particularly after curd stretching. LAB were isolated from the wooden vat surface and from all dairy samples, subjected to phenotypic and genetic characterization and identification. Streptococcus thermophilus was the species found at the highest concentration in all samples analyzed and it also dominated the microbial community of the wooden vat. Fourteen other LAB species belonging to six genera (Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Weissella) were also detected. All S. thermophilus isolates were genetically differentiated and a consortium of four strains persisted during the whole traditional production process. As confirmed by pH and the total acidity after the acidification step, indigenous S. thermophilus strains acted as a mixed starter culture. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Comparison of COBAS AMPLICOR Neissefia gonorrhoeae PCR, including confirmation with N-gonorrhoeae-specific 16S rRNA PCR, with traditional culture

    NARCIS (Netherlands)

    Luijt, DS; Bos, PAJ; van Zwet, AA; Vader, PCV; Schirm, J

    A total of 3,023 clinical specimens were tested for Neisseria gonorrhoeae by using COBAS AMPLICOR (CA) PCR and confirmation of positives by N. gonorrhoeae-specific 16S rRNA PCR. The sensitivity of CA plus 16S rRNA PCR was 98.8%, compared to 68.2% for culture. Confirmation of CA positives increased

  8. The evaluation of an identification algorithm for Mycobacterium species using the 16S rRNA coding gene and rpoB

    Directory of Open Access Journals (Sweden)

    Yuko Kazumi

    2012-01-01

    Conclusions: The 16S rRNA gene identification is a rapid and prevalent method but still has some limitations. Therefore, the stepwise combination of rpoB with 16S rRNA gene analysis is an effective system for the identification of Mycobacterium species.

  9. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    Science.gov (United States)

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  10. Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library.

    Science.gov (United States)

    Rastogi, Gurdeep; Osman, Shariff; Vaishampayan, Parag A; Andersen, Gary L; Stetler, Larry D; Sani, Rajesh K

    2010-01-01

    Microbial diversity was characterized in mining-impacted soils collected from two abandoned uranium mine sites, the Edgemont and the North Cave Hills, South Dakota, using a high-density 16S microarray (PhyloChip) and clone libraries. Characterization of the elemental compositions of soils by X-ray fluorescence spectroscopy revealed higher metal contamination including uranium at the Edgemont than at the North Cave Hills mine site. Microarray data demonstrated extensive phylogenetic diversity in soils and confirmed nearly all clone-detected taxonomic levels. Additionally, the microarray exhibited greater diversity than clone libraries at each taxonomic level at both the mine sites. Interestingly, the PhyloChip detected the largest number of taxa in Proteobacteria phylum for both the mine sites. However, clone libraries detected Acidobacteria and Bacteroidetes as the most numerically abundant phyla in the Edgemont and North Cave Hills mine sites, respectively. Several 16S rDNA signatures found in both the microarrays and clone libraries displayed sequence similarities with yet-uncultured bacteria representing a hitherto unidentified diversity. Results from this study demonstrated that highly diverse microbial populations were present in these uranium mine sites. Diversity indices indicated that microbial communities at the North Cave Hills mine site were much more diverse than those at the Edgemont mine site.

  11. Arrested development of the myxozoan parasite, Myxobolus cerebralis, in certain populations of mitochondrial 16S lineage III Tubifex tubifex

    Science.gov (United States)

    Baxa, D.V.; Kelley, G.O.; Mukkatira, K.S.; Beauchamp, K.A.; Rasmussen, C.; Hedrick, R.P.

    2008-01-01

    Laboratory populations of Tubifex tubifex from mitochondrial (mt)16S ribosomal DNA (rDNA) lineage III were generated from single cocoons of adult worms releasing the triactinomyxon stages (TAMs) of the myxozoan parasite, Myxobolus cerebralis. Subsequent worm populations from these cocoons, referred to as clonal lines, were tested for susceptibility to infection with the myxospore stages of M. cerebralis. Development and release of TAMs occurred in five clonal lines, while four clonal lines showed immature parasitic forms that were not expelled from the worm (non-TAM producers). Oligochaetes from TAM- and non-TAM-producing clonal lines were confirmed as lineage III based on mt16S rDNA and internal transcribed spacer region 1 (ITS1) sequences, but these genes did not differentiate these phenotypes. In contrast, random amplified polymorphic DNA analyses of genomic DNA demonstrated unique banding patterns that distinguished the phenotypes. Cohabitation of parasite-exposed TAM- and non-TAM-producing phenotypes showed an overall decrease in expected TAM production compared to the same exposure dose of the TAM-producing phenotype without cohabitation. These studies suggest that differences in susceptibility to parasite infection can occur in genetically similar T. tubifex populations, and their coexistence may affect overall M. cerebralis production, a factor that may influence the severity of whirling disease in wild trout populations. ?? 2007 Springer-Verlag.

  12. Diversity of Protease-Producing Bacillus spp. From Fresh Indonesian Tempeh Based on 16S rRNA Gene Sequence

    Directory of Open Access Journals (Sweden)

    Tati Barus

    2017-01-01

    Full Text Available Tempeh is a type of traditional fermented food in Indonesia. The fermentation can be performed by Rhizopus microsporus as a main microorganism. However, Bacillus spp. is found in abundance in tempeh production. Nevertheless, information regarding the diversity of Bacillus spp. in tempeh production has not been reported yet. Therefore, the aim of this investigation was to study the genetic diversity of Bacillus spp. in tempeh production based on the 16S ribosomal RNA sequence. In this study, about 22 of 24 fresh tempeh from Jakarta, Bogor, and Tangerang were used. A total of 52 protease-producing Bacillus spp. isolates were obtained. Based on 16S ribosomal RNA results, all 52 isolates were identified to be similar to B. pumilus, B. subtilis, B. megaterium, B. licheniformis, B. cereus, B. thuringiensis, B. amyloliquefaciens, Brevibacillus brevis, and Bacillus sp. All the identified isolates were divided into two large clusters: 1 a cluster of B. cereus, B. thuringiensis, Bacillus sp., and B. brevis and 2 a cluster of B. pumilus, B. subtilis, B. megaterium, B. licheniformis, and B. amyloliquefaciens. Information about the Bacillus spp. role in determining the quality of tempeh has not been reported and this is a preliminary study of Bacillus spp. from tempeh.

  13. Identification of single nucleotide polymorphisms (SNPs) in the 16S rRNA gene of foodborne Bacillus spp.

    Science.gov (United States)

    Fernández-No, I C; Böhme, K; Caamaño-Antelo, S; Barros-Velázquez, J; Calo-Mata, P

    2015-04-01

    The main goal of this work was the identification of single nucleotide polymorphisms (SNPs) in the 16S rRNA gene of foodborne Bacillus spp. that may be useful for typing purposes. These species include, among others, Bacillus cereus, an important pathogenic species involved in food poisoning, and Bacillus licheniformis, Bacillus subtilis and Bacillus pumilus, which are causative agents of food spoilage described as responsible for foodborne disease outbreaks. With this purpose in mind, 52 Bacillus strains isolated from culture collections and fresh and processed food were considered. SNP type "Y" at sites 212 and 476 appeared in the majority of B. licheniformis studied strains. SNP type "R" at site 278 was detected in many strains of the B. subtilis/Bacillus amyloliquefaciens group, while polymorphism "Y" at site 173 was characteristic of the majority of strains of B. cereus/Bacillus thuringiensis group. The analysis of SNPs provided more intra-specific information than phylogenetic analysis in the cases of B. cereus and B. subtilis. Moreover, this study describes novel SNPs that should be considered when designing 16S rRNA-based primers and probes for multiplex-PCR, Real-Time PCR and microarray systems for foodborne Bacillus spp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Band smearing of PCR amplified bacterial 16S rRNA genes: dependence on initial PCR target diversity.

    Science.gov (United States)

    Zrimec, Jan; Kopinč, Rok; Rijavec, Tomaž; Zrimec, Tatjana; Lapanje, Aleš

    2013-11-01

    Band smearing in agarose gels of PCR amplified bacterial 16S rRNA genes is understood to comprise amplicons of varying sizes arising from PCR errors, and requires elimination. We consider that with amplified heterogeneous DNA, delayed electro-migration is caused not by PCR errors but by dsDNA structures that arise from imperfect strand pairing. The extent of band smearing was found to be proportional to the sequence heterogeneity in 16S rRNA variable regions. Denaturing alkaline gels showed that all amplified DNA was of the correct size. A novel bioinformatic approach was used to reveal that band smearing occurred due to imperfectly paired strands of the amplified DNA. Since the smear is a structural fraction of the correct size PCR product, it carries important information on richness and diversity of the target DNA. For accurate analysis, the origin of the smear must first be identified before it is eliminated by examining the amplified DNA in denaturing alkaline gels. © 2013 Elsevier B.V. All rights reserved.

  15. High or low correlation between co-occuring gene clusters and 16S rRNA gene phylogeny.

    Science.gov (United States)

    Rudi, Knut; Sekelja, Monika

    2013-02-01

    Ribosomal RNA (rRNA) genes are universal for all living organisms. Yet, the correspondence between genome composition and rRNA phylogeny remains poorly known. The aim of this study was to use the information from genome sequence databases to address the correlation between rRNA gene phylogeny and total gene composition in bacteria. This was done by analysing 327 genomes with TIGRFAM functional gene annotations. Our approach consisted of two steps. First, we searched for discriminatory clusters of co-occurring genes. Using a multivariate statistical approach, we identified 11 such clusters which contain genes that were co-occurring only in a subset of genomes and contributed to explain the gene content differences between genome subsets. Second, we mapped the discovered clusters to 16S rRNA-based phylogeny and calculated the correlation between co-occuring genes and phylogeny. Six of the 11 clusters exhibited significant correlation with 16S rRNA gene phylogeny. The most distinct phylogenetic finding was a high correlation between iron-sulfur oxidoreductases in combination with carbon nitrogen ligases and Chlorobium. The other correlations identified covered relatively large phylogroups: Actinobacteria were positively associated with kinases, while Gammaproteobacteria were positively associated with methylases and acyltransferases. The suggested functional differences between higher phylogroups, however, need experimental verification. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. 16S rRNA gene phylogenesis of culturable predominant bacteria from diseased Apostichopus japonicus (Holothuroidea, Echinodermata)

    Science.gov (United States)

    Ma, Haiyan; Jiang, Guoliang; Wu, Zhiqiang; Wang, Xin

    2009-06-01

    Cultured Apostichopus japonicus in China suffers from a kind of skin ulceration disease that has caused severe economic loss in recent years. The disease, pathogens of which are supposed to be bacteria by most researchers, is highly infectious and can often cause all individuals in the same culture pool to die in a very short time. The 16S rRNA gene phylogenesis of the culturable bacteria from the lesions of diseased individuals was conducted to study the biodiversity of the bacterial communities in the lesions and to identify probable pathogen(s) associated with this kind of disease. S. japonica samples were selected from a hatchery located in the eastern part of Qingdao, China. Bacterial universal primers GM5F and DS907R were used to amplify the 16S rRNA gene of bacteria colonies, and touchdown PCR was performed to amplify the target sequences. The results suggest that γ- proteobacteria (Alteromonadales and Vibrionales) of CFB group, many strains of which have been also determined as pathogens in other marine species, are the predominant bacterial genera of the diseased Apostichopus japonicus individuals.

  17. Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria.

    Science.gov (United States)

    Lahtinen, S J; Ahokoski, H; Reinikainen, J P; Gueimonde, M; Nurmi, J; Ouwehand, A C; Salminen, S J

    2008-06-01

    To assess the stability of 16S rRNA of viable but nonculturable (VBNC) probiotics during storage when compared with different attributes of viability. Levels of RNA of the probiotic strains Bifidobacterium longum 46, B. longum 2C and B. animalis subsp. lactis Bb-12 were monitored during storage in fermented and nonfermented foods. Cells which gradually lost their culturability in fermented products retained high level of rRNA, whereas rRNA of acid-killed control cells decreased at faster rate. Furthermore, the viability of B. longum 2C was monitored during storage by measuring changes in reductase activity, cytoplasmic membrane integrity and esterase activity using a flow cytometer. All of the culture-independent viability assays suggested that the cells remained viable during storage. In nonfermented media, the observed losses in culturability were smaller, and the changes in cell counts were comparable with the changes in rRNA levels. Viable but nonculturable probiotics maintain high levels of rRNA and retain properties of viable bacteria including reductase activity. Quantification of 16S rRNA complements culture-independent viability assays. Culture-independent viability assays allow the detection of VBNC probiotics, and can be used parallel to conventional culture-dependent methods to obtain accurate information on probiotic viability.

  18. Phylogenetic relationships of true butterflies (Lepidoptera: Papilionoidea) inferred from COI, 16S rRNA and EF-1α sequences.

    Science.gov (United States)

    Kim, Man Il; Wan, Xinlong; Kim, Min Jee; Jeong, Heon Cheon; Ahn, Neung-Ho; Kim, Ki-Gyoung; Han, Yeon Soo; Kim, Iksoo

    2010-11-01

    The molecular phylogenetic relationships among true butterfly families (superfamily Papilionoidea) have been a matter of substantial controversy; this debate has led to several competing hypotheses. Two of the most compelling of those hypotheses involve the relationships of (Nymphalidae + Lycaenidae) + (Pieridae + Papilionidae) and (((Nymphalidae + Lycaenidae) + Pieridae) + Papilionidae). In this study, approximately 3,500 nucleotide sequences from cytochrome oxidase subunit I (COI), 16S ribosomal RNA (16S rRNA), and elongation factor-1 alpha (EF-1α) were sequenced from 83 species belonging to four true butterfly families, along with those of three outgroup species belonging to three lepidopteran superfamilies. These sequences were subjected to phylogenetic reconstruction via Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP) algorithms. The monophyletic Pieridae and monophyletic Papilionidae evidenced good recovery in all analyses, but in some analyses, the monophylies of the Lycaenidae and Nymphalidae were hampered by the inclusion of single species of the lycaenid subfamily Miletinae and the nymphalid subfamily Danainae. Excluding those singletons, all phylogenetic analyses among the four true butterfly families clearly identified the Nymphalidae as the sister to the Lycaenidae and identified this group as a sister to the Pieridae, with the Papilionidae identified as the most basal linage to the true butterfly, thus supporting the hypothesis: (Papilionidae + (Pieridae + (Nymphalidae + Lycaenidae))).

  19. Analysis of Bacterial Communities in the Rhizosphere of Chrysanthemum via Denaturing Gradient Gel Electrophoresis of PCR-Amplified 16S rRNA as Well as DNA Fragments Coding for 16S rRNA†

    Science.gov (United States)

    Duineveld, Bernadette M.; Kowalchuk, George A.; Keijzer, Anneke; van Elsas, Jan Dirk; van Veen, Johannes A.

    2001-01-01

    The effect of developing chrysanthemum roots on the presence and activity of bacterial populations in the rhizosphere was examined by using culture-independent methods. Nucleic acids were extracted from rhizosphere soil samples associated with the bases of roots or root tips of plants harvested at different stages of development. PCR and reverse transcriptase (RT) PCR were used to amplify 16S ribosomal DNA (rDNA) and 16S rRNA, respectively, and the products were subjected to denaturing gradient gel electrophoresis (DGGE). Prominent DGGE bands were excised and sequenced to gain insight into the identities of predominantly present (PCR) and predominantly active (RT-PCR) bacterial populations. The majority of DGGE band sequences were related to bacterial genera previously associated with the rhizosphere, such as Pseudomonas, Comamonas, Variovorax, and Acetobacter, or typical of root-free soil environments, such as Bacillus and Arthrobacter. The PCR-DGGE patterns observed for bulk soil were somewhat more complex than those obtained from rhizosphere samples, and the latter contained a subset of the bands present in bulk soil. DGGE analysis of RT-PCR products detected a subset of bands visible in the rDNA-based analysis, indicating that some dominantly detected bacterial populations did not have high levels of metabolic activity. The sequences detected by the RT-PCR approach were, however, derived from a wide taxonomic range, suggesting that activity in the rhizosphere was not determined at broad taxonomic levels but rather was a strain- or species-specific phenomenon. Comparative analysis of DGGE profiles grouped all DNA-derived root tip samples together in a cluster, and within this cluster the root tip samples from young plants formed a separate subcluster. Comparison of rRNA-derived bacterial profiles showed no grouping of root tip samples versus root base samples. Rather, all profiles derived from 2-week-old plant rhizosphere soils grouped together regardless of

  20. Illumina sequencing of bacterial 16S rDNA and 16S rRNA reveals seasonal and species-specific variation in bacterial communities in four moss species.

    Science.gov (United States)

    Ma, Jing; Tang, Jing Yan; Wang, Su; Chen, Zhi Ling; Li, Xue Dong; Li, Yan Hong

    2017-09-01

    In order to better understand the factors that influence bacterial diversity and community composition in moss-associated bacteria, a study of bacterial communities in four moss species collected in three seasons was carried out via high-throughput sequencing of 16S rDNA and 16S rRNA. Moss species included Cratoneuron filicinum, Pylaisiella polyantha, Campyliadelphus polygamum, and Grimmia pilifera, with samples collected in May, July, and October 2015 from rocks at Beijing Songshan National Nature Reserve. In total, the bacterial richness and diversity were high regardless of moss species, sampling season, or data source (DNA vs. RNA). Bacterial sequences were assigned to a total of 558 OTUs and 279 genera in 16 phyla. Proteobacteria and Actinobacteria were the two most abundant phyla, and Cellvibrio, Lapillicoccus, Jatrophihabitans, Friedmanniella, Oligoflexus, and Bosea the most common genera in the samples. A clustering algorithm and principal coordinate analysis revealed that C. filicinum and C. polygamum had similar bacterial communities, as did P. polyantha and G. pilifera. Metabolically active bacteria showed the same pattern in addition to seasonal variation: bacterial communities were most similar in summer and autumn, looking at each moss species separately. In contrast, DNA profiles lacked obvious seasonal dynamics. A partial least squares discriminant analysis identified three groups of samples that correlated with differences in moss species resources. Although bacterial community composition did vary with the sampling season and data source, these were not the most important factors influencing bacterial communities. Previous reports exhibited that mosses have been widely used in biomonitoring of air pollution by enriching some substances or elements in the moss-tag technique and the abundant moss associated bacteria might also be important components involved in the related biological processes. Thus, this survey not only enhanced our understanding

  1. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9.

