WorldWideScience

Sample records for thermotoga maritima endoglucanase

  1. Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima

    Directory of Open Access Journals (Sweden)

    Dmitry A Rodionov

    2013-08-01

    Full Text Available Hyperthermophilic bacteria from the Thermotogales lineage can produce hydrogen by fermenting a wide range of carbohydrates. Previous experimental studies identified a large fraction of genes committed to carbohydrate degradation and utilization in the model bacterium Thermotoga maritima. Knowledge of these genes enabled comprehensive reconstruction of biochemical pathways comprising the carbohydrate utilization network. However, transcriptional factors (TFs and regulatory mechanisms driving this network remained largely unknown. Here, we used an integrated approach based on comparative analysis of genomic and transcriptomic data for the reconstruction of the carbohydrate utilization regulatory networks in 11 Thermotogales genomes. We identified DNA-binding motifs and regulons for 19 orthologous TFs in the Thermotogales. The inferred regulatory network in T. maritima contains 181 genes encoding TFs, sugar catabolic enzymes and ABC-family transporters. In contrast to many previously described bacteria, a transcriptional regulation strategy of Thermotoga does not employ global regulatory factors. The reconstructed regulatory network in T. maritima was validated by gene expression profiling on a panel of mono- and disaccharides and by in vitro DNA-binding assays. The observed upregulation of genes involved in catabolism of pectin, trehalose, cellobiose, arabinose, rhamnose, xylose, glucose, galactose, and ribose showed a strong correlation with the UxaR, TreR, BglR, CelR, AraR, RhaR, XylR, GluR, GalR, and RbsR regulons. Ultimately, this study elucidated the transcriptional regulatory network and mechanisms controlling expression of carbohydrate utilization genes in T. maritima. In addition to improving the functional annotations of associated transporters and catabolic enzymes, this research provides novel insights into the evolution of regulatory networks in Thermotogales.

  2. Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima

    NARCIS (Netherlands)

    Levisson, M.; Han, G.W.; Deller, M.C.; Hendriks, S.N.A.; Oost, van der J.; Kengen, S.W.M.

    2012-01-01

    TM0077 from Thermotoga maritima is a member of the carbohydrate esterase family 7 and is active on a variety of acetylated compounds, including cephalosporin C. TM0077 esterase activity is confined to short-chain acyl esters (C2-C3), and is optimal around 100°C and pH 7.5. The positional specificity

  3. Structure of a periplasmic glucose-binding protein from Thermotoga maritima

    International Nuclear Information System (INIS)

    Palani, Kandavelu; Kumaran, Desigan; Burley, Stephen K.; Swaminathan, Subramanyam

    2012-01-01

    The periplasmic glucose-binding protein from T. maritima consists of two domains with the ligand β-d-glucose buried between them. The two domains adopt a closed conformation. ABC transport systems have been characterized in organisms ranging from bacteria to humans. In most bacterial systems, the periplasmic component is the primary determinant of specificity of the transport complex as a whole. Here, the X-ray crystal structure of a periplasmic glucose-binding protein (GBP) from Thermotoga maritima determined at 2.4 Å resolution is reported. The molecule consists of two similar α/β domains connected by a three-stranded hinge region. In the current structure, a ligand (β-d-glucose) is buried between the two domains, which have adopted a closed conformation. Details of the substrate-binding sites revealed features that determine substrate specificity. In toto, ten residues from both domains form eight hydrogen bonds to the bound sugar and four aromatic residues (two from each domain) stabilize the substrate through stacking interactions

  4. Crystallization and preliminary crystallographic analysis of an esterase with a novel domain from the hyperthermophile Thermotoga maritima

    NARCIS (Netherlands)

    Sun, Lei; Levisson, Mark; Hendriks, Sjon; Akveld, Twan; Kengen, Serve W. M.; Dijkstra, Bauke W.; van der Oost, John

    A predicted esterase ( EstA) with an unusual new domain from the hyperthermophilic bacterium Thermotoga maritima has been cloned and overexpressed in Escherichia coli. The purified protein was crystallized by the hanging-drop vapour-diffusion technique in the presence of lithium sulfate and

  5. Crystallization and preliminary crystallographic analysis of an esterase with a novel domain from the hyperthermophile Thermotoga maritima

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lei [Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Levisson, Mark; Hendriks, Sjon; Akveld, Twan; Kengen, Servé W. M. [Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Dijkstra, Bauke W. [Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Oost, John van der, E-mail: john.vanderoost@wur.nl [Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands)

    2007-09-01

    A thermostable esterase (EstA) from Thermotoga maritima was cloned and purified. Crystals of EstA and its selenomethionine derivative were grown and diffract to beyond 2.6 Å resolution at 100 K using synchrotron radiation. A predicted esterase (EstA) with an unusual new domain from the hyperthermophilic bacterium Thermotoga maritima has been cloned and overexpressed in Escherichia coli. The purified protein was crystallized by the hanging-drop vapour-diffusion technique in the presence of lithium sulfate and polyethylene glycol 8000. Selenomethionine-substituted EstA crystals were obtained under the same conditions and three different-wavelength data sets were collected to 2.6 Å resolution. The crystal belongs to space group H32, with unit-cell parameters a = b = 130.2, c = 306.2 Å. There are two molecules in the asymmetric unit, with a V{sub M} of 2.9 Å{sup 3} Da{sup −1} and 58% solvent content.

  6. Optimization of expression and properties of the recombinant acetohydroxyacid synthase of Thermotoga maritima

    Directory of Open Access Journals (Sweden)

    Mohammad S. Eram

    2015-12-01

    Full Text Available The data provide additional support of the characterization of the biophysical and biochemical properties of the enzyme acetohydroxyacid synthase from the hyperthermophilic bacterium Thermotoga maritima (Eram et al., 2015 [1]. The genes encoding the enzyme subunits have been cloned and expressed in the mesophilic host Escherichia coli. Detailed data include information about the optimization of the expression conditions, biophysical properties of the enzyme and reconstitution of the holoenzyme from individually expressed and purified subunits.

  7. Structure of an essential bacterial protein YeaZ (TM0874) from Thermotoga maritima at 2.5 Å resolution

    International Nuclear Information System (INIS)

    Xu, Qingping; McMullan, Daniel; Jaroszewski, Lukasz; Krishna, S. Sri; Elsliger, Marc-André; Yeh, Andrew P.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Duan, Lian; Feuerhelm, Julie; Grant, Joanna; Han, Gye Won; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Bedem, Henry van den; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    The crystal structure of an essential bacterial protein, YeaZ, from T. maritima identifies an interface that potentially mediates protein–protein interaction. YeaZ is involved in a protein network that is essential for bacteria. The crystal structure of YeaZ from Thermotoga maritima was determined to 2.5 Å resolution. Although this protein belongs to a family of ancient actin-like ATPases, it appears that it has lost the ability to bind ATP since it lacks some key structural features that are important for interaction with ATP. A conserved surface was identified, supporting its role in the formation of protein complexes

  8. Structural Insight inot the low Affinity Between Thermotoga maritima CheA and CheB Compared to their Escherichia coli/Salmonella typhimurium Counterparts

    Energy Technology Data Exchange (ETDEWEB)

    S Park; B Crane

    2011-12-31

    CheA-mediated CheB phosphorylation and the subsequent CheB-mediated demethylation of the chemoreceptors are important steps required for the bacterial chemotactic adaptation response. Although Escherichia coli CheB has been reported to interact with CheA competitively against CheY, we have observed that Thermotoga maritima CheB has no detectable CheA-binding. By determining the CheY-like domain crystal structure of T. maritima CheB, and comparing against the T. maritima CheY and Salmonella typhimurium CheB structures, we propose that the two consecutive glutamates in the {beta}4/{alpha}4 loop of T. maritima CheB that is absent in T. maritima CheY and in E. coli/S. typhimurium CheB may be one factor contributing to the low CheA affinity.

  9. Purification, crystallization and preliminary crystallographic analysis of a thermostable endonuclease IV from Thermotoga maritima

    International Nuclear Information System (INIS)

    Hughes, Ronny C.; Tomanicek, Stephen J.; Ng, Joseph D.; Coates, Leighton

    2009-01-01

    The overexpression, purification and crystallization of endonuclease IV from T. maritima are reported. The crystals belonged to the hexagonal space group P6 1 and diffracted to 2.36 Å resolution. The DNA-repair enzyme endonuclease IV from the thermophilic bacterium Thermotoga maritima MSB8 (reference sequence NC-000853) has been expressed in Escherichia coli and crystallized for X-ray analysis. T. maritima endonuclease IV is a 287-amino-acid protein with 32% sequence identity to E. coli endonuclease IV. The protein was purified to homogeneity and was crystallized using the sitting-drop vapor-diffusion method. The protein crystallized in space group P6 1 , with one biological molecule in the asymmetric unit, corresponding to a Matthews coefficient of 2.39 Å 3 Da −1 and 47% solvent content. The unit-cell parameters of the crystals were a = b = 123.2, c = 35.6 Å. Microseeding and further optimization yielded crystals with an X-ray diffraction limit of 2.36 Å. A single 70° data set was collected and processed, resulting in an overall R merge and a completeness of 9.5% and 99.3%, respectively

  10. Site-Directed Mutagenesis of a Hyperthermophilic Endoglucanase Cel12B from Thermotoga maritima Based on Rational Design.

    Directory of Open Access Journals (Sweden)

    Jinfeng Zhang

    Full Text Available To meet the demand for the application of high activity and thermostable cellulases in the production of new-generation bioethanol from nongrain-cellulose sources, a hyperthermostable β-1,4-endoglucase Cel12B from Thermotoga maritima was selected for further modification by gene site-directed mutagenesis method in the present study, based on homology modeling and rational design. As a result, two recombinant enzymes showed significant improvement in enzyme activity by 77% and 87%, respectively, higher than the parental enzyme TmCel12B. Furthermore, the two mutants could retain 80% and 90.5% of their initial activity after incubation at 80°C for 8 h, while only 45% for 5 h to TmCel12B. The Km and Vmax of the two recombinant enzymes were 1.97±0.05 mM, 4.23±0.15 μmol·mg(-1·min(-1 of TmCel12B-E225H-K207G-D37V, and 2.97±0.12 mM, 3.15±0.21 μmol·mg(-1·min(-1 of TmCel12B-E225H-K207G, respectively, when using CMC-Na as the substrate. The roles of the mutation sites were also analyzed and evaluated in terms of electron density, hydrophobicity of the modeled protein structures. The recombinant enzymes may be used in the hydrolysis of cellulose at higher temperature in the future. It was concluded that the gene mutagenesis approach of a certain active residues may effectively improve the performance of cellulases for the industrial applications and contribute to the study the thermostable mechanism of thermophilic enzymes.

  11. Structure of a NAD kinase from Thermotoga maritima at 2.3 Å resolution

    International Nuclear Information System (INIS)

    Oganesyan, Vaheh; Huang, Candice; Adams, Paul D.; Jancarik, Jaru; Yokota, Hisao A.; Kim, Rosalind; Kim, Sung-Hou

    2005-01-01

    The expression, purification, crystallization, and structure determination of NAD-kinase from T. maritima are reported. Similarity to other NAD-kinases as well as homo-oligomrization state of the enzyme from T. maritima are discussed. NAD kinase is the only known enzyme that catalyzes the formation of NADP, a coenzyme involved in most anabolic reactions and in the antioxidant defense system. Despite its importance, very little is known regarding the mechanism of catalysis and only recently have several NAD kinase structures been deposited in the PDB. Here, an independent investigation of the crystal structure of inorganic polyphosphate/ATP-NAD kinase, PPNK-THEMA, a protein from Thermotoga maritima, is reported at a resolution of 2.3 Å. The crystal structure was solved using single-wavelength anomalous diffraction (SAD) data collected at the Se absorption-peak wavelength in a state in which no cofactors or substrates were bound. It revealed that the 258-amino-acid protein is folded into two distinct domains, similar to recently reported NAD kinases. The N-terminal α/β-domain spans the first 100 amino acids and the last 30 amino acids of the polypeptide and has several topological matches in the PDB, whereas the other domain, which spans the middle 130 residues, adopts a unique β-sandwich architecture and only appreciably matches the recently deposited PDB structures of NAD kinases

  12. Enzymatic synthesis of rare sugars with L-rhamnulose-1-phosphate aldolase from Thermotoga maritima MSB8.

    Science.gov (United States)

    Li, Zijie; Wu, Xiaoru; Cai, Li; Duan, Shenglin; Liu, Jia; Yuan, Peng; Nakanishi, Hideki; Gao, Xiao-Dong

    2015-09-15

    L-Rhamnulose-1-phosphate aldolase from a thermophilic source (Thermotoga maritima MSB8) (RhaDT.mari) was heterologously overexpressed in Escherichia coli and the stereoselectivity of this enzyme with or without Nus tag was investigated. We also applied this enzyme to the synthesis of rare sugars D-psicose, D-sorbose, L-tagatose and L-fructose using our one-pot four-enzyme system. To the best of our knowledge, this is the first use of RhaD from a thermophilic source for rare sugar synthesis and the temperature tolerance of this enzyme paves the path for large scale fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Improved Activity of a Thermophilic Cellulase, Cel5A, from Thermotoga maritima on Ionic Liquid Pretreated Switchgrass

    Science.gov (United States)

    Chen, Zhiwei; Pereira, Jose H.; Liu, Hanbin; Tran, Huu M.; Hsu, Nathan S. Y.; Dibble, Dean; Singh, Seema; Adams, Paul D.; Sapra, Rajat; Hadi, Masood Z.; Simmons, Blake A.; Sale, Kenneth L.

    2013-01-01

    Ionic liquid pretreatment of biomass has been shown to greatly reduce the recalcitrance of lignocellulosic biomass, resulting in improved sugar yields after enzymatic saccharification. However, even under these improved saccharification conditions the cost of enzymes still represents a significant proportion of the total cost of producing sugars and ultimately fuels from lignocellulosic biomass. Much of the high cost of enzymes is due to the low catalytic efficiency and stability of lignocellulolytic enzymes, especially cellulases, under conditions that include high temperatures and the presence of residual pretreatment chemicals, such as acids, organic solvents, bases, or ionic liquids. Improving the efficiency of the saccharification process on ionic liquid pretreated biomass will facilitate reduced enzyme loading and cost. Thermophilic cellulases have been shown to be stable and active in ionic liquids but their activity is typically at lower levels. Cel5A_Tma, a thermophilic endoglucanase from Thermotoga maritima, is highly active on cellulosic substrates and is stable in ionic liquid environments. Here, our motivation was to engineer mutants of Cel5A_Tma with higher activity on 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) pretreated biomass. We developed a robotic platform to screen a random mutagenesis library of Cel5A_Tma. Twelve mutants with 25–42% improvement in specific activity on carboxymethyl cellulose and up to 30% improvement on ionic-liquid pretreated switchgrass were successfully isolated and characterized from a library of twenty thousand variants. Interestingly, most of the mutations in the improved variants are located distally to the active site on the protein surface and are not directly involved with substrate binding. PMID:24244549

  14. Improved activity of a thermophilic cellulase, Cel5A, from Thermotoga maritima on ionic liquid pretreated switchgrass.

    Directory of Open Access Journals (Sweden)

    Zhiwei Chen

    Full Text Available Ionic liquid pretreatment of biomass has been shown to greatly reduce the recalcitrance of lignocellulosic biomass, resulting in improved sugar yields after enzymatic saccharification. However, even under these improved saccharification conditions the cost of enzymes still represents a significant proportion of the total cost of producing sugars and ultimately fuels from lignocellulosic biomass. Much of the high cost of enzymes is due to the low catalytic efficiency and stability of lignocellulolytic enzymes, especially cellulases, under conditions that include high temperatures and the presence of residual pretreatment chemicals, such as acids, organic solvents, bases, or ionic liquids. Improving the efficiency of the saccharification process on ionic liquid pretreated biomass will facilitate reduced enzyme loading and cost. Thermophilic cellulases have been shown to be stable and active in ionic liquids but their activity is typically at lower levels. Cel5A_Tma, a thermophilic endoglucanase from Thermotoga maritima, is highly active on cellulosic substrates and is stable in ionic liquid environments. Here, our motivation was to engineer mutants of Cel5A_Tma with higher activity on 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc] pretreated biomass. We developed a robotic platform to screen a random mutagenesis library of Cel5A_Tma. Twelve mutants with 25-42% improvement in specific activity on carboxymethyl cellulose and up to 30% improvement on ionic-liquid pretreated switchgrass were successfully isolated and characterized from a library of twenty thousand variants. Interestingly, most of the mutations in the improved variants are located distally to the active site on the protein surface and are not directly involved with substrate binding.

  15. Purification, crystallization and preliminary X-ray diffraction analysis of the putative ABC transporter ATP-binding protein from Thermotoga maritima

    International Nuclear Information System (INIS)

    Ethayathulla, Abdul S.; Bessho, Yoshitaka; Shinkai, Akeo; Padmanabhan, Balasundaram; Singh, Tej P.; Kaur, Punit; Yokoyama, Shigeyuki

    2008-01-01

    The putative ABC transporter ATP-binding protein TM0222 from T. maritima was cloned, overproduced, purified and crystallized. A complete MAD diffraction data set has been collected to 2.3 Å resolution. Adenosine triphosphate (ATP) binding cassette transporters (ABC transporters) are ATP hydrolysis-dependent transmembrane transporters. Here, the overproduction, purification and crystallization of the putative ABC transporter ATP-binding protein TM0222 from Thermotoga maritima are reported. The protein was crystallized in the hexagonal space group P6 4 22, with unit-cell parameters a = b = 148.49, c = 106.96 Å, γ = 120.0°. Assuming the presence of two molecules in the asymmetric unit, the calculated V M is 2.84 Å 3 Da −1 , which corresponds to a solvent content of 56.6%. A three-wavelength MAD data set was collected to 2.3 Å resolution from SeMet-substituted TM0222 crystals. Data sets were collected on the BL38B1 beamline at SPring-8, Japan

  16. Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima Part II: modeling and experimental approaches for hydrogen production.

    Science.gov (United States)

    Auria, Richard; Boileau, Céline; Davidson, Sylvain; Casalot, Laurence; Christen, Pierre; Liebgott, Pierre Pol; Combet-Blanc, Yannick

    2016-01-01

    Thermotoga maritima is a hyperthermophilic bacterium known to produce hydrogen from a large variety of substrates. The aim of the present study is to propose a mathematical model incorporating kinetics of growth, consumption of substrates, product formations, and inhibition by hydrogen in order to predict hydrogen production depending on defined culture conditions. Our mathematical model, incorporating data concerning growth, substrates, and products, was developed to predict hydrogen production from batch fermentations of the hyperthermophilic bacterium, T. maritima . It includes the inhibition by hydrogen and the liquid-to-gas mass transfer of H 2 , CO 2 , and H 2 S. Most kinetic parameters of the model were obtained from batch experiments without any fitting. The mathematical model is adequate for glucose, yeast extract, and thiosulfate concentrations ranging from 2.5 to 20 mmol/L, 0.2-0.5 g/L, or 0.01-0.06 mmol/L, respectively, corresponding to one of these compounds being the growth-limiting factor of T. maritima . When glucose, yeast extract, and thiosulfate concentrations are all higher than these ranges, the model overestimates all the variables. In the window of the model validity, predictions of the model show that the combination of both variables (increase in limiting factor concentration and in inlet gas stream) leads up to a twofold increase of the maximum H 2 -specific productivity with the lowest inhibition. A mathematical model predicting H 2 production in T. maritima was successfully designed and confirmed in this study. However, it shows the limit of validity of such mathematical models. Their limit of applicability must take into account the range of validity in which the parameters were established.

  17. Crystallization and preliminary X-ray crystallographic analysis of CheW from Thermotoga maritima: a coupling protein of CheA and the chemotaxis receptor

    International Nuclear Information System (INIS)

    Park, SangYoun; Crane, Brian R.

    2011-01-01

    CheW from T. maritima has been crystallized (space group P6 3 , unit-cell parameters a = b = 61.265, c = 361.045 Å). Diffraction data have been collected to 3.1 Å resolution using synchrotron X-ray radiation. The CheW protein plays a key role in bacterial chemotaxis signal transduction by coupling CheA to chemotaxis receptors. CheW from Thermotoga maritima has been overexpressed in Escherichia coli and crystallized at 298 K using ammonium sulfate as a salt precipitant. X-ray diffraction data have been collected to 3.10 Å resolution at 100 K using synchrotron radiation. The crystal belonged to space group P6 3 , with unit-cell parameters a = b = 61.265, c = 361.045 Å. The asymmetric unit may contain four to six CheW molecules

  18. Genome Sequence of Thermotoga sp. Strain RQ2, a Hyperthermophilic Bacterium Isolated from a Geothermally Heated Region of the Seafloor near Ribeira Quente, the Azores

    Science.gov (United States)

    Swithers, Kristen S.; DiPippo, Jonathan L.; Bruce, David C.; Detter, Christopher; Tapia, Roxanne; Han, Shunsheng; Saunders, Elizabeth; Goodwin, Lynne A.; Han, James; Woyke, Tanja; Pitluck, Sam; Pennacchio, Len; Nolan, Matthew; Mikhailova, Natalia; Lykidis, Athanasios; Land, Miriam L.; Brettin, Thomas; Stetter, Karl O.; Nelson, Karen E.; Gogarten, J. Peter; Noll, Kenneth M.

    2011-01-01

    Thermotoga sp. strain RQ2 is probably a strain of Thermotoga maritima. Its complete genome sequence allows for an examination of the extent and consequences of gene flow within Thermotoga species and strains. Thermotoga sp. RQ2 differs from T. maritima in its genes involved in myo-inositol metabolism. Its genome also encodes an apparent fructose phosphotransferase system (PTS) sugar transporter. This operon is also found in Thermotoga naphthophila strain RKU-10 but no other Thermotogales. These are the first reported PTS transporters in the Thermotogales. PMID:21952543

  19. Crystallization and preliminary X-ray crystallographic characterization of TrmFO, a folate-dependent tRNA methyltransferase from Thermotoga maritima

    International Nuclear Information System (INIS)

    Cicmil, Nenad

    2008-01-01

    T. maritima TrmFO was overexpressed, purified and crystallized. A diffraction data set was collected to a resolution of 2.6 Å. TrmFO, previously classified as GID, is a methyltransferase that catalyzes the formation of 5-methyluridine or ribothymidine (T) at position 54 in tRNA in some Gram-positive bacteria. To date, TrmFO is the only characterized tRNA methyltransferase that does not use S-adenosylmethionine as the methyl-group donor. Instead, the donor of the methyl group is N 5 ,N 10 -methylenetetrahydrofolate. The crystallization and preliminary X-ray crystallographic studies of TrmFO are reported here. The recombinant protein, cloned from Thermotoga maritima genomic DNA, was overproduced in Esherichia coli and crystallized in 25%(v/v) PEG 4000, 100 mM NaCl and sodium citrate buffer pH 5.0 at 291 K using the hanging-drop vapor-diffusion method. The plate-shaped crystals diffracted to 2.6 Å and belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 79.94, b = 92.46, c = 127.20 Å

  20. Over-expression of xylanolytic ∝-glucuronidase from Thermotoga ...

    African Journals Online (AJOL)

    The GH67∝-glucuronidase encoded by aguA of Thermotoga maritima is one of the most ... to date and thus has considerable potential in industrial application. ... Enzymatic hydrolysis of corncob xylan examined by HPLC showed that more ...

  1. Crystallization and preliminary X-ray crystallographic characterization of TrmFO, a folate-dependent tRNA methyltransferase from Thermotoga maritima

    Energy Technology Data Exchange (ETDEWEB)

    Cicmil, Nenad, E-mail: cicmil@uiuc.edu [Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2008-03-01

    T. maritima TrmFO was overexpressed, purified and crystallized. A diffraction data set was collected to a resolution of 2.6 Å. TrmFO, previously classified as GID, is a methyltransferase that catalyzes the formation of 5-methyluridine or ribothymidine (T) at position 54 in tRNA in some Gram-positive bacteria. To date, TrmFO is the only characterized tRNA methyltransferase that does not use S-adenosylmethionine as the methyl-group donor. Instead, the donor of the methyl group is N{sup 5},N{sup 10}-methylenetetrahydrofolate. The crystallization and preliminary X-ray crystallographic studies of TrmFO are reported here. The recombinant protein, cloned from Thermotoga maritima genomic DNA, was overproduced in Esherichia coli and crystallized in 25%(v/v) PEG 4000, 100 mM NaCl and sodium citrate buffer pH 5.0 at 291 K using the hanging-drop vapor-diffusion method. The plate-shaped crystals diffracted to 2.6 Å and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 79.94, b = 92.46, c = 127.20 Å.

  2. Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains

    International Nuclear Information System (INIS)

    Zheng, Meiying; Cooper, David R.; Grossoehme, Nickolas E.; Yu, Minmin; Hung, Li-Wei; Cieslik, Marcin; Derewenda, Urszula; Lesley, Scott A.; Wilson, Ian A.; Giedroc, David P.; Derewenda, Zygmunt S.

    2009-01-01

    Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged-helix DNA-binding domains and diverse C-terminal regulatory domains which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all-α-helical regulatory domains classified into two related Pfam families: FadR-C and FCD. Only two crystal structures of FadR-family members, those of Escherichia coli FadR protein and LldR from Corynebacterium glutamicum, have been described to date in the literature. Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The FCD domain is similar to that of the LldR regulator and contains a buried metal-binding site. Using atomic absorption spectroscopy and Trp fluorescence, it is shown that the recombinant protein contains bound Ni 2+ ions but that it is able to bind Zn 2+ with K d < 70 nM. It is concluded that Zn 2+ is the likely physiological metal and that it may perform either structural or regulatory roles or both. Finally, the TM0439 structure is compared with two other FadR-family structures recently deposited by structural genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors

  3. Crystallization and preliminary X-ray crystallographic analysis of Thermotoga maritima CheA P3-P4-P5 domains in complex with CheW

    International Nuclear Information System (INIS)

    Park, SangYoun; Kim, Keon Young; Kim, Sunmin; Crane, Brian R.

    2012-01-01

    T. maritima CheA P3-P4-P5 domains were crystallized in complex with CheW. Low-resolution diffraction data were collected to ∼8 Å using synchrotron X-ray radiation. The CheA–CheW complex plays a key role in bacterial chemotaxis signal transduction by initiating phosphotransfer to response regulators via coupling to the chemoreceptors. CheA (P3-P4-P5 domains) and CheW from Thermotoga maritima were overexpressed in Escherichia coli and crystallized as a complex at 298 K using ammonium dihydrogen phosphate as a precipitant. X-ray diffraction data were collected to ∼8 Å resolution at 100 K using synchrotron radiation. The crystal belonged to space group I222 or I2 1 2 1 2 1 , with unit-cell parameters a = 184.2, b = 286.4, c = 327.7 Å. The asymmetric unit may contain six to ten CheA–CheW molecules

  4. Structure of a D-tagatose 3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima.

    Science.gov (United States)

    Sakuraba, Haruhiko; Yoneda, Kazunari; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa

    2009-03-01

    The crystal structure of a D-tagatose 3-epimerase-related protein (TM0416p) encoded by the hypothetical open reading frame TM0416 in the genome of the hyperthermophilic bacterium Thermotoga maritima was determined at a resolution of 2.2 A. The asymmetric unit contained two homologous subunits and a dimer was generated by twofold symmetry. The main-chain coordinates of the enzyme monomer proved to be similar to those of D-tagatose 3-epimerase from Pseudomonas cichorii and D-psicose 3-epimerase from Agrobacterium tumefaciens; however, TM0416p exhibited a unique solvent-accessible substrate-binding pocket that reflected the absence of an alpha-helix that covers the active-site cleft in the two aforementioned ketohexose 3-epimerases. In addition, the residues responsible for creating a hydrophobic environment around the substrate in TM0416p differ entirely from those in the other two enzymes. Collectively, these findings suggest that the substrate specificity of TM0416p is likely to differ substantially from those of other D-tagatose 3-epimerase family enzymes.

  5. The structure and dynamic properties of the complete histidine phosphotransfer domain of the chemotaxis specific histidine autokinase CheA from Thermotoga maritima

    International Nuclear Information System (INIS)

    Vu, Anh; Hamel, Damon J.; Zhou Hongjun; Dahlquist, Frederick W.

    2011-01-01

    The bacterial histidine autokinase CheA contains a histidine phosphotransfer (Hpt) domain that accepts a phosphate from the catalytic domain and donates the phosphate to either target response regulator protein, CheY or CheB. The Hpt domain forms a helix-bundle structure with a conserved four-helix bundle motif and a variable fifth helix. Observation of two nearly equally populated conformations in the crystal structure of a Hpt domain fragment of CheA from Thermotoga maritima containing only the first four helices suggests more mobility in a tightly packed helix bundle structure than previously thought. In order to examine how the structures of Hpt domain homologs may differ from each other particularly in the conformation of the last helix, and whether an alternative conformation exists in the intact Hpt domain in solution, we have solved a high-resolution, solution structure of the CheA Hpt from T. maritima and characterized the backbone dynamics of this protein. The structure contains a four-helix bundle characteristic of histidine phosphotransfer domains. The position and orientation of the fifth helix resembles those in known Hpt domain crystal and solution structures in other histidine kinases. The alternative conformation that was reported in the crystal structure of the CheA Hpt from T. maritima missing the fifth helix is not detected in the solution structure, suggesting a role for the fifth helix in providing stabilizing forces to the overall structure.

  6. Phenotypic Changes in Transgenic Tobacco Plants Overexpressing Vacuole-Targeted Thermotoga maritima BglB Related to Elevated Levels of Liberated Hormones

    Science.gov (United States)

    Nguyen, Quynh Anh; Lee, Dae-Seok; Jung, Jakyun; Bae, Hyeun-Jong

    2015-01-01

    The hyperthermostable β-glucosidase BglB of Thermotoga maritima was modified by adding a short C-terminal tetrapeptide (AFVY, which transports phaseolin to the vacuole, to its C-terminal sequence). The modified β-glucosidase BglB was transformed into tobacco (Nicotiana tabacum L.) plants. We observed a range of significant phenotypic changes in the transgenic plants compared to the wild-type (WT) plants. The transgenic plants had faster stem growth, earlier flowering, enhanced root systems development, an increased biomass biosynthesis rate, and higher salt stress tolerance in young plants compared to WT. In addition, programed cell death was enhanced in mature plants. Furthermore, the C-terminal AFVY tetrapeptide efficiently sorted T. maritima BglB into the vacuole, which was maintained in an active form and could perform its glycoside hydrolysis function on hormone conjugates, leading to elevated hormone [abscisic acid (ABA), indole 3-acetic acid (IAA), and cytokinin] levels that likely contributed to the phenotypic changes in the transgenic plants. The elevation of cytokinin led to upregulation of the transcription factor WUSCHELL, a homeodomain factor that regulates the development, division, and reproduction of stem cells in the shoot apical meristems. Elevation of IAA led to enhanced root development, and the elevation of ABA contributed to enhanced tolerance to salt stress and programed cell death. These results suggest that overexpressing vacuole-targeted T. maritima BglB may have several advantages for molecular farming technology to improve multiple targets, including enhanced production of the β-glucosidase BglB, increased biomass, and shortened developmental stages, that could play pivotal roles in bioenergy and biofuel production. PMID:26618153

  7. Structure of a d-tagatose 3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima

    International Nuclear Information System (INIS)

    Sakuraba, Haruhiko; Yoneda, Kazunari; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa

    2009-01-01

    The crystal structure of a hyperthermophilic d-tagatose 3-epimerase-related protein with a unique active-site architecture was determined. The crystal structure of a d-tagatose 3-epimerase-related protein (TM0416p) encoded by the hypothetical open reading frame TM0416 in the genome of the hyperthermophilic bacterium Thermotoga maritima was determined at a resolution of 2.2 Å. The asymmetric unit contained two homologous subunits and a dimer was generated by twofold symmetry. The main-chain coordinates of the enzyme monomer proved to be similar to those of d-tagatose 3-epimerase from Pseudomonas cichorii and d-psicose 3-epimerase from Agrobacterium tumefaciens; however, TM0416p exhibited a unique solvent-accessible substrate-binding pocket that reflected the absence of an α-helix that covers the active-site cleft in the two aforementioned ketohexose 3-epimerases. In addition, the residues responsible for creating a hydrophobic environment around the substrate in TM0416p differ entirely from those in the other two enzymes. Collectively, these findings suggest that the substrate specificity of TM0416p is likely to differ substantially from those of other d-tagatose 3-epimerase family enzymes

  8. Stability of endoglucanases from mesophilic fungus and thermophilic bacterium in acidified polyols.

    Science.gov (United States)

    Chong, Barrie Fong; Harrison, Mark D; O'Hara, Ian M

    2014-01-01

    Recent developments in chemical pretreatments of lignocellulosic biomass using polyols as co-solvents (e.g., glycerol and ethylene glycol) at temperatures less than 100°C may allow the effective use of thermostable and non-thermostable cellulases in situ during the saccharification process. The potential of biomass saccharifying enzymes, endoglucanases (EG) from a thermophilic bacterium (Thermotoga maritima) and a mesophilic fungus (Trichoderma longibrachiatum), to retain their activity in aqueous buffer, acidified glycerol, and acidified ethylene glycol used as co-solvents at pretreatment temperatures at or below 100°C were examined. The results show that despite its origin, T. longibrachiatum EG (Tl-EG) retained 75% of its activity after exposure to 100°C for 5 min in aqueous buffer while T. maritima EG (Tm-EG) retained only 5% activity. However, at 90°C both enzymes retained over 87% of their activity. In acidified (0.1% (w/w) H2SO4) glycerol, Tl-EG retained similar activity (80%) to that obtained in glycerol alone, while Tm-EG retained only 35%. With acidified ethylene glycol under these conditions, both Tl-EG and Tm-EG retained 36% of their activity. The results therefore show that Tl-EG is more stable in both acidified glycerol and ethylene glycol than Tm-EG. A preliminary kinetic study showed that pure glycerol improved the thermal stability of Tl-EG but destabilized Tm-EG, relative to the buffer solution. The half-lives of both Tl-EG and Tm-EG are 4.5 min in acidified glycerol, indicating that the effectiveness of these enzymes under typical pretreatment times of greater than 15 min will be considerably diminished. Attempts have been made to explain the differences in the results obtained between the two enzymes. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Polymerization properties of the Thermotoga maritima actin MreB: roles of temperature, nucleotides, and ions.

    Science.gov (United States)

    Bean, Greg J; Amann, Kurt J

    2008-01-15

    MreB is a bacterial orthologue of actin that affects cell shape, polarity, and chromosome segregation. Although a significant body of work has explored its cellular functions, we know very little about the biochemical behavior of MreB. We have cloned, overexpressed in Escherichia coli, and purified untagged MreB1 from Thermotoga maritima. We have characterized the conditions that regulate its monomer-to-polymer assembly reaction, the critical concentrations of that reaction, the manner in which MreB uses nucleotides, its stability, and the structure of the assembled polymer. MreB requires a bound purine nucleotide for polymerization and rapidly hydrolyzes it following assembly. MreB assembly contains two distinct components, one that does not require divalent cations and one that does, which may comprise the nucleation and elongation phases of assembly, respectively. MreB assembly is strongly favored by increasing temperature or protein concentration but inhibited differentially by high concentrations of monovalent salts. The polymerization rate increases and the bulk critical concentration decreases with increasing temperature, but in contrast to previous reports, MreB is capable of polymerizing across a broad range of temperatures. MreB polymers are shorter and stiffer and scatter more light than eukaryotic actin filaments. Due to rapid ATP hydrolysis and phosphate release, we suggest that most assembled MreB in cells is in the ADP-bound state. Because of only moderate differences between the ATP and ADP critical concentrations, treadmilling may occur, but we do not predict dynamic instability in cells. Because of the relatively low cellular concentration of MreB and the observed structural properties of the polymer, a single MreB assembly may exist in cells.

  10. Improved Synthesis of 4-Cyanotryptophan and Other Tryptophan Analogues in Aqueous Solvent Using Variants of TrpB from Thermotoga maritima.

    Science.gov (United States)

    Boville, Christina E; Romney, David K; Almhjell, Patrick J; Sieben, Michaela; Arnold, Frances H

    2018-04-27

    The use of enzymes has become increasingly widespread in synthesis as chemists strive to reduce their reliance on organic solvents in favor of more environmentally benign aqueous media. With this in mind, we previously endeavored to engineer the tryptophan synthase β-subunit (TrpB) for production of noncanonical amino acids that had previously been synthesized through multistep routes involving water-sensitive reagents. This enzymatic platform proved effective for the synthesis of analogues of the amino acid tryptophan (Trp), which are frequently used in pharmaceutical synthesis as well as chemical biology. However, certain valuable compounds, such as the blue fluorescent amino acid 4-cyanotryptophan (4-CN-Trp), could only be made in low yield, even at elevated temperature (75 °C). Here, we describe the engineering of TrpB from Thermotoga maritima that improved synthesis of 4-CN-Trp from 24% to 78% yield. Remarkably, although the final enzyme maintains high thermostability ( T 50 = 93 °C), its temperature profile is shifted such that high reactivity is observed at ∼37 °C (76% yield), creating the possibility for in vivo 4-CN-Trp production. The improvements are not specific to 4-CN-Trp; a boost in activity at lower temperature is also demonstrated for other Trp analogues.

  11. Cytoplasmic expression of a thermostable invertase from Thermotoga maritima in Lactococcus lactis.

    Science.gov (United States)

    Pek, Han Bin; Lim, Pei Yu; Liu, Chengcheng; Lee, Dong-Yup; Bi, Xuezhi; Wong, Fong Tian; Ow, Dave Siak-Wei

    2017-05-01

    To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis. The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively. Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.

  12. Crystal structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Meiying; Cooper, David; Grossoehmerb, Nickolas; Yu, Minmin; Hung, Li-Wei; Cieslik, Murcin; Derewendaro, Urszula; Lesley, Scott; Wilson, Ian; Giedrocb, David; Derewenda, Zygmunt

    2009-06-06

    The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged helix (WH) DNA-binding domains and diverse C-terminal, regulatory domains, which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all a-helical regulatory domains classified into two related Pfam families: FadR{_}C and FCD. Only two crystal structures of the FadR family members, i.e. the E. coli FadR protein and the LldR from C. glutamicum, have been described to date in literature. Here we describe the crystal structure of TM0439, a GntR regulator with an FCD domain, found in the Thermotoga maritima genome. The FCD domain is similar to that of the LldR regulator, and contains a buried metal binding site. Using atomic absorption spectroscopy and Trp fluorescence, we show that the recombinant protein contains bound Ni{sup 2+} ions, but it is able to bind Zn{sup 2+} with K{sub D} < 70 nM . We conclude that Zn{sup 2+} is the likely physiological metal, where it may perform either or both structural and regulatory roles. Finally, we compare the TM0439 structure to two other FadR family structures recently deposited by Structural Genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors.

  13. Impact of orientation of carbohydrate binding modules family 22 and 6 on the catalytic activity of Thermotoga maritima xylanase XynB.

    Science.gov (United States)

    Tajwar, Razia; Shahid, Saher; Zafar, Rehan; Akhtar, Muhammad Waheed

    2017-11-01

    Xylanase XynB of the hyperthermophile Thermotoga maritima, which belongs to glycoside hydrolase family 10 (GH10), does not have an associated carbohydrate binding module (CBM) in the native state. CBM6 and CBM22 from a thermophile Clostridium thermocellum were fused to the catalytic domain of XynB (XynB-C) to determine the effects on activity and other properties. XynB-B22C and XynB-CB22, produced by fusing CBM22 to the N- and C-terminal of XynB-C, showed 1.7- and 3.24-fold increase in activity against the insoluble birchwood xylan, respectively. Similarly, CBM6 when attached to the C-terminal of XynB-C resulted in 2.0-fold increase in activity, whereas its attachment to the N-terminal did not show any increase of activity. XynB-B22C and XynB-CB22 retained all the activity, whereas XynB-B6C and XynB-CB6 lost 17 and 11% of activity, respectively, at 60°C for 4h. Thermostability data and the secondary structure contents obtained by molecular modelling are in agreement with the data from circular dichroism analysis. Molecular modelling analysis showed that the active site residues of the catalytic domain and the binding residues of CBM6 and CBM22 were located on the surface of molecule, except XynB-B6C, where the binding residues were found somewhat buried. In the case of XynB-CB22, the catalytic and the binding residues seem to be located favorably adjacent to each other, thus showing higher increase in activity. This study shows that the active site residues of the catalytic domain and the binding residues of the CBM are arranged in a unique fashion, not reported before. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Structural and biochemical characterization of the β-N-acetylglucosaminidase from Thermotoga maritima: toward rationalization of mechanistic knowledge in the GH73 family.

    Science.gov (United States)

    Lipski, Alexandra; Hervé, Mireille; Lombard, Vincent; Nurizzo, Didier; Mengin-Lecreulx, Dominique; Bourne, Yves; Vincent, Florence

    2015-03-01

    Members of the GH73 glycosidase family cleave the β-1,4-glycosidic bond between the N-acetylglucosaminyl (GlcNAc) and N-acetylmuramyl (MurNAc) moieties in bacterial peptidoglycan. A catalytic mechanism has been proposed for members FlgJ, Auto, AcmA and Atl(WM) and the structural analysis of FlgJ and Auto revealed a conserved α/β fold reminiscent of the distantly related GH23 lysozyme. Comparison of the active site residues reveals variability in the nature of the catalytic general base suggesting two distinct catalytic mechanisms: an inverting mechanism involving two distant glutamate residues and a substrate-assisted mechanism involving anchimeric assistance by the C2-acetamido group of the GlcNAc moiety. Herein, we present the biochemical characterization and crystal structure of TM0633 from the hyperthermophilic bacterium Thermotoga maritima. TM0633 adopts the α/β fold of the family and displays β-N-acetylglucosaminidase activity on intact peptidoglycan sacculi. Site-directed mutagenesis identifies Glu34, Glu65 and Tyr118 as important residues for catalysis. A thorough bioinformatic analysis of the GH73 sequences identified five phylogenetic clusters. TM0633, FlgJ and Auto belong to a group of three clusters that conserve two carboxylate residues involved in a classical inverting acid-base mechanism. Members of the other two clusters lack a conserved catalytic general base supporting a substrate-assisted mechanism. Molecular modeling of representative members from each cluster suggests that variability in length of the β-hairpin region above the active site confers ligand-binding specificity and modulates the catalytic mechanisms within the GH73 family. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Cloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: bioconversion of D-galactose to D-tagatose using the enzyme.

    Science.gov (United States)

    Kim, Byoung-Chan; Lee, Yoon-Hee; Lee, Han-Seung; Lee, Dong-Woo; Choe, Eun-Ah; Pyun, Yu-Ryang

    2002-06-18

    Gene araA encoding an L-arabinose isomerase (AraA) from the hyperthermophile, Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 496 residues with a calculated molecular mass of 56677 Da. The deduced amino acid sequence has 94.8% identical amino acids compared with the residues in a putative L-arabinose isomerase of Thermotoga maritima. The recombinant enzyme expressed in E. coli was purified to homogeneity by heat treatment, ion exchange chromatography and gel filtration. The thermophilic enzyme had a maximum activity of L-arabinose isomerization and D-galactose isomerization at 85 degrees C, and required divalent cations such as Co(2+) and Mn(2+) for its activity and thermostability. The apparent K(m) values of the enzyme for L-arabinose and D-galactose were 116 mM (v(max), 119 micromol min(-1) mg(-1)) and 250 mM (v(max), 14.3 micromol min(-1) mg(-1)), respectively, that were determined in the presence of both 1 mM Co(2+) and 1 mM Mn(2+). A 68% conversion of D-galactose to D-tagatose was obtained using the recombinant enzyme at the isomerization temperature of 80 degrees C.

  16. Thermostability in endoglucanases is fold-specific

    Science.gov (United States)

    2011-01-01

    Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy) database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient. PMID:21291533

  17. Thermostability in endoglucanases is fold-specific

    Directory of Open Access Journals (Sweden)

    Wolt Jeffrey D

    2011-02-01

    Full Text Available Abstract Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient.

  18. Evolution of mal ABC transporter operons in the Thermococcales and Thermotogales

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2008-01-01

    Full Text Available Abstract Background The mal genes that encode maltose transporters have undergone extensive lateral transfer among ancestors of the archaea Thermococcus litoralis and Pyrococcus furiosus. Bacterial hyperthermophiles of the order Thermotogales live among these archaea and so may have shared in these transfers. The genome sequence of Thermotoga maritima bears evidence of extensive acquisition of archaeal genes, so its ancestors clearly had the capacity to do so. We examined deep phylogenetic relationships among the mal genes of these hyperthermophiles and their close relatives to look for evidence of shared ancestry. Results We demonstrate that the two maltose ATP binding cassette (ABC transporter operons now found in Tc. litoralis and P. furiosus (termed mal and mdx genes, respectively are not closely related to one another. The Tc. litoralis and P. furiosus mal genes are most closely related to bacterial mal genes while their respective mdx genes are archaeal. The genes of the two mal operons in Tt. maritima are not related to genes in either of these archaeal operons. They are highly similar to one another and belong to a phylogenetic lineage that includes mal genes from the enteric bacteria. A unique domain of the enteric MalF membrane spanning proteins found also in these Thermotogales MalF homologs supports their relatively close relationship with these enteric proteins. Analyses of genome sequence data from other Thermotogales species, Fervidobacterium nodosum, Thermosipho melanesiensis, Thermotoga petrophila, Thermotoga lettingae, and Thermotoga neapolitana, revealed a third apparent mal operon, absent from the published genome sequence of Tt. maritima strain MSB8. This third operon, mal3, is more closely related to the Thermococcales' bacteria-derived mal genes than are mal1 and mal2. F. nodosum, Ts. melanesiensis, and Tt. lettingae have only one of the mal1-mal2 paralogs. The mal2 operon from an unknown species of Thermotoga appears to

  19. Phylogeny and molecular signatures for the phylum Thermotogae and its subgroups.

    Science.gov (United States)

    Gupta, Radhey S; Bhandari, Vaibhav

    2011-06-01

    Thermotogae species are currently identified mainly on the basis of their unique toga and distinct branching in the rRNA and other phylogenetic trees. No biochemical or molecular markers are known that clearly distinguish the species from this phylum from all other bacteria. The taxonomic/evolutionary relationships within this phylum, which consists of a single family, are also unclear. We report detailed phylogenetic analyses on Thermotogae species based on concatenated sequences for many ribosomal as well as other conserved proteins that identify a number of distinct clades within this phylum. Additionally, comprehensive analyses of protein sequences from Thermotogae genomes have identified >60 Conserved Signature Indels (CSI) that are specific for the Thermotogae phylum or its different subgroups. Eighteen CSIs in important proteins such as PolI, RecA, TrpRS and ribosomal proteins L4, L7/L12, S8, S9, etc. are uniquely present in various Thermotogae species and provide molecular markers for the phylum. Many CSIs were specific for a number of Thermotogae subgroups. Twelve of these CSIs were specific for a clade consisting of various Thermotoga species except Tt. lettingae, which was separated from other Thermotoga species by a long branch in phylogenetic trees; Fourteen CSIs were specific for a clade consisting of the Fervidobacterium and Thermosipho genera and eight additional CSIs were specific for the genus Thermosipho. In addition, the existence of a clade consisting of the deep branching species Petrotoga mobilis, Kosmotoga olearia and Thermotogales bacterium mesG1 was supported by seven CSIs. The deep branching of this clade was also supported by a number of CSIs that were present in various Thermotogae species, but absent in this clade and all other bacteria. Most of these clades were strongly supported by phylogenetic analyses based on two datasets of protein sequences and they identify potential higher taxonomic grouping (viz. families) within this phylum

  20. Expression of Heterologous Cellulases in Thermotoga sp. Strain RQ2

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2015-01-01

    Full Text Available The ability of Thermotoga spp. to degrade cellulose is limited due to a lack of exoglucanases. To address this deficiency, cellulase genes Csac_1076 (celA and Csac_1078 (celB from Caldicellulosiruptor saccharolyticus were cloned into T. sp. strain RQ2 for heterologous overexpression. Coding regions of Csac_1076 and Csac_1078 were fused to the signal peptide of TM1840 (amyA and TM0070 (xynB, resulting in three chimeric enzymes, namely, TM1840-Csac_1078, TM0070-Csac_1078, and TM0070-Csac_1076, which were carried by Thermotoga-E. coli shuttle vectors pHX02, pHX04, and pHX07, respectively. All three recombinant enzymes were successfully expressed in E. coli DH5α and T. sp. strain RQ2, rendering the hosts with increased endo- and/or exoglucanase activities. In E. coli, the recombinant enzymes were mainly bound to the bacterial cells, whereas in T. sp. strain RQ2, about half of the enzyme activities were observed in the culture supernatants. However, the cellulase activities were lost in T. sp. strain RQ2 after three consecutive transfers. Nevertheless, this is the first time heterologous genes bigger than 1 kb (up to 5.3 kb in this study have ever been expressed in Thermotoga, demonstrating the feasibility of using engineered Thermotoga spp. for efficient cellulose utilization.

  1. ORF Alignment: NC_000853 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... Proteomics Target Tm0979_1_87; Northeast Structural ... Genomics Target Vt98. pdb|1X9A|A Chain... ... Thermotoga Maritima. Ontario Center For Structural ... Proteomics Target Tm0979_1_87; Northeast Stru

  2. ORF Alignment: NC_000853 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000853 gi|15643179 >1v7zA 3 256 7 270 9e-43 ... ref|NP_228223.1| creatinine amidoh...ydrolase, putative [Thermotoga maritima MSB8] ... gb|AAD35498.1| creatinine amidohydrolase, putative

  3. Genome sequence of the Thermotoga thermarum type strain (LA3(T)) from an African solfataric spring.

    Science.gov (United States)

    Göker, Markus; Spring, Stefan; Scheuner, Carmen; Anderson, Iain; Zeytun, Ahmet; Nolan, Matt; Lucas, Susan; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Rohde, Manfred; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla

    2014-06-15

    Thermotoga thermarum Windberger et al. 1989 is a member to the genomically well characterized genus Thermotoga in the phylum 'Thermotogae'. T. thermarum is of interest for its origin from a continental solfataric spring vs. predominantly marine oil reservoirs of other members of the genus. The genome of strain LA3T also provides fresh data for the phylogenomic positioning of the (hyper-)thermophilic bacteria. T. thermarum strain LA3(T) is the fourth sequenced genome of a type strain from the genus Thermotoga, and the sixth in the family Thermotogaceae to be formally described in a publication. Phylogenetic analyses do not reveal significant discrepancies between the current classification of the group, 16S rRNA gene data and whole-genome sequences. Nevertheless, T. thermarum significantly differs from other Thermotoga species regarding its iron-sulfur cluster synthesis, as it contains only a minimal set of the necessary proteins. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,039,943 bp long chromosome with its 2,015 protein-coding and 51 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Flow synthesis of phenylserine using threonine aldolase (TA) immobilized on Eupergit support

    NARCIS (Netherlands)

    Tibhe, J.; Fu, Hui; Noel, T.; Wang, Q.; Meuldijk, J.; Hessel, V.

    2013-01-01

    Threonine aldolase (TA) from Thermotoga maritima was immobilized on Eupergit support by both a direct and an indirect method. The incubation time for the direct immobilization method was optimized for the highest amount of enzyme on the support. By introducing the immobilized TA in a packed-bed

  5. Bifunctional xylanases and their potential use in biotechnology

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Numan, M.Th.

    . J Chromatography 919:389–394 33. Hong SY, Lee JS, Cho KM, Math RK, Kim YH, Hong SJ, Cho YU, Kim H, Yun HD (2006) Assembling a novel bifunctional cel- lulase–xylanase from Thermotoga maritima by end-to-end fusion. Biotechnol Lett 28:1857–1862 34...

  6. Dicty_cDB: Contig-U11847-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 00512_699( AE000512 |pid:none) Thermotoga maritima MSB8, comple... 42 0.065 JC2551( JC2551 ) tropomyosin alpha chain - axolotl...AltName: Full=Myosin heavy chai... 42 0.11 JC6199( JC6199 ) alpha-tropomyosin S-1 - axolotl &U33450_1(U33450

  7. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Science.gov (United States)

    Butzin, Nicholas C; Lapierre, Pascal; Green, Anna G; Swithers, Kristen S; Gogarten, J Peter; Noll, Kenneth M

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  8. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Directory of Open Access Journals (Sweden)

    Nicholas C Butzin

    Full Text Available The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS. These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  9. Biosynthesis, purification and characterization of endoglucanase from a xylanase producing strain Aspergillus niger B03

    Directory of Open Access Journals (Sweden)

    Georgi Todorov Dobrev

    2012-03-01

    Full Text Available An extracellular endoglucanase was isolated from the culture liquid of xylanase producing strain Aspergillus niger B03. The enzyme was purified to a homogenous form, using consecutive ultrafiltration, anion exchange chromatography, and gel filtration. Endoglucanase was a monomer protein with a molecular weight of 26,900 Da determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 28,800 Da determined by gel filtration. The optimal pH and temperature values for the enzyme action were 3.5 and 65ºC respectively. Endoglucanase was stable at 40ºC, pH 3.0 for 210 min. The substrate specificity of the enzyme was determined with carboxymethyl cellulose, filter paper, and different glycosides. Endoglucanase displayed maximum activity in the case of carboxymethyl cellulose, with a Km value of 21.01 mg/mL. The substrate specificity and the pattern of substrate degradation suggested that the enzyme is an endoglucanase. Endoglucanase showed a synergism with endoxylanase in corn cobs hydrolysis.

  10. Rhizosphere O2 dynamics in young Zostera marina and Ruppia maritima

    DEFF Research Database (Denmark)

    Jovanovic, Zeljko; Pedersen, Mia Østergaard; Larsen, Morten

    2015-01-01

    Zostera marina and Ruppia maritima often share the same habitat, but R. maritima appears more resistant to environmental stress. We investigated the impact of light intensity and water column O2 concentrations on radial oxygen loss (ROL), in young specimens of Z. marina and R. maritima. Planar......, respectively. These values declined by 71 and 60% in darkness. However, both species were able to maintain ROL as long as ambient O2 levels remained >50% air saturation. The calculated ROL integrated over a 24 h cycle was 48.8 ± 10.6 nmol O2 plant−1 d−1 (n = 3) for R. maritima and 30% less for Z. marina...

  11. Specific characteristics of family 45 endoglucanases from Mucorales in the use of textiles and laundry.

    Science.gov (United States)

    Shimonaka, Atsushi; Koga, Jinichiro; Baba, Yuko; Nishimura, Tomoko; Murashima, Koichiro; Kubota, Hidetoshi; Kono, Toshiaki

    2006-04-01

    We examined the characteristics of family 45 endoglucanases (glycoside hydrolases family 45; GH45) from Mucorales belonging to Zygomycota in the use of textiles and laundry. The defibrillation activities on lyocell fabric of family 45 endoglucanases from Mucorales, such as RCE1 and RCE2 from Rhizopus oryzae, MCE1 and MCE2 from Mucor circinelloides, and PCE1 from Phycomyces nitens, were much higher than those of the other family 45 endoglucanases. By contrast, family 45 endoglucanases from Mucorales were less resistant to anionic surfactant and oxidizing agent, main components in detergents, than the other family 45 endoglucanases. RCE1 consists of two distinct modules, a catalytic module and a carbohydrate-binding module family 1 (CBM1), and these common specific characteristics were considered to due to the catalytic module, but not to the CBM1.

  12. Production of thermophilic and acidophilic endoglucanases by ...

    African Journals Online (AJOL)

    Production of thermophilic and acidophilic endoglucanases by mutant Trichoderma atroviride 102C1 using agro-industrial by-products. ... The effect of the carbon (sugarcane bagasse: SCB) and nitrogen (corn steep liquor: CSL) sources on ...

  13. AcEST: DK952111 [AcEST

    Lifescience Database Archive (English)

    Full Text Available P1254_THEMA Phosphorylated carbohydrates phosphatase T... 33 0.91 sp|P97347|RPTN_MOUSE Repetin OS=Mus muscul...----RPGVEAYLNAAKDLGLKIGL 106 Query: 582 CSTSNELAVS 611 S+S+ VS Sbjct: 107 ASSSDYKWVS 116 >sp|Q9X0Y1|P1254_THEMA Phosphorylated carboh...ydrates phosphatase TM_1254 OS=Thermotoga maritima GN=TM_1254 PE=1 SV=1 Length = 21

  14. Effects of nitrogen ion irradiation on endoglucanase activity and gene mutation of Bacillus subtilis Bac01

    International Nuclear Information System (INIS)

    Lv Jie; Mao Peihong; Jin Xiang; Yu Long; Ying Hanjie

    2009-01-01

    Bacillus subtilis Bac01 was mutated by 15 keV N + ions of 1.5xl0 16 cm -2 . The mutant strain Bac11 with high yield of endoglucanase was isolated using carboxymethylcellulose sodium and congo red indicative plates. It exhibited higher endoglucanase activity (381.89IU) than the original strain Bac01 (93.33IU). Two 1,500 bp endoglucanase gene fragments were obtained with PCR amplification from B. subtilis Bac01 and mutant strain Bac11. BLAST comparison result indicated that 10 nucleotides mutated. Bioinformatics methods were used to analyze the two predicted amino acid sequences, and it was found that 5 amino acid residues changed, being all in the cellulose-binding domain of endoglucanase. (authors)

  15. Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems

    International Nuclear Information System (INIS)

    Sousa, Ana I.; Lillebo, Ana I.; Cacador, Isabel; Pardal, Miguel A.

    2008-01-01

    Salt marshes are among the most productive ecosystems in the world, performing important ecosystem functions, particularly nutrient recycling. In this study, a comparison is made between Mondego and Tagus estuaries in relation to the role of Spartina maritima in nitrogen retention capacity and cycling. Two mono-specific S. maritima stands per estuary were studied during 1 yr (biomass, nitrogen (N) pools, litter production, decomposition rates). Results showed that the oldest Tagus salt marsh population presented higher annual belowground biomass and N productions, and a slower decomposition rate for litter, contributing to the higher N accumulation in the sediment, whereas S. maritima younger marshes had higher aboveground biomass production. Detritus moved by tides represented a huge amount of aboveground production, probably significant when considering the N balance of these salt marshes. Results reinforce the functions of salt marshes as contributing to a reduction of eutrophication in transitional waters, namely through sedimentation processes. - The crucial capacity of salt marshes to retain nitrogen, thus reducing eutrophication, greatly depends on the salt marsh maturity, rather than the estuarine system

  16. Purification and characterization of an endoglucanase from the marine rotifer, Brachionus plicatilis.

    Science.gov (United States)

    Chun, C Z; Hur, S B; Kim, Y T

    1997-10-01

    The marine rotifer, Brachionus plicatilis, is able to digest Chlorella efficiently, suggesting that the rotifer contains a powerful cellulolytic enzyme system. A multi-component cellulolytic complex, including endoglucanase (CM-cellulase), cellobiohydrolase and beta-glucosidase, was found in Brachionus plicatilis. Endoglucanase (endo-beta-1,4 glucanase) was purified to homogeneity from rotifer homogenates using a sequential chromatographic method. The purified enzyme exhibits a strong hydrolytic activity with carboxymethyl(CM)-cellulose. The optimum temperature and pH for the endoglucanase activity were 37 degrees C and 7.0, respectively. 80% of the CM-cellulase activity was retained in salt mixture that ranged from 150 to 500 mM NaCl equivalent. The purified protein was isolated with a molecular weight of approximately 62 kDa estimated by SDS-polyacrylamide gel electrophoresis.

  17. AcEST: DK952773 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 0Y1|P1254_THEMA Phosphorylated carbohydrates phosphatase T... 58 4e-08 sp|P77247|YNIC_ECOLI Phosphatase yniC...hydrates phosphatase TM_1254 OS=Thermotoga maritima GN=TM_1254 PE=1 SV=1 Length = 2...PELYLLAAKNLGVSPAECLAFEDSVNGSIAAKRAGMKCVI 183 Query: 515 TKKRV 529 +V Sbjct: 184 VPNKV 188 >sp|Q9X0Y1|P1254_THEMA Phosphorylated carbo

  18. Complete genome sequence of Hippea maritima type strain (MH2T)

    Energy Technology Data Exchange (ETDEWEB)

    Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Lu, Megan [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Hippea maritima (Miroshnichenko et al. 1999) is the type species of the genus Hippea, which belongs to the family Desulfurellaceae within the class Deltaproteobacteria. The anaerobic, moderately thermophilic marine sulfur-reducer was first isolated from shallow-water hot vents in Matipur Harbor, Papua New Guinea. H. maritima was of interest for genome se- quencing because of its isolated phylogenetic location, as a distant next neighbor of the ge- nus Desulfurella. Strain MH2T is the first type strain from the order Desulfurellales with a com- pletely sequenced genome. The 1,694,430 bp long linear genome with its 1,723 protein- coding and 57 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  19. Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization

    Science.gov (United States)

    Wangxia Wang; Michael D. Mozuch; Ronald C. Sabo; Phil Kersten; J.Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase from the archaeon Pyrococcus honkoshii (ph-GH5) and a commercial endoglucanase FR were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNFs) through subsequent microfluidization Enzymatic treatments facilitated CNF production due to the reduced degree of polymerization (DP)...