    Science.gov (United States)

    Goh, Yong Jun; Goin, Caitlin; O'Flaherty, Sarah; Altermann, Eric; Hutkins, Robert

    2011-08-30

    Streptococcus thermophilus represents the only species among the streptococci that has "Generally Regarded As Safe" status and that plays an economically important role in the fermentation of yogurt and cheeses. We conducted comparative genome analysis of S. thermophilus LMD-9 to identify unique gene features as well as features that contribute to its adaptation to the dairy environment. In addition, we investigated the transcriptome response of LMD-9 during growth in milk in the presence of Lactobacillus delbrueckii ssp. bulgaricus, a companion culture in yogurt fermentation, and during lytic bacteriophage infection. The S. thermophilus LMD-9 genome is comprised of a 1.8 Mbp circular chromosome (39.1% GC; 1,834 predicted open reading frames) and two small cryptic plasmids. Genome comparison with the previously sequenced LMG 18311 and CNRZ1066 strains revealed 114 kb of LMD-9 specific chromosomal region, including genes that encode for histidine biosynthetic pathway, a cell surface proteinase, various host defense mechanisms and a phage remnant. Interestingly, also unique to LMD-9 are genes encoding for a putative mucus-binding protein, a peptide transporter, and exopolysaccharide biosynthetic proteins that have close orthologs in human intestinal microorganisms. LMD-9 harbors a large number of pseudogenes (13% of ORFeome), indicating that like LMG 18311 and CNRZ1066, LMD-9 has also undergone major reductive evolution, with the loss of carbohydrate metabolic genes and virulence genes found in their streptococcal counterparts. Functional genome distribution analysis of ORFeomes among streptococci showed that all three S. thermophilus strains formed a distinct functional cluster, further establishing their specialized adaptation to the nutrient-rich milk niche. An upregulation of CRISPR1 expression in LMD-9 during lytic bacteriophage DT1 infection suggests its protective role against phage invasion. When co-cultured with L. bulgaricus, LMD-9 overexpressed genes

  2. Microbiological and 16S rRNA analysis of sulphite-reducing clostridia from river sediments in central Italy

    Directory of Open Access Journals (Sweden)

    Marcheggiani Stefania

    2008-10-01

    Full Text Available Abstract Background Microbiological indicators are commonly used in the assessment of public health risks associated with fecal contamination of freshwater ecosystems. Sediments are a reservoir of microorganisms, and can thus provide information on past pollution events, not obtainable through the testing of surface water. Moreover, pathogens present in sediment may represent future threats to human health. Clostridium perfringens, a typical colonizer of sediments, has been suggested as an alternative indicator of fecal pollution. In order to be suitable for such purpose, the microorganism should be widely distributed in contaminated environments. The objective of this study was thus to determine the composition of the anaerobic community in sediment samples of the lower Tiber basin, in central Italy, through a combined approach involving granulometric analysis of sediment samples, as well as a microbiological and molecular (16S rRNA analysis of strains. Results Granulometry showed a similar, clayey sediment composition, in most sampling sites. The microbiological method, employing, an adaptation of the standard method, proved to be effective in isolating anaerobic bacteria from the environmental matrix for the purpose of genetic analysis. Eighty-three strains of bacteria were isolated and the partial 16S rRNA gene sequenced. While biochemical analysis detected only C. perfringens strains, phylogenetic analysis indicated the presence of three clusters: C. perfringens, C. bifermentans and B. cereus, comprising eight taxa. C. perfringens, the commonest in almost all sediment sampling sites, was present in all sites, and in both seasons (seasonal sampling was carried out only along the Tiber and Aniene rivers. None of the described genetic profiles showed complete similarity with GenBank sequences. Conclusion The study underlines the value of C. perfringens as an alternative microbial indicator of fecal contamination in river sediments. This is

  3. Microbiological and 16S rRNA analysis of sulphite-reducing clostridia from river sediments in central Italy.

    Science.gov (United States)

    Marcheggiani, Stefania; Iaconelli, Marcello; D'angelo, Annamaria; Pierdominici, Elio; La Rosa, Giuseppina; Muscillo, Michele; Equestre, Michele; Mancini, Laura

    2008-10-08

    Microbiological indicators are commonly used in the assessment of public health risks associated with fecal contamination of freshwater ecosystems. Sediments are a reservoir of microorganisms, and can thus provide information on past pollution events, not obtainable through the testing of surface water. Moreover, pathogens present in sediment may represent future threats to human health. Clostridium perfringens, a typical colonizer of sediments, has been suggested as an alternative indicator of fecal pollution. In order to be suitable for such purpose, the microorganism should be widely distributed in contaminated environments. The objective of this study was thus to determine the composition of the anaerobic community in sediment samples of the lower Tiber basin, in central Italy, through a combined approach involving granulometric analysis of sediment samples, as well as a microbiological and molecular (16S rRNA) analysis of strains. Granulometry showed a similar, clayey sediment composition, in most sampling sites. The microbiological method, employing, an adaptation of the standard method, proved to be effective in isolating anaerobic bacteria from the environmental matrix for the purpose of genetic analysis. Eighty-three strains of bacteria were isolated and the partial 16S rRNA gene sequenced. While biochemical analysis detected only C. perfringens strains, phylogenetic analysis indicated the presence of three clusters: C. perfringens, C. bifermentans and B. cereus, comprising eight taxa. C. perfringens, the commonest in almost all sediment sampling sites, was present in all sites, and in both seasons (seasonal sampling was carried out only along the Tiber and Aniene rivers). None of the described genetic profiles showed complete similarity with GenBank sequences. The study underlines the value of C. perfringens as an alternative microbial indicator of fecal contamination in river sediments. This is supported by the bacterium's presence in all sampling sites

  4. A new prototype IIS/IIC/IIG endonuclease-methyltransferase TsoI from the thermophile Thermus scotoductus, recognising 5'-TARCCA(N11/9)-3' sequences.

    Science.gov (United States)

    Jezewska-Frackowiak, Joanna; Lubys, Arvydas; Vitkute, Jolanta; Zakareviciene, Laimute; Zebrowska, Joanna; Krefft, Daria; Skowron, Marta A; Zylicz-Stachula, Agnieszka; Skowron, Piotr M

    2015-01-20

    The Thermus sp. family of IIS/IIG/IIC enzymes includes the thermostable, bifunctional, fused restriction endonuclease (REase)-methyltransferases (MTase): TaqII, Tth111II/TthHB27I, TspGWI, TspDTI and TsoI. The enzymes are large proteins (approximately 120kDa), their enzymatic activities are affected by S-adenosylmethionine (SAM), they recognise similar asymmetric cognate sites and cleave at a distance of 11/9 nucleotides (nt). The enzymes exhibit similarities of their amino acid (aa) sequences and DNA catalytic motifs. Thermus sp. enzymes are an example of functional aa sequence homologies among REases recognising different, yet related DNA sequences. The family consists of TspGWI- and TspDTI-subfamilies. TsoI appears to be a non-identical 'triplet', related to TspDTI and Tth111II/TthHB27I. The discovery of TsoI, purified from Thermus scotoductus, is described. This prototype, displaying a novel specificity, which was determined by: (i) cleavage of a reference plasmid and bacteriophage DNA, (ii) cleavage of custom PCR DNA substrates, (iii) run-off sequencing of cleavage products and (iv) shotgun cloning and sequencing of bacteriophage lambda (λ) DNA digested with TsoI. The enzyme recognises a degenerated 5'-TARCCA-3' sequence, whereas DNA strands are cut 11/9 nt downstream. The discovery of the TsoI prototype is of practical importance in biotechnology, as it extends the palette of cleavage specificities for gene cloning. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Legionella Bozemanae, a New Cause of Septic Arthritis diagnosed by 16S PCR followed by specific culture

    DEFF Research Database (Denmark)

    Just, Søren Andreas; Bonde Knudsen, John; Skov, Marianne Nielsine

    This is the first report ever to demonstrate that L. Bozemanae can colonize synovial joints leading to infectious arthritis. L. Bozemanae is a rare Legionella species, earlier described as a cause of cavitating lung infections with up to 40% mortality (2). L. Bozemanae is missed by standard cultu...... cultures, however, the case was diagnosed by combining 16S PCR and sequencing followed by culture under specific conditions, a method which may help in the diagnosis of septic arthritis caused by unusual pathogens not detected by standard culture.......This is the first report ever to demonstrate that L. Bozemanae can colonize synovial joints leading to infectious arthritis. L. Bozemanae is a rare Legionella species, earlier described as a cause of cavitating lung infections with up to 40% mortality (2). L. Bozemanae is missed by standard...

  6. Phylogeny and classification of poison frogs (Amphibia: dendrobatidae), based on mitochondrial 16S and 12S ribosomal RNA gene sequences.

    Science.gov (United States)

    Vences, M; Kosuch, J; Lötters, S; Widmer, A; Jungfer, K H; Köhler, J; Veith, M

    2000-04-01

    An analysis of partial sequences of the 16S ribosomal rRNA gene (582 bp) of 20 poison frog species (Dendrobatidae) confirmed their phylogenetic relationships to bufonid and leptodactylid frogs. Representatives of the ranoid families and subfamilies Raninae, Mantellinae, Petropedetinae, Cacosterninae, Arthroleptidae, Astylosternidae, and Microhylidae did not cluster as sister group of the Dendrobatidae. Similar results were obtained in an analysis using a partial sequence of the 12S gene (350 bp) in a reduced set of taxa and in a combined analysis. Within the Dendrobatidae, our data supported monophyly of the genus Phyllobates but indicated paraphyly of Epipedobates and Colostethus. Minyobates clustered within Dendrobates, contradicting its previously assumed phylogenetic position. Phobobates species clustered as a monophyletic unit within Epipedobates. Allobates was positioned in a group containing two Colostethus species, indicating that lack of amplexus, presence of skin alkaloids, and aposematic coloration evolved independently in Allobates and the remaining aposematic dendrobatids. Copyright 2000 Academic Press.

  7. [Comparison of MALDI-TOF and 16S rRNA methods in identification of viridans group streptococci].

    Science.gov (United States)

    Süzük Yıldız, Serap; Kaşkatepe, Banu; Altınok, Salih; Çetin, Mustafa; Karagöz, Alper; Savaş, Sümeyra

    2017-01-01

    Accurate identification of viridans group streptococci (VGS) frequently encountered as a causative agent of infective endocarditis is always a challenge for the clinical microbiology laboratory. Clinical microbiology laboratories generally use semi automatic/full automatic systems, molecular methods and also conventional methods for the identification of these bacteria. There are recent published studies that have used MALDI-TOF (Matrix Assisted Laser Ionization Mass Spectrometry-Time of Flight) systems in the identification of VGS. The aim of the study was to compare the performance of the conventional methods, semi automatic and MALDI-TOF MS system used in identification of VGS in oral microbiota of persons under the risk of infective endocarditis, with the gold standard method 16S rRNA sequence analysis and to create a diagnosis algorithm for the identification of VGS in clinical microbiology laboratories according to the obtained data.The study was conducted with 51 VGS strains isolated from oral microbiota of the patients with rheumatologic cardiac, valve and/or prosthetic valve diseases, under the risk of development of infective endocarditis, who have admitted to Ankara Numune Training and Research Hospital, Department of Cardiology, between February-June 2015. Standard microbiology procedures, optochin susceptibility and bile solubility tests were done for the isolation of bacteria. Bacteria were also identified with APISTREP (bioMérieux, France) and MALDI-TOF MS Bruker Microflex (Bruker Biotyper; Bruker Daltonics, Bremen, Germany) methods. BSF-8 (5´-AGAGTTTGATCCTGGCTCAG-3´) and BSR-534(5´-ATTACCGCGGCTGCTGGC-3´) primers were used in the 16S rRNA sequence analysis of bacteria. ABI PRISM 3100 Avan t Genetic Analyzer (Applied Biossytems, Foster City, CA, USA) were used for the sequence analysis. Electropherograms were analyzed in SeqScape Software (Applied Biosystems, Foster City, CA, USA) and compared with the reference sequences in GenBank with BLASTN

  8. [Hydrophidae identification through analysis on cytochrome c oxydase I(COI) and ribosome 16s rDNA gene barcode].

    Science.gov (United States)

    Liao, Li-Xi; Zeng, Ke-Wu; Tu, Peng-Fei

    2016-05-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid this problem. The gene barcodes of the 5 species of Hydrophidae, Lapemis hardwickii, Hydrophis fasciatus, Aipysurus eydouxii, Hydrophis belcher and Hydrophis lamberti, were acquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficiency by BLAST. Our results showed that the 16S rDNA sequences identified Hydrophidae briefly and the COI sequenceshad obvious difference between intra-and inter-species, indicating that DNA bar-coding was an efficiency method of Hydrophidae identification. Copyright© by the Chinese Pharmaceutical Association.

  9. Mutations in the 915 region of Escherichia coli 16S ribosomal RNA reduce the binding of streptomycin to the ribosome.

    Science.gov (United States)

    Leclerc, D; Melançon, P; Brakier-Gingras, L

    1991-01-01

    The nine possible single-base substitutions were produced at positions 913 to 915 of the 16S ribosomal RNA of Escherichia coli, a region known to be protected by streptomycin [Moazed, D. and Noller, H.F. (1987) Nature, 327, 389-394]. When the mutations were introduced into the expression vector pKK3535, only two of them (913A----G and 915A----G) permitted recovery of viable transformants. Ribosomes were isolated from the transformed bacteria and were assayed for their response to streptomycin in poly(U)- and MS2 RNA-directed assays. They were resistant to the stimulation of misreading and to the inhibition of protein synthesis by streptomycin, and this correlated with a decreased binding of the drug. These results therefore demonstrate that, in line with the footprinting studies of Moazed and Noller, mutations in the 915 region alter the interaction between the ribosome and streptomycin. PMID:1713666

  10. Rapid Identification of Clinically Relevant Nocardia Species to Genus Level by 16S rRNA Gene PCR

    Science.gov (United States)

    Laurent, Frederic J.; Provost, Frederique; Boiron, Patrick

    1999-01-01

    Two regions of the gene coding for 16S rRNA in Nocardia species were selected as genus-specific primer sequences for a PCR assay. The PCR protocol was tested with 60 strains of clinically relevant Nocardia isolates and type strains. It gave positive results for all strains tested. Conversely, the PCR assay was negative for all tested species belonging to the most closely related genera, including Dietzia, Gordona, Mycobacterium, Rhodococcus, Streptomyces, and Tsukamurella. Besides, unlike the latter group of isolates, all Nocardia strains exhibited one MlnI recognition site but no SacI restriction site. This assay offers a specific and rapid alternative to chemotaxonomic methods for the identification of Nocardia spp. isolated from pathogenic samples. PMID:9854071

  11. Isolation and 16s rdna sequence analysis of bacteria from dieback affected mango orchards in southern pakistan

    International Nuclear Information System (INIS)

    Khan, I.A.; Khan, A.; Asif, H.; Azim, M.K.; Muhlbach, H.P.

    2014-01-01

    A broad range of microorganisms are involved in various mango plant diseases such as fungi, algae and bacteria. In order to study the role of bacteria in mango dieback, a survey of infected mango plants in southern Pakistan was carried out. A number of bacterial isolates were obtained from healthy looking and infected mango trees, and their characterization was undertaken by colony PCR and subsequent sequence analysis of 16S rDNA. These analyses revealed the presence of various genera including Acinetobacter, Bacillus, Burkholderia, Cronobacter, Curtobacterium, Enterobacter, Erwinia, Exiguobacterium, Halotelea, Lysinibacillus, Micrococcus, Microbacterium, Pantoea, Pseudomonas, Salmonella and Staphylococcus. It is noteworthy that several members of these genera have been reported as plant pathogens. The present study provided baseline information regarding the phytopathogenic bacteria associated with mango trees in southern Pakistan. (author)

  12. Molecular Identification of Diaspididae and Elucidation of Non-Native Species Using the Genes 28s and 16s

    Directory of Open Access Journals (Sweden)

    Alexander M. Campbell

    2014-07-01

    Full Text Available Armored scale insects pose a serious threat to habitat conservation across the globe because they include some of the most potent invasive species in the world. They are such a serious concern because their basic morphology, small size, and polyphagous feeding habits often allow them to exist undetected by growers and quarantine experts. In order to provide a potential solution to the problem, we have attempted to elucidate the effectiveness of molecular identification techniques using ribosomal 28s and endosymbiotic 16s rRNA. Sequence data was obtained from many field-collected insects to test the feasibility of identification techniques. A protocol for quick species determination based on sequence data is provided.

  13. YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407

    DEFF Research Database (Denmark)

    Andersen, Niels Møller; Douthwaite, Stephen

    2006-01-01

    generally require specific enzymes, and only one m5C rRNA methyltransferase, RsmB (formerly Fmu) that methylates nucleotide C967, has previously been identified. BLAST searches of the E.coli genome revealed a single gene, yebU, with sufficient similarity to rsmB to encode a putative m5C RNA...... methyltransferase. This suggested that the yebU gene product modifies C1407 and/or C1962. Here, we analysed the E.coli rRNAs by matrix assisted laser desorption/ionization mass spectrometry and show that inactivation of the yebU gene leads to loss of methylation at C1407 in 16 S rRNA, but does not interfere...

  14. Protocols for 16S rDNA Array Analyses of Microbial Communities by Sequence-Specific Labeling of DNA Probes

    Directory of Open Access Journals (Sweden)

    Knut Rudi

    2003-01-01

    Full Text Available Analyses of complex microbial communities are becoming increasingly important. Bottlenecks in these analyses, however, are the tools to actually describe the biodiversity. Novel protocols for DNA array-based analyses of microbial communities are presented. In these protocols, the specificity obtained by sequence-specific labeling of DNA probes is combined with the possibility of detecting several different probes simultaneously by DNA array hybridization. The gene encoding 16S ribosomal RNA was chosen as the target in these analyses. This gene contains both universally conserved regions and regions with relatively high variability. The universally conserved regions are used for PCR amplification primers, while the variable regions are used for the specific probes. Protocols are presented for DNA purification, probe construction, probe labeling, and DNA array hybridizations.

  15. Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing.

    Science.gov (United States)

    Ishak, Heather D; Plowes, Rob; Sen, Ruchira; Kellner, Katrin; Meyer, Eli; Estrada, Dora A; Dowd, Scot E; Mueller, Ulrich G

    2011-05-01

    Social insects harbor diverse assemblages of bacterial microbes, which may play a crucial role in the success or failure of biological invasions. The invasive fire ant Solenopsis invicta (Formicidae, Hymenoptera) is a model system for understanding the dynamics of invasive social insects and their biological control. However, little is known about microbes as biotic factors influencing the success or failure of ant invasions. This pilot study is the first attempt to characterize and compare microbial communities associated with the introduced S. invicta and the native Solenopsis geminata in the USA. Using 16S amplicon 454 pyrosequencing, bacterial communities of workers, brood, and soil from nest walls were compared between neighboring S. invicta and S. geminata colonies at Brackenridge Field Laboratory, Austin, Texas, with the aim of identifying potential pathogenic, commensal, or mutualistic microbial associates. Two samples of S. geminata workers showed high counts of Spiroplasma bacteria, a known pathogen or mutualist of other insects. A subsequent analysis using PCR and sequencing confirmed the presence of Spiroplasma in additional colonies of both Solenopsis species. Wolbachia was found in one alate sample of S. geminata, while one brood sample of S. invicta had a high count of Lactococcus. As expected, ant samples from both species showed much lower microbial diversity than the surrounding soil. Both ant species had similar overall bacterial diversities, although little overlap in specific microbes. To properly characterize a single bacterial community associated with a Solenopsis ant sample, rarefaction analyses indicate that it is necessary to obtain 5,000-10,000 sequences. Overall, 16S amplicon 454 pyrosequencing appears to be a cost-effective approach to screen whole microbial diversity associated with invasive ant species.