  20. Development of soluble and immobilized biocatalysts based on a recombinant thermostable ß-fructosidase enabling complete sucrose inversion at pasteurization temperatures

    OpenAIRE

    Menéndez, Carmen; Martínez, Duniesky; Trujillo, Luis E; Ramírez, Ricardo; Sobrino, Alina; Cutiño-Ávila, Bessy V; Basabe, Liliana; del Monte-Martínez, Alberto; Pérez, Enrique R; Hernández, Lázaro

    2014-01-01

    Biocatalysts for the industrial production of invert sugar are preferred to stably operate at high sucrose concentrations and pasteurization temperatures. Thermotoga maritima ß-fructosidase (BfrA) is more thermostable and less susceptible to substrate inhibition than the current commercial invertase from Saccharomyces cerevisiae. In this research, the non-saccharolytic host Pichia pastoris was engineered for BfrA production. Fed-batch fermentation of the recombinant yeast for 72 h using cane ...

  1. EGVII endoglucanase and nucleic acids encoding the same

    Science.gov (United States)

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2009-05-05

    The present invention provides an endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  2. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event

    Directory of Open Access Journals (Sweden)

    Gheysen Godelieve

    2008-11-01

    Full Text Available Abstract Background Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5 have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN. The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Results Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea; all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida. Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. Conclusion We conclude that the ancestral

  3. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event.

    Science.gov (United States)

    Kyndt, Tina; Haegeman, Annelies; Gheysen, Godelieve

    2008-11-03

    Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5) have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN). The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria) or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea); all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida). Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. We conclude that the ancestral PPN GHF5 endoglucanase gene most probably consisted of

  4. Chemical modification of β -endoglucanase from Trichoderma viridin ...

    African Journals Online (AJOL)

    β-Endoglucanase from Trichoderma viride was modified by methanol to explore the catalytic functional groups of cellulase. Crude cellulase was produced, and the conditions of saturation and pH by salting out with ammonium sulfate were optimized. Under optimal conditions, crude cellulase was isolated and purified.

  5. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima

    Science.gov (United States)

    Chipman, Ariel D.; Ferrier, David E. K.; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S. T.; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C.; Alonso, Claudio R.; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C. J.; Blankenburg, Kerstin P.; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K.; Du Pasquier, Louis; Duncan, Elizabeth J.; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D.; Extavour, Cassandra G.; Francisco, Liezl; Gabaldón, Toni; Gillis, William J.; Goodwin-Horn, Elizabeth A.; Green, Jack E.; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J. P.; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H. L.; Hunn, Julia P.; Hunnekuhl, Vera S.; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N.; Jiggins, Francis M.; Jones, Tamsin E.; Kaiser, Tobias S.; Kalra, Divya; Kenny, Nathan J.; Korchina, Viktoriya; Kovar, Christie L.; Kraus, F. Bernhard; Lapraz, François; Lee, Sandra L.; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N.; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J.; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H.; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C.; Robertson, Helen E.; Robertson, Hugh M.; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E.; Schurko, Andrew M.; Siggens, Kenneth W.; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J.; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M.; Willis, Judith H.; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M.; Worley, Kim C.; Gibbs, Richard A.; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  6. Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    NARCIS (Netherlands)

    Vrije, de G.J.; Budde, M.A.W.; Lips, S.J.J.; Bakker, R.R.; Mars, A.E.; Claassen, P.A.M.

    2010-01-01

    Hydrogen was produced from carrot pulp hydrolysate, untreated carrot pulp and (mixtures of) glucose and fructose by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana in pH-controlled bioreactors. Carrot pulp hydrolysate was obtained after enzymatic hydrolysis

  7. Endoglucanase post-milling treatment for producing cellulose nanofibers from bleached eucalyptus fibers by a supermasscolloider

    Science.gov (United States)

    Wangxia Wang; Michael D. Mozuch; Ronald C. Sabo; Philip Kersten; Junyong Zhu; Yongcan Jin

    2016-01-01

    Three recombinant GH5 endoglucanases chosen for their contrasting hydrolytic activities, and a commercial endoglucanase were used to treat cellulose nanofibers (CNFs) after they were milled from bleached eucalyptus pulp with a supermasscolloider. This enzyme ‘‘post-treatment’’ resulted in different properties for the CNFs depending on enzyme treatment. The degree of...

  8. Purification and characterization of an endoglucanase from a newly isolated thermophilic anaerobic bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Creuzet, N; Frixon, C [Laboratoire de Chimie Bacterienne, C.N.R.S., 13 - Marseille (France)

    1983-02-01

    An endoglucanase (1,4-..beta..-D-glucan glucanohydrolase, EC 3.2.1.4) from a new cellulotytic thermophilic bacterium was purified to apparent homogeneity after being separated from a xylanase. Little carbohydrate was associated with the endoglucanase. A molecular weight of 91,000 and 99,000 was determined by SDS-polyacrylamide gel electrophoresis and by gel filtration of the native enzyme on Ultrogel ACA 34. The optimal pH was approximately 6.4 and the enzyme was isoelectric at pH 3.85. The enzyme was found highly thermostable: it retained 50% of its activity after 1 hour at 85/sup 0/C. Hydrolysis of CMC took place with a rapid decrease in viscosity but a slow liberation of reducing sugars, indicating to hydrolyze highly ordered cellulose. Cellobiose inhibited the activity of the endoglucanase. None of the metal ions tested stimulated the activity. The enzyme was completely inactivated by 1 mM Hg/sup 2 +/ and was inhibited by thiol reagents.

  9. Comparative assessment of LECA and Spartina maritima to remove emerging organic contaminants from wastewater.

    Science.gov (United States)

    Ferreira, Ana Rita; Guedes, Paula; Mateus, Eduardo P; Ribeiro, Alexandra B; Couto, Nazaré

    2017-03-01

    The present work aimed to evaluate the capacity of constructed wetlands (CWs) to remove three emerging organic contaminants with different physicochemical properties: caffeine (CAF), oxybenzone (MBPh), and triclosan (TCS). The simulated CWs were set up with a matrix of light expanded clay aggregates (LECA) and planted with Spartina maritima, a salt marsh plant. Controlled experiments were carried out in microcosms using deionized water and wastewater collected at a wastewater treatment plant (WWTP), with different contaminant mass ranges, for 3, 7, and 14 days. The effects of variables were tested isolatedly and together (LECA and/or S. maritima). The presence of LECA and/or S. maritima has shown higher removal (around 61-97%) of lipophilic compounds (MBPh and TCS) than the hydrophilic compound (CAF; around 19-85%). This was attributed to the fact that hydrophilic compounds are dissolved in the water column, whereas the lipophilic ones suffer sorption processes promoting their removal by plant roots and/or LECA. In the control (only wastewater), a decrease in the three contaminant levels was observed. Adsorption and bio/rhizoremediation are the strongest hypothesis to explain the decrease in contaminants in the tested conditions.

  10. Phytochemical study, antioxidant and antibacterial activities of Stemodia maritima

    Directory of Open Access Journals (Sweden)

    Francisca R. L. da Silva

    2014-01-01

    Full Text Available Stemodinol, a new natural compound, together with known compounds including jaceidin, stemodin, stemodinoside B, isocrenatoside, verbascoside, crenatoside, and isoverbascoside, were isolated from Stemodia maritima Linn. The antioxidant (DPPH method and antimicrobial activities of stemodin, stemodinoside B, and crenatoside were investigated. Among the components tested, only crenatoside isolated from the roots showed a high antioxidant power. Stemodin and stemodinoside B exhibited antibacterial activities.

  11. NaCl salinity affects lateral root development in Plantago maritima

    NARCIS (Netherlands)

    Rubinigg, M; Wenisch, J; Elzenga, JTM; Stulen, [No Value

    2004-01-01

    Root growth and morphology were assessed weekly in hydroponically-grown seedlings of the halophyte Plantago maritima L. during exposure to 0, 50, 100 and 200 mM NaCl for 21 d. Relative growth rate was reduced by 25% at 200 mM NaCl. The lower NaCl treatments did not affect relative growth rates.

  12. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor.

    Science.gov (United States)

    Fadhlaoui, Khaled; Ben Hania, Wagdi; Armougom, Fabrice; Bartoli, Manon; Fardeau, Marie-Laure; Erauso, Gaël; Brasseur, Gaël; Aubert, Corinne; Hamdi, Moktar; Brochier-Armanet, Céline; Dolla, Alain; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspecies hydrogen transfer. Hydrogen production was higher in M. prima strain PhosAc3 cells co-cultured with SRB than in cells cultured alone in the presence of elemental sulfur. We propose that the efficient sugar-oxidizing metabolism by M. prima strain PhosAc3 in syntrophic association with a hydrogenotrophic sulfate-reducing bacterium can be extrapolated to all members of the Mesotoga genus. Genome comparison of Thermotogae members suggests that the metabolic difference between Mesotoga and Thermotoga species (sugar oxidation versus fermentation) is mainly due to the absence of the bifurcating [FeFe]-hydrogenase in the former. Such an obligate oxidative process for using sugars, unusual within prokaryotes, is the first reported within the Thermotogae. It is hypothesized to be of primary ecological importance for growth of Mesotoga spp. in the environments that they inhabit. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Physical and Mechanical Properties of Cellulose Nanofibril Films from Bleached Eucalyptus Pulp by Endoglucanase Treatment and Microfluidization

    Science.gov (United States)

    Wangxia Wang; Ronald C. Sabo; Michael D. Mozuch; Phil Kersten; J. Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase (Ph-GH5) from the archaeon Pyrococcus horikoshii and a commercial endoglucanase (FR) were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNF) and subsequently to CNF films. TEM imaging indicated that Ph-GH5 produced longer and more entangled CNF than FR with the same number...

  14. Effects of Pretreatment of Single and Mixed Lignocellulosic Substrates on Production of Endoglucanase by Bacillus aerius S5.2

    Directory of Open Access Journals (Sweden)

    Mushafau Adebayo Oke

    2016-06-01

    Full Text Available A mixed substrate (MS comprising oil palm empty fruit bunch (EFB, oil palm frond (OPF, and rice husk (RH was evaluated for endoglucanase production by Bacillus aerius S5.2. Effects of sulphuric acid, sodium hydroxide, N-methylmorpholine-N-oxide (NMMO, and hydrothermal pretreatments on endoglucanase production were investigated. Endoglucanase production by B. aerius on the untreated (0.677 U/mL and pretreated MS (0.305 – 0.630 U/mL was generally similar, except that the acid (0.305 U/mL and hydrothermal (0.549 U/mL pretreatments that were more severe consequently produced significantly lower titres. Alkali pretreatment supported the highest enzyme production (0.630 U/mL among all pretreatments that were studied. When endoglucanase production on the alkali-pretreated MS and single substrates (SS was compared, alkali-pretreated EFB produced a titre (0.655 U/mL similar to the MS, and this was significantly higher than titres recorded on OPF (0.504 U/mL and RH (0.525 U/mL. Lower enzyme production was found to be consistent with higher pretreatment severity and greater removal of amorphous regions in all the pretreatments. Furthermore, combining the SS showed no adverse effects on endoglucanase production.

  15. Kinetics, improved activity and thermostability of endoglucanase and beta glucosidase from a mutant-derivative of aspergillus niger ms82

    International Nuclear Information System (INIS)

    Sohail, M.; Ahmad, A.; Khan, S.A.; Uddin, F.

    2013-01-01

    A mutant MS301 of Aspergillus niger MS82 showed 1.5 to 2.5-fold improved endoglucanase and beta-glucosidase activity when grown on crude lignocellulosic substrates under solid-state and submerged conditions. Indicators of thermal stability of enzymes (Tm and T1/2) showed that the wild type and mutant endoglucanase was more heat-resistant compared to beta-glucosidase. However, mutant and parent enzymes shared almost the same values for melting temperatures and half-lives. Endoglucanase and beta-glucosidase from both the strains showed optimum activity under acidic pH. Energy of activation (Ea) of mutant beta-glucosidase was substantially lower than the parent enzyme while Ea of mutant endoglucanase was slightly less than the parent. The lowered Ea values can be attributed to the improved beta-glucosidase activity of the mutant strain. Moreover, the MS301 enzymes were better in hydrolyzing purified and crude cellulosic materials than the parent MS82. (author)

  16. Dendrochronology of Atriplex portulacoides and Artemisia maritima in Wadden Sea salt marshes

    NARCIS (Netherlands)

    Decuyper, M.; Slim, P.A.; Loon-Steensma, van J.M.

    2014-01-01

    The study uses a rather unusual method, dendrochronology, to investigate the growth and survival of Atriplex portulacoides L. and Artemisia maritima L. on salt marshes at two field sites on the Dutch North Sea barrier islands of Terschelling and Ameland. By providing information on longevity of

  17. Isolation and characterization of a novel endoglucanase from a Bursaphelenchus xylophilus metagenomic library.

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    Full Text Available A novel gene (designated as cen219 encoding endoglucanase was isolated from a Bursaphelenchus xylophilus metagenomic library by functional screening. Sequence analysis revealed that cen219 encoded a protein of 367 amino acids. SDS-PAGE analysis of purified endoglucanase suggested that Cen219 was a monomeric enzyme with a molecular mass of 40 kDa. The optimum temperature and pH for endoglucanase activity of Cen219 was separately 50 °C and 6.0. It was stable from 30 to 50 °C, and from pH 4.0 to 7.0. The activity was significantly enhanced by Mn(2+ and dramatically reduced by detergent SDS and metals Fe(3+, Cu(2+ or Hg(2+. The enzyme hydrolyzed a wide range of β-1, 3-, and β-1, 4-linked polysaccharides, with varying activities. Activities towards microcrystalline cellulose and filter paper were relatively high, while the highest activity was towards oat gum. The Km and Vmax of Cen219 towards CMC was 17.37 mg/ml and 333.33 U/mg, respectively. The findings have an insight into understanding the molecular basis of host-parasite interactions in B. xylophilus species. The properties also make Cen219 an interesting enzyme for biotechnological application.

  18. Structure and mechanism of a bacterial t6A biosynthesis system

    OpenAIRE

    Luthra, Amit; Swinehart, William; Bayooz, Susan; Phan, Phuc; Stec, Boguslaw; Iwata-Reuyl, Dirk; Swairjo, Manal A

    2018-01-01

    Abstract The universal N(6)-threonylcarbamoyladenosine (t6A) modification at position 37 of ANN-decoding tRNAs is central to translational fidelity. In bacteria, t6A biosynthesis is catalyzed by the proteins TsaB, TsaC/TsaC2, TsaD and TsaE. Despite intense research, the molecular mechanisms underlying t6A biosynthesis are poorly understood. Here, we report biochemical and biophysical studies of the t6A biosynthesis system from Thermotoga maritima. Small angle X-ray scattering analysis reveals...

  19. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Thermotoga neapolitana β-glucosidase B

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Pernilla [Department of Biotechnology, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, S-221 00 Lund (Sweden); Pramhed, Anna [Department of Molecular Biophysics, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, S-221 00 Lund (Sweden); Kanders, Erik; Hedström, Martin; Karlsson, Eva Nordberg, E-mail: eva.nordberg-karlsson@biotek.lu.se [Department of Biotechnology, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, S-221 00 Lund (Sweden); Logan, Derek T., E-mail: eva.nordberg-karlsson@biotek.lu.se [Department of Molecular Biophysics, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, S-221 00 Lund (Sweden); Department of Biotechnology, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, S-221 00 Lund (Sweden)

    2007-09-01

    Here, the expression, purification, crystallization and X-ray diffraction data of a family 3 β-glucosidase from the hyperthermophilic bacterium Thermotoga neapolitana are reported. β-Glucosidases belong to families 1, 3 and 9 of the glycoside hydrolases and act on cello-oligosaccharides. Family 1 and 3 enzymes are retaining and are reported to have transglycosylation activity, which can be used to produce oligosaccharides and glycoconjugates. Family 3 enzymes are less well characterized than their family 1 homologues and to date only two crystal structures have been solved. Here, the expression, purification, crystallization and X-ray diffraction data of a family 3 β-glucosidase from the hyperthermophilic bacterium Thermotoga neapolitana are reported. Crystals of selenomethionine-substituted protein have also been grown. The crystals belong to space group C222{sub 1}, with unit-cell parameters a = 74.9, b = 127.0, c = 175.2 Å. Native data have been collected to 2.4 Å resolution and the structure has been solved to 2.7 Å using the selenomethionine MAD method. Model building and refinement of the structure are under way.

  20. Streptomyces misionensis PESB-25 Produces a Thermoacidophilic Endoglucanase Using Sugarcane Bagasse and Corn Steep Liquor as the Sole Organic Substrates

    Directory of Open Access Journals (Sweden)

    Marcella Novaes Franco-Cirigliano

    2013-01-01

    Full Text Available Streptomyces misionensis strain PESB-25 was screened and selected for its ability to secrete cellulases. Cells were grown in a liquid medium containing sugarcane bagasse (SCB as carbon source and corn steep liquor (CSL as nitrogen source, whose concentrations were optimized using response surface methodology (RSM. A peak of endoglucanase accumulation (1.01 U·mL−1 was observed in a medium with SCB 1.0% (w/v and CSL 1.2% (w/v within three days of cultivation. S. misionensis PESB-25 endoglucanase activity was thermoacidophilic with optimum pH and temperature range of 3.0 to 3.6 and 62° to 70°C, respectively. In these conditions, values of 1.54 U mL−1 of endoglucanase activity were observed. Moreover, Mn2+ was demonstrated to have a hyperactivating effect on the enzyme. In the presence of MnSO4 (8 mM, the enzyme activity increased threefold, up to 4.34 U·mL−1. Mn2+ also improved endoglucanase stability as the catalyst retained almost full activity upon incubation at 50°C for 4 h, while in the absence of Mn2+, enzyme activity decreased by 50% in this same period. Three protein bands with endoglucanase activity and apparent molecular masses of 12, 48.5 and 119.5 kDa were detected by zymogram.

  1. GTPase activity, structure, and mechanical properties of filaments assembled from bacterial cytoskeleton protein MreB.

    Science.gov (United States)

    Esue, Osigwe; Wirtz, Denis; Tseng, Yiider

    2006-02-01

    MreB, a major component of the recently discovered bacterial cytoskeleton, displays a structure homologous to its eukaryotic counterpart actin. Here, we study the assembly and mechanical properties of Thermotoga maritima MreB in the presence of different nucleotides in vitro. We found that GTP, not ADP or GDP, can mediate MreB assembly into filamentous structures as effectively as ATP. Upon MreB assembly, both GTP and ATP release the gamma phosphate at similar rates. Therefore, MreB is an equally effective ATPase and GTPase. Electron microscopy and quantitative rheology suggest that the morphologies and micromechanical properties of filamentous ATP-MreB and GTP-MreB are similar. In contrast, mammalian actin assembly is favored in the presence of ATP over GTP. These results indicate that, despite high structural homology of their monomers, T. maritima MreB and actin filaments display different assembly, morphology, micromechanics, and nucleotide-binding specificity. Furthermore, the biophysical properties of T. maritima MreB filaments, including high rigidity and propensity to form bundles, suggest a mechanism by which MreB helical structure may be involved in imposing a cylindrical architecture on rod-shaped bacterial cells.

  2. RECOVERY OF ASPERGILLUS ENDO-GLUCANASE PRODUCED ON SOLID SUBSTRATE: A DOE BASED APPROACH

    Directory of Open Access Journals (Sweden)

    Sibabrata Mukherjee

    2014-10-01

    Full Text Available The endo-glucanase (E.C. 3.2.1.4 was produced by Aspergillus terreus adopting solid state fermentation (SSF using agro residues as main substrate. To recover the enzyme from the fermented mass, different extraction liquids were tried and 10% aqueous solution of glycerol was found to be superior. When the selected extractant was applied at different ratio to the fermented solid mass, maximum enzyme was recovered at 1:5 (w/v ratio. The other process parameters (time, temperature and mixing speed effects on the enzyme recovery were subsequently studied by response surface methodology (RSM. Box-Bhenken Design of experiment (BBDOE was exploited for the analysis of interactive effects of the independent variables. The optimization was done following the numerical approach focusing reduction in utility cost without compromising the endo-glucanse activity. Based on the predicted solution the validation experiments were carried out and finally 32 IU/g of endo-glucanase was recovered at room temperature, at a mixing speed of 100 rpm in 2.65 h which was very close to the predicted response. The optimization evidenced more than two times betterment in enzyme recovery than the un-optimized state. The model developed was found to be robust for process analysis. Repetitive extraction had revealed that maximum endo-glucanase recovery was required of two cycles of extraction at optimized conditions.

  3. Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation

    Directory of Open Access Journals (Sweden)

    P. Chellapandi

    2008-03-01

    Full Text Available Cellulase is a complex enzyme system, commercially produced by filamentous fungi under solid-state and submerged cultivation. It has wide applicability in textile, food and beverage industry for effective saccharification process. In this study, cellulolytic enzyme activity, particularly endoglucanase of 26 Streptomyces strains isolated from garden soil was examined, including two isolates selected on the basis of potential cellulolytic activity on Bennett's agar medium. To enhance the endoglucanase formation in broth culture, different conditions including carbon and nitrogen sources, and growth conditions were tested. The maximum endoglucanase activity (11.25-11.90 U/mL was achieved within 72-88 h in fermentation medium containing Tween-80, followed by phosphate sources. Both cellulolytic Streptomyces isolates gave almost equal quantity of enzyme in all trials. However the effect of medium ingredients on endoglucanase induction diverged with strains in some extent.A celulase é um sistema enzimático complexo, produzido comercialmente a partir de fungos filamentosos através de cultivo em estádio sólido e submerso. Tem uma grande aplicação na indústria têxtil e de alimentos e bebidas no processo de sacarificação. Nesse estudo, examinou-se a atividade celulolítica, especialmente de englucanase, de 26 cepas de Streptomyces isoladas de solo, incluindo duas cepas selecionadas por sua atividade celulolítica no ágar Bennett. Para estimular a produção de englucanase em meio de cultura, diferentes condições de cultivo, incluindo fonte de carbono e nitrogênio e condições de crescimento, foram avaliadas. A atividade máxima de glucanase (11,25 a 11,90 U/mL foi obtida em 72-88h em meio de cultura contendo Tween-80, seguido por fontes de fosfato. Ambas as cepas celulolíticas de Streptomyces produziram quase a mesma quantidade de enzima em todos os experimentos. Entretanto, o efeito dos ingredientes do meio na indução da glucanase

  4. Bioprocessing of some agro-industrial residues for endoglucanase production by the new subsp.; Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J

    Directory of Open Access Journals (Sweden)

    Noura El-Ahmady El-Naggar

    2014-06-01

    Full Text Available The use of low cost agro-industrial residues for the production of industrial enzymes is one of the ways to reduce significantly production costs. Cellulase producing actinomycetes were isolated from soil and decayed agricultural wastes. Among them, a potential culture, strain NEAE-J, was selected and identified on the basis of morphological, cultural, physiological and chemotaxonomic properties, together with 16S rDNA sequence. It is proposed that strain NEAE-J should be included in the species Streptomyces albogriseolus as a representative of a novel sub-species, Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J and sequencing product was deposited in the GenBank database under accession number JN229412. This organism was tested for its ability to produce endoglucanase and release reducing sugars from agro-industrial residues as substrates. Sugarcane bagasse was the most suitable substrate for endoglucanase production. Effects of process variables, namely incubation time, temperature, initial pH and nitrogen source on production of endoglucanase by submerged fermentation using Streptomyces albogriseolus subsp. cellulolyticus have been studied. Accordingly optimum conditions have been determined. Incubation temperature of 30 ºC after 6 days, pH of 6.5, 1% sugarcane bagasse as carbon source and peptone as nitrogen source were found to be the optimum for endoglucanase production. Optimization of the process parameters resulted in about 2.6 fold increase in the endoglucanase activity. Therefore, Streptomyces albogriseolus subsp. cellulolyticus coud be potential microorganism for the intended application.

  5. Bioprocessing of some agro-industrial residues for endoglucanase production by the new subsp.; Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J

    Science.gov (United States)

    El-Naggar, Noura El-Ahmady; Abdelwahed, Nayera A.M.; Saber, Wesam I.A.; Mohamed, Asem A.

    2014-01-01

    The use of low cost agro-industrial residues for the production of industrial enzymes is one of the ways to reduce significantly production costs. Cellulase producing actinomycetes were isolated from soil and decayed agricultural wastes. Among them, a potential culture, strain NEAE-J, was selected and identified on the basis of morphological, cultural, physiological and chemotaxonomic properties, together with 16S rDNA sequence. It is proposed that strain NEAE-J should be included in the species Streptomyces albogriseolus as a representative of a novel sub-species, Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J and sequencing product was deposited in the GenBank database under accession number JN229412. This organism was tested for its ability to produce endoglucanase and release reducing sugars from agro-industrial residues as substrates. Sugarcane bagasse was the most suitable substrate for endoglucanase production. Effects of process variables, namely incubation time, temperature, initial pH and nitrogen source on production of endoglucanase by submerged fermentation using Streptomyces albogriseolus subsp. cellulolyticus have been studied. Accordingly optimum conditions have been determined. Incubation temperature of 30 °C after 6 days, pH of 6.5, 1% sugarcane bagasse as carbon source and peptone as nitrogen source were found to be the optimum for endoglucanase production. Optimization of the process parameters resulted in about 2.6 fold increase in the endoglucanase activity. Therefore, Streptomyces albogriseolus subsp. cellulolyticus coud be potential microorganism for the intended application. PMID:25242966

  6. Identification of an Extracellular Endoglucanase That Is Required for Full Virulence in Xanthomonas citri subsp. citri.

    Directory of Open Access Journals (Sweden)

    Tian Xia

    Full Text Available Xanthomonas citri subsp. citri causes citrus canker disease, which is characterized by the formation of water-soaked lesions, white or yellow spongy pustules and brown corky canker. In this work, we report the contribution of extracellular endoglucanase to canker development during infection. The ectopic expression of nine putative cellulases in Escherichia coli indicated that two endoglucanases, BglC3 and EngXCA, show carboxymethyl cellulase activity. Both bglC3 and engXCA genes were transcribed in X. citri subsp. citri, however, only BglC3 protein was detected outside the cell in western blot analysis. The deletion of bglC3 gene resulted in complete loss of extracellular carboxymethyl cellulase activity and delayed the onset of canker symptoms in both infiltration- and wound-inoculation assays. When growing in plant tissue, the cell density of bglC3 mutant was lower than that of the wild type. Our data demonstrated that BglC3 is an extracellular endoglucanase required for the full virulence of X. citri subsp. citri.

  7. Diterpene and other constituents from Stemodia maritima (Scrophulariaceae)

    International Nuclear Information System (INIS)

    Rodrigues, Francisco E.A.; Oliveira, Maria da Conceicao F. de; Vasconcelos, Jackson N.; Mafezoli, Jair; Arriaga, Angela M.C.; Lima, Jefferson Q.; Santiago, Gilvandete M.P.; Braz-Filho, Raimundo

    2010-01-01

    A new diterpene, (5S * ,8S * ,9R * ,10S * )-11β,12β-epoxy-9α-hydroxy-19(4 -> 3)abeo-abieta-3,13-diene-19,18-olide, together with the known compounds stemodin, D-mannitol, betulinic acid, a mixture of 3β-O-β-D-glucopyranosyl-β-sitosterol and 3β-O-β-D-glucopyranosylstigmasterol and 5,7,4'-trihydroxy-3,8,3'-trimethoxyflavone were isolated from the leaves and stems of Stemodia maritima. Structural elucidation of all compounds was based on interpretation of spectral data, mainly NMR (1D and 2D) and MS, including comparison with values described in the literature. (author)

  8. Effets de dix traitements sur la germination des akènes d'Ambrosia maritima L

    Directory of Open Access Journals (Sweden)

    Schafer, JL.

    1989-01-01

    Full Text Available Effects of ten treatments on the germination of Ambrosia maritima L. seeds. Stratification of Ambrosia maritima seeds at + 10°C for 7 days appeared to be the best practical method to break their embryonic dormancy with 80 % germination occuring 18 days following the treatment, compared to 17 % for the control. This experiment confirms the susceptibility of embryonic dormancy to low temperatures. Treatments with waterat + 80°C or concentrated H2S04 for 15 mn and mechanical treatments eliminating the inhibition effect of seed integuments also gave higher results (43 to 53 % germination rate. However, germination in the control group was significantly higher than in the group of seeds subjected to dry heat. Although the first results obtained on the field from these trials were satisfactory, further research is needed to confirm them.

  9. Functional and modular analyses of diverse endoglucanases from Ruminococcus albus 8, a specialist plant cell wall degrading bacterium.

    Science.gov (United States)

    Iakiviak, Michael; Devendran, Saravanan; Skorupski, Anna; Moon, Young Hwan; Mackie, Roderick I; Cann, Isaac

    2016-07-21

    Ruminococcus albus 8 is a specialist plant cell wall degrading ruminal bacterium capable of utilizing hemicellulose and cellulose. Cellulose degradation requires a suite of enzymes including endoglucanases, exoglucanases, and β-glucosidases. The enzymes employed by R. albus 8 in degrading cellulose are yet to be completely elucidated. Through bioinformatic analysis of a draft genome sequence of R. albus 8, seventeen putatively cellulolytic genes were identified. The genes were heterologously expressed in E. coli, and purified to near homogeneity. On biochemical analysis with cellulosic substrates, seven of the gene products (Ra0185, Ra0259, Ra0325, Ra0903, Ra1831, Ra2461, and Ra2535) were identified as endoglucanases, releasing predominantly cellobiose and cellotriose. Each of the R. albus 8 endoglucanases, except for Ra0259 and Ra0325, bound to the model crystalline cellulose Avicel, confirming functional carbohydrate binding modules (CBMs). The polypeptides for Ra1831 and Ra2535 were found to contain distantly related homologs of CBM65. Mutational analysis of residues within the CBM65 of Ra1831 identified key residues required for binding. Phylogenetic analysis of the endoglucanases revealed three distinct subfamilies of glycoside hydrolase family 5 (GH5). Our results demonstrate that this fibrolytic bacterium uses diverse GH5 catalytic domains appended with different CBMs, including novel forms of CBM65, to degrade cellulose.

  10. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Motoki; Akahoshi, Tomohiro; Okamoto, Kenji; Yanase, Hideshi [Tottori Univ. (Japan). Dept. of Chemistry and Biotechnology

    2012-11-15

    In order to reduce the cost of bioethanol production from lignocellulosic biomass, we developed a tool for cell surface display of cellulolytic enzymes on the ethanologenic bacterium Zymobacter palmae. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, to express and display heterologous cellulolytic enzymes on the Z. palmae cell surface, we utilized the cell-surface display motif of the Pseudomonas ice nucleation protein Ina. The gene encoding Ina from Pseudomonas syringae IFO3310 was cloned, and its product was comprised of three functional domains: an N-terminal domain, a central domain with repeated amino acid residues, and a C-terminal domain. The N-terminal domain of Ina was shown to function as the anchoring motif for a green fluorescence protein fusion protein in Escherichia coli. To express a heterologous cellulolytic enzyme extracellularly in Z. palmae, we fused the N-terminal coding sequence of Ina to the coding sequence of an N-terminal-truncated Cellulomonas endoglucanase. Z. palmae cells carrying the fusion endoglucanase gene were shown to degrade carboxymethyl cellulose. Although a portion of the expressed fusion endoglucanase was released from Z. palmae cells into the culture broth, we confirmed the display of the protein on the cell surface by immunofluorescence microscopy. The results indicate that the N-terminal anchoring motif of Ina from P. syringae enabled the translocation and display of the heterologous cellulase on the cell surface of Z. palmae. (orig.)

  11. Diterpene and other constituents from Stemodia maritima (Scrophulariaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Francisco E.A.; Oliveira, Maria da Conceicao F. de; Vasconcelos, Jackson N.; Mafezoli, Jair; Arriaga, Angela M.C., E-mail: angelamcarriaga@yahoo.com.b [Universidade Federal do Ceara (DQOI/UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica. Curso de Pos-Graducao em Quimica; Lima, Jefferson Q. [Instituto Federal do Ceara, Juazeiro do Norte, CE (Brazil). Curso de Engenharia Ambiental; Santiago, Gilvandete M.P. [Universidade Federal do Ceara (DQOI/UFC), Fortaleza, CE (Brazil). Dept. de Farmacia; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense Darcy Ribeiro (CCT/UENF), Campos dos Goytacazes, RJ (Brazil). Centro de Ciencias e Tecnologias

    2010-07-01

    A new diterpene, (5S{sup *},8S{sup *},9R{sup *},10S{sup *})-11{beta},12{beta}-epoxy-9{alpha}-hydroxy-19(4 -> 3)abeo-abieta-3,13-diene-19,18-olide, together with the known compounds stemodin, D-mannitol, betulinic acid, a mixture of 3{beta}-O-{beta}-D-glucopyranosyl-{beta}-sitosterol and 3{beta}-O-{beta}-D-glucopyranosylstigmasterol and 5,7,4'-trihydroxy-3,8,3'-trimethoxyflavone were isolated from the leaves and stems of Stemodia maritima. Structural elucidation of all compounds was based on interpretation of spectral data, mainly NMR (1D and 2D) and MS, including comparison with values described in the literature. (author)

  12. Two tomato endoglucanases have a function during syncytium development

    Directory of Open Access Journals (Sweden)

    Małgorzata Lichocka

    2011-01-01

    Full Text Available Globodera rostochiensis, as well as other cyst nematodes, induces formation of a multinucleate feeding site, called syncytium, in host roots. In tomato roots infected with a potato cyst nematode, the syncytium is initiated in the cortex or pericycle. Progressive cell wall dissolution and subsequent fusion of protoplasts of newly incorporated cells lead to syncytium formation. Expansion and development of a syncytium strongly depends on modifications of a cell wall, including its degradation, elongation, thickening, and formation of ingrowths within it in close contact with tracheary elements. Recent reports have demonstrated that during formation of syncytium, numerous genes of plant origin, coding for cell wall-modifying enzymes are up-re-gulated. In this research, we studied a detailed distribution and function of two tomato 1,4-β-endoglucanases in developing feeding sites induced by G. rostochiensis. In situ localization of tomato LeCel7 and LeCel8 transcripts and proteins demonstrated that these enzymes were specifically up-regulated within syncytium and in the cells adjacent to the syncytium. In non-infected roots an expression of LeCel7 and LeCel8 was observed in the root cap and lateral root primordia. Our data confirm that cell wall-modifying enzymes of plant origin have a role in a modification of cell wall within syncytia, and demonstrate that plant endoglucanases are involved in syncytia formation.

  13. Screening of endoglucanase-producing bacteria in the saline rhizosphere of Rhizophora mangle

    Science.gov (United States)

    Sá, André Luís Braghini; Dias, Armando Cavalcante Franco; Quecine, Maria Carolina; Cotta, Simone Raposo; Fasanella, Cristiane Cipola; Andreote, Fernando Dini; de Melo, Itamar Soares

    2014-01-01

    In screening the culturable endoglucanase-producing bacteria in the rhizosphere of Rhizophora mangle, we found a prevalence of genera Bacillus and Paenibacillus. These bacteria revealed different activities in endoglucolysis and biofilm formation when exposed to specific NaCl concentrations, indicating modulated growth under natural variations in mangrove salinity. PMID:24948930

  14. Screening of endoglucanase-producing bacteria in the saline rhizosphere of Rhizophora mangle

    Directory of Open Access Journals (Sweden)

    André Luís Braghini Sá

    2014-01-01

    Full Text Available In screening the culturable endoglucanase-producing bacteria in the rhizosphere of Rhizophora mangle, we found a prevalence of genera Bacillus and Paenibacillus. These bacteria revealed different activities in endoglucolysis and biofilm formation when exposed to specific NaCl concentrations, indicating modulated growth under natural variations in mangrove salinity.

  15. XX/XY system of sex determination in the geophilomorph centipede Strigamia maritima

    Czech Academy of Sciences Publication Activity Database

    Green, J. E.; Dalíková, Martina; Sahara, K.; Marec, František; Akam, M.

    2016-01-01

    Roč. 11, č. 2 (2016), č. článku e0150292. E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA600960925; GA ČR(CZ) GA14-22765S Institutional support: RVO:60077344 Keywords : sex determination * Strigamia maritima * XX/XY system Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150292

  16. Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana.

    Science.gov (United States)

    Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Fontana, Angelo; Panico, Antonio; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2016-08-01

    The aim of the present study was to develop a kinetic model for a recently proposed unique and novel metabolic process called capnophilic (CO2-requiring) lactic fermentation (CLF) pathway in Thermotoga neapolitana. The model was based on Monod kinetics and the mathematical expressions were developed to enable the simulation of biomass growth, substrate consumption and product formation. The calibrated kinetic parameters such as maximum specific uptake rate (k), semi-saturation constant (kS), biomass yield coefficient (Y) and endogenous decay rate (kd) were 1.30 h(-1), 1.42 g/L, 0.1195 and 0.0205 h(-1), respectively. A high correlation (>0.98) was obtained between the experimental data and model predictions for both model validation and cross validation processes. An increase of the lactate production in the range of 40-80% was obtained through CLF pathway compared to the classic dark fermentation model. The proposed kinetic model is the first mechanistically based model for the CLF pathway. This model provides useful information to improve the knowledge about how acetate and CO2 are recycled back by Thermotoga neapolitana to produce lactate without compromising the overall hydrogen yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase.

    Science.gov (United States)

    Kotaka, Atsushi; Bando, Hiroki; Kaya, Masahiko; Kato-Murai, Michiko; Kuroda, Kouichi; Sahara, Hiroshi; Hata, Yoji; Kondo, Akihiko; Ueda, Mitsuyoshi

    2008-06-01

    Three beta-glucosidase- and two endoglucanase-encoding genes were cloned from Aspergillus oryzae, and their gene products were displayed on the cell surface of the sake yeast, Saccharomyces cerevisiae GRI-117-UK. GRI-117-UK/pUDB7 displaying beta-glucosidase AO090009000356 showed the highest activity against various substrates and efficiently produced ethanol from cellobiose. On the other hand, GRI-117-UK/pUDCB displaying endoglucanase AO090010000314 efficiently degraded barley beta-glucan to glucose and smaller cellooligosaccharides. GRI-117-UK/pUDB7CB codisplaying both beta-glucosidase AO090009000356 and endoglucanase AO090010000314 was constructed. When direct ethanol fermentation from 20 g/l barley beta-glucan as a model substrate was performed with the codisplaying strain, the ethanol concentration reached 7.94 g/l after 24 h of fermentation. The conversion ratio of ethanol from beta-glucan was 69.6% of the theoretical ethanol concentration produced from 20 g/l barley beta-glucan. These results showed that sake yeast displaying A. oryzae cellulolytic enzymes can be used to produce ethanol from cellulosic materials. Our constructs have higher ethanol production potential than the laboratory constructs previously reported.

  18. Inhibitory Effects of Urginea maritima (L. Baker, Zhumeria majdae Rech. F. and Wendelbo and Physalis divaricata D. Don Ethanolic Extracts on Mushroom Tyrosinase

    Directory of Open Access Journals (Sweden)

    Foroogh Namjoyan, Alireza Jahangiri, Mohammad Ebrahim Azemi, Hamideh Mousavi

    2016-06-01

    Full Text Available Background: Tyrosinase is a key enzyme in melanin synthesis from tyrosine. To prevent or treat pigmentation disorders, tyrosinase inhibitors have been used increasingly for medicinal and cosmetic products. The aim of this study is to evaluate inhibitory effects of Urginea maritima (L. Baker, Zhumeria majdae Rech.f. & Wendelbo and Physalis divaricata D.Don on mushroom tyrosinase. Methods: The inhibitory activities of the hydroalcoholic extracts of plants against oxidation of L-DOPA (as a substrate by mushroom tyrosinase were investigated. The amount of formed DOPAchrome was determined at 475 nm as optical density. Results: The extracts showed anti-tyrosinase activity weaker than positive control (Kojic acid. The inhibitory activity of tested plants: U.maritima, Z.majdae and P.divaricata against mushroom tyrosinase were 38.61, 29.70 and 25.74 % at 1.67 mg/mL, respectively. Conclusion: The most tyrosinase inhibitory activity was seen for U.maritima. However more investigations on human tyrosinase, toxicological and clinical studies are needed to confirm its activity.

  19. Expression of an endoglucanase from Tribolium castaneum (TcEG1) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Shirley, Derek; Oppert, Cris; Reynolds, Todd B; Miracle, Bethany; Oppert, Brenda; Klingeman, William E; Jurat-Fuentes, Juan Luis

    2014-10-01

    Insects are a largely unexploited resource in prospecting for novel cellulolytic enzymes to improve the production of ethanol fuel from lignocellulosic biomass. The cost of lignocellulosic ethanol production is expected to decrease by the combination of cellulose degradation (saccharification) and fermentation of the resulting glucose to ethanol in a single process, catalyzed by the yeast Saccharomyces cerevisiae transformed to express efficient cellulases. While S. cerevisiae is an established heterologous expression system, there are no available data on the functional expression of insect cellulolytic enzymes for this species. To address this knowledge gap, S. cerevisiae was transformed to express the full-length cDNA encoding an endoglucanase from the red flour beetle, Tribolium castaneum (TcEG1), and evaluated the activity of the transgenic product (rTcEG1). Expression of the TcEG1 cDNA in S. cerevisiae was under control of the strong glyceraldehyde-3 phosphate dehydrogenase promoter. Cultured transformed yeast secreted rTcEG1 protein as a functional β-1,4-endoglucanase, which allowed transformants to survive on selective media containing cellulose as the only available carbon source. Evaluation of substrate specificity for secreted rTcEG1 demonstrated endoglucanase activity, although some activity was also detected against complex cellulose substrates. Potentially relevant to uses in biofuel production rTcEG1 activity increased with pH conditions, with the highest activity detected at pH 12. Our results demonstrate the potential for functional production of an insect cellulase in S. cerevisiae and confirm the stability of rTcEG1 activity in strong alkaline environments. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  20. The extracellular β-1,3-endoglucanase EngA is involved in autolysis of Aspergillus nidulans.

    Science.gov (United States)

    Szilágyi, M; Kwon, N-J; Dorogi, C; Pócsi, I; Yu, J-H; Emri, T

    2010-11-01

    To elucidate the roles of the β-1,3-endoglucanase EngA in autolysis of the filamentous fungus Aspergillus nidulans and to identify the common regulatory elements of autolytic hydrolases. A β-1,3-endoglucanase was purified from carbon-starving cultures of A. nidulans. This enzyme is found to be encoded by the engA gene (locus ID: AN0472.3). Functional and gene-expression studies demonstrated that EngA is involved in the autolytic cell wall degradation resulting from carbon starvation of the fungus. Moreover, regulation of engA is found to be dependent on the FluG/BrlA asexual sporulation signalling pathway in submerged culture. The deletion of either engA or chiB (encoding an endochitinase) caused highly reduced production of hydrolases in general. The β-1,3-endoglucanase EngA plays a pivotal role in fungal autolysis, and activities of both EngA and ChiB are necessary to orchestrate the expression of autolytic hydrolases. The production of cell wall-degrading enzymes was coordinately controlled in a highly sophisticated and complex manner. No information was available on the autolytic glucanase(s) of the euascomycete A. nidulans. This study demonstrates that EngA is a key element in fungal autolysis, and normal activities of both EngA and ChiB are crucial for balanced production of hydrolases. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  1. The protective role of damsissa (Ambroosia Maritima) against gamma irradiation in albino rats

    International Nuclear Information System (INIS)

    Osman, O.A.; Mohamed, Y.S.

    2003-01-01

    The present work was directed to evaluate the effectiveness of treatment with damsissa (Ambrosia maritima) for thirty consecutive days pre- irradiation exposure in controlling the post-irradiation hazards in irradiated rats. Male albino rats (Spraue Dowley strain) weighing about 120+- 10 g were used and blood samples were collected from tails of animals thirty days after treatment with damsissa and seven days post irradiation. Blood samples were subjected to biochemical analysis such as liver functions, kidney function and lipid profile. Whole body gamma irradiation of rats at 6 Gy (single dose) caused significant decrease in the contents of total proteins accompanied by significant increase of urea level as recorded on the 7th days post irradiation. Data obtained in this study revealed that whole body gamma irradiation induced significant elevation in all tested blood lipid functions. There was significant increase of aspartate amino transferase (AST) and alanine amino transferase (ALT) whole alkaline phosphatase (ALP) showed statistical significant decrease as compared with the control group. Damisissa (Ambrosia maritima) treatment exerted noticeable amelioration in the the studied biochemical parameters of the irradiated albino rats. The mechanism of action of damsissa may be due to its anti-inflammatory properties against whole body gamma irradiation

  2. Comparison between the univariate and multivariate analysis on the partial characterization of the endoglucanase produced in the solid state fermentation by Aspergillus oryzae ATCC 10124.

    Science.gov (United States)

    de Brito, Aila Riany; Santos Reis, Nadabe Dos; Silva, Tatielle Pereira; Ferreira Bonomo, Renata Cristina; Trovatti Uetanabaro, Ana Paula; de Assis, Sandra Aparecida; da Silva, Erik Galvão Paranhos; Aguiar-Oliveira, Elizama; Oliveira, Julieta Rangel; Franco, Marcelo

    2017-11-26

    Endoglucanase production by Aspergillus oryzae ATCC 10124 cultivated in rice husks or peanut shells was optimized by experimental design as a function of humidity, time, and temperature. The optimum temperature for the endoglucanase activity was estimated by a univariate analysis (one factor at the time) as 50°C (rice husks) and 60°C (peanut shells), however, by a multivariate analysis (synergism of factors), it was determined a different temperature (56°C) for endoglucanase from peanut shells. For the optimum pH, values determined by univariate and multivariate analysis were 5 and 5.2 (rice husk) and 5 and 7.6 (peanut shells). In addition, the best half-lives were observed at 50°C as 22.8 hr (rice husks) and 7.3 hr (peanut shells), also, 80% of residual activities was obtained between 30 and 50°C for both substrates, and the pH stability was improved at 5-7 (rice hulls) and 6-9 (peanut shells). Both endoglucanases obtained presented different characteristics as a result of the versatility of fungi in different substrates.

  3. Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows.

    Science.gov (United States)

    Nielsen, L B; Finster, K; Welsh, D T; Donelly, A; Herbert, R A; de Wit, R; Lomstein, B A

    2001-01-01

    Sulphate reduction rates (SRR) and nitrogen fixation rates (NFR) associated with isolated roots, rhizomes and sediment from the rhizosphere of the marine macrophytes Zostera noltii and Spartina maritima, and the presence and distribution of Bacteria on the roots and rhizomes, were investigated. Between 1% and 3% of the surface area of the roots and rhizomes of both macrophytes were colonized by Bacteria. Bacteria on the surfaces of S. maritima roots and rhizomes were evenly distributed, while the distribution of Bacteria on Z. noltii roots and rhizomes was patchy. Root- and rhizome-associated SRR and NFR were always higher than rates in the bulk sediment. In particular, nitrogen fixation associated with the roots and rhizomes was 41-650-fold higher than in the bulk sediment. Despite the fact that sulphate reduction was elevated on roots and rhizomes compared with bulk sediment, the contribution of plant-associated sulphate reduction to overall sulphate reduction was small (< or =11%). In contrast, nitrogen fixation associated with the roots and rhizomes accounted for 31% and 91% of the nitrogen fixed in the rhizosphere of Z. noltii and S. maritima respectively. In addition, plant-associated nitrogen fixation could supply 37-1,613% of the nitrogen needed by the sulphate-reducing community. Sucrose stimulated nitrogen fixation and sulphate reduction significantly in the root and rhizome compartments of both macrophytes, but not in the bulk sediment.

  4. Cloning, expression and characterization of the endoglucanase gene from Bacillus subtilis UMC7 isolated from the gut of the indigenous termite Macrotermes malaccensis in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kelvin Swee Chuan Wei

    2015-03-01

    Conclusions: The recombinant endoglucanase showed a threefold increase in extracellular enzyme activity compared with the wild-type strain. This result revealed the potential of endoglucanase expression in E. coli, which can be induced for the overexpression of the enzyme. The enzyme has a broad range of activity with high specificity toward cellulose.

  5. Multivariable parameter optimization for the endoglucanase production by Trichoderma reesei Rut C30 from Ocimum gratissimum seed

    Directory of Open Access Journals (Sweden)

    Mithu Das

    2008-02-01

    Full Text Available The aim of this study was to evaluate the interaction effects of the physico-chemical parameters on the endoglucanase (CMCase production by Trichoderma reesei Rut C30 on a cellulosic agro-residue by the solid-state fermentation (SSF and to determine their optimum values by the EVOP factorial design technique. The best combination of physical parameters for the maximum production of the endoglucanase (CMCase was 28ºC temperature, 79% relative humidity and 4.8 pH of the medium. The best combination of the chemical parameters was (mg/L nicotinic acid 15, naphthalene acetic acid 7, ferric chloride 5 and Tween-80 6. With the application of this technique, the yield of the CMCase increased by ~ 2.3 fold.

  6. Bacterial actin MreB assembles in complex with cell shape protein RodZ.

    Science.gov (United States)

    van den Ent, Fusinita; Johnson, Christopher M; Persons, Logan; de Boer, Piet; Löwe, Jan

    2010-03-17

    Bacterial actin homologue MreB is required for cell shape maintenance in most non-spherical bacteria, where it assembles into helical structures just underneath the cytoplasmic membrane. Proper assembly of the actin cytoskeleton requires RodZ, a conserved, bitopic membrane protein that colocalises to MreB and is essential for cell shape determination. Here, we present the first crystal structure of bacterial actin engaged with a natural partner and provide a clear functional significance of the interaction. We show that the cytoplasmic helix-turn-helix motif of Thermotoga maritima RodZ directly interacts with monomeric as well as filamentous MreB and present the crystal structure of the complex. In vitro and in vivo analyses of mutant T. maritima and Escherichia coli RodZ validate the structure and reveal the importance of the MreB-RodZ interaction in the ability of cells to propagate as rods. Furthermore, the results elucidate how the bacterial actin cytoskeleton might be anchored to the membrane to help constrain peptidoglycan synthesis in the periplasm.

  7. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste.

    Science.gov (United States)

    Abreu, Angela A; Tavares, Fábio; Alves, Maria Madalena; Pereira, Maria Alcina

    2016-11-01

    Proof of principle of biohythane and potential energy production from garden waste (GW) is demonstrated in this study in a two-step process coupling dark fermentation and anaerobic digestion. The synergistic effect of using co-cultures of extreme thermophiles to intensify biohydrogen dark fermentation is demonstrated using xylose, cellobiose and GW. Co-culture of Caldicellulosiruptor saccharolyticus and Thermotoga maritima showed higher hydrogen production yields from xylose (2.7±0.1molmol(-1) total sugar) and cellobiose (4.8±0.3molmol(-1) total sugar) compared to individual cultures. Co-culture of extreme thermophiles C. saccharolyticus and Caldicellulosiruptor bescii increased synergistically the hydrogen production yield from GW (98.3±6.9Lkg(-1) (VS)) compared to individual cultures and co-culture of T. maritima and C. saccharolyticus. The biochemical methane potential of the fermentation end-products was 322±10Lkg(-1) (CODt). Biohythane, a biogas enriched with 15% hydrogen could be obtained from GW, yielding a potential energy generation of 22.2MJkg(-1) (VS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Production of D-tagatose at high temperatures using immobilized Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana.

    Science.gov (United States)

    Hong, Young-Ho; Lee, Dong-Woo; Lee, Sang-Jae; Choe, Eun-Ah; Kim, Seong-Bo; Lee, Yoon-Hee; Cheigh, Chan-Ick; Pyun, Yu-Ryang

    2007-04-01

    Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana (TNAI) were immobilized in calcium alginate beads. The resulting cell reactor (2.4 U, t (1/2) = 43 days at 70 degrees C) in a continuous recycling mode at 70 degrees C produced 49 and 38 g D-tagatose/l from 180 and 90 g D-galactose/l, respectively, within 12 h.

  9. Effect of pH, Temperature, and Chemicals on the Endoglucanases and β-Glucosidases from the Thermophilic Fungus Myceliophthora heterothallica F.2.1.4. Obtained by Solid-State and Submerged Cultivation

    Directory of Open Access Journals (Sweden)

    Vanessa de Cássia Teixeira da Silva

    2016-01-01

    Full Text Available This work reports endoglucanase and beta-glucosidase production by the thermophilic fungus Myceliophthora heterothallica in solid-state (SSC and submerged (SmC cultivation. Wheat bran and sugarcane bagasse were used for SSC and cardboard for SmC. Highest endoglucanase production in SSC occurred after 192 hours: 1,170.6 ± 0.8 U/g, and in SmC after 168 hours: 2,642 ± 561 U/g. The endoglucanases and beta-glucosidases produced by both cultivation systems showed slight differences concerning their optimal pH and temperature. The number of endoglucanases was also different: six isoforms in SSC and ten in SmC. Endoglucanase activity remained above 50% after incubation between pH 3.0 and 9.0 for 24 h for both cultivation systems. The effect of several chemicals displayed variation between SSC and SmC isoenzymes. Manganese activated the enzymes from SmC but inhibited those from SSC. For β-glucosidases, maximum production on SmC was 244 ± 48 U/g after 168 hours using cardboard as carbon source. In SSC maximum production reached 10.9 ± 0.3 U/g after 240 h with 1 : 1 wheat bran and sugarcane bagasse. Manganese exerted a significant activation on SSC β-glucosidases, and glucose inhibited the enzymes from both cultivation systems. FeCl3 exerted the strongest inhibition for endoglucanases and β-glucosidases.

  10. A ocorrência do mutualismo facultativo entre Dyckia maritima Backer (Bromeliaceae e o cupim Cortaritermes silvestrii (Holmgren, Nasutitermitinae, em afloramentos rochosos no Parque Estadual de Itapuã, Viamão, RS The occurrence of facultative mutualism between Dyckia maritima Backer (Bromeliaceae and the termite Cortaritermes silvestrii (Holmgren, Nasutitermitinae, on rock outcrops in Itapuã State Park, Viamão, RS

    Directory of Open Access Journals (Sweden)

    Celso Copstein Waldemar

    2003-03-01

    Full Text Available A presença de colônias de C. silvestrii é comum nos lajeados existentes em Itapuã. Na estação Morro da Grota1, 92,0 % dos termiteiros situados na rocha exposta e em ilhas de vegetação estão associados a D. maritima. Esta convivência ocorre em 31,2 % das ilhas na qual esta bromélia se faz presente. Nas ilhas, a comparação entre os substratos aonde D. maritima vegeta, o solo litólico húmico existente sob o manto do musgo Campylopus spp. e o substrato constituído pelo cupinzeiro indica que este último possui os teores mais elevados dos nutrientes P, K, Ca, Mg, Zn e Mn, maior CTC e maiores teores de partículas finas, principalmente o silte. O estabelecimento de D. maritima sobre os termiteiros de grande porte aumenta o seu valor de cobertura em ilhas de vegetação quando comparado com ilhas sem termiteiros ou com termiteiros de pequeno porte em áreas entre 2,7 a 8,0 m². Este fato é atribuído à melhoria físico-química do substrato e ao aumento de superfície e volume aptos a serem colonizados pela bromélia e proporciona maior competitividade em relação a outras espécies vegetais. As características apresentadas pela interação entre este cupim e D. maritima, pela primeira vez descrita na literatura, permitem indicar esta relação ecológica como mutualismo facultativo. Inferimos que o conjunto de observações apresentado constitui um modelo temporal de crescimento deste mutualismo, cujas fases inicial e tardia estão descritas neste trabalho.The presence of colonies of C. silvestrii is common, both on the rock surface and at islands of vegetation. At Morro da Grota1 station, 92,0 % of the termite nests on rocky outcrops and at island of vegetation are associated with this bromeliad. These nests are associated with D. maritima, in 31,2 % of the islands where this bromeliad occurs. At these island communities, the comparison between the substrata where D. maritima occurs, the litolic Waldemar & Irgang: Mutualismo

  11. Cloning of a GH5 endoglucanase from genus Penicillium and its binding to different lignins

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Kastberg, H.; Jørgensen, C. I.

    2009-01-01

    The cel5C gene, coding for an endoglucanase (Cel5C) of Penicillium brasilianum was cloned and heterologously expressed in Aspergillus oryzae. This is only the second GH5 EG from the genus penicillium reported in the CAZy database. The promoter region of the gene has I)putative binding sites...

  12. Armeria maritima from a calamine heap--initial studies on physiologic-metabolic adaptations to metal-enriched soil.

    Science.gov (United States)

    Olko, A; Abratowska, A; Zyłkowska, J; Wierzbicka, M; Tukiendorf, A

    2008-02-01

    Plants of Armeria maritima are found both on unpolluted sites and on soils strongly polluted with heavy metals. Seedlings of A. maritima from a zinc-lead calamine heap in ore-mining region (Bolesław population) and from unpolluted area (Manasterz population) were tested to determine the zinc, cadmium and lead tolerance. In hydroponic experiments Bolesław population was more tolerant to zinc, cadmium and lead. Localization of heavy metals in roots was determined using the histochemical method for detecting metal-complexes with dithizone. Their accumulation was found in root hairs, rhizoderma and at the surface of the central cylinder. Glutathione level in plants increased after metal treatment of both populations. However, its high level was not correlated with phytochelatin production. These metal-binding complexes were not detected in plants exposed to zinc, cadmium or lead. Changes of organic acids concentrations in Armeria treated with metals may suggest their role in metal translocation from roots to shoots. The content of organic acids, especially malate, decreased in the roots and increased in the leaves. These changes may be important in Pb-tolerance of Manasterz population and in Zn-, Cd-tolerance of calamine population from Bolesław.

  13. Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plant of Western Himalaya

    Science.gov (United States)

    Artemisia species possess pharmacological properties that are used for medical purposes worldwide. In this paper, the essential oils from the aerial parts of A. nilagirica and A. maritima from the western Indian Himalaya region are described. The main compounds analyzed by simultaneous GC/MS and GC/...

  14. Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β-endoglucanase.

    Science.gov (United States)

    Yan, Junjie; Liu, Weidong; Li, Yujie; Lai, Hui-Lin; Zheng, Yingying; Huang, Jian-Wen; Chen, Chun-Chi; Chen, Yun; Jin, Jian; Li, Huazhong; Guo, Rey-Ting

    2016-06-17

    Eukaryotic 1,4-β-endoglucanases (EC 3.2.1.4) have shown great potentials in many commercial applications because they effectively catalyze hydrolysis of cellulose, the main component of the plant cell wall. Here we expressed a glycoside hydrolase family (GH) 5 1,4-β-endoglucanase from Aspergillus niger (AnCel5A) in Pichia pastoris, which exhibits outstanding pH and heat stability. In order to further investigate the molecular mechanism of AnCel5A, apo-form and cellotetraose (CTT) complex enzyme crystal structures were solved to high resolution. AnCel5A folds into a typical (β/α)8-TIM barrel architecture, resembling other GH5 members. In the substrate binding cavity, CTT is found to bind to -4 - -1 subsites, and several polyethylene glycol molecules are found in positive subsites. In addition, several unique N-glycosylation motifs that may contribute to protein higher stability were observed from crystal structures. These results are of great importance for understanding the molecular mechanism of AnCel5A, and also provide guidance for further applications of the enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dicty_cDB: Contig-U05179-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 07 AE000512_160( AE000512 |pid:none) Thermotoga maritima MSB8, comple... 59 3e-07 AM494956_53( AM494956 |pid...5462316567 Global-Ocean-Sampling_GS-31-01-01-1... 36 4.7 3 ( CU675067 ) Synthetic construct Homo sapiens gat...4 0.15 2 ( EK365242 ) 1095469394395 Global-Ocean-Sampling_GS-31-01-01-1... 50 0.19 1 ( DQ832718 ) Phytophtho... F... 38 0.55 2 ( EK172602 ) 1095458082313 Global-Ocean-Sampling_GS-31-01-01-1...... 34 0.55 2 ( EK226550 ) 1095460160991 Global-Ocean-Sampling_GS-31-01-01-1... 34 0.55 2 ( ES217923 ) MpFVN_ag2_E11 Myzus persicae, li

  16. Origin of initial burst in activity for Trichoderma reesei endo-glucanases hydrolyzing insoluble cellulose

    DEFF Research Database (Denmark)

    Murphy, Leigh; Cruys-Bagger, Nicolaj; Baumann, Martin J.