  16. Analysis of microbiota associated with peri-implantitis using 16S rRNA gene clone library

    Directory of Open Access Journals (Sweden)

    Tatsuro Koyanagi

    2010-05-01

    Full Text Available Background: Peri-implantitis (PI is an inflammatory disease which leads to the destruction of soft and hard tissues around osseointegrated implants. The subgingival microbiota appears to be responsible for peri-implant lesions and although the complexity of the microbiota has been reported in PI, the microbiota responsible for PI has not been identified. Objective: The purpose of this study was to identify the microbiota in subjects who have PI, clinically healthy implants, and periodontitis-affected teeth using 16S rRNA gene clone library analysis to clarify the microbial differences. Design: Three subjects participated in this study. The conditions around the teeth and implants were evaluated based on clinical and radiographic examinations and diseased implants, clinically healthy implants, and periodontally diseased teeth were selected. Subgingival plaque samples were taken from the deepest pockets using sterile paper points. Prevalence and identity of bacteria was analyzed using a 16S rRNA gene clone library technique. Results: A total of 112 different species were identified from 335 clones sequenced. Among the 112 species, 51 (46% were uncultivated phylotypes, of which 22 were novel phylotypes. The numbers of bacterial species identified at the sites of PI, periodontitis, and periodontally healthy implants were 77, 57, and 12, respectively. Microbiota in PI mainly included Gram-negative species and the composition was more diverse when compared to that of the healthy implant and periodontitis. The phyla Chloroflexi, Tenericutes, and Synergistetes were only detected at PI sites, as were Parvimonas micra, Peptostreptococcus stomatis, Pseudoramibacter alactolyticus, and Solobacterium moorei. Low levels of periodontopathic bacteria, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, were seen in peri-implant lesions. Conclusions: The biofilm in PI showed a more complex microbiota when compared to periodontitis and

  17. Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis.

    Science.gov (United States)

    de la Haba, Rafael R; Arahal, David R; Márquez, M Carmen; Ventosa, Antonio

    2010-04-01

    A phylogenetic study of the family Halomonadaceae was carried out based on complete 16S rRNA and 23S rRNA gene sequences. Several 16S rRNA genes of type strains were resequenced, and 28 new sequences of the 23S rRNA gene were obtained. Currently, the family includes nine genera (Carnimonas, Chromohalobacter, Cobetia, Halomonas, Halotalea, Kushneria, Modicisalibacter, Salinicola and Zymobacter). These genera are phylogenetically coherent except Halomonas, which is polyphyletic. This genus comprises two clearly distinguished clusters: group 1 includes Halomonas elongata (the type species) and the species Halomonas eurihalina, H. caseinilytica, H. halmophila, H. sabkhae, H. almeriensis, H. halophila, H. salina, H. organivorans, H. koreensis, H. maura and H. nitroreducens. Group 2 comprises the species Halomonas aquamarina, H. meridiana, H. axialensis, H. magadiensis, H. hydrothermalis, H. alkaliphila, H. venusta, H. boliviensis, H. neptunia, H. variabilis, H. sulfidaeris, H. subterranea, H. janggokensis, H. gomseomensis, H. arcis and H. subglaciescola. Halomonas salaria forms a cluster with Chromohalobacter salarius and the recently described genus Salinicola, and their taxonomic affiliation requires further study. More than 20 Halomonas species are phylogenetically not within the core constituted by the Halomonas sensu stricto cluster (group 1) or group 2 and, since their positions on the different phylogenetic trees are not stable, they cannot be recognized as additional groups either. In general, there is excellent agreement between the phylogenies based on the two rRNA gene sequences, but the 23S rRNA gene showed higher resolution in the differentiation of species of the family Halomonadaceae.

  18. Diversity of 16S rRNA and dioxygenase genes detected in coal-tar-contaminated site undergoing active bioremediation.

    Science.gov (United States)

    Kumar, M; Khanna, S

    2010-04-01

    In order to develop effective bioremediation strategies for polyaromatic hydrocarbons (PAHs) degradation, the composition and metabolic potential of microbial communities need to be better understood, especially in highly PAH contaminated sites in which little information on the cultivation-independent communities is available. Coal-tar-contaminated soil was collected, which consisted of 122.5 mg g(-1) total extractable PAH compounds. Biodegradation studies with this soil indicated the presence of microbial community that is capable of degrading the model PAH compounds viz naphthalene, phenanthrene and pyrene at 50 ppm each. PCR clone libraries were established from the DNA of the coal-tar-contaminated soil, targeting the 16S rRNA to characterize (i) the microbial communities, (ii) partial gene fragment encoding the Rieske iron sulfur center (alpha-subunit) common to all PAH dioxygenase enzymes and (iii) beta-subunit of dioxygenase. Phylotypes related to Proteobacteria (Alpha-, Epsilon- and Gammaproteobacteria), Acidobacteria, Actinobacteria, Firmicutes, Gemmatimonadetes and Deinococci were detected in 16S rRNA derived clone libraries. Many of the gene fragment sequences of alpha-subunit and beta-subunit of dioxygenase obtained from the respective clone libraries fell into clades that are distinct from the reference dioxygenase gene sequences. Presence of consensus sequence of the Rieske type [2Fe-2S] cluster binding site suggested that these gene fragments encode for alpha-subunit of dioxygenase gene. Sequencing of the cloned libraries representing alpha-subunit gene fragments (Rf1) and beta-subunit of dioxygenase showed the presence of hitherto unidentified dioxygenase in coal-tar-contaminated soil. The combination of the Rieske primers and bacterial community profiling represents a powerful tool for both assessing bioremediation potential and the exploration of novel dioxygenase genes in a contaminated environment.

  19. Structural Insights into the Methylation of C1402 in 16S rRNA by Methyltransferase RsmI.

    Directory of Open Access Journals (Sweden)

    Mohan Zhao

    Full Text Available RsmI and RsmH are conserved S-Adenosylmethionine (AdoMet-dependent methyltransferases (MTases that are responsible for the 2'-O-methylation and N4-methylation of C1402 in bacterial 16S rRNA, respectively. Methylation of m4Cm1402 plays a role in fine-tuning the shape and functions of the P-site to increase the decoding fidelity, and was recently found to contribute to the virulence of Staphylococcus aureus in host animals. Here we report the 2.20-Å crystal structure of homodimeric RsmI from Escherichia coli in complex with the cofactor AdoMet. RsmI consists of an N-terminal putative RNA-binding domain (NTD and a C-terminal catalytic domain (CTD with a Rossmann-like fold, and belongs to the class III MTase family. AdoMet is specifically bound into a negatively charged deep pocket formed by both domains by making extensive contacts. Structure-based mutagenesis and isothermal titration calorimetry (ITC assays revealed Asp100 and Ala124 are vital for AdoMet-binding. Although the overall fold of RsmI shows remarkable similarities to the characterized MTases involved in vitamin B12 biosynthesis, it exhibits a distinct charge distribution especially around the AdoMet-binding pocket because of different substrate specificity. The docking model of RsmI-AdoMet-RNA ternary complex suggested a possible base-flipping mechanism of the substrate RNA that has been observed in several known RNA MTases. Our structural and biochemical studies provide novel insights into the catalytic mechanism of C1402 methylation in 16S rRNA.

  20. Emergence of Tetracycline Resistance in Helicobacter pylori: Multiple Mutational Changes in 16S Ribosomal DNA and Other Genetic Loci

    Science.gov (United States)

    Dailidiene, Daiva; Bertoli, M. Teresita; Miciuleviciene, Jolanta; Mukhopadhyay, Asish K.; Dailide, Giedrius; Pascasio, Mario Alberto; Kupcinskas, Limas; Berg, Douglas E.

    2002-01-01

    Tetracycline is useful in combination therapies against the gastric pathogen Helicobacter pylori. We found 6 tetracycline-resistant (Tetr) strains among 159 clinical isolates (from El Salvador, Lithuania, and India) and obtained the following four results: (i) 5 of 6 Tetr isolates contained one or two nucleotide substitutions in one part of the primary tetracycline binding site in 16S rRNA (AGA965-967 [Escherichia coli coordinates] changed to gGA, AGc, guA, or gGc [lowercase letters are used to represent the base changes]), whereas the sixth (isolate Ind75) retained AGA965-967; (ii) PCR products containing mutant 16S ribosomal DNA (rDNA) alleles transformed recipient strains to Tetr phenotypes, but transformants containing alleles with single substitutions (gGA and AGc) were less resistant than their Tetr parents; (iii) each of 10 Tetr mutants of reference strain 26695 (in which mutations were induced with metronidazole, a mutagenic anti-H. pylori agent) contained the normal AGA965-967 sequence; and (iv) transformant derivatives of Ind75 and of one of the Tetr 26695 mutants that had acquired mutant rDNA alleles were resistant to tetracycline at levels higher than those to which either parent strain was resistant. Thus, tetracycline resistance in H. pylori results from an accumulation of changes that may affect tetracycline-ribosome affinity and/or other functions (perhaps porins or efflux pumps). We suggest that the rarity of tetracycline resistance among clinical isolates reflects this need for multiple mutations and perhaps also the deleterious effects of such mutations on fitness. Formally equivalent mutations with small but additive effects are postulated to contribute importantly to traits such as host specificity and virulence and to H. pylori's great genetic diversity. PMID:12435699

  1. Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria.

    Science.gov (United States)

    Gulledge, J; Ahmad, A; Steudler, P A; Pomerantz, W J; Cavanaugh, C M

    2001-10-01

    Methanotrophic bacteria play a major role in the global carbon cycle, degrade xenobiotic pollutants, and have the potential for a variety of biotechnological applications. To facilitate ecological studies of these important organisms, we developed a suite of oligonucleotide probes for quantitative analysis of methanotroph-specific 16S rRNA from environmental samples. Two probes target methanotrophs in the family Methylocystaceae (type II methanotrophs) as a group. No oligonucleotide signatures that distinguish between the two genera in this family, Methylocystis and Methylosinus, were identified. Two other probes target, as a single group, a majority of the known methanotrophs belonging to the family Methylococcaceae (type I/X methanotrophs). The remaining probes target members of individual genera of the Methylococcaceae, including Methylobacter, Methylomonas, Methylomicrobium, Methylococcus, and Methylocaldum. One of the family-level probes also covers all methanotrophic endosymbionts of marine mollusks for which 16S rRNA sequences have been published. The two known species of the newly described genus Methylosarcina gen. nov. are covered by a probe that otherwise targets only members of the closely related genus Methylomicrobium. None of the probes covers strains of the newly proposed genera Methylocella and "Methylothermus," which are polyphyletic with respect to the recognized methanotrophic families. Empirically determined midpoint dissociation temperatures were 49 to 57 degrees C for all probes. In dot blot screening against RNA from positive- and negative-control strains, the probes were specific to their intended targets. The broad coverage and high degree of specificity of this new suite of probes will provide more detailed, quantitative information about the community structure of methanotrophs in environmental samples than was previously available.

  2. Detection of bacterial 16S rRNA and identification of four clinically important bacteria by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Robert J Clifford

    Full Text Available Within the paradigm of clinical infectious disease research, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa represent the four most clinically relevant, and hence most extensively studied bacteria. Current culture-based methods for identifying these organisms are slow and cumbersome, and there is increasing need for more rapid and accurate molecular detection methods. Using bioinformatic tools, 962,279 bacterial 16S rRNA gene sequences were aligned, and regions of homology were selected to generate a set of real-time PCR primers that target 93.6% of all bacterial 16S rRNA sequences published to date. A set of four species-specific real-time PCR primer pairs were also designed, capable of detecting less than 100 genome copies of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa. All primers were tested for specificity in vitro against 50 species of Gram-positive and -negative bacteria. Additionally, the species-specific primers were tested against a panel of 200 clinical isolates of each species, randomly selected from a large repository of clinical isolates from diverse areas and sources. A comparison of culture and real-time PCR demonstrated 100% concordance. The primers were incorporated into a rapid assay capable of positive identification from plate or broth cultures in less than 90 minutes. Furthermore, our data demonstrate that current targets, such as the uidA gene in E.coli, are not suitable as species-specific genes due to sequence variation. The assay described herein is rapid, cost-effective and accurate, and can be easily incorporated into any research laboratory capable of real-time PCR.

  3. Nested PCR Biases in Interpreting Microbial Community Structure in 16S rRNA Gene Sequence Datasets.

    Directory of Open Access Journals (Sweden)

    Guoqin Yu

    Full Text Available Sequencing of the PCR-amplified 16S rRNA gene has become a common approach to microbial community investigations in the fields of human health and environmental sciences. This approach, however, is difficult when the amount of DNA is too low to be amplified by standard PCR. Nested PCR can be employed as it can amplify samples with DNA concentration several-fold lower than standard PCR. However, potential biases with nested PCRs that could affect measurement of community structure have received little attention.In this study, we used 17 DNAs extracted from vaginal swabs and 12 DNAs extracted from stool samples to study the influence of nested PCR amplification of the 16S rRNA gene on the estimation of microbial community structure using Illumina MiSeq sequencing. Nested and standard PCR methods were compared on alpha- and beta-diversity metrics and relative abundances of bacterial genera. The effects of number of cycles in the first round of PCR (10 vs. 20 and microbial diversity (relatively low in vagina vs. high in stool were also investigated. Vaginal swab samples showed no significant difference in alpha diversity or community structure between nested PCR and standard PCR (one round of 40 cycles. Stool samples showed significant differences in alpha diversity (except Shannon's index and relative abundance of 13 genera between nested PCR with 20 cycles in the first round and standard PCR (P27% of total OTUs in stool.Nested PCR introduced bias in estimated diversity and community structure. The bias was more significant for communities with relatively higher diversity and when more cycles were applied in the first round of PCR. We conclude that nested PCR could be used when standard PCR does not work. However, rare taxa detected by nested PCR should be validated by other technologies.

  4. 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Jan S Suchodolski

    Full Text Available BACKGROUND: Canine idiopathic inflammatory bowel disease (IBD is believed to be caused by a complex interaction of genetic, immunologic, and microbial factors. While mucosa-associated bacteria have been implicated in the pathogenesis of canine IBD, detailed studies investigating the enteric microbiota using deep sequencing techniques are lacking. The objective of this study was to evaluate mucosa-adherent microbiota in the duodenum of dogs with spontaneous idiopathic IBD using 16 S rRNA gene pyrosequencing. METHODOLOGY/PRINCIPAL FINDINGS: Biopsy samples of small intestinal mucosa were collected endoscopically from healthy dogs (n = 6 and dogs with moderate IBD (n = 7 or severe IBD (n = 7 as assessed by a clinical disease activity index. Total RNA was extracted from biopsy specimens and 454-pyrosequencing of the 16 S rRNA gene was performed on aliquots of cDNA from each dog. Intestinal inflammation was associated with significant differences in the composition of the intestinal microbiota when compared to healthy dogs. PCoA plots based on the unweighted UniFrac distance metric indicated clustering of samples between healthy dogs and dogs with IBD (ANOSIM, p<0.001. Proportions of Fusobacteria (p = 0.010, Bacteroidaceae (p = 0.015, Prevotellaceae (p = 0.022, and Clostridiales (p = 0.019 were significantly more abundant in healthy dogs. In contrast, specific bacterial genera within Proteobacteria, including Diaphorobacter (p = 0.044 and Acinetobacter (p = 0.040, were either more abundant or more frequently identified in IBD dogs. CONCLUSIONS/SIGNIFICANCE: In conclusion, dogs with spontaneous IBD exhibit alterations in microbial groups, which bear resemblance to dysbiosis reported in humans with chronic intestinal inflammation. These bacterial groups may serve as useful targets for monitoring intestinal inflammation.

  5. Wastewater is a reservoir for clinically relevant carbapenemase- and 16s rRNA methylase-producing Enterobacteriaceae.

    Science.gov (United States)

    Zurfluh, Katrin; Bagutti, Claudia; Brodmann, Peter; Alt, Monica; Schulze, Jürg; Fanning, Séamus; Stephan, Roger; Nüesch-Inderbinen, Magdalena

    2017-09-01

    The aim of this study was to evaluate wastewater for carbapenemase-producing Enterobacteriaceae (CPE) and 16S rRNA methylase-producing Gram-negative bacteria (MPB) and to assess their occurrence following wastewater treatment. Wastewater samples were collected between June 2015 and March 2016 in the sewage network of the city of Basel (Switzerland) from sites located before and after influx of wastewater from the hospital into the sewage network. Samples were also obtained from the influent and effluent of the receiving wastewater treatment plant. Samples were screened for CPE and MPB using selective media. Escherichia coli and Klebsiella pneumoniae were typed by multilocus sequence typing (MLST). Carbapenemase and 16S rRNA methylase genes were identified by PCR and sequencing. Resistance profiles were determined by the disk diffusion test and Etest. The occurrence of CPE and MPB was increased downstream of hospital wastewater influx. Of 49 CPE isolates, 9 belonged to OXA-48-producing E. coli clone D:ST38, 7 were OXA-48-producing Citrobacter freundii, and 6 were KPC-2- or OXA-48-producing K. pneumoniae belonging to clonal complex 258. NDM (NDM-1, -5 and -9) and VIM (VIM-1) producers were detected sporadically. MPB included ArmA- and RmtB-producing E. coli and Citrobacter spp. Isolates corresponding to strains from wastewater were detected in the effluent of the treatment plant. Conclusively, CPE and MPB, predominantly OXA-48-producing Enterobacteriaceae, are readily detected in wastewater, survive wastewater treatment and are released into the aquatic environment. OXA-48-producers may represent an emerging threat to public health and environmental integrity. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  6. Thermodynamics of the DNA structural selectivity of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.