    2012-01-01

    by the three main EGs from Trichoderma reesei (Tr): TrCel7B (formerly EG I), TrCel5A (EG II), and TrCel12A (EG III). These endo-glucanases show a distinctive initial burst with a maximal rate that is about 5-fold higher than the rate after 5 min of hydrolysis. The burst is particularly conspicuous for TrCel7B...

  17. SEASONAL, SIZE-RELATED AND AGE-RELATED PATTERNS IN BODY-MASS AND COMPOSITION OF PURPLE SANDPIPERS CALIDRIS-MARITIMA IN BRITAIN

    NARCIS (Netherlands)

    SUMMERS, RW; UNDERHILL, LG; NICOLL, M; RAE, R; PIERSMA, T

    1992-01-01

    The masses Of 3229 Purple Sandpipers Calidris maritima from Britain were analysed for differences related to age, season and size. First-year birds were lighter by 2 g. There was only a slight increase in mass in mid-winter, in contrast to other waders wintering in Britain, suggesting that Purple

  18. Synecology of Cutandia maritima (L. Barbey, a rare psammophytic species along the Montenegrin Coast (East Adriatic Coast

    Directory of Open Access Journals (Sweden)

    Stešević Danijela

    2017-12-01

    Full Text Available Cutandia maritima is a circum-Mediterranean species that inhabits sandy dunes along the coast line. It is fairly frequent on the western Adriatic coast but fairly rare and possibly even non-native in the east. In Croatia, it was discovered in 1990 in Crnika Bay on the island of Rab, which was considered until 2005 to be the only site on the eastern Adriatic coast from the Gulf of Trieste in the north to Corfu in the south. In 2009, the species was briefly reported for Velika plaža (Long Beach in Ulcinj (Montenegro but without details about the habitat type and synecology. The aim of this paper is thus to provide a deeper insight into the ecology and synecology of C. maritima in the eastern Adriatic part of the distribution area. On Velika plaža in Ulcinj, the species was found along the whole sea-inland gradient of sand dunes, in various types of vegetation: [1210] - annual vegetation of drift lines, [2110] - embryonic shifting dunes, [2120] - shifting dunes with Ammophila arenaria (white dunes, [2220] - dunes with Euphorbia terracina, [2130*] - fixed coastal dunes with herbaceous vegetation (grey dunes, and also [2190] - humid dune slacks.

  19. Effect of Gamma Rays and Salinity on Growth and Chemical Composition of Ambrosia maritima L. Plant

    International Nuclear Information System (INIS)

    Moemen, A.M.E.

    2012-01-01

    This work achieved to study the effects of, mixture of salt 2:2:1 (Na Cl-CaCl 2 and Mg SO 4 ), concentration of (0, 2000, 4000 and 6000 ppm). on growth characters, some chemical components and some active ingredients in shoots of Ambrosia maritima plants, at different stages of growth, during two seasons. Pots 30 cm in diameter were filled of sand-loamy soils in appropriate concentration, all pots were irrigated with tap water. The exposed damsisa seeds to gamma rays, doses (0, 20, 40, and 80 Gy) before sowing together with control non irradiated seeds were sown in saline soils (0, 2000, 4000 and 6000 ppm). Soil salinity treatments caused a decrease in plant height, number of leaves, content of damsin, and an increase in fresh weigh, dry weight, total sugars, total chlorophyll, amino acids and ambrosine content. Also, Gamma rays caused an increase in most of growth parameters and most of chemical composition. It was observed that 40 or 80 Gy was more effective. We investigated the combined effect of levels of salinity and doses of radiation used, this interference improve growth parameters and chemical composition in ambrosia maritima plants and caused ascertain the role of gamma irradiation in plants tolerance to soil salinity and alleviation their harmful effect on plants.

  20. Coexpression and Secretion of Endoglucanase and Phytase Genes in Lactobacillus reuteri

    Science.gov (United States)

    Wang, Lei; Yang, Yuxin; Cai, Bei; Cao, Pinghua; Yang, Mingming; Chen, Yulin

    2014-01-01

    A multifunctional transgenic Lactobacillus with probiotic characteristics and an ability to degrade β-glucan and phytic acid (phytate) was engineered to improve nutrient utilization, increase production performance and decrease digestive diseases in broiler chickens. The Bacillus subtilis WL001 endoglucanase gene (celW) and Aspergillus fumigatus WL002 phytase gene (phyW) mature peptide (phyWM) were cloned into an expression vector with the lactate dehydrogenase promoter of Lactobacillus casei and the secretion signal peptide of the Lactococcus lactis usp45 gene. This construct was then transformed into Lactobacillus reuteri XC1 that had been isolated from the gastrointestinal tract of broilers. Heterologous enzyme production and feed effectiveness of this genetically modified L. reuteri strain were investigated and evaluated. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that the molecular mass of phyWM and celW was approximately 48.2 and 55 kDa, respectively, consistent with their predicted molecular weights. Endoglucanase and phytase activities in the extracellular fraction of the transformed L. reuteri culture were 0.68 and 0.42 U/mL, respectively. Transformed L. reuteri improved the feed conversion ratio of broilers from 21 to 42 days of age and over the whole feeding period. However, there was no effect on body weight gain and feed intake of chicks. Transformed L. reuteri supplementation improved levels of ash, calcium and phosphorus in tibiae at day 21 and of phosphorus at day 42. In addition, populations of Escherichia coli, Veillonella spp. and Bacteroides vulgatus were decreased, while populations of Bifidobacterium genus and Lactobacillus spp. were increased in the cecum at day 21. PMID:25050780

  1. Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes.

    Science.gov (United States)

    Leys, Marie; Petit, Eric J; El-Bahloul, Yasmina; Liso, Camille; Fournet, Sylvain; Arnaud, Jean-François

    2014-05-01

    Understanding the factors that contribute to population genetic divergence across a species' range is a long-standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present-day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco - the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic-Mediterranean refugia after the last glacial period, with leading-edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long-distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life-history and major geographic features interact to shape the distribution of genetic diversity.

  2. Molecular cloning, purification, expression, and characterization of β-1, 4-endoglucanase gene ( from sp. isolated from Holstein steers’ rumen

    Directory of Open Access Journals (Sweden)

    Tansol Park

    2018-04-01

    Full Text Available Objective This study was conducted to isolate the cellulolytic microorganism from the rumen of Holstein steers and characterize endoglucanase gene (Cel5A from the isolated microorganism. Methods To isolate anaerobic microbes having endoglucanase, rumen fluid was obtained from Holstein steers fed roughage diet. The isolated anaerobic bacteria had 98% similarity with Eubacterium cellulosolvens (E. cellulosolvens Ce2 (Accession number: AB163733. The Cel5A from isolated E. cellulolsovens sp. was cloned using the published genome sequence and expressed through the Escherichia coli BL21. Results The maximum activity of recombinant Cel5A (rCel5A was observed at 50°C and pH 4.0. The enzyme was constant at the temperature range of 20°C to 40°C but also, at the pH range of 3 to 9. The metal ions including Ca2+, K+, Ni2+, Mg2+, and Fe2+ increased the endoglucanase activity but the addition of Mn2+, Cu2+, and Zn2+ decreased. The Km and Vmax value of rCel5A were 14.05 mg/mL and 45.66 μmol/min/mg. Turnover number, Kcat and catalytic efficiency, Kcat/Km values of rCel5A was 96.69 (s−1 and 6.88 (mL/mg/s, respectively. Conclusion Our results indicated that rCel5A of E. cellulosolvens isolated from Holstein steers had a broad pH range with high stability under various conditions, which might be one of the beneficial characteristics of this enzyme for possible industrial application.

  3. γ-irradiation resistance and UV-sensitivity of extremely thermophilic archebacteria and eubacteria

    International Nuclear Information System (INIS)

    Kopylov, V.M.; Bonch-Osmolovskaya, E.A.; Svetlichnyi, V.A.; Miroshnichenko, M.L.; Skobkin, V.S.

    1993-01-01

    Cells of extremely thermophilic sulfur-dependent archebacteria Desulfurococcus amylolyticus Z533 and Thermococcus stelleri K15 are resistant to γ-irradiation. These archebacteria survive γ-irradiation at a dose of up to 5 kGy but are no longer viable after 8-9 kGy. Comparison of the survival profiles showed that archebacteria are 12 to 25 times more resistant to γ-irradiation at moderate doses (LD 50 and LD 90 ) than E. coli K12 but are 2 to 2.5 times more sensitive than D. radiodurans. γ-irradiation at a dose of 1 to 2.5 kGy killed extremely thermophilic anaerobic eubacteria Thermotoga maritima 2706 and Thermodesulfobacterium P. All extreme thermophiles studied were more sensitive to UV-irradiation than E. coli

  4. A cold-adapted endoglucanase from camel rumen with high catalytic activity at moderate and low temperatures: an anomaly of truly cold-adapted evolution in a mesophilic environment.

    Science.gov (United States)

    Khalili Ghadikolaei, Kamran; Gharechahi, Javad; Haghbeen, Kamahldin; Akbari Noghabi, Kambiz; Hosseini Salekdeh, Ghasem; Shahbani Zahiri, Hossein

    2018-03-01

    Endoglucanases are important enzymes in plant biomass degradation. They have current and potential applications in various industrial sectors including human and animal food processing, textile, paper, and renewable biofuel production. It is assumed that the cold-active endoglucanases, with high catalytic rates in moderate and cold temperatures, can improve the cost-effectiveness of industrial processes by lowering the need for heating and, thus, energy consumption. In this study, the endoglucanase CelCM3 was procured from a camel rumen metagenome via gene cloning and expression in Escherichia coli BL21 (DE3). The maximum activity of the enzyme on carboxymethyl cellulose (CMC) was obtained at pH 5 and 30 °C with a V max and K m of 339 U/mg and 2.57 mg/ml, respectively. The enzyme with an estimated low melting temperature of 45 °C and about 50% activity at 4 °C was identified to be cold-adapted. A thermodynamic analysis corroborated that CelCM3 with an activation energy (E a ), enthalpy of activation (ΔH), and Gibb's free energy (ΔG) of, respectively, 18.47 kJ mol -1 , 16.12 kJ mol -1 , and 56.09 kJ mol -1 is a cold-active endoglucanase. In addition, CelCM3 was tolerant of metal ions, non-ionic detergents, urea, and organic solvents. Given these interesting characteristics, CelCM3 shows promise to meet the requirements of industrial applications.

  5. Evaluation of operational parameters on the precipitation of endoglucanase and xylanase produced by solid state fermentation of Aspergillus niger

    Directory of Open Access Journals (Sweden)

    C. S. Farinas

    2011-03-01

    Full Text Available In order to develop cost effective processes for converting biomass into biofuels, it is essential to improve enzyme production yields, stability and specific activity. In this context, the aim of this work was to evaluate the concentration of two enzymes involved in the hydrolysis of biomass, endoglucanase and xylanase, through precipitation. Statistical experimental design was used to evaluate the influence of precipitant agent concentration (ammonium sulfate and ethanol, aging time, and temperature on enzyme activity recovery. Precipitant agent concentration and aging time showed a statistically significant effect at the 95% confidence level, on both enzyme activity recoveries. The recovery of endoglucanase with ammonium sulfate and ethanol reached values up to 65 and 61%, respectively. For xylanase, the recovery rates were lower, 27 and 25% with ammonium sulfate and ethanol, respectively. The results obtained allowed the selection of the variables relevant to improving enzyme activity recovery within operational conditions suitable for industrial applications.

  6. An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72.

    Science.gov (United States)

    Reinhold-Hurek, Barbara; Maes, Tamara; Gemmer, Sabrina; Van Montagu, Marc; Hurek, Thomas

    2006-02-01

    The nitrogen-fixing endophyte Azoarcus sp. strain BH72 infects roots of Kallar grass and rice inter- and intra-cellularly and can spread systemically into shoots without causing symptoms of plant disease. Although cellulose or its breakdown products do not support growth, this strain expresses an endoglucanase, which might be involved in infection. Sequence analysis of eglA places the secreted 34-kDa protein into the glycosyl hydrolases family 5, with highest relatedness (40% identity) to endoglucanases of the phytopathogenic bacteria Xanthomonas campestris and Ralstonia solanacearum. Transcriptional regulation studied by eglA:: gusA fusion was not significantly affected by cellulose or its breakdown products or by microaerobiosis. Strongest induction (threefold) was obtained in bacteria grown in close vicinity to rice roots. Visible sites of expression were the emergence points of lateral roots and root tips, which are the primary regions of ingress into the root. To study the role in endophytic colonization, eglA was inactivated by transposon mutagenesis. Systemic spreading of the eglA mutant and of a pilAB mutant into the rice shoot could no longer be detected by polymerase chain reaction. Microscopic inspection of infection revealed that the intracellular colonization of root epidermis cells was significantly reduced in the eglA- mutant BHE6 compared with the wild type and partially restored in the complementation mutant BHRE2 expressing eglA. This provides evidence that Azoarcus sp. endoglucanase is an important determinant for successful endophytic colonization of rice roots, suggesting an active bacterial colonization process.

  7. Ten years of demographic and genetic monitoring of Stachys maritima in Catalonia (2001-2010. Implications for a recovery plan

    Directory of Open Access Journals (Sweden)

    Massó, S.

    2010-12-01

    Full Text Available Stachys maritima is a species typical of the coastal dunes, with a wide distribution within the Mediterranean Basin. In spite of this, the species shows a clear regression. In Catalonia, it has been observed an important reduction of its populations since early 20th century, where it has disappeared from several localities in which it was relatively common (Tarragonès, Barcelonès. Herein we present the results of the demographic monitoring of the species during the last 10 years (2001-2010 in the known localities in Catalonia. Besides corroborating the disappearance (northern Sant Martí d’Empúries, the re-discovering (Llobregat Delta beach and the detection of new populations (inner dunes of the Montgrí, a large year-to-year fluctuation of the monitored populations is stated; the possible reasons are discussed. In addition, the present work also includes the results of the allozyme diversity analysis of the new detected populations as well as the rediscoveries of the period 2004-2008, which were not included in a former study of genetic diversity carried out in 2002-2003. It is necessary to emphasize that the contribution of the new populations to the genetic diversity of Stachys maritima is very small, which can be attributed to their limited population size and /or to founder effects. Despite that the species is included in the Annex 2 (“En Perill d’Extinció” within the Catàleg de Flora Amenaçada de Catalunya (Catalogue of Endangered Flora of Catalonia, and some “soft” conservation measures have been applied at local level (signposting of the beach accesses, environmental education, etc. coupled with other more significant measures (e.g. translocation of individuals discovered in an artificial sandbank, it would be necessary the coordinated action and the scientific support of any initiative of conservation that could be carried out. The general frame to initiate actions of conservation should be the recovery plan of

  8. Highlighting the mechanisms by which proline can confer tolerance to salt stress in cakile maritima

    International Nuclear Information System (INIS)

    Messedi, D.; Farhani, F.; Hamed, K.B.; Trabelsi, N.; Ksouri, R.; Chedly Abdelly, C.; Athar, H.U.R.

    2016-01-01

    Cakile maritima is an oleaginous halophyte growing in the sandy dunes along the Tunisian coast. In order to investigate the role of proline in inducing high salinity tolerance (200 and 400 mM NaCl) in this halophyte, we studied several aspects of the salt responses of C. maritma under exogenous proline supply (20 mM). Salinity levels above 100 mM, reduced growth, photosynthetic activity, and quantum yield of photosystem II (FPSII), while increasing the non photochemical quenching (NPQ). Significant inhibition of the linear electron transport rate (ETR) was also observed in plants grown at 400 mM NaCl. In addition, polyphenol content, total antioxidant and DPPH scavenging activities increased due to increasing salinity stress, and the concentration of malondialdehyde (MDA) also increased. The application of proline counteracted all these adverse effects of salt stress in plants grown at 200 mM NaCl, while it improved some of these physiological attributes at 400 mM NaCl. In addition, contribution of Na+ for the osmotic adjustment decreased in the leaves of salt treated plants supplied with proline exogenously. Exogenous application of proline induced the accumulation of potassium, proline and soluble carbohydrates in salt stressed plants, particularly at 400 mM. This explained the reason of growth enhancement induced by proline application. All together, our Results showed that the beneficial effect of exogenous proline on the response of C. maritima to salinity was due to its role in the protection of chloroplast structures, antioxidant defenses and osmotic adjustment. (author)

  9. The genomic organization of four b-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications.

    NARCIS (Netherlands)

    Yan, Y.; Smant, G.; Stokkermans, J.P.W.G.; Qin Ling,; Baum, T.J.; Schots, A.; Davis, E.L.

    1998-01-01

    The genomic organization of genes encoding -1,4-endoglucanases (cellulases) from the plant-parasitic cyst nematodes Heterodera glycines and Globodera rostochiensis (HG-eng1, Hg-eng2, GR-eng1, and GR-eng2) was investigated. HG-eng1 and GR-eng1 both contained eight introns and structural domains of

  10. The assembly of MreB, a prokaryotic homolog of actin.

    Science.gov (United States)

    Esue, Osigwe; Cordero, Maria; Wirtz, Denis; Tseng, Yiider

    2005-01-28

    MreB, a major component of the bacterial cytoskeleton, exhibits high structural homology to its eukaryotic counterpart actin. Live cell microscopy studies suggest that MreB molecules organize into large filamentous spirals that support the cell membrane and play a key shape-determining function. However, the basic properties of MreB filament assembly remain unknown. Here, we studied the assembly of Thermotoga maritima MreB triggered by ATP in vitro and compared it to the well-studied assembly of actin. These studies show that MreB filament ultrastructure and polymerization depend crucially on temperature as well as the ions present on solution. At the optimal growth temperature of T. maritima, MreB assembly proceeded much faster than that of actin, without nucleation (or nucleation is highly favorable and fast) and with little or no contribution from filament end-to-end annealing. MreB exhibited rates of ATP hydrolysis and phosphate release similar to that of F-actin, however, with a critical concentration of approximately 3 nm, which is approximately 100-fold lower than that of actin. Furthermore, MreB assembled into filamentous bundles that have the ability to spontaneously form ring-like structures without auxiliary proteins. These findings suggest that despite high structural homology, MreB and actin display significantly different assembly properties.

  11. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor

    OpenAIRE

    Fadhlaoui, K.; Ben Hania, W.; Armougom, Fabrice; Bartoli, M.; Fardeau, Marie-Laure; Erauso, G.; Brasseur, G.; Aubert, C.; Hamdi, M.; Brochier-Armanet, C.; Dolla, A.; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspeci...

  12. Effect of multiple short highly energetic X-ray pulses on the synthesis of endoglucanase by a mutant strain of Trichoderma reesei-M7

    International Nuclear Information System (INIS)

    Gemishev, Orlin; Markova, Maya; Savov, Valentin; Zapryanov, Stanislav; Blagoev, Alexander

    2014-01-01

    Bioconversion of cellulose-containing substrate to glucose represents an important area of modern biotechnology. Enzymes for the degradation of the polysaccharide part of biomass have been produced, mostly by fungi belonging to genus Trichoderma. Studies were carried out with the mutant strain Trichoderma reesei-M7, a cellulase producer. Spores of the enzyme producer were irradiated with different doses of characteristic X-ray radiation from metallic tungsten (mainly the W Ka1 and Ka2 lines) with a high dose rate. The latter is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles. In this case, we focused our study on the influence of hard X-rays. The doses of X-rays absorbed by the spores varied in the range of approximately 5-11,000 mSv measured with thermoluminescent dosimeters (TLD). The influence of the applied doses in combination with exceptionally high dose rates (in the order of tens of millisieverts per microsecond) on the activity of the produced endoglucanase, amount of biomass and extra-cellular protein, was studied in batch cultivation conditions. In the dose range of 200-1200 mSv, some enhancement of endoglucanase activity was obtained: around 18%-32%, despite the drop of the biomass amount, compared with the untreated material. Keywords: endoglucanase; X-ray pulses; thermoluminescent dosimeters (TLD); dense plasma focus (DPF); Trichoderma reesei

  13. Characteristics of a β-1,4-D endoglucanase from Trichoderma virens wholly applied in a palm-fruit husk-based diet for poultry layers

    Directory of Open Access Journals (Sweden)

    Olubusola A. Odeniyi

    2012-12-01

    Full Text Available The characteristics of an endoglucanase produced by a Trichoderma virens strain T9 newly isolated from a palm-fruit husk dump site, its physiological characteristics and enzyme production were studied. Whole cells of the depolymerizing-enzyme producing T. virens were applied to palm-fruit husk and bird performance characteristics when employed as poultry diet additive were considered. Endoglucanase activity in submerged fermentation was 1.6 nkat. Optimum activity was recorded at pH 6.0 and 55ºC. The enzyme retained 50% residual glucanase activity at 70ºC for 10 minutes. 1.0% Tween-80 and SDS yielded endoglucanase activity 2.15 times higher than the control. Activity wasboosted by 20mM Ca2+ (115.0%; 10mM K+ (106.5%; and was totally inhibited by 1mM Hg2+. The addition of T. virens -fermented palm-fruit husk with other layer feed components on the bird characteristics showed that change in bird weight between the control and test birds were not significantly different (p>0.05 but differed in terms of daily feed ingested (p0.05. The shell thickness (0.64mm and yolk content (23.61% were highest in the microbially-modified husk diet. The alternative to maize based diets proffered by the application of T. virens -modified palm-fruit husk in poultry nutrition in terms of bird weight and feed to weight-gain ratio affords the poultry farmer an economic advantage and allows for a greater utilization of the maize in human diets.

  14. Hyperthermophilic endoglucanase for in planta lignocellulose conversion

    Directory of Open Access Journals (Sweden)

    Klose Holger

    2012-08-01

    Full Text Available Abstract Background The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. Results Here we show that a cellulase gene (sso1354 isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade α-cellulose or even complex cell wall preparations under those pretreatment conditions. Conclusion The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications.

  15. In silico method for modelling metabolism and gene product expression at genome scale

    Energy Technology Data Exchange (ETDEWEB)

    Lerman, Joshua A.; Hyduke, Daniel R.; Latif, Haythem; Portnoy, Vasiliy A.; Lewis, Nathan E.; Orth, Jeffrey D.; Rutledge, Alexandra C.; Smith, Richard D.; Adkins, Joshua N.; Zengler, Karsten; Palsson, Bernard O.

    2012-07-03

    Transcription and translation use raw materials and energy generated metabolically to create the macromolecular machinery responsible for all cellular functions, including metabolism. A biochemically accurate model of molecular biology and metabolism will facilitate comprehensive and quantitative computations of an organism's molecular constitution as a function of genetic and environmental parameters. Here we formulate a model of metabolism and macromolecular expression. Prototyping it using the simple microorganism Thermotoga maritima, we show our model accurately simulates variations in cellular composition and gene expression. Moreover, through in silico comparative transcriptomics, the model allows the discovery of new regulons and improving the genome and transcription unit annotations. Our method presents a framework for investigating molecular biology and cellular physiology in silico and may allow quantitative interpretation of multi-omics data sets in the context of an integrated biochemical description of an organism.

  16. Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose

    DEFF Research Database (Denmark)

    Hsieh, Chia-wen C.; Cannella, David; Jørgensen, Henning

    2015-01-01

    Background: Non-ionic surfactants such as polyethylene glycol (PEG) can increase the glucose yield obtained from enzymatic saccharification of lignocellulosic substrates. Various explanations behind this effect include the ability of PEG to increase the stability of the cellulases, decrease non......-productive cellulase adsorption to the substrate, and increase the desorption of enzymes from the substrate. Here, using lignin-free model substrates, we propose that PEG also alters the solvent properties, for example, water, leading the cellulases to increase hydrolysis yields.Results: The effect of PEG differs...... for the individual cellulases. During hydrolysis of Avicel and PASC with a processive monocomponent exo-cellulase cellobiohydrolase (CBH) I, the presence of PEG leads to an increase in the final glucose concentration, while PEG caused no change in glucose production with a non-processive endoglucanase (EG). Also...

  17. XX/XY System of Sex Determination in the Geophilomorph Centipede Strigamia maritima.

    Directory of Open Access Journals (Sweden)

    Jack E Green

    Full Text Available We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing.

  18. OPTIMIZATION OF FERMENTATION PARAMETERS FOR THE PRODUCTION OF EXTRACELLULAR ENDOGLUCANASE, β –GLUCOSIDASE AND ENDOXYLANASE BY A CHROMIUM RESISTANT STRAIN OF TRICHODERMA PSEUDOKONINGII

    Directory of Open Access Journals (Sweden)

    Rina Rani Ray

    2013-08-01

    Full Text Available Trichoderma pseudokoningii, a chromate reducing fungal strain, was isolated from the tannery-effluents. The present Cr (VI resistant strain was found to produce good amount of various extracellular enzymes that included cellulases (endoglucanase and β–glucosidase and hemicellulase (endoxylanase in submerged fermentation (SmF. The titre of β–glucosidase was found to be higher than that of endoglucanase. Cellulases were best induced in presence of 1% of respective substrates whereas only 0.5% xylan could induce endoxylanase production in this strain. Although the optimum temperature for all three enzymes was found to be 27oC, the pH optimum of cellulases (pH 5 were different from that of endoxylanase (pH 6. Under optimized conditions, maximum of production of all these enzymes was achieved within 48 hours of cultivation. Among nitrogen sources tested, potassium nitrate was found to be the most effective followed by gelatin.

  19. Primordial-like enzymes from bacteria with reduced genomes.

    Science.gov (United States)

    Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M

    2017-08-01

    The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  20. Comparative study of antibacterial and antifugal activity of callus culture and adult plants extracts from Alternanthera maritima (Amaranthaceae Estudo comparativo da atividade antibacteriana e antifúngica de extratos obtidos da cultura de calos e da planta adulta de Alternanthera maritima (Amaranthaceae

    Directory of Open Access Journals (Sweden)

    Marcos J. Salvador

    2004-06-01

    Full Text Available The aim of this study was to evaluate the antibacterial and antifungal activity of callus culture (two different hormonal combination culture medium and adult plants (two collect extracts from Alternanthera maritima (Amaranthaceae investigating the maintenance of antimicrobial activity in vivo and in vitro. The antibacterial and antifungal activity was determined by the agar-well diffusion method against thirty strains of microorganisms including Gram-positive and Gram-negative bacteria, yeasts and dermatophytes. All the organic crude extracts studied were bioactive. Extracts of aerial parts and roots of adult plants collected during the same period of years of 1995 and 1998 (Restinga de Maricá (RJ, collect 1 and 2 inhibited the growth of several microorganisms (bacteria, yeasts and dermatophytes with inhibition halo between 6 and 20 mm. Plant cell callus culture extracts obtained from two culture conditions were also bioactive. Thus, the positive results suggest that the A. maritima extracts should be further studied to determine the bioactive chemical compounds as well as to understand the possible mechanisms of action and evaluate their toxicity looking toward a pharmaceutical employment.Neste estudo procedeu-se a avaliação da atividade antibacteriana e antifúngica dos extratos brutos de Alternanthera maritima (Amaranthaceae planta in natura de duas coletas distintas e obtidos por cultura de células buscando-se averiguar a manutenção da atividade antimicrobiana dos extratos obtidos da planta in vivo e in vitro. A ação antibacteriana e antifúngica foi determinada pelo método de difusão em ágar (técnica do poço utilizando-se trinta cepas de microrganismos indicadores (bactérias Gram-positivas e Gram-negativas, leveduras e dermatófitos. Todos os extratos obtidos com solventes orgânicos avaliados apresentaram-se bioativos com halos de inibição de 6 a 20 mm. Os extratos da planta in natura das duas coletas (Restinga de Marica

  1. The role of the β-1,6-endoglucanase gene vegB in physiology and virulence of Verticillium dahliae

    Directory of Open Access Journals (Sweden)

    Lugard EBOIGBE

    2014-05-01

    Full Text Available The β-1,6-endoglucanase gene (vegB of Verticillium dahliae was isolated using a genome walking technique. Nucleotide and deduced amino acid sequences of the gene showed high identity with the PAN1 sequence deposited at the Verticillium genome database (Broad Institute, but significant differences in intron numbers and sites of insertion. Detailed in silico analysis, accompanied by sequencing of both genomic and cDNA, as well as RT-PCR experiments, provided the correct size of the gene and the exact number, length and positions of introns. The putative protein of this gene was compared with corresponding β-1,6-endoglucanases from other fungi, and sequences were used to construct a phylogenetic tree. A clear differentiation between enzymes derived from plant pathogenic and mycoparasitic fungi was observed, fully supported by bootstrap data. An internal fragment (1.2kb of vegB was used to disrupt the wild-type gene of a V. dahliae tomato race 2 strain, and the mutant strain, vegB-, was tested for pathogenicity on tomato plants. Results showed a small but constant reduction in disease symptoms only on eggplants for the vegB- strain in comparison with the wild type. Growth on minimal medium supplemented with different carbon sources showed reduced ability of the mutant to breakdown cellulose, whereas growth on glucose, pectin and sucrose was similar to the wild type.

  2. Proteolysis in hyperthermophilic microorganisms

    Directory of Open Access Journals (Sweden)

    Donald E. Ward

    2002-01-01

    Full Text Available Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus, the crenarchaeote Sulfolobus solfataricus, and the bacterium Thermotoga maritima. An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteases that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.

  3. The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction

    Science.gov (United States)

    Weisburg, W. G.; Giovannoni, S. J.; Woese, C. R.

    1989-01-01

    Through comparative analysis of 16S ribosomal RNA sequences, it can be shown that two seemingly dissimilar types of eubacteria Deinococcus and the ubiquitous hot spring organism Thermus are distantly but specifically related to one another. This confirms an earlier report based upon 16S rRNA oligonucleotide cataloging studies (Hensel et al., 1986). Their two lineages form a distinctive grouping within the eubacteria that deserved the taxonomic status of a phylum. The (partial) sequence of T. aquaticus rRNA appears relatively close to those of other thermophilic eubacteria. e.g. Thermotoga maritima and Thermomicrobium roseum. However, this closeness does not reflect a true evolutionary closeness; rather it is due to a "thermophilic convergence", the result of unusually high G+C composition in the rRNAs of thermophilic bacteria. Unless such compositional biases are taken into account, the branching order and root of phylogenetic trees can be incorrectly inferred.

  4. Kaempferol glycosides from Lobularia maritima and their potential role in plant interactions.

    Science.gov (United States)

    Fiorentino, Antonio; Ricci, Andreina; D'Abrosca, Brigida; Golino, Annunziata; Izzo, Angelina; Pascarella, Maria Teresa; Piccolella, Simona; Esposito, Assunta

    2009-02-01

    Six kaempferol glycosides, four of them characterized for the first time, were isolated from the leaf extract of Lobularia maritima. The structural elucidation was performed by a combined approach using Electrospray-Ionization Triple-Quadrupole Mass-Spectrometric (ESI/TQ/MS) techniques, and 1D- and 2D-NMR experiments (1H, 13C, DEPT, DQ-COSY, TOCSY, ROESY, NOESY, HSQC, HMBC, and HSQC-TOCSY). The isolated kaempferol derivatives have different disaccharide substituents at C(3) and four of them have a rhamnose unit at C(7). To evaluate their potential allelopathic role within the herbaceous plant community, the compounds, as well as the aglycone obtained from enzymatic hydrolysis, have been tested in vitro on three coexisting plant species, Dactylis hispanica, Petrorhagia velutina, and Phleum subulatum. The results obtained allow us to hypothesize that the type of the sugar modulates the biological response. The bioassay data, analyzed by a multivariate approach, and grouping the compounds on the basis of the number of sugar units and the nature of carbohydrates present in the disaccharide moiety, indicate a structure-activity relationship.

  5. Elementary analysis of Alternanthera Maritima and Blutaparon Portulacoides (Gomphreneae, Amaranthacear) by X-ray fluorescence; Analise elementar de Alternanthera Maritima e Blutaparon Portulacoides (Gomphreneae, Amaranthacear) por fluorescencia de raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, M J; Dias, D A; Zucchi, O L.A.D. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Fisica e Quimica; br, mjsalva@fcfrp usp; Nascimento Filho, V F [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear

    2002-07-01

    The phytochemical study and the evaluation of biological activities of plants species have been intensified in the last years. The modernization of analytical equipment allowed significant progress in the natural products chemistry. Most of the plants researches emphasize the isolation of secondary metabolites and the metal analysis is neglected. In this study, aqueous and ethanolic extracts and the intact plant of Alternanthera maritima (aerial parts and roots) and Blutaparon portulacoides (aerial parts and roots), species commonly found on the beaches of eastern coast of Brazil (Restinga de Marica, RJ), were selected for analysis by energy dispersive X-ray fluorescence (EDXRF). With the standard sample aid, the correlation between the elementary sensitivity and the atomic numbers of the elements was determined. The elements P, K, Ca, Ti, Fe, Ni, As, Zn, Br, Sr, Sn and Sb, supported in membranes, were detected in the two analyzed plants, but only the elements in the interval 26 (Fe) {<=} Z {<=} 30 (Zn) were quantified with elementary concentration between 8,7 and 895,0 {mu}g.g{sup -1}. (author)

  6. Purification, molecular cloning, and enzymatic properties of a family 12 endoglucanase (EG-II) from fomitopsis palustris: role of EG-II in larch holocellulose hydrolysis.

    Science.gov (United States)

    Shimokawa, Tomoko; Shibuya, Hajime; Nojiri, Masanobu; Yoshida, Shigeki; Ishihara, Mitsuro

    2008-09-01

    A family 12 endoglucanase with a molecular mass of 23,926 Da (EG-II) from the brown-rot basidiomycete Fomitopsis palustris was purified and characterized. One of the roles of EG-II in wood degradation is thought to be to loosen the polysaccharide network in cell walls by disentangling hemicelluloses that are associated with cellulose.

  7. Structure, computational and biochemical analysis of PcCel45A endoglucanase from Phanerochaete chrysosporium and catalytic mechanisms of GH45 subfamily C members

    DEFF Research Database (Denmark)

    Godoy, Andre S.; Pereira, Caroline S.; Ramia, Marina Paglione

    2018-01-01

    The glycoside hydrolase family 45 (GH45) of carbohydrate modifying enzymes is mostly comprised of ß-1,4-endoglucanases. Significant diversity between the GH45 members has prompted the division of this family into three subfamilies: A, B and C, which may differ in terms of the mechanism, general a...

  8. Biotypes of scentless chamomile Matricaria maritima (L.) ssp. inodora (L.) Dostal and common poppy Papaver rhoeas (L.) resistant to tribenuron methyl, in Poland

    OpenAIRE

    Adamczewski Kazimierz; Kierzek Roman; Matysiak Kinga

    2014-01-01

    Scentless chamomile Matricaria maritima (L.) ssp. inodora (L.) Dostal and common poppy Papaver rhoeas (L.) are species which very often infest winter cereal and winter rape crops. Inhibitors of acetolactate synthase (ALS) are commonly used for control of these weeds. The herbicides are characterised by a single site of action in the plant, which has an influence on selection of the weed population and may result in a rapid development of resistance. In 2012, five seed samples of scen...

  9. Endoglucanase enzyme protein engineering by site-directed mutagenesis to improve the enzymatic properties and its expression in yeast

    Directory of Open Access Journals (Sweden)

    Farnaz Nikzad Jamnani

    2013-11-01

    Full Text Available Introduction: Fossil fuel is an expensive and finite energy source. Therefore, the use of renewable energy and biofuels production has been taken into consideration. One of the most suitable raw materials for biofuels is cellulosic compounds. Only microorganisms that contain cellulose enzymes can decompose cellulose and fungus of Trichodermareesei is the most important producer of this enzyme. Methods: In this study the nucleotide sequence of endoglucanase II, which is the starter of attack to cellulose chains, synthesized from amino acid sequence of this enzyme in fungus T.reesei and based on codon usage in the host; yeast Pichiapastoris. To produce optimized enzyme and to decrease the production time and enzyme price, protein engineering will be used. There are some methods to improve the enzymatic properties like site-directed mutagenesis in which amino-acid replacement occur. In this study two mutations were induced in endoglucanase enzyme gene by PCR in which free syctein positions 169 and 393 were switched to valine and histidine respectively. Then this gene was inserted into the pPinka expression vector and cloned in Escherichia coli. The recombinant plasmids were transferred into P.pastoris competent cells with electroporation, recombinant yeasts were cultured in BMMY medium and induced with methanol. Results: The sequencing of gene proved the induction of the two mutations and the presence of recombinant enzyme was confirmed by dinitrosalicilic acid method and SDS-PAGE. Conclusion: Examination of biochemical properties revealed that the two mutations simultaneously decreased catalytic power, thermal stability and increased the affinity of enzyme and substrate.

  10. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal.

    Science.gov (United States)

    Verhaart, Marcel R A; Bielen, Abraham A M; van der Oost, John; Stams, Alfons J M; Kengen, Servé W M

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are promising is this respect. In addition to the high polysaccharide-hydrolysing capacities of many of these organisms, an important advantage is their ability to use most of the reducing equivalents (e.g. NADH, reduced ferredoxin) formed during glycolysis for the production of hydrogen, enabling H2/hexose ratios of between 3.0 and 4.0. So, despite the fact that the hydrogen-yielding reactions, especially the one from NADH, are thermodynamically unfavourable, high hydrogen yields are obtained. In this review we focus on three different mechanisms that are employed by a few model organisms, viz. Caldicellulosiruptor saccharolyticus and Thermoanaerobacter tengcongensis, Thermotoga maritima, and Pyrococcus furiosus, to efficiently produce hydrogen. In addition, recent developments to improve hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea are discussed.

  11. Reconstruction of the Chemotaxis Receptor-Kinase Assembly

    International Nuclear Information System (INIS)

    Park, S.; Borbat, P.; Gonzalez-Bonet, G.; Bhatnagar, J.; Pollard, A.; Freed, J.; Bilwes, A.; Crane, B.

    2006-01-01

    In bacterial chemotaxis, an assembly of transmembrane receptors, the CheA histidine kinase and the adaptor protein CheW processes environmental stimuli to regulate motility. The structure of a Thermotoga maritima receptor cytoplasmic domain defines CheA interaction regions and metal ion-coordinating charge centers that undergo chemical modification to tune receptor response. Dimeric CheA-CheW, defined by crystallography and pulsed ESR, positions two CheWs to form a cleft that is lined with residues important for receptor interactions and sized to clamp one receptor dimer. CheW residues involved in kinase activation map to interfaces that orient the CheW clamps. CheA regulatory domains associate in crystals through conserved hydrophobic surfaces. Such CheA self-contacts align the CheW receptor clamps for binding receptor tips. Linking layers of ternary complexes with close-packed receptors generates a lattice with reasonable component ratios, cooperative interactions among receptors and accessible sites for modification enzymes

  12. Crystallization and preliminary X-ray analysis of membrane-bound pyrophosphatases.

    Science.gov (United States)

    Kellosalo, Juho; Kajander, Tommi; Honkanen, Riina; Goldman, Adrian

    2013-02-01

    Membrane-bound pyrophosphatases (M-PPases) are enzymes that enhance the survival of plants, protozoans and prokaryotes in energy constraining stress conditions. These proteins use pyrophosphate, a waste product of cellular metabolism, as an energy source for sodium or proton pumping. To study the structure and function of these enzymes we have crystallized two membrane-bound pyrophosphatases recombinantly produced in Saccharomyces cerevisae: the sodium pumping enzyme of Thermotoga maritima (TmPPase) and the proton pumping enzyme of Pyrobaculum aerophilum (PaPPase). Extensive crystal optimization has allowed us to grow crystals of TmPPase that diffract to a resolution of 2.6 Å. The decisive step in this optimization was in-column detergent exchange during the two-step purification procedure. Dodecyl maltoside was used for high temperature solubilization of TmPPase and then exchanged to a series of different detergents. After extensive screening, the new detergent, octyl glucose neopentyl glycol, was found to be the optimal for TmPPase but not PaPPase.

  13. Converting a Natural Protein Compartment into a Nanofactory for the Size-Constrained Synthesis of Antimicrobial Silver Nanoparticles.

    Science.gov (United States)

    Giessen, Tobias W; Silver, Pamela A

    2016-12-16

    Engineered biological systems are used extensively for the production of high value and commodity organics. On the other hand, most inorganic nanomaterials are still synthesized via chemical routes. By engineering cellular compartments, functional nanoarchitectures can be produced under environmentally sustainable conditions. Encapsulins are a new class of microbial nanocompartments with promising applications in nanobiotechnology. Here, we engineer the Thermotoga maritima encapsulin EncTm to yield a designed compartment for the size-constrained synthesis of silver nanoparticles (Ag NPs). These Ag NPs exhibit uniform shape and size distributions as well as long-term stability. Ambient aqueous conditions can be used for Ag NP synthesis, while no reducing agents or solvents need to be added. The antimicrobial activity of the synthesized protein-coated or shell-free Ag NPs is superior to that of silver nitrate and citrate-capped Ag NPs. This study establishes encapsulins as an engineerable platform for the synthesis of biogenic functional nanomaterials.

  14. Endoglucanase production with the newly isolated Myceliophtora sp. i-1d3b in a packed bed solid state fermentor

    Directory of Open Access Journals (Sweden)

    A. I. Zanelato

    2012-12-01

    Full Text Available This work is aimed to produce endoglucanase through solid state fermentation in a packed bed bioreactor with the use of the fungus Myceliophtora sp. I-1D3busing a mixture of wheat bran (WB and sugar cane bagasse (SCB as culture medium. Preliminary tests were performed in polypropylene plastic bags, controlling the variables temperature (40, 45, and 50ºC, initial moisture content (75, 80, and 85%, w.b., and weight proportion SCB/WB (1:1, 7:3, and 9:1. The highest enzyme activities in plastic bags were obtained using the substrate proportion of 7:3, 50ºC temperature, and 80% initial moisture content (878 U/grams of dry solid. High activities of filter-paper cellulase and xylanase were also obtained in plastic bags and some results are reported. For the packed bed experiments, the temperature (45 and 50ºC and the air flow rate (80, 100 and 120L/h were the controlled variables. Activity of endoglucanase was similar to plastic bag tests. A longitudinal gradient of moisture content, was observed increasing from the bottom to the top of the reactor, even though the longitudinal enzyme activity profile was flat for almost the whole bed. Air flow rate did not affect enzyme activity, while experiments carried out at 50ºC showed higher enzyme activities. The maximum temperature peak observed was at about 6ºC above the process temperature.

  15. Caractérisation de nouvelles molécules et variabilité chimique de trois plantes du continuum Corse-Sardaigne: Chamaemelum mixtum, Anthemis maritima et Eryngium maritimum.

    OpenAIRE

    Darriet , Florent

    2011-01-01

    Corsica is a Mediterranean mountain island which displays many aromatic and medicinal plants liable to produce essential oils potentially used in different domains. For their valorization, the knowledge of the oil chemical compositions is an essential challenge. This thesis deals with the chemical compositions of the essential oils and the volatile fractions of three coastal plants from Corsica and Sardinia: Chamaemelum mixtum, Anthemis maritima and Erygium maritimum. There are two aims: (i) ...

  16. A selection that reports on protein-protein interactions within a thermophilic bacterium.

    Science.gov (United States)

    Nguyen, Peter Q; Silberg, Jonathan J

    2010-07-01

    Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein-protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein-protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AK(Tn)). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75 degrees C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78 degrees C by a vector that coexpresses polypeptides corresponding to residues 1-79 and 80-220 of AK(Tn). In contrast, PQN1 growth was not complemented by AK(Tn) fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein-protein interactions, since AK(Tn)-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein-protein interactions.

  17. Elementary analysis of Alternanthera Maritima and Blutaparon Portulacoides (Gomphreneae, Amaranthacear) by X-ray fluorescence

    International Nuclear Information System (INIS)

    Salvador, M.J.; Dias, D.A.; Zucchi, O.L.A.D.; Nascimento Filho, V.F.

    2002-01-01

    The phytochemical study and the evaluation of biological activities of plants species have been intensified in the last years. The modernization of analytical equipment allowed significant progress in the natural products chemistry. Most of the plants researches emphasize the isolation of secondary metabolites and the metal analysis is neglected. In this study, aqueous and ethanolic extracts and the intact plant of Alternanthera maritima (aerial parts and roots) and Blutaparon portulacoides (aerial parts and roots), species commonly found on the beaches of eastern coast of Brazil (Restinga de Marica, RJ), were selected for analysis by energy dispersive X-ray fluorescence (EDXRF). With the standard sample aid, the correlation between the elementary sensitivity and the atomic numbers of the elements was determined. The elements P, K, Ca, Ti, Fe, Ni, As, Zn, Br, Sr, Sn and Sb, supported in membranes, were detected in the two analyzed plants, but only the elements in the interval 26 (Fe) ≤ Z ≤ 30 (Zn) were quantified with elementary concentration between 8,7 and 895,0 μg.g -1 . (author)

  18. Crystallization and preliminary crystallographic analysis of an esterese with a novel domein from the hyperthermophile Thermotoga maritima

    NARCIS (Netherlands)

    Sun, L.; Levisson, M.; Hendriks, S.N.A.; Akveld, T.; Kengen, S.W.M.; Dijkstra, B.W.; Oost, van der J.

    2007-01-01

    Esterase A4 (EA4) is a timer protein found in diapause eggs of the silkworm Bombyx mori. The gene for this metalloglycoprotein was cloned from B. mori eggs and expressed using a baculovirus expression system in silkworm pupae. Crystals of the purified protein have been grown that diffract to beyond

  19. Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Vrije, Truus de; Budde, Miriam A.W.; Lips, Steef J.; Bakker, Robert R.; Mars, Astrid E.; Claassen, Pieternel A.M. [Wageningen UR, Food and Biobased Research, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2010-12-15

    Hydrogen was produced from carrot pulp hydrolysate, untreated carrot pulp and (mixtures of) glucose and fructose by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana in pH-controlled bioreactors. Carrot pulp hydrolysate was obtained after enzymatic hydrolysis of the polysaccharide fraction in carrot pulp. The main sugars in the hydrolysate were glucose, fructose, and sucrose. In fermentations with glucose hydrogen yields and productivities were similar for both strains. With fructose the hydrogen yield of C. saccharolyticus was reduced which might be related to uptake of glucose and fructose by different types of transport systems. With T. neapolitana the fructose consumption rate and consequently the hydrogen productivity were low. The hydrogen yields of both thermophiles were 2.7-2.8 mol H{sub 2}/mol hexose with 10 g/L sugars from carrot pulp hydrolysate. With 20 g/L sugars the yield of T. neapolitana was 2.4 mol H{sub 2}/mol hexose while the yield of C. saccharolyticus was reduced to 1.3 mol H{sub 2}/mol hexose due to high lactate production in the stationary growth phase. C. saccharolyticus was able to grow on carrot pulp and utilized soluble sugars and, after adaptation, pectin and some (hemi)cellulose. No growth was observed with T. neapolitana when using carrot pulp in agitated fermentations. Enzymatic hydrolysis of the polysaccharide fraction prior to fermentation increased the hydrogen yield with almost 10% to 2.3 g/kg of hydrolyzed carrot pulp. (author)

  20. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    Science.gov (United States)

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  1. MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis.

    Science.gov (United States)

    Favini-Stabile, Sandy; Contreras-Martel, Carlos; Thielens, Nicole; Dessen, Andréa

    2013-12-01

    Peptidoglycan is a major determinant of cell shape in bacteria, and its biosynthesis involves the concerted action of cytoplasmic, membrane-associated and periplasmic enzymes. Within the cytoplasm, Mur enzymes catalyse the first steps leading to peptidoglycan precursor biosynthesis, and have been suggested as being part of a multicomponent complex that could also involve the transglycosylase MurG and the cytoskeletal protein MreB. In order to initialize the characterization of a potential Mur interaction network, we purified MurD, MurE, MurF, MurG and MreB from Thermotoga maritima and characterized their interactions using membrane blotting and surface plasmon resonance. MurD, MurE and MurF all recognize MurG and MreB, but not each other, while the two latter proteins interact. In addition, we solved the crystal structures of MurD, MurE and MurF, which indicate that their C-termini display high conformational flexibilities. The differences in Mur conformations could be important parameters for the stability of an intracytoplasmic murein biosynthesis complex. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Thermophilic enzymes and their applications in biocatalysis: a robust aldo-keto reductase.

    Science.gov (United States)

    Willies, Simon; Isupov, Misha; Littlechild, Jennifer

    2010-09-01

    Extremophiles are providing a good source of novel robust enzymes for use in biocatalysis for the synthesis of new drugs. This is particularly true for the enzymes from thermophilic organisms which are more robust than their mesophilic counterparts to the conditions required for industrial bio-processes. This paper describes a new aldo-keto reductase enzyme from a thermophilic eubacteria, Thermotoga maritima which can be used for the production of primary alcohols. The enzyme has been cloned and over-expressed in Escherichia coli and has been purified and subjected to full biochemical characterization. The aldo-keto reductase can be used for production of primary alcohols using substrates including benzaldehyde, 1,2,3,6-tetrahydrobenzaldehyde and para-anisaldehyde. It is stable up to 80 degrees C, retaining over 60% activity for 5 hours at this temperature. The enzyme at pH 6.5 showed a preference for the forward, carbonyl reduction. The enzyme showed moderate stability with organic solvents, and retained 70% activity in 20% (v/v) isopropanol or DMSO. These properties are favourable for its potential industrial applications.

  3. Improved cellulolytic efficacy in Penicilium decumbens via heterologous expression of Hypocrea jecorina endoglucanase II

    Directory of Open Access Journals (Sweden)

    Qin Yuqi

    2013-01-01

    Full Text Available Hypocrea jecorina endoglucanase II (Hjegl2 was heterologously expressed in Penicillium decumbens (yielding strain Pd::Hjegl2. After induction in cellulose containing media, strain Pd::Hjeg2 displayed increased carboxymethylcellulase activity (CMCase, 5.77 IU/ml, representing a 21% increase and cellulose degradation determined with a filter paper assay (FPA, 0.40 IU/ml, 67% increase, as compared to the parent strain. In media supplemented with glucose (2%, Pd::Hjegl2, displayed 51.2-fold and 3-fold higher CMCase and FPA activities, respectively, as compared to the parent strain. No changes in the expression levels of the four main native cellulase genes of P. decumbens (Pdegl1, Pdegl2, Pdcbh1, and Pdcbh2 were noted between the transformant and wild-type strains. These data support the idea that Hjegl2 cleaves both internal and terminal glycosidic residues, in a relatively random and processive manner. In situ polyacrylamide gelactivity staining of extracts derived from wild-type and Pd::Hjegl2 revealed two additional active fractions in the latter strain; one with a molecular mass ~50-65 KDa and another ~80-116 kDa.

  4. EVALUATION OF ENDOGLUCANASE, EXOGLUCANASE, LACCASE, AND LIGNIN PEROXIDASE ACTIVITIES ON TEN WHITE-ROT FUNGI

    Directory of Open Access Journals (Sweden)

    Sandra Montoya B

    2014-12-01

    Full Text Available This paper presents a way of tracking the production of lignocellulolytic enzymes in ten species of white rot fungi: Lentinula edodes, Schizophyllum commune, Trametes trogii, Coriolus versicolor, Pycnoporus sanguineus, Ganoderma applanatum, Ganoderma lucidum, Grifola frondosa, Pleurotus ostreatus and Auricularia delicata. These species were first screened on solid culture media containing carboxymethyl cellulose, crystalline cellulose, ABTS (2,2´-azino-bis(3-ethylbenzothiazoline-6-sulphonate and azure B, which showed the production of endoglucanase, exoglucanase, laccase and lignin peroxidase (LiP enzymes. Cellulolytic activities were detected after five days of incubation with congo red indicator, forming a clear-white halo in areas where cellulose was degraded. For ligninases, the tracking consisted of the monitoring in the formation of green halos due to ABTS oxidation for laccase, and decolorization halos on azure B for LiP during 14 days of incubation. From this qualitative screening, four strains were selected (G. lucidum, L. edodes, C. versicolor and T. trogii as the best producers of cellulolytic and ligninolytic enzymes. These four species were inoculated on a substrate of sawdust oak, yielding 51,8% of lignin degraded by L. edodes and 22% of cellulose degraded by C. versicolor.

  5. Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw

    Directory of Open Access Journals (Sweden)

    Siika-aho Matti

    2011-01-01

    Full Text Available Abstract Background Thermostable enzymes have several benefits in lignocellulose processing. In particular, they potentially allow the use of increased substrate concentrations (because the substrate viscosity decreases as the temperature increases, resulting in improved product yields and reduced capital and processing costs. A short pre-hydrolysis step at an elevated temperature using thermostable enzymes aimed at rapid liquefaction of the feedstock is seen as an attractive way to overcome the technical problems (such as poor mixing and mass transfer properties connected with high initial solid loadings in the lignocellulose to ethanol process. Results The capability of novel thermostable enzymes to reduce the viscosity of high-solid biomass suspensions using a real-time viscometric measurement method was investigated. Heterologously expressed enzymes from various thermophilic organisms were compared for their ability to liquefy the lignocellulosic substrate, hydrothermally pretreated wheat straw. Once the best enzymes were identified, the optimal temperatures for these enzymes to decrease substrate viscosity were compared. The combined hydrolytic properties of the thermostable preparations were tested in hydrolysis experiments. The studied mixtures were primarily designed to have good liquefaction potential, and therefore contained an enhanced proportion of the key liquefying enzyme, EGII/Cel5A. Conclusions Endoglucanases were shown to have a superior ability to rapidly reduce the viscosity of the 15% (w/w; dry matter hydrothermally pretreated wheat straw. Based on temperature profiling studies, Thermoascus aurantiacus EGII/Cel5A was the most promising enzyme for biomass liquefaction. Even though they were not optimized for saccharification, many of the thermostable enzyme mixtures had superior hydrolytic properties compared with the commercial reference enzymes at 55°C.

  6. Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria.

    Science.gov (United States)

    Barros, Valciney Gomes de; Duda, Rose Maria; Vantini, Juliana da Silva; Omori, Wellington Pine; Ferro, Maria Inês Tiraboschi; Oliveira, Roberto Alves de

    2017-11-01

    Biogas production from sugarcane vinasse has enormous economic, energy, and environmental management potential. However, methane production stability and biodigested vinasse quality remain key issues, requiring better nutrient and alkalinity availability, operational strategies, and knowledge of reactor microbiota. This study demonstrates increased methane production from vinasse through the use of sugarcane filter cake and improved effluent recirculation, with elevated organic loading rates (OLR) and good reactor stability. We used UASB reactors in a two-stage configuration, with OLRs up to 45gCODL -1 d -1 , and obtained methane production as high as 3LL -1 d -1 . Quantitative PCR indicated balanced amounts of bacteria and archaea in the sludge (10 9 -10 10 copiesg -1 VS), and of the predominant archaea orders, Methanobacteriales and Methanosarcinales (10 6 -10 8 copiesg -1 VS). 16S rDNA sequencing also indicated the thermophilic Thermotogae as the most abundant class of bacteria in the sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1

    International Nuclear Information System (INIS)

    Santos, Camila Ramos; Meza, Andreia Navarro; Hoffmam, Zaira Bruna; Silva, Junio Cota; Alvarez, Thabata Maria; Ruller, Roberto; Giesel, Guilherme Menegon; Verli, Hugo; Squina, Fabio Marcio; Prade, Rolf Alexander; Murakami, Mario Tyago

    2010-01-01

    Research highlights: → The hyperthermostable xylanase 10B from Thermotoga petrophila RKU-1 produces exclusively xylobiose at the optimum temperature. → Circular dichroism spectroscopy suggests a coupling effect of temperature-induced structural changes with its enzymatic behavior. → Crystallographic and molecular dynamics studies indicate that conformational changes in the product release area modulate the enzyme action mode. -- Abstract: Endo-xylanases play a key role in the depolymerization of xylan and recently, they have attracted much attention owing to their potential applications on biofuels and paper industries. In this work, we have investigated the molecular basis for the action mode of xylanases 10B at high temperatures using biochemical, biophysical and crystallographic methods. The crystal structure of xylanase 10B from hyperthermophilic bacterium Thermotoga petrophila RKU-1 (TpXyl10B) has been solved in the native state and in complex with xylobiose. The complex crystal structure showed a classical binding mode shared among other xylanases, which encompasses the -1 and -2 subsites. Interestingly, TpXyl10B displayed a temperature-dependent action mode producing xylobiose and xylotriose at 20 o C, and exclusively xylobiose at 90 o C as assessed by capillary zone electrophoresis. Moreover, circular dichroism spectroscopy suggested a coupling effect of temperature-induced structural changes with this particular enzymatic behavior. Molecular dynamics simulations supported the CD analysis suggesting that an open conformational state adopted by the catalytic loop (Trp297-Lys326) provokes significant modifications in the product release area (+1,+2 and +3 subsites), which drives the enzymatic activity to the specific release of xylobiose at high temperatures.

  8. Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Camila Ramos; Meza, Andreia Navarro [Laboratorio Nacional de Biociencias (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil); Hoffmam, Zaira Bruna; Silva, Junio Cota; Alvarez, Thabata Maria; Ruller, Roberto [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil); Giesel, Guilherme Menegon; Verli, Hugo [Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Squina, Fabio Marcio [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil); Prade, Rolf Alexander [Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK (United States); Murakami, Mario Tyago, E-mail: mario.murakami@lnbio.org.br [Laboratorio Nacional de Biociencias (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil)

    2010-12-10

    Research highlights: {yields} The hyperthermostable xylanase 10B from Thermotoga petrophila RKU-1 produces exclusively xylobiose at the optimum temperature. {yields} Circular dichroism spectroscopy suggests a coupling effect of temperature-induced structural changes with its enzymatic behavior. {yields} Crystallographic and molecular dynamics studies indicate that conformational changes in the product release area modulate the enzyme action mode. -- Abstract: Endo-xylanases play a key role in the depolymerization of xylan and recently, they have attracted much attention owing to their potential applications on biofuels and paper industries. In this work, we have investigated the molecular basis for the action mode of xylanases 10B at high temperatures using biochemical, biophysical and crystallographic methods. The crystal structure of xylanase 10B from hyperthermophilic bacterium Thermotoga petrophila RKU-1 (TpXyl10B) has been solved in the native state and in complex with xylobiose. The complex crystal structure showed a classical binding mode shared among other xylanases, which encompasses the -1 and -2 subsites. Interestingly, TpXyl10B displayed a temperature-dependent action mode producing xylobiose and xylotriose at 20 {sup o}C, and exclusively xylobiose at 90 {sup o}C as assessed by capillary zone electrophoresis. Moreover, circular dichroism spectroscopy suggested a coupling effect of temperature-induced structural changes with this particular enzymatic behavior. Molecular dynamics simulations supported the CD analysis suggesting that an open conformational state adopted by the catalytic loop (Trp297-Lys326) provokes significant modifications in the product release area (+1,+2 and +3 subsites), which drives the enzymatic activity to the specific release of xylobiose at high temperatures.

  9. Non-complexed four cascade enzyme mixture: simple purification and synergetic co-stabilization.

    Directory of Open Access Journals (Sweden)

    Suwan Myung

    Full Text Available Cell-free biosystems comprised of synthetic enzymatic pathways would be a promising biomanufacturing platform due to several advantages, such as high product yield, fast reaction rate, easy control and access, and so on. However, it was essential to produce (purified enzymes at low costs and stabilize them for a long time so to decrease biocatalyst costs. We studied the stability of the four recombinant enzyme mixtures, all of which originated from thermophilic microorganisms: triosephosphate isomerase (TIM from Thermus thermophiles, fructose bisphosphate aldolase (ALD from Thermotoga maritima, fructose bisphosphatase (FBP from T. maritima, and phosphoglucose isomerase (PGI from Clostridium thermocellum. It was found that TIM and ALD were very stable at evaluated temperature so that they were purified by heat precipitation followed by gradient ammonia sulfate precipitation. In contrast, PGI was not stable enough for heat treatment. In addition, the stability of a low concentration PGI was enhanced by more than 25 times in the presence of 20 mg/L bovine serum albumin or the other three enzymes. At a practical enzyme loading of 1000 U/L for each enzyme, the half-life time of free PGI was prolong to 433 h in the presence of the other three enzymes, resulting in a great increase in the total turn-over number of PGI to 6.2×10(9 mole of product per mole of enzyme. This study clearly suggested that the presence of other proteins had a strong synergetic effect on the stabilization of the thermolabile enzyme PGI due to in vitro macromolecular crowding effect. Also, this result could be used to explain why not all enzymes isolated from thermophilic microorganisms are stable in vitro because of a lack of the macromolecular crowding environment.

  10. Thermodynamics and kinetic properties of halostable endoglucanase from Aspergillus fumigatus ABK9.

    Science.gov (United States)

    Das, Arpan; Jana, Arijit; Paul, Tanmay; Halder, Suman Kumar; Ghosh, Kuntal; Maity, Chiranjit; Mohapatra, Pradeep Kumar Das; Pati, Bikas Ranjan; Mondal, Keshab Chandra

    2014-07-01

    An endoglucanase from Aspergillus fumigatus ABK9 was purified from the culture extract of solid-state fermentation and its some characteristics were evaluated. The molecular weight of the purified enzyme (56.3 kDa) was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymogram analysis and confirmed by MALDI-TOF mass spectrometry. The enzyme was active optimally at 50 °C, pH 5.0 and stable over a broad range of pH (4.0-7.0) and NaCl concentration of 0-3.0 M. The pKa1 and pKa2 of the ionizable groups of the active sites were 2.94 and 6.53, respectively. The apparent Km , Vmax , and Kcat values for carboxymethyl cellulose were 6.7 mg ml(-1), 775.4 µmol min(-1) , and 42.84 × 10(4)  s(-1), respectively. Thermostability of the enzyme was evidenced by the high activation energy (91.45 kJ mol(-1)), large enthalpy for activation of denaturation (88.77 kJ mol(-1)), longer half-life (T1/2) (433 min at 50 °C), higher melting temperature (Tm ) (73.5 °C), and Q10 (1.3) values. All the characteristics favors its suitability as halotolerant and thermostable enzyme during bioprocessing of lignocellulosic materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of an inositol monophosphatase family protein (SAS2203) from Staphylococcus aureus MSSA476

    International Nuclear Information System (INIS)

    Bhattacharyya, Sudipta; Dutta, Debajyoti; Ghosh, Ananta Kumar; Das, Amit Kumar

    2011-01-01

    The cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of an inositol monophosphatase family protein (SAS2203) from S. aureus MSSA476 is reported. The gene product of the sas2203 ORF of Staphylococcus aureus MSSA476 encodes a 30 kDa molecular-weight protein with a high sequence resemblance (29% identity) to tetrameric inositol monophosphatase from Thermotoga maritima. The protein was cloned, expressed, purified to homogeneity and crystallized. Crystals appeared in several conditions and good diffraction-quality crystals were obtained from 0.2 M Li 2 SO 4 , 20% PEG 3350, 0.1 M HEPES pH 7.0 using the sitting-drop vapour-diffusion method. A complete diffraction data set was collected to 2.6 Å resolution using a Rigaku MicroMax-007 HF Cu Kα X-ray generator and a Rigaku R-AXIS IV ++ detector. The diffraction data were consistent with the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 49.98, b = 68.35, c = 143.79 Å, α = β = γ = 90°, and the crystal contained two molecules in the asymmetric unit

  12. The actin-like MreB proteins in Bacillus subtilis: a new turn.

    Science.gov (United States)

    Chastanet, Arnaud; Carballido-Lopez, Rut

    2012-06-01

    A decade ago, two breakthrough descriptions were reported: 1) the first helix-like protein localization pattern of MreB and its paralog Mbl in Bacillus subtilis and 2) the crystal structure of Thermotoga maritima MreB1, which was remarkably similar to that of actin. These discoveries strongly stimulated the field of bacterial development, leading to the identification of many new cytoskeletal proteins (1) and the publication of many studies describing the helical patterns of protein, DNA and even lipid domains. However, today, new breakthroughs are shaking up what had become a dogma. Instead of helical structures, MreBs appear to form discrete patches that move circumferentially around the cell, questioning the idea of MreB cables forming an actin-like cytoskeleton. Furthermore, increasing evidence of biochemical properties that are unlike the properties of actin suggest that the molecular behavior of MreB proteins may be different. The aim of this review is to summarize the current knowledge of the so-called "actin-like" MreB cytoskeleton through a discussion of the model Gram-positive bacterium B. subtilis and the most recent findings in this rapidly evolving research field.

  13. Microbiological evidence for Fe(III) reduction on early Earth

    Science.gov (United States)

    Vargas, Madeline; Kashefi, Kazem; Blunt-Harris, Elizabeth L.; Lovley, Derek R.

    1998-09-01

    It is generally considered that sulphur reduction was one of the earliest forms of microbial respiration, because the known microorganisms that are most closely related to the last common ancestor of modern life are primarily anaerobic, sulphur-reducing hyperthermophiles. However, geochemical evidence indicates that Fe(III) is more likely than sulphur to have been the first external electron acceptor of global significance in microbial metabolism. Here we show that Archaea and Bacteria that are most closely related to the last common ancestor can reduce Fe(III) to Fe(II) and conserve energy to support growth from this respiration. Surprisingly, even Thermotoga maritima, previously considered to have only a fermentative metabolism, could grow as a respiratory organism when Fe(III) was provided as an electron acceptor. These results provide microbiological evidence that Fe(III) reduction could have been an important process on early Earth and suggest that microorganisms might contribute to Fe(III) reduction in modern hot biospheres. Furthermore, our discovery that hyperthermophiles that had previously been thought to require sulphur for cultivation can instead be grown without the production of toxic and corrosive sulphide, should aid biochemical investigations of these poorly understood organisms.

  14. Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Mars, Astrid E.; Veuskens, Teun; Budde, Miriam A.W.; van Doeveren, Patrick F.N.M.; Lips, Steef J.; Bakker, Robert R.; de Vrije, Truus; Claassen, Pieternel A.M. [Wageningen UR, Food and Biobased Research, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2010-08-15

    Production of hydrogen by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana was studied in serum flasks and in pH-controlled bioreactors with glucose, and hydrolyzed and untreated potato steam peels (PSP) as carbon sources. Two types of PSP hydrolysates were used: one in which the starch in the PSP was liquefied with alpha-amylase, and one in which the liquefied starch was further hydrolyzed to glucose by amyloglucosidase. When the PSP hydrolysates or untreated PSP were added at circa 10-14 g/L of glucose units, both strains grew well and produced hydrogen with reasonable to high molar yields (2.4-3.8 moles H{sub 2}/mole glucose units), and no significant production of lactate. The hydrogen production rates and yields were similar with untreated PSP, hydrolyzed PSP, and pure glucose, showing that C. saccharolyticus and T. neapolitana are well equipped for the utilization of starch. When the concentrations of the substrates were increased, growth and hydrogen production of both strains were hampered. At substrate concentrations of circa 30-40 g/L of glucose units, the molar hydrogen yield of C. saccharolyticus was severely reduced due to the formation of high amounts of lactate, while T. neapolitana was unable to grow at all. The results showed that PSP and PSP hydrolysates are very suitable substrates for efficient fermentative hydrogen production at moderate substrate loadings. (author)

  15. The seasonal dormancy pattern and germination of Matricaria maritima subsp. inodora (L. Dostal seeds in hydrotime model terms

    Directory of Open Access Journals (Sweden)

    Anna Bochenek

    2011-01-01

    Full Text Available Changes in hydrotime model parameters were determined in Matricaria maritima L. subsp. inodora seeds during burial in a field in order to describe the seasonal dormancy pattern. Seeds were exhumed at regular intervals over a year and incubated at different water potentials at 19°C. Germination time courses were analyzed to determine hydrotime population parameters. Values of ѱb(50, ѲH and σѱb varied each month. Mean base water potential values in seeds exhumed each month were related to precipitation over 20 days before their exhumation. Soil temperature could be a trend-controlling factor of this relationship. The seeds were in deep dormancy after remaining 80-90 days in soil below or above limit temperature 15°C. The application of the hydrotime model to describe and predict seasonal dormancy patterns of weed seed is promising, especially for species with a considerable diversification of life strategies and ecophysiological flexibility of diaspores. It could also suggest mechanisms of seasonal dormancy changes of seeds in natural conditions and provide a basis for their examination. One of advantages of the dormancy pattern description of weed seeds remaining in a soil bank by means of threshold models is its simplicity.

  16. Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam-Anh D.; Kim, Kyoung-Rok; Nguyen, Minh-Thu; Sim, Sang Jun [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Mi Sun [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Kim, Donhue [Department of Biochemical Engineering, Dongyang Mirae College, Seoul 152-714 (Korea, Republic of)

    2010-12-15

    Biomass of the green algae has been recently an attractive feedstock source for bio-fuel production because the algal carbohydrates can be derived from atmospheric CO{sub 2} and their harvesting methods are simple. We utilized the accumulated starch in the green alga Chlamydomonas reinhardtii as the sole substrate for fermentative hydrogen (H{sub 2}) production by the hyperthermophilic eubacterium Thermotoga neapolitana. Because of possessing amylase activity, the bacterium could directly ferment H{sub 2} from algal starch with H{sub 2} yield of 1.8-2.2 mol H{sub 2}/mol glucose and the total accumulated H{sub 2} level from 43 to 49% (v/v) of the gas headspace in the closed culture bottle depending on various algal cell-wall disruption methods concluding sonication or methanol exposure. Attempting to enhance the H{sub 2} production, two pretreatment methods using the heat-HCl treatment and enzymatic hydrolysis were applied on algal biomass before using it as substrate for H{sub 2} fermentation. Cultivation with starch pretreated by 1.5% HCl at 121 C for 20 min showed the total accumulative H{sub 2} yield of 58% (v/v). In other approach, enzymatic digestion of starch by thermostable {alpha}-amylase (Termamyl) applied in the SHF process significantly enhanced the H{sub 2} productivity of the bacterium to 64% (v/v) of total accumulated H{sub 2} level and a H{sub 2} yield of 2.5 mol H{sub 2}/mol glucose. Our results demonstrated that direct H{sub 2} fermentation from algal biomass is more desirably potential because one bacterial cultivation step was required that meets the cost-savings, environmental friendly and simplicity of H{sub 2} production. (author)

  17. EFFECT OF EXOGENOUS ABSCISIC ACID ON GROWTH AND BIOCHEMICAL CHANGES IN THE HALOPHYTE SUAEDA MARITIMA

    Directory of Open Access Journals (Sweden)

    Anbarasi G.

    2015-04-01

    Full Text Available Different types of phytohormones are being extensively used to alleviate the adverse effect of salinity stress on plant growth. Among those, Abscisic acid (ABA is a plant stress hormone and one of the most important signaling molecules in plants. Drought and salinity activate De-novo abscisic acid synthesis prevent further water loss by evaporation through stomata, mediated by changes in the guard cell turgor pressure. Under osmotic stress abscisic acid induce the accumulation of protein involved in the biosynthesis of osmolites which increasing the stress tolerance of plant. In addition, exogenous application of ABA enhances the tolerance of plants or plant cells to cold, heat, drought, anoxia and heavy metal stresses. This study was carried out to study the exogenous abscisic (ABA acid induced regulatory role on the growth, water content, protein content, chlorophyll content, osmolyte accumulation and protein profiling through SDS PAGE in a halophyte, Suaeda maritima. The osmolyte accumulation of proline and glycine betaine was found to be more in 50 µM ABA concentrations. The protein profiling through SDS PAGE revealed that ̴ 66KDa proteins was not expressed in the control plant and in 10μM ABA treated plants. Interestingly, the ABA treatment induced a new protein of 14.2KDa in 10μM concentration. The ABA treated plants with concentrations 50μM, 100μM and 150μM showed changes in the expression of protein in abundance than the control and 10μM ABA treated plants. The findings in this study indicate that among all the concentrations, 50μM ABA concentration treated plants exhibited higher growth rate.

  18. CMS-G from Beta vulgaris ssp. maritima is maintained in natural populations despite containing an atypical cytochrome c oxidase.

    Science.gov (United States)

    Meyer, Etienne H; Lehmann, Caroline; Boivin, Stéphane; Brings, Lea; De Cauwer, Isabelle; Bock, Ralph; Kühn, Kristina; Touzet, Pascal

    2018-02-23

    While mitochondrial mutants of the respiratory machinery are rare and often lethal, cytoplasmic male sterility (CMS), a mitochondrially inherited trait that results in pollen abortion, is frequently encountered in wild populations. It generates a breeding system called gynodioecy. In Beta vulgaris ssp. maritima , a gynodioecious species, we found CMS-G to be widespread across the distribution range of the species. Despite the sequencing of the mitochondrial genome of CMS-G, the mitochondrial sterilizing factor causing CMS-G is still unknown. By characterizing biochemically CMS-G, we found that the expression of several mitochondrial proteins is altered in CMS-G plants. In particular, Cox1, a core subunit of the cytochrome c oxidase (complex IV), is larger but can still assemble into complex IV. However, the CMS-G-specific complex IV was only detected as a stabilized dimer. We did not observe any alteration of the affinity of complex IV for cytochrome c ; however, in CMS-G, complex IV capacity is reduced. Our results show that CMS-G is maintained in many natural populations despite being associated with an atypical complex IV. We suggest that the modified complex IV could incur the associated cost predicted by theoretical models to maintain gynodioecy in wild populations. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Big wigs and small wigs: Time, sex, size and shelter affect cohabitation in the maritime earwig (Anisolabis maritima.

    Directory of Open Access Journals (Sweden)

    Nicole L Hack

    Full Text Available Animal aggregations can occur for a variety of abiotic factors, such as resource limitation, or biotic factors, including group foraging and protection from predators. In our study, we examined whether time, sex, body size or shelter availability affected aggregation behavior of the maritime earwig, Anisolabis maritima (Order Dermaptera, an insect found globally at high densities under driftwood. Specifically, we monitored the distribution of two individuals in arenas with either two shelters (no habitat limitation or one shelter (habitat limitation to determine their propensity for cohabitation at times of peak activity and times of quiescence. Females, whose high levels of aggression are often associated with maternal care, were particularly averse to cohabitation, whereas males were generally more tolerant of other earwigs. Females initially preferred not to cohabitate when placed with a male, but were more tolerant of cohabitation later, regardless of the number of shelters. Same-sex pairs, on the other hand, were less likely to cohabitate with only one shelter present, but males were again more tolerant of conspecifics than females regardless of habitat limitation. When competition for one shelter did not lead to cohabitation, the lone occupant was more likely to be the larger individual in same-sex trials and females in mixed-sex trials. Understanding the tolerance for close proximity under these varying conditions may provide insight into aggregative behavior and spatial distribution patterns in the maritime earwig.

  20. Flow synthesis of phenylserine using threonine aldolase immobilized on Eupergit support

    Science.gov (United States)

    Tibhe, Jagdish D; Fu, Hui; Noël, Timothy; Wang, Qi; Meuldijk, Jan

    2013-01-01

    Summary Threonine aldolase (TA) from Thermotoga maritima was immobilized on an Eupergit support by both a direct and an indirect method. The incubation time for the direct immobilization method was optimized for the highest amount of enzyme on the support. By introducing the immobilized TA in a packed-bed microreactor, a flow synthesis of phenylserine was developed, and the effects of temperature and residence time were studied in particular. Calculations of the Damköhler number revealed that no mass transfer limitations are given in the micro-interstices of the packed bed. The yield does not exceed 40% and can be rationalized by the natural equilibrium as well as product inhibition which was experimentally proven. The flow synthesis with the immobilized enzyme was compared with the corresponding transformation conducted with the free enzyme. The product yield was further improved by operating under slug flow conditions which is related to the very short residence time distribution. In all cases 20% diastereomeric excess (de) and 99% enantiomeric excess (ee) were observed. A continuous run of the reactant solution was carried out for 10 hours in order to check enzyme stability at higher temperature. Stable operation was achieved at 20 minute residence time. Finally, the productivity of the reactor was calculated, extrapolated to parallel run units, and compared with data collected previously. PMID:24204429

  1. Flow synthesis of phenylserine using threonine aldolase immobilized on Eupergit support

    Directory of Open Access Journals (Sweden)

    Jagdish D. Tibhe

    2013-10-01

    Full Text Available Threonine aldolase (TA from Thermotoga maritima was immobilized on an Eupergit support by both a direct and an indirect method. The incubation time for the direct immobilization method was optimized for the highest amount of enzyme on the support. By introducing the immobilized TA in a packed-bed microreactor, a flow synthesis of phenylserine was developed, and the effects of temperature and residence time were studied in particular. Calculations of the Damköhler number revealed that no mass transfer limitations are given in the micro-interstices of the packed bed. The yield does not exceed 40% and can be rationalized by the natural equilibrium as well as product inhibition which was experimentally proven. The flow synthesis with the immobilized enzyme was compared with the corresponding transformation conducted with the free enzyme. The product yield was further improved by operating under slug flow conditions which is related to the very short residence time distribution. In all cases 20% diastereomeric excess (de and 99% enantiomeric excess (ee were observed. A continuous run of the reactant solution was carried out for 10 hours in order to check enzyme stability at higher temperature. Stable operation was achieved at 20 minute residence time. Finally, the productivity of the reactor was calculated, extrapolated to parallel run units, and compared with data collected previously.

  2. Microfluidic glycosyl hydrolase screening for biomass-to-biofuel conversion.

    Science.gov (United States)

    Bharadwaj, Rajiv; Chen, Zhiwei; Datta, Supratim; Holmes, Bradley M; Sapra, Rajat; Simmons, Blake A; Adams, Paul D; Singh, Anup K

    2010-11-15

    The hydrolysis of biomass to fermentable sugars using glycosyl hydrolases such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Enhancement in hydrolysis efficiency is necessary and requires improvement in both enzymes and processing strategies. Advances in both areas in turn strongly depend on the progress in developing high-throughput assays to rapidly and quantitatively screen a large number of enzymes and processing conditions. For example, the characterization of various cellodextrins and xylooligomers produced during the time course of saccharification is important in the design of suitable reactors, enzyme cocktail compositions, and biomass pretreatment schemes. We have developed a microfluidic-chip-based assay for rapid and precise characterization of glycans and xylans resulting from biomass hydrolysis. The technique enables multiplexed separation of soluble cellodextrins and xylose oligomers in around 1 min (10-fold faster than HPLC). The microfluidic device was used to elucidate the mode of action of Tm_Cel5A, a novel cellulase from hyperthermophile Thermotoga maritima . The results demonstrate that the cellulase is active at 80 °C and effectively hydrolyzes cellodextrins and ionic-liquid-pretreated switchgrass and Avicel to glucose, cellobiose, and cellotriose. The proposed microscale approach is ideal for quantitative large-scale screening of enzyme libraries for biomass hydrolysis, for development of energy feedstocks, and for polysaccharide sequencing.

  3. Identification of a Minimal Peptide Tag for in Vivo and in Vitro Loading of Encapsulin.

    Science.gov (United States)

    Cassidy-Amstutz, Caleb; Oltrogge, Luke; Going, Catherine C; Lee, Antony; Teng, Poh; Quintanilla, David; East-Seletsky, Alexandra; Williams, Evan R; Savage, David F

    2016-06-21

    The encapsulation of enzymes and other proteins within a proteinaceous shell has been observed in many bacteria and archaea, but the function and utility of many such compartments are enigmatic. Efforts to study these functions have been complicated by the size and complexity of traditional protein compartments. One potential system for investigating the effect of compartmentalization is encapsulin, a large and newly discovered class of protein shells that are typically composed of two proteins: a protomer that assembles into the icosahedral shell and a cargo protein packaged inside. Encapsulins are some of the simplest known protein shell systems and readily self-assemble in vivo. Systematic characterization of the effects of compartmentalization requires the ability to load a wide range of cargo proteins. Here, we demonstrate that foreign cargo can be loaded into the encapsulin from Thermotoga maritima both in vivo and in vitro by fusion of the cargo protein with a short C-terminal peptide present in the native cargo. To facilitate biochemical characterization, we also develop a simple and rapid purification protocol and demonstrate the thermal and pH stability of the shell. Efforts to study the biophysical effects of protein encapsulation have been problematic in complex compartments, but the simplicity of assembling and loading encapsulin makes it an ideal system for future experiments exploring the effects of encapsulation on proteins.

  4. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    de Vrije Truus

    2009-06-01

    Full Text Available Abstract Background The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Results Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75°C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained. Conclusion Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.

  5. Optimization of endoglucanase production from thermophilic strain of Bacillus licheniformis RT-17 and its application for saccharification of sugarcane bagasse

    International Nuclear Information System (INIS)

    Tariq, R.; Qadir, F.; Ahmed, A.; Shariq, M.; Zafar, U.; Khan, S.A.

    2018-01-01

    Thermostable cellulases are required for a variety of commercial processes. Bacillus is a house of thermostable proteins. Screening of indigenously isolated strains of bacteria revealed the promising production of cellulase by a strain, RT-17, at 50 degree C. The strain was identified on the basis of biochemical and molecular characteristics as B. licheniformis. The factors affecting cellulase production from B. licheniformis RT-17 were evaluated for their significant effect using Plackett Burman Design and were optimized by employing Box-Behnken Design. The model predicted 9.808 IU/ml of endoglucanase (EG) under optimum conditions of 50 degree C; 10% inoculum size; pH 5; and 1% peptone in fermentation medium. Practically, a titer of 9.128 IU/ml was obtained, showed the validity of the model. The enzyme preparation from B. licheniformis RT-17 was applied in combination with xylanase and pectinase preparations from indigenous yeasts for the hydrolysis of sugarcane bagasse (SCB). A higher degree of synergy (7.1 folds) was observed when yeast pectinase was used with bacterial cellulase for the hydrolysis of alkali treated SCB. Whereas, the degree of synergy was lower when bacterial cellulase was mixed with yeast xylanase. The study revealed the possibility of utilization of combination of yeast and bacterial enzymes for biomass saccharification. (author)

  6. Endogenous cellulases in animals: Isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes

    Science.gov (United States)

    Smant, Geert; Stokkermans, Jack P. W. G.; Yan, Yitang; de Boer, Jan M.; Baum, Thomas J.; Wang, Xiaohong; Hussey, Richard S.; Gommers, Fred J.; Henrissat, Bernard; Davis, Eric L.; Helder, Johannes; Schots, Arjen; Bakker, Jaap

    1998-01-01

    β-1,4-Endoglucanases (EGases, EC 3.2.1.4) degrade polysaccharides possessing β-1,4-glucan backbones such as cellulose and xyloglucan and have been found among extremely variegated taxonomic groups. Although many animal species depend on cellulose as their main energy source, most omnivores and herbivores are unable to produce EGases endogenously. So far, all previously identified EGase genes involved in the digestive system of animals originate from symbiotic microorganisms. Here we report on the synthesis of EGases in the esophageal glands of the cyst nematodes Globodera rostochiensis and Heterodera glycines. From each of the nematode species, two cDNAs were characterized and hydrophobic cluster analysis revealed that the four catalytic domains belong to family 5 of the glycosyl hydrolases (EC 3.2.1, 3.2.2, and 3.2.3). These domains show 37–44% overall amino acid identity with EGases from the bacteria Erwinia chrysanthemi, Clostridium acetobutylicum, and Bacillus subtilis. One EGase with a bacterial type of cellulose-binding domain was identified for each nematode species. The leucine-rich hydrophobic core of the signal peptide and the presence of a polyadenylated 3′ end precluded the EGases from being of bacterial origin. Cyst nematodes are obligatory plant parasites and the identified EGases presumably facilitate the intracellular migration through plant roots by partial cell wall degradation. PMID:9560201

  7. An Aromatic Cap Seals the Substrate Binding Site in an ECF-Type S Subunit for Riboflavin

    Energy Technology Data Exchange (ETDEWEB)

    Karpowich, Nathan K.; Song, Jinmei; Wang, Da-Neng

    2016-06-13

    ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from Thermotoga maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein–substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface in which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound, occluded state, and non-conservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high-affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic, conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters.

  8. A comparative molecular dynamics study of thermophilic and mesophilic β-fructosidase enzymes.

    Science.gov (United States)

    Mazola, Yuliet; Guirola, Osmany; Palomares, Sucel; Chinea, Glay; Menéndez, Carmen; Hernández, Lázaro; Musacchio, Alexis

    2015-09-01

    Arabidopsis thaliana cell wall invertase 1 (AtcwINV1) and Thermotoga maritima β-fructosidase (BfrA) are among the best structurally studied members of the glycoside hydrolase family 32. Both enzymes hydrolyze sucrose as the main substrate but differ strongly in their thermal stability. Mesophilic AtcwINV1 and thermophilic BfrA have divergent sequence similarities in the N-terminal five bladed β-propeller catalytic domain (31 %) and the C-terminal β-sandwich domain (15 %) of unknown function. The two enzymes were subjected to 200 ns molecular dynamics simulations at 300 K (27 °C) and 353 K (80 °C). Regular secondary structure regions, but not loops, in AtcwINV1 and BfrA showed no significant fluctuation differences at both temperatures. BfrA was more rigid than AtcwINV1 at 300 K. The simulation at 353 K did not alter the structural stability of BfrA, but did increase the overall flexibility of AtcwINV1 exhibiting the most fluctuating regions in the β-propeller domain. The simulated heat treatment also increased the gyration radius and hydrophobic solvent accessible surface area of the plant enzyme, consistent with the initial steps of an unfolding process. The preservation of the conformational rigidity of BfrA at 353 K is linked to the shorter size of the protein loops. Shortening of BfrA loops appears to be a key mechanism for thermostability.

  9. A Robust and Versatile Method of Combinatorial Chemical Synthesis of Gene Libraries via Hierarchical Assembly of Partially Randomized Modules

    Science.gov (United States)

    Popova, Blagovesta; Schubert, Steffen; Bulla, Ingo; Buchwald, Daniela; Kramer, Wilfried

    2015-01-01

    A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis. PMID:26355961

  10. Creation of metal-independent hyperthermophilic L-arabinose isomerase by homologous recombination.

    Science.gov (United States)

    Hong, Young-Ho; Lee, Dong-Woo; Pyun, Yu-Ryang; Lee, Sung Haeng

    2011-12-28

    Hyperthermophilic L-arabinose isomerases (AIs) are useful in the commercial production of D-tagatose as a low-calorie bulk sweetener. Their catalysis and thermostability are highly dependent on metals, which is a major drawback in food applications. To study the role of metal ions in the thermostability and catalysis of hyperthermophilic AI, four enzyme chimeras were generated by PCR-based hybridization to replace the variable N- and C-terminal regions of hyperthermophilic Thermotoga maritima AI (TMAI) and thermophilic Geobacillus stearothermophilus AI (GSAI) with those of the homologous mesophilic Bacillus halodurans AI (BHAI). Unlike Mn(2+)-dependent TMAI, the GSAI- and TMAI-based hybrids with the 72 C-terminal residues of BHAI were not metal-dependent for catalytic activity. By contrast, the catalytic activities of the TMAI- and GSAI-based hybrids containing the N-terminus (residues 1-89) of BHAI were significantly enhanced by metals, but their thermostabilities were poor even in the presence of Mn(2+), indicating that the effects of metals on catalysis and thermostability involve different structural regions. Moreover, in contrast to the C-terminal truncate (Δ20 residues) of GSAI, the N-terminal truncate (Δ7 residues) exhibited no activity due to loss of its native structure. The data thus strongly suggest that the metal dependence of the catalysis and thermostability of hyperthermophilic AIs evolved separately to optimize their activity and thermostability at elevated temperatures. This may provide effective target regions for engineering, thereby meeting industrial demands for the production of d-tagatose.

  11. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima - ancestor of all beet crops - and modern sugar beets

    Directory of Open Access Journals (Sweden)

    Christin eZachow

    2014-08-01

    Full Text Available The structure and function of the plant microbiome is driven by plant species and prevailing environmental conditions. Effectuated by breeding efforts, modern crops diverge genetically and phenotypically from their wild relatives but little is known about consequences for the associated microbiota. Therefore, we studied bacterial rhizosphere communities associated with the wild beet B. vulgaris ssp. maritima grown in their natural habitat soil from coastal drift lines (CS and modern sugar beets (Beta vulgaris ssp. vulgaris cultivated in CS and potting soil (PS under greenhouse conditions. Analysis of 16S rRNA gene fingerprints and pyrosequencing-based amplicon libraries revealed plant genotype- and soil-specific microbiomes. Wild beet plants harbor distinct operational taxonomic units (OTUs and a more diverse bacterial community than the domesticated sugar beet plants. Although the rhizospheres of both plant genotypes were dominated by Proteobacteria and Planctomycetes, 47.4% of dominant OTUs were additionally detected in the wild beet rhizosphere. Analysis of the cultivable fraction confirmed these plant genotype-specific differences at functional level. The proportion of isolates displayed in vitro activity against phytopathogens was lower for wild beet (≤45.8% than for sugar beet (≤57.5%. Conversely, active isolates from the wild beet exhibited stronger ability to cope with abiotic stresses. From all samples, active isolates of Stenotrophomonas rhizophila were frequently identified. In addition, soil type-specific impacts on the composition of bacterial communities were found: Acidobacteria, Chloroflexi, and Planctomycetes were only detected in plants cultivated in CS; whereas Bacteroidetes and Proteobacteria dominated in PS. Overall, in comparison to modern sugar beets, wild beets were associated with taxonomically and functionally distinct microbiomes.

  12. Practical screening of purified cellobiohydrolases and endoglucanases with α-cellulose and specification of hydrodynamics

    Directory of Open Access Journals (Sweden)

    Jäger Gernot

    2010-08-01

    Full Text Available Abstract Background It is important to generate biofuels and society must be weaned from its dependency on fossil fuels. In order to produce biofuels, lignocellulose is pretreated and the resulting cellulose is hydrolyzed by cellulases such as cellobiohydrolases (CBH and endoglucanases (EG. Until now, the biofuel industry has usually applied impractical celluloses to screen for cellulases capable of degrading naturally occurring, insoluble cellulose. This study investigates how these cellulases adsorb and hydrolyze insoluble α-cellulose − considered to be a more practical substrate which mimics the alkaline-pretreated biomass used in biorefineries. Moreover, this study investigates how hydrodynamics affects cellulase adsorption and activity onto α-cellulose. Results First, the cellulases CBH I, CBH II, EG I and EG II were purified from Trichoderma reesei and CBH I and EG I were utilized in order to study and model the adsorption isotherms (Langmuir and kinetics (pseudo-first-order. Second, the adsorption kinetics and cellulase activities were studied under different hydrodynamic conditions, including liquid mixing and particle suspension. Third, in order to compare α-cellulose with three typically used celluloses, the exact cellulase activities towards all four substrates were measured. It was found that, using α-cellulose, the adsorption models fitted to the experimental data and yielded parameters comparable to those for filter paper. Moreover, it was determined that higher shaking frequencies clearly improved the adsorption of cellulases onto α-cellulose and thus bolstered their activity. Complete suspension of α-cellulose particles was the optimal operating condition in order to ensure efficient cellulase adsorption and activity. Finally, all four purified cellulases displayed comparable activities only on insoluble α-cellulose. Conclusions α-Cellulose is an excellent substrate to screen for CBHs and EGs. This current investigation

  13. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme.

    Science.gov (United States)

    Pellegrini, Vanessa O A; Serpa, Viviane Isabel; Godoy, Andre S; Camilo, Cesar M; Bernardes, Amanda; Rezende, Camila A; Junior, Nei Pereira; Franco Cairo, João Paulo L; Squina, Fabio M; Polikarpov, Igor

    2015-11-01

    Trichoderma filamentous fungi have been investigated due to their ability to secrete cellulases which find various biotechnological applications such as biomass hydrolysis and cellulosic ethanol production. Previous studies demonstrated that Trichoderma harzianum IOC-3844 has a high degree of cellulolytic activity and potential for biomass hydrolysis. However, enzymatic, biochemical, and structural studies of cellulases from T. harzianum are scarce. This work reports biochemical characterization of the recombinant endoglucanase I from T. harzianum, ThCel7B, and its catalytic core domain. The constructs display optimum activity at 55 °C and a surprisingly acidic pH optimum of 3.0. The full-length enzyme is able to hydrolyze a variety of substrates, with high specific activity: 75 U/mg for β-glucan, 46 U/mg toward xyloglucan, 39 U/mg for lichenan, 26 U/mg for carboxymethyl cellulose, 18 U/mg for 4-nitrophenyl β-D-cellobioside, 16 U/mg for rye arabinoxylan, and 12 U/mg toward xylan. The enzyme also hydrolyzed filter paper, phosphoric acid swollen cellulose, Sigmacell 20, Avicel PH-101, and cellulose, albeit with lower efficiency. The ThCel7B catalytic domain displays similar substrate diversity. Fluorescence-based thermal shift assays showed that thermal stability is highest at pH 5.0. We determined kinetic parameters and analyzed a pattern of oligosaccharide substrates hydrolysis, revealing cellobiose as a final product of C6 degradation. Finally, we visualized effects of ThCel7B on oat spelt using scanning electron microscopy, demonstrating the morphological changes of the substrate during the hydrolysis. The acidic behavior of ThCel7B and its considerable thermostability hold a promise of its industrial applications and other biotechnological uses under extremely acidic conditions.

  14. Bi-functional fusion enzyme EG-M-Xyn displaying endoglucanase and xylanase activities and its utility in improving lignocellulose degradation.

    Science.gov (United States)

    Chen, Chin-Chung; Gao, Guo-Jhan; Kao, Ai-Ling; Tsai, Zheng-Chia

    2018-05-01

    In this study, the gene fusion of endoglucanase (EG, one of cellulases) from Teleogryllus emma and xylanase (Xyn, one of hemicellulases) from Thermomyces lanuginosus was constructed to generate a fusion enzyme (EG-M-Xyn). Through the expression and purification by ultrafiltration and size-exclusion chromatography, the purified EG-M-Xyn had a molecular weight of 75.5 kDa and exhibited the specific activity of CMCase and xylanase as 306.8 U/mg and 1227.3 U/mg, respectively. The K m values (CMC and beechwood xylan) were 6.8 and 60.6 mg mL -1 while catalytic efficiency (k cat /K m ) values of CMCase and xylanase were 3280 and 38,797 min -1  mg -1  mL, respectively. EG-M-Xyn exerted great properties for its great potential in improving the enzymatic hydrolysis of lignocellulosics to produce fermentable sugars. First, EG-M-Xyn showed mild reaction pH and temperature of 5.5 and 50 °C, respectively. Secondly, EG-M-Xyn exhibited great heat tolerance of T 1/2 values of 173 (CMCase) and 693 min (xylanase). Lastly and most importantly, application of EG-M-Xyn in combination with Ctec2 (commercial enzyme) in the saccharification led to a 10-20% net increase in fermentable sugars liberated from pretreated rice straw in comparison to the Ctec2 alone group. In conclusion, EG-M-Xyn had great potential in generating fermentable sugars from renewable agro-residues for biofuel and fine chemical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Optimization of ruminococcus albus endoglucanase cel5-cbm6 production in plants by incorporating an elp tag and targeting to different subcellular compartments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, E.O.; Menassa, R. [Western Ontario Univ., London, ON (Canada). Dept. of Biology; Agriculture and Agri-Food Canada, London, ON (Canada); Kolotilin, I. [Agriculture and Agri-Food Canada, London, ON (Canada)

    2009-07-01

    The production of biomass-based biofuel such as ethanol depends on the deconstruction of a cellulosic matrix and requires a variety of enzymes that hydrolyze glycosidic bonds to release fermentable sugars. Endoglucanases are one of most important groups of natural cellulosic hydrolytic enzymes that act on cellulose. In order to decrease ethanol production costs, the cost of producing cellulases must also be reduced. Genetically engineered transgenic plants are among the most economical systems for large scale production of recombinant proteins because of the large amount of enzymes that can be produced with minimal input. Cellulases present different levels of expression in different subcellular compartments. Cel5-CBM6 is a fused protein containing an endocellulase from Ruminococus albus (Cel5) and a cellulose binding domain (CBD) of Clostridium stercorarium. It accumulates in both the chloroplast and cytoplasm, but severe growth defects occur when expressed in the cytoplasm. Therefore, other subcellular compartments such as endoplasmic reticulum (ER) and vacuole must be evaluated and compared to determine the best co partment for production and activity of cellulases. Since elastin-like polypeptide (ELP) has also been shown to increase recombinant protein accumulation in plants, this study evaluated the effects of incorporating an ELP tag and a retrieval signal peptide on the expression levels of Cel5-CBM6.

  16. Chemical Composition and Biological Studies of the Essential Oil from Aerial Parts of Beta vulgaris subsp. maritima (L.) Arcang. Growing in Tunisia.

    Science.gov (United States)

    Zardi-Bergaoui, Afifa; Ben Nejma, Aymen; Harzallah-Skhiri, Fethia; Flamini, Guido; Ascrizzi, Roberta; Ben Jannet, Hichem

    2017-10-01

    The chemical composition, antioxidant, cytotoxic, anticholinesterase and anti-tyrosinase activities of the hydrodistilled essential oil of the aerial parts of Beta vulgaris subsp. maritime (L.) Arcang. from Tunisia have been evaluated. The chemical composition of the oil (yield 0.037% [w/w]), determined by GC-FID and GC/MS is reported for the first time. Twenty five components, accounting for 98.1% of the total oil have been identified. The oil was characterized by a high proportion of oxygenated sesquiterpenes (39.2%), followed by sesquiterpene hydrocarbons (30.3%) and one apocarotenoids (26.3%). The main compounds were γ-irone (26.3%), α-cadinol (12.1%), T-cadinol (10.6%), bicyclogermacrene (10.4%) and δ-cadinene (6.0%). The isolated oil was tested for its antioxidant activity using the DPPH · , ABTS +· , catalase, and paraoxonase assays and also for its cytotoxic, anticholinesterase, and anti-tyrosinase activities. The essential oil exhibited high antioxidant activity (IC 50  = 0.055 ± 0.006 mg/ml) and important result oncatalase (524.447 ± 2.58 Units/mg protein). Furthermore, it exerted a significant cytotoxic effect against A549 cell line, with IC 50  = 42.44 ± 1.40 μg/ml. The results indicate that the essential oil of B. vulgaris subsp. maritima (L.) Arcang. aerial parts may be used in future as an alternative to synthetic antioxidant agents, with potential application in the food and pharmaceutical industries. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  17. Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering.

    Science.gov (United States)

    Nakanishi, Akihito; Bae, Jungu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2012-10-23

    To permit direct cellulose degradation and ethanol fermentation, Saccharomyces cerevisiae BY4741 (Δsed1) codisplaying 3 cellulases (Trichoderma reesei endoglucanase II [EG], T. reesei cellobiohydrolase II [CBH], and Aspergillus aculeatus β-glucosidase I [BG]) was constructed by yeast cell-surface engineering. The EG used in this study consists of a family 1 carbohydrate-binding module (CBM) and a catalytic module. A comparison with family 1 CBMs revealed conserved amino acid residues and flexible amino acid residues. The flexible amino acid residues were at positions 18, 23, 26, and 27, through which the degrading activity for various cellulose structures in each biomass may have been optimized. To select the optimal combination of CBMs of EGs, a yeast mixture with comprehensively mutated CBM was constructed. The mixture consisted of yeasts codisplaying EG with mutated CBMs, in which 4 flexible residues were comprehensively mutated, CBH, and BG. The yeast mixture was inoculated in selection medium with newspaper as the sole carbon source. The surviving yeast consisted of RTSH yeast (the mutant sequence of CBM: N18R, S23T, S26S, and T27H) and wild-type yeast (CBM was the original) in a ratio of 1:46. The mixture (1 RTSH yeast and 46 wild-type yeasts) had a fermentation activity that was 1.5-fold higher than that of wild-type yeast alone in the early phase of saccharification and fermentation, which indicates that the yeast mixture with comprehensively mutated CBM could be used to select the optimal combination of CBMs suitable for the cellulose of each biomass.

  18. Co-expression of the Thermotoga neapolitana aglB gene with an upstream 3'-coding fragment of the malG gene improves enzymatic characteristics of recombinant AglB cyclomaltodextrinase.

    Science.gov (United States)

    Lunina, Natalia A; Agafonova, Elena V; Chekanovskaya, Lyudmila A; Dvortsov, Igor A; Berezina, Oksana V; Shedova, Ekaterina N; Kostrov, Sergey V; Velikodvorskaya, Galina A

    2007-07-01

    A cluster of Thermotoga neapolitana genes participating in starch degradation includes the malG gene of sugar transport protein and the aglB gene of cyclomaltodextrinase. The start and stop codons of these genes share a common overlapping sequence, aTGAtg. Here, we compared properties of expression products of three different constructs with aglB from T. neapolitana. The first expression vector contained the aglB gene linked to an upstream 90-bp 3'-terminal region of the malG gene with the stop codon overlapping with the start codon of aglB. The second construct included the isolated coding sequence of aglB with two tandem potential start codons. The expression product of this construct in Escherichia coli had two tandem Met residues at its N terminus and was characterized by low thermostability and high tendency to aggregate. In contrast, co-expression of aglB and the 3'-terminal region of malG (the first construct) resulted in AglB with only one N-terminal Met residue and a much higher specific activity of cyclomaltodextrinase. Moreover, the enzyme expressed by such a construct was more thermostable and less prone to aggregation. The third construct was the same as the second one except that it contained only one ATG start codon. The product of its expression had kinetic and other properties similar to those of the enzyme with only one N-terminal Met residue.

  19. Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites

    International Nuclear Information System (INIS)

    Serrano, Pedro; Pedrini, Bill; Geralt, Michael; Jaudzems, Kristaps; Mohanty, Biswaranjan; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Tools for systematic comparisons of NMR and crystal structures developed by the JCSG were applied to two proteins with known functions: the T. maritima anti-σ factor antagonist TM1081 and the mouse γ-glutamylamine cyclotransferase A2LD1 (gi:13879369). In an attempt to exploit the complementarity of crystal and NMR data, the combined use of the two structure-determination techniques was explored for the initial steps in the challenge of searching proteins of unknown functions for putative active sites. The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ factor antagonist, and A2LD1 (gi:13879369), a mouse γ-glutamylamine cyclotransferase, is explored. The NMR structures of the two proteins have been determined in solution at 313 and 298 K, respectively, using the current JCSG protocol based on the software package UNIO for extensive automation. The corresponding crystal structures were solved by the JCSG at 100 K and 1.6 Å resolution and at 100 K and 1.9 Å resolution, respectively. The NMR and crystal structures of the two proteins share the same overall molecular architectures. However, the precision of the structure determination along the amino-acid sequence varies over a significantly wider range in the NMR structures than in the crystal structures. Thereby, in each of the two NMR structures about 65% of the residues have displacements below the average and in both proteins the less well ordered residues include large parts of the active sites, in addition to some highly solvent-exposed surface areas. Whereas the latter show increased disorder in the crystal and in solution, the active-site regions display increased displacements only in the NMR structures, where they undergo local conformational exchange on the

  20. Some extinct plant taxa on the territory of Novi Sad and their vulnerability status in Vojvodina and Serbia

    Directory of Open Access Journals (Sweden)

    Đakić Žarko S.

    2012-01-01

    Full Text Available Natural habitats on the territory of Novi Sad are almost fully destroyed today, as well as their characteristic plant taxa. The reason for disappearance of natural habitats is the development of suburban communities, which is an irreversible process. Plant taxa, specific for wet, salty, and sandy ecosystems grew on those habitats twenty years ago and earlier. This paper presents the overview of 9 taxa (Suaeda maritima subsp. maritima, Androsace elongata subsp. elongata, Cirsium boujartii subsp. boujartii, Aster sedifolius subsp. canus, Blackstonia perfoliata subsp. serotina, Plantago maritima subsp. maritima, Salvia nutans, Allium angulosum, and Typha schuttleworthii. These taxa presented integral parts of autochthonous flora of Novi Sad. Since some of these taxa were found in the field 21 years ago and some even 93 years ago, they are extinct from the flora of Novi Sad.

  1. Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins

    Directory of Open Access Journals (Sweden)

    Koga Yuichi

    2010-07-01

    Full Text Available Abstract Background The unfolding speed of some hyperthermophilic proteins is dramatically lower than that of their mesostable homologs. Ribonuclease HII from the hyperthermophilic archaeon Thermococcus kodakaraensis (Tk-RNase HII is stabilized by its remarkably slow unfolding rate, whereas RNase HI from the thermophilic bacterium Thermus thermophilus (Tt-RNase HI unfolds rapidly, comparable with to that of RNase HI from Escherichia coli (Ec-RNase HI. Results To clarify whether the difference in the unfolding rate is due to differences in the types of RNase H or differences in proteins from archaea and bacteria, we examined the equilibrium stability and unfolding reaction of RNases HII from the hyperthermophilic bacteria Thermotoga maritima (Tm-RNase HII and Aquifex aeolicus (Aa-RNase HII and RNase HI from the hyperthermophilic archaeon Sulfolobus tokodaii (Sto-RNase HI. These proteins from hyperthermophiles are more stable than Ec-RNase HI over all the temperature ranges examined. The observed unfolding speeds of all hyperstable proteins at the different denaturant concentrations studied are much lower than those of Ec-RNase HI, which is in accordance with the familiar slow unfolding of hyperstable proteins. However, the unfolding rate constants of these RNases H in water are dispersed, and the unfolding rate constant of thermophilic archaeal proteins is lower than that of thermophilic bacterial proteins. Conclusions These results suggest that the nature of slow unfolding of thermophilic proteins is determined by the evolutionary history of the organisms involved. The unfolding rate constants in water are related to the amount of buried hydrophobic residues in the tertiary structure.

  2. Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinera and strawberry

    DEFF Research Database (Denmark)

    Mamarabadi, Mojtaba; Jensen, Birgit; Jensen, Søren Dan Funck

    2008-01-01

    Clonostachys rosea is a well-known biocontrol agent against Botrytis cinerea, the causal agent of gray mold in strawberry. The activity of cell wall-degrading enzymes might play a significant role for successful biocontrol by C. rosea. The expression pattern of four chitinases, and two endoglucan......Clonostachys rosea is a well-known biocontrol agent against Botrytis cinerea, the causal agent of gray mold in strawberry. The activity of cell wall-degrading enzymes might play a significant role for successful biocontrol by C. rosea. The expression pattern of four chitinases, and two...... endoglucanase genes from C. rosea strain IK726 was analyzed using real-time RT-PCR in vitro and in strawberry leaves during interaction with B. cinerea. Specific primers were designed for ß-tubulin genes from C. rosea and B. cinerea, respectively, and a gene encoding a DNA-binding protein (DBP) from strawberry......, allowing in situ activity assessment of each fungus in vitro and during their interaction on strawberry leaves. Growth of B. cinerea was inhibited in all pathogen-antagonist interactions while the activity of IK726 was slightly increased. In all in vitro interactions, four of the six genes were upregulated...

  3. Contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the sandprawn Callianassa kraussi in a marine-dominated lagoon

    Science.gov (United States)

    Pillay, D.; Branch, G. M.; Dawson, J.; Henry, D.

    2011-01-01

    Ecosystem engineering by plants and animals significantly influences community structure and the physico-chemical characteristics of marine habitats. In this paper we document the contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the burrowing sandprawn Callianassa kraussi on physico-chemical characteristics, microflora, macrofaunal community structure and morphological attributes in the high shore intertidal sandflats of Langebaan Lagoon, a marine-dominated system on the west coast of South Africa. Comparisons were made at six sites in the lagoon within Spartina and Callianassa beds, and in a "bare zone" of sandflat between these two habitats that lacks both sandprawns and cordgrass. Sediments in Spartina habitats were consolidated by the root-shoot systems of the cordgrass, leading to low sediment penetrability, while sediments in beds of C. kraussi were more penetrable, primarily due to the destabilising effects of sandprawn bioturbation. Sediments in the "bare zone" had intermediate to low values of penetrability. Sediment organic content was lowest in bare zones and greatest in Spartina beds, while sediment chl- a levels were greatest on bare sand, but were progressively reduced in the Spartina and Callianassa beds. These differences among habitats induced by ecosystem engineering in turn affected the macrofauna. Community structure was different between all three habitats sampled, with species richness being surprisingly greater in Callianassa beds than either the bare zone or Spartina beds. In general, the binding of surface sediments by the root systems of Spartina favoured rigid-bodied, surface-dwelling and tube-building species, while the destabilising effect of bioturbation by C. kraussi favoured burrowing species. The contrasting effects of these ecosystem engineers suggest that they play important roles in increasing habitat heterogeneity. Importantly, the role of bioturbation by C. kraussi in enhancing macrofaunal

  4. Cell culture compositions

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  5. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi.

    Science.gov (United States)

    Xu, Qi; Knoshaug, Eric P; Wang, Wei; Alahuhta, Markus; Baker, John O; Yang, Shihui; Vander Wall, Todd; Decker, Stephen R; Himmel, Michael E; Zhang, Min; Wei, Hui

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel

  6. Crystal complexes of a predicted S-adenosylmethionine-dependent methyltransferase reveal a typical AdoMet binding domain and a substrate recognition domain

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.J.; Ouellette, N.; Evodokimova, E.; Savchenko, A.; Edwards, A.; Anderson, W.F. (Toronto); (NWU)

    2010-03-08

    S-adenosyl-L-methionine-dependent methyltransferases (MTs) are abundant, and highly conserved across phylogeny. These enzymes use the cofactor AdoMet to methylate a wide variety of molecular targets, thereby modulating important cellular and metabolic activities. Thermotoga maritima protein 0872 (TM0872) belongs to a large sequence family of predicted MTs, ranging phylogenetically from relatively simple bacteria to humans. The genes for many of the bacterial homologs are located within operons involved in cell wall synthesis and cell division. Despite preliminary biochemical studies in E. coli and B. subtilis, the substrate specificity of this group of more than 150 proteins is unknown. As part of the Midwest Center for Structural Genomics initiative (www.mcsg.anl.gov), we have determined the structure of TM0872 in complexes with AdoMet and with S-adenosyl-L-homocysteine (AdoHcy). As predicted, TM0872 has a typical MT domain, and binds endogenous AdoMet, or co-crystallized AdoHcy, in a manner consistent with other known MT structures. In addition, TM0872 has a second domain that is novel among MTs in both its location in the sequence and its structure. The second domain likely acts in substrate recognition and binding, and there is a potential substrate-binding cleft spanning the two domains. This long and narrow cleft is lined with positively charged residues which are located opposite the S{sup +}-CH{sub 3} bond, suggesting that a negatively charged molecule might be targeted for catalysis. However, AdoMet and AdoHcy are both buried, and access to the methyl group would presumably require structural rearrangement. These TM0872 crystal structures offer the first structural glimpses at this phylogenetically conserved sequence family.

  7. Produzione di bioidrogeno in dark fermentation da scarti dell'industria agroalimentale mediante l'impiego di batteri ipertermofili

    OpenAIRE

    Alberini, Andrea

    2013-01-01

    La presente tesi di dottorato ha come argomento la produzione d’idrogeno per via fermentativa sfruttando il metabolismo anaerobico di particolari batteri estremofili del genere Thermotoga. In questo lavoro, svolto in seno al progetto Bio-Hydro, sfruttando reattori batch da 116 mL, è stato selezionato il ceppo migliore di Thermotoga fra i quatto ceppi testati: T. neapolitana. Una volta individuato il candidato batterico migliore è stato individuato il valore ottimale di pH (8.5 a t.amb) per la...

  8. Domain-swapping of mesophilic xylanase with hyper-thermophilic glucanase

    Directory of Open Access Journals (Sweden)

    Liu Liangwei

    2012-06-01

    Full Text Available Abstract Background Domain fusion is limited at enzyme one terminus. The issue was explored by swapping a mesophilic Aspergillus niger GH11 xylanase (Xyn with a hyper-thermophilic Thermotoga maritima glucanase (Glu to construct two chimeras, Xyn-Glu and Glu-Xyn, with an intention to create thermostable xylanase containing glucanase activity. Results When expressed in E. coli BL21(DE3, the two chimeras exhibited bi-functional activities of xylanase and glucanase. The Xyn-Glu Xyn moiety had optimal reaction temperature (Topt at 50 °C and thermal in-activation half-life (t1/2 at 50 °C for 47.6 min, compared to 47 °C and 17.6 min for the Xyn. The Glu-Xyn Xyn moiety had equivalent Topt to and shorter t1/2 (5.2 min than the Xyn. Both chimera Glu moieties were more thermostable than the Glu, and the three enzyme Topt values were higher than 96 °C. The Glu-Xyn Glu moiety optimal pH was 5.8, compared to 3.8 for the Xyn-Glu Glu moiety and the Glu. Both chimera two moieties cooperated with each other in degrading substrates. Conclusions Domain-swapping created different effects on each moiety properties. Fusing the Glu domain at C-terminus increased the xylanase thermostability, but fusing the Glu domain at N-terminus decreased the xylanase thermostability. Fusing the Xyn domain at either terminus increased the glucanase thermostability, and fusing the Xyn domain at C-terminus shifted the glucanase pH property 2 units higher towards alkaline environments. Fusing a domain at C-terminus contributes more to enzyme catalytic activity; whereas, fusing a bigger domain at N-terminus disturbs enzyme substrate binding affinity.

  9. Aromatic amino acids in the cellulose binding domain of Penicillium crustosum endoglucanase EGL1 differentially contribute to the cellulose affinity of the enzyme.

    Directory of Open Access Journals (Sweden)

    Jiang-Ke Yang

    Full Text Available The cellulose binding domain (CBD of cellulase binding to cellulosic materials is the initiation of a synergistic action on the enzymatic hydrolysis of the most abundant renewable biomass resources in nature. The binding of the CBD domain to cellulosic substrates generally relies on the interaction between the aromatic amino acids structurally located on the flat face of the CBD domain and the glucose rings of cellulose. In this study, we found the CBD domain of a newly cloned Penicillium crustosum endoglucanase EGL1, which was phylogenetically related to Aspergillus, Fusarium and Rhizopus, and divergent from the well-characterized Trichoderma reeseis cellulase CBD domain, contain two conserved aromatic amino acid-rich regions, Y451-Y452 and Y477-Y478-Y479, among which three amino acids Y451, Y477, and Y478 structurally sited on a flat face of this domain. Cellulose binding assays with green fluorescence protein as the marker, adsorption isotherm assays and an isothermal titration calorimetry assays revealed that although these three amino acids participated in this process, the Y451-Y452 appears to contribute more to the cellulose binding than Y477-Y478-Y479. Further glycine scanning mutagenesis and structural modelling revealed that the binding between CBD domain and cellulosic materials might be multi-amino-acids that participated in this process. The flexible poly-glucose molecule could contact Y451, Y477, and Y478 which form the contacting flat face of CBD domain as the typical model, some other amino acids in or outside the flat face might also participate in the interaction. Thus, it is possible that the conserved Y451-Y452 of CBD might have a higher chance of contacting the cellulosic substrates, contributing more to the affinity of CBD than the other amino acids.

  10. Antifungal Activities of Extracts from Selected Lebanese Wild Plants against Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Y. Abou-Jawdah

    2004-12-01

    Full Text Available Extracts of nine plant species growing wild in Lebanon were tested for their efficacy against seven plant pathogenic fungi: Botrytis cinerea, Alternaria solani, Penicillium sp., Cladosporium sp., Fusarium oxysporum f. sp. melonis, Rhizoctonia solani and Sphaerotheca cucurbitae. Extracts of three of the plants, Origanum syriacum, Micromeria nervosa and Plumbago maritima, showed the highest levels of in vitro activity against spore germination and mycelial growth of the fungi tested. Inula viscosa showed high activity against spore germination but only moderate activity against mycelial growth. The other five plant species tested Calamintha origanifolia, Micromeria juliana, Ruta sp., Sideritis pullulans and Urginea maritima showed only moderate to low activity against these fungi. Preventive sprays with extracts of O. syriacum, M. nervosa, P. maritima and I. viscosa, applied at concentrations ranging between 4 and 8% to squash and cucumber seedlings, gave efficient protection against gray mold caused by B. cinerea and powdery mildew caused by S. cucurbitae. However, these extracts did not control green mold of citrus fruits caused by Penicillium sp. Thin layer chromatography revealed three inhibitory bands in extracts of O. syriacum, two in I. viscosa and only one in each of the other plants tested: M. nervosa, P. maritima, C. origanifolia and Ruta sp.

  11. Exogenous cellulases of thermophilic micromycetes. Pt. 1. Selection of producers

    Energy Technology Data Exchange (ETDEWEB)

    Kvesitadze, G; Kvachadze, L; Aleksidze, T; Chartishvili, D K

    1986-01-01

    More than 600 micromycetes - representatives of different genera have been investigated for their ability to produce exogenous cellulases. Most of the investigated cultures were found to produce these enzymes, 24 cultures being thermophilic, and 18 thermotolerant. Cellulase or its derivatives proved to be the most favourable carbon source for cellulase secretion. None of the thermophilic cultures studied manifested the ability of exogenous exoglucanase biosynthesis. Using UV-rays as mutagen, a mutant strain A. terreus T-49 has been obtained being characterized by an increased endo-glucanase and cellobiase activity, as compared to the initial strains. The cellulase preparations of thermophilic micromycetes contain one cellulasic component: endo-glucanase, or two: endo-glucanase and cellobiase.

  12. Insights from the genome of a high alkaline cellulase producing Aspergillus fumigatus strain obtained from Peruvian Amazon rainforest.

    Science.gov (United States)

    Paul, Sujay; Zhang, Angel; Ludeña, Yvette; Villena, Gretty K; Yu, Fengan; Sherman, David H; Gutiérrez-Correa, Marcel

    2017-06-10

    Here, we report the complete genome sequence of a high alkaline cellulase producing Aspergillus fumigatus strain LMB-35Aa isolated from soil of Peruvian Amazon rainforest. The genome is ∼27.5mb in size, comprises of 228 scaffolds with an average GC content of 50%, and is predicted to contain a total of 8660 protein-coding genes. Of which, 6156 are with known function; it codes for 607 putative CAZymes families potentially involved in carbohydrate metabolism. Several important cellulose degrading genes, such as endoglucanase A, endoglucanase B, endoglucanase D and beta-glucosidase, are also identified. The genome of A. fumigatus strain LMB-35Aa represents the first whole sequenced genome of non-clinical, high cellulase producing A. fumigatus strain isolated from forest soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. CELLULASES FROM THE BASIDIO - MYCETES CULTURAL LIQUID

    Directory of Open Access Journals (Sweden)

    К. G. Dreval

    2013-04-01

    Full Text Available Adsorption of cellulases on substrate taking place during the cultivation process was determined. Adsorbed enzymes can be eluted by buffer solution with high ionic strength, but for determine their activity they should be transferred into the aqueous solution. On the basis of the results a method for obtaining of cellulases preparations from cultural liquids of basidiomycetes was developed. This method is the elution of cellulases from the cultivation substrate of basidiomycetes. It was found that using of the last allows to obtain enzymatic preparations with a high degree of purification in 3 stages (salting out of proteins — dialysis — gelchromatography. Cellulase preparations received original products of basidiomycetes strains К-1, А-Дон-02, Д-1 Irpex lacteus and AnSc-1 Daedaleopsis confragosa f. confragosa were obtained. They contained different proteins, enzymes with specific peaks out of column and their activity. However, common to them was a distinct maximum of outing from the column by endoglucanases or cellobiases, which may indicate that the studied cellulolytic complexes of basidiomycetes do not contain multiple forms of cellulases with different molecular mass. This method allowed to obtain preparations with different degree of purification in comparing with the original culture filtrate 7,3 for endoglucanase and 33,3 for cellobiase of strain А-Дон-02 I. lacteus; 13,1 for endoglucanase and 25,5 for cellobiase of strain Д-1 I. lacteus; 29,9 for endoglucanase and 90,1 for cellobiase of strain К-1 I. lacteus; 2,1 for endoglucanase and 30,6 for cellobiase of strain AnSc-1 D. confragosa f. confragosa.