    Science.gov (United States)

    Wowor, Andy J; Datta, Kausiki; Brown, Hiromi S; Thompson, Gregory S; Ray, Sreerupa; Grove, Anne; LiCata, Vince J

    2010-06-16

    Understanding the thermodynamics of substrate selection by DNA polymerase I is important for characterizing the balance between replication and repair for this enzyme in vivo. Due to their sequence and structural similarities, Klenow and Klentaq, the large fragments of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus, are considered functional homologs. Klentaq, however, does not have a functional proofreading site. Examination of the DNA binding thermodynamics of Klenow and Klentaq to different DNA structures: single-stranded DNA (ss-DNA), primer-template DNA (pt-DNA), and blunt-end double-stranded DNA (ds-DNA) show that the binding selectivity pattern is similar when examined across a wide range of salt concentration, but can significantly differ at any individual salt concentration. For both proteins, binding of single-stranded DNA shifts from weakest to tightest binding of the three structures as the salt concentration increases. Both Klenow and Klentaq release two to three more ions when binding to pt-DNA and ds-DNA than when binding to ss-DNA. Klenow exhibits significant differences in the Delta C(p) of binding to pt-DNA versus ds-DNA, and a difference in pI for these two complexes, whereas Klentaq does not, suggesting that Klenow and Klentaq discriminate between these two structures differently. Taken together, the data suggest that the two polymerases bind ds-DNA very differently, but that both bind pt-DNA and ss-DNA similarly, despite the absence of a proofreading site in Klentaq. (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Saewen, Elin [Arrhenius Laboratory, Stockholm University, Department of Organic Chemistry (Sweden); Huttunen, Eine; Zhang Xue [University of Helsinki, Department of Food Technology (Finland); Yang Zhennai [Northeast Agricultural Research Center of China, Center of Agro-food Technology (China); Widmalm, Goeran, E-mail: gw@organ.su.s [Arrhenius Laboratory, Stockholm University, Department of Organic Chemistry (Sweden)

    2010-06-15

    The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: {yields} 3)[{alpha}-d-Glcp-(1 {yields} 4)]-{beta}-d-Galp-(1 {yields} 4)-{beta}-d-Glcp-(1 {yields} 4)[{beta}-d-Galf-(1 {yields} 6)]-{beta}-d-Glcp-(1 {yields} 6)-{beta}-d-Glcp-(1 {sup {yields}}, in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in M{sub w} = 62 kDa, corresponding to 64 repeating units in the EPS.

  8. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A.

    Science.gov (United States)

    Rodrigues, Lígia; van der Mei, Henny; Banat, Ibrahim M; Teixeira, José; Oliveira, Rosário

    2006-02-01

    Microbial adhesion of four bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber before and after conditioning with a biosurfactant obtained from the probiotic bacterium Streptococcus thermophilus A was investigated in a parallel plate flow chamber. The silicone rubber with and without an adsorbed biosurfactant layer was characterized using contact angle measurements. Water contact angles indicated that the silicone rubber surface with adsorbed biosurfactant was more hydrophilic (58 degrees) than bare silicone rubber (109 degrees). The results obtained showed that the biosurfactant was effective in decreasing the initial deposition rates, and the number of bacterial cells adhering after 4 h, for all microorganisms tested. A decrease in the initial deposition rate was observed for Rothia dentocariosa GBJ 52/2B and Staphylococcus aureus GB 2/1 from 1937+/-194 to 179+/-21 microorganisms cm(-2) s(-1) and from 1255+/-54 to 233+/-26 microorganisms cm(-2) s(-1), respectively, accounting for an 86% reduction of the initial deposition rate for both strains. The number of bacterial cells adhering to the silicone rubber with preadsorbed biosurfactant after 4 h was further reduced by 89% and 97% by the two strains, respectively. The two yeast strains tested showed less reduction in adhesion after 4 h, to values between 67% and 70%. Such a pretreatment with surface-active compounds may constitute a promising strategy to reduce the microbial colonization rate of silicone rubber voice prostheses.

  9. Influence of casein hydrolysates on exopolysaccharide synthesis by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Zhang, Qingli; Yang, Bao; Brashears, Mindy M; Yu, Zhimin; Zhao, Mouming; Liu, Ning; Li, Yinjuan

    2014-05-01

    A lot of interesting research has been undertaken to enhance the yield of exopolysaccharides (EPS) produced by lactic acid bacteria (LAB). The objective of this study was to determine the influence of casein hydrolysates (CH) with molecular weight less than 3 kDa on cell viability, EPS synthesis and the enzyme activity involved in EPS synthesis during the co-culturing of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus in MRS broth for 72 h at 37 ± 0.1 °C. The highest EPS yield (150.1 mg L⁻¹) was obtained on CH prepared with papain (CHP) at 48 h. At 24 h, EPS were composed of galactose, glucose and rhamnose in a molar ratio of 1.0:2.4:1.5. The monosaccharide composition changed with extension of the fermentation time. The activities of α-phosphoglucomutase, uridine 5'-diphosphate (UDP)-glucose pyrophosphorylase and UDP-galactose 4-epimerase were associated with EPS synthesis. Moreover, the activities of β-phosphoglucomutase and deoxythymadine 5'-diphosphate (dTDP)-glucose pyrophosphorylase involved in rhamnose synthesis were very low at the exponential growth phase and could not be detected during other given periods. The influence of different CH (<3 kDa) on LAB viability, EPS production, EPS monomeric composition and activity levels of key metabolic enzymes was distinct. Besides, their influence was related to the distribution of amino acids. © 2013 Society of Chemical Industry.

  10. Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy

    International Nuclear Information System (INIS)

    Saewen, Elin; Huttunen, Eine; Zhang Xue; Yang Zhennai; Widmalm, Goeran

    2010-01-01

    The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: → 3)[α-d-Glcp-(1 → 4)]-β-d-Galp-(1 → 4)-β-d-Glcp-(1 → 4)[β-d-Galf-(1 → 6)]-β-d-Glcp-(1 → 6)-β-d-Glcp-(1 → , in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in M w = 62 kDa, corresponding to 64 repeating units in the EPS.

  11. Diagnóstico de Mycoplasma genitalium por amplificación de los genes MgPa y ARN ribosomal 16S Diagnosis of Mycoplasma genitalium by MgPa and rRNA 16S gene amplification

    Directory of Open Access Journals (Sweden)

    Carmen Fernández-Molina

    2008-10-01

    Full Text Available OBJETIVO: El microorganismo Mycoplasma genitalium se ha relacionado con la uretritis no gonocócica (UNG. La técnica de PCR se ha convertido en el principal método de detección de este patógeno. En consecuencia, debe aplicarse un método de diagnóstico mediante la amplificación de fragmentos de ADN por la técnica PCR. MATERIAL Y MÉTODOS: Se seleccionaron los cebadores MGF-MGR y MgPaF-MgPaR, complementarios de los genes de ARNr 16S y MgPa de M. genitalium, respectivamente. Se efectuaron ensayos de especificidad y sensibilidad y se estudiaron muestras clínicas. RESULTADOS: La PCR con cada grupo de cebadores utilizado fue específica sólo para M. genitalium y la sensibilidad fue mayor con el grupo de cebadores MGF-MGR. En el estudio de 34 muestras clínicas, 18.5% fue positivo a M. genitalium y se encontró un mayor número de muestras positivas al utilizar los cebadores MgPaF-MgPaR. CONCLUSIONES: Debe aplicarse en la práctica clínica el diagnóstico de M. genitalium mediante la amplificación del ADN por PCR en los pacientes con UNG.OBJECTIVE: Mycoplasma genitalium has been associated with nongonococcal urethritis (NGU. Diagnosis by PCR has become the primary detection method for this organism. Thus, diagnosis by DNA amplification using the PCR technique should be utilized. MATERIAL AND METHODS: GMF/GMR and MgpF/MgpR primer pairs, complementary to the M. genitalium 16S rRNA and MgPa genes, respectively, were selected. Specificity and sensibility assays were conducted and clinical samples were studied. RESULTS: The PCR with each primer pair was specific only for M. genitalium, and the sensibility was higher with the GMF/GMR primers. In the study of 34 clinical samples, 18,5% were positive for M. genitalium, with more positive samples when the MgpF/MgpR primers were used. CONCLUSIONS: DNA amplification by PCR should be applied in clinical practice to the diagnosis of M. genitalium in patients with NGU should using.

  12. 16S rRNA-based bacterial diversity in the organic-rich sediments underlying oxygen-deficient waters of the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Divya, B.; Parvathi, A.; LokaBharathi, P.A.; Nair, S.

    and diversity in OMZ sediments of the eastern Arabian Sea (AS) through 16S rRNA clone library analysis. Phylogenetic analysis of the sequences demonstrated that phylum Proteobacteria (52%), followed by Planctomycetes (12.7%), Chloroflexi and an unidentified...

  13. Enhanced extraction of heavy metals in the two-step process with the mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    Chang, Young-Cheol; Choi, DuBok; Kikuchi, Shintaro

    2012-01-01

    For biological extraction of heavy metals from chromated copper arsenate (CCA) treated wood, different bacteria were investigated. The extraction rates of heavy metals using Lactobacillusbulgaricus and Streptococcusthermophilus were highest. The chemical extraction rates were depended on the amounts of pyruvic acid and lactic acid. Especially, the extraction rates using mixed pyruvic acid and lactic acid were increased compared to those of sole one. They were also enhanced in the mixed culture of L. bulgaricus and S. thermophilus. To improve the extraction of CCA, a two-step processing procedure with the mixed culture of L. bulgaricus and S. thermophilus was conducted. A maximum of 93% of copper, 86.5% of chromium, and 97.8% of arsenic were extracted after 4 days. These results suggest that a two-step process with the mixed culture of L. bulgaricus and S. thermophilus is most effective to extract heavy metals from CCA treated wood. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Tissue-associated bacterial alterations in rectal carcinoma patients revealed by 16S rRNA community profiling

    Directory of Open Access Journals (Sweden)

    Andrew Maltez Thomas

    2016-12-01

    Full Text Available Sporadic and inflammatory forms of colorectal cancer (CRC account for more than 80% of cases. Recent publications have shown mechanistic evidence for the involvement of gut bacteria in the development of both CRC-forms. Whereas colon and rectal cancer have been routinely studied together as CRC, increasing evidence show these to be distinct diseases. Also, the common use of fecal samples to study microbial communities may reflect disease state but possibly not the tumor microenvironment. We performed this study to evaluate differences in bacterial communities found in tissue samples of 18 rectal-cancer subjects when compared to 18 non-cancer controls. Samples were collected during exploratory colonoscopy (non-cancer group or during surgery for tumor excision (rectal-cancer group. High throughput 16S rRNA amplicon sequencing of the V4-V5 region was conducted on the Ion PGM platform, reads were filtered using Qiime and clustered using UPARSE. We observed significant increases in species richness and diversity in rectal cancer samples, evidenced by the total number of OTUs and the Shannon and Simpson indexes. Enterotyping analysis divided our cohort into two groups, with the majority of rectal cancer samples clustering into one enterotype, characterized by a greater abundance of Bacteroides and Dorea. At the phylum level, rectal-cancer samples had increased abundance of candidate phylum OD1 (also known as Parcubacteria whilst non-cancer samples had increased abundance of Planctomycetes. At the genera level, rectal-cancer samples had higher abundances of Bacteroides, Phascolarctobacterium, Parabacteroides, Desulfovibrio and Odoribacter whereas non-cancer samples had higher abundances of Pseudomonas, Escherichia, Acinetobacter, Lactobacillus and Bacillus. Two Bacteroides fragilis OTUs were more abundant among rectal-cancer patients seen through 16S rRNA amplicon sequencing, whose presence was confirmed by immunohistochemistry and enrichment verified

  15. Rapid identification of bovine mastitis pathogens by high-resolution melt analysis of 16S rDNA sequences.

    Science.gov (United States)

    Ajitkumar, Praseeda; Barkema, Herman W; De Buck, Jeroen

    2012-03-23

    Accurate identification of mastitis pathogens is often compromised when using conventional culture-based methods. Here, we report a novel, rapid assay tested for speciation of bacterial mastitis pathogens using high-resolution melt analysis (HRMA) of 16S rDNA sequences. Real-time PCR amplification of 16S rRNA gene fragment, spanning the variable region V5 and V6 was performed with a resulting amplicon of 290bp. First, a library was generated of melt curves of 9 common pathogens that are implicated in bovine mastitis. Six of the isolates, Escherichia coli, Streptococcus agalactiae, Klebsiella pneumoniae, Streptococcus uberis, Staphylococcus aureus and Mycoplasma bovis, were type strains while the other 3, Arcanobacterium pyogenes, Corynebacterium bovis and Streptococcus dysgalactiae, were bovine mastitis field isolates. Four of the type strains, E. coli, S. agalactiae, K. pneumoniae and S. aureus, were found to be of human origin, while the other 3 type strains were isolated from bovine infections. Secondly, the melt curves and corresponding amplicon sequences of A. pyogenes, E. coli, S. agalactiae, S. dysgalactiae, K. pneumoniae, S. uberis and S. aureus were compared with 10 bovine mastitis field isolates of each pathogen. Based on the distinct differences in melt curves and sequences between human and bovine isolates of E. coli and K. pneumoniae, it was deemed necessary to select a set of bovine strains for these pathogens to be used as reference strains in the HRMA. Next, the HRMA was validated by three interpreters analyzing the differential clustering pattern of melt curves of 60 bacterial cultures obtained from mastitis milk samples. The three test interpreters were blinded to the culture and sequencing results of the isolates. Overall accuracy of the validation assay was 95% as there was difficulty in identifying the streptococci due to heterogeneity observed in the PCR amplicons of S. uberis. The present study revealed that broad-range real-time PCR with

  16. Cataloguing the bacterial community of the Great Salt Plains, Oklahoma using 16S rRNA based metagenomics pyrosequencing

    Directory of Open Access Journals (Sweden)

    Ahmed H. Gad

    2017-06-01

    Full Text Available The Great Salt Plains of Oklahoma (GSP is an extreme region, a hypersaline environment from marine origin and a unique area of the Salt National Wild Refuge in the north-central region of Oklahoma. In this study we analyzed the diversity and distribution of bacteria in two habitats; vegetated areas (GAB and salt flat areas (GAS in the sediments of GSP using the high-throughput techniques of 16S rRNA gene amplicon (V1-V2 regions metagenomics-454 pyrosequencing. The filtered sequences resulted to a total of 303,723 paired end reads were generated, assigned into 1646 numbers of OTUs and 56.4% G + C content for GAB, and a total of 144,496 paired end reads were generated, assigned into 785 numbers of OTUs and 56.7% G+ C content for GAS. All the resulting 16S rRNA was of an average length ~ 187 bp, assigned to 37 bacterial phyla and candidate divisions. The abundant OTUs were affiliated with Proteobacteria (36.2% in GAB and 31.5% in GAS, Alphaproteobacteria (13.3% in GAB and 8.7% in GAS, Gammaproteobacteria (13% in GAB and 14.2% in GAS, Deltaproteobacteria (6.5% in GAB and 6.1% in GAS, Betaproteobacteria (2.6% in GAB and 1.14% in GAS, Bacteroidetes (16.8% in GAB and 24.3% in GAS, Chloroflexi (8.7% in GAB and 6% in GAS, Actinobacteria (8.5% in GAB and 5.8% in GAS and Firmicutes (6.5% in GAB and 6.6% in GAS. This is the first study of a high resolution microbial phylogenetic profile of the GSP and the findings stipulate evidence of the bacterial heterogeneity that might be originated by surface and subsurface environments and better understanding of the ecosystem dynamics of GSP. Metagenome sequence data are available at NCBI with accession numbers; LT699840-LT700186.

  17. Molecular characterization of the non-coding promoter and leader regions and full-length 16S ribosomal RNA (rRNA) gene of Taylorella asinigenitalis.

    Science.gov (United States)

    Tazumi, A; Saito, S; Sekizuka, T; Murayama, O; Moore, J E; Millar, B C; Matsuda, M

    2007-06-01

    The 3,339 base pair (bp) sequences encoding a putative open reading frame (ORF), non-coding promoter and leader regions (approximately 320 bp), full-length 16S ribosomal RNA (rRNA) gene (approximate 1,540 bp) and part of the 16S-23S rDNA internal spacer region (ISR) were determined from genome DNA libraries of the Taylorella asinigenitalis (UK-1) isolate. The non-coding promoter and leader regions included antiterminators (boxB, boxA and boxC) immediately upstream of the 16S rRNA gene sequence. An approximately 680 bp region upstream of the non-coding promoter region appears to contain a putative ORF with high sequence similarity to GTP cyclohydrolase I. In addition, a typical order of intercistronic tRNA genes with the 48 nucleotide spacer of 5'-16S rDNA-tRNA(Ile)-tRNA(Ala)-23S rDNA-3' was demonstrated in a part of the 16S-23S rDNA ISR. The antiterminators of boxB and boxA were also identified in the ISR.A phylogenetic analysis based on the 16S rRNA gene sequence information clearly demonstrated that the five T. asinigenitalis isolates formed a cluster together with the three T. equigenitalis strains, more similar to Pelistega europaea than the other beta-Proteobacteria from the 13 species of 11 genera.

  18. A Novel Pheromone Quorum-Sensing System Controls the Development of Natural Competence in Streptococcus thermophilus and Streptococcus salivarius▿ †

    Science.gov (United States)

    Fontaine, Laetitia; Boutry, Céline; de Frahan, Marie Henry; Delplace, Brigitte; Fremaux, Christophe; Horvath, Philippe; Boyaval, Patrick; Hols, Pascal

    2010-01-01

    In streptococcal species, the key step of competence development is the transcriptional induction of comX, which encodes the alternative sigma factor σX, which positively regulates genes necessary for DNA transformation. In Streptococcus species belonging to the mitis and mutans groups, induction of comX relies on the activation of a three-component system consisting of a secreted pheromone, a histidine kinase, and a response regulator. In Streptococcus thermophilus, a species belonging to the salivarius group, the oligopeptide transporter Ami is essential for comX expression under competence-inducing conditions. This suggests a different regulation pathway of competence based on the production and reimportation of a signal peptide. The objective of our work was to identify the main actors involved in the early steps of comX induction in S. thermophilus LMD-9. Using a transcriptomic approach, four highly induced early competence operons were identified. Among them, we found a Rgg-like regulator (Ster_0316) associated with a nonannotated gene encoding a 24-amino-acid hydrophobic peptide (Shp0316). Through genetic deletions, we showed that these two genes are essential for comX induction. Moreover, addition to the medium of synthetic peptides derived from the C-terminal part of Shp0316 restored comX induction and transformation of a Shp0316-deficient strain. These peptides also induced competence in S. thermophilus and Streptococcus salivarius strains that are poorly transformable or not transformable. Altogether, our results show that Ster_0316 and Shp0316, renamed ComRS, are the two members of a novel quorum-sensing system responsible for comX induction in species from the salivarius group, which differs from the classical phosphorelay three-component system identified previously in streptococci. PMID:20023010

  19. A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius.

    Science.gov (United States)

    Fontaine, Laetitia; Boutry, Céline; de Frahan, Marie Henry; Delplace, Brigitte; Fremaux, Christophe; Horvath, Philippe; Boyaval, Patrick; Hols, Pascal

    2010-03-01

    In streptococcal species, the key step of competence development is the transcriptional induction of comX, which encodes the alternative sigma factor sigma(X), which positively regulates genes necessary for DNA transformation. In Streptococcus species belonging to the mitis and mutans groups, induction of comX relies on the activation of a three-component system consisting of a secreted pheromone, a histidine kinase, and a response regulator. In Streptococcus thermophilus, a species belonging to the salivarius group, the oligopeptide transporter Ami is essential for comX expression under competence-inducing conditions. This suggests a different regulation pathway of competence based on the production and reimportation of a signal peptide. The objective of our work was to identify the main actors involved in the early steps of comX induction in S. thermophilus LMD-9. Using a transcriptomic approach, four highly induced early competence operons were identified. Among them, we found a Rgg-like regulator (Ster_0316) associated with a nonannotated gene encoding a 24-amino-acid hydrophobic peptide (Shp0316). Through genetic deletions, we showed that these two genes are essential for comX induction. Moreover, addition to the medium of synthetic peptides derived from the C-terminal part of Shp0316 restored comX induction and transformation of a Shp0316-deficient strain. These peptides also induced competence in S. thermophilus and Streptococcus salivarius strains that are poorly transformable or not transformable. Altogether, our results show that Ster_0316 and Shp0316, renamed ComRS, are the two members of a novel quorum-sensing system responsible for comX induction in species from the salivarius group, which differs from the classical phosphorelay three-component system identified previously in streptococci.

  20. The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing.

    Science.gov (United States)

    Romero, Fernando M; Marina, María; Pieckenstain, Fernando L

    2014-02-01

    Endophytic bacterial communities of tomato leaves were analyzed by 16S-rRNA gene pyrosequencing and compared to rhizosphere communities. Leaf endophytes mainly comprised five phyla, among which Proteobacteria was the most represented (90%), followed by Actinobacteria (1,5%), Planctomycetes (1,4%), Verrucomicrobia (1,1%), and Acidobacteria (0,5%). Gammaproteobacteria was the most abundant class of Proteobacteria (84%), while Alphaproteobacteria and Betaproteobacteria represented 12% and 4% of this phylum, respectively. Rarefaction curves for endophytic bacteria saturated at 80 OTUs, indicating a lower diversity as compared to rhizosphere samples (> 1700 OTUs). Hierarchical clustering also revealed that leaf endophytic communities strongly differed from rhizospheric ones. Some OTUs assigned to Bacillus, Stenotrophomonas, and Acinetobacter, as well as some unclassified Enterobacteriaceae were specific for the endophytic community, probably representing bacteria specialized in colonizing this niche. On the other hand, some OTUs detected in the leaf endophytic community were also present in the rhizosphere, probably representing soil bacteria that endophytically colonize leaves. As a whole, this study describes the composition of the endophytic bacterial communities of tomato leaves, identifying a variety of genera that could exert multiple effects on growth and health of tomato plants. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. 16S rDNA analysis of the effect of fecal microbiota transplantation on pulmonary and intestinal flora.

    Science.gov (United States)

    Liu, Tianhao; Yang, Zhongshan; Zhang, Xiaomei; Han, Niping; Yuan, Jiali; Cheng, Yu

    2017-12-01

    This study aims to explore the effect of FMT on regulations of dysbacteriosis of pulmonary and intestinal flora in rats with 16S rDNA sequencing technology. A total of 27 SPF rats (3-4 weeks old) were randomly divided into three groups: normal control group (K), model control group (MX), and fecal microbiota transplantation group (FMT); each group contained nine rats. The OTU values of the pulmonary and intestinal flora of the MX group decreased significantly compared with the normal control group. After FMT, the OTU value of pulmonary flora increased, while the value of OTU in intestinal flora declined. At the phylum level, FMT down-regulated Proteobacteria , Firmicutes , and Bacteroidetes in the pulmonary flora. At the genus level, FMT down-regulated Pseudomonas , Sphingobium , Lactobacillus , Rhizobium , and Acinetobacter , thus maintaining the balance of the pulmonary flora. Moreover, FMT could change the structure and diversity of the pulmonary and intestinal flora by positively regulating the pulmonary flora and negatively regulating intestinal flora. This study may provide a scientific basis for FMT treatment of respiratory diseases.

  2. The phylogeny of native and exotic scallops cultured in China based on 16S rDNA sequences

    Science.gov (United States)

    Liu, Baozhong; Dong, Bo; Xiang, Jianhai; Wang, Zaizhao

    2007-01-01

    Scallops of the Family Pectinidae are a valuable resource in marine industry of the world. Understanding the phylogeny of the family is important for the development of the industry. In this study, partial 16S mitochondrial rDNA genes were obtained from 8 scallop species that are commonly cultured indigenous and transplanted species in China. Phylogenetic relationships of Pectinidae were analyzed based on the 8 sequences and other 5 published ones in GenBank, representing 9 genera of the family. The molecular phylogeny trees were constructed using 3 methods with software PHYLIP. The results showe that total 13 species of scallops clustered in 4 clades. Pecten maximus joins P. jacobaeus then Amusium pleuronectes in cluster, indicating close relationship of genus Amusium with Pecten in evolution. P. yessoensis is close to Chlamys farreri and C. islandica. No enough material was available to single out genus Patinopecten as an independent monophyletic subfamily. The position of Adamussium colbecki indicates that it is far from genus Pecten but near to genus Chlamys in evolution.

  3. Identification of novel spp. of rice and wheat endophytic diazotrophs by 16S rDNA gene and FTIR analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Mehdipour Moghaddam

    2012-06-01

    Full Text Available In this research, six isolates, including three from three rice roots (PxR1, PxR2 and StR1 and three from three wheat roots (PxW1, PxW2 and PxW3 were isolated as endophytic bacteria and except for StR1, all the isolates were identified as Pseudoxanthomonas based on phenotypic analysis including FTIR and PCR amplification of 16S rDNA. The results showed that PxR1, PxR2, PxW1 and PxW2 were all similar and belonged to a novel species of Pseudoxanthomonas, but PxW3 was from different species. StR1 belonged to a novel species of Stenotrophomonas. Two strains including Azospirillum brasiliense Sp7 (S1 and Azospirillum lipoferum (S2 were selected as standard strains and compared with those isolates however, phenotypic and genotypic analysis verified that those isolates were not Azospirillum. For the first time, it was indicated that Pseudoxanthomonas existed as an endophytic bacterium in rice root.

  4. Phylogenic inference using alignment-free methods for applications in microbial community surveys using 16s rRNA gene.

    Directory of Open Access Journals (Sweden)

    Yifei Zhang

    Full Text Available The diversity of microbiota is best explored by understanding the phylogenetic structure of the microbial communities. Traditionally, sequence alignment has been used for phylogenetic inference. However, alignment-based approaches come with significant challenges and limitations when massive amounts of data are analyzed. In the recent decade, alignment-free approaches have enabled genome-scale phylogenetic inference. Here we evaluate three alignment-free methods: ACS, CVTree, and Kr for phylogenetic inference with 16s rRNA gene data. We use a taxonomic gold standard to compare the accuracy of alignment-free phylogenetic inference with that of common microbiome-wide phylogenetic inference pipelines based on PyNAST and MUSCLE alignments with FastTree and RAxML. We re-simulate fecal communities from Human Microbiome Project data to evaluate the performance of the methods on datasets with properties of real data. Our comparisons show that alignment-free methods are not inferior to alignment-based methods in giving accurate and robust phylogenic trees. Moreover, consensus ensembles of alignment-free phylogenies are superior to those built from alignment-based methods in their ability to highlight community differences in low power settings. In addition, the overall running times of alignment-based and alignment-free phylogenetic inference are comparable. Taken together our empirical results suggest that alignment-free methods provide a viable approach for microbiome-wide phylogenetic inference.

  5. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library

    Science.gov (United States)

    Maron, Pierre-Alain; Lejon, David P. H.; Carvalho, Esmeralda; Bizet, Karine; Lemanceau, Philippe; Ranjard, Lionel; Mougel, Christophe

    The density, genetic structure and diversity of airborne bacterial communities were assessed in the outdoor atmosphere. Two air samples were collected on the same location (north of France) at two dates (March 2003 (sample1) and May 2003 (sample 2)). Molecular culture -independent methods were used to characterise airborne bacterial communities regardless of the cell culturability. The automated-ribosomal intergenic spacer analysis (A-RISA) was performed to characterise the community structure in each sample. For both sampling dates, complex A-RISA patterns were observed suggesting a highly diverse community structure, comparable to those found in soil, water or sediment environments. Furthermore, differences in the genetic structure of airborne bacterial communities were observed between samples 1 and 2 suggesting an important variability in time. A clone library of 16S rDNA directly amplified from air DNA of sample 1 was constructed and sequenced to analyse the community composition and diversity. The Proteobacteria group had the greatest representation (60%), with bacteria belonging to the different subdivisions α- (19%), β-(21%), γ-(12%) and δ-(8%). Firmicute and Actinobacteria were also well represented with 14% and 12%, respectively. Most of the identified bacteria are known to be commonly associated with soil or plant environments suggesting that the atmosphere is mainly colonised transiently by microorganisms from local sources, depending on air fluxes.

  6. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing

    KAUST Repository

    Qian, Peiyuan

    2010-07-29

    The ecosystems of the Red Sea are among the least-explored microbial habitats in the marine environment. In this study, we investigated the microbial communities in the water column overlying the Atlantis II Deep and Discovery Deep in the Red Sea. Taxonomic classification of pyrosequencing reads of the 16S rRNA gene amplicons showed vertical stratification of microbial diversity from the surface water to 1500 m below the surface. Significant differences in both bacterial and archaeal diversity were observed in the upper (2 and 50 m) and deeper layers (200 and 1500 m). There were no obvious differences in community structure at the same depth for the two sampling stations. The bacterial community in the upper layer was dominated by Cyanobacteria whereas the deeper layer harbored a large proportion of Proteobacteria. Among Archaea, Euryarchaeota, especially Halobacteriales, were dominant in the upper layer but diminished drastically in the deeper layer where Desulfurococcales belonging to Crenarchaeota became the dominant group. The results of our study indicate that the microbial communities sampled in this study are different from those identified in water column in other parts of the world. The depth-wise compositional variation in the microbial communities is attributable to their adaptations to the various environments in the Red Sea. © 2011 International Society for Microbial Ecology All rights reserved.

  7. Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16S rRNA genes.

    Science.gov (United States)

    Zeng, Yin-Xin; Zhang, Fang; He, Jian-Feng; Lee, Sang H; Qiao, Zong-Yun; Yu, Yong; Li, Hui-Rong

    2013-06-01

    Fjords and open oceans are two typical marine ecosystems in the Arctic region, where glacial meltwater and sea ice meltwater have great effects on the bacterioplankton community structure during the summer season. This study aimed to determine the differences in bacterioplankton communities between these two ecosystems in the Arctic region. We conducted a detailed census of microbial communities in Kongsfjorden (Spitsbergen) and the Chukchi Borderland using high-throughput pyrosequencing of the 16S rRNA gene. Gammaproteobacteria and Bacteroidetes were the dominant members of the bacterioplankton community in Kongsfjorden. By contrast, the most abundant bacterial groups in the surface seawater samples from the Chukchi Borderland were Alphaproteobacteria and Actinobacteria. Differences in bacterial communities were found between the surface and subsurface waters in the investigation area of the Chukchi Borderland, and significant differences in bacterial community structure were also observed in the subsurface water between the shelf and deep basin areas. These results suggest the effect of hydrogeographic conditions on bacterial communities. Ubiquitous phylotypes found in all the investigated samples belonged to a few bacterial groups that dominate marine bacterioplankton communities. The sequence data suggested that changes in environmental conditions result in abundant rare phylotypes and reduced amounts of other phylotypes.

  8. Comparison of Bacteroides-Prevotella 16S rRNA genetic markers for fecal samples from different animal species

    Science.gov (United States)

    Fogarty, L.R.; Voytek, M.A.

    2005-01-01

    To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.

  9. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    Science.gov (United States)

    Lopes, Ana R; Manaia, Célia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing

    Directory of Open Access Journals (Sweden)

    Edward Alain B. Pajarillo

    2015-04-01

    Full Text Available This study characterized the fecal bacterial community structure and inter-individual variation in 30-week-old Duroc pigs, which are known for their excellent meat quality. Pyrosequencing of the V1–V3 hypervariable regions of the 16S rRNA genes generated 108,254 valid reads and 508 operational taxonomic units at a 95% identity cut-off (genus level. Bacterial diversity and species richness as measured by the Shannon diversity index were significantly greater than those reported previously using denaturation gradient gel electrophoresis; thus, this study provides substantial information related to both known bacteria and the untapped portion of unclassified bacteria in the population. The bacterial composition of Duroc pig fecal samples was investigated at the phylum, class, family, and genus levels. Firmicutes and Bacteroidetes predominated at the phylum level, while Clostridia and Bacteroidia were most abundant at the class level. This study also detected prominent inter-individual variation starting at the family level. Among the core microbiome, which was observed at the genus level, Prevotella was consistently dominant, as well as a bacterial phylotype related to Oscillibacter valericigenes, a valerate producer. This study found high bacterial diversity and compositional variation among individuals of the same breed line, as well as high abundance of unclassified bacterial phylotypes that may have important functions in the growth performance of Duroc pigs.

  11. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Sørensen, Kim I; Curic-Bawden, Mirjana; Junge, Mette P; Janzen, Thomas; Johansen, Eric

    2016-06-15

    Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus are used in the fermentation of milk to produce yoghurt. These species normally metabolize only the glucose moiety of lactose, secreting galactose and producing lactic acid as the main metabolic end product. We used multiple serial selection steps to isolate spontaneous mutants of industrial strains of S. thermophilus and L. delbrueckii subsp. bulgaricus that secreted glucose rather than galactose when utilizing lactose as a carbon source. Sequencing revealed that the S. thermophilus strains had mutations in the galKTEM promoter, the glucokinase gene, and genes encoding elements of the glucose/mannose phosphotransferase system (PTS). These strains metabolize galactose but are unable to phosphorylate glucose internally or via the PTS. The L. delbrueckii subsp. bulgaricus mutants had mutations in genes of the glucose/mannose PTS and in the pyruvate kinase gene. These strains cannot grow on exogenous glucose but are proficient at metabolizing internal glucose released from lactose by β-galactosidase. The resulting strains can be combined to ferment milk, producing yoghurt with no detectable lactose, moderate levels of galactose, and high levels of glucose. Since glucose tastes considerably sweeter than either lactose or galactose, the sweetness of the yoghurt is perceptibly enhanced. These strains were produced without the use of recombinant DNA technology and can be used for the industrial production of yoghurt with enhanced intrinsic sweetness and low residual levels of lactose. Based on a good understanding of the physiology of the lactic acid bacteria Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, we were able, by selecting spontaneously occurring mutants, to change dramatically the metabolic products secreted into the growth medium. These mutants consume substantially more of the lactose, metabolize some of the galactose, and secrete the remaining galactose

  12. Comparison of the effect of green, white and black tea on Streptococcus thermophilus and Lactobacillus spp. in yogurt during refrigerated

    OpenAIRE

    Premalatha Muniandy; Amal Bakr Shori; Ahmad Salihin Baba

    2017-01-01

    This study investigated the effects of green, white and black tea (Camellia sinensis) on lactic acid production and the viability of Streptococcus thermophilus and Lactobacillus spp. in yogurt during 3 weeks of refrigerated storage. Three types of tea water extracts were added into a milk-starter culture mixture and incubated at 42 °C until the pH was reduced to 4.5. All yogurts were then refrigerated (4 °C) for up to 21 days and samples were analyzed for pH, titratable acid and viable counts...

  13. Untargeted GC-MS Metabolomics Reveals Changes in the Metabolite Dynamics of Industrial Scale Batch Fermentations of Streptoccoccus thermophilus Broth

    DEFF Research Database (Denmark)

    Khakimov, Bekzod; Christiansen, Lene D.; Heins, Anna-Lena

    2017-01-01

    An industrial scale biomass production using batch or fed-batch fermentations usually optimized by selection of bacterial strains, tuning fermentation media, feeding strategy, and temperature. However, in-depth investigation of the biomass metabolome during the production may reveal new knowledge...... for better optimization. In this study, for the first time, the authors investigated seven fermentation batches performed on five Streptoccoccus thermophilus strains during the biomass production at Chr. Hansen (Denmark) in a real life large scale fermentation process. The study is designed to investigate...

  14. The efficacy of 16S ribosomal DNA sequencing in the diagnosis of bacteria from blood, bone and synovial fluid samples of children with musculoskeletal infections.

    Science.gov (United States)

    Hashavya, S; Gross, I; Michael-Gayego, A; Simanovsky, N; Lamdan, R

    2018-04-01

    Musculoskeletal infections are among the most common bacterial infections in children leading to hospitalization, invasive procedures and prolonged antibiotic administration. Blood, synovial and sometimes tissue cultures are essential for the diagnosis and treatment of musculoskeletal infections; 16S ribosomal DNA (rDNA) sequencing is a novel diagnostic tool for the detection of bacteria.While the yield of 16S rDNA sequencing in synovial fluid was previously assessed, data regarding the efficacy of this method from blood samples or partially treated children with suspected musculoskeletal infections is lacking.In this study we assessed the yield of 16S rDNA sequencing in blood, bone and synovial samples of children with musculoskeletal infections. Blood, synovial and bone samples were collected from children with suspected musculoskeletal infections and analyzed for the presence of 16S rDNA, the results were then compared with the benchmark microbial cultures. During the study period, 41 children (18 boys and 23 girls) with suspected acute musculoskeletal infection were enrolled. A positive blood culture was found in 6/31 cases (19.4%) with methicillin-susceptible Staphylococcus aureus being the most commonly isolated bacterium. No significant 16S rDNA detection in blood samples was recorded.Synovial fluid culture was positive in 6/28 samples (21%), Kingella kingae being the most common pathogen. When using the 16S rDNA sequencing method, the rate of positive results in synovial fluid was higher with bacterial detection in 12/23 (52%) samples. The 16S rDNA sequencing method was also able to identify pathogens in samples taken from partially treated children where cultures were negative with 16S rDNA detection in 5/5 samples. Although 16S rDNA sequencing may increase the yield of bacterial detection in synovial samples of patients with musculoskeletal infections, there is no benefit from applying this method on blood samples. The 16S rDNA sequencing method may be

  15. Identification and Analysis of Informative Single Nucleotide Polymorphisms in 16S rRNA Gene Sequences of the Bacillus cereus Group.