  14. Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsuoka, Hiroyuki; Hashimoto, Kazuya; Saijo, Aki; Takada, Yuki; Kondo, Akihiko; Ueda, Mitsuyoshi; Ooshima, Hiroshi; Tachibana, Taro; Azuma, Masayuki

    2014-02-01

    A display system for adding new protein functions to the cell surfaces of microorganisms has been developed, and applications of the system to various fields have been proposed. With the aim of constructing a cell surface environment suitable for protein display in Saccharomyces cerevisiae, the cell surface structures of cell wall mutants were investigated. Four cell wall mutant strains were selected by analyses using a GFP display system via a GPI anchor. β-Glucosidase and endoglucanase II were displayed on the cell surface in the four mutants, and their activities were evaluated. mnn2 deletion strain exhibited the highest activity for both the enzymes. In particular, endoglucanase II activity using carboxymethylcellulose as a substrate in the mutant strain was 1.9-fold higher than that of the wild-type strain. In addition, the activity of endoglucanase II released from the mnn2 deletion strain by Zymolyase 20T treatment was higher than that from the wild-type strain. The results of green fluorescent protein (GFP) and endoglucanase displays suggest that the amounts of enzyme displayed on the cell surface were increased by the mnn2 deletion. The enzyme activity of the mnn2 deletion strain was compared with that of the wild-type strain. The relative value (mnn2 deletion mutant/wild-type strain) of endoglucanase II activity using carboxymethylcellulose as a substrate was higher than that of β-glucosidase activity using p-nitrophenyl-β-glucopyranoside as a substrate, suggesting that the cell surface environment of the mnn2 deletion strain facilitates the binding of high-molecular-weight substrates to the active sites of the displayed enzymes. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Xylanase production by Trichoderma harzianum E58

    Energy Technology Data Exchange (ETDEWEB)

    Senior, D.J.; Mayers, P.R.; Saddler, J.N. (Fortintek Canada Corp., Ottawa, ON (Canada). Dept. of Biotechnology and Chemistry)

    1989-12-01

    Growth of Trichoderma harzianum E58 on hemicellulose-rich media, both in batch and fermentor cultures, resulted in independent profiles of the production of xylanase and endoglucanase enzymes. Dramatic differences in the ratio of xylanase to endoglucanase activities were observed among cultures grown on cellulose-rich Solka Floc and xylan. These results indicated that the induction of xylanases and cellulases was likely to be under separate regulatory control. The specific activity and amount of xylanases produced were found to be dependent on the concentration of xylan in the growth media. Growth on oat spelts xylan or the hemicellulose-rich, watersoluble fraction from steam-treated aspenwood (SEA-WS) greatly enhanced the production of xylanases and xylosidase in the culture filtrates. Constitutive levels of xylanase and endoglucanase enzymes were detected during growth of the fungus on glucose. (orig.).

  16. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Hong L.; Dai, Ziyu; Hsieh, Chia W.; Ku, Maurice S.

    2011-12-10

    Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. In this study, the cellulose hydrolytic enzyme {beta}-1, 4-endoglucanase (E1) from the thermophilic bacterium Acidothermus cellulolyticus was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial gene in rice was driven by the constitutive Mac promoter, a hybrid promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer with the signal peptide of tobacco pathogenesis-related protein for targeting the protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial enzyme were obtained, which expressed the gene at high levels with a normal phenotype. The specific activities of E1 in the leaves of the highest expressing transgenic rice lines were about 20 fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. Zymogram and temperature-dependent activity analyses demonstrated the thermostability of the enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid yielded almost twice more reducing sugars than wild type straw. Taken together, these data suggest that transgenic rice can effectively serve as a bioreactor for large-scale production of active, thermostable cellulose hydrolytic enzymes. As a feedstock, direct expression of large amount of cellulases in

  17. Halophyte vegetation influences in salt marsh retention capacity for heavy metals

    International Nuclear Information System (INIS)

    Reboreda, Rosa; Cacador, Isabel

    2007-01-01

    We analysed concentrations of Cu, Cd and Pb in above and belowground tissues of the halophyte species Halimione portulacoides and Spartina maritima, as well as in sediments and pore water between the roots in a Tagus estuary salt marsh (Portugal). From these results we calculated the pools of metals in the compartments mentioned above. Relative percentages of accumulation in each pool were also determined. Our aim was to determine how the type of vegetation in the salt marsh affects overall metal retention capacity of the system. It was concluded that areas colonised by H. portulacoides are potential sources of Cu, Cd and Pb to the marsh ecosystem, whereas areas colonised by S. maritima are more effective sinks at least for Cu and Cd. Consequently, S. maritima seems to contribute more effectively to the stabilisation of metals in salt marsh sediments, reducing their availability to the estuarine system. - The type of vegetal cover can affect the overall retention capacity of a salt marsh as well as the functioning of the salt marsh as a sink or source of metals to the estuarine system

  18. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation.

    Science.gov (United States)

    Long, Lingfeng; Tian, Dong; Hu, Jinguang; Wang, Fei; Saddler, Jack

    2017-11-01

    Although biological pretreatment of cellulosic fiber based on endoglucanases has shown some promise to facilitate cellulose nanofibrillation, its efficacy is still limited. In this study, a xylanase-aided endoglucanase pretreatment was assessed on the bleached hardwood and softwood Kraft pulps to facilitate the downstream cellulose nanofibrillation. Four commercial xylanase preparations were compared and the changes of major fiber physicochemical characteristics such as cellulose/hemicellulose content, gross fiber properties, fiber morphologies, cellulose accessibility/degree of polymerization (DP)/crystallinity were systematically evaluated before and after enzymatic pretreatment. It showed that the synergistic cooperation between endoglucanase and certain xylanase (Biobrite) could efficiently "open up" the hardwood Kraft pulp with limited carbohydrates degradation (cellulose nanofibrillation during mild sonication process (90Wh) with more uniform disintegrated nanofibril products (50-150nm, as assessed by scanning electron microscopy and UV-vis spectroscopy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis

    Directory of Open Access Journals (Sweden)

    Lindahl Sofia

    2011-02-01

    Full Text Available Abstract Background The thermostable β-glucosidase (TnBgl1A from Thermotoga neapolitana is a promising biocatalyst for hydrolysis of glucosylated flavonoids and can be coupled to extraction methods using pressurized hot water. Hydrolysis has however been shown to be dependent on the position of the glucosylation on the flavonoid, and e.g. quercetin-3-glucoside (Q3 was hydrolysed slowly. A set of mutants of TnBgl1A were thus created to analyse the influence on the kinetic parameters using the model substrate para-nitrophenyl-β-D-glucopyranoside (pNPGlc, and screened for hydrolysis of Q3. Results Structural analysis pinpointed an area in the active site pocket with non-conserved residues between specificity groups in glycoside hydrolase family 1 (GH1. Three residues in this area located on β-strand 5 (F219, N221, and G222 close to sugar binding sub-site +2 were selected for mutagenesis and amplified in a protocol that introduced a few spontaneous mutations. Eight mutants (four triple: F219L/P165L/M278I, N221S/P165L/M278I, G222Q/P165L/M278I, G222Q/V203M/K214R, two double: F219L/K214R, N221S/P342L and two single: G222M and N221S were produced in E. coli, and purified to apparent homogeneity. Thermostability, measured as Tm by differential scanning calorimetry (101.9°C for wt, was kept in the mutated variants and significant decrease (ΔT of 5 - 10°C was only observed for the triple mutants. The exchanged residue(s in the respective mutant resulted in variations in KM and turnover. The KM-value was only changed in variants mutated at position 221 (N221S and was in all cases monitored as a 2-3 × increase for pNPGlc, while the KM decreased a corresponding extent for Q3. Turnover was only significantly changed using pNPGlc, and was decreased 2-3 × in variants mutated at position 222, while the single, double and triple mutated variants carrying a mutation at position 221 (N221S increased turnover up to 3.5 × compared to the wild type. Modelling

  20. PRODUCTION AND CHARACTERIZATION OF CELLULOLYTIC ENZYMES BY ASPERGILLUS NIGER AND RHIZOPUS SP . BY SOLID STATE FERMENTATION OF PRICKLY PEAR

    Directory of Open Access Journals (Sweden)

    TAMIRES CARVALHO DOS SANTOS

    2016-01-01

    Full Text Available Prickly palm cactus husk was used as a solid - state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box - Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp . Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.

  1. Structural Diversity Within the Mononuclear and Binuclear Active Sites of N-Acetyl-D-Glucosamine-6-Phosphate Deacetylase

    Energy Technology Data Exchange (ETDEWEB)

    Hall,R.; Brown, S.; Fedorov, A.; Fedorov, E.; Xu, C.; Babbitt, P.; Almo, S.; Raushel, F.

    2007-01-01

    NagA catalyzes the hydrolysis of N-acetyl-D-glucosamine-6-phosphate to D-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-D-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the {alpha}-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity.

  2. [The floristic diversity of the psammophyte vegetation in the region of Tlemcen (north-west Algeria)].

    Science.gov (United States)

    Stambouli-Meziane, Hassiba; Bouazza, M; Thinon, Michel

    2009-08-01

    This study is devoted to the analysis of the psammophyte of the coastal and semi-continental dunes in Tlemcen. Interesting results have been obtained, in particular, on the biological and ecological aspects of the psammophyte. The interpretation from Factoriel analysis of correspondences enabled us to identify the different phytosociological classes (Cakiletea maritimae, Ammophiletea, Quercetea ilicis, Therobrachypodietea and Stellarietea mediae). Some of these classes (Cakiletea maritimae and Ammophiletea) inhabit, exceedingly well, the embryonic dunes. Some species (Therobrachypodietea) colonize the quickset dunes. Lastly, some others (Quercetea ilicis) settle in the more mature and stable dunes. By using the phytosociological and phytodynamical data, we have been able to understand the vegetation and its diversity.

  3. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid

    Directory of Open Access Journals (Sweden)

    Chou Hong

    2011-12-01

    Full Text Available Abstract Background Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. Results In this study, the cellulose hydrolytic enzyme β-1, 4-endoglucanase (E1 gene, from the thermophilic bacterium Acidothermus cellulolyticus, was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial E1 gene in rice was driven by the constitutive Mac promoter, a hybrid promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer, with the signal peptide of tobacco pathogenesis-related protein for targeting the E1 protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial E1 enzyme were obtained that expressed the gene at high levels without severely impairing plant growth and development. However, some transgenic plants exhibited a shorter stature and flowered earlier than the wild type plants. The E1 specific activities in the leaves of the highest expressing transgenic rice lines were about 20-fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. A zymogram and temperature-dependent activity analyses demonstrated the thermostability of the E1 enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid for one hour at 39°C and another hour at 81°C yielded 43% more reducing sugars than wild type rice

  4. Determination of the action modes of cellulases from hydrolytic profiles over a time course using fluorescence-assisted carbohydrate electrophoresis.

    Science.gov (United States)

    Zhang, Qing; Zhang, Xiaomei; Wang, Peipei; Li, Dandan; Chen, Guanjun; Gao, Peiji; Wang, Lushan

    2015-03-01

    Fluorescence-assisted carbohydrate electrophoresis (FACE) is a sensitive and simple method for the separation of oligosaccharides. It relies on labeling the reducing ends of oligosaccharides with a fluorophore, followed by PAGE. Concentration changes of oligosaccharides following hydrolysis of a carbohydrate polymer could be quantitatively measured continuously over time using the FACE method. Based on the quantitative analysis, we suggested that FACE was a relatively high-throughput, repeatable, and suitable method for the analysis of the action modes of cellulases. On account of the time courses of their hydrolytic profiles, the apparent processivity was used to show the different action modes of cellulases. Cellulases could be easily differentiated as exoglucanases, β-glucosidases, or endoglucanases. Moreover, endoglucanases from the same glycoside hydrolases family had a variety of apparent processivity, indicating the different modes of action. Endoglucanases with the same binding capacities and hydrolytic activities had similar oligosaccharide profiles, which aided in their classification. The hydrolytic profile of Trichoderma reesei Cel12A, an endoglucanases from T. reesei, contained glucose, cellobiose, and cellotriose, which revealed that it may have a new glucosidase activity, corresponding to that of EC 3.2.1.74. A hydrolysate study of a T. reesei Cel12A-N20A mutant demonstrated that the FACE method was sufficiently sensitive to detect the influence of a single-site mutation on enzymatic activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Comparative microbial analysis before and after foaming incidents in biogas reactors

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; De Francisci, Davide; Treu, Laura

    2014-01-01

    biosurfactants (Lactobacillus, Bacillus, Pseudomonas, Thermotoga), others contain mycolic acid in their cell wall (Thermoactinomyces, Pseudonocardia) or decrease the surface tension of the media (Micrococcus, Streptococcus). Frankia, Dialister and Paenibacillus are known to be correlated to this phenomenon...

  6. The relationship between habitat complexity and nursery provision for an estuarine-dependent fish species in a permanently open South African Estuary

    Science.gov (United States)

    Leslie, Timothy; James, Nicola C.; Potts, Warren M.; Rajkaran, Anusha

    2017-11-01

    Estuarine-dependent marine fish species rely on shallow, sheltered and food rich habitats for protection from predators, growth and ultimately recruitment to adult populations. Hence, habitats within estuaries function as critical nursery areas for an abundance of fish species. However, these habitats vary in the degree of nursery function they provide and few studies have quantitatively assessed the relative nursery value of different habitat types within estuaries, particularly in the context of habitat complexity. This study aimed to assess the nursery value of the dominant vegetated habitats, namely the submergent Zostera capensis (Setch.) (seagrass) beds and emergent Spartina maritima (Curtis) Fernald (salt marsh) beds in the Bushmans Estuary, South Africa. Biomass and stem density were sampled seasonally in order to gain insight into the vegetation dynamics of seagrass and salt marsh beds. Aerial cover, canopy height and underwater camera imagery were used to develop multiple complexity indices for prioritizing habitat complexity. The relatively consistent results of the dimensionless indices (interstitial space indices and fractal geometry) suggest that Z. capensis exhibits an overall greater degree of complexity than S. maritima, and hence it can be expected that fish abundance is likely to be higher in Z. capensis beds than in S. maritima habitats. Underwater video cameras were deployed in seagrass, salt marsh and sand flat habitats to assess the relative abundance and behaviour of the estuarine-dependent sparid Rhabosargus holubi (Steindachner 1881) in different habitats. The relative abundance of R. holubi was significantly higher in Z. capensis seagrass than S. maritima salt marsh and sand flats, whilst the behaviour of R. holubi indicated a high degree of habitat use in structured habitats (both Z. capensis and S. martima) and a low degree of habitat use in unstructured sand flat habitats.

  7. The industrial applicability of purified cellulase complex indigenously produced by Trichoderma viride through solid-state bio-processing of agro-industrial and municipal paper wastes

    Directory of Open Access Journals (Sweden)

    Muhammad Irshad

    2013-02-01

    Full Text Available An indigenous strain of Trichoderma viride produced high titers of cellulase complex in solid-state bio-processing of agro-industrial orange peel waste, which was used as the growth-supporting substrate. When the conditions of the SSF medium containing 15 g orange peel (50% w/w moisture inoculated with 5 mL of inoculum were optimal, the maximum productions of endoglucanase (655 ± 5.5 U/mL, exoglucanase (412 ± 4.3 U/mL, and β-glucosidase (515 ± 3.7 U/mL were recorded after 4 days of incubation at pH 5 and 35 °C. The enzyme with maximum activity (endoglucanase was purified by ammonium sulfate fractionation and Sephadex G-100 column gel filtration chromatographic technique. Endoglucanase was 5.5-fold purified with specific activity of 498 U/mg in comparison to the crude enzyme. The enzyme was shown to have a molecular weight of 58 kDa by sodium dodecyl sulphate poly-acrylamide gel electrophoresis (SDS-PAGE. The shelf life profile revealed that the enzyme could be stored at room temperature (30 °C for up to 45 days without losing much of its activity.

  8. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotaga elfii

    NARCIS (Netherlands)

    Niel, van E.W.J.; Budde, M.A.W.; Haas, de G.G.; Wal, van der F.J.; Claassen, P.A.M.; Stams, A.J.M.

    2002-01-01

    Growth and hydrogen production by two extreme thermophiles during sugar fermentation was investigated. In cultures of Caldicellulosiruptor saccharolyticus grown on sucrose and Thermotoga elfii grown on glucose stoichiometries of 3.3 mol of hydrogen and 2 mol of acetate per mol C6-sugar unit were

  9. Hydrogen production from paper sludge hydrolysate

    NARCIS (Netherlands)

    Kádár, Z.; Vrije, de G.J.; Budde, M.A.W.; Szengyel, Z.; Reczey, K.; Claassen, P.A.M.

    2003-01-01

    The main objective of this study was to develop a system for the production of 'renewable' hydrogen. Paper sludge is a solid industrial waste yielding mainly cellulose, which can be used, after hydrolysis, as a feedstock in anaerobic fermentation by (hyper)thermophilic organisms, such as Thermotoga

  10. Meri ottab, meri andab / Juhan Kreem

    Index Scriptorium Estoniae

    Kreem, Juhan, 1971-

    2014-01-01

    Arvustus: Shipwreck heritage : digitizing and opening access to maritime history sources = Laevavrakid : digitaliseerimine ja avatud ligipääs mereajalooallikatele = Skeppsvrak : digitalisering och förmedling av det maritima kulturarvet. Tallinn, 2013

  11. Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi.

    Science.gov (United States)

    Chen, Qing; Rehman, S; Smant, G; Jones, John T

    2005-07-01

    RNA interference (RNAi) has been used widely as a tool for examining gene function and a method that allows its use with plant-parasitic nematodes recently has been described. Here, we use a modified method to analyze the function of secreted beta-1,4, endoglucanases of the potato cyst nematode Globodera rostochiensis, the first in vivo functional analysis of a pathogenicity protein of a plant-parasitic nematode. Knockout of the beta-1,4, endoglucanases reduced the ability of the nematodes to invade roots. We also use RNAi to show that gr-ams-1, a secreted protein of the main sense organs (the amphids), is essential for host location.

  12. Enzymes and other agents that enhance cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  13. Regeneração e riqueza da formação arbustiva de Palmae em uma cronoseqüência pós-fogo na Restinga da Marambaia, Rio de Janeiro, RJ, Brasil The structure and diversity of three areas of shrubby restinga vegetation were analyzed 3, 12 and 84 months after fire in the Marambaia Restinga, Rio de Janeiro State, Brazil

    Directory of Open Access Journals (Sweden)

    Luis Fernando Tavares de Menezes

    2004-12-01

    Full Text Available A estrutura e a riqueza da formação arbustiva de Palmae foram analisadas em três sítios numa cronoseqüência de regeneração (3, 12 e 84 meses após a última queimada na Restinga da Marambaia, registrando-se a presença de 29, 41 e 64 táxons, respectivamente. No sítio com maior tempo de regeneração, Allagoptera arenaria (Gomes Kuntze representou 79% da dominância relativa (DoR, seguida das nanofanerófitas Inga maritima Benth. e Manilkara subsericea (Mart. Dubard. Na área queimada há 12 meses, A. arenaria representou 88% da DoR, seguida de Inga maritima, Setaria setosa (Sw. P. Beauv. e Paspalum arenarium Schrad. No sítio com três meses de regeneração, a DoR de A. arenaria foi de 82%, acompanhada de Clitoria sp., Inga maritima e Portulaca mucronata Link. Nos três sítios estudados, a forma de vida mais importante foi geófita rizomatosa, devido à dominância de A. arenaria. Caméfita herbácea escaposa foi a forma de vida que apresentou maior número de espécies nos sítios com três e 12 meses de regeneração e no sítio queimado há 84 meses, as nanofanerófitas acompanharam as caméfitas herbáceas escaposas em número de espécies. Das 29 espécies registradas no sítio com três meses de regeneração, só Portulaca mucronata e Sebastiania corniculata (Vahl Müll. Arg. originaramse a partir de sementes, sendo que as demais rebrotaram ou se regeneraram. Sete dias após a queimada A. arenaria apresentou, em média, 8cm de sua parte vegetativa regenerada e com 180 dias apresentou as primeiras inflorescências.A total of 29, 41 and 64 taxa, respectively, were found. In the area sampled 84 months after fire, relative dominance of Allagoptera arenaria (Gomes Kuntze was 79%, followed by the nanophanerophytes Inga maritima Benth. and Manilkara subsericea (Mart. Dubard. In the area sampled 12 months after fire, relative dominance of A. arenaria was 88%, followed by Inga maritima, Setaria setosa (Sw. P. Beauv and Paspalum

  14. Ability of salt marsh plants for TBT remediation in sediments

    OpenAIRE

    Carvalho, P. N.; Basto, M. C.; Moreira da Silva, M.; Machado, A.; Bordalo, A.; Vasconcelos, M. T.

    2010-01-01

    The capability of Halimione portulacoides, Spartina maritima, and Sarcocornia fruticosa (halophytes very commonly found in salt marshes from Mediterranean areas) for enhancing remediation of tributyltin (TBT) from estuarine sediments was investigated, using different experimental conditions.

  15. Induction and catabolite repression of cellulase and xylanase synthesis in the selected white-rot basidiomycetes

    Directory of Open Access Journals (Sweden)

    Aza Kobakhidze

    2016-09-01

    Full Text Available This paper reports regulation of endoglucanase (EC 3.2.1.4 and xylanase (EC 3.2.1.8 production in submerged cultivation of four white-rot basidiomycetes. Among carbon sources tested, the Avicel-based medium provided the highest levels of both hydrolases activities in all fungal cultures. However, the maximum endoglucanase and xylanase activities of the tested basidiomycetes varied from 3.9 U/ml and 7.4 U/ml in Fomes fomentarius to 34.2 U/ml and 29.5 U/ml in Pseudotrametes gibbosa, respectively (P. gibbosa specific cellulase and xylanase activities achieved 8.55 and 7.38 U/mg, respectively. Replacement of Avicel in the medium with carboxymethyl cellulose or xylan significantly lowered the enzyme yield of the tested fungi. Moreover, xylan did not ensure high xylanase activity of these fungi. Lignocellulosic substrates used as a carbon source provided poorer productivity (the specific CMCase activity was 1.12–3.62 U/mg and the specific xylanase activity was 1.95–3.32 U/mg. Expression of endoglucanase and xylanase synthesis in Panus lecometei and P. gibbosa was inducible; supplementation of the glycerol-containing medium with Avicel accompanied with a sharp increase of the fungal specific CMCase and xylanase activities from 0.02–0.04 U/mg to 1.30–8.55 U/mg. Supplementation of the Avicel-induced cultures with glucose or glycerol caused a catabolite repression of the cellulase and xylanase formation by P. gibbosa and P. lecometei. The enzyme synthesis resumed only after depletion of easily metabolizable carbon source, glucose or glycerol, from the medium. The data received suggest that in the tested fungi endoglucanase and xylanase synthesis is under control by a common regulatory mechanism.

  16. Production of Cellulolytic and Hemicellulolytic Enzymes From Aureobasidium pulluans on Solid State Fermentation

    Science.gov (United States)

    Leite, Rodrigo Simões Ribeiro; Bocchini, Daniela Alonso; da Silva Martins, Eduardo; Silva, Dênis; Gomes, Eleni; da Silva, Roberto

    This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme remaining 100% active when incubated at 75°C for 1 h.

  17. Bioprospecting of Thermostable Cellulolytic Enzymes through Modeling and Virtual Screening Method

    Directory of Open Access Journals (Sweden)

    R. Navanietha Krishnaraj

    2017-04-01

    Full Text Available Cellulolytic enzymes are promising candidates for the use of cellulose in any bioprocess operations and for the disposal of the cellulosic wastes in an environmentally benign manner. Cellulases from thermophiles have the advantage of hydrolyzing cellulose at wider range of operating conditions unlike the normal enzymes. Herein we report the modeled structures of cellulolytic enzymes (endoglucanase, cellobiohydrolase and ß-glucosidase from a thermophilic bacterium,Clostridium thermocellumand their validation using Root Mean Square Deviation (RMSD and Ramachandran plot analyses. Further, the molecular interactions of the modeled enzyme with cellulose were analyzed using molecular docking technique. The results of molecular docking showed that the endoglucanase, cellobiohydrolase and ß-glucosidase had the binding affinities of -10.7, -9.0 and -10.8 kcal/mol, respectively. A correlation between the binding affinity of the endoglucanase with cellulose and the enzyme activity was also demonstrated. The results showed that the binding affinities of cellulases with cellulose could be used as a tool to assess the hydrolytic activity of cellulases. The results obtained could be used in virtual screening of cellulolytic enzymes based on the molecular interactions with the substrate, and aid in developing systems biology models of thermophiles for industrial biotechnology applications.

  18. AcEST: BP918158 [AcEST

    Lifescience Database Archive (English)

    Full Text Available inase OS=Thermotoga petrophila... 40 0.12 tr|B7RFK1|B7RFK1_9THEM Guanylate kinase OS=Marinitoga piezophila.....7RFK1|B7RFK1_9THEM Guanylate kinase OS=Marinitoga piezophila KA3 GN=gmk PE=4 SV=1 Length = 207 Score = 39.7

  19. Biohydrogen Production from Glycerol using Thermotoga spp

    NARCIS (Netherlands)

    Maru, B.T.; Bielen, A.A.M.; Kengen, S.W.M.; Constantini, M.; Medina, F.

    2012-01-01

    Given the highly reduced state of carbon in glycerol and its availability as a substantial byproduct of biodiesel production, glycerol is of special interest for sustainable biofuel production. Glycerol was used as a substrate for biohydrogen production using the hyperthermophilic bacterium,

  20. Modos de vida maritima en Europa

    DEFF Research Database (Denmark)

    Højrup, Thomas; Schriewer, Klaus

    2013-01-01

    Analyse og syntese af de biologiske livsformers betydning som mulighedsbetingelse for de anvendte teknologier og fangstmåders betydning som mulighedsbetingelse for de to produktionsmåders sameksistens i euroæisk fiskeri i 500 år og deres betydning som mulighedsbetingelser for de sameksisterende k...

  1. Klaasikunstnikud puhuvad ja valavad klaasi taas Haapsalus / Maris Sander

    Index Scriptorium Estoniae

    Sander, Maris

    2004-01-01

    Haapsalu 2. klaasipäevad "Maritima" (lad. keeles mereäärne) Evald Okase majamuuseumis. Osa võtavad kunstnikud Eestist, Koreast, Jaapanist ja Kanadast. Korraldaja Kai Koppel. Kommentaar Kati Kerstna. Valminud tööd pannakse näitusele

  2. Spatial and temporal habitat partitioning by zooplankton in the Bornholm Basin (central Baltic Sea)

    DEFF Research Database (Denmark)

    Schultz, J.; Peck, M.A.; Barz, K.

    2012-01-01

    taxa (Bosmina coregoni maritima, Acartia spp., Pseudocalanus spp., Temora longicornis, Synchaeta spp.) contributed >10% to the zooplankton community composition. The appearance of cladocerans was mainly correlated with the phenology of thermocline development in the spring. The cladoceran B. coregoni...

  3. Multiple Syntrophic Interactions in a Terephthalate-Degrading Methanogenic Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Chen, Chia-Lung; Tringe, Susannah G.; McHardy, Alice C.; Copeland, Alex 5; Kyrpides, Nikos C.; Hugenholtz, Philip; Liu, Wen-Tso

    2010-08-05

    Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium tinside a hyper-mesophilic (i.e., between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified ?-oxidation to H{sub 2}/CO{sub 2} and acetate. These intermediates are converted to CH{sub 4}/CO{sub 2} by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to COsub 2}/H{sub 2} and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H{sub 2}-producing syntroph ? methanogen partnership that may serve to improve community stability.

  4. New floristic records in the Balkans: 2

    DEFF Research Database (Denmark)

    2006-01-01

    caespitosa subsp. alpina (34), Plantago maritima subsp. serpentina (38), Thymus callieri subsp. callieri (31); Montenegro - Asperula hercegovina (73); Serbia - Allium paniculatum subsp. villosum (98), Viola obliqua (57); Turkey-in-Europe - Chamaecytisus jankae (37). subsp. (98), (57); Turkey-in-Europe - (37...

  5. Free radical scavenging and cytotoxic activity of five commercial ...

    African Journals Online (AJOL)

    Polygonum cuspidatum), and pomegranate (Punica granatum). It shows radical scavenging activity in the following order, according to their median effective concentration (ECmaritima 7 µg/ml, ...

  6. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids

    Science.gov (United States)

    Organic broccoli growers in California typically control aphids by intercropping broccoli with strips of alyssum (Lobularia maritima (L.) Desv.) which attracts hoverflies (Diptera: Syrphidae) that are important predators of aphids. A three year study with transplanted organic broccoli in Salinas, ...

  7. Use of nanostructure initiator mass spectrometry (NIMS to deduce selectivity of reaction in glycoside hydrolases

    Directory of Open Access Journals (Sweden)

    Kai eDeng

    2015-10-01

    Full Text Available Chemically synthesized nanostructure-initiator mass spectrometry (NIMS probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements.

  8. AcEST: DK951745 [AcEST

    Lifescience Database Archive (English)

    Full Text Available somal protein S5 OS=Thermotoga sp. (s... 33 10.0 tr|B7RFH6|B7RFH6_9THEM Ribosomal protein S5 OS=Marinitoga piezo...6_9THEM Ribosomal protein S5 OS=Marinitoga piezophila KA3 GN=rpsE PE=4 SV=1 Length = 178 Score = 33.5 bits (

  9. 1. VI avati Haapsalus taas Evald Okase muuseum

    Index Scriptorium Estoniae

    2004-01-01

    Väljas on Evald Okase graafika ja joonistute uuendatud ekspositsioon, kunstniku 1930. aastate maalid. Programmis: fotonäitus "Väikeste majade Haapsalu", rahvusvaheline kuumklaasi workshop ja klaasinäitus "Maritima", kunsti suvekool, Eesti Maalikunstnike Liidu näitus "Ma olen olnud Haapsalus" jm.

  10. Coping with low nutrient availability and inundation: root growth responses of three halophytic grass species from different elevations along a flooding gradient

    NARCIS (Netherlands)

    Bouma, T.J.; Koutstaal, B.P.; Van Dongen, M.; Nielsen, K.F.

    2001-01-01

    We describe the responses of three halophytic grass species that dominate the low (Spartina anglica), middle (Puccinellia maritima) and high (Elymus pycnanthus) parts of a salt marsh, to soil conditions that are believed to favour contrasting root-growth strategies. Our hypotheses were: (1)

  11. Members of the amylovora group of Erwinia are cellulolytic and possess genes homologous to the type II secretion pathway.

    Science.gov (United States)

    Riekki, R; Palomäki, T; Virtaharju, O; Kokko, H; Romantschuk, M; Saarilahti, H T

    2000-07-01

    A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC 3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and 50 degrees C. A single ORF of 999 nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed 67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family 8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type II (GSP) secretion pathway, which is known to be responsible for extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion by E. chrysanthemi.

  12. ORF Sequence: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002945 gi|31792282 >gi|31792282|ref|NP_854775.1| PROBABLE CELLULASE CELA2A (ENDO-1,4-BETA-GLUCA...NASE) (ENDOGLUCANASE) (CARBOXYMETHYL CELLULASE) [Mycobacterium bovis AF2122/97] MNGAAPTNGAPLSYPSICEGVHWGHLVGGHQPAY

  13. ORF Sequence: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000962 gi|57116825 >gi|57116825|ref|YP_177638.1| PROBABLE CELLULASE CELA2A (ENDO-1,4-BETA-GLUCA...NASE) (ENDOGLUCANASE) (CARBOXYMETHYL CELLULASE) [Mycobacterium tuberculosis H37Rv] MNGAAPTNGAPLSYPSICEGVHWGHLVGGHQPAY

  14. Effects of ocean acidification on single and mixed seagrass species meadows in estuarine waters of the Northern Gulf of Mexico

    Science.gov (United States)

    In an outdoor mesocosm, we tested the hypothesis that OA would benefit seagrasses in mesohaline waters of the Northern Gulf of Mexico in homo- and hetero- specific seagrass beds of Halodule wrightii and Ruppia maritima. In this estuarine environment, short-term increases in CO2 ...

  15. Isolation and characterization of β-glucosidase producing bacteria ...

    African Journals Online (AJOL)

    Administrator

    2011-10-26

    Oct 26, 2011 ... lase enzyme system, along with endoglucanase and cellobiohydrolase. ... biomass substrates, for synthesis of useful glucosides, in flavor industry for ... 2007) and in the bioconversion of phenolic anti-oxidants from defatted ...

  16. Thermostable crude endoglucanase produced by Aspergillus ...

    African Journals Online (AJOL)

    Cellulases are used in many industries worldwide and there is an ever increasing need to isolate, produce or develop thermostable cellulases. Manipulation of fermentation techniques in order to obtain desirable product(s) can be one line of action. In this study Aspergillus fumigatus was grown on chopped wheat straw in a ...

  17. Chromatographic fingerprint analysis of Pycnogenol® dietary supplements

    Science.gov (United States)

    French maritime bark (Pinus maritima) has been widely used as an herbal remedy for various degenerative diseases. A standardized bark extract is available that complies with its USP monograph and is derived from Pinus pinaster, Ait. (Pycnogenol®, Horphag Research Ltd., UK). The method specified in...

  18. Impact of soil nematodes on salt-marsh plants : a pilot experiment

    NARCIS (Netherlands)

    Dormann, CF; van der Wal, R

    2001-01-01

    We tested whether the removal of nematodes by means of nematicide application changed plant performance or influenced plant competition. The study involved the two common plant species Artemisia maritima and Festuca rubra growing in intact sods collected from a temperate salt marsh. Half of the sods

  19. Long-term trends in abundance of cladocerans in the Central Baltic Sea

    DEFF Research Database (Denmark)

    Möllmann, C.; Köster, Fritz; Kornilovs, G.

    2002-01-01

    on the abundance of cladoceran species was investigated. A clear affinity to higher temperature was found for B. coregoni maritima in summer as well as for E. nordmanni and Podon spp. in spring. In addition to temperature, association tests with salinity revealed besides species-specific preferences, regional...

  20. Salt stress in Plantago - The role of membranes, channels and pumps

    NARCIS (Netherlands)

    Prins, HBA

    1995-01-01

    In the present article the cellular mechanism of Na+ transport across the plasma membrane and tonoplast of root cells of Plantago media (salt sensitive) and Plantago maritima (salt tolerant) is discussed based on findings obtained mainly by patch clamp technique. It is conluded that the combination

  1. 4. VII kell 17 avatakse Haapsalu Evald Okase muuseumis rahvusvaheline klaasinäitus...

    Index Scriptorium Estoniae

    2004-01-01

    Ühtlasi lõpevad II Haapsalu klaasipäevad "Maritima". Korraldaja Kai Koppel. Klaasi puhuvad Rait Parts, Robert Tannahill Kanadast, Sun Hwan Hong Koreast, Kai Koppel. Näitusel näeb eesti klaasikunstnike Mare Saare, Ivo Lille, Rait Präätsa jt. töid

  2. Antioxidant activity of raw, cooked and Rhizopus oligosporus fermented beans of Canavalia of coastal sand dunes of Southwest India.

    Science.gov (United States)

    Niveditha, Vedavyas R; Sridhar, Kandikere R

    2014-11-01

    The raw and processed (cooked and cooked + solid-state fermented with Rhizopus oligosporus) split beans of two landraces of coastal sand dune wild legumes (Canavalia cathartica and Canavalia maritima) of the southwest coast of India were examined for bioactive compounds (total phenolics, tannins and vitamin C) and antioxidant potential (total antioxidant activity, ferrous-ion chelating capacity, DPPH free radical-scavenging activity and reducing activity). One-way ANOVA revealed significant elevation of bioactive compounds as well as antioxidant activities in fermented beans compared to raw and cooked beans in both legumes (p beans of both legumes were significantly lowest compared to raw and cooked beans (p beans of C. cathartica, while total antioxidant and free radical-scavenging activities of fermented beans of C. maritima were clustered. The present study demonstrated that split beans of coastal sand dune Canavalia fermented by R. oligosporus endowed with high bioactive principles as well as antioxidant potential and thus serve as future nutraceutical source.

  3. Critical cellulase and hemicellulase activities for hydrolysis of ionic liquid pretreated biomass

    Science.gov (United States)

    Critical cellulase and hemicellulase activities are identified for hydrolysis of ionic liquid (IL) pretreated poplar and switchgrass; hemicellulase rich substrates with amorphous cellulose. Enzymes from Aspergillus nidulans were expressed and purified: an endoglucanase (EG) a cellobiohydrolase (CBH)...

  4. ORF Alignment: NC_006274 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_006274 gi|52142820 >1kwfA 3 362 53 435 5e-85 ... ref|YP_084010.1| chitosanase; gly...cosyl hydrolases family 8; endoglucanase [Bacillus ... cereus ZK] gb|AAU17839.1| chitosanase; glycosy

  5. Browse Title Index

    African Journals Online (AJOL)

    Items 7901 - 7950 of 11090 ... ... of Zmda1-1 gene increases seed mass of corn, Abstract PDF ... gene in maize increases sethoxydim resistance and oil content, Abstract PDF ... and characterization of the Aspergillus niger endoglucanase, EglA, ...

  6. Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Eriksson, T.; Borjesson, J.

    2003-01-01

    The filamentous fungus Penicillium brasilianum IBT 20888 was cultivated on a mixture of 30 g l(-1) cellulose and 10 g l(-1) xylan for 111 h and the resulting culture filtrate was used for protein purification. From the cultivation broth, five cellulases and one xylanase were purified. Hydrolysis...... studies revealed that two of the cellulases were acting as cellobiohydrolases by being active on only microcrystalline cellulose (Avicel). Three of the cellulases were active on both Avicel and carboxymethyl cellulose indicating endoglucanase activity. Two of these showed furthermore mannanase activity...... the cellulose-binding domain or an essential part of it. The basic xylanase (pI > 9) was only active towards xylan. Two of the purified cellulases with endoglucanase activity were partly sequenced and based on sequence homology with known enzymes they were classified as belonging to families 5 and 12...

  7. Cellulolytic (cel) genes of Clostridium thermocellum F7 and the proteins encoded by them

    International Nuclear Information System (INIS)

    Piruzyan, E.S.; Mogutov, M.A.; Velikodvorskaya, G.A.; Pushkarskaya, T.A.

    1988-01-01

    This study is concerned with genes cell, ce12, and ce13 encoding the endoglucanase of the cellulolytic complex of the anaerobic thermophilic Clostridium thermocellum F7 bacteria, these genes having been closed by us earlier. The authors present the characteristics of proteins synthesized by the cel genes in the minicell system of the strain Escherichia coli K-12 X925. The molecular weights of the proteins encoded by genes cell, ce12, and ce13 are 30,000, 45,000, and 50,000 dalton, respectively. The study of the homology of the cloned section of the C. thermocellum DNA containing the endoglucanase genes, using Southern's blot-hybridization method, did not reveal their physical linkage in the genome. The authors detected a plasmid with a size of about 30 kb in the cells of the C. thermocellum F7 strain investigated

  8. Over-expression of xylanolytic α-glucuronidase from Thermotoga ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... ... at http://www.academicjournals.org/AJB. ISSN 1684–5315 © 2008 Academic Journals .... version 6.0 of the sequence analysis software package (Lynnon. Biosoft, USA). .... the xylan supernatant by nylon fabric. The resulting ...

  9. Ability of salt marsh plants for TBT remediation in sediments.

    Science.gov (United States)

    Carvalho, Pedro N; Basto, M Clara P; Silva, Manuela F G M; Machado, Ana; Bordalo, A A; Vasconcelos, M Teresa S D

    2010-07-01

    The capability of Halimione portulacoides, Spartina maritima, and Sarcocornia fruticosa (halophytes very commonly found in salt marshes from Mediterranean areas) for enhancing remediation of tributyltin (TBT) from estuarine sediments was investigated, using different experimental conditions. The influence of H. portulacoides on degradation of the butyltin compounds was assessed in two different ways: (1) a 9-month ex situ study carried out in a site of Sado River estuary, center of Portugal, which used polluted sediments collected at other nonvegetated site from the same estuary; and (2) a 12-month laboratorial study, using both plant and sediment collected at a relatively clean site of Cávado River estuary, north of Portugal, the sediment being doped with TBT, DBT, and MBT at the beginning of the experiment. The role of both S. fruticosa and S. maritima on TBT remediation in sediments was evaluated in situ, in salt marshes from Marim channel of Ria Formosa lagoon, south of Portugal, which has large areas colonized by each one of these two plants. For estimation of microbial abundance, total cell counts of sediment samples were enumerated by the DAPI direct count method. Butyltin analyses in sediment were performed using a method previously validated, which consisted of headspace solid-phase micro-extraction combined with gas chromatography-mass spectrometry after in situ ethylation (with tetraethylborate). Sediments colonized both ex situ and at lab by H. portulacoides displayed TBT levels about 30% lower than those for nonvegetated sediments with identical initial composition, after 9-12 months of plant exposure. In addition, H. portulacoides showed to be able of stimulating bacterial growth in the plant rhizosphere, which probably included degraders of TBT. In the in situ study, which compared the levels of TBT, DBT, and MBT in nonvegetated sediment and in sediments colonized by either S. maritima or S. fruticosa from the same area, TBT and DBT were only

  10. Mereäärset maad meenutavad nukk, klotsid ja nokats / Anu Jürisson

    Index Scriptorium Estoniae

    Jürisson, Anu, 1977-

    2009-01-01

    Matsalu piirkonna meenekonkursi võidutöödest. Esikoha sai Pilvi Kangro meisterdatud nokats, 2. koha Tiit Kaljuste fotodega mänguklotsid ja 3. koha Mirje Simsi rahvarõivais nukk. Selgitusi jagab Terra Maritima juht Nele Sõber. Töid saab näha Lihula käsitööpoes

  11. Florae Malesianae Praecursores LX. The Oleaceae of Malesia. II. The genus Olea

    NARCIS (Netherlands)

    Kiew, Ruth

    1979-01-01

    Olea comprises six species in Malesia: two from Malaya. O. brachiata (Lour.) Merrill (formerly O. maritima Wall. ex G. Don) and O. dentata Wall. ex G. Don (formerly O. penangiana Ridley); two from Borneo, O. borneensis Boerl. and O. decussata (Heine) Kiew and two from Java, O. javanica (Bl.) Knobl.

  12. Maritime Factors Affecting Iberian Security,

    Science.gov (United States)

    1980-10-01

    afirme/ que para las sovie’ticas una campaiia en gran escala dirigida contra las comunicaciones marftimas del Atlantica Norte durante el perfada inicial...defender sus l ’neas de comunicacion maritima; y cuarta -- y a mi parecer la consideracion mas importante -- las otras tareas que la marina de guerra

  13. 78 FR 12703 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Amendment to the Corals and Reef...

    Science.gov (United States)

    2013-02-25

    ... Associated Plants and Invertebrates Fishery Management Plan of Puerto Rico and the U.S. Virgin Islands AGENCY... Reef Associated Plants and Invertebrates of Puerto Rico and the U.S. Virgin Islands (USVI) (Coral FMP... maritima), and one group of species, the sea vines (Halophila spp., including H. decipiens, H. baillonis, H...

  14. Endogenous cellulases in stylet secretions of cyst nematodes

    NARCIS (Netherlands)

    Smant, G.

    1998-01-01

    This thesis describes the identification ofβ-1,4-endoglucanases (cellulases) in stylet secretions of the two cyst nematodes species, Globodera rostochiensis and Heterodera glycines . A novel method was developed to raise monoclonal antibodies that were

  15. Sequence Classification: 387772 [

    Lifescience Database Archive (English)

    Full Text Available E CELA2B (ENDO-1,4-BETA-GLUCANASE) (ENDOGLUCANASE) (CARBOXYMETHYL CELLULASE) || http://www.ncbi.nlm.nih.gov/protein/31792283 ... ...Non-TMB Non-TMH TMB TMB TMB Non-TMB >gi|31792283|ref|NP_854776.1| PROBABLE CELLULAS

  16. Sequence Classification: 397489 [

    Lifescience Database Archive (English)

    Full Text Available E CELA2B (ENDO-1,4-BETA-GLUCANASE) (ENDOGLUCANASE) (CARBOXYMETHYL CELLULASE) || http://www.ncbi.nlm.nih.gov/protein/15608230 ... ...Non-TMB Non-TMH TMB TMB TMB Non-TMB >gi|15608230|ref|NP_215606.1| PROBABLE CELLULAS

  17. The intricate nomenclatural questions around Plantago holosteum (Plantaginaceae)

    DEFF Research Database (Denmark)

    Iamonico, Duilio; Hassemer, Gustavo; Rønsted, Nina

    2017-01-01

    on illustration by Bauhin & Cherler, P. wulfenii by Willdenow on a specimen preserved at B while P. maritima var. apennina was neotypified using a specimen deposited at RO. For P. holosteum, an accepted and widely used name both in the floristic and the vegetation literature of SE-Europe, an epitype is designated...

  18. Discovery and Characterization of Enzymes for Degradation of Xyloglucan and Extensin

    DEFF Research Database (Denmark)

    Feng, Tao; Mikkelsen, Jørn Dalgaard

    before the residual polymers are used in the bioethanol production. Therefore, mono-component, substrate-specific enzymes that could selectively degrade or modify plant cell wall components are required. In this PhD study, three enzymes, including two xyloglucan-specific endoglucanases and one...

  19. Sequence Classification: 396442 [

    Lifescience Database Archive (English)

    Full Text Available Non-TMB TMH Non-TMB TMB Non-TMB Non-TMB >gi|57116687|ref|YP_177689.1| POSSIBLE CELLULASE CELA1 (ENDOGLUCA...NASE) (ENDO-1,4-BETA-GLUCANASE) (FI-CMCASE) (CARBOXYMETHYL CELLULASE) || http://www.ncbi.nlm.nih.gov/protein/57116687 ...

  20. Sequence Classification: 386728 [

    Lifescience Database Archive (English)

    Full Text Available Non-TMB TMH Non-TMB TMB Non-TMB Non-TMB >gi|31791239|ref|NP_853732.1| POSSIBLE CELLULASE CELA1 (ENDOGLUCA...NASE) (ENDO-1,4-BETA-GLUCANASE) (FI-CMCASE) (CARBOXYMETHYL CELLULASE) || http://www.ncbi.nlm.nih.gov/protein/31791239 ...

  1. Comparison between the cellulase systems of Trichoderma harzianum E58 and Trichoderma reesei C30

    Energy Technology Data Exchange (ETDEWEB)

    Saddler, J.N.; Hogan, C.M.; Louis-Seize, G.

    1985-06-01

    Nearly all of the filter paper, endoglucanase and ..beta..-glucosidase activities of T. harzianum E58 were located extracellularly, with low amounts of these activities detected in the cell extracts and relatively little associated with the cell wall. Most of the filter paper and endoglucanase activities of T. reesei C30 were detected extracellularly. The half lives of the different cellulase activities were assayed at various temperatures over a period of time. When the pH of the filtrate was adjusted to 4.8, the cellulase activities were considerably enhanced, with the average half-life at 50/sup 0/C extended to 25 hrs. When various lignocellulosic substrates were hydrolyzed by T. harzianum E58 cellulases approximately 90% of the reducing sugars were present as glucose while 50 - 60% of the reducing sugars were detected as glucose when T. reesei C30 cellulases were used.

  2. Rumen microbial genomics

    International Nuclear Information System (INIS)

    Morrison, M.; Nelson, K.E.

    2005-01-01

    Improving microbial degradation of plant cell wall polysaccharides remains one of the highest priority goals for all livestock enterprises, including the cattle herds and draught animals of developing countries. The North American Consortium for Genomics of Fibrolytic Ruminal Bacteria was created to promote the sequencing and comparative analysis of rumen microbial genomes, offering the potential to fully assess the genetic potential in a functional and comparative fashion. It has been found that the Fibrobacter succinogenes genome encodes many more endoglucanases and cellodextrinases than previously isolated, and several new processive endoglucanases have been identified by genome and proteomic analysis of Ruminococcus albus, in addition to a variety of strategies for its adhesion to fibre. The ramifications of acquiring genome sequence data for rumen microorganisms are profound, including the potential to elucidate and overcome the biochemical, ecological or physiological processes that are rate limiting for ruminal fibre degradation. (author)

  3. The Security of the South Atlantic: Is It a Case for ’SATO’--South Atlantic Treaty Organization

    Science.gov (United States)

    1982-05-10

    p. 704. 21Ibid. 2 2 Ibid. 2 3A.R.A. Nicolas Piccaluga, Control Del Trafico Maritimo en el Atlantic Sud. Politics para la Defensa v Seguridad de las...1981. Piccaluga, A. R. A, Nicolis. Control Del Trafico Maritimo En El Atlantico Sud. Politicar, Para La Defensa Y Seguridad De Las Rutas Maritimas En

  4. Quelques noddees sur l’ecologie de la vedetation des dunes et sur la fonction de l’enraciment dans l’edification de dunes a la Cote Mediterraneenne de la France. I

    NARCIS (Netherlands)

    Boterenbrood, A.J.; Donsellaar-Ten Bokkel Huinink, van W.A.E.; Donselaar, van J.

    1956-01-01

    Dans la végétation des dunes du Languedoc J. BRAUN-BLANQUET (1952) distingue trois associations, à savoir; 1) l’Agropyretum mediterraneum parmi et sur les premières dunes basses; 2) l’Ammophiletum arundinaceae sur les dunes plus hautes; et 3) le Crucianelletum maritimae dans les dépressions et en

  5. Ecophysiological responses of the salt marsh grass Spartina ...

    African Journals Online (AJOL)

    The effects of salinity on growth and productivity of Spartina maritima (Curtis) Fernald were investigated in glasshouse and field experiments in 2008. In the glasshouse study, plants were subjected to 2%, 10%, 20%, 40% and 80% sea water, with tidal simulation, for 10 months. Increase in salinity from 2% to 20% sea water ...

  6. [Different NaCl-dependence of the circadian CO2-gas-exchange of some halophil growing coastal plants].

    Science.gov (United States)

    Treichel, Siegfried; Bauer, Peter

    1974-03-01

    CO 2 -exchange, diurnal changes in malate- and ion concentrations of the halophytes Carpobrotus edulis, Crithmum maritimum, Mesembryanthemum nodiflorum, Salicornia fruticosa, Suaeda maritima, and Trifolium fragiferum were investigated after culture at different NaCl concentrations. In Carp. edulis and Mes. nodiflorum the diurnal rhythm of CO 2 -exchange is in accordance with that of crassulacean acid metabolism (CAM), in Sal. fruticosa, Crithm. maritimum, Suaeda maritima, and Trif. fragiferum with that of Benson-Calvin metabolism (C 3 ). Malate concentration and CO 2 uptake in the sap latter group are not influenced. On the other hand, Carp. edulis and Mes. nodiflorum show an accumulation of malate during the night, which can be interpreted as a further indication of CAM.The two species most resistant to NaCl, Carp. edulis and Sal. fruticosa, greatly differ very much in their NaCl content. NaCl concentration in Salicornia is four times higher than in Carpobrotus.The different metabolic properties studied might be of ecological importance for the plants in their natural habitats. The effect of NaCl on metabolic processes is discussed.

  7. Fish farming in «Baetica». The «piscine» of the halieutic site at Trafalgar Cape (Cádiz

    Directory of Open Access Journals (Sweden)

    Darío BERNAL CASASOLA

    2011-10-01

    Full Text Available The present paper presents a structure of Roman date, cut into bedrock, and possibly used for fish farming purposes. So far, this sort of evidence, which is well attested in Italian villae maritimae dating to the Late Republic and the Early Empire, had only been found in the Iberian Peninsula in the southern Tarraconense (coast of Alicante. The above mentioned structure is, therefore, the first of its kind found in the Baetica. Interpretation must combine archaeological evidence for Roman fish farming in Andalusia (ostrearum vivaria at Traducta, current Algeciras and geoarchaeological features; the structure is located in the intertidal zone and enjoys fresh water supply from the nearby halieutic site of Trafalgar Cape (Barbate, Cádiz. This paper aims at the re-interpretation of this coastal site, previously interpreted as a salted products factory, or cetaria, but the topographical and architectural features of which (vats with inner steps, cisterns, terraced structures, etc. are rather suggestive of a villa maritima or a complex centre for the exploitation of marine resources.

  8. Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, B., E-mail: baduarte@fc.ul.p [Centro de Oceanografia, Instituto de Oceanografia, Campo Grande, 1749-1016 Lisboa (Portugal); Caetano, M. [INRB/IPIMAR - Instituto Nacional de Recursos Biologicos, Av. Brasilia, 1449-006 Lisboa (Portugal); Almeida, P.R. [Centro de Oceanografia, Instituto de Oceanografia, Campo Grande, 1749-1016 Lisboa (Portugal); Departamento de Biologia, Universidade de Evora, Largo dos Colegiais 2, 7004-516 Evora (Portugal); Vale, C. [INRB/IPIMAR - Instituto Nacional de Recursos Biologicos, Av. Brasilia, 1449-006 Lisboa (Portugal); Cacador, I. [Centro de Oceanografia, Instituto de Oceanografia, Campo Grande, 1749-1016 Lisboa (Portugal)

    2010-05-15

    Pools of Zn, Cu, Cd and Co in leaf, stem and root tissues of Sarcocornia fruticosa, Sarcocornia perennis, Halimione portulacoides and Spartina maritima were analyzed on a bimonthly basis, in a Tagus estuary salt marsh. All the major concentrations were found in the root tissues, being the concentrations in the aboveground organs neglectable for sediment budget proposes, as seen by the low root-aboveground translocation. Metal annual accumulation, root turnovers and cycling coefficients were also assessed. S. maritima showed the higher root turnovers and cycling coefficients for most of the analyzed metals, making this a phytostabilizer specie. By contrast the low root turnover, cycling coefficient and low root necromass generation makes S. perennis the most suitable specie for phytoremediation processes. Although the high amounts of metal return to the sediments, due to root senescence, salt marshes can still be considered sinks of heavy metals, cycling heavy metals mostly between sediment and root. - The efficiency of the phytoremediative processes and metal budgets are greatly influenced by the turnover periods and necromass generation.

  9. The binding of cellulase variants to dislocations: a semi-quantitative analysis based on CLSM (confocal laser scanning microscopy) images

    DEFF Research Database (Denmark)

    Hidayat, Budi J.; Weisskopf, Carmen; Felby, Claus

    2015-01-01

    or slip planes. Here we study whether cellulases bind to dislocations to a higher extent than to the surrounding cell wall. The binding of fluorescently labelled cellobiohydrolases and endoglucanases to filter paper fibers was investigated using confocal laser scanning microscopy and a ratiometric method...

  10. Overexpression, purification and characterization of the Aspergillus ...

    African Journals Online (AJOL)

    Cellulases are industrially important hydrolytic enzymes applicable in the bioconversion of cellulosic biomass to simple sugars. In this work, an endoglucanase from Aspergillus niger ATCC 10574, EglA, was expressed in the methylotrophic yeast Pichia pastoris and the properties of the recombinant protein were ...

  11. U.S. Navy Aeromedical Reference and Waiver Guide

    Science.gov (United States)

    2010-05-05

    Passion flower) – Piper methysticum (Kava-Kava) – Psilocybe semilanceata (magic mushrooms) – Rauwolfia serpentina (Indian snakeroot) – Rauwolfia... serpentina (Indian Snakeroot) – Scilla maritima (White Squill) – Scopolia carniolica (Scopolia)* U.S. Navy Aeromedical Reference and Waiver Guide...be sedatives: – Valeriana officinalis (Valerian) – Rauwolfia serpentina (Indian snakeroot) – Atropa belladonna (Deadly Nightshade)* – Chelidonium

  12. Induction and optimization of cellulases using various agro-wastes ...

    African Journals Online (AJOL)

    SAM

    2014-08-13

    Aug 13, 2014 ... This study presents optimization of various lignocellulosics and alkali pretreatment for maximum cellulase production by Trichoderma virdii sp. Maximum endoglucanase (642 IU/L) and exoglucanase. (187IU/L) activity was achieved with maize straw at 5% concentration. Oat hay was the most suitable.

  13. Cellulase Production from Spent Lignocellulose Hydrolysates by Recombinant Aspergillus niger▿

    Science.gov (United States)

    Alriksson, Björn; Rose, Shaunita H.; van Zyl, Willem H.; Sjöde, Anders; Nilvebrant, Nils-Olof; Jönsson, Leif J.

    2009-01-01

    A recombinant Aspergillus niger strain expressing the Hypocrea jecorina endoglucanase Cel7B was grown on spent hydrolysates (stillage) from sugarcane bagasse and spruce wood. The spent hydrolysates served as excellent growth media for the Cel7B-producing strain, A. niger D15[egI], which displayed higher endoglucanase activities in the spent hydrolysates than in standard medium with a comparable monosaccharide content (e.g., 2,100 nkat/ml in spent bagasse hydrolysate compared to 480 nkat/ml in standard glucose-based medium). In addition, A. niger D15[egI] was also able to consume or convert other lignocellulose-derived compounds, such as acetic acid, furan aldehydes, and phenolic compounds, which are recognized as inhibitors of yeast during ethanolic fermentation. The results indicate that enzymes can be produced from the stillage stream as a high-value coproduct in second-generation bioethanol plants in a way that also facilitates recirculation of process water. PMID:19251882

  14. Comparative studies on production of cellulases from three strains of aspergillus niger

    International Nuclear Information System (INIS)

    Sohail, M.; Ahmad, A.; Khan, S.

    2014-01-01

    Three strains of Aspergillus niger were retrieved from culture collection of the Department of Microbiology, University of Karachi, Pakistan and were studied for their ability to produce cellulases. Cultivation at different temperatures and in presence of various carbon sources revealed that all the three strains produced more amounts of endoglucanase, glucosidase and filter-paperase activities at 35 degree C; carboxymethyl cellulose promotes the production of filter paperase and endoglucanase activities whereas salicin induced glucosidase activity. Experiments on growth and enzyme production kinetics showed that generation time and hence volumetric rate of biomass production is influenced by the carbon source used in the medium; simple carbon source, such as glucose favored the growth of all the strains. Cellulases from all the strains showed optimum activity at temperature >50 degree C and under acidic range of pH, while melting temperature was 64-65 degree C. These findings affirm that cellulases from A. niger are potential candidates as alternative to Trichoderma cellulases. (author)

  15. Alteration of white-rot basidiomycetes cellulase and xylanase activities in the submerged co-cultivation and optimization of enzyme production by Irpex lacteus and Schizophyllum commune.

    Science.gov (United States)

    Metreveli, Eka; Kachlishvili, Eva; Singer, Steven W; Elisashvili, Vladimir

    2017-10-01

    Mono and dual cultures of four white-rot basidiomycete species were evaluated for cellulase and xylanase activity under submerged fermentation conditions. Co-cultivation of Pycnoporus coccineus or Trametes hirsuta with Schizophyllum commune displayed antagonistic interactions resulting in the decrease of endoglucanase and total cellulase activities. In contrast, increases in cellulase and xylanase activity were revealed through the compatible interactions of Irpex lacteus with S. commune. Co-cultivation conditions were optimized for maximum enzyme production by I. lacteus and S. commune, the best producers of cellulase/xylanase and β-glucosidase, respectively. An optimized medium for the target enzyme production by the mixed culture was established in a laboratory fermenter yielding 7U/mL total cellulase, 142U/mL endoglucanase, 104U/mL xylanase, and 5.2U/mL β-glucosidase. The dual culture approach resulted in an enzymatic mixture with 11% improved lignocellulose saccharification potential compared to enzymes from a monoculture of I. lacteus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. NOVEL SOURCES OF FUNGAL CELLULASES OF THERMOPHILIC / THERMOTOLERANT FOR EFFICIENT DEINKING OF COMPOSITE PAPER WASTE

    Directory of Open Access Journals (Sweden)

    Rohit Soni

    2008-02-01

    Full Text Available Twenty thermophilic/thermotolerant fungal strains were isolated from compositing soils and screened for production of different enzymes (Endoglucanases, β-glucosidase, Fpase and xylanases to assess their deinking efficiency. Three isolates, Aspergillus sp. AMA, Aspergillus terreus AN1, and Myceliophthora fergusii T4I, identified on the basis of morphological and sequencing of amplified ITS1-5.8S-ITS2 rDNA region, showed significant deinking of composite waste paper (70% magazine and 30% Xerox copier/ laser print paper waste as well as improved properties (brightness, tensile strength, tear index of recycled paper sheets. The chosen strains Aspergillus sp. AMA, Aspergillus terreus AN1 and Myceliophthora fergusii T4I, showed 53, 52.7, and 40.32% deinking with increase in brightness by 4.32, 3.56, and 3.01 % ISO, respectively. These cultures were found to produce multiple endoglucanases and were characterized to lack a cellulose binding module (CBD, which may be responsible for their better deinking efficiency.

  17. Coordinative compounds of molybdenum and vanadium as possible stimulators of extracellular cellulases biosynthesis of micromycetes Penicillium expansum CNMN FD 05 C

    International Nuclear Information System (INIS)

    Chilochi, A.A.; Tyurina, Zh.P.; Klapko, S.F.; Lablyuk, S.V.; Pasha, L.I.; Bologa, O.A.; Koropchanu, Eh.B.; Rizha, A.P.

    2012-01-01

    The effect of coordinative compounds of molybdenum and vanadium on the biosynthesis of cellulosolytic enzymatic complex (endoglucanases, celobiohydrolases, β-glucosidases) of the fungal strain Penicillium expansum CNMN FD 05C was investigated. It was established that complexes of molybdenum, which contain amino acids in its composition, have a neutral effect on the activity of endoglucanases, inhibit celobiohydrolases (80-90%) and stimulate the activity of β-glucosidases. Among the most effective stimulators of β-glucosidases synthesis, the complex MoO 2 (ac.ac.)Gly may be mentioned, that increases the enzymatic activity by 47.8-67.0%. This complex can be used to obtain an enzymatic preparation with a high content of β-glucosidases. The metal complex (NH 4 ) 2 VO 3 Gly stimulates the activity of enzymes of the cellulosolytic complex of the fungi Penicillium expansum CNMN FD 05C, increasing the endogluconasic activity by 45%, cellobiohydrolasic by 32% and β-glucosidasic by 40%.

  18. Production and characterization of endoglucanase secreted by ...

    African Journals Online (AJOL)

    Cellulases are hydrolases of great importance to industries, especially due to their ability to produce ethanol via hydrolysis of cellulolytic materials. Actinomycetes are the producers of these enzymes, particularly the genus Streptomyces sp. The present study is the first report on the production and characterization of ...

  19. Factors affecting endoglucanase production by Trichoderma reesei ...

    African Journals Online (AJOL)

    Factors involved in the screening process were peptone concentration, urea ... ammonium sulfate concentration, calcium nitrate concentration, yeast extract ... pH, incubation time, initial moisture content, inoculum size and substrate amount.

  20. Kinetics of exoglucanase and endoglucanase produced by ...

    African Journals Online (AJOL)

    enoh

    2012-04-05

    Apr 5, 2012 ... Zn2+, Ca2+, Mn2+ and Co2+ enhanced the crude activity of EXG and EG ... processes for producing fuels and chemicals from plant ... increasing the yield of the fruit juices, oil extraction and in ... Trichoderma, Humicola and Aspergillus species were .... observation that stability of the fungal cellulases is.

  1. Kinetics of exoglucanase and endoglucanase produced by ...

    African Journals Online (AJOL)

    enoh

    2012-04-05

    Apr 5, 2012 ... cellulosic waste products can be used by fermentation for the production of useful ... Saleem et al., 2008). Aspergillus sp. is an impor- ... A 10 mL of liquid culture from the inoculum was transferred to 1000. mL Erlenmeyer ..... Cellulases from Penicillium funiculosum: production, properties and application to ...

  2. Production and characterization of endoglucanase secreted by ...

    African Journals Online (AJOL)

    Leonor

    2016-10-19

    Oct 19, 2016 ... 1Laboratory of Applied Chemistry and Technology, Chemical Engineering Course, ... 4Graduate Program in Biotechnology and Natural Resources, ... microorganism was identified at genus level by microculture method; and ...

  3. Factors affecting endoglucanase production by Trichoderma reesei ...

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... from the ANOVA analysis have a significant value of Pmodel>F= 0.0008 and R2 .... there are various environmental and nutritional factors ... reported to affect cellulase production from wheat straw ... many factors affecting simultaneously the fermentation ..... and control its stability (Kalra and Sandhu, 1986).

  4. Optimizing culture conditions for the production of endo-β-1,4 ...

    African Journals Online (AJOL)

    Among tested carbon sources (coconut fiber, coffee shell, corncob, dried tangerine skin, peanut shell, rice bran, saw dust, sugar-cane bagasse as organic wasters and glucose, lactose sucrose as pure carbon sources), corncob showed the highest endoglucanase production by A. awamori VTCC-F099 at the concentration ...

  5. Browse Title Index

    African Journals Online (AJOL)

    Vol 11, No 33 (2012), Chemical modification of β-endoglucanase from Trichoderma viridin by methanol and determination of the catalytic functional groups, Abstract PDF. Feng Cai, Yangang Xie, Xiaochun He, Tiejun Li. Vol 11, No 51 (2012), Chemical, physical, microbiological and quality attributes studies on River Nile ...

  6. Corn stover-enhanced cellulase production by Aspergillus niger ...

    African Journals Online (AJOL)

    The production of extracellular cellulases by Aspergilus niger NRRL 567 on corn stover was studied in liquid state fermentation. In this study, three cellulases, exoglucanase (EXG), endoglucanase (EG) and β-glucosidase (BGL) were produced by A. niger NRRL 567. The optimal pH, temperature and incubation time for ...

  7. Induction and optimization of cellulases using various agro-wastes ...

    African Journals Online (AJOL)

    This study presents optimization of various lignocellulosics and alkali pretreatment for maximum cellulase production by Trichoderma virdii sp. Maximum endoglucanase (642 IU/L) and exoglucanase (187IU/L) activity was achieved with maize straw at 5% concentration. Oat hay was the most suitable agro-waste for β ...

  8. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii

    NARCIS (Netherlands)

    Vrije, de T.; Haas, de G.G.; Tan, G.B.; Keijsers, E.R.P.; Claassen, P.A.M.

    2002-01-01

    Pretreatment methods for the production of fermentable substrates from Miscanthus, a lignocellulosic biomass, were investigated. Results demonstrated an inverse relationship between lignin content and the efficiency of enzymatic hydrolysis of polysaccharides. High delignification values were

  9. SPINIFICI-SCAEVOLETEA SERICEAE, A NEW VEGETATION CLASS FOR PSAMMOPHYTIC DUNE VEGETATION IN THAILAND

    Directory of Open Access Journals (Sweden)

    S. PIGNATII

    1996-04-01

    Full Text Available This is a short account on the coastal dune vegetation of the Gulf of Siam in Thailand. Vegetation is mainly composed by succulent creeping plants with herbaceous habit as to Canavalia maritima (Papilionaceae and Iponwea pes-caprae (Convolvulaceae and the robust stoloniferous grass Spinijex littoreus, the last having an important function for the fonnation of coastal dunes.

  10. SPINIFICI-SCAEVOLETEA SERICEAE, A NEW VEGETATION CLASS FOR PSAMMOPHYTIC DUNE VEGETATION IN THAILAND

    Directory of Open Access Journals (Sweden)

    S. PIGNATII

    1996-01-01

    Full Text Available This is a short account on the coastal dune vegetation of the Gulf of Siam in Thailand. Vegetation is mainly composed by succulent creeping plants with herbaceous habit as to Canavalia maritima (Papilionaceae and Iponwea pes-caprae (Convolvulaceae and the robust stoloniferous grass Spinijex littoreus, the last having an important function for the fonnation of coastal dunes.

  11. Final Environmental Impact Statement Evolved Expendable Launch Vehicle Program

    Science.gov (United States)

    1998-04-01

    including increased blood pressure and higher levels of available glucose and corticosteroids in the bloodstream. Continued disturbances and prolonged...treefrogs. Besides the common American alligator , reptiles observed include the Florida box turtle, the gopher tortoise, the Florida softshell, the...star Remirea maritima - E Reptiles and Amphibians Gopher frog Rana capito C SSC American alligator Alligator mississippiensis T(S/A) SSC Eastern Indigo

  12. Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication

    DEFF Research Database (Denmark)

    Campos, Adriana de; Correa, Ana Carolina; Cannella, David

    2013-01-01

    This paper is an initial study of the implementation of two new enzymes, an endoglucanase and a concoction of hemicellulases and pectinases to obtain cellulosic nanoparticles. In this study, curauá and sugarcane bagasse were dewaxed and bleached prior to enzymatic action for 72 h at 50 °C, and th...

  13. Effects of migratory geese on plant communities of an Alaskan salt marsh

    Science.gov (United States)

    Zacheis, Amy B.; Hupp, Jerry W.; Ruess, Roger W.

    2001-01-01

    1. We studied the effects of lesser snow geese (Anser caerulescens caerulescens) and Canada geese (Branta canadensis) on two salt marsh plant communities in Cook Inlet, Alaska, a stopover area used during spring migration. From 1995 to 1997 we compared plant species composition and biomass on plots where geese were excluded from feeding with paired plots where foraging could occur. 2. Foraging intensity was low (650-1930 goose-days km-2) compared to other goose-grazing systems. 3. Canada geese fed mainly on above-ground shoots of Triglochin maritimum, Puccinellia spp. and Carex ramenskii, whereas the majority of the snow goose diet consisted of below-ground tissues of Plantago maritima and Triglochin maritimum. 4. Plant communities responded differently to goose herbivory. In the sedge meadow community, where feeding was primarily on above-ground shoots, there was no effect of grazing on the dominant species Carex ramenskii and Triglochin maritimum. In the herb meadow community, where snow geese fed on Plantago maritima roots and other below-ground tissues, there was a difference in the relative abundance of plant species between treatments. Biomass of Plantago maritima and Potentilla egedii was lower on grazed plots compared with exclosed, whereas biomass of Carex ramenskii was greater on grazed plots. There was no effect of herbivory on total standing crop biomass in either community. The variable effect of herbivory on Carex ramenskii between communities suggests that plant neighbours and competitive interactions are important factors in a species' response to herbivory. In addition, the type of herbivory (above- or below-ground) was important in determining plant community response to herbivory. 5. Litter accumulation was reduced in grazed areas compared with exclosed in both communities. Trampling of the previous year's litter into the soil surface by geese incorporated more litter into soils in grazed areas. 6. This study illustrates that even light herbivore

  14. Genomic, proteomic, and biochemical analyses of oleaginous Mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production.

    Directory of Open Access Journals (Sweden)

    Hui Wei

    Full Text Available Lipid production by oleaginous microorganisms is a promising route to produce raw material for the production of biodiesel. However, most of these organisms must be grown on sugars and agro-industrial wastes because they cannot directly utilize lignocellulosic substrates. We report the first comprehensive investigation of Mucor circinelloides, one of a few oleaginous fungi for which genome sequences are available, for its potential to assimilate cellulose and produce lipids. Our genomic analysis revealed the existence of genes encoding 13 endoglucanases (7 of them secretory, 3 β-D-glucosidases (2 of them secretory and 243 other glycoside hydrolase (GH proteins, but not genes for exoglucanases such as cellobiohydrolases (CBH that are required for breakdown of cellulose to cellobiose. Analysis of the major PAGE gel bands of secretome proteins confirmed expression of two secretory endoglucanases and one β-D-glucosidase, along with a set of accessory cell wall-degrading enzymes and 11 proteins of unknown function. We found that M. circinelloides can grow on CMC (carboxymethyl cellulose and cellobiose, confirming the enzymatic activities of endoglucanases and β-D-glucosidases, respectively. The data suggested that M. circinelloides could be made usable as a consolidated bioprocessing (CBP strain by introducing a CBH (e.g. CBHI into the microorganism. This proposal was validated by our demonstration that M. circinelloides growing on Avicel supplemented with CBHI produced about 33% of the lipid that was generated in glucose medium. Furthermore, fatty acid methyl ester (FAME analysis showed that when growing on pre-saccharified Avicel substrates, it produced a higher proportion of C14 fatty acids, which has an interesting implication in that shorter fatty acid chains have characteristics that are ideal for use in jet fuel. This substrate-specific shift in FAME profile warrants further investigation.

  15. Genomic, proteomic, and biochemical analyses of oleaginous Mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production.

    Science.gov (United States)

    Wei, Hui; Wang, Wei; Yarbrough, John M; Baker, John O; Laurens, Lieve; Van Wychen, Stefanie; Chen, Xiaowen; Taylor, Larry E; Xu, Qi; Himmel, Michael E; Zhang, Min

    2013-01-01

    Lipid production by oleaginous microorganisms is a promising route to produce raw material for the production of biodiesel. However, most of these organisms must be grown on sugars and agro-industrial wastes because they cannot directly utilize lignocellulosic substrates. We report the first comprehensive investigation of Mucor circinelloides, one of a few oleaginous fungi for which genome sequences are available, for its potential to assimilate cellulose and produce lipids. Our genomic analysis revealed the existence of genes encoding 13 endoglucanases (7 of them secretory), 3 β-D-glucosidases (2 of them secretory) and 243 other glycoside hydrolase (GH) proteins, but not genes for exoglucanases such as cellobiohydrolases (CBH) that are required for breakdown of cellulose to cellobiose. Analysis of the major PAGE gel bands of secretome proteins confirmed expression of two secretory endoglucanases and one β-D-glucosidase, along with a set of accessory cell wall-degrading enzymes and 11 proteins of unknown function. We found that M. circinelloides can grow on CMC (carboxymethyl cellulose) and cellobiose, confirming the enzymatic activities of endoglucanases and β-D-glucosidases, respectively. The data suggested that M. circinelloides could be made usable as a consolidated bioprocessing (CBP) strain by introducing a CBH (e.g. CBHI) into the microorganism. This proposal was validated by our demonstration that M. circinelloides growing on Avicel supplemented with CBHI produced about 33% of the lipid that was generated in glucose medium. Furthermore, fatty acid methyl ester (FAME) analysis showed that when growing on pre-saccharified Avicel substrates, it produced a higher proportion of C14 fatty acids, which has an interesting implication in that shorter fatty acid chains have characteristics that are ideal for use in jet fuel. This substrate-specific shift in FAME profile warrants further investigation.

  16. Neutron Reflectometry and QCM-D Study of the Interaction of Cellulase Enzymes with Films of Amorphous Cellulose

    International Nuclear Information System (INIS)

    Halbert, Candice E.; Ankner, John Francis; Kent, Michael S.; Jaclyn, Murton K.; Browning, Jim; Cheng, Gang; Liu, Zelin; Majewski, Jaroslaw; Supratim, Datta; Michael, Jablin; Bulent, Akgun; Alan, Esker; Simmons, Blake

    2011-01-01

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens) with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 C and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ∼ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due

  17. The influence of sorbitol on the production of cellulases and xylanases in an airlift bioreactor.

    Science.gov (United States)

    Ritter, Carla Eliana Todero; Fontana, Roselei Claudete; Camassola, Marli; da Silveira, Maurício Moura; Dillon, Aldo José Pinheiro

    2013-11-01

    The production of cellulases and xylanases by Penicillium echinulatum in an airlift bioreactor was evaluated. In batch production, we tested media with isolated or associated cellulose and sorbitol. In fed-batch production, we tested cellulose addition at two different times, 30 h and 48 h. Higher liquid circulation velocities in the downcomer were observed in sorbitol 10 g L(-1) medium. In batch production, higher FPA (filter paper activity) and endoglucanase activities were obtained with cellulose (7.5 g L(-1)) and sorbitol (2.5 g L(-1)), 1.0 U mL(-1) (120 h) and 6.4 U m L(-1) (100 h), respectively. For xylanases, the best production condition was cellulose 10 g L(-1), which achieved 5.5 U mL(-1) in 64 h. The fed-batch process was favorable for obtaining xylanases, but not for FPA and endoglucanases, suggesting that in the case of cellulases, the inducer must be added early in the process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1.

    Science.gov (United States)

    Lo, Yung-Chung; Huang, Chi-Yu; Cheng, Chieh-Lun; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    A thermophilic anaerobic bacterium Clostridium sp. TCW1 was isolated from dairy cow dung and was used to produce hydrogen from cellulosic feedstock. Extracellular cellulolytic enzymes produced from TCW1 strain were identified as endoglucanases (45, 53 and 70 kDa), exoglucanase (70 kDa), xylanases (53 and 60 kDa), and β-glucosidase (45 kDa). The endoglucanase and xylanase were more abundant. The optimal conditions for H2 production and enzyme production of the TCW1 strain were the same (60 °C, initial pH 7, agitation rate of 200 rpm). Ten cellulosic feedstock, including pure or natural cellulosic materials, were used as feedstock for hydrogen production by Clostridium strain TCW1 under optimal culture conditions. Using filter paper at 5.0 g/L resulted in the most effective hydrogen production performance, achieving a H2 production rate and yield of 57.7 ml/h/L and 2.03 mol H2/mol hexose, respectively. Production of cellulolytic enzyme activities was positively correlated with the efficiency of dark-H2 fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Akihito; Bae, Jun Gu; Fukai, Kotaro; Tokumoto, Naoki; Kuroda, Kouichi; Ogawa, Jun; Shimizu, Sakayu; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences; Nakatani, Masato [Daiwa Kasei, Shiga (Japan)

    2012-05-15

    A gene encoding laccase I was identified and cloned from the white-rot fungus Trametes sp. Ha1. Laccase I contained 10 introns and an original secretion signal sequence. After laccase I without introns was prepared by overlapping polymerase chain reaction, it was inserted into expression vector pULD1 for yeast cell surface display. The oxidation activity of a laccase-I-displaying yeast as a whole-cell biocatalyst was examined with 2,2{sup '}-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and the constructed yeast showed a high oxidation activity. After the pretreatment of hydrothermally processed rice straw (HPRS) with laccase-I-displaying yeast with ABTS, fermentation was conducted with yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase with HPRS. Fermentation of HPRS treated with laccase-I-displaying yeast was performed with 1.21-fold higher activities than those of HPRS treated with control yeast. The results indicated that pretreatment with laccase-I-displaying yeast with ABTS was effective for direct fermentation of cellulosic materials by yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase. (orig.)

  20. Optimization of cellulase production by Penicillium sp.

    Science.gov (United States)

    Prasanna, H N; Ramanjaneyulu, G; Rajasekhar Reddy, B

    2016-12-01

    The production of cellulolytic enzymes (β-exoglucanase, β-endoglucanase and β-glucosidase) by Penicillium sp. on three different media in liquid shake culture conditions was compared. The organism exhibited relatively highest activity of endoglucanase among three enzymes measured at 7-day interval during the course of its growth on Czapek-Dox medium supplemented with 0.5 % (w/v) cellulose. Cellulose at 0.5 %, lactose at 0.5 %, sawdust at 0.5 %, yeast extract at 0.2 % as a nitrogen source, pH 5.0 and 30 °C temperature were found to be optimal for growth and cellulase production by Penicillium sp. Yields of Fpase, CMCase and β-glucosidase, attained on optimized medium with Penicillium sp. were 8.7, 25 and 9.52 U/ml, respectively with increment of 9.2, 5.9 and 43.8-folds over titers of the respective enzyme on unoptimised medium. Cellulase of the fungal culture with the ratio of β-glucosidase to Fpase greater than one will hold potential for biotechnological applications.

  1. Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A [San Diego, CA; Zhao, Lishan [Emeryville, CA; Cayouette, Michelle H [San Diego, CA

    2012-01-24

    The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerase activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  2. Comparison of NMR and crystal structures for the proteins TM1112 and TM1367

    International Nuclear Information System (INIS)

    Mohanty, Biswaranjan; Serrano, Pedro; Pedrini, Bill; Jaudzems, Kristaps; Geralt, Michael; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    NMR structures of the proteins TM1112 and TM1367 solved by the JCSG in solution at 298 K could be superimposed with the corresponding crystal structures at 100 K with r.m.s.d. values of <1.0 Å for the backbone heavy atoms. For both proteins the structural differences between multiple molecules in the asymmetric unit of the crystals correlated with structural variations within the bundles of conformers used to represent the NMR solution structures. A recently introduced JCSG NMR structure-determination protocol, which makes use of the software package UNIO for extensive automation, was further evaluated by comparison of the TM1112 structure obtained using these automated methods with another NMR structure that was independently solved in another PSI center, where a largely interactive approach was applied. The NMR structures of the TM1112 and TM1367 proteins from Thermotoga maritima in solution at 298 K were determined following a new protocol which uses the software package UNIO for extensive automation. The results obtained with this novel procedure were evaluated by comparison with the crystal structures solved by the JCSG at 100 K to 1.83 and 1.90 Å resolution, respectively. In addition, the TM1112 solution structure was compared with an NMR structure solved by the NESG using a conventional largely interactive methodology. For both proteins, the newly determined NMR structure could be superimposed with the crystal structure with r.m.s.d. values of <1.0 Å for the backbone heavy atoms, which provided a starting platform to investigate local structure variations, which may arise from either the methods used or from the different chemical environments in solution and in the crystal. Thereby, these comparative studies were further explored with the use of reference NMR and crystal structures, which were computed using the NMR software with input of upper-limit distance constraints derived from the molecular models that represent the results of structure

  3. TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C5 and C6 Epimerization Reactions.

    Science.gov (United States)

    Shin, Sun-Mi; Cao, Thinh-Phat; Choi, Jin Myung; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sung Haeng; Lee, Dong-Woo

    2017-05-15

    There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn 2+ In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity. IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the

  4. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids

    OpenAIRE

    Brennan, Eric B.

    2013-01-01

    Organic lettuce growers in California typically use insectary strips of alyssum (Lobularia maritima (L.) Desv.) to attract hoverflies (Syrphidae) that provide biological control of aphids. A two year study with transplanted organic romaine lettuce in Salinas, California investigated agronomic aspects of lettuce monoculture and lettuce-alyssum strip intercropping on beds in replacement intercropping treatments where alyssum transplants replaced 2 to 8% of the lettuce transplants, and in additi...

  5. Thermostable cellulases, and mutants thereof, capable of hydrolyzing cellulose in ionic liquid

    Science.gov (United States)

    Sapra, Rajat; Datta, Supratim; Chen, Zhiwei; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2016-04-26

    The present invention provides for a composition comprising an ionic liquid and a thermostable cellulose, and a method of hydrolyzing a cellulose, comprising: (a) providing a composition comprising a solution comprising an ionic liquid and a cellulose, and (b) introducing a thermostable cellulase to the solution, such that the cellulose is hydrolyzed by the cellulase. The present invention also provides for a Thermatoga maritima thermostable cellulase mutant with increased cellulase activity.

  6. AcEST: DK948593 [AcEST

    Lifescience Database Archive (English)

    Full Text Available DKLSHFNYVVDVLIPYPIHLEI 163 >sp|A4QKR2|MATK_CRUWA Maturase K OS=Crucihimalaya wallichii GN=matK PE=3 SV=2 Len..._LOBMA Maturase K OS=Lobularia maritima GN=matK PE... 32 2.3 sp|A4QKR2|MATK_CRUWA Maturase K OS=Crucihimal...aya wallichii GN=ma... 32 3.0 sp|Q9GF51|MATK_ARAHA Maturase K OS=Arabidopsis haller

  7. Investigation of stress tolerance of endoglucanases of the ...

    African Journals Online (AJOL)

    Ugochukwu Anieto

    2015-06-23

    Jun 23, 2015 ... The continual depletion of fossil fuel reserves, increase in the world's population ... Advantages of the cellulosome include (i) a direct and ... treatment; (ii) Ethanol treated cells indicated a decline in glutamic acid, a 2.8- fold ...

  8. Investigation of stress tolerance of endoglucanases of the ...

    African Journals Online (AJOL)

    Ugochukwu Anieto

    2015-06-23

    Jun 23, 2015 ... with technical merits, bioethanol continues to lead the pack in adoption and ... cultures of cellulose media three or more days old .... down to room temperature. ..... activity, e.g., the more ethanol, the faster the inactivation.

  9. Investigation of stress tolerance of endoglucanases of the ...

    African Journals Online (AJOL)

    Current energy and environmental challenges are driving the use of cellulosic materials for biofuel production. A major obstacle in this pursuit is poor ethanol tolerance among cellulolytic Clostridium species. The objective of this work was to establish a potential upper boundary of ethanol tolerance for the cellulosome itself.

  10. Chemical modification of β-endoglucanase from Trichoderma viridin ...

    African Journals Online (AJOL)

    user

    2012-03-26

    Mar 26, 2012 ... Feng Cai#, Yangang Xie#, Xiaochun He and Tiejun Li* ..... m. pH 4.0. pH 5.0. pH 6.0. Figure 2. Effect of saturation degree of ammonium sulfate on the content of protein salted ..... JL, Feng JX (2007). Cloning ... Kim SJ, Lee CM, Kim MY, Yeo YS, Yoon SH, Kang HC, Koo. ... University Press, Beijing, China.

  11. Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants

    International Nuclear Information System (INIS)

    Lewis, Michael A.; Quarles, Robert L.; Dantin, Darrin D.; Moore, James C.

    2004-01-01

    Contaminant fate in coastal areas impacted by golf course runoff is not well understood. This report summarizes trace metal, pesticide and PCB residues for colonized periphyton, Ruppia maritima (widgeon grass), Callinectes sapidus Rathbun (blue crabs) and Crassostrea virginica Gemlin (Eastern oyster) collected from areas adjacent to a Florida golf course complex which receive runoff containing reclaimed municipal wastewater. Concentrations of 19 chlorinated pesticides and 18 PCB congeners were usually below detection in the biota. In contrast, 8 trace metals were commonly detected although concentrations were not usually significantly different for biota collected from reference and non-reference coastal areas. Residue concentrations in decreasing order were typically: zinc, arsenic, copper, chromium, lead, nickel, cadmium and mercury. Mean BCF values for the eight trace metals ranged between 160-57 000 (periphyton), 79-11 033 (R. maritima), 87-162 625 (C. virginica) and 12-9800 (C. sapidus). Most trace metal residues in periphyton colonized adjacent to the golf complex, were either similar to or significantly less than those reported for periphyton colonized in nearby coastal areas impacted by urban stormwater runoff and treated municipal and industrial wastewater discharges. Consequently, the recreational complex does not appear to be a major source of bioavailable contaminants locally nor in the immediate watershed based on results for the selected biota

  12. Toxicological, chemical and antibacterial evaluation of squill vinegar, a useful product in Persian Traditional Medicine

    OpenAIRE

    M. Bozorgi; G.R. Amin; S.N. Ostad; N. Samadi; E. Nazem; M. Shekarchi

    2017-01-01

    Background and objectives:  Squill [Drimia maritima (L.) Stearn] is an important medicinal plant that has been used for medicinal purposes such as cardiovascular diseases and asthma since ancient times. Bufadienolides are the main compounds of this plant and are responsible for some reported adverse effects. In order to reduce adverse effects, different methods like boiling with vinegar were applied by traditional practitioners. In the present study, the acute oral toxicity, cytotoxic effects...

  13. The Effects of Bioprocess Parameters on Cellulase Production with Trichoderma viride CMIT35

    Directory of Open Access Journals (Sweden)

    Teodor Vintila

    2010-05-01

    Full Text Available Fungal cellulases are well-studied, and have various applications in industry, health or agriculture. Species of Trichoderma can produce substantial amounts of endoglucanase, exoglucanase (saccharifying cellulases, and some strains are able to produce important quantities of β-glucosidase. A number of fungi were isolated abroad and screened for cellulolytic potential. In this study, the kinetics of cellulase production from an indigenous strain of T. viride CMIT35 is reported. Product formation parameters of different types of cellulases indicate that the studied strain of T. viride is capable of producing important levels of cellulases when grown on Mandels medium with wheat bran as carbon source. Furthermore, it was observed that production of endoglucanase reaches its maximum during exponential phase of growth, while exoglucanase during the stationary phase. Enzyme production by solid-state fermentation was also investigated and found to be more efficient than liquid state fermentation. High production of cellulase was noted at the following parameters for liquid cultures: 4% wheat bran, 5% inoculum, 180 r.p.m. agitation, pH 5; and 60% humidity in the case of solid state fermentation.

  14. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  15. A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues

    Directory of Open Access Journals (Sweden)

    Carlos Meneses

    2016-06-01

    Full Text Available Many naturally-occurring cellulolytic microorganisms are not readily cultivable, demanding a culture-independent approach in order to study their cellulolytic genes. Metagenomics involves the isolation of DNA from environmental sources and can be used to identify enzymes with biotechnological potential from uncultured microbes. In this study, a gene encoding an endoglucanase was cloned from red rice crop residues using a metagenomic strategy. The amino acid identity between this gene and its closest published counterparts is lower than 70%. The endoglucanase was named EglaRR01 and was biochemically characterized. This recombinant protein showed activity on carboxymethylcellulose, indicating that EglaRR01 is an endoactive lytic enzyme. The enzymatic activity was optimal at a pH of 6.8 and at a temperature of 30 °C. Ethanol production from this recombinant enzyme was also analyzed on EglaRR01 crop residues, and resulted in conversion of cellulose from red rice into simple sugars which were further fermented by Saccharomyces cerevisiae to produce ethanol after seven days. Ethanol yield in this study was approximately 8 g/L. The gene found herein shows strong potential for use in ethanol production from cellulosic biomass (second generation ethanol.

  16. A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues.

    Science.gov (United States)

    Meneses, Carlos; Silva, Bruna; Medeiros, Betsy; Serrato, Rodrigo; Johnston-Monje, David

    2016-06-25

    Many naturally-occurring cellulolytic microorganisms are not readily cultivable, demanding a culture-independent approach in order to study their cellulolytic genes. Metagenomics involves the isolation of DNA from environmental sources and can be used to identify enzymes with biotechnological potential from uncultured microbes. In this study, a gene encoding an endoglucanase was cloned from red rice crop residues using a metagenomic strategy. The amino acid identity between this gene and its closest published counterparts is lower than 70%. The endoglucanase was named EglaRR01 and was biochemically characterized. This recombinant protein showed activity on carboxymethylcellulose, indicating that EglaRR01 is an endoactive lytic enzyme. The enzymatic activity was optimal at a pH of 6.8 and at a temperature of 30 °C. Ethanol production from this recombinant enzyme was also analyzed on EglaRR01 crop residues, and resulted in conversion of cellulose from red rice into simple sugars which were further fermented by Saccharomyces cerevisiae to produce ethanol after seven days. Ethanol yield in this study was approximately 8 g/L. The gene found herein shows strong potential for use in ethanol production from cellulosic biomass (second generation ethanol).

  17. Crystal structure and genetic modifications of FI-CMCase from Aspergillus aculeatus F-50.

    Science.gov (United States)

    Huang, Jian-Wen; Liu, Weidong; Lai, Hui-Lin; Cheng, Ya-Shan; Zheng, Yingying; Li, Qian; Sun, Hong; Kuo, Chih-Jung; Guo, Rey-Ting; Chen, Chun-Chi

    2016-09-16

    Cellulose is the major component of the plant cell wall and the most abundant renewable biomass on earth, and its decomposition has proven to be very useful in many commercial applications. Endo-1,4-β-d-glucanase (EC 3.2.1.4; endoglucanase), which catalyzes the random hydrolysis of 1,4-β-glycosidic bonds of the cellulose main chain to cleave cellulose into smaller fragments, is the key cellulolytic enzyme. An endoglucanase isolated from Aspergillus aculeatus F-50 (FI-CMCase), which is classified into the glycoside hydrolase (GH) family 12, was demonstrated to be effectively expressed in the industrial strain Pichia pastoris. Here, the crystal structure and complex structures of P. pastoris-expressed FI-CMCase were solved to high resolution. The overall structure is analyzed and compared to other GH12 members. In addition, the substrate-surrounding residues were engineered to search for variants with improved enzymatic activity. Among 14 mutants constructed, one with two-fold increase in protein expression was identified, which possesses a potential to be further developed as a commercial enzyme product. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Growth and enzyme production by three Penicillium species on monosaccharides

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Krogh, Astrid Mørkeberg; Krogh, Kristian Bertel Rømer

    2004-01-01

    The growth and preference for utilisation of various sugar by the Penicillium species Penicillium pinophilum IBT 4186, Penicillium persicinum IBT 13226 and Penicillium brasilianum IBT 20888 was studied in batch cultivations using various monosaccharides as carbon source, either alone or in mixtur...... producing beta-glucosidase and endoglucanases. Xylose did not repress the enzyme production and it induced the production of endoxylanases and beta-xylosidases....

  19. Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei

    OpenAIRE

    Wang, Min; Lu, Xuefeng

    2016-01-01

    Recent demands for the production of lignocellulose biofuels boosted research on cellulase. Hydrolysis efficiency and production cost of cellulase are two bottlenecks in biomass to biofuels process. The Trichoderma cellulase mixture is one of the most commonly used enzymes for cellulosic hydrolysis. During hydrolytic process cellobiose accumulation causes feedback inhibition against most cellobiohydrolases and endoglucanases. In this study, we demonstrated the synergism effects between cellob...

  20. Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases.

    Science.gov (United States)

    Badhan, Ajay; Wang, Yuxi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim

    2014-04-26

    Efficient conversion of lignocellulosic biomass to fermentable sugars requires the synergistic action of multiple enzymes; consequently enzyme mixtures must be properly formulated for effective hydrolysis. The nature of an optimal enzyme blends depends on the type of pretreatment employed as well the characteristics of the substrate. In this study, statistical experimental design was used to develop mixtures of recombinant glycosyl hydrolases from thermophilic and anaerobic fungi that enhanced the digestion of alkaline peroxide treated alfalfa hay and barley straw by mixed rumen enzymes as well as commercial cellulases (Accelerase 1500, A1500; Accelerase XC, AXC). Combinations of feruloyl and acetyl xylan esterases (FAE1a; AXE16A_ASPNG), endoglucanase GH7 (EGL7A_THITE) and polygalacturonase (PGA28A_ASPNG) with rumen enzymes improved straw digestion. Inclusion of pectinase (PGA28A_ASPNG), endoxylanase (XYN11A_THITE), feruloyl esterase (FAE1a) and β-glucosidase (E-BGLUC) with A1500 or endoglucanase GH7 (EGL7A_THITE) and β-xylosidase (E-BXSRB) with AXC increased glucose release from alfalfa hay. Glucose yield from straw was improved when FAE1a and endoglucanase GH7 (EGL7A_THITE) were added to A1500, while FAE1a and AXE16A_ASPNG enhanced the activity of AXC on straw. Xylose release from alfalfa hay was augmented by supplementing A1500 with E-BGLUC, or AXC with EGL7A_THITE and XYN11A_THITE. Adding arabinofuranosidase (ABF54B_ASPNG) and esterases (AXE16A_ASPNG; AXE16B_ASPNG) to A1500, or FAE1a and AXE16A_ASPNG to AXC enhanced xylose release from barley straw, a response confirmed in a scaled up assay. The efficacy of commercial enzyme mixtures as well as mixed enzymes from the rumen was improved through formulation with synergetic recombinant enzymes. This approach reliably identified supplemental enzymes that enhanced sugar release from alkaline pretreated alfalfa hay and barley straw.

  1. Exo-endo cellulase fusion protein

    Science.gov (United States)

    Bower, Benjamin S [Palo Alto, CA; Larenas, Edmund A [Palo Alto, CA; Mitchinson, Colin [Palo Alto, CA

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  2. Ruminococcus flavefaciens 007C cellulosomes and cellulase consortium

    Directory of Open Access Journals (Sweden)

    Maša VODOVNIK

    2015-11-01

    Full Text Available Ruminococcus flavefaciens is among the most important cellulolytic bacterial species in rumen and gastrointestinal tract of monogastric herbivorous animals. Its efficiency in degradation of (hemicellulosic substrates is associated with the production of remarkably intricate extracellular multienzyme complexes, named cellulosomes. In the present work we investigated the cellulolytic system of 007C. The bioinformatic analysis of the draft genome sequence revealed identical organization of sca gene cluster as has previously been found in four other strains of R. flavefaciens. The cluster consists of five genes in the following order: scaC-scaA-scaB-cttA-scaE. The cellulases of R. flavefaciens 007C belong to four families of glycoside hydrolases, namely GH48, GH44, GH9 in GH5. Majority of these enzymes are putative endoglucanases, belonging to families GH5 and GH9, whereas only one gene encoding GH44 and GH48 was found. Apart from catalytic domains, most of these proteins also contain dockerins – signature sequences, which indicate their attachement to cellulosomes. On the other hand, carbohydrate-binding modules were only found coupled to GH9 catalytic domains. Zymogram analysis showed that larger endoglucanases were mostly constitutively expressed, wheras smaller enzymes were only detected in later phases of Avicel-grown cultures.

  3. Community dynamics and glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, J.M.; Allgaier, M.; Miller, C.S.; Hazen, T.C.; VanderGheynst, J.S.; Hugenholtz, P.; Simmons, B.A.; Singer, S.W.

    2011-05-01

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60 C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80 C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  4. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass.

    Science.gov (United States)

    Gladden, John M; Allgaier, Martin; Miller, Christopher S; Hazen, Terry C; VanderGheynst, Jean S; Hugenholtz, Philip; Simmons, Blake A; Singer, Steven W

    2011-08-15

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60°C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80°C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  5. Nitrogen amendment of green waste impacts microbial community, enzyme secretion and potential for lignocellulose decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chaowei; Harrold, Duff R.; Claypool, Joshua T.; Simmons, Blake A.; Singer, Steven W.; Simmons, Christopher W.; VanderGheynst, Jean S.

    2017-01-01

    Microorganisms involved in biomass deconstruction are an important resource for organic waste recycling and enzymes for lignocellulose bioconversion. The goals of this paper were to examine the impact of nitrogen amendment on microbial community restructuring, secretion of xylanases and endoglucanases, and potential for biomass deconstruction. Communities were cultivated aerobically at 55 °C on green waste (GW) amended with varying levels of NH4Cl. Bacterial and fungal communities were determined using 16S rRNA and ITS region gene sequencing and PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was applied to predict relative abundance of genes involved in lignocellulose hydrolysis. Nitrogen amendment significantly increased secretion of xylanases and endoglucanases, and microbial activity; enzyme activities and cumulative respiration were greatest when nitrogen level in GW was between 4.13–4.56 wt% (g/g), but decreased with higher nitrogen levels. The microbial community shifted to one with increasing potential to decompose complex polymers as nitrogen increased with peak potential occurring between 3.79–4.45 wt% (g/g) nitrogen amendment. Finally, the results will aid in informing the management of nitrogen level to foster microbial communities capable of secreting enzymes that hydrolyze recalcitrant polymers in lignocellulose and yield rapid decomposition of green waste.

  6. Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.) – The impact of lignin relocation and plant tissues on enzymatic accessibility

    DEFF Research Database (Denmark)

    Hansen, Mads Anders Tengstedt; Kristensen, Jan Bach; Felby, Claus

    2011-01-01

    , after 144 h of enzymatic hydrolysis the cortex had vanished, exposing the heavier lignified vascular tissue. Accumulation of lignin droplets and exposure of residual lignin could be part of the explanation for the decreasing hydrolysis rate. Flattening of macrofibrils after pretreatment together...... with more indentations on the surfaces was also observed, possibly caused by a proposed synergistic effect of cellobiohydrolases and endoglucanases. Keywords: Lignocellulose; Plant tissues; Lignin accumulation; Atomic Force Microscopy; Scanning Electron Microscopy...

  7. Screening of selected ethnomedicinal plants from South Africa for larvicidal activity against the mosquito Anopheles arabiensis

    CSIR Research Space (South Africa)

    Maharaj, R

    2012-09-01

    Full Text Available through effects of hor- mone regulation with subsequent disruption of instar development of Anopheles stephensi, Culex quinquefas- ciatus and Aedes aegypti [34]. Tiwari et al. [35] found that the essential oil obtained from seeds of Zanthoxy- lum.... Geerts S, Van Blerk K, Triest L: Effect of Ambrosia maritima on Anopheles stephensi and Aedes aegypti. J Ethnopharmacol 1994, 42:7?11. 20. Evans DA, Raj RK: Extracts of Indian plants as mosquito larvicides. Indian J Med Res 1988, 88:38?41. 21...

  8. Impact of solid waste burning air pollution on some physio-anatomical characteristics of some plants

    International Nuclear Information System (INIS)

    Laghari, S.K.; Zaidi, M.A.

    2015-01-01

    Present study evaluated the effect of solid waste burning pollution on carbohydrate, stomata and chlorophyll contents of seven different plant species. Leaf samples of Artemisia maritima L., Fraxinus excelsior L., Amaranthus viridis L., Cynodon dactylon L., Chenopodium album L., Robinia pseudoacacia L., and Sophora mollis (Royle) Baker, growing in the (1m, 500m and 1000m distance) vicinity of burning points at residential colony, University of Baluchistan Quetta were collected. Results revealed that the carbohydrate, chlorophyll a and b and total chlorophyll contents in the leaves of selected plant species were found to be significantly low at 1m distance, but as the distance from the source of pollution increased (500m and 1000m) these contents increased accordingly. Generally the percentage of completely and partially clogged stomata was found higher near the pollution source (1m distance). The percentage of open stomata in all investigated plant species was noticed lower near the pollution source (1m distance), while with the increase of distance (500m-1000m) the percentage of open stomata increased accordingly. As regard to carbohydrate and chlorophyll contents, the Artemisia maritima L., were found most sensitive to air pollution in all four directions at 1m distances as compared to the other species. While plant species, Cynodon dactylon L. showed more resistant to air pollution effect as regard to carbohydrate contents and high percentage of open stomata at 1m distances with respect to other species. (author)

  9. Feeding ecology of Rhabdosargus holubi (family Sparidae) in multiple vegetated refugia of selected warm temperate estuaries in South Africa

    Science.gov (United States)

    Nel, L.; Strydom, N. A.; Perissinotto, R.; Adams, J. B.; Lemley, D. A.

    2017-10-01

    Estuarine marine-dependent species, such as Rhabdosargus holubi, depend greatly on structured sheltered environments and important feeding areas provided by estuaries. In this study, we investigate the ecological feeding niches of the estuarine marine-dependent sparid, R. holubi, by using conventional stomach contents and stable isotope methods (δ13C and δ15N signatures). The study has been carried out in five temperate estuaries in order to understand how fish feed in multiple intertidal vegetated habitats. These habitats included the submerged seagrass, Zostera capensis, and both previously unexplored small intertidal cord grass, Spartina maritima, and the common reed, Phragmites australis. The diet varied amongst habitats, estuaries and fish sizes and data consistently confirmed their omnivorous diet relating to ontogenetic niche shifts. Stomach contents revealed the importance of benthic prey within both the S. maritima and P. australis habitats in the absence of large intertidal vegetation, available during low tides. Similarly, isotopic mixing models showed that R. holubi from these habitats have a greater isotopic niche compared to the Z. capensis habitat, due to their limited availability during the falling tide, suggesting migration between available habitats. Stable isotopes confirmed that R. holubi actively feeds on the epiphytic algae (especially diatoms) covering the leaves and stalks of plant matter, as supported by Bayesian mixing models. These findings add to the current knowledge regarding habitat partitioning in multiple aquatic vegetation types critical to fish ecology and the effective management and conservation of estuaries.

  10. The weed species composition in a reed canary grass (Phalaris arundinacea L. plantation for energy purposes depending on its age

    Directory of Open Access Journals (Sweden)

    Tomasz R. Sekutowski

    2014-12-01

    Full Text Available The present experiment, carried out in nine production fields of reed canary grass (Phalaris arundinacea grown for energy purposes, evaluated the effect of plantation age on the occurrence and species composition of weeds. The selected plantations were divided into 3 groups that were conventionally called “young” (1–2 years old, “middle-aged” (3–5 years old, and “older” plantations (6–8 years old. Regardless of plantation age, altogether 43 species were found in the experimental fields. Moreover, 6 species were common for all the plantations and were found in them regardless of plantation age. The least species, only 18, were found on the “young” plantations, almost twice more on the “older” ones (30 species, whereas the largest spectrum of species was found in the “middle-aged” plantations (33 species. In the “young” plantations, annual weeds were the most common, with the highest constancy and coverage index found for Chenopodium album, Matricaria maritima ssp. inodora and Echinochloa crus-galli. The greatest variation in species was found in the “middle-aged” plantations. However, only 4 species achieved the highest constancy and coverage index: Matricaria maritima ssp. inodora, Cirsium arvense, Poa trivialis and Taraxacum officinale. Furthermore, perennial weeds were found to be dominant in the “older” plantations. Within this group, Poa trivialis, Taraxacum officinale, Urtica dioica, Plantago maior, and Cirsium arvense had the highest constancy and coverage index.

  11. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.J.; Clemente, Rafael; Roig, Asuncion; Bernal, M.P

    2003-04-01

    The effects of organic amendments on metal bioavailability were not always related to their degree of humification. - Two heavy metal contaminated calcareous soils from the Mediterranean region of Spain were studied. One soil, from the province of Murcia, was characterised by very high total levels of Pb (1572 mg kg{sup -1}) and Zn (2602 mg kg{sup -1}), whilst the second, from Valencia, had elevated concentrations of Cu (72 mg kg{sup -1}) and Pb (190 mg kg{sup -1}). The effects of two contrasting organic amendments (fresh manure and mature compost) and the chelate ethylenediaminetetraacetic acid (EDTA) on soil fractionation of Cu, Fe, Mn, Pb and Zn, their uptake by plants and plant growth were determined. For Murcia soil, Brassica juncea (L.) Czern. was grown first, followed by radish (Raphanus sativus L.). For Valencia soil, Beta maritima L. was followed by radish. Bioavailability of metals was expressed in terms of concentrations extractable with 0.1 M CaCl{sub 2} or diethylenetriaminepentaacetic acid (DTPA). In the Murcia soil, heavy metal bioavailability was decreased more greatly by manure than by the highly-humified compost. EDTA (2 mmol kg{sup -1} soil) had only a limited effect on metal uptake by plants. The metal-solubilising effect of EDTA was shorter-lived in the less contaminated, more highly calcareous Valencia soil. When correlation coefficients were calculated for plant tissue and bioavailable metals, the clearest relationships were for Beta maritima and radish.

  12. Catalysts of plant cell wall loosening [version 1; referees: 2 approved

    OpenAIRE

    Daniel J. Cosgrove

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  13. Production and localization of cellulases and. beta. -glucosidase from the thermophilic fungus Thielavia terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Breuil, C; Wojtczak, G; Saddler, J N

    1986-01-01

    The enzyme production and localization of Thielavia terrestris strains C464 and NRRL 8126 were compared to determine their optimum temperature and pH for cellulase activity. High levels of intracellular ..beta..-glucosidase activity were detected in the former strain. The intracellular ..beta..-glucosidase of both strains were more thermostable than the extra-cellular enzyme; the half life of T. terrestris (C464) endoglucanase activity at 60 degrees C was greater than 96 hours. 12 references.

  14. Production of crude enzyme from Aspergillus nidulans AKB-25 using black gram residue as the substrate and its industrial applications

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2016-06-01

    Full Text Available The production of crop residues in India is estimated to be about 500–550 million tons annually. It is estimated that about 93 million tons of crop residues is burnt annually which is not only wastage of valuable biomass resources but pollution of the environment with the production of green house gases also. Among different low cost crop residues, black gram residue as the substrate produced maximal endoglucanase, FPase, and β-glucosidase activities from Aspergillus nidulans AKB-25 under solid-state fermentation. During optimisation of cultural parameters A. nidulans AKB-25 produced maximal endoglucanase (152.14 IU/gds, FPase (3.42 FPU/gds and xylanase (2441.03 IU/gds activities. The crude enzyme was found effective for the saccharification of pearl millet stover and bio-deinking of mixed office waste paper. The crude enzyme from A. nidulans AKB-25 produced maximum fermentable sugars of 546.91 mg/g from alkali-pretreated pearl millet stover by saccharification process at a dose of 15 FPU/g of substrate. Pulp brightness and deinking efficiency of mixed office waste paper improved by 4.6% and 25.01% respectively and mitigated dirt counts by 74.70% after bio-deinking. Physical strength properties like burst index, tensile index and double fold number were also improved during bio-deinking of mixed office waste paper.

  15. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries

    DEFF Research Database (Denmark)

    Parisutham, Vinuselvi; Chandran, Sathesh-Prabu; Mukhopadhyay, Aindrila

    2017-01-01

    Complete hydrolysis of cellulose has been a key characteristic of biomass technology because of the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic...... hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by β-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less...

  16. Isolation and characterization of a cellulolytic actinomycete Microbispora bispora

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, Jr, C R; Becker-Vallone, C A; Eveleigh, D E

    1986-09-01

    Protocols for the isolation of cellulolytic actinomycetes are described, and their use illustrated in the selection of thermophilic bacteria from soil. One isolate, Microbispora bispora, was selected for further study. It grew readily at 55/sup 0/C, produced an extracellular cellulase in good yield (endoglucanase, 5.9 U/ml) that had a broad pH range (pH 5.5 - 7.2) and was thermally stable. Its aryl-..beta..-glucosidase was cell-associated and was relatively resistant to end-product inhibition.

  17. Enzymatic degradation of cellulose for thermophilic actinomycete: isolation, characterization and cellulolytic activity determination

    Directory of Open Access Journals (Sweden)

    Pablo Ramírez

    2013-06-01

    Full Text Available One hundred and forty five cellulolytic thermophilic actinomycete strains were isolated from 71 compost, soil, hay and dung samples. Streptomyces sp. (50,63%, Thermomonospora curvata (15,82%, T. chromogena (13,92%, and other species were identified. Endoglucanase, exoglucanase and β-glucosidase activities were evaluated from 10 cellulolytic actinomycete strains. Among these the Streptomyces sp. 7CMC10 strain showed the biggest activity levels corresponding to 20,14; 2,61 and 5,40 UI/mg of protein, respectively.

  18. Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors.

    Science.gov (United States)

    Pervin, Hasina M; Dennis, Paul G; Lim, Hui J; Tyson, Gene W; Batstone, Damien J; Bond, Philip L

    2013-12-01

    Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55-65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system. Copyright © 2013 Elsevier Ltd. All rights

  19. Impacts of oil sands process water on fen plants: Implications for plant selection in required reclamation projects

    International Nuclear Information System (INIS)

    Pouliot, Rémy; Rochefort, Line; Graf, Martha D.

    2012-01-01

    Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments. - Highlights: ► Fen plant growth was assessed under groundwater discharges of oil sands process water. ► Sedge and grass species were not stressed after two growing seasons in greenhouse. ► Carex species and Triglochin maritima would be helpful in created contaminated fens. ► In dry conditions, contaminated groundwater discharge was detrimental for mosses. ► Campylium stellatum would be the best choice in created fens with contaminated water. - Sedges and grasses tolerated the contact with oil sands process water and could probably grow well in contaminated created fens, but mosses were particularly affected under dry conditions.

  20. Structure of the ribosomal interacting GTPase YjeQ from the enterobacterial species Salmonella typhimurium

    International Nuclear Information System (INIS)

    Nichols, C. E.; Johnson, C.; Lamb, H. K.; Lockyer, M.; Charles, I. G.; Hawkins, A. R.; Stammers, D. K.

    2007-01-01

    The X-ray crystal structure of the GTPase YjeQ from S. typhimurium is presented and compared with those of orthologues from T. maritima and B. subtilis. The YjeQ class of P-loop GTPases assist in ribosome biogenesis and also bind to the 30S subunit of mature ribosomes. YjeQ ribosomal binding is GTP-dependent and thought to specifically direct protein synthesis, although the nature of the upstream signal causing this event in vivo is as yet unknown. The attenuating effect of YjeQ mutants on bacterial growth in Escherichia coli makes it a potential target for novel antimicrobial agents. In order to further explore the structure and function of YjeQ, the isolation, crystallization and structure determination of YjeQ from the enterobacterial species Salmonella typhimurium (StYjeQ) is reported. Whilst the overall StYjeQ fold is similar to those of the previously reported Thematoga maritima and Bacillus subtilis orthologues, particularly the GTPase domain, there are larger differences in the three OB folds. Although the zinc-finger secondary structure is conserved, significant sequence differences alter the nature of the external surface in each case and may reflect varying signalling pathways. Therefore, it may be easier to develop YjeQ-specific inhibitors that target the N- and C-terminal regions, disrupting the metabolic connectivity rather than the GTPase activity. The availability of coordinates for StYjeQ will provide a significantly improved basis for threading Gram-negative orthologue sequences and in silico compound-screening studies, with the potential for the development of species-selective drugs

  1. Structure of the ribosomal interacting GTPase YjeQ from the enterobacterial species Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, C. E. [Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Johnson, C.; Lamb, H. K. [Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, Newcastle University, Newcastle-upon-Tyne NE2 4HH (United Kingdom); Lockyer, M. [Arrow Therapeutics Ltd, Britannia House, Trinity Street, Borough, London SE1 1DA (United Kingdom); Charles, I. G. [The Wolfson Institute for Biomedical Research, The Cruciform Building, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hawkins, A. R. [Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, Newcastle University, Newcastle-upon-Tyne NE2 4HH (United Kingdom); Stammers, D. K., E-mail: daves@strubi.ox.ac.uk [Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2007-11-01

    The X-ray crystal structure of the GTPase YjeQ from S. typhimurium is presented and compared with those of orthologues from T. maritima and B. subtilis. The YjeQ class of P-loop GTPases assist in ribosome biogenesis and also bind to the 30S subunit of mature ribosomes. YjeQ ribosomal binding is GTP-dependent and thought to specifically direct protein synthesis, although the nature of the upstream signal causing this event in vivo is as yet unknown. The attenuating effect of YjeQ mutants on bacterial growth in Escherichia coli makes it a potential target for novel antimicrobial agents. In order to further explore the structure and function of YjeQ, the isolation, crystallization and structure determination of YjeQ from the enterobacterial species Salmonella typhimurium (StYjeQ) is reported. Whilst the overall StYjeQ fold is similar to those of the previously reported Thematoga maritima and Bacillus subtilis orthologues, particularly the GTPase domain, there are larger differences in the three OB folds. Although the zinc-finger secondary structure is conserved, significant sequence differences alter the nature of the external surface in each case and may reflect varying signalling pathways. Therefore, it may be easier to develop YjeQ-specific inhibitors that target the N- and C-terminal regions, disrupting the metabolic connectivity rather than the GTPase activity. The availability of coordinates for StYjeQ will provide a significantly improved basis for threading Gram-negative orthologue sequences and in silico compound-screening studies, with the potential for the development of species-selective drugs.

  2. Extremophiles survival to simulated space conditions: an astrobiology model study.

    Science.gov (United States)

    Mastascusa, V; Romano, I; Di Donato, P; Poli, A; Della Corte, V; Rotundi, A; Bussoletti, E; Quarto, M; Pugliese, M; Nicolaus, B

    2014-09-01

    In this work we investigated the ability of four extremophilic bacteria from Archaea and Bacteria domains to resist to space environment by exposing them to extreme conditions of temperature, UV radiation, desiccation coupled to low pressure generated in a Mars' conditions simulator. All the investigated extremophilic strains (namely Sulfolobus solfataricus, Haloterrigena hispanica, Thermotoga neapolitana and Geobacillus thermantarcticus) showed a good resistance to the simulation of the temperature variation in the space; on the other hand irradiation with UV at 254 nm affected only slightly the growth of H. hispanica, G. thermantarcticus and S. solfataricus; finally exposition to Mars simulated condition showed that H. hispanica and G. thermantarcticus were resistant to desiccation and low pressure.

  3. Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bao, Jichen; Huang, Mingtao; Petranovic, Dina

    2017-01-01

    in yeast, by moderately overexpressing SEC16, which is involved in protein translocation from the endoplasmic reticulum to the Golgi apparatus. The moderate overexpression of SEC16 increased α-amylase secretion by generating more endoplasmic reticulum exit sites. The production of reactive oxygen species...... were observed. Finally, the moderate overexpression of SEC16 was shown to improve the secretion of two other recombinant proteins, Trichoderma reesei endoglucanase I and Rhizopus oryzae glucan-1,4-α-glucosidase, indicating that this mechanism is of general relevance....

  4. Expansion of southern distributional range of Ucides occidentalis (Decapoda: Ucididae and Cardisoma crassum (Decapoda: Gecarcinidae

    Directory of Open Access Journals (Sweden)

    Solange Alemán

    2017-04-01

    Full Text Available Is recorded the species of crabs brachyuran Ucides occidentalis (mangrove crab and Cardisoma crassum (Blue crab or without mouth in the mangroves of San Pedro (Piura, expanding its geographical distribution south of Tumbes, which was the known limit. The habitat of these species is characterized by the presence of two varieties of mangrove trees, Jeli white (Laguncularia racemosa and salty Jeli (Avicenia germinans and halophytic shrub called glass (Batis maritima, it observing that the depth of the burrows is shallow (< 60 cm. Biometric information and some biological aspects of the collected specimens are also presented.

  5. Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp.: a comparative study of wild-type and genetically manipulated strains

    International Nuclear Information System (INIS)

    Ramachandra, M.; Crawford, D.L.; Pometto, A.L. III

    1987-01-01

    The wild-type ligninolytic actinomycete Streptomyces viridosporus T7A and two genetically manipulated strains with enhanced abilities to produce a water-soluble lignin degradation intermediate, an acid-precipitable polymeric lignin (APPL), were grown on lignocellulose in solid-state fermentation cultures. Culture filtrates were periodically collected, analyzed for APPL, and assayed for extracellular lignocellulose-catabolizing enzyme activities. Two APPL-overproducing strains, UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10, had higher and longer persisting peroxidase, esterase, and endoglucanase activities than did the wild-type strain T7A. Results implicated one or more of these enzymes in lignin solubilization. Only mutant T7A-81 had higher xylanase activity than the wild type. The peroxidase was induced by both lignocellulose and APPL. This extracellular enzyme has some similarities to previously described ligninases in fungi. This is the first report of such an enzyme in Streptomyces spp. Four peroxidase isozymes were present, and all catalyzed the oxidation of 3,4-dihydroxyphenylalanine, while one also catalyzed hydrogen peroxide-dependent oxidation of homoprotocatechuic acid and caffeic acid. Three constitutive esterase isozymes were produced which differed in substrate specificity toward α-naphthyl acetate and α-naphthyl butyrate. Three endoglucanase bands, which also exhibited a low level of xylanase activity, were identified on polyacrylamide gels as was one xylanase-specific band. There were no major differences in the isoenzymes produced by the different strains. The probable role of each enzyme in lignocellulose degradation is discussed

  6. Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture.

    Science.gov (United States)

    Bando, Hiroki; Hisada, Hiromoto; Ishida, Hiroki; Hata, Yoji; Katakura, Yoshio; Kondo, Akihiko

    2011-11-01

    A novel promoter from a hemolysin-like protein encoding the gene, hlyA, was characterized for protein overexpression in Aspergillus oryzae grown in solid-state culture. Using endo-1,4-β-glucanase from A. oryzae (CelA) as the reporter, promoter activity was found to be higher than that of the α-amylase (amyA) and manganese superoxide dismutase (sodM) genes not only in wheat bran solid-state culture but also in liquid culture. Expression of the A. oryzae endoglucanase CelB and two heterologous endoglucanases (TrEglI and TrEglIII from Trichoderma reesei) under the control of the hlyA promoter were also found to be stronger than under the control of the amyA promoter in A. oryzae grown in wheat bran solid-state culture, suggesting that the hlyA promoter may be useful for the overproduction of other proteins as well. In wheat bran solid-state culture, the productivity of the hlyA promoter in terms of protein produced was high when the cultivation temperature was 30°C or 37°C, when the water content was 0.6 or 0.8 ml/g wheat bran, and from 48 to 72 h after inoculation. Because A. oryzae sporulated actively under these conditions and because hemolysin has been reported to play a role in fungal fruiting body formation, high-level expression of hlyA may be related to sporulation.

  7. Separation and quantification of cellulases and hemicellulases by capillary electrophoresis

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Kutter, Jörg Peter; Olsson, Lisbeth

    2003-01-01

    Cellulases and hemicellulases are two classes of enzymes produced by filamentous fungi and secreted into the cultivation medium. Both classes of enzymes consist of a subset of classes of which the fungi produce several enzymes with varying molecular mass and pI but similar enzymatic activities....... Current methods are limited in their ability to quantify all of these enzymes when all are present simultaneously in a mixture. Five different cellulases (two cellobiohydrolases and three endoglucanases) and one hemicellulase (endoxylanase) were separated using capillary electrophoresis (CE) in a fused...

  8. Hyperthermostable cellulolytic and hemicellulolytic enzymes and their biotechnological applications

    Directory of Open Access Journals (Sweden)

    Tipparat Hongpattarakere

    2002-07-01

    Full Text Available Hyperthermal cellulases and hemicellulases have been intensively studied due to their highly potential applications at extreme temperatures, which mimic industrial processes involving cellulose and hemicellulose degradation. More than 50 species of hyperthermophiles have been isolated, many of which possess hyperthermal enzymes required for hydrolyzing cellulose and hemicelluloses. Endoglucanases, exoglucanases, cellobiohydrolases, xylanases, β-glucosidase and β-galactosidase, which are produced by the hyperthermophiles, are resistant to boiling temperature. The characteristics of these enzymes and the ability to maintain their functional integrity at high temperature as well as their biotechnological application are discussed.