    Science.gov (United States)

    Hakovirta, Janetta R; Prezioso, Samantha; Hodge, David; Pillai, Segaran P; Weigel, Linda M

    2016-11-01

    Analysis of 16S rRNA genes is important for phylogenetic classification of known and novel bacterial genera and species and for detection of uncultivable bacteria. PCR amplification of 16S rRNA genes with universal primers produces a mixture of amplicons from all rRNA operons in the genome, and the sequence data generally yield a consensus sequence. Here we describe valuable data that are missing from consensus sequences, variable effects on sequence data generated from nonidentical 16S rRNA amplicons, and the appearance of data displayed by different software programs. These effects are illustrated by analysis of 16S rRNA genes from 50 strains of the Bacillus cereus group, i.e., Bacillus anthracis, Bacillus cereus, Bacillus mycoides, and Bacillus thuringiensis These species have 11 to 14 rRNA operons, and sequence variability occurs among the multiple 16S rRNA genes. A single nucleotide polymorphism (SNP) previously reported to be specific to B. anthracis was detected in some B. cereus strains. However, a different SNP, at position 1139, was identified as being specific to B. anthracis, which is a biothreat agent with high mortality rates. Compared with visual analysis of the electropherograms, basecaller software frequently missed gene sequence variations or could not identify variant bases due to overlapping basecalls. Accurate detection of 16S rRNA gene sequences that include intragenomic variations can improve discrimination among closely related species, improve the utility of 16S rRNA databases, and facilitate rapid bacterial identification by targeted DNA sequence analysis or by whole-genome sequencing performed by clinical or reference laboratories. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Combining flow cytometry and 16S rRNA gene pyrosequencing: A promising approach for drinking water monitoring and characterization

    KAUST Repository

    Prest, Emmanuelle I E C

    2014-10-01

    The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5min intervals for 1h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345±15×103 to 425±35×103cellsmL-1) and in the percentage of intact bacterial cells (from 39±3.5% to 53±4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology. © 2014 Elsevier Ltd.

  17. Impact of DNA extraction, sample dilution, and reagent contamination on 16S rRNA gene sequencing of human feces.

    Science.gov (United States)

    Velásquez-Mejía, Eliana P; de la Cuesta-Zuluaga, Jacobo; Escobar, Juan S

    2018-01-01

    Culture-independent methods have granted the possibility to study microbial diversity in great detail, but technical issues pose a threat to the accuracy of new findings. Biases introduced during DNA extraction can result in erroneous representations of the microbial community, particularly in samples with low microbial biomass. We evaluated the DNA extraction method, initial sample biomass, and reagent contamination on the assessment of the human gut microbiota. Fecal samples of 200 mg were subjected to 1:10 serial dilutions; total DNA was obtained using two commercial kits and the microbiota assessed by 16S ribosomal RNA (rRNA) gene sequencing. In addition, we sequenced multiple technical controls. The two kits were efficient in extracting DNA from samples with as low as 2 mg of feces. However, in instances of lower biomass, only one kit performed well. The number of reads from negative controls was negligible. Both DNA extraction kits allowed inferring microbial consortia with similar membership but different abundances. Furthermore, we found differences in the taxonomic profile of the microbial community. Unexpectedly, the effect of sample dilution was moderate and did not introduce severe bias into the microbial inference. Indeed, the microbiota inferred from fecal samples was distinguishable from that of negative controls. In most cases, samples as low as 2 mg did not result in a dissimilar representation of the microbial community compared with the undiluted sample. Our results indicate that the gut microbiota inference is not much affected by contamination with laboratory reagents but largely impacted by the protocol to extract DNA.

  18. Improved Method for Direct Detection of Environmental Microorganisms Using an Amplification of 16S rDNA Region

    Science.gov (United States)

    Tsujimura, M.; Akutsu, J.; Zhang, Z.; Sasaki, M.; Tajima, H.; Kawarabayasi, Y.

    2004-12-01

    The thermostable proteins or enzymes were expected to be capable to be utilized in many areas of industries. Many thermophilic microorganisms, which possess the thermostable proteins or enzymes, were identified from the extreme environment. However, many unidentified and uncultivable microorganisms are still remaining in the environment on the earth. It is generally said that the cultivable microorganisms are less than 1% of entire microorganisms living in the earth, remaining over 99% are still uncultivable. As an approach to the uncultivable microorganisms, the PCR amplification of 16S rDNA region using primer sets designed from the conserved region has been generally utilized for detection and community analysis of microorganism in the environment. However, the facts, that PCR amplification introduces the mutation in the amplified DNA fragment and efficiency of PCR amplification is depend on the sequences of primer sets, indicated that the improving of PCR analysis was necessary for more correct detection of microorganisms. As the result of evaluation for the quality of DNA polymerases, sequences of primers used for amplification and conditions of PCR amplification, the DNA polymerase, the primer set and the conditions for amplification, which did not amplify the DNA fragment from the DNA contaminated within the DNA polymerase itself, were successfully selected. Also the rate of mutation in the DNA fragment amplified was evaluated using this conditions and the genomic DNA from cultivable microbes as a template. The result indicated the rate of mutation introduced by PCR was approximately 0.1% to 0.125%. The improved method using these conditions and error rate calculated was applied for the analysis of microorganisms in the geothermal environment. The result indicated that four kinds of dominant microorganisms, including both of bacteria and archaea, were alive within soil in the hot spring in Tohoku Area. We would like to apply this improved method to detection

  19. NMR structure determination of the binding site for ribosomal protein S8 from Escherichia coli 16 S rRNA.

    Science.gov (United States)

    Kalurachchi, K; Nikonowicz, E P

    1998-07-24

    Many cellular processes involve the preferential interaction of an RNA molecule with a specific protein. A detailed analysis of the individual protein and RNA components of these interactions can provide unique insights into the structural features important for protein-RNA recognition. Ribosomal protein S8 of Escherichia coli plays a key role in 30 S ribosomal subunit assembly through its interaction with 16 S rRNA. The binding site for protein S8 comprises a portion of helix 21, nucleotides G588 to G604 and C634 to C651. This region forms a base-paired helix that is interrupted by a non-Watson-Crick segment composed of nine phylogenetically conserved nucleotides. We have investigated the detailed structure of the conserved segment and the interaction of this region with metal ions using NMR spectroscopy. Twenty-four of the 40 calculated structures converged to similar conformations and were grouped into two families. The main difference between the families is the orientation of the base of U641. The rms deviation between the heavy-atoms of the ten lowest-energy structures is 1.24 A. The orientations of the G597.C643 base-pair and A595.(A596.U644) base-triple within the conserved core have been defined and appear to extend the proximal segment of helix 21 into the phylogenetically conserved core. The base of A642 terminates this helix by stacking against C643 and the base of U641 forms hydrogen bonds with core nucleotides. The conserved core also contains a Mg2+-binding site that promotes stabilization of the secondary and tertiary structure elements of the core. A model for the interaction of S8 with its RNA-binding site is proposed. Copyright 1998 Academic Press.

  20. Pyrosequencing 16S rRNA genes of bacteria associated with wild tiger mosquito Aedes albopictus: a pilot study

    Directory of Open Access Journals (Sweden)

    Guillaume eMinard

    2014-05-01

    Full Text Available The Asian tiger mosquito Aedes (Stegomya albopictus is an invasive species that has spread across the world in the last two decades, showing a great capacity to adapt to contrasting climates and environments. While demonstrated in many insects, the contribution of bacterial symbionts in Aedes ecology is a challenging aspect that needs to be investigated however. Some bacterial species have already been identified in Ae. albopictus using classical methods, but a more accurate survey of mosquito-associated bacterial diversity is needed to decipher the potential biological functions of bacterial symbionts in mediating or constraining insect adaptation. We surveyed the bacteria associated with field populations of Ae. albopictus from Madagascar by pyrosequencing 16S rRNA gene amplicons. Different aspects of amplicon preparation and sequencing depth were tested to optimise the breadth of bacterial diversity identified. The results revealed that all mosquitoes collected from different sites have a bacterial microbiota dominated by a single taxon, Wolbachia pipientis, which accounted for about 99% of all 98,520 sequences obtained. Ae. albopictus is known to harbour two Wolbachia strains, wAlbA and wAlbB, and quantitative PCR was used to estimate the relative densities, i.e. the bacteria-to-host gene ratios, of the strains in individual mosquitoes. Relative densities were between 6.25 × 100.01 and 5.47 × 100.1 for wAlbA and between 2.03 × 100.1 and 1.4 × 101 for wAlbB. Apart from Wolbachia, a total of 32 bacterial taxa were identified at the genus level using the different in method variations. Diversity index values were low and probably underestimated the true diversity due to the high abundance of Wolbachia sequences vastly outnumbering sequences from other taxa. Further studies should implement alternative strategies to specifically discard from analysis any sequences from Wolbachia, the dominant endosymbiotic bacterium in Ae. albopictus from

  1. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis.

    Directory of Open Access Journals (Sweden)

    Erin L Gross

    Full Text Available Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This

  2. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections.

    Directory of Open Access Journals (Sweden)

    Stephen J Salipante

    Full Text Available Classifying individual bacterial species comprising complex, polymicrobial patient specimens remains a challenge for culture-based and molecular microbiology techniques in common clinical use. We therefore adapted practices from metagenomics research to rapidly catalog the bacterial composition of clinical specimens directly from patients, without need for prior culture. We have combined a semiconductor deep sequencing protocol that produces reads spanning 16S ribosomal RNA gene variable regions 1 and 2 (∼360 bp with a de-noising pipeline that significantly improves the fraction of error-free sequences. The resulting sequences can be used to perform accurate genus- or species-level taxonomic assignment. We explore the microbial composition of challenging, heterogeneous clinical specimens by deep sequencing, culture-based strain typing, and Sanger sequencing of bulk PCR product. We report that deep sequencing can catalog bacterial species in mixed specimens from which usable data cannot be obtained by conventional clinical methods. Deep sequencing a collection of sputum samples from cystic fibrosis (CF patients reveals well-described CF pathogens in specimens where they were not detected by standard clinical culture methods, especially for low-prevalence or fastidious bacteria. We also found that sputa submitted for CF diagnostic workup can be divided into a limited number of groups based on the phylogenetic composition of the airway microbiota, suggesting that metagenomic profiling may prove useful as a clinical diagnostic strategy in the future. The described method is sufficiently rapid (theoretically compatible with same-day turnaround times and inexpensive for routine clinical use.

  3. 16S rRNA gene sequencing reveals effects of photoperiod on cecal microbiota of broiler roosters

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2018-02-01

    Full Text Available Photoperiod is an important factor in stimulating broiler performance in commercial poultry practice. However, the mechanism by which photoperiod affects the performance of broiler chickens has not been adequately explored. The current study evaluated the effects of three different photoperiod regimes (short day (LD = 8 h light, control (CTR = 12.5 h light, and long day (SD = 16 h light on the cecal microbiota of broiler roosters by sequencing bacterial 16S rRNA genes. At the phylum level, the dominant bacteria were Firmicutes (CTR: 68%, SD: 69%, LD: 67% and Bacteroidetes (CTR: 25%, SD: 26%, and LD: 28%. There was a greater abundance of Proteobacteria (p < 0.01 and Cyanobacteria (p < 0.05 in chickens in the LD group than in those in the CTR group. A significantly greater abundance of Actinobacteria was observed in CTR chickens than in SD and LD chickens (p < 0.01. The abundance of Deferribacteres was significantly higher in LD chickens than in SD chickens (p < 0.01. Fusobacteria and Proteobacteria were more abundant in SD chickens than in CTR and LD chickens. The predicted functional properties indicate that cellular processes may be influenced by photoperiod. Conversely, carbohydrate metabolism was enhanced in CTR chickens as compared to that in SD and LD chickens. The current results indicate that different photoperiod regimes may influence the abundance of specific bacterial populations and then contribute to differences in the functional properties of gut microbiota of broiler roosters.

  4. [Value of specific 16S rDNA fragment of algae in diagnosis of drowning: an experiment with rabbits].

    Science.gov (United States)

    Li, Peng; Xu, Qu-Yi; Chen, Ling; Liu, Chao; Zhao, Jian; Wang, Yu-Zhong; Yu, Zheng-Liang; Hu, Sun-Lin; Wang, Hui-Jun

    2015-08-01

    To establish a method for amplifying specific 16S rDNA fragment of algae related with drowning and test its value in drowning diagnosis. Thirty-five rabbits were randomly divided into 3 the drowning group (n=15), postmortem water immersion group (n=15, subjected to air embolism before seawater immersion), and control group(n=5, with air embolism only). Twenty samples of the liver tissues from human corpses found in water were also used, including 14 diatom-positive and 6 diatom-negative samples identified by microwave digestion-vacuum filtration-automated scanning electron microscopy (MD-VF-Auto SEM). Seven known species of algae served as the control algae (Melosira sp, Nitzschia sp, Synedra sp, Navicula sp, Microcystis sp, Cyclotella meneghiniana, and Chlorella sp). The total DNA was extracted from the tissues and algae to amplify the specific fragment of algae followed by 8% polyacrylamide gelelectrophoresis and sliver-staining. In the drowning group, algae was detected in the lungs (100%), liver (86%), and kidney (86%); algae was detected in the lungs in 2 rabbits in the postmortem group (13%) and none in the control group. The positivity rates of algae were significantly higher in the drowning group than in the postmortem group (Palgae, including sample that had been identified as diatom-negative by MD-VF-Auto SEM. All the 7 control algae samples yielded positive results in PCR. The PCR-based method has a high sensitivity in algae detection for drowning diagnosis and allows simultaneous detection of multiple algae species related with drowning.

  5. Amplification of marine methanotrophic enrichment DNA with 16S rDNA PCR primers for type II alpha proteobacteria methanotrophs.

    Science.gov (United States)

    Rockne, Karl J; Strand, Stuart E

    2003-09-01

    Type II alpha proteobacteria methanotrophs are capable of a wide range of cometabolic transformations of chlorinated solvents and polycyclic aromatic hydrocarbons (PAHs), and this activity has been exploited in many terrestrial bioremediation systems. However, at present, all known obligately marine methanotrophic isolates are Type I gamma proteobacteria which do not have this activity to the extent of Type II methanotrophs. In previous work in our laboratory, determining the presence of Type II alpha proteobacteria methanotrophs in marine enrichment cultures that co-metabolized PAHs required a more sensitive assay. 16S rDNA PCR primers were designed based on oligonucleotide probes for serine pathway methanotrophs and serine pathway methylotrophs with an approximate amplification fragment size of 870 base pairs. Comparison of the primers using double primer BLAST searches in established nucleotide databases showed potential amplification with all Methylocystis and Methylosinus spp., as well as potential amplification with Methylocella palustrus. DNA from Methylosinus trichosporium OB3b, a Type II methanotroph, amplified with the primers with a fragment size of approximately 850 base pairs, whereas DNA extracted from Methylomonas methanica, a Type I methanotroph, did not. The primers were used to amplify DNA extracted from two marine methanotrophic enrichment cultures: a low nitrogen/low copper enrichment to select for Type II methanotrophs and a high nitrogen/high copper enrichment to select for Type I methanotrophs. Although DNA from both cultures amplified with the PCR primers, amplification was stronger in cultures that were specifically enriched for Type II methanotrophs, suggesting the presence of higher numbers of Type II methanotrophs. These results provide further evidence for the existence of Type II marine methanotrophs, suggesting the possibility of exploiting cometabolic activity in marine systems.

  6. Culture-dependent bacteria in commercial fishes: Qualitative assessment and molecular identification using 16S rRNA gene sequencing

    Directory of Open Access Journals (Sweden)

    Nabeel M. Alikunhi

    2017-09-01

    Full Text Available Fish contamination has been extensively investigated along the Saudi coasts, but studies pertaining to bacterial pathogens are scarce. We conducted qualitative assessment and molecular identification of culture-dependent bacteria in 13 fish species from three coastal sites and a local fish market in Jeddah, Saudi Arabia. Bacterial counts of gills, skin, gut and muscle were examined on agar plates of Macconkey’s (Mac, Eosin Methylene Blue (EMB and Thiosulfate Citrate Bile Salts (TCBS culture media. Bacterial counts significantly differed between species, sources and feeding habits of examined fishes. Mugil cephalus exhibited higher counts on TCBS (all body parts, Mac (gills, muscle and gut and EMB (gills and muscle. Fishes from Area I had higher bacterial loads, coinciding with those in seawater and sediment from the same site, indicating direct association between habitat conditions and the levels of bacterial contamination. By feeding habit, detritivorous fish harbored higher counts than herbivorous and carnivorous species. Bacterial counts of skin were higher in fish from market than field sites, and positively correlated with other body parts indicating the relation of surface bacterial load on the overall quality of fish. Rahnella aquatilis (Enterobacteriaceae and Photobacterium damselae (Vibrionaceae were among the dominant species from fish muscle based on 16S rRNA sequencing. These species are known human pathogens capable of causing foodborne illness with severe antibiotic resistance. Opportunistic pathogens, e.g. Hafnia sp. (Enterobacteriaceae and Pseudomonas stutzeri (Pseudomonadaceae also occurred in fish muscle. The inclusion of bacterial contamination in future monitoring efforts is thus crucial.

  7. Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform.

    Directory of Open Access Journals (Sweden)

    Lucas Sinclair

    Full Text Available As new sequencing technologies become cheaper and older ones disappear, laboratories switch vendors and platforms. Validating the new setups is a crucial part of conducting rigorous scientific research. Here we report on the reliability and biases of performing bacterial 16S rRNA gene amplicon paired-end sequencing on the MiSeq Illumina platform. We designed a protocol using 50 barcode pairs to run samples in parallel and coded a pipeline to process the data. Sequencing the same sediment sample in 248 replicates as well as 70 samples from alkaline soda lakes, we evaluated the performance of the method with regards to estimates of alpha and beta diversity. Using different purification and DNA quantification procedures we always found up to 5-fold differences in the yield of sequences between individually barcodes samples. Using either a one-step or a two-step PCR preparation resulted in significantly different estimates in both alpha and beta diversity. Comparing with a previous method based on 454 pyrosequencing, we found that our Illumina protocol performed in a similar manner - with the exception for evenness estimates where correspondence between the methods was low. We further quantified the data loss at every processing step eventually accumulating to 50% of the raw reads. When evaluating different OTU clustering methods, we observed a stark contrast between the results of QIIME with default settings and the more recent UPARSE algorithm when it comes to the number of OTUs generated. Still, overall trends in alpha and beta diversity corresponded highly using both clustering methods. Our procedure performed well considering the precisions of alpha and beta diversity estimates, with insignificant effects of individual barcodes. Comparative analyses suggest that 454 and Illumina sequence data can be combined if the same PCR protocol and bioinformatic workflows are used for describing patterns in richness, beta-diversity and taxonomic

  8. Vikodak--A Modular Framework for Inferring Functional Potential of Microbial Communities from 16S Metagenomic Datasets.

    Directory of Open Access Journals (Sweden)

    Sunil Nagpal

    Full Text Available The overall metabolic/functional potential of any given environmental niche is a function of the sum total of genes/proteins/enzymes that are encoded and expressed by various interacting microbes residing in that niche. Consequently, prior (collated information pertaining to genes, enzymes encoded by the resident microbes can aid in indirectly (reconstructing/ inferring the metabolic/ functional potential of a given microbial community (given its taxonomic abundance profile. In this study, we present Vikodak--a multi-modular package that is based on the above assumption and automates inferring and/ or comparing the functional characteristics of an environment using taxonomic abundance generated from one or more environmental sample datasets. With the underlying assumptions of co-metabolism and independent contributions of different microbes in a community, a concerted effort has been made to accommodate microbial co-existence patterns in various modules incorporated in Vikodak.Validation experiments on over 1400 metagenomic samples have confirmed the utility of Vikodak in (a deciphering enzyme abundance profiles of any KEGG metabolic pathway, (b functional resolution of distinct metagenomic environments, (c inferring patterns of functional interaction between resident microbes, and (d automating statistical comparison of functional features of studied microbiomes. Novel features incorporated in Vikodak also facilitate automatic removal of false positives and spurious functional predictions.With novel provisions for comprehensive functional analysis, inclusion of microbial co-existence pattern based algorithms, automated inter-environment comparisons; in-depth analysis of individual metabolic pathways and greater flexibilities at the user end, Vikodak is expected to be an important value addition to the family of existing tools for 16S based function prediction.A web implementation of Vikodak can be publicly accessed at: http

  9. Culture dependent bacteria in commercial fishes: Qualitative assessment and molecular identification using 16S rRNA gene sequencing

    KAUST Repository

    Alikunhi, Nabeel M.

    2016-05-27

    Fish contaminations have been extensively investigated in Saudi coasts, but studies pertaining to bacterial pathogens are meager. We conducted qualitative assessment and molecular identification of culture dependent bacteria in 13 fish species collected from three fishing sites and a local fish market in Jeddah, Saudi Arabia. The bacterial counts of gills, skin, gut and muscle were examined on agar plates of Macconkey’s (Mac), Eosin methylene blue (EMB) and Thiosulfate Citrate Bile Salts (TCBS) culture media. Bacterial counts exhibited interspecific, locational and behavioral differences. Mugil cephalus exhibited higher counts on TCBS (all body-parts), Mac (gills, muscle and gut) and EMB (gills and muscle). Samples of Area I were with higher counts, concurrent to seawater and sediment samples, revealing the influence of residing environment on fish contamination. Among feeding habits, detritivorous fish harbored higher bacterial counts, while carnivorous group accounted for lesser counts. Counts were higher in skin of fish obtained from market compared to field samples, revealing market as a major source of contamination. Bacterial counts of skin were positively correlated with other body-parts indicating influence of surface bacterial biota in overall quality of fish. Hence, hygienic practices and proper storage facilities in the Jeddah fish market is recommended to prevent adverse effect of food-borne illness in consumers. Rahnella aquatilis (Enterobacteriaceae) and Photobacterium damselae (Vibrionaceae) were among the dominant species identified from fish muscle samples using Sanger sequencing of 16S rRNA. This bacterial species are established human pathogens capable of causing foodborne illness with severe antibiotic resistance. Opportunistic pathogens such as Hafnia sp. (Enterobacteriaceae) and Pseudomonas stutzeri (Pseudomonadaceae) were also identified from fish muscle. These findings indicate bacterial contamination risk in commonly consumed fish of

  10. Beyond Streptococcus mutans: Dental Caries Onset Linked to Multiple Species by 16S rRNA Community Analysis

    Science.gov (United States)

    Gross, Erin L.; Beall, Clifford J.; Kutsch, Stacey R.; Firestone, Noah D.; Leys, Eugene J.; Griffen, Ann L.

    2012-01-01

    Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This may have

  11. Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe.

    Science.gov (United States)

    Moran, M A; Rutherford, L T; Hodson, R E

    1995-10-01

    A 16S rRNA genus-specific probe was used to determine whether Streptomyces populations are an indigenous component of marine sediment bacterial communities. Previous debates have suggested that marine Streptomyces isolates are derived not from resident populations but from spores of terrestrial species which have been physically transported to marine ecosystems but remain dormant until isolation. Rigorously controlled hybridization of rRNA extracted from coastal marsh sediments with the genus-specific probe indicated that Streptomyces rRNA accounted for 2 to 5% of the sediment community rRNA and that spores are not the source of the hybridization signal. Streptomyces populations must therefore be at least the 26th most abundant genus-level source of bacterial rRNA. the relative amounts of rRNAs from Streptomyces spp. and members of the Bacteria (69 to 79%) and Archaea (4 to 7%) domains were highly consistent in these marine sediments throughout an annual cycle, indicating that the species composition of sediment bacterial communities may be more stable than recent studies suggest for marine planktonic bacterial communities. Laboratory studies designed to investigate the possible functional roles of Streptomyces populations in coastal sediments demonstrated that population levels of this genus changed relatively rapidly (within a time frame of 6 weeks) in response to manipulation of substrate availability. Amendments of intact sediment cores with two compounds (vanillic acid and succinic acid) consistently resulted in Streptomyces populations contributing an increased percentage of rRNA (6 to 15%) to the total bacterial rRNA pool.

  12. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes.

    Science.gov (United States)

    Chen, Yin; Dumont, Marc G; Cébron, Aurélie; Murrell, J Colin

    2007-11-01

    Active methanotrophs in a landfill soil were revealed by detecting the 16S rRNA of methanotrophs and the mRNA transcripts of key genes involved in methane oxidation. New 16S rRNA primers targeting type I and type II methanotrophs were designed and optimized for analysis by denaturing gradient gel electrophoresis. Direct extraction of RNA from soil enabled the analysis of the expression of the functional genes: mmoX, pmoA and mxaF, which encode subunits of soluble methane monooxygenase, particulate methane monooxygenase and methanol dehydrogenase respectively. The 16S rRNA polymerase chain reaction (PCR) primers for type I methanotrophs detected Methylomonas, Methylosarcina and Methylobacter sequences from both soil DNA and cDNA which was generated from RNA extracted directly from the landfill cover soil. The 16S rRNA primers for type II methanotrophs detected primarily Methylocella and some Methylocystis 16S rRNA genes. Phylogenetic analysis of mRNA recovered from the soil indicated that Methylobacter, Methylosarcina, Methylomonas, Methylocystis and Methylocella were actively expressing genes involved in methane and methanol oxidation. Transcripts of pmoA but not mmoX were readily detected by reverse transcription polymerase chain reaction (RT-PCR), indicating that particulate methane monooxygenase may be largely responsible for methane oxidation in situ.

  13. Phylogenetic analysis of Pomacea canaliculata isolates collected from rice fields in different origins of China by combined mitochondrial 12S and 16S genes.

    Science.gov (United States)

    Li, Xiao-Yan; Bian, Qing-Qing; Zhao, Guang-Hui

    2015-02-01

    To study the genetic relationships of Pomacea canaliculata collected from rice fields in China, the mitochondrial (mt) 12S and 16S of 9 P. canaliculata isolates from 5 southern provinces in China were sequenced and analyzed. The intra-specific sequence variations of P. canaliculata were 0-1.1% for 12S and 0--0.6% for 16S, while the inter-specific variations among common Pomacea species in mt 12S and 16S were 3.0-11.7% and 2.3-10.1%, respectively. Phylogenetic analysis based on combined sequences of mt 12S and 16S revealed complex genetic structure of P. canaliculata in China. Two phylogenetic groups of P. canaliculata were indicated in China with one group sistered to P. canaliculata isolates from USA, and two groups were even found in the same province. The phylogenetic relationships of Pomacea spp. also could be effectively inferred by combined sequences of mt 12S and 16S. These findings provided basic information for further study of population genetics and diffusion pattern of P. canaliculata in China as well as in the world.

  14. Description of an unusual Neisseria meningitidis isolate containing and expressing Neisseria gonorrhoeae-Specific 16S rRNA gene sequences.

    Science.gov (United States)

    Walcher, Marion; Skvoretz, Rhonda; Montgomery-Fullerton, Megan; Jonas, Vivian; Brentano, Steve

    2013-10-01

    An apparently rare Neisseria meningitidis isolate containing one copy of a Neisseria gonorrhoeae 16S rRNA gene is described herein. This isolate was identified as N. meningitidis by biochemical identification methods but generated a positive signal with Gen-Probe Aptima assays for the detection of Neisseria gonorrhoeae. Direct 16S rRNA gene sequencing of the purified isolate revealed mixed bases in signature regions that allow for discrimination between N. meningitidis and N. gonorrhoeae. The mixed bases were resolved by sequencing individually PCR-amplified single copies of the genomic 16S rRNA gene. A total of 121 discrete sequences were obtained; 92 (76%) were N. meningitidis sequences, and 29 (24%) were N. gonorrhoeae sequences. Based on the ratio of species-specific sequences, the N. meningitidis strain seems to have replaced one of its four intrinsic 16S rRNA genes with the gonococcal gene. Fluorescence in situ hybridization (FISH) probes specific for meningococcal and gonococcal rRNA were used to demonstrate the expression of the rRNA genes. Interestingly, the clinical isolate described here expresses both N. meningitidis and N. gonorrhoeae 16S rRNA genes, as shown by positive FISH signals with both probes. This explains why the probes for N. gonorrhoeae in the Gen-Probe Aptima assays cross-react with this N. meningitidis isolate. The N. meningitidis isolate described must have obtained N. gonorrhoeae-specific DNA through interspecies recombination.

  15. Expression of the heat shock gene clpL of Streptococcus thermophilus is induced by both heat and cold shock

    Directory of Open Access Journals (Sweden)

    Naclerio Gino

    2006-02-01

    Full Text Available Abstract Background Heat and cold shock response are normally considered as independent phenomena. A small amount of evidence suggests instead that interactions may exist between them in two Lactococcus strains. Results We show the occurrence of molecular relationships between the mechanisms of cold and heat adaptations in Streptococcus thermophilus, a lactic acid bacterium widely used in dairy fermentation, where it undergoes both types of stress. We observed that cryotolerance is increased when cells are pre-incubated at high temperature. In addition, the production of a protein, identified as ClpL, a member of the heat-shock ATPase family Clp A/B, is induced at both high and low temperature. A knock-out clpL mutant is deficient in both heat and cold tolerance. However lack of production of this protein does not abolish the positive effect of heat pre-treatment towards cryotolerance. Conclusion Dual induction of ClpL by cold and heat exposure of cells and reduced tolerance to both temperature shocks in a clpL mutant indicates that the two stress responses are correlated in S. thermophilus. However this protein is not responsible by itself for cryotolerance of cells pre-treated at high temperature, indicating that ClpL is necessary for the two phenomena, but does not account by itself for the relationships between them.

  16. Biology of the temperate Streptococcus thermophilus bacteriophage TP-J34 and physical characterization of the phage genome

    International Nuclear Information System (INIS)

    Neve, Horst; Freudenberg, Wiebke; Diestel-Feddersen, Frederike; Ehlert, Regina; Heller, Knut J.

    2003-01-01

    The temperate Streptococcus thermophilus bacteriophage TP-J34 was identified in the lysogenic host strain J34. The majority of phage particles produced upon induction was defective and noninfectious, consisting of DNA-filled heads lacking tails. A physical map (45.6 kb) was established. Analysis of minor restriction bands of the DNA isolated from phage particles as well as the analysis of the protein pattern indicated that phage TP-J34 is a pac-type phage. This was confirmed by immunoelectron microscopy using antisera raised against virulent cos- and pac-type S. thermophilus phages. The lysogenic host J34 but not its noninducible derivate J34-12 contained phage DNA in the nonintegrated state and exhibited autolysis at elevated temperatures. Prophage-carrying strains grew homogeneously while 16 of 20 prophage-cured derivatives aggregated and sedimented rapidly. When phage TP-J34 was propagated lytically on a prophage-cured host strain, a 2.7-kb site-specific deletion occurred in the phage genome. This deletion was also identified in the prophage DNAs of relysogenized strains

  17. The role of aminopeptidase PepS in the growth of Streptococcus thermophilus is not restricted to nitrogen nutrition.

    Science.gov (United States)

    Thomas, S; Besset, C; Courtin, P; Rul, F

    2010-01-01

    To investigate the effect of an absence of aminopeptidase PepS on the growth of Streptococcus thermophilus on different media and at different temperatures. Using gene interruption, a negative mutant of the Strep. thermophilus CNRZ385 strain was constructed for the aminopeptidase PepS (strain DeltapepS). Checks were first of all made using biochemical assays that the DeltapepS strain lacks the peptide hydrolase activity of aminopeptidase PepS. It was demonstrated that the absence of the aminopeptidase PepS exerted a negative effect on growth whatever the culture medium (M17, chemically defined medium, milk). The role of aminopeptidase PepS in growth was enhanced at a high temperature (45 degrees C vs 37 degrees C). The DeltapepS strain was more resistant to lysozyme than the wild-type strain. We were able to demonstrate that aminopeptidase PepS probably plays a pleiotropic role through its involvement in growth via nitrogen nutrition, as well as via other cellular functions/metabolisms (such as peptidoglycane metabolism). This study constitutes the first report on the role of a member of the M29 MEROPS family of metallopeptidases (http://merops.sanger.ac.uk/).

  18. Short communication: technological and genotypic comparison between Streptococcus macedonicus and Streptococcus thermophilus strains coming from the same dairy environment.

    Science.gov (United States)

    Blaiotta, G; Sorrentino, A; Ottombrino, A; Aponte, M

    2011-12-01

    The species Streptococcus thermophilus is widely used for the preparation of several dairy products, and its technological contribution is clear. On the other hand, although Streptococcus macedonicus was first described more than 10 yr ago and, despite the scientific interest around this issue, the exact role of Strep. macedonicus in cheese making has yet to be clarified. In this study, 121 strains belonging to both species and isolated from the same dairy environment were genetically characterized by random amplification of polymorphic DNA (RAPD)-PCR and compared for the main biochemical features of technological interest, such as acid production, galactose utilization, citrate metabolism, exopolysaccharide production, and lipolytic, ureolytic, exocellular proteolytic, and decarboxylasic activities. Analysis by RAPD-PCR highlighted a remarkable genotypic heterogeneity among strains in both species, and, at a similarity level of 78%, all the isolates and reference strains of Strep. thermophilus grouped together and were well separated from the strains of Strep. macedonicus, confirming that these 2 species are different microbial entities. Comparison between genetic and phenotypic or biotechnological data did not reveal any relationships. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family.

    Science.gov (United States)

    Zylicz-Stachula, Agnieszka; Bujnicki, Janusz M; Skowron, Piotr M

    2009-05-29

    Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases), however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family - TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase) and methyltransferase (MTase) activities of wild type (wt) TspGWI (either recombinant or isolated from Thermus sp.) are dependent on the presence of divalent cations. TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/E)XK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module of the HsdR subunit and the additional domains that

  20. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family

    Directory of Open Access Journals (Sweden)

    Zylicz-Stachula Agnieszka

    2009-05-01

    Full Text Available Abstract Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases, however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase and methyltransferase (MTase activities of wild type (wt TspGWI (either recombinant or isolated from Thermus sp. are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/EXK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module

  1. Taxonomic study of the genus Tepidiphilus: transfer of Petrobacter succinatimandens to the genus Tepidiphilus as Tepidiphilus succinatimandens comb. nov., emended description of the genus Tepidiphilus and description of Tepidiphilus thermophilus sp. nov., isolated from a terrestrial hot spring.

    Science.gov (United States)

    Poddar, Abhijit; Lepcha, Rinchen T; Das, Subrata K

    2014-01-01

    Comparative phenotypic, chemotaxonomic and genetic analysis revealed significant similarities among strains of the genera Tepidiphilus and Petrobacter. Analysis of 16S rRNA gene sequences and DNA-DNA relatedness of the type strains Tepidiphilus margaritifer N2-214(T) and Petrobacter succinatimandens 4BON(T) showed sequence similarity of 98.9 % and less than 40 % relatedness, indicating that these strains represent different species of same genus. Both strains had phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and diphosphatidylglycerol as major polar lipids. Their fatty acid profiles were almost identical, with the predominant fatty acids C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. In view of this, we propose to transfer the member of the genus Petrobacter to the genus Tepidiphilus as Tepidiphilus succinatimandens comb. nov. and to emend the description of the genus Tepidiphilus. Further, a novel bacterium, strain JHK30(T), was isolated from a terrestrial hot spring located at Jharkhand, India, and was identified following a polyphasic approach. Cells were non-sporulating, aerobic, Gram-stain-negative rods and motile by a single polar flagellum. Optimum temperature for growth was 50-55 °C at pH 6.5-7.0. 16S rRNA gene sequence analysis revealed 99.71 % similarity with P. succinatimandens 4BON(T) ( = DSM 15512(T)) and 98.71 % with T. margaritifer N2-214(T) ( = DSM 15129(T)). However, DNA-DNA relatedness of strain JHK30(T) with these two type strains was well below 70 %. The DNA G+C base composition was 66.1 mol%. Strain JHK30(T) represents a novel species of the genus Tepidiphilus for which the name Tepidiphilus thermophilus sp. nov. is proposed. The type strain is JHK30(T) ( = JCM 19170(T) = LMG 27587(T)= DSM 27220(T)).

  2. Lactose Transport System of Streptococcus thermophilus : a Hybrid Protein with Homology to the Melibiose Carrier and Enzyme III of Phosphoenolpyruvate-Dependent Phosphotransferase Systems

    NARCIS (Netherlands)

    Poolman, Bert; Royer, Theresa J.; Mainzer, Stanley E.; Schmidt, Brian F.

    1989-01-01

    The gene responsible for the transport of lactose into Streptococcus thermophilus (lacS) was cloned in Escherichia coli as a 4.2-kilobase fragment from an EcoRI library of chromosomal DNA by using the vector pKK223-3. From deletion analysis, the gene for lactose transport mapped to two HindIII

  3. HPr(His~P)-mediated Phosphorylation Differently Affects Counterflow and Proton Motive Force-driven Uptake via the Lactose Transport Protein of Streptococcus thermophilus

    NARCIS (Netherlands)

    Gunnewijk, M.G W; Poolman, B.