  9. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Kevin A; Zhao, Lishan; Cayouette, Michelle H

    2015-11-04

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  10. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A.; Zhao, Lishan; Cayouette, Michelle H.

    2015-09-08

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  11. Multifarious activities of cellulose degrading bacteria from Koala (Phascolarctos cinereus) faeces.

    Science.gov (United States)

    Singh, Surender; Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2015-01-01

    Cellulose degrading bacteria from koala faeces were isolated using caboxymethylcellulose-Congo red agar, screened in vitro for different hydrolytic enzyme activities and phylogenetically characterized using molecular tools. Bacillus sp. and Pseudomonas sp. were the most prominent bacteria from koala faeces. The isolates demonstrated good xylanase, amylase, lipase, protease, tannase and lignin peroxidase activities apart from endoglucanase activity. Furthermore many isolates grew in the presence of phenanthrene, indicating their probable application for bioremediation. Potential isolates can be exploited further for industrial enzyme production or in bioremediation of contaminated sites.

  12. Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells.

    Science.gov (United States)

    Ngai, Patrick H K; Ng, T B

    2003-11-14

    From the fruiting bodies of the edible mushroom Lentinus edodes, a novel protein designated lentin with potent antifungal activity was isolated. Lentin was unadsorbed on DEAE-cellulose, and adsorbed on Affi-gel blue gel and Mono S. The N-terminal sequence of lentin manifested similarity to endoglucanase. Lentin, which had a molecular mass of 27.5 kDa, inhibited mycelial growth in a variety of fungal species including Physalospora piricola, Botrytis cinerea and Mycosphaerella arachidicola. Lentin also exerted an inhibitory activity on HIV-1 reverse transcriptase and proliferation of leukemia cells.

  13. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor

    Directory of Open Access Journals (Sweden)

    Linda Jabari

    2016-03-01

    Full Text Available Abstract Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens, and msbl6 (candidate division were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published.

  14. Biological hydrogen production by moderately thermophilic anaerobic bacteria

    International Nuclear Information System (INIS)

    HP Goorissen; AJM Stams

    2006-01-01

    This study focuses on the biological production of hydrogen at moderate temperatures (65-75 C) by anaerobic bacteria. A survey was made to select the best (moderate) thermophiles for hydrogen production from cellulolytic biomass. From this survey we selected Caldicellulosiruptor saccharolyticus (a gram-positive bacterium) and Thermotoga elfii (a gram-negative bacterium) as potential candidates for biological hydrogen production on mixtures of C 5 -C 6 sugars. Xylose and glucose were used as model substrates to describe growth and hydrogen production from hydrolyzed biomass. Mixed substrate utilization in batch cultures revealed differences in the sequence of substrate consumption and in catabolites repression of the two microorganisms. The regulatory mechanisms of catabolites repression in these microorganisms are not known yet. (authors)

  15. Effect of NaCl salinity on nitrate uptake in Plantago maritima L.

    NARCIS (Netherlands)

    Rubinigg, Michael; Posthumus, F.S; Elzenga, J.T.M.; Stulen, I.

    2005-01-01

    Exposure of plants to NaCl salinity reduces the rate of nitrate net uptake by the roots. Previous studies showed that this effect was due to a reduced nitrate influx, which could only partially be explained by a lower demand of nitrate for growth. In the present work we tested the hypothesis that

  16. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    Science.gov (United States)

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  17. Production of xylanases and cellulases by aspergillus fumigatus ms16 using crude lignocellulosic substrates

    International Nuclear Information System (INIS)

    Naseeb, S.; Sohai, M.; Ahmad, A.; Khan, S.A.

    2015-01-01

    Xylanolytic and cellulolytic potential of a soil isolate, Aspergillus fumigatus (MS16) was studied by growing it on a variety of lignocellulosics, purified cellulose and xylan supplemented media. It was noted that carboxymethyl cellulose, salicin and xylan induce the -glucosidase and xylanase, respectively production of endoglucanase. The study revealed that Aspergillus fumigatus (MS16) co-secretes xylanase and cellulase in the presence of xylan; the ratio of the two enzymes was influenced by the initial pH of the medium. The maximum titers of xylanase and cellulase were noted at initial pH of 5.0. Relatively higher titers of both the enzymes were obtained when the fungus was cultivated at 35 degree C. Whereas, cellulase production was not detected when the fungus was cultivated at 40 degree C. The volumetric productivity (Qp) of xylanase was much higher than cellulases. The organism produced 2-3 folds higher titers of xylanase when grown on lignocellulosic materials in submerged cultivation than under solid-state cultivation, suggesting a different pattern of enzyme production in presence and in absence of free water. The partial characterization of enzymes showed that xylanase from this organism has -glucosidase. The higher melting temperature than endoglucanase and optimum temperature for activity was higher for xylanases than cellulases, whereas the optimum pH differed slightly i.e. in the range of 4.0-5.0. Enzyme preparation from this organism was loaded on some crude substrates and it showed that the enzyme preparation can be used to hydrolyze a variety of vegetable and agricultural waste materials. (author)

  18. Cellulase production by Trichoderma harzianum in static and mixed solid-state fermentation reactors under nonaseptic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, F.; Giuliano, C.; Asther, M.; Huet, M.C.; Roussos, S.

    1985-09-01

    Cellulase production from lignocellulosic materials was studied in solid-state cultivation by both static and mixed techniques under nonaseptic conditions. The effects of fermentation conditions, such as moisture content, pH, temperature, and aeration, on cellulase production by Trichoderma harzianum using a mixture of wheat straw (80%) and bran (20%) were investigated. With a moisture content of 74% and a pH of 5.8, 18 IU filter paper activity and 198 IU endoglucanase activity/g initial substrate content were obtained in 66 hours. The extension from static column cultivation to stirred tank reactor of 65 l capacity gave similar yields of cellulase.

  19. Cellulase activities in biomass conversion: measurement methods and comparison.

    Science.gov (United States)

    Dashtban, Mehdi; Maki, Miranda; Leung, Kam Tin; Mao, Canquan; Qin, Wensheng

    2010-12-01

    Cellulose, the major constituent of all plant materials and the most abundant organic molecule on the Earth, is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds. Enzymatic hydrolysis of cellulose requires mixtures of hydrolytic enzymes including endoglucanases, exoglucanases (cellobiohydrolases), and β-glucosidases acting in a synergistic manner. In biopolymer hydrolysis studies, enzyme assay is an indispensable part. The most commonly used assays for the individual enzymes as well as total cellulase activity measurements, including their advantages and limitations, are summarized in this review article. In addition, some novel approaches recently used for enzyme assays are summarized.

  20. Synthesis of O- and C-glycosides derived from β-(1,3)-D-glucans.

    Science.gov (United States)

    Marca, Eduardo; Valero-Gonzalez, Jessika; Delso, Ignacio; Tejero, Tomás; Hurtado-Guerrero, Ramon; Merino, Pedro

    2013-12-15

    A series of β-(1,3)-d-glucans have been synthesized incorporating structural variations specifically on the reducing end of the oligomers. Both O- and C-glucosides derived from di- and trisaccharides have been obtained in good overall yields and with complete selectivity. Whereas the O-glycosides were obtained via a classical Koenigs-Knorr glycosylation, the corresponding C-glycosides were obtained through allylation of the anomeric carbon and further cross-metathesis reaction. Finally, the compounds were evaluated against two glycosidases and two endo-glucanases and no inhibitory activity was observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. New genes and new biological roles for expansins

    Science.gov (United States)

    Cosgrove, D. J.

    2000-01-01

    Expansins are extracellular proteins that loosen plant cell walls in novel ways. They are thought to function in cell enlargement, pollen tube invasion of the stigma (in grasses), wall disassembly during fruit ripening, abscission and other cell separation events. Expansins are encoded by two multigene families and each gene is often expressed in highly specific locations and cell types. Structural analysis indicates that one expansin region resembles the catalytic domain of family-45 endoglucanases but glucanase activity has not been detected. The genome projects have revealed numerous expansin-related sequences but their putative wall-loosening functions remain to be assessed.

  2. Relationships between the floral neighborhood and individual pollen limitation in two self-incompatible herbs.

    Science.gov (United States)

    Jakobsson, Anna; Lázaro, Amparo; Totland, Orjan

    2009-07-01

    Local flower density can affect pollen limitation and plant reproductive success through changes in pollinator visitation and availability of compatible pollen. Many studies have investigated the relationship between conspecific density and pollen limitation among populations, but less is known about within-population relationships and the effect of heterospecific flower density. In addition, few studies have explicitly assessed how the spatial scales at which flowers are monitored affect relationships. We investigated the effect of floral neighborhood on pollen limitation at four spatial scales in the self-incompatible herbs Armeria maritima spp. maritima and Ranunculus acris spp. acris. Moreover, we measured pollen deposition in Armeria and pollinator visits to Ranunculus. There was substantial variation in pollen limitation among Armeria individuals, and 25% of this variation was explained by the density of compatible and heterospecific flowers within a 3 m circle. Deposition of compatible pollen was affected by the density of compatible and incompatible inflorescences within a 0.5 m circle, and deposition of heterospecific pollen was affected by the density of heterospecific flowers within a 2 m circle. In Ranunculus, the number of pollinator visits was affected by both conspecific and heterospecific flower densities. This did not, however, result in effects of the floral neighborhood on pollen limitation, probably due to an absence of pollen limitation at the population level. Our study shows that considerable variation in pollen limitation may occur among individuals of a population, and that this variation is partly explained by floral neighborhood density. Such individual-based measures provide an important link between pollen limitation theory, which predicts ecological and evolutionary causes and consequences for individual plants, and studies of the effects of landscape fragmentation on plant species persistence. Our study also highlights the importance

  3. Biological Control Against the Cowpea Weevil (Callosobruchus Chinensis L., Coleoptera: Bruchidae Using Essential Oils of Some Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Fatiha Righi Assia

    2014-07-01

    Full Text Available Chickpea (Cicer arietinum L. is a valuable foodstuff but unfortunately this legume is prone to insect attacks from the chick pea weevil (Callosobruchus chinensis L.. This serious pest damages the chickpea and causes decreases in the yield and in the nutritional quality. Biological control is being used to deal with this problem. We tried different doses of the essential oils of three new medicinal plants, namely Salvia verbenaca L., Scilla maritima L., and Artemisia herba-alba Asso to limit the damage of the chick pea weevil pest, and to protect consumer’s health. To determine the effect and efficiency of the oil, the tests were conducted using the different biological parameters of fertility, longevity, and fecundity, under controlled temperature and relative humidity (28°C and 75%. The effectiveness of organic oils was demonstrated. We tested these oils on the germination of seeds. The obtained results showed that the tested plant oils have a real organic insecticide effect. The essential oil of Artemisia proved most effective as a biocide; achieving a mortality rate of 100%. A significant reduction in longevity was observed under the effect of 30 μl of S. maritima (1.3 days and S. verbenaca (2.8, 4.6 days, respectively, for males and females compared to 8 and 15 days for the control. For fecundity, an inhibition of oviposition was obtained using 30 μl of Salvia and Scilla essential oils. The test on the seed germination using different essential oils, showed no damage to the germinating seeds. The germination rate was 99%. These findings suggest that the tested plants can be used as a bioinsecticide for control of the C. chinensis pest of stored products.

  4. New crystal forms of Diocleinae lectins in the presence of different dimannosides

    International Nuclear Information System (INIS)

    Moreno, Frederico Bruno Mendes Batista; Bezerra, Gustavo Arruda; Oliveira, Taianá Maia de; Souza, Emmanuel Prata de; Rocha, Bruno Anderson Matias da; Benevides, Raquel Guimarães; Delatorre, Plínio; Cavada, Benildo Sousa; Azevedo, Walter Filgueira Jr de

    2006-01-01

    The crystallization and preliminary X-ray data of Canavalia gladiata lectin (CGL) and C. maritima lectin (CML) complexed with Man(α1-2)Man(α1)OMe, Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe in two crystal forms [the complexes with Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe crystallized in space group P3 2 and those with Man(α1-2)Man(α1)OMe crystallized in space group I222], which differed from those of the native proteins (P2 1 2 1 2 for CML and C222 for CGL), are reported. Studying the interactions between lectins and sugars is important in order to explain the differences observed in the biological activities presented by the highly similar proteins of the Diocleinae subtribe. Here, the crystallization and preliminary X-ray data of Canavalia gladiata lectin (CGL) and C. maritima lectin (CML) complexed with Man(α1-2)Man(α1)OMe, Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe in two crystal forms [the complexes with Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe crystallized in space group P3 2 and those with Man(α1-2)Man(α1)OMe crystallized in space group I222], which differed from those of the native proteins (P2 1 2 1 2 for CML and C222 for CGL), are reported. The crystal complexes of ConA-like lectins with Man(α1-4)Man(α1)OMe are reported here for the first time

  5. A redescription of Rhysida celeris (Humbert & Saussure, 1870), with a proposal of eight new synonyms (Scolopendromorpha, Scolopendridae, Otostigminae).

    Science.gov (United States)

    Chagas-Júnior, Amazonas

    2013-01-01

    Seven species of the genus Rhysida Wood, 1862 from Venezuela and one subspecies from Peru described by Manuel Angel González Sponga and Wolfgang Bücherl respectively, are revised. Rhysida caripensis González-Sponga, 2002, Rhysida neoespartana González-Sponga, 2002, Rhysida guayanica González-Sponga, 2002, Rhysida maritima González-Sponga, 2002, Rhysida monaguensis González-Sponga, 2002, Rhysida porlamarensis González-Sponga 2002, Rhysida sucupanensis González-Sponga, 2002 and Rhysida celeris andina Bücherl, 1953 are junior synonyms of Rhysida celeris (Humbert & Saussure, 1870), which is redescribed and illustrated for the first time. Its geographic distribution is updated and a map showing its distribution is presented.

  6. Feeding ecology of waterfowl wintering on evaporation ponds in California

    Science.gov (United States)

    Euliss, N.H.; Jarvis, R.L.; Gilmer, D.S.

    1991-01-01

    We examined the feeding ecology of Northern Pintails (Anas acuta), Northern Shovelers (A. clypeata), and Ruddy Ducks (Oxyura jamaicensis) wintering on drainwater evaporation ponds in California from 1982 through 1984. Pintails primarily consumed midges (Chironomidae) (39.3%) and widegeongrass (Ruppia maritima) nutlets (34.6%). Shovelers and Ruddy Ducks consumed 92.5% and 90.1% animal matter, respectively. Water boatmen (Corixidae) (51.6%), rotifers (Rotatoria) (20.4%), and copepods (Copepoda) (15.2%) were the most important Shoveler foods, and midges (49.7%) and water boatmen (36.0%) were the most important foods of Ruddy Ducks. All three species were opportunistic foragers, shifting their diets seasonally to the most abundant foods given their behavioral and morphological attributes.

  7. Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose

    DEFF Research Database (Denmark)

    Hsieh, Chia-wen C.; Cannella, David; Jørgensen, Henning

    2015-01-01

    Background: Non-ionic surfactants such as polyethylene glycol (PEG) can increase the glucose yield obtained from enzymatic saccharification of lignocellulosic substrates. Various explanations behind this effect include the ability of PEG to increase the stability of the cellulases, decrease non-p...

  8. Functional diversity for biomass deconstruction in family 5 subfamily 5 (GH5_5) of fungal endo-β1,4-glucanases.

    Science.gov (United States)

    Li, Bingyao; Walton, Jonathan D

    2017-05-01

    Endo-β1,4-glucanases in glycosyl hydrolase family 5 (GH5) are ubiquitous enzymes in the multicellular fungi and are common components of enzyme cocktails for biomass conversion. We recently showed that an endo-glucanase of subfamily 5 of GH5 (GH5_5) from Sporotrichum thermophile (StCel5A) was more effective at releasing glucose from pretreated corn stover, when part of an eight-component synthetic enzyme mixture, compared to its closely related counterpart from Trichoderma reesei, TrCel5A. StCel5A and TrCel5A belong to different clades of GH5_5 (GH5_5_1 and GH5_5_2, respectively). To test whether the superior activity of StCel5A was a general property of all enzymes in the GH5_5_2 clade, StCel5A, TrCel5A, and two additional members of each subfamily were expressed in a common host that had been engineered to suppress its native cellulases (T. reesei Δxyr1) and compared against each other alone on pure substrates, in synthetic mixtures on pure substrates, and against each other in synthetic mixtures on real biomass. The results indicated that superiority is a unique property of StCel5A and not of GH5_5_2 generally. The six Cel5A enzymes had significant differences in relative activities on different substrates, in specific activities, and in sensitivities to mannan inhibition. Importantly, the behavior of the six endo-glucanases on pure cellulose substrates did not predict their behavior in combination with other cellulolytic enzymes on a real lignocellulosic biomass substrate.

  9. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A.

    Science.gov (United States)

    Kont, Riin; Kari, Jeppe; Borch, Kim; Westh, Peter; Väljamäe, Priit

    2016-12-09

    Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme systems. TrCel7A consists of a catalytic domain (CD) and a smaller carbohydrate-binding module (CBM) connected through the glycosylated linker peptide. A tunnel-shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two of them, Trp-40 and Trp-38, in the substrate binding sites near the tunnel entrance. Although addressed in numerous studies the elucidation of the role of CBM and active site aromatics has been obscured by a complex multistep mechanism of processive GHs. Here we studied the role of the CBM-linker and Trp-38 of TrCel7A with respect to binding affinity, on- and off-rates, processivity, and synergism with endoglucanase. The CBM-linker increased the on-rate and substrate affinity of the enzyme. The Trp-38 to Ala substitution resulted in increased off-rates and decreased processivity. The effect of the Trp-38 to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient degradation of cellulose in the presence of endoglucanase. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Expanding the knowledge on lignocellulolytic and redox enzymes of worker and soldier castes from the lower termite Coptotermes gestroi

    Directory of Open Access Journals (Sweden)

    João Paulo Lourenço Franco Cairo

    2016-10-01

    Full Text Available Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to their ability to produce, along with its microbial symbionts, a repertoire of carbohydrate-active enzymes (CAZymes. Recently, a set of Pro-oxidant, Antioxidant, and Detoxification enzymes (PAD were also correlated with the metabolism of carbohydrates and lignin in termites. The lower termite Coptotermes gestroi is considered the main urban pest in Brazil, causing damage to wood constructions. Recently, analysis of the enzymatic repertoire of C. gestroi unveiled the presence of different CAZymes. Because the gene profile of CAZy/PAD enzymes endogenously synthesized by C. gestroi and also by their symbiotic protists remains unclear, the aim of this study was to explore the eukaryotic repertoire of these enzymes in worker and soldier castes of C. gestroi. Our findings showed that worker and soldier castes present similar repertoires of CAZy/PAD enzymes, and also confirmed that endo-glucanases (GH9 and beta-glucosidases (GH1 were the most important glycoside hydrolase families related to lignocellulose degradation in both castes. Classical cellulases such as exo-glucanases (GH7 and endo-glucanases (GH5 and GH45, as well as classical xylanases (GH10 and GH11, were found in both castes only taxonomically related to protists, highlighting the importance of symbiosis in C. gestroi. Moreover, our analysis revealed the presence of Auxiliary Activity enzyme families (AAs, which could be related to lignin modifications in termite digestomes. In conclusion, this report expanded the knowledge on genes and proteins related to CAZy/PAD enzymes from worker and soldier castes of lower termites, revealing new potential enzyme candidates for second-generation biofuel processes.

  11. Expanding the Knowledge on Lignocellulolytic and Redox Enzymes of Worker and Soldier Castes from the Lower Termite Coptotermes gestroi.

    Science.gov (United States)

    Franco Cairo, João P L; Carazzolle, Marcelo F; Leonardo, Flávia C; Mofatto, Luciana S; Brenelli, Lívia B; Gonçalves, Thiago A; Uchima, Cristiane A; Domingues, Romênia R; Alvarez, Thabata M; Tramontina, Robson; Vidal, Ramon O; Costa, Fernando F; Costa-Leonardo, Ana M; Paes Leme, Adriana F; Pereira, Gonçalo A G; Squina, Fabio M

    2016-01-01

    Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to their ability to produce, along with its microbial symbionts, a repertoire of carbohydrate-active enzymes (CAZymes). Recently, a set of Pro-oxidant, Antioxidant, and Detoxification enzymes (PAD) were also correlated with the metabolism of carbohydrates and lignin in termites. The lower termite Coptotermes gestroi is considered the main urban pest in Brazil, causing damage to wood constructions. Recently, analysis of the enzymatic repertoire of C. gestroi unveiled the presence of different CAZymes. Because the gene profile of CAZy/PAD enzymes endogenously synthesized by C. gestroi and also by their symbiotic protists remains unclear, the aim of this study was to explore the eukaryotic repertoire of these enzymes in worker and soldier castes of C. gestroi . Our findings showed that worker and soldier castes present similar repertoires of CAZy/PAD enzymes, and also confirmed that endo-glucanases (GH9) and beta-glucosidases (GH1) were the most important glycoside hydrolase families related to lignocellulose degradation in both castes. Classical cellulases such as exo-glucanases (GH7) and endo-glucanases (GH5 and GH45), as well as classical xylanases (GH10 and GH11), were found in both castes only taxonomically related to protists, highlighting the importance of symbiosis in C. gestroi . Moreover, our analysis revealed the presence of Auxiliary Activity enzyme families (AAs), which could be related to lignin modifications in termite digestomes. In conclusion, this report expanded the knowledge on genes and proteins related to CAZy/PAD enzymes from worker and soldier castes of lower termites, revealing new potential enzyme candidates for second-generation biofuel processes.

  12. The crystal structure of an inverting glycoside hydrolase family 9 exo-β-D-glucosaminidase and the design of glycosynthase.

    Science.gov (United States)

    Honda, Yuji; Arai, Sachiko; Suzuki, Kentaro; Kitaoka, Motomitsu; Fushinobu, Shinya

    2016-02-15

    Exo-β-D-glucosaminidase (EC 3.2.1.165) from Photobacterium profundum (PpGlcNase) is an inverting GH (glycoside hydrolase) belonging to family 9. We have determined the three-dimensional structure of PpGlcNase to describe the first structure-function relationship of an exo-type GH9 glycosidase. PpGlcNase has a narrow and straight active-site pocket, in contrast with the long glycan-binding cleft of a GH9 endoglucanase. This is because PpGlcNase has a long loop, which blocks the position corresponding to subsites -4 to -2 of the endoglucanase. The pocket shape of PpGlcNase explains its substrate preference for a β1,4-linkage at the non-reducing terminus. Asp(139), Asp(143) and Glu(555) in the active site were located near the β-O1 hydroxy group of GlcN (D-glucosamine), with Asp(139) and Asp(143) holding a nucleophilic water molecule for hydrolysis. The D139A, D143A and E555A mutants significantly decreased hydrolytic activity, indicating their essential role. Of these mutants, D139A exclusively exhibited glycosynthase activity using α-GlcN-F (α-D-glucosaminyl fluoride) and GlcN as substrates, to produce (GlcN)2. Using saturation mutagenesis at Asp(139), we obtained D139E as the best glycosynthase. Compared with the wild-type, the hydrolytic activity of D139E was significantly suppressed (strategy for creating an effective glycosynthase from inverting GHs. However, for GH9, where two acidic residues seem to share the catalytic base role, mutation of Asp(139) might inevitably reduce F(-)-release activity. © 2016 Authors; published by Portland Press Limited.

  13. PURIFICATION AND SOME PROPERTIES OF CELLULASE FROM ODONTOTERMES FORMOSANUS (ISOPTERA: TERMITIDAE)

    Institute of Scientific and Technical Information of China (English)

    Tian-ciYang; Jian-chuMo; Jia-anCheng

    2004-01-01

    The purification of the cellulase from Odontotermes forrnosanus workers was achieved by using anion-exchange column of UNOsphere Q, BioLogic DuoFlow chromatography system. The purified cellulase was identified as an endoglucanase and some of its properties were investigated. The EGase activity was 807.5-fold as high as the initial enzyme activity using CMC as substrate and 14.4-fold using salicin as substrate. The enzyme preparations were homogeneous as judged by SDS-PAGE electrophoresis, molecular weight of which was 80 kDa and confirmed by 2-DE zymogram analysis. The enzyme was isoelectric at pH 6.4, which was active on CMC substrate.

  14. Composition of cellulase complex of Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Golovchenko, N P; Chuvil' skaya, N A; Akimenko, V K

    1985-01-01

    It is thought that the anaerobic thermophilic cellulolytic bacterium C. thermocellum has the potential for direct industrial bioconversion of cellulose into ethanol. Therefore, much attention has been given to the study of the cellulolytic properties of the culture and to the characteristics of the cellulose complex, which is still not completely understood. Hence, the activity and location of various cellulolytic enzymes of C. thermocellum were determined. C. thermocellum has 6 known cellulolytic enzymes. Endoglucanase, cellobiohydrolase and exoglucosidase are extracellular enzymes (99-100 percent of the activity is located outside the cells) while cellulobiases, cellobiose phosphorylase and cellodextrine phosphorylase are inside the cells (80-90% of the activity). 25 references.

  15. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor.

    Science.gov (United States)

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Assessment and mitigation of liquefaction

    International Nuclear Information System (INIS)

    Czelada, J. A.; Melentijevic, S.

    2014-01-01

    The simplified empirical procedure in its original form presented in Youd et al (2001) and some further developments given in Idriss and Boulanger (2006) for evaluating liquefaction resistance of soils is presented in this paper only for the criteria based on standard penetration test (SPT). Methods for estimating the ground improvement techniques by stone columns and dynamics compaction are presented. For stone columns Priebe method (1995) and homogenized method (equivalent parameters) are present. for dynamic compaction methods proposed by Recomendacion Geotecnica para las Obras Maritimas y/o Porturaria - ROM 0.5-05 (2005) and Nashed et al. (2009) are described. These analysis methods for each ground improvement technique are compared in two different case histories showing similar results in each one. (Author)

  17. Assessment and mitigation of liquefaction; Evaluacion y mitigacion de la licuefaccion

    Energy Technology Data Exchange (ETDEWEB)

    Czelada, J. A.; Melentijevic, S.

    2014-07-01

    The simplified empirical procedure in its original form presented in Youd et al (2001) and some further developments given in Idriss and Boulanger (2006) for evaluating liquefaction resistance of soils is presented in this paper only for the criteria based on standard penetration test (SPT). Methods for estimating the ground improvement techniques by stone columns and dynamics compaction are presented. For stone columns Priebe method (1995) and homogenized method (equivalent parameters) are present. for dynamic compaction methods proposed by Recomendacion Geotecnica para las Obras Maritimas y/o Porturaria - ROM 0.5-05 (2005) and Nashed et al. (2009) are described. These analysis methods for each ground improvement technique are compared in two different case histories showing similar results in each one. (Author)

  18. Ruminant Nutrition Symposium: Improving cell wall digestion and animal performance with fibrolytic enzymes.

    Science.gov (United States)

    Adesogan, A T; Ma, Z X; Romero, J J; Arriola, K G

    2014-04-01

    This paper aimed to summarize published responses to treatment of cattle diets with exogenous fibrolytic enzymes (EFE), to discuss reasons for variable EFE efficacy in animal trials, to recommend strategies for improving enzyme testing and EFE efficacy in ruminant diets, and to identify proteomic differences between effective and ineffective EFE. A meta-analysis of 20 dairy cow studies with 30 experiments revealed that only a few increased lactational performance and the response was inconsistent. This variability is attributable to several enzyme, feed, animal, and management factors that were discussed in this paper. The variability reflects our limited understanding of the synergistic and sequential interactions between exogenous glycosyl hydrolases, autochthonous ruminal microbes, and endogenous fibrolytic enzymes that are necessary to optimize ruminal fiber digestion. An added complication is that many of the standard methods of assaying EFE activities may over- or underestimate their potential effects because they are based on pure substrate saccharification and do not simulate ruminal conditions. Our recent evaluation of 18 commercial EFE showed that 78 and 83% of them exhibited optimal endoglucanase and xylanase activities, respectively, at 50 °C, and 77 and 61% had optimal activities at pH 4 to 5, respectively, indicating that most would likely act suboptimally in the rumen. Of the many fibrolytic activities that act synergistically to degrade forage fiber, the few usually assayed, typically endoglucanase and xylanase, cannot hydrolyze the recalcitrant phenolic acid-lignin linkages that are the main constraints to ruminal fiber degradation. These factors highlight the futility of random addition of EFE to diets. This paper discusses reasons for the variable animal responses to dietary addition of fibrolytic enzymes, advances explanations for the inconsistency, suggests a strategy to improve enzyme efficacy in ruminant diets, and describes differences

  19. Molecular and biochemical analyses of the GH44 module of CbMan5B/Cel44A, a bifunctional enzyme from the hyperthermophilic bacterium Caldicellulosiruptor bescii.

    Science.gov (United States)

    Ye, Libin; Su, Xiaoyun; Schmitz, George E; Moon, Young Hwan; Zhang, Jing; Mackie, Roderick I; Cann, Isaac K O

    2012-10-01

    A large polypeptide encoded in the genome of the thermophilic bacterium Caldicellulosiruptor bescii was determined to consist of two glycoside hydrolase (GH) modules separated by two carbohydrate-binding modules (CBMs). Based on the detection of mannanase and endoglucanase activities in the N-terminal GH5 and the C-terminal GH44 module, respectively, the protein was designated CbMan5B/Cel44A. A GH5 module with >99% identity from the same organism was characterized previously (X. Su, R. I. Mackie, and I. K. Cann, Appl. Environ. Microbiol. 78:2230-2240, 2012); therefore, attention was focused on CbMan5A/Cel44A-TM2 (or TM2), which harbors the GH44 module and the two CBMs. On cellulosic substrates, TM2 had an optimal temperature and pH of 85°C and 5.0, respectively. Although the amino acid sequence of the GH44 module of TM2 was similar to those of other GH44 modules that hydrolyzed cello-oligosaccharides, cellulose, lichenan, and xyloglucan, it was unique that TM2 also displayed modest activity on mannose-configured substrates and xylan. The TM2 protein also degraded Avicel with higher specific activity than activities reported for its homologs. The GH44 catalytic module is composed of a TIM-like domain and a β-sandwich domain, which consists of one β-sheet at the N terminus and nine β-sheets at the C terminus. Deletion of one or more β-sheets from the β-sandwich domain resulted in insoluble proteins, suggesting that the β-sandwich domain is essential for proper folding of the polypeptide. Combining TM2 with three other endoglucanases from C. bescii led to modest synergistic activities during degradation of cellulose, and based on our results, we propose a model for cellulose hydrolysis and utilization by C. bescii.

  20. Cloning, expression and characterization of a cold-adapted endo-1, 4-β-glucanase from Citrobacter farmeri A1, a symbiotic bacterium of Reticulitermes labralis

    Directory of Open Access Journals (Sweden)

    Xi Bai

    2016-11-01

    Full Text Available Background Many biotechnological and industrial applications can benefit from cold-adapted EglCs through increased efficiency of catalytic processes at low temperature. In our previous study, Citrobacter farmeri A1 which was isolated from a wood-inhabiting termite Reticulitermes labralis could secrete a cold-adapted EglC. However, its EglC was difficult to purify for enzymatic properties detection because of its low activity (0.8 U/ml. The objective of the present study was to clone and express the C. farmeri EglC gene in Escherichia coli to improve production level and determine the enzymatic properties of the recombinant enzyme. Methods The EglC gene was cloned from C. farmeri A1 by thermal asymmetric interlaced PCR. EglC was transformed into vector pET22b and functionally expressed in E. coli. The recombination protein EglC22b was purified for properties detection. Results SDS-PAGE revealed that the molecular mass of the recombinant endoglucanase was approximately 42 kDa. The activity of the E. coli pET22b-EglC crude extract was 9.5 U/ml. Additionally, it was active at pH 6.5–8.0 with an optimum pH of 7.0. The recombinant enzyme had an optimal temperature of 30–40 °C and exhibited >50% relative activity even at 5 °C, whereas it lost approximately 90% of its activity after incubation at 60 °C for 30 min. Its activity was enhanced by Co2+ and Fe3+, but inhibited by Cd2+, Zn2+, Li+, Triton X-100, DMSO, acetonitrile, Tween 80, SDS, and EDTA. Conclusion These biochemical properties indicate that the recombinant enzyme is a cold-adapted endoglucanase that can be used for various industrial applications.

  1. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum

    Science.gov (United States)

    Adney, William S.; Baker, John O.; Decker, Stephen R.; Chou, Yat-Chen; Himmel, Michael E.; Ding, Shi-You

    2012-10-09

    Purified cellobiohydrolase I (glycosyl hydrolase family 7 (Cel7A)) enzymes from Penicillium funiculosum demonstrate a high level of specific performance in comparison to other Cel7 family member enzymes when formulated with purified EIcd endoglucanase from A. cellulolyticus and tested on pretreated corn stover. This result is true of the purified native enzyme, as well as recombinantly expressed enzyme, for example, that enzyme expressed in a non-native Aspergillus host. In a specific example, the specific performance of the formulation using purified recombinant Cel7A from Penicillium funiculosum expressed in A. awamori is increased by more than 200% when compared to a formulation using purified Cel7A from Trichoderma reesei.

  2. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum

    Science.gov (United States)

    Adney, William S.; Baker, John O.; Decker, Stephen R.; Chou, Yat-Chen; Himmel, Michael E.; Ding, Shi-You

    2008-11-11

    Purified cellobiohydrolase I (glycosyl hydrolase family 7 (Cel7A) enzymes from Penicillium funiculosum demonstrate a high level of specific performance in comparison to other Cel7 family member enzymes when formulated with purified EIcd endoglucanase from A. cellulolyticus and tested on pretreated corn stover. This result is true of the purified native enzyme, as well as recombinantly expressed enzyme, for example, that enzyme expressed in a non-native Aspergillus host. In a specific example, the specific performance of the formulation using purified recombinant Cel7A from Penicillium funiculosum expressed in A. awamori is increased by more than 200% when compared to a formulation using purified Cel7A from Trichoderma reesei.

  3. PENAPISAN KHAMIR SELULOLITIK CRYPTOCOCCUS SP. YANG DIISOLASI DARI TANAH KEBUN BIOLOGI WAMENA, JAYA WIJAYA, PROPINSI PAPUA

    Directory of Open Access Journals (Sweden)

    Atit Kanti

    2007-06-01

    Full Text Available Cryptococcus sp. was isolated from Kebun Biologi Wamena, Papua. The isolate was able to grow in media with carboxymethyl cellulose as a sole carbon source implying that isolate produced 1-3 ? endo-glucanase. To study the effect of glucose and osmotic pressure, 0.1 % glucose and 0.1 % NaCl were amended into the medium containing CMC. Glucose significantly affected cellulolytic activity and biomass synthesis. At the beginning of cell cultivation glucose augmentation appear to slightly inhibit enzyme activity. Sodium chloride also significantly affected cellulolytic activity. Profile of pH varied dependent on cultivation media. Maximum growth of biomass was achieved after glucose addition, indicating that glucose stimulated cell growth.

  4. Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa, the causal agent of witches' broom of cocoa

    Directory of Open Access Journals (Sweden)

    Marco Janice Lisboa De

    2003-01-01

    Full Text Available Two isolates of Trichoderma, which reduce the incidence of witches'broom disease caused in cocoa by Crinipellis perniciosa, were evaluated for their potential to produce hydrolases in liquid medium. Very low or no hydrolytic activity was produced in the absence of any substrate. The activities of chitinase, N-acetylglucosaminidase, beta-1,3-glucanase, total cellulase, endoglucanase, aryl- beta-glucosidase, beta-glucosidase, protease and amylase increased dramatically within 72-120 h of growth in the presence of specific substrates. Except for N-acetylglucosaminidase and beta-glucosidase Trichoderma harzianum isolate 1051 produced the largest amounts of hydrolases. The possible involvement of these enzymes in the antagonistic interaction between Trichoderma and C. perniciosa is discussed.

  5. Cloning and Characterization of an Endoglucanase Gene from sp. Korean Native Goat 40

    Directory of Open Access Journals (Sweden)

    Sung Chan Kim

    2016-01-01

    Full Text Available A gene from Actinomyces sp. Korean native goat (KNG 40 that encodes an endo-β-1,4-glucanase, EG1, was cloned and expressed in Escherichia coli (E. coli DH5α. Recombinant plasmid DNA from a positive clone with a 3.2 kb insert hydrolyzing carboxyl methyl-cellulose (CMC was designated as pDS3. The entire nucleotide sequence was determined, and an open-reading frame (ORF was deduced. The ORF encodes a polypeptide of 684 amino acids. The recombinant EG1 produced in E. coli DH5α harboring pDS3 was purified in one step using affinity chromatography on crystalline cellulose and characterized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis/zymogram analysis of the purified enzyme revealed two protein bands of 57.1 and 54.1 kDa. The amino terminal sequences of these two bands matched those of the deduced ones, starting from residue 166 and 208, respectively. Putative signal sequences, a Shine–Dalgarno-type ribosomal binding site, and promoter sequences related to the consensus sequences were deduced. EG1 has a typical tripartite structure of cellulase, a catalytic domain, a serine-rich linker region, and a cellulose-binding domain. The optimal temperature for the activity of the purified enzyme was 55°C, but it retained over 90% of maximum activity in a broad temperature range (40°C to 60°C. The optimal pH for the enzyme activity was 6.0. Kinetic parameters, Km and Vmax of rEG1 were 0.39% CMC and 143 U/mg, respectively.

  6. Chemical constituents of selected Sudanese medicinal and aromatic plants

    International Nuclear Information System (INIS)

    Burham, B.O.

    2007-11-01

    Sudanese medicinal and aromatic plants (Alternanthra repens, Ambrosia maritima, Citrus paradisi, Croton zambesicus, Lepidium sativum, Morettia phillaena, Nauclea latifolia, Plectranthus barbatus, Pluchea dioscorides, and Sphaeranthus suaveolens) were analyzed for their chemical composition, mineral contents and secondary constituents. The concentration of manganese, copper, iron, nickel, lead, zinc and potassium in plant samples was performed using x-ray fluorescence spectrometry. The trace elements found in the smallest amount of the investigated plant species are lead, nickel and copper, while high concentration was detected for potassium, iron and manganese. Mn was accumulated with high level in Alternanthra repens species. Potassium was abundant in S. suaveolens and Ambrosia maritima. The values of concentration obtained for all studied elements were compared with published values of reference material, trace elements in Hay (powder) by International Atomic Energy Agency. Phyto chemical analysis of investigated plants was performed for constituents: Flavonoids, saponins, tannins, alkaloids, amino acids and sugars. The methanolic extracts of P.barbatus, C.paradisi, A.repens, N.latifolia, L. sativum and C. zambesicus are found to contain alkaloids. Results of TLC analysis were shown as R f values for saponins, bitter principles, essential oils, flavonoids and alkaloids. Quantification of flavonoids and tannins showed that flavonoid content was highest in case of Alternanthera repens and Sphaeranthus suavertens, whereas the highest tannin content was in case of Nauclea latifolia and Sphaearanthus suavertens. The results suggest that the user of traditional Sudanese crude drugs should be warned of potential danger of heavy metal poisoning because their concentrations seem to be higher than maximum values allowed by health agencies in several countries. This study has provided some biochemical basis for the ethno medical use of extracts from different candidate

  7. Wild Nicotiana Species as a Source of Cytoplasmic Male Sterility in Nicotianatabacum

    Directory of Open Access Journals (Sweden)

    Nikova V

    2014-12-01

    Full Text Available The results of our experiments executed to obtain tobacco male sterile lines through interspecific hybridization are summarized. Ten wild species from the genus Nicotiana: N. excelsior (exc, N. amplexicaulis (amp, N. rustica (rus, Nicotianaglauca (gla, N. velutina (vel, N. benthamiana (ben, N. maritima (mar, N. paniculata (pan, N. longiflora (lon and N. africana (afr were used as cytoplasmic donors and N. tabacum, cv. HarmanliiskaBasma (HB as a donor of the nucleus. Genetic effects of cytoplasmic-nuclear interaction of the studied species are discussed. Our results suggested that cytoplasmic male sterility (CMS was expressed when the cytoplasms of the above mentioned wild Nicotiana species were combined with the nucleus of N. tabacum. The 10 sources of CMS obtained in tobacco were characterized by altered flower phenotypes. Flowers are classified into types according the stamen, pistil and corolla modification. All these CMS sources were backcrossed to Oriental tobaccos, cvs. Tekne, Nevrokop B-12, Kroumovgrad 90 and Djebel 576, to develop corresponding CMS lines. The investigated cytoplasms produced compete male sterility in all those cultivars. The CMS lines preserved flower types, specific for every “sterile” cytoplasm. The extent of male organ modifications varied from apparently normal (but pollenless stamens in CMS (pan, (afr, some plants of (vel (mar through different degrees of malformations (shriveled anther on shortened filaments (lon, pinnate-like anthers on filaments of normal length (amp, petal - (ben, pistil- or stigma-like structures (rus, (gla to lack of male reproductive organs in (exc and in some plants of (vel, (mar, (rus and (gla. Most of the above mentioned cytoplasms had normal female gametophyte and good seed productivity. Alterations of the pistils were observed in CMS (rus, (exc and (ben causing reduction of the seed set. Electrophoresis of seed proteins of the tobacco cultivars and their CMS lines also suggested that

  8. A ESPACIALIDADE DO VILEGISTURISTA MARÍTIMO EM FORTALEZA, CEARÁ: práticas e transformações recentes

    Directory of Open Access Journals (Sweden)

    Antônio Tadeu Pinto Soares Júnior

    2010-01-01

    Full Text Available The relationship of the society with the sea is redesigned by the metropolis with the consolidation of the modern maritime practices and the valorization of the land close to the sea (swimming, walks, "vilegiatura", habitation and coastal tourism as a place for entertainment and living, observed in the capitals of the northeast like Fortaleza. The practice of the "vilegiatura maritima" became present in the city in the decade of 1930 in the Iracema beach with the "vilegiaturistas" belonging to the upper class of Fortaleza and of all the Province of Ceará. Later, with the coastal urbanization in the decade of 1970, the phenomenon reaches also the municipalities members of the metropolitan region of the city such as Caucaia and Aquiraz. This work has as a general goal to analyse the phenomenon of the "vilegiatura marítima" that takes place on the cost of Fortaleza, evidenced by the acquisition of secondary residences in order to live close to the beach, even in a seasonal way, in the period from 1991 to 2000. In order to understand the unfolding of theses social processes in their urban tissue, Fortaleza and how its coastal space presents the practice of "vilegiatura maritima" were analyzed, by the diverse social agents, named the "vilegiaturistas" (domestic and foreign, the State, the real state sector and society, responsible for the transformations caused by the occupation, investment practices and use of the coastal zone, be for entertainment, be for secondary residences in condos. In this study are analysed the neighbourhoods of Iracema beach, Meireles, and Future beach I and it showed that the "vilegiaturistas marítimos" are concentrated on the Central and East part of the city, and simultaneously their "dilution" in the metropolis generating multicultural spots, opposite to the fi rst hypothesis of the "vilegiatura maritíma" as "the scape from the city", once this phenomenon became predominantly urban.

  9. Chemical constituents of selected Sudanese medicinal and aromatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Burham, B O [Atomic Energy Researches Coordination Council, Sudan Academy of Sciences, Khartoum (Sudan)

    2007-11-15

    Sudanese medicinal and aromatic plants (Alternanthra repens, Ambrosia maritima, Citrus paradisi, Croton zambesicus, Lepidium sativum, Morettia phillaena, Nauclea latifolia, Plectranthus barbatus, Pluchea dioscorides, and Sphaeranthus suaveolens) were analyzed for their chemical composition, mineral contents and secondary constituents. The concentration of manganese, copper, iron, nickel, lead, zinc and potassium in plant samples was performed using x-ray fluorescence spectrometry. The trace elements found in the smallest amount of the investigated plant species are lead, nickel and copper, while high concentration was detected for potassium, iron and manganese. Mn was accumulated with high level in Alternanthra repens species. Potassium was abundant in S. suaveolens and Ambrosia maritima. The values of concentration obtained for all studied elements were compared with published values of reference material, trace elements in Hay (powder) by International Atomic Energy Agency. Phyto chemical analysis of investigated plants was performed for constituents: Flavonoids, saponins, tannins, alkaloids, amino acids and sugars. The methanolic extracts of P.barbatus, C.paradisi, A.repens, N.latifolia, L. sativum and C. zambesicus are found to contain alkaloids. Results of TLC analysis were shown as R{sub f} values for saponins, bitter principles, essential oils, flavonoids and alkaloids. Quantification of flavonoids and tannins showed that flavonoid content was highest in case of Alternanthera repens and Sphaeranthus suavertens, whereas the highest tannin content was in case of Nauclea latifolia and Sphaearanthus suavertens. The results suggest that the user of traditional Sudanese crude drugs should be warned of potential danger of heavy metal poisoning because their concentrations seem to be higher than maximum values allowed by health agencies in several countries. This study has provided some biochemical basis for the ethno medical use of extracts from different candidate

  10. Metode de atracţie şi localizare a faunei utile în agrocenoza culturii de piersic ca factor biologic de control al densităţii speciilor dăunătoare

    Directory of Open Access Journals (Sweden)

    Mihai BATCO

    2016-06-01

    Full Text Available The use of such biorational means as nectariferous plants (Eruca sativa, Fagopyrum esculentum, Phacelia tanacetifolia, Satureja hortensis, Lobulalaria maritima, Dracocephalum moldavica and lawn grasses, protein-carbohydrate compositions and methyl salicylate as factors influencing the beneficial fauna in peach orchard agrocenosis has contributed to the attraction and location of 26 species of Encyrtidae belonging to 19 genera. The species capable to influence the numeric dynamics of economically important species such as oriental moth (Grapholita molesta Busck, peach twig borer (Anarsia lineatella Z, San Jose scale (Diaspidiotus perniciosus Comst., fruit apple scale (Eulecanium coryli L. were nominated. Encyrtidae species whose hosts are potential pests of peach trees, as well as hyperparasite species and parasites of beneficial predatory insects were registered. The stages for timely application of biorational means for useful fauna in the peach orchard agrocenosis during the vegetation period were established. Rezumat. Aplicarea mijloacelor bioraţionale precum culturile nectarifere (Eruca sativa, Fagopyrum esculentum, Phacelia tanacetifolia, Satureja hortensis, Lobulalaria maritima, Dracocephalum moldavica şi iarba de gazon, compoziţiile proteico-glucidice şi metilsalicilatul ca factori de influenţă asupra faunei benefice în agrocenoza culturii de piersic au contribuit la atracţia şi localizarea a 26 specii de Encyrtidae, care se atribuie la 19 genuri. Sunt nominalizate speciile capabile de a influenţa dinamica numerică a speciilor economic importante, aşa ca molia orientală (Grapholita molesta Busck, molia vărgată (Anarsia lineatella Z, păduchele din San Jose (Diaspidiotus perniciosus Comst., păduchele ţestos fals al mărului (Eulecanium coryli L.. Au fost semnalate specii de Encyrtidae ale căror gazde sunt dăunători potenţiali ai piersicului şi de asemenea specii hiperparazite şi paraziţi ai insectelor pr

  11. How do Purple Sandpipers Calidris maritima survive the winter north of the Arctic circle?

    NARCIS (Netherlands)

    Summers, R.W.; Piersma, T.; Strann, K.B.; Wiersma, P.

    1998-01-01

    Winter north of the Arctic circle in northern Norway is colder, windier and there is less solar radiation than in eastern Scotland, at a latitude 13 degrees further south. We predicted from equations derived from heated taxidermic mounts that the maintenance metabolism (Basal Metabolic Rate plus

  12. Enige opmerkingen over de aanpassing van de zeeraket (Cakile maritima Scop.) aan het strand

    NARCIS (Netherlands)

    Veldkamp, J.F.

    1971-01-01

    It has been assumed that the sea-rockets, Cakile Mill., are adapted to life on the beach. It is here suggested that the habit of the plants, their annual cycle, the structure of the fruit and the consequent distribution by the sea cannot be regarded as typical, special adaptations to the sandy

  13. Discovery of a Dipeptide Epimerase Enzymatic Function Guided by Homology Modeling and Virtual Screening

    Energy Technology Data Exchange (ETDEWEB)

    Kalyanaraman, C.; Imker, H; Fedorov, A; Fedorov, E; Glasner, M; Babbitt, P; Almo, S; Gerlt, J; Jacobson, M

    2008-01-01

    We have developed a computational approach to aid the assignment of enzymatic function for uncharacterized proteins that uses homology modeling to predict the structure of the binding site and in silico docking to identify potential substrates. We apply this method to proteins in the functionally diverse enolase superfamily that are homologous to the characterized L-Ala-D/L-Glu epimerase from Bacillus subtilis. In particular, a protein from Thermotoga martima was predicted to have different substrate specificity, which suggests that it has a different, but as yet unknown, biological function. This prediction was experimentally confirmed, resulting in the assignment of epimerase activity for L-Ala-D/L-Phe, L-Ala-D/L-Tyr, and L-Ala-D/L-His, whereas the enzyme is annotated incorrectly in GenBank as muconate cycloisomerase. Subsequently, crystal structures of the enzyme were determined in complex with three substrates, showing close agreement with the computational models and revealing the structural basis for the observed substrate selectivity.

  14. Molecular cloning of cellulase genes from indigenous bacterial isolates

    International Nuclear Information System (INIS)

    Jong Bor Chyan; Pauline Liew Woan Ying; Mat Rasol Awang

    2006-01-01

    Indigenous cellulolytic bacterial isolates having high activities in degrading carboxymethyl cellulose (CMC) were isolated from local environments. Identification of these isolates were performed by molecular techniques. By using polymerase chain reaction (PCR) techniques, PCR products encoding cellulase gene were amplified from the total genomic DNAs. Purified PCR product was successfully cloned and expressed in Escherichia coli host system. The complete nucleotide sequences of the cellulase genes determined. The analysis of amino acid sequences deduced from the genes indicated that the cloned DNA fragments show high homology to those of endoglucanase genes of family GH5. All cloned genes consist of an N-terminal signal peptide, a catalytic domain of family 5 glycosyl hydrolase and a cellulose-binding domain of family III. (Author)

  15. Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail.

    Science.gov (United States)

    Bussamra, Bianca Consorti; Freitas, Sindelia; Costa, Aline Carvalho da

    2015-01-01

    The aim of this work was to study cocktail supplementation for sugar cane bagasse hydrolysis, where the enzymes were provided from both commercial source and microorganism cultivation (Trichoderma reesei and genetically modified Escherichia coli), followed by purification. Experimental simplex lattice mixture design was performed to optimize the enzymatic proportion. The response was evaluated through hydrolysis microassays validated here. The optimized enzyme mixture, comprised of T. reesei fraction (80%), endoglucanase (10%) and β-glucosidase (10%), converted, theoretically, 72% of cellulose present in hydrothermally pretreated bagasse, whereas commercial Celluclast 1.5L converts 49.11%±0.49. Thus, a rational enzyme mixture designed by using synergism concept and statistical analysis was capable of improving biomass saccharification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Thermotoga lettingae sp. nov. : a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Stams, A.J.M.

    2002-01-01

    A novel, anaerobic, non-spore-forming, mobile, Gram-negative, thermophilic bacterium, strain TMO(T), was isolated from a thermophilic sulfate-reducing bioreactor operated at 65 degrees C with methanol as the sole substrate. The G C content of the DNA of strain TMO(T) was 39.2 molÐThe optimum pH,

  17. Feeding habits of Carabidae (Coleoptera associated with herbaceous plants and the phenology of coloured cotton

    Directory of Open Access Journals (Sweden)

    Danilo Henrique da Matta

    2017-04-01

    Full Text Available The carabids (Coleoptera: Carabidae are recognized as polyphagous predators and important natural enemies of insect pests. However, little is known about the feeding habits of these beetles. In this work, we determine the types of food content in the digestive tracts of nine species of Carabidae associated with herbaceous plants and different growth stages of coloured cotton. The food contents were evaluated for beetles associated with the coloured cotton cv. BRS verde, Gossypium hirsutum L. latifolium Hutch., adjacent to weed plants and the flowering herbaceous plants (FHPs Lobularia maritima (L., Tagetes erecta L., and Fagopyrum esculentum Moench. The digestive tract analysis indicated various types of diets and related arthropods for Abaris basistriata, Galerita brasiliensis, Scarites sp., Selenophorus alternans, Selenophorus discopunctatus and Tetracha brasiliensis. The carabids were considered to be polyphagous predators, feeding on different types of prey.

  18. Restoration Potential of Ruppia Maritima and Potamogeton Perfoliatus by Seed in the Mid-Chesapeake Bay

    National Research Council Canada - National Science Library

    Ailstock, Steve

    2004-01-01

    ... in the mesohaline reaches of the mid-Chesapeake Bay. Once reproductive potential by seed is defined for healthy populations of these species, their life cycles can be evaluated to identify nondestructive methods of harvesting seeds for restoration projects...

  19. HERODIAN JUDEA: GAMES, POLITICS, KINGSHIP

    Directory of Open Access Journals (Sweden)

    Cody Scott Ames

    2015-06-01

    Full Text Available This article will detail the kingship of Herod the Great in Judea and his enrollment of Greco-Roman architecture and culture during his reign in the first century BCE.  Herod, it seems, made a deliberate break from his Jewish kingdom for the electrifying ways of the Greco-Roman world.  Herodian Judea faced many changes over its history, but none more drastic in terms of architecture and culture than during his reign amidst the Roman domination in Judea, a period that begins with Pompey the Great in 63 BCE and ends with the Muslim invasion in the 650’s CE (Herod died in 4 BCE.  Herod the Great is widely regarded as both a Roman sympathizer (OGIS 414 and a promoter of Greco-Roman culture (Roller 1998; Smallwood 1981.  He is believed to have underwritten the construction of monumental buildings including harbors, temples, and arches as well as theaters and amphitheaters (Josephus AJ 15.421.  These architectural endeavors, which bear strong Greco-Roman cultural significances, suggest Herod may have been influenced by Greek designs which were filtered through Roman culture (Smallwood 1981; Geiger 2005.                               The aims of this article are twofold: 1 to offer an explanation for Herod’s adoption of Greco-Roman architecture and Greco-Roman games; and 2 to better understand the socio-political crafting of Herod’s kingship. To this end, I will look into possible relationships between Herod, the Roman aristocracy and Jewish norms as documented by ancient accounts.  I will also examine the physical remains of Herod’s building program in Caesarea Maritima.             Our journey will begin with Herod’s three trips to Rome in the years 40, 17-16 and 13-12 BCE in an effort to attain the crown and bring stability back to Judea as detailed by accounts of Josephus (Josephus Ant. 15.342-3.  It also will discuss select architectural remains from Herod’s building program at Caesarea

  20. A coarse-grained model for synergistic action of multiple enzymes on cellulose

    Directory of Open Access Journals (Sweden)

    Asztalos Andrea

    2012-08-01

    Full Text Available Abstract Background Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, β-glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. Results We present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. Conclusions Our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures

  1. Growth and enzymatic activity of Leucoagaricus gongylophorus, a mutualistic fungus isolated from the leaf-cutting ant Atta mexicana, on cellulose and lignocellulosic biomass.

    Science.gov (United States)

    Vigueras, G; Paredes-Hernández, D; Revah, S; Valenzuela, J; Olivares-Hernández, R; Le Borgne, S

    2017-08-01

    A mutualistic fungus of the leaf-cutting ant Atta mexicana was isolated and identified as Leucoagaricus gongylophorus. This isolate had a close phylogenetic relationship with L. gongylophorus fungi cultivated by other leaf-cutting ants as determined by ITS sequencing. A subcolony started with ~500 A. mexicana workers could process 2 g day -1 of plant material and generate a 135 cm 3 fungus garden in 160 days. The presence of gongylidia structures of ~35 μm was observed on the tip of the hyphae. The fungus could grow without ants on semi-solid cultures with α-cellulose and microcrystalline cellulose and in solid-state cultures with grass and sugarcane bagasse, as sole sources of carbon. The maximum CO 2 production rate on grass (V max  = 17·5 mg CO 2  L g -1  day -1 ) was three times higher than on sugarcane bagasse (V max  = 6·6 mg CO 2  L g -1 day -1 ). Recoveries of 32·9 mg glucose  g biomass -1 and 12·3 mg glucose  g biomass -1 were obtained from the fungal biomass and the fungus garden, respectively. Endoglucanase activity was detected on carboxymethylcellulose agar plates. This is the first study reporting the growth of L. gongylophorus from A. mexicana on cellulose and plant material. According to the best of our knowledge, this is the first report about the growth of Leucoagaricus gongylophorus, isolated from the colony of the ant Atta mexicana, on semisolid medium with cellulose and solid-state cultures with lignocellulosic materials. The maximum CO 2 production rate on grass was three times higher than on sugarcane bagasse. Endoglucanase activity was detected and it was possible to recover glucose from the fungal gongylidia. The cellulolytic activity could be used to process lignocellulosic residues and obtain sugar or valuable products, but more work is needed in this direction. © 2017 The Society for Applied Microbiology.

  2. Utilization of waste cellulose. III. Comparative study of the activity of the cellulases of trichoderma viride and Aspergillus niger towards different cellulosic substrates

    Energy Technology Data Exchange (ETDEWEB)

    David, C.; Thiry, P.

    1981-01-01

    The kinetics of the saccharification of filter paper-derived cellulose by cellulases of Aspergillus niger and Tricoderma viride were studied. The formation of glucose and of total reducing sugar was measured as a function of time for the hydrolysis of cellulose by the same quantity of filter paper units from T. viride and (or) A. niger. Long term efficiency was lower for A. niger but an important synergistic effect was observed for the mixture of the enzymes. This synergistic action was attributed to a better balance of endo- and exoglucananses and to the addition to T. viride of thermally stable endoglucanases from A. niger. The beta-glucosidases formed in large quantity by A. niger were thermally unstable and susceptible to product inhibition and did not play any role in the observed synergistic action.

  3. The expression of extracellular fungal cell wall hydrolytic enzymes in different Trichoderma harzianum isolates correlates with their ability to control Pyrenochaeta lycopersici

    Directory of Open Access Journals (Sweden)

    LUZ MARÍA PÉREZ

    2002-01-01

    Full Text Available Four isolates of Trichoderma harzianum (ThN3, Th11, Th12 and Th16 were selected for their ability to control the in vitro development of the tomato root pathogen Pyrenochaeta lycopersici. Analysis of the mechanisms involved in biocontrol showed that the formation of non-volatile metabolites appears to be one of those involved in biocontrol of P. lycopersici by all T. harzianum isolates tested. Nevertheless, the higher secretion of chitinases, both in number of isoenzymes and activity by the Th11 strain, correlated well with its higher ability to control this agent in laboratory and greenhouse experiments as compared to the other T. harzianum isolates tested. The secretion of ß -1,3-endoglucanases and/or proteases appeared to have less significance than endochitinases in the biological control of P. lycopersici

  4. Characterization of thermostable cellulase produced by Bacillus strains isolated from solid waste of carrageenan

    Science.gov (United States)

    Listyaningrum, N. P.; Sutrisno, A.; Wardani, A. K.

    2018-03-01

    Cellulase-producing bacteria was isolated from solid waste of carrageenan and identified as Bacillus licheniformis C55 by 16S rRNA sequencing. The optimum condition for cellulase production was obtained at pH and temperature of 8.0 and 50°C, respectively in a medium containing glucose as carbon source and 1.0% carboxymethyl cellulose (CMC) to stimulate the cellulase production. Most remarkably, the enzyme retained its relative activity over 50% after incubation at 50°C for 90 minutes. Substrate specificity suggested that the enzyme is an endoglucanase. The molecular mass of Bacillus licheniformis C55 crude cellulase was found about 18 kDa by SDS-PAGE analysis. This thermostable enzyme would facilitate development of more efficient and cost-effective forms of the process to convert lignocellulosic biomass into high-value products.

  5. Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast

    DEFF Research Database (Denmark)

    Bao, Jichen; Huang, Mingtao; Petranovic, Dina

    2018-01-01

    of ADP-ribosylation factor GTP activating proteins, Gcs1p and Glo3p, which are involved in the process of COPI-coated vesicle formation. Engineering the retrograde trafficking increased the secretion of alpha-amylase but did not induce production of reactive oxygen species. An expanded ER membrane......The yeast Saccharomyces cerevisiae is widely used as a cell factory to produce recombinant proteins. However, S. cerevisiae naturally secretes only a few proteins, such as invertase and the mating alpha factor, and its secretory capacity is limited. It has been reported that engineering protein...... recombinant proteins, endoglucanase I from Trichoderma reesei and glucan-1,4-alpha-glucosidase from Rhizopus oryzae, indicating overexpression of GLO3 in a SEC16 moderate overexpression strain might be a general strategy for improving production of secreted proteins by yeast....