    2000-01-01

    The lactose transport protein (LacS) of Streptococcus thermophilus has a C-terminal hydrophilic domain that is homologous to IIA protein and protein domains of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The IIA domain of LacS is phosphorylated on His-552 by the general

  4. Characteristics of Milk Fermented by Streptococcus thermophilus MGA45-4 and the Profiles of Associated Volatile Compounds during Fermentation and Storage

    Directory of Open Access Journals (Sweden)

    Tong Dan

    2018-04-01

    Full Text Available The lactic acid bacterium Streptococcus thermophilus is a major starter culture for the production of dairy products. In this study, the physiochemical characteristics of milk fermented by the MGA45-4 isolate of S. thermophilus were analyzed. Our data indicate that milk fermented using S. thermophilus MGA45-4 maintained a high viable cell count (8.86 log10 colony-forming units/mL, and a relatively high pH (4.4, viscosity (834.33 mPa·s, and water holding capacity (40.85% during 14 days of storage. By analyzing the volatile compound profile using solid-phase microextraction and gas chromatography/mass spectrometry, we identified 73 volatile compounds in the fermented milk product, including five carboxylic acids, 21 aldehydes, 13 ketones, 16 alcohols, five esters, and 13 aromatic carbohydrates. According to the odor activity values, 11 of these volatile compounds were found to play a key role in producing the characteristic flavor of fermented milk, particularly octanal, nonanal, hexanal, 2,3-butanedione, and 1-octen-3-ol, which had the highest odor activity values among all compounds analyzed. These findings thus provide more insights in the chemical/molecular characteristics of milk fermented using S. thermophilus, which may provide a basis for improving dairy product flavor/odor during the process of fermentation and storage.

  5. VARIASI ALEL DNA MIKROSATELIT AUTOSOM LOKUS D2S1338, D13S317 DAN D16S539 PADA MASYARAKAT DAYAK KAHARINGAN DI KOTA PALANGKA RAYA

    Directory of Open Access Journals (Sweden)

    Lucia Emy Octavia

    2016-06-01

    Full Text Available Penelitian ini dilakukan untuk mengetahui ragam alel masyarakat Dayak Kaharingan di Kota Palangka Raya.  DNA diekstraksi dari sel epitel mukosa mulut, dari 26 individu dengan metode fenol kloroform. DNA mikrosatelitautosom lokus D2S1338, D13S317 dan D16S539 diamplifikasi pada mesin PCR. Pengamatan hasil PCR dilakukan dengan Polyacrylamide Gel Electrophoresis (PAGE dan visualisasi DNA hasil PCR dengan pewarnaan perak nitrat.  Hasil penelitian ini menunjukkan terdapat 29 alel dari ketiga lokus yaitu lokus D2S1338 sebanyak 11 alel, serta masing-masing sembilan alel pada lokus D13S317 dan lokus D16S539. Nilai heterozigositas tertinggi terdapat pada lokus D2S1338 yaitu 0,8971 dengan kekuatan pembeda (PD 0,9682, diikuti lokus D13S317 dengan kekuatan pembeda 0,9339 dan lokus D16S539 dengan kekuatan pembeda 0,9226.

  6. Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval.

    Science.gov (United States)

    Selenska-Pobell, S; Kampf, G; Hemming, K; Radeva, G; Satchanska, G

    2001-06-01

    The bacterial diversity in two uranium waste piles was studied. Total DNA was recovered from a large number of soil samples collected from different sites and depths in the piles using two procedures for direct lysis. Significant differences in the bacterial composition of the samples were revealed by the use of rep-APD, RISA and 16S ARDREA. The 16S rDNA analyses showed that the uranium wastes were dominated by Acidithiobacillusferrooxidans and by several Pseudomonas species classified in the gamma-subdivision of the Proteobacteria. The three kinds of A. ferrooxidans 16S and IGS rDNA specific fragments that were found corresponded to the three phylogenetic groups recognised in this species. This microdiversity probably reflects the genetic adaptation of the uranium waste strains to different concentrations of heavy metals.

  7. Fastidious Gram-Negatives: Identification by the Vitek 2 Neisseria-Haemophilus Card and by Partial 16S rRNA Gene Sequencing Analysis

    DEFF Research Database (Denmark)

    Wolff Sönksen, Ute; Christensen, Jens Jørgen; Nielsen, Lisbeth

    2010-01-01

    Taxonomy and identification of fastidious Gram negatives are evolving and challenging. We compared identifications achieved with the Vitek 2 Neisseria-Haemophilus (NH) card and partial 16S rRNA gene sequence (526 bp stretch) analysis with identifications obtained with extensive phenotypic...... 16S rRNA gene sequence analysis results: For 76 strains phenotypic and sequencing identifications were identical, for 23 strains the sequencing identifications were either probable or possible, and for one strain only the genus was confirmed. Thus, the Vitek 2 NH system identifies most...... of the commonly occurring species included in the database. Some strains of rarely occurring species and strains of non-database species closely related to database species cause problems. Partial 16S rRNA gene sequence analysis performs well, but does not always suffice, additional phenotypical characterization...

  8. Robust species taxonomy assignment algorithm for 16S rRNA NGS reads: application to oral carcinoma samples

    Directory of Open Access Journals (Sweden)

    Nezar Noor Al-Hebshi

    2015-09-01

    Full Text Available Background: Usefulness of next-generation sequencing (NGS in assessing bacteria associated with oral squamous cell carcinoma (OSCC has been undermined by inability to classify reads to the species level. Objective: The purpose of this study was to develop a robust algorithm for species-level classification of NGS reads from oral samples and to pilot test it for profiling bacteria within OSCC tissues. Methods: Bacterial 16S V1-V3 libraries were prepared from three OSCC DNA samples and sequenced using 454's FLX chemistry. High-quality, well-aligned, and non-chimeric reads ≥350 bp were classified using a novel, multi-stage algorithm that involves matching reads to reference sequences in revised versions of the Human Oral Microbiome Database (HOMD, HOMD extended (HOMDEXT, and Greengene Gold (GGG at alignment coverage and percentage identity ≥98%, followed by assignment to species level based on top hit reference sequences. Priority was given to hits in HOMD, then HOMDEXT and finally GGG. Unmatched reads were subject to operational taxonomic unit analysis. Results: Nearly, 92.8% of the reads were matched to updated-HOMD 13.2, 1.83% to trusted-HOMDEXT, and 1.36% to modified-GGG. Of all matched reads, 99.6% were classified to species level. A total of 228 species-level taxa were identified, representing 11 phyla; the most abundant were Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Actinobacteria. Thirty-five species-level taxa were detected in all samples. On average, Prevotella oris, Neisseria flava, Neisseria flavescens/subflava, Fusobacterium nucleatum ss polymorphum, Aggregatibacter segnis, Streptococcus mitis, and Fusobacterium periodontium were the most abundant. Bacteroides fragilis, a species rarely isolated from the oral cavity, was detected in two samples. Conclusion: This multi-stage algorithm maximizes the fraction of reads classified to the species level while ensuring reliable classification by giving priority to the

  9. [Sequence analysis of 16S rDNA and pmoCAB gene cluster of trichloroethylene-degrading methanotroph].

    Science.gov (United States)

    Zhang, Yunru; Chen, Huaqing; Gao, Yanhui; Xing, Zhilin; Zhao, Tiantao

    2014-12-01

    Methanotrophs could degrade methane and various chlorinated hydrocarbons. The analysis on methane monooxygenase gene cluster sequence would help to understand its catalytic mechanism and enhance the application in pollutants biodegradation. The methanotrophs was enriched and isolated with methane as the sole carbon source in the nitrate mineral salt medium. Then, five chlorinated hydrocarbons were selected as cometabolic substrates to study the biodegradation. The phylogenetic tree of 16S rDNA using MEGE5.05 software was constructed to identify the methanotroph strain. The pmoCAB gene cluster encoding particulate methane monooxygenase (pMMO) was amplified by semi-nested PCR in segments. ExPASy was performed to analyze theoretical molecular weight of the three pMMO subunits. As a result, a strain of methanotroph was isolated. The phylogenetic analysis indicated that the strain belongs to a species of Methylocystis, and it was named as Methylocystis sp. JTC3. The degradation rate of trichloroethylene (TCE) reached 93.79% when its initial concentration was 15.64 μmol/L after 5 days. We obtained the pmoCAB gene cluster of 3 227 bp including pmoC gene of 771 bp, pmoA gene of 759 bp, pmoB gene of 1 260 bp and two noncoding sequences in the middle by semi-nested PCR, T-A cloning and sequencing. The theoretical molecular weight of their corresponding gamma, beta and alpha subunit were 29.1 kDa, 28.6 kDa and 45.6 kDa respectively analyzed using ExPASy tool. The pmoCAB gene cluster of JTC3 was highly identical with that of Methylocystis sp. strain M analyzed by Blast, and pmoA sequences is more conservative than pmoC and pmoB. Finally, Methylocystis sp. JTC3 could degrade TCE efficiently. And the detailed analysis of pmoCAB from Methylocystis sp. JTC3 laid a solid foundation to further study its active sites features and its selectivity to chlorinated hydrocarbon.

  10. Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea.

    Science.gov (United States)

    Ngugi, David Kamanda; Stingl, Ulrich

    2012-01-01

    Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24 °C throughout the year, and a remarkable uniform temperature (~22 °C) and salinity (~41 psu) from the mixed layer (~200 m) to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS) region of SAR11 in different depths of the Red Sea's water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen) on the population dynamics of this ubiquitous marine bacterium.

  11. Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea.

    Directory of Open Access Journals (Sweden)

    David Kamanda Ngugi

    Full Text Available Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24 °C throughout the year, and a remarkable uniform temperature (~22 °C and salinity (~41 psu from the mixed layer (~200 m to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS region of SAR11 in different depths of the Red Sea's water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen on the population dynamics of this ubiquitous marine bacterium.

  12. Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea.

    KAUST Repository

    Ngugi, David

    2012-11-20

    Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24 °C throughout the year, and a remarkable uniform temperature (~22 °C) and salinity (~41 psu) from the mixed layer (~200 m) to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS) region of SAR11 in different depths of the Red Sea\\'s water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen) on the population dynamics of this ubiquitous marine bacterium.

  13. Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Sotirios Vasileiadis

    Full Text Available The novel multi-million read generating sequencing technologies are very promising for resolving the immense soil 16S rRNA gene bacterial diversity. Yet they have a limited maximum sequence length screening ability, restricting studies in screening DNA stretches of single 16S rRNA gene hypervariable (V regions. The aim of the present study was to assess the effects of properties of four consecutive V regions (V3-6 on commonly applied analytical methodologies in bacterial ecology studies. Using an in silico approach, the performance of each V region was compared with the complete 16S rRNA gene stretch. We assessed related properties of the soil derived bacterial sequence collection of the Ribosomal Database Project (RDP database and concomitantly performed simulations based on published datasets. Results indicate that overall the most prominent V region for soil bacterial diversity studies was V3, even though it was outperformed in some of the tests. Despite its high performance during most tests, V4 was less conserved along flanking sites, thus reducing its ability for bacterial diversity coverage. V5 performed well in the non-redundant RDP database based analysis. However V5 did not resemble the full-length 16S rRNA gene sequence results as well as V3 and V4 did when the natural sequence frequency and occurrence approximation was considered in the virtual experiment. Although, the highly conserved flanking sequence regions of V6 provide the ability to amplify partial 16S rRNA gene sequences from very diverse owners, it was demonstrated that V6 was the least informative compared to the rest examined V regions. Our results indicate that environment specific database exploration and theoretical assessment of the experimental approach are strongly suggested in 16S rRNA gene based bacterial diversity studies.

  14. Differential regulation of two closely related integrative and conjugative elements from Streptococcus thermophilus

    Directory of Open Access Journals (Sweden)

    Carraro Nicolas

    2011-10-01

    Full Text Available Abstract Background Two closely related ICEs, ICESt1 and ICESt3, have been identified in the lactic acid bacterium Streptococcus thermophilus. While their conjugation and recombination modules are almost identical (95% nucleotide identity and their regulation modules related, previous work has demonstrated that transconjugants carrying ICESt3 were generated at rate exceeding by a 1000 factor that of ICESt1. Results The functional regulation of ICESt1 and ICESt3 transcription, excision and replication were investigated under different conditions (exponential growth or stationary phase, DNA damage by exposition to mitomycin C. Analysis revealed an identical transcriptional organization of their recombination and conjugation modules (long unique transcript whereas the transcriptional organization of their regulation modules were found to be different (two operons in ICESt1 but only one in ICESt3 and to depend on the conditions (promoter specific of stationary phase in ICESt3. For both elements, stationary phase and DNA damage lead to the rise of transcript levels of the conjugation-recombination and regulation modules. Whatever the growth culture conditions, excision of ICESt1 was found to be lower than that of ICESt3, which is consistent with weaker transfer frequencies. Furthermore, for both elements, excision increases in stationary phase (8.9-fold for ICESt1 and 1.31-fold for ICESt3 and is strongly enhanced by DNA damage (38-fold for ICESt1 and 18-fold for ICESt3. Although ICEs are generally not described as replicative elements, the copy number of ICESt3 exhibited a sharp increase (9.6-fold after mitomycin C exposure of its harboring strain CNRZ385. This result was not observed when ICESt3 was introduced in a strain deriving ICESt1 host strain CNRZ368, deleted for this element. This finding suggests an impact of the host cell on ICE behavior. Conclusions All together, these results suggest a novel mechanism of regulation shared by ICESt1

  15. Reduction of U(VI) by the deep subsurface bacterium, Thermus scotoductus SA-01, and the involvement of the ABC transporter protein.

    Science.gov (United States)

    Cason, Errol Duncan; Piater, Lizelle Ann; van Heerden, Esta

    2012-02-01

    In this study we investigated the effect of uranium on the growth of the bacterium Thermus scotoductus strain SA-01 as well as the whole cell U(VI) reduction capabilities of the organism. Also, site-directed mutagenesis confirmed the identity of a protein capable of a possible alternative mechanism of U(VI) reduction. SA-01 can grow aerobically in up to 1.25 mM uranium and has the capability to reduce low levels of U(VI) in under 20 h. TEM analysis performed on cells exposed to uranium showed extracellular and membrane-bound accumulation of uranium. The reductase-like protein was surprisingly identified as a peptide ABC transporter, peptide-binding protein. This study showcases the concept of protein promiscuity, where this protein with a distinct function in situ can also have the unintended function of a reactant for the reduction of U(VI). Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Three-stage biochemical selection: cloning of prototype class IIS/IIC/IIG restriction endonuclease-methyltransferase TsoI from the thermophile Thermus scotoductus.

    Science.gov (United States)

    Skowron, Piotr M; Vitkute, Jolanta; Ramanauskaite, Danute; Mitkaite, Goda; Jezewska-Frackowiak, Joanna; Zebrowska, Joanna; Zylicz-Stachula, Agnieszka; Lubys, Arvydas

    2013-08-06

    In continuing our research into the new family of bifunctional restriction endonucleases (REases), we describe the cloning of the tsoIRM gene. Currently, the family includes six thermostable enzymes: TaqII, Tth111II, TthHB27I, TspGWI, TspDTI, TsoI, isolated from various Thermus sp. and two thermolabile enzymes: RpaI and CchII, isolated from mesophilic bacteria Rhodopseudomonas palustris and Chlorobium chlorochromatii, respectively. The enzymes have several properties in common. They are large proteins (molecular size app. 120 kDa), coded by fused genes, with the REase and methyltransferase (MTase) in a single polypeptide, where both activities are affected by S-adenosylmethionine (SAM). They recognize similar asymmetric cognate sites and cleave at a distance of 11/9 nt from the recognition site. Thus far, we have cloned and characterised TaqII, Tth111II, TthHB27I, TspGWI and TspDTI. TsoI REase, which originate from thermophilic Thermus scotoductus RFL4 (T. scotoductus), was cloned in Escherichia coli (E. coli) using two rounds of biochemical selection of the T. scotoductus genomic library for the TsoI methylation phenotype. DNA sequencing of restriction-resistant clones revealed the common open reading frame (ORF) of 3348 bp, coding for a large polypeptide of 1116 aminoacid (aa) residues, which exhibited a high level of similarity to Tth111II (50% identity, 60% similarity). The ORF was PCR-amplified, subcloned into a pET21 derivative under the control of a T7 promoter and was subjected to the third round of biochemical selection in order to isolate error-free clones. Induction experiments resulted in synthesis of an app. 125 kDa protein, exhibiting TsoI-specific DNA cleavage. Also, the wild-type (wt) protein was purified and reaction optima were determined. Previously we identified and cloned the Thermus family RM genes using a specially developed method based on partial proteolysis of thermostable REases. In the case of TsoI the classic biochemical selection

  17. [Bacteria closely related to Phyllobacterium trifolii according to their 16S rRNA gene are discovered in the nodules of Hungarian sainfoin].

    Science.gov (United States)

    Baĭmiev, Al Kh; Baĭmiev, An Kh; Gubaĭdullin, I I; Kulikova, O L; Chemeris, A V

    2007-05-01

    The population genetic diversity and phylogeny of the bacteria entering the symbiosis with sainfoin that grows on the Chesnokovskaya Mountain, Ufa region, Republic of Bashkortostan, have been studied. RAPD analysis of DNA polymorphism of the microbial strains grown from the nodules of 20 plants using several random primers detected a high degree of genetic homogeneity in their population as compared with the populations of rhizobia of other leguminous plants growing at the same site. Sequencing of 16S rRNA genes of the three most different samples have demonstrated that these genes were identical and display 99.9% homology with the sequence of Phyllobacterium trifolii 16S rRNA gene.

  18. Optimized and standardized 192-plex solution for 16S rDNA gene sequencing on Illumina Miseq platform to assess soil biodiversity

    OpenAIRE

    Denonfoux, J.; Wahl, C.; Gauthier, Jean-Pierre; Laurent, Y.; Lebreton, Lionel; Terrat, Sébastien; Mougel, Christophe; Ferreira, S.

    2014-01-01

    The growing need to survey the tremendous microbial diversity in a culture independent manner, has led to the development of molecular methods through sequence profiling of conserved genes such as 16S rDNA. Next-generation sequencing technologies are now used routinely to assess bacterial communities composition in complex environmental samples. Recently, the improvement of the Illumina MiSeq platform to a 2×300 bases paired-end version made it much more attractive for 16S rDNA amplicons sequ...

  19. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM

    DEFF Research Database (Denmark)

    Galimand, Marc; Schmitt, Emmanuelle; Panvert, Michel

    2011-01-01

    methyltransferase, as well as by the previously characterized aac(6')-Ii that encodes a 6'-N-aminoglycoside acetyltransferase. Inactivation of efmM in E. faecium increases susceptibility to the aminoglycosides kanamycin and tobramycin, and, conversely, expression of a recombinant version of efmM in Escherichia coli...... confers resistance to these drugs. The EfmM protein shows significant sequence similarity to E. coli RsmF (previously called YebU), which is a 5-methylcytidine (m(5)C) methyltransferase modifying 16S rRNA nucleotide C1407. The target for EfmM is shown by mass spectrometry to be a neighboring 16S r...

  20. E. coli ribosomes with a C912 to U base change in the 16S rRNA are streptomycin resistant.

    OpenAIRE

    Montandon, P E; Wagner, R; Stutz, E

    1986-01-01

    Resistance to streptomycin (Sm) of Euglena gracilis chloroplasts can be due to a single C to T transition of the 16S rRNA gene in an invariant position which is equivalent to C912 of the Escherichia coli 16S rRNA. Since Euglena chloroplas