  6. Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Topakas, Evangelos; Moukouli, Maria

    2011-01-01

    Fusarium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae F12 were used to ferment carbohydrates of wet exploded pre-treated wheat straw (PWS) directly to ethanol. Both microorganisms were first grown aerobically to produce cell mass and thereafter fermented PWS to ethanol under...... anaerobic conditions. During fermentation, soluble and insoluble carbohydrates were hydrolysed by the lignocellulolytic system of F. oxysporum. Mixed substrate fermentation using PWS and corn cobs (CC) in the ratio 1:2 was used to obtain an enzyme mixture with high cellulolytic and hemicellulolytic...... activities. Under these conditions, activities as high as 34300, 9100, 326, 24, 169, 27 and 254 U dm−3 of xylanase, endoglucanase, β-glucosidase, arabinofuranosidase, avicelase, feruloyl esterase and acetyl esterase, respectively, were obtained. The replacement of the enzyme production phase of F. oxysporum...

  7. Recombinant vectors construction for cellobiohydrolase encoding gene constitutive expression

    Directory of Open Access Journals (Sweden)

    Leontina GURGU

    2012-12-01

    Full Text Available Cellobiohydrolases (EC 3.2.1.91 are important exo enzymes involved in cellulose hydrolysis alongside endoglucanases (EC 3.2.1.4 and β-glucosidases (EC 3.2.1.21. Heterologous cellobiohydrolase gene expression under constitutive promoter control using Saccharomyces cerevisiae as host system is of great importance for a successful SSF process. From this point of view, the main objective of the work was to use Yeplac181 expression vector as a recipient for cellobiohdrolase - cbhB encoding gene expression under the control of the actin promoter, in Saccharomyces cerevisiae. Two hybridvectors, YEplac-Actp and YEplac-Actp-CbhB, were generated usingEscherichia coli XLI Blue for the cloning experiments. Constitutive cbhB gene expression was checked by proteine gel electrophoresis (SDS-PAGE after insertion of these constructs into Saccharomyces cerevisiae.

  8. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across an ecotone.

    Science.gov (United States)

    Peterson, Jennifer M; Bell, Susan S

    2012-07-01

    Field experiments were conducted at a black mangrove-salt-marsh ecotone in southwest Florida (U.S.A.) to investigate retention of propagules of the black mangrove, Avicennia germinans, by salt-marsh plants as a mechanism of facilitation operating on recruitment success at landward boundaries. Buoyant A. germinans propagules are dispersed by tides, and stranding is required for establishment; therefore, processes that enable stranding should facilitate mangrove recruitment. We expected the physical structure of salt-marsh vegetation to define propagule retention capacity, and we predicted that salt-marsh plants with distinct growth forms would differentially retain propagules. Experimental monoculture plots (1 m2) of salt-marsh plants with different growth forms (Sporobolus virginicus [grass], Sesuvium portulacastrum [succulent forb], and Batis maritima [succulent scrub]) were created, and A. germinans propagules were emplaced into these plots and monitored over time. For comparison, propagules were also placed into natural polyculture plots (1 m2). Polyculture plots contained at least two of the salt-marsh plant taxa selected for monoculture treatments, and S. virginicus was always present within these polyculture plots. Natural polyculture plots retained 59.3% +/- 11.0% (mean +/- SE) of emplaced propagules. Monocultures varied in their propagule retention capacities with plots of S. virginicus retaining on average 65.7% +/- 11.5% of transplanted propagules compared to 7.2% +/- 1.8% by B. maritima and 5.0% +/- 1.9% by S. portulacastrum. Plots containing S. virginicus retained a significantly greater percentage of emplaced propagules relative to the two succulent salt-marsh taxa. Furthermore, propagule entrapment, across all treatments, was strongly correlated with salt-marsh structure (r2 = 0.6253, P = 0.00001), which was estimated using an indirect quantitative metric (lateral obstruction) calculated from digital images of plots. Overall, our findings imply that

  9. Gaps of maritime health research in Latin America – a literature review

    DEFF Research Database (Denmark)

    Jensen, Olaf Chresten; Andrioti, Despena; Canals, M. Luisa

    for research in this part of the world. Materials and Methods PubMed, Google Scholar, SciELO - Scientific Electronic Library Online, Pan American Journal of Public Health, Medicina Maritima and other relevant journals in Latin America in the Spanish and English languages were searched. Results 57 peer......-reviewed articles on fishermen´s health and safety and none for the seafarers were included. Brazil counted for the main part n =39, while each of the other countries had 0-4 studies. The study objectives include occupational injuries, divers disease, skin diseases, hearing loss and other issues. The cross......Background So far the maritime health and safety research for seafarers and fishermen mainly comes from the industrial developed countries with sparse contributions from the developing countries. The aim was to give an overview of the peer reviewed research in Latin America to point out the needs...

  10. Review of Maritime Health research gab in latin America

    DEFF Research Database (Denmark)

    Jensen, Olaf Chresten

    for research in this part of the world. Materials and Methods PubMed, Google Scholar, SciELO - Scientific Electronic Library Online, Pan American Journal of Public Health, Medicina Maritima and other relevant journals in Latin America in the Spanish and English languages were searched. Results 57 peer......-reviewed articles on fishermen´s health and safety and none for the seafarers were included. Brazil counted for the main part n =39, while each of the other countries had 0-4 studies. The study objectives include occupational injuries, divers disease, skin diseases, hearing loss and other issues. The cross......Background So far the maritime health and safety research for seafarers and fishermen mainly comes from the industrial developed countries with sparse contributions from the developing countries. The aim was to give an overview of the peer reviewed research in Latin America to point out the needs...

  11. Ecological correlates of variable organ sizes and fat loads in the most northerly-wintering shorebirds

    Science.gov (United States)

    Ruthrauff, Daniel R.; Dekinga, Anne; Gill, R.E.; Summers, R.W.; Piersma, Theunis

    2013-01-01

    Shorebirds at northern latitudes during the nonbreeding season typically carry relatively large lipid stores and exhibit an up-regulation of lean tissues associated with digestion and thermogenesis. Intraspecific variation in these tissues across sites primarily reflects differences in environmental conditions. Rock (Calidris ptilocnemis (Coues, 1873)) and Purple (Calidris maritima (Brünnich, 1764)) sandpipers are closely related species having the most northerly nonbreeding distributions among shorebirds, living at latitudes up to 61°N in Cook Inlet, Alaska, and up to 71°N in northern Norway, respectively. Cook Inlet is the coldest known site used by nonbreeding shorebirds, and the region’s mudflats annually experience extensive coverage of foraging sites by sea and shore-fast ice. Accordingly, Rock Sandpipers increase their fat stores to nearly 20% of body mass during winter. In contrast, Purple Sandpipers exploit predictably ice-free rocky intertidal foraging sites and maintain low (food resources.

  12. C-Terminal carbohydrate-binding module 9_2 fused to the N-terminus of GH11 xylanase from Aspergillus niger.

    Science.gov (United States)

    Xu, Wenxuan; Liu, Yajuan; Ye, Yanxin; Liu, Meng; Han, Laichuang; Song, Andong; Liu, Liangwei

    2016-10-01

    The 9_2 carbohydrate-binding module (C2) locates natively at the C-terminus of the GH10 thermophilic xylanase from Thermotoga marimita. When fused to the C-terminus, C2 improved thermostability of a GH11 xylanase (Xyn) from Aspergillus niger. However, a question is whether the C-terminal C2 would have a thermostabilizing effect when fused to the N-terminus of a catalytic module. A chimeric enzyme, C2-Xyn, was created by step-extension PCR, cloned in pET21a(+), and expressed in E. coli BL21(DE3). The C2-Xyn exhibited a 2 °C higher optimal temperature, a 2.8-fold longer thermostability, and a 4.5-fold higher catalytic efficiency on beechwood xylan than the Xyn. The C2-Xyn exhibited a similar affinity for binding to beechwood xylan and a higher affinity for oat-spelt xylan than Xyn. C2 is a thermostabilizing carbohydrate-binding module and provides a model of fusion at an enzymatic terminus inconsistent with the modular natural terminal location.

  13. A transposase strategy for creating libraries of circularly permuted proteins.

    Science.gov (United States)

    Mehta, Manan M; Liu, Shirley; Silberg, Jonathan J

    2012-05-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions.

  14. Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from Indian hot spring

    Directory of Open Access Journals (Sweden)

    Somen Acharya

    2012-08-01

    Full Text Available The aim of this work was to study the effect of some nutritional and environmental factors on the production of cellulases, in particular endoglucanase (CMCase and exoglucanases (FPase from Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from an Indian hot spring. The characterization study indicated that the optimum pH and temperature value was 6.5 to 7.0 and 50-55°C, respectively. Maximum cellulases production by both the isolates was detected after 60 h incubation period using wheat and rice straw. The combination of inorganic and organic nitrogen source was suitable for cellulases production. Overall, FPase production was much higher than CMCase production by both of the strains. Between the two thermophiles, the cellulolytic activity was more in B.licheniformis MVS1 than Bacillus sp. MVS3 in varying environmental and nutritional conditions.

  15. Enhanced production and application of acidothermophilic Streptomyces cellulase.

    Science.gov (United States)

    Budihal, Saikumar R; Agsar, Dayanand; Patil, Sarvamangala R

    2016-01-01

    An efficient cellulolytic and acidothermophilic actinobacterium was isolated from soil, adhered to decomposing tree bark and was identified as Streptomyces DSK59. Screening of synthetic media and the media components identified that, a medium based on starch casein minerals containing carboxy methyl cellulose (CMC) and beef extract (BE) could support enhanced cellulase production by the organism. CMC, BE, NaCl, temperature and pH were accounted as significant for cellulase production and these were optimized using a response surface central composite design (CCD). Optimization of cellulase production resulted in an enhancement of endoglucanase activity to 27IUml(-1). Acidothermophillic Streptomyces cellulase was found to be efficient for hydrolysis of pretreated sorghum stover and liberated 0.413gg(-1) of total reducing sugars which was higher than previously reported sugar yields obtained using fungal enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Morphogenesis and Production of Enzymes by Penicillium echinulatum in Response to Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    Willian Daniel Hahn Schneider

    2014-01-01

    Full Text Available The effect of different carbon sources on morphology and cellulase and xylanase production of Penicillium echinulatum was evaluated in this work. Among the six carbon sources studied, cellulose and sugar cane bagasse were the most suitable for the production of filter paper activity, endoglucanases, xylanases, and β-glucosidases. However, sucrose and glucose showed β-glucosidase activities similar to those obtained with the insoluble sources. The polyacrylamide gels proved the enzymatic activity, since different standards bands were detected in the media mentioned above. Regarding morphology, it was observed that the mycelium in a dispersed form provided the greatest enzymatic activity, possibly due to greater interaction between the substrate and hyphae. These data are important in understanding the physiology of fungi and could contribute to obtaining enzyme with potential application in the technology of second generation ethanol.

  17. Dispersion and establishment of the species of mangrove of the Rancheria River in the period of maximum fructification

    International Nuclear Information System (INIS)

    Lema Velez, Luisa Fernanda; Polania, Jaime; Urrego Giraldo, Ligia Estela

    2003-01-01

    Dispersion and establishment patterns of Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa, at the Rancheria River were studied using marked propagules. These mangroves are small, and surrounded by subtropical dry forest, subtropical thorn forest and the city of Riohacha. Significant relationships were found between the number of propagules retained and species, time, distance to release site, and retention structure. Avicennia germinans and L. racemosa propagules left the ecosystem within two weeks while a portion of R. mangle propagules remained during the two months study and were able to settle. Goat predation affected mainly the propagules, especially of A. germinans and L. racemosa. Predation did not follow the current dominance-predation model. A pre-dispersion consumption of 30% of A. germinans propagules by Pyralidae larvae was also documented. Batis maritima plants were the most effective structures that retain propagules of the three species and R. mangle propagules remained in greater quantities and for longer periods in the ecosystem

  18. Laūq: A Sustained-Release Dosage Form for Respiratory Disorders in Traditional Persian Medicine.

    Science.gov (United States)

    Karegar-Borzi, Hossein; Salehi, Mehdi; Rahimi, Roja

    2016-01-01

    Laūq is a pharmaceutical dosage form that had been mainly used for the treatment of various respiratory disorders in traditional Persian medicine. It is important from 2 aspects: a dosage form with efficient and optimum delivery of drugs to the respiratory tract and biological effects of its ingredients. Natural medicine in laūq has been demonstrated to act in respiratory disorders by their antitussive, antiallergic, anti-inflammatory, antioxidant, spasmolytic, and antibacterial activities. Some of these natural remedies act by most of the mentioned mechanisms such as Cydonia oblonga, Glycyrrhiza glabra, Crocus sativus, Hyssopus officinalis, Foeniculum vulgare, and honey. However, the evidence is limited including Cassia fistula, Papaver somniferum, and Drimia maritima. According to positive pharmacokinetic and pharmacodynamic aspects of laūqs, they may be considered as efficient dosage forms for delivery of drugs to the respiratory tract. For better compatibility of patients, it could be substituted laūqs with newer drug delivery systems like lozenges. © The Author(s) 2015.

  19. First record of the genus Schoettella and three new records of the family Hypogastruridae (Collembola, Hexapoda for fauna of Iran with an identification key for Mazandaran province

    Directory of Open Access Journals (Sweden)

    Elham Yoosefi Lafooraki

    2015-07-01

    Full Text Available The Hypogastruridae family belonging to the class Collembola (Springtails are among the most important and abundant soil arthropods. These animals play important roles in decomposition processes and nutrient cycling. However, their fauna have remained too much unknown in Iran. In order to study of Collembola fauna in the Mazandaran province, some sampling from soil, leaf litters and mosses were made from different regions of the province during 2012-2013 years. Then, the springtails of samples were separated using Berlese funnel and preserved in 75-85 % ethyl alcohol. During the investigation, some samples belonging to Hypogastruridae were collected and identified. The genus Schoettella and the three species S. unungiuculata, Hypogastrura purpurescens and Ceratophysella engadinensis are new records for fauna of Iran and the two species Xenylla maritima and C. stercoraria are recorded for the first time from Mazandaran province. In addition, an identification key for local genera and species of the family Hypogastruridae in Mazandaran is presented here.

  20. Effect of saline soil parameters on endo mycorrhizal colonisation of dominant halophytes in four Hungarian sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuzy, A.; Biro, B.; Toth, T.

    2010-07-01

    Soil and root samples were collected from the rhizosphere of dominant halophytes (Artemisia santonicum, Aster tripolium, Festuca pseudovina, Lepidium crassifolium, Plantago maritima and Puccinellia limosa) at four locations with saline soils in Hungary. The correlations- between arbuscular mycorrhiza (AM) fungal colonisation parameters (% colonisation, % arbuscules) and soil physical, chemical and biological parameters were determined Endomycorrhiza colonisation was found to be negatively correlated with the electric conductivity of the soil paste, the salt-specific ion concentrations and the cation exchange capacity, showing the sensitivity of AM fungi at increasing salt concentrations, independently of the types of salt-specific anions. A positive correlation was detected between the mycorrhiza colonisation and the abundance of oligotroph bacteria known to be the less variable and more stable (k-strategist) group. This fact and the negative correlation found with the humus content underlines the importance of nutrient availability and the limitations of the symbiotic interactions in stressed saline or sodic soils. (Author) 29 refs.

  1. Phytoindication potential of dune species through predictive modeling at Jatobá beach, Barra dos Coqueiros, Sergipe

    Directory of Open Access Journals (Sweden)

    Sindiany Suelen Caduda Santos

    2015-04-01

    Full Text Available O artigo objetiva investigar espécies endêmicas de dunas capazes de indicar a situação ambiental da área de Barra dos Coqueiros cogitada para criação de uma Unidade de Conservação, Sergipe, a partir do potencial fitogeográfico revelado pela modelagem de distribuição de espécies. Por meio do software MAXENT foram analisadas sete espécies endêmicas de dunas incipientes e semifixas. Os potenciais distributivos estabeleceram que a R. maritima, por sua taxa de dispersão próxima de um, é importante para recuperação de áreas litorâneas. Todavia, a I. imperati, com taxa de predição próxima de zero  é a fitoindicadora de vulnerabilidade/fragilidade. A pesquisa aponta que novas ações planejadas precisam ser efetivadas para a real conservação da biodiversidade em Sergipe.

  2. Food habits of mute swans in the Chesapeake Bay

    Science.gov (United States)

    Perry, M.C.; Osenton, P.C.; Lohnes, E.J.R.; Perry, Matthew C.

    2004-01-01

    Unlike the tundra swan (Cygnus columbianus) that migrate to the Bay for the winter, the mute swan (Cygnus olor) is a year long resident and therefore has raised concerns among research managers over reports of conflicts with nesting native water birds and the consumption of submerged aquatic vegetation (SAV). Although data on the reduction of SAV by nesting mute swans and their offspring during the spring and summer are limited, food-habits data show that mute swans rely heavily on SAV during these months. Analyses of the gullet and gizzard of mute swans indicate that widgeon grass (Ruppia maritima) and eelgrass (Zostera marina) were the most important food items to mute swans during the winter and spring. Other organisms were eaten by mute swans, but represent small percentages of food. Corn (Zea mays) fed to the swans by Bay residents in late winter probably supplements their limited vegetative food resources at that time of year.

  3. Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes.

    Science.gov (United States)

    Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan

    2015-04-24

    Aspergillus sp. plays an essential role in lignocellulosic biomass recycling and is also exploited as cell factories for the production of industrial enzymes. This study profiled the secretome of Aspergillus fumigatus when grown with cellulose, xylan and starch by high throughput quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ). Post translational modifications (PTMs) of proteins play a critical role in protein functions. However, our understanding of the PTMs in secretory proteins is limited. Here, we present the identification of PTMs such as deamidation of secreted proteins of A. fumigatus. This study quantified diverse groups of extracellular secreted enzymes and their functional classification revealed cellulases and glycoside hydrolases (32.9%), amylases (0.9%), hemicellulases (16.2%), lignin degrading enzymes (8.1%), peptidases and proteases (11.7%), chitinases, lipases and phosphatases (7.6%), and proteins with unknown function (22.5%). The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulates expression of specific cellulases and hemicellulases, and their abundance level as a function of substrate. In-depth data analysis revealed deamidation as a major PTM of key cellulose hydrolyzing enzymes like endoglucanases, cellobiohydrolases and glucosidases. Hemicellulose degrading endo-1,4-beta-xylanase, monosidases, xylosidases, lignin degrading laccase, isoamyl alcohol oxidase and oxidoreductases were also found to be deamidated. The filamentous fungi play an essential role in lignocellulosic biomass recycling and fungal strains belonging to Aspergillus were also exploited as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. In this study, extracellular proteins secreted by thermophilic A. fumigatus when grown with cellulose, xylan and starch were profiled using isobaric tags for relative and absolute quantification (iTRAQ) by

  4. Structural characterization of novel L-galactose-containing oligosaccharide subunits of jojoba seed xyloglucans.

    Science.gov (United States)

    Hantus, S; Pauly, M; Darvill, A G; Albersheim, P; York, W S

    1997-10-28

    Jojoba seed xyloglucan was shown to be a convenient source of biologically active xyloglucan oligosaccharides that contain both L- and D-galactosyl residues [E. Zablackis et al., Science, 272 (1996) 1808-1810]. Oligosaccharides were isolated by liquid chromatography of the mixture of oligosaccharides generated by treating jojoba seed xyloglucan with a beta-(1-->4)-endoglucanase. The purified oligosaccharides were reduced with NaBH4, converting them to oligoglycosyl alditol derivatives that were structurally characterized by a combination of mass spectrometry and 2-dimensional NMR spectroscopy. This analysis established that jojoba xyloglucan oligosaccharides contain the novel side-chain [alpha-L-Gal p-(1-->2)-beta-D-Galp-(1-->2)-alpha-D-Xyl p-(1-->6)-], which is structurally homologous to the fucose-containing side-chain [alpha-L-Fucp-(1-->2)-beta-D-Galp-(1-->2)-alpha-D-Xyl p-(1-->6)-] found in other biologically active xyloglucan oligosaccharides.

  5. Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines.

    Science.gov (United States)

    Roper, M Caroline; Greve, L Carl; Warren, Jeremy G; Labavitch, John M; Kirkpatrick, Bruce C

    2007-04-01

    Xylella fastidiosa is the causal agent of Pierce's disease of grape, an economically significant disease for the grape industry. X. fastidiosa systemically colonizes the xylem elements of grapevines and is able to breach the pit pore membranes separating xylem vessels by unknown mechanisms. We hypothesized that X. fastidiosa utilizes cell wall degrading enzymes to break down pit membranes, based on the presence of genes involved in plant cell wall degradation in the X. fastidiosa genome. These genes include several beta-1,4 endoglucanases, several xylanases, several xylosidases, and one polygalacturonase (PG). In this study, we demonstrated that the pglA gene encodes a functional PG. A mutant in pglA lost pathogenicity and was compromised in its ability to systemically colonize Vitis vinifera grapevines. The results indicate that PG is required for X. fastidiosa to successfully infect grapevines and is a critical virulence factor for X. fastidiosa pathogenesis in grapevine.

  6. Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials

    Directory of Open Access Journals (Sweden)

    Peter S. Lübeck

    2013-09-01

    Full Text Available Profitable biomass conversion processes are highly dependent on the use of efficient enzymes for lignocellulose degradation. Among the cellulose degrading enzymes, beta-glucosidases are essential for efficient hydrolysis of cellulosic biomass as they relieve the inhibition of the cellobiohydrolases and endoglucanases by reducing cellobiose accumulation. In this review, we discuss the important role beta-glucosidases play in complex biomass hydrolysis and how they create a bottleneck in industrial use of lignocellulosic materials. An efficient beta-glucosidase facilitates hydrolysis at specified process conditions, and key points to consider in this respect are hydrolysis rate, inhibitors, and stability. Product inhibition impairing yields, thermal inactivation of enzymes, and the high cost of enzyme production are the main obstacles to commercial cellulose hydrolysis. Therefore, this sets the stage in the search for better alternatives to the currently available enzyme preparations either by improving known or screening for new beta-glucosidases.

  7. Plant cell-wall hydrolyzing enzymes from indigenously isolated fungi grown on conventional and novel natural substrates

    International Nuclear Information System (INIS)

    Kumari, D.; Sohail, M.; Jahangeer, S.; Abideen, Z.; Khan, M.A.

    2017-01-01

    Fungi elaborate a variety of plant-hydrolyzing enzymes including cellulases, xylanases, pectinases and amylases. Although these enzymes have potential biotechnological applications, their production at industrial level is limited because of higher costs of the purified substrates. Hence, the present study was aimed to explore the novel, natural and cheaper substrates for enzyme production. Indigenously isolated fungal strains of Aspergillus sp. were grown on banana-peels, grapefruit-peels, pomegranate-peels, sugarcane bagasse, Eucalyptus camaldulensis-leaves and shoots of two halophytic plants including Halopyrum mucronatum and Desmostachya bipinnata under solid-state fermentation (SSF) and submerged fermentation (Smf) conditions. The crude enzyme preparation was screened for cellulase (endoglucanase, beta-glucosidase and filter-paperase), hemicellulase (xylanase), pectinase and amylase production. The results revealed that among all investigated enzymes, the xylanase titers were highest using D. bipinnata- shoots and H. mucronatum- shoots as substrates under solid state fermentation conditions, suggesting their exploitation at commercial scale. (author)

  8. Structure and characteristics of an endo-beta-1,4-glucanase, isolated from Trametes hirsuta, with high degradation to crystalline cellulose.

    Science.gov (United States)

    Nozaki, Kouichi; Seki, Takahiro; Matsui, Keiko; Mizuno, Masahiro; Kanda, Takahisa; Amano, Yoshihiko

    2007-10-01

    Trametes hirsuta produced cellulose-degrading enzymes when it was grown in a cellulosic medium such as Avicel or wheat bran. An endo-beta-1,4-glucanase (ThEG) was purified from the culture filtrate, and the gene and the cDNA were isolated. The gene consisted of an open reading frame encoding 384 amino acids, interrupted by 11 introns. The whole sequence showed high homology with that of family 5 glycoside hydrolase. The properties of the recombinant enzyme (rEG) in Aspergillus oryzae were compared with those of the En-1 from Irpex lacteus, which showed the highest homology among all the endoglucanases reported. The rEG activity against Avicel was about 8 times higher than that of En-1 when based on CMC degradation. A remarkable structural difference between the two enzymes was the length of the linker connecting the cellulose-binding domain to the catalytic domain.

  9. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields.

    Science.gov (United States)

    Dipasquale, L; Adessi, A; d'Ippolito, G; Rossi, F; Fontana, A; De Philippis, R

    2015-01-01

    Two-stage process based on photofermentation of dark fermentation effluents is widely recognized as the most effective method for biological production of hydrogen from organic substrates. Recently, it was described an alternative mechanism, named capnophilic lactic fermentation, for sugar fermentation by the hyperthermophilic bacterium Thermotoga neapolitana in CO2-rich atmosphere. Here, we report the first application of this novel process to two-stage biological production of hydrogen. The microbial system based on T. neapolitana DSM 4359(T) and Rhodopseudomonas palustris 42OL gave 9.4 mol of hydrogen per mole of glucose consumed during the anaerobic process, which is the best production yield so far reported for conventional two-stage batch cultivations. The improvement of hydrogen yield correlates with the increase in lactic production during capnophilic lactic fermentation and takes also advantage of the introduction of original conditions for culturing both microorganisms in minimal media based on diluted sea water. The use of CO2 during the first step of the combined process establishes a novel strategy for biohydrogen technology. Moreover, this study opens the way to cost reduction and use of salt-rich waste as feedstock.

  10. Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures

    Science.gov (United States)

    Wang, L.-Y.; Duan, R.-Y.; Liu, J.-F.; Yang, S.-Z.; Gu, J.-D.; Mu, B.-Z.

    2012-04-01

    Temperature is one of the most important environmental factors regulating the activity and determining the composition of the microbial community. Analysis of microbial communities from six water-flooding petroleum reservoirs at temperatures from 20 to 63 °C by 16S rRNA gene clone libraries indicates the presence of physiologically diverse and temperature-dependent microorganisms in these subterrestrial ecosystems. In high-temperature petroleum reservoirs, most of the archaeal sequences belong to the thermophilic archaea including the genera Thermococcus, Methanothermobacter and Thermoplasmatales, most of the bacterial sequences belong to the phyla Firmicutes, Thermotogae and Thermodesulfobacteria; in low-temperature petroleum reservoirs, most of the archaeal sequences are affiliated with the genera Methanobacterium, Methanoculleus and Methanocalculus, most of the bacterial sequences to the phyla Proteobacteria, Bacteroidetes and Actinobacteria. Canonical correspondence analysis (CCA) revealed that temperature, mineralization, ionic type as well as volatile fatty acids showed correlation with the microbial community structures. These organisms may be adapted to the environmental conditions of these petroleum reservoirs over geologic time by metabolizing buried organic matter from the original deep subsurface environment and became the common inhabitants in subsurface environments.

  11. Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment.

    Directory of Open Access Journals (Sweden)

    Joseph P Peacock

    Full Text Available To characterize high-temperature cellulolytic microbial communities, two lignocellulosic substrates, ammonia fiber-explosion-treated corn stover and aspen shavings, were incubated at average temperatures of 77 and 85°C in the sediment and water column of Great Boiling Spring, Nevada. Comparison of 109,941 quality-filtered 16S rRNA gene pyrosequences (pyrotags from eight enrichments to 37,057 quality-filtered pyrotags from corresponding natural samples revealed distinct enriched communities dominated by phylotypes related to cellulolytic and hemicellulolytic Thermotoga and Dictyoglomus, cellulolytic and sugar-fermenting Desulfurococcales, and sugar-fermenting and hydrogenotrophic Archaeoglobales. Minor enriched populations included close relatives of hydrogenotrophic Thermodesulfobacteria, the candidate bacterial phylum OP9, and candidate archaeal groups C2 and DHVE3. Enrichment temperature was the major factor influencing community composition, with a negative correlation between temperature and richness, followed by lignocellulosic substrate composition. This study establishes the importance of these groups in the natural degradation of lignocellulose at high temperatures and suggests that a substantial portion of the diversity of thermophiles contributing to consortial cellulolysis may be contained within lineages that have representatives in pure culture.

  12. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Velayudhan Satheeja Santhi

    2014-06-01

    Full Text Available The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae. Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.

  13. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries.

    Science.gov (United States)

    Parisutham, Vinuselvi; Chandran, Sathesh-Prabu; Mukhopadhyay, Aindrila; Lee, Sung Kuk; Keasling, Jay D

    2017-09-01

    Complete hydrolysis of cellulose has been a key characteristic of biomass technology because of the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by β-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less challenging is to engineer microbes with the abilities to hydrolyze and assimilate the cellulosic-hydrolysate cellodextrin. Microorganisms engineered to metabolize cellobiose rather than the monomeric glucose can provide several advantages for lignocellulose-based biorefineries. This review describes the recent advances and challenges in engineering efficient intracellular cellobiose metabolism in industrial hosts. This review also describes the limitations of and future prospectives in engineering intracellular cellobiose metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor.

    Science.gov (United States)

    Ma, Zhenchuan; Zhu, Lin; Song, Tianqiao; Wang, Yang; Zhang, Qi; Xia, Yeqiang; Qiu, Min; Lin, Yachun; Li, Haiyang; Kong, Liang; Fang, Yufeng; Ye, Wenwu; Wang, Yan; Dong, Suomeng; Zheng, Xiaobo; Tyler, Brett M; Wang, Yuanchao

    2017-02-17

    The extracellular space (apoplast) of plant tissue represents a critical battleground between plants and attacking microbes. Here we show that a pathogen-secreted apoplastic xyloglucan-specific endoglucanase, PsXEG1, is a focus of this struggle in the Phytophthora sojae -soybean interaction. We show that soybean produces an apoplastic glucanase inhibitor protein, GmGIP1, that binds to PsXEG1 to block its contribution to virulence. P. sojae , however, secretes a paralogous PsXEG1-like protein, PsXLP1, that has lost enzyme activity but binds to GmGIP1 more tightly than does PsXEG1, thus freeing PsXEG1 to support P. sojae infection. The gene pair encoding PsXEG1 and PsXLP1 is conserved in many Phytophthora species, and the P. parasitica orthologs PpXEG1 and PpXLP1 have similar functions. Thus, this apoplastic decoy strategy may be widely used in Phytophthora pathosystems. Copyright © 2017, American Association for the Advancement of Science.

  15. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System.

    Directory of Open Access Journals (Sweden)

    Yoichiro Ito

    Full Text Available Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering.

  16. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase.

    Science.gov (United States)

    Pierce, Brian C; Agger, Jane Wittrup; Wichmann, Jesper; Meyer, Anne S

    2017-03-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety of substrates, including both soy spent flake, a by-product of the soy food industry, and soy spent flake pretreated with sodium hydroxide. Products from enzymatic treatments were analyzed using mass spectrometry and high performance anion exchange chromatography. We demonstrate that TrCel61A is capable of oxidizing cellulose from both pretreated soy spent flake and phosphoric acid swollen cellulose, oxidizing at both the C1 and C4 positions. In addition, we show that the oxidative activity of TrCel61A displays a synergistic effect capable of boosting endoglucanase activity, and thereby substrate depolymerization of soy cellulose, by 27%. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate

    Energy Technology Data Exchange (ETDEWEB)

    Singer, S.W.; Reddy, A. P.; Gladden, J. M.; Guo, H.; Hazen, T.C.; Simmons, B. A.; VanderGheynst, J. S.

    2010-12-15

    This work aims to characterize microbial tolerance to 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), ionic liquid that has emerged as a novel biomass pretreatment for lignocellulosic biomass. Enrichment experiments performed using inocula treated with [C2mim][OAc] under solid and liquid cultivation yielded fungal populationsdominated by Aspergilli. Ionic liquid-tolerant Aspergillus isolates from these enrichments were capable of growing in a radial plate growth assay in the presence of 10% [C2mim][OAc]. When a [C2mim][OAc]-tolerant Aspergillus fumigatus strain was grown in the presence of switchgrass, endoglucanases and xylanases were secreted that retained residual enzymatic activity in the presence of 20% [C2mim][OAc]. The results of the study suggest tolerance to ionic liquids is a general property of Aspergilli. Tolerance to an industrially important ionic liquid was discovered in a fungal genera that is widely used in biotechnology, including biomass deconstruction.

  18. Production of cellulases by fungal cultures isolated from forest litter soil

    Directory of Open Access Journals (Sweden)

    A. Sri Lakshmi

    2012-06-01

    Full Text Available The aims of this study were the isolation and screening of fungal cultures from forest litter soil for cellulases production. In the present study, four fungal cultures were isolated and identified. Among these fungal cultures, three belonged to the genus Aspergillus and one belonged to the genus Pencillium. These fungal cultures were tested to find their ability to produce cellulases, that catalyze the degradation of cellulose, which is a linear polymer made of glucose subunits linked by beta-1, 4 glycosidic bonds. The fungal isolate 3 (Aspergillus sp. was noticed to show maximum zone of hydrolysis of carboxy-methyl cellulose and produce higher titers of cellulases including exoglucanase, endoglucanase and beta -D-glucosidase. The activities of the cellulases were determined by Filter paper assay (FPA, Carboxy-methly cellulase assay (CMCase and beta -D-glucosidase assay respectively. The total soluble sugar and extracellular protein contents of the fungal filtrates were also determined.

  19. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    Science.gov (United States)

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  20. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production.

    Science.gov (United States)

    Santhi, Velayudhan Satheeja; Gupta, Ashutosh; Saranya, Somasundaram; Jebakumar, Solomon Robinson David

    2014-06-01

    The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae . Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.

  1. BIOPROCESS DEVELOPMENTS FOR CELLULASE PRODUCTION BY Aspergillus oryzae CULTIVATED UNDER SOLID-STATE FERMENTATION

    Directory of Open Access Journals (Sweden)

    R. D. P. B. Pirota

    Full Text Available Abstract Bioprocess development studies concerning the production of cellulases are of crucial importance due to the significant impact of these enzymes on the economics of biomass conversion into fuels and chemicals. This work evaluates the effects of solid-state fermentation (SSF operational conditions on cellulase production by a novel strain of Aspergillus oryzae using an instrumented lab-scale bioreactor equipped with an on-line automated monitoring and control system. The use of SSF cultivation under controlled conditions substantially improved cellulase production. Highest production of FPase (0.40 IU g-1, endoglucanase (123.64 IU g-1, and β-glucosidase (18.32 IU g-1 was achieved at 28 °C, using an initial substrate moisture content of 70%, with an inlet air humidity of 80% and an airflow rate of 20 mL min-1. Further studies of kinetic profiles and respirometric analyses were performed. The results showed that these data could be very useful for bioprocess development of cellulase production and scale-up.

  2. Characterization of the enzymes present in the cellulase system of Thielavia terrestris 255B

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Michel; Breuil, Colette; Saddler, J N [Forintek Canada Corp., Ottawa, ON (CA). Dept. of Biotechnology and Chemistry

    1992-01-01

    The authors initiated a study of the cellulases from the thermophilic fungus Thielavia terrestris 255B to see how they compared with enzymes derived from mesophilic fungi such as Trichoderma. To try to obtain maximum production of a complete cellulase system, the fungus was first grown on a variety of soluble and insoluble substrates. As well as assaying the culture filtrates for cellulase activity and protein concentration, the enzyme profiles were compared using non-denaturing electrophoretic techniques (IEF and native-PAGE). The separation by native-PAGE and IEF was followed by activity staining methods to detect endoglucanase and xylanase activities. Native-PAGE could not be used to determine accurately the M{sub r} of the cellulases because of possible differences in mass/charge ratios. Bands with apparent M{sub r} values above 200000 were reproducibly detected. This suggested that the various cellulase components may be organized into high molecular weight complexes. (author).

  3. Application of thermophilic enzymes and water jet system to cassava pulp.

    Science.gov (United States)

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants.

    Science.gov (United States)

    Dollhofer, Veronika; Callaghan, Tony M; Griffith, Gareth W; Lebuhn, Michael; Bauer, Johann

    2017-07-01

    Bioaugmentation with anaerobic fungi (AF) is promising for improved biogas generation from lignocelluloses-rich substrates. However, before implementing AF into biogas processes it is necessary to investigate their natural occurrence, community structure and transcriptional activity in agricultural biogas plants. Thus, AF were detected with three specific PCR based methods: (i) Copies of their 18S genes were found in 7 of 10 biogas plants. (ii) Transcripts of a GH5 endoglucanase gene were present at low level in two digesters, indicating transcriptional cellulolytic activity of AF. (iii) Phylogeny of the AF-community was inferred with the 28S gene. A new Piromyces species was isolated from a PCR-positive digester. Evidence for AF was only found in biogas plants operated with high proportions of animal feces. Thus, AF were most likely transferred into digesters with animal derived substrates. Additionally, high process temperatures in combination with long retention times seemed to impede AF survival and activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Paratransgenic Strategy for the Control of Chagas Disease

    Directory of Open Access Journals (Sweden)

    Ivy Hurwitz

    2012-01-01

    Full Text Available Chagas disease results from infection with the parasite Trypanosoma cruzi. This disease remains a significant cause of morbidity and mortality in central and south America. Chagas disease now exists and is detected worldwide because of human migration. Control of Chagas disease has relied mainly on vector eradication however, the development of insect resistance to pesticides, coupled with cost and adverse health effects of insecticide treatments, has prompted our group to investigate novel methods of transmission control. Our laboratory has been instrumental in the development of the paratransgenic strategy to control vectorial transmission of T. cruzi. In this paper, we discuss various components of the paratransgenic approach. Specifically, we describe classes of molecules that can serve as effectors, including antimicrobial peptides, endoglucanases, and highly specific single chain antibodies that target surface glycoprotein tags on the surface of T. cruzi. Furthermore, we address evolving concepts related to field dispersal of engineered bacteria as part of the paratransgenic control strategy and attendant risk assessment evaluation.

  6. Screening of highly cellulolytic fungi and the action of their cellulase enzyme systems

    Energy Technology Data Exchange (ETDEWEB)

    Saddler, J N

    1982-11-01

    Over 100 strains of wood-rotting fungi were compared for their ability to degrade wood blocks. Some of these strains were then assayed for extracellular cellulase (1,4-(1,3;1,4)-beta-D-glucan 4- glucanohydrolase, EC 3.2.1.4) activity using a variety of different solid media containing carboxymethyl cellulose or acid swollen cellulose. The diameter of clearing on these plates gave an approximate indication of the order of cellulase activities obtained from culture filtrates of these strains. Trichoderma strains grown on Vogels medium gave the highest cellulase yields. The cellulase enzyme production of T. reesei C30 and QM9414 was compared with that of eight other Trichoderma strains. Trichoderma strain E58 had comparable endoglucanase and filter paper activities with the mutant strains while the beta-D-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) activity was approximately six to nine times greater. (Refs. 26).

  7. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    NARCIS (Netherlands)

    Vrije, de G.J.; Bakker, R.R.; Budde, M.A.W.; Lai, M.H.; Mars, A.E.; Claassen, P.A.M.

    2009-01-01

    The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Batch cultures of

  8. Plant extracts as radioprotectors

    International Nuclear Information System (INIS)

    Baydoun, S.; Al-Oudat, M.; Al-Achkar, W.

    1996-09-01

    Several studies show that the extracts of some plants, namely containing vitamins or sulfide components, have radioprotection properties against the effects of ionizing radiation. In Syria, many of hates plants are available. This experiment was conducted in order to test the ability of ten different plants to protect against the radiation damages. These plants are Daucus carota L., Brassica oleracea L, Aloe vera L., Opuntia ficus-indica, Allium cepa L., Capsicum annuum L., Scilla maritima L., Allium sativum L., Rubus sanctus L. and Rosa canina L.Their effects on the protection of E. Coli growth after the exposure to L.D 50 of gamma radiation (100 Gy) were investigated . Two concentrations to each plant extract were tested, both were than 1%. Our results are indicating that the protection depend on plant. The radioprotection factors were ranged between 1.42 to 2.39. The best results were obtained by using the extract of Allium sativum L. (2.01), Opuntia ficus-indica (2.14) and Capsiucum annuum L. (2.39). (author) 16 refs., 2 tabs., 4 figs

  9. Plant extracts as radioprotectors

    International Nuclear Information System (INIS)

    Baydoun, S.; Al-Oudat, M.; Al-Achkar, W.

    1997-01-01

    Several studies show that the extracts of some plants, namely containing vitamins or sulfide components, have radioprotection properties against the effects of ionizing radiation. In Syria, many of hates plants are available. This experiment was conducted in order to test the ability of ten different plants to protect against the radiation damages. These plants are Daucus carota L., Brassica oleracea L, Aloe vera L., Opuntia ficus-indica, Allium cepa L., Capsicum annuum L., Scilla maritima L., Allium sativum L., Rubus sanctus L. and Rosa canina L.Their effects on the protection of E. Coli growth after the exposure to L.D 50 of gamma radiation (100 Gy) were investigated . Two concentrations to each plant extract were tested, both were than 1%. Our results are indicating that the protection depend on plant. The radioprotection factors were ranged between 1.42 to 2.39. The best results were obtained by using the extract of Allium sativum L. (2.01), Opuntia ficus-indica (2.14) and Capsiucum annuum L. (2.39). (author)

  10. Effects of rooting and tree growth of selected woodland species on cap integrity in a mineral capped landfill site.

    Science.gov (United States)

    Hutchings, T R; Moffat, A J; Kemp, R A

    2001-06-01

    The above and below ground growth of three tree species (Alnus glutinosa, Pinus nigra var. maritima and Acer pseudoplatanus) was studied on a containment landfill site at Waterford, Hertfordshire, UK. Tree root architecture was studied using soil inspection pits excavated next to 12 trees of each species and mapped in detail. Tree height was related to soil thickness over the compacted mineral cap. No roots entered the cap where soil thickness was 1.3 m, but a few roots, especially of alder, were observed within it when the soil cover was 1.0 m or less. Micromorphological analysis of undisturbed samples of the mineral cap suggested that roots exploited weaknesses in the cap rather than actively causing penetration into it. Alder roots were more tolerant of anaerobic conditions within the cap than the other species examined. The results confirm that mineral caps should be covered by 1.5 m of soil or soil-forming material if tree establishment is intended over a restored landfill site, unless protected by other parts of a composite capping system.

  11. Plant extracts as radioprotectors

    Energy Technology Data Exchange (ETDEWEB)

    Baydoun, S; Al-Oudat, M [Atomic Energy Commission, Department of Radiation Protection and Nuclear Safety, Damascus (Syrian Arab Republic); Al-Achkar, W [Atomic Energy Commission, Department of Radiobiology and Health, Damascus (Syrian Arab Republic)

    1996-09-01

    Several studies show that the extracts of some plants, namely containing vitamins or sulfide components, have radioprotection properties against the effects of ionizing radiation. In Syria, many of hates plants are available. This experiment was conducted in order to test the ability of ten different plants to protect against the radiation damages. These plants are Daucus carota L., Brassica oleracea L, Aloe vera L., Opuntia ficus-indica, Allium cepa L., Capsicum annuum L., Scilla maritima L., Allium sativum L., Rubus sanctus L. and Rosa canina L.Their effects on the protection of E. Coli growth after the exposure to L.D 50 of gamma radiation (100 Gy) were investigated . Two concentrations to each plant extract were tested, both were than 1%. Our results are indicating that the protection depend on plant. The radioprotection factors were ranged between 1.42 to 2.39. The best results were obtained by using the extract of Allium sativum L. (2.01), Opuntia ficus-indica (2.14) and Capsiucum annuum L. (2.39). (author) 16 refs., 2 tabs., 4 figs.

  12. Asymmetric forceps increase fighting success among males of similar size in the maritime earwig

    Science.gov (United States)

    Munoz, Nicole E.; Zink, Andrew G.

    2012-01-01

    Extreme asymmetric morphologies are hypothesized to serve an adaptive function that counteracts sexual selection for symmetry. However direct tests of function for asymmetries are lacking, particularly in the context of animal weapons. The weapon of the maritime earwig, Anisolabis maritima, exhibits sizeable variation in the extent of directional asymmetry within and across body sizes, making it an ideal candidate for investigating the function of asymmetry. In this study, we characterized the extent of weapon asymmetry, characterized the manner in which asymmetric weapons are used in contests, staged dyadic contests between males of different size classes and analyzed the correlates of fighting success. In contests between large males, larger individuals won more fights and emerged as the dominant male. In contests between small males, however, weapon asymmetry was more influential in predicting overall fighting success than body size. This result reveals an advantage of asymmetric weaponry among males that are below the mean size in the population. A forceps manipulation experiment suggests that asymmetry may be an indirect, correlate of a morphologically independent factor that affects fighting ability. PMID:22984320

  13. Pathogenic characteristics of yeasts isolated from vaginal secretion preserved under mineral oil

    Directory of Open Access Journals (Sweden)

    B Severo Gomes

    2011-01-01

    Full Text Available In order to evaluate the pathogenicity of yeasts isolated from vaginal secretion of pregnant and non-pregnant women - stored in mineral oil at the URM Mycology Collection, Department of Mycology, Federal University of Pernambuco - 30 samples belonging to the genera Candida, Rhodotorula, Trichosporon, and Kloeckera, were studied regarding their pathogenic characteristics, ability to grow at room temperature (28°C ± 1°C, 37°C, and 42°C for 72 hours, and production of both phospholipase and proteinase. Results showed that all 30 isolates (100% were able to grow at room temperature and 37°C, and that 17 samples (57% were able to grow at 42°C. Evaluation of enzymatic activity showed protease activity in only two isolates (7%, namely C. maritima and C. obtusa. Phospholipase activity was detected in 20 isolates (67% using soy lecithin as substrate at different temperatures. The characterization of yeasts isolated from vaginal secretion and determination of their enzymatic activity may contribute to understanding the epidemiology of vulvovaginitis and assist in the treatment of patients.

  14. The global regulator LaeA controls production of citric acid and endoglucanases in Aspergillus carbonarius

    DEFF Research Database (Denmark)

    Linde, Tore; Zoglowek, Marta; Lübeck, Mette

    2016-01-01

    The global regulatory protein LaeA is known for regulating the production of many kinds of secondary metabolites in Aspergillus species, as well as sexual and asexual reproduction, and morphology. In Aspergillus carbonarius, it has been shown that LaeA regulates production of ochratoxin. We have ...

  15. Crystal structure of a family 16 endoglucanase from the hyperthermophile Pyrococcus furiosus--structural basis of substrate recognition

    NARCIS (Netherlands)

    Ilari, A.; Fiorillo, A.; Angelaccio, S.; Florio, R.; Chiaraluce, R.; Oost, van der J.; Consalvi, V.

    2009-01-01

    Bacterial and archaeal endo-beta-1,3-glucanases that belong to glycoside hydrolase family 16 share a beta-jelly-roll fold, but differ significantly in sequence and in substrate specificity. The crystal structure of the laminarinase (EC 3.2.1.39) from the hyperthermophilic archaeon Pyrococcus

  16. Protein cross-linking, peroxidase and beta-1,3-endoglucanase involved in resistance of pea against Orobanche crenata.

    Science.gov (United States)

    Pérez-de-Luque, Alejandro; González-Verdejo, Clara I; Lozano, M Dolores; Dita, Miguel A; Cubero, José I; González-Melendi, Pablo; Risueño, María C; Rubiales, Diego

    2006-01-01

    Root holoparasitic angiosperms, like Orobanche spp, completely lack chlorophyll and totally depend on their host for their supply of nutrients. O. crenata is a severe constraint to the cultivation of legumes and breeding for resistance remains the most economical, feasible, and environmentally friendly method of control. Due to the lack of resistance in commercial pea cultivars, the use of wild relatives for breeding is necessary, and an understanding of the mechanisms underlying host resistance is needed in order to improve screening for resistance in breeding programmes. Compatible and incompatible interactions between O. crenata and pea have been studied using cytochemical procedures. The parasite was stopped in the host cortex before reaching the central cylinder, and accumulation of H2O2, peroxidases, and callose were detected in neighbouring cells. Protein cross-linking in the host cell walls appears as the mechanism of defence, halting penetration of the parasite. In situ hybridization studies have also shown that a peroxidase and a beta-glucanase are differently expressed in cells of the resistant host (Pf651) near the penetration point. The role of these proteins in the resistance to O. crenata is discussed.

  17. Characterization of a Cellulomonas fimi exoglucanase/xylanase-endoglucanase gene fusion which improves microbial degradation of cellulosic biomass.

    Science.gov (United States)

    Duedu, Kwabena O; French, Christopher E

    2016-11-01

    Effective degradation of cellulose requires multiple classes of enzyme working together. However, naturally occurring cellulases with multiple catalytic domains seem to be rather rare in known cellulose-degrading organisms. A fusion protein made from Cellulomonas fimi exo- and endo- glucanases, Cex and CenA which improves breakdown of cellulose is described. A homologous carbohydrate binding module (CBM-2) present in both glucanases was fused to give a fusion protein CxnA. CxnA or unfused constructs (Cex+CenA, Cex, or CenA) were expressed in Escherichia coli and Citrobacter freundii. The latter recombinant strains were cultured at the expense of cellulose filter paper. The expressed CxnA had both exo- and endo- glucanase activities. It was also exported to the supernatant as were the non-fused proteins. In addition, the hybrid CBM from the fusion could bind to microcrystalline cellulose. Growth of C. freundii expressing CxnA was superior to that of cells expressing the unfused proteins. Physical degradation of filter paper was also faster with the cells expressing fusion protein than the other constructs. Our results show that fusion proteins with multiple catalytic domains can improve the efficiency of cellulose degradation. Such fusion proteins could potentially substitute cloning of multiple enzymes as well as improving product yields. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Tax incidence on services rendered on the high seas; Incidencia de ISS sobre servicos prestados em aguas maritimas

    Energy Technology Data Exchange (ETDEWEB)

    Paco, Daniel Hora do; Giamattey, Ricardo Henrique Dionisio; Miranda, Thales Ribamar [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper analyze the legal aspects of the incidence of ISSQN tax (Tax on Services of any Nature), on the services provide on the high seas. Also comment the controversy surrounding the active tax competency (municipality who may be due to the tax) for the charging of the incident ISSQN on the services provided on the high seas, if overcome the arguments in favor of non-levy of the tax.

  19. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima

    NARCIS (Netherlands)

    Chipman, Ariel D; Ferrier, David E K; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S T; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C; Alonso, Claudio R; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C J; Blankenburg, Kerstin P; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K; Du Pasquier, Louis; Duncan, Elizabeth J; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D; Extavour, Cassandra G; Francisco, Liezl; Gabaldón, Toni; Gillis, William J; Goodwin-Horn, Elizabeth A; Green, Jack E; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J P; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H L; Hunn, Julia P; Hunnekuhl, Vera S; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Jiggins, Francis M; Jones, Tamsin E; Kaiser, Tobias S; Kalra, Divya; Kenny, Nathan J; Korchina, Viktoriya; Kovar, Christie L; Kraus, F Bernhard; Lapraz, François; Lee, Sandra L; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C; Robertson, Helen E; Robertson, Hugh M; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E; Schurko, Andrew M; Siggens, Kenneth W; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M; Willis, Judith H; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M; Worley, Kim C; Gibbs, Richard A; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present

  20. Functional characterization and crystal structure of thermostable amylase from Thermotoga petrophila, reveals high thermostability and an unusual form of dimerization

    DEFF Research Database (Denmark)

    Hameed, Uzma; Price, Ian; Ikram-Ul-Haq

    2017-01-01

    and able to hydrolyze starch into dextrin between 90 and 100°C, with optimum activity at 98°C and pH8.5. The activity increased in the presence of Rb(1+), K(1+) and Ca(2+) ions, whereas other ions inhibited activity. The crystal structure of Tp-AmyS at 1.7Å resolution showed common features of the GH-13...... of salivary amylase from a previous crystal structure, and thus could be a functional feature of some amylases....

  1. The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China

    Science.gov (United States)

    Li, Haizhou; Yang, Qunhui; Li, Jian; Gao, Hang; Li, Ping; Zhou, Huaiyang

    2015-11-01

    Using a culture-independent method that combines CARD-FISH, qPCR and 16S rDNA, we investigated the abundance, community structure and diversity of microbes along a steep thermal gradient (50-90 °C) in the Tengchong Geothermal Field. We found that Bacteria and Archaea abundance changed markedly with temperature changes and that the number of cells was lowest at high temperatures (90.8 °C). Under low-temperature conditions (52.3-74.6 °C), the microbial communities were dominated by Bacteria, which accounted for 60-80% of the total number of cells. At 74.6 °C, Archaea were dominant, and at 90.8 °C, they accounted for more than 90% of the total number of cells. Additionally, the microbial communities at high temperatures (74.6-90.8 °C) were substantially simpler than those at the low-temperature sites. Only a few genera (e.g., bacterial Caldisericum, Thermotoga and Thermoanaerobacter, archaeal Vulcanisaeta and Hyperthermus) often dominated in high-temperature environments. Additionally, a positive correlation between Ammonia-Oxidizing Archaea (AOA) activity and temperature was detected. AOA activity increased from 17 to 52 pmol of NO2- per cell d-1 with a temperature change from 50 to 70 °C.

  2. Think big--giant genes in bacteria.

    Science.gov (United States)

    Reva, Oleg; Tümmler, Burkhard

    2008-03-01

    Long genes should be rare in archaea and eubacteria because of the demanding costs of time and resources for protein production. The search in 580 sequenced prokaryotic genomes, however, revealed 0.2% of all genes to be longer than 5 kb (absolute number: 3732 genes). Eighty giant bacterial genes of more than 20 kb in length were identified in 47 taxa that belong to the phyla Thermotogae (1), Chlorobi (3), Planctomycetes (1), Cyanobacteria (2), Firmicutes (7), Actinobacteria (9), Proteobacteria (23) or Euryarchaeota (1) (number of taxa in brackets). Giant genes are strain-specific, differ in their tetranucleotide usage from the bulk genome and occur preferentially in non-pathogenic environmental bacteria. The two longest bacterial genes known to date were detected in the green sulfur bacterium Chlorobium chlorochromatii CaD3 encoding proteins of 36 806 and 20 647 amino acids, being surpassed in length only by the human titin coding sequence. More than 90% of bacterial giant genes either encode a surface protein or a polyketide/non-ribosomal peptide synthetase. Most surface proteins are acidic, threonine-rich, lack cystein and harbour multiple amino acid repeats. Giant proteins increase bacterial fitness by the production of either weapons towards or shields against animate competitors or hostile environments.

  3. Diversity and morphological structure of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (Budapest, Hungary).

    Science.gov (United States)

    Anda, Dóra; Büki, Gabriella; Krett, Gergely; Makk, Judit; Márialigeti, Károly; Erőss, Anita; Mádl-Szőnyi, Judit; Borsodi, Andrea K

    2014-09-01

    The Buda Thermal Karst System is an active hypogenic karst area that offers possibility for the analysis of biogenic cave formation. The aim of the present study was to gain information about morphological structure and genetic diversity of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (DHTS). Using scanning electron microscopy, metal accumulating and unusual reticulated filaments were detected in large numbers in the DHTS biofilm samples. The phyla Actinobacteria, Firmicutes and Proteobacteria were represented by both bacterial strains and molecular clones but phyla Acidobacteria, Chlorobi, Chlorofexi, Gemmatimonadetes, Nitrospirae and Thermotogae only by molecular clones which showed the highest similarity to uncultured clone sequences originating from different environmental sources. The biofilm bacterial community proved to be somewhat more diverse than that of the water sample and the distribution of the dominant bacterial clones was different between biofilm and water samples. The majority of biofilm clones was affiliated with Deltaproteobacteria and Nitrospirae while the largest group of water clones was related to Betaproteobacteria. Considering the metabolic properties of known species related to the strains and molecular clones from DHTS, it can be assumed that these bacterial communities may participate in the local sulphur and iron cycles, and contribute to biogenic cave formation.

  4. Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp.

    Science.gov (United States)

    Gagliano, M C; Braguglia, C M; Petruccioli, M; Rossetti, S

    2015-05-01

    Thermophilic bacteria have been isolated from several terrestrial, marine and industrial environments. Anaerobic digesters treating organic wastes are often an important source of these microorganisms, which catalyze a wide array of metabolic processes. Moreover, organic wastes are primarily composed of proteins, whose degradation is often incomplete. Coprothermobacter spp. are proteolytic anaerobic thermophilic microbes identified in several studies focused on the analysis of the microbial community structure in anaerobic thermophilic reactors. They are currently classified in the phylum Firmicutes; nevertheless, several authors showed that the Coprothermobacter group is most closely related to the phyla Dictyoglomi and Thermotoga. Since only a few proteolytic anaerobic thermophiles have been characterized so far, this microorganism has attracted the attention of researchers for its potential applications with high-temperature environments. In addition to proteolysis, Coprothermobacter spp. showed several metabolic abilities and may have a biotechnological application either as source of thermostable enzymes or as inoculum in anaerobic processes. Moreover, they can improve protein degradation by establishing a syntrophy with hydrogenotrophic archaea. To gain a better understanding of the phylogenesis, metabolic capabilities and adaptations of these microorganisms, it is of importance to better define the role in thermophilic environments and to disclose properties not yet investigated. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Microbial Diversity and Biochemical Potential Encoded by Thermal Spring Metagenomes Derived from the Kamchatka Peninsula

    Directory of Open Access Journals (Sweden)

    Bernd Wemheuer

    2013-01-01

    Full Text Available Volcanic regions contain a variety of environments suitable for extremophiles. This study was focused on assessing and exploiting the prokaryotic diversity of two microbial communities derived from different Kamchatkian thermal springs by metagenomic approaches. Samples were taken from a thermoacidophilic spring near the Mutnovsky Volcano and from a thermophilic spring in the Uzon Caldera. Environmental DNA for metagenomic analysis was isolated from collected sediment samples by direct cell lysis. The prokaryotic community composition was examined by analysis of archaeal and bacterial 16S rRNA genes. A total number of 1235 16S rRNA gene sequences were obtained and used for taxonomic classification. Most abundant in the samples were members of Thaumarchaeota, Thermotogae, and Proteobacteria. The Mutnovsky hot spring was dominated by the Terrestrial Hot Spring Group, Kosmotoga, and Acidithiobacillus. The Uzon Caldera was dominated by uncultured members of the Miscellaneous Crenarchaeotic Group and Enterobacteriaceae. The remaining 16S rRNA gene sequences belonged to the Aquificae, Dictyoglomi, Euryarchaeota, Korarchaeota, Thermodesulfobacteria, Firmicutes, and some potential new phyla. In addition, the recovered DNA was used for generation of metagenomic libraries, which were subsequently mined for genes encoding lipolytic and proteolytic enzymes. Three novel genes conferring lipolytic and one gene conferring proteolytic activity were identified.

  6. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, δ-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

  7. The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China.

    Science.gov (United States)

    Li, Haizhou; Yang, Qunhui; Li, Jian; Gao, Hang; Li, Ping; Zhou, Huaiyang

    2015-11-26

    Using a culture-independent method that combines CARD-FISH, qPCR and 16S rDNA, we investigated the abundance, community structure and diversity of microbes along a steep thermal gradient (50-90 °C) in the Tengchong Geothermal Field. We found that Bacteria and Archaea abundance changed markedly with temperature changes and that the number of cells was lowest at high temperatures (90.8 °C). Under low-temperature conditions (52.3-74.6 °C), the microbial communities were dominated by Bacteria, which accounted for 60-80% of the total number of cells. At 74.6 °C, Archaea were dominant, and at 90.8 °C, they accounted for more than 90% of the total number of cells. Additionally, the microbial communities at high temperatures (74.6-90.8 °C) were substantially simpler than those at the low-temperature sites. Only a few genera (e.g., bacterial Caldisericum, Thermotoga and Thermoanaerobacter, archaeal Vulcanisaeta and Hyperthermus) often dominated in high-temperature environments. Additionally, a positive correlation between Ammonia-Oxidizing Archaea (AOA) activity and temperature was detected. AOA activity increased from 17 to 52 pmol of NO2(-) per cell d(-1) with a temperature change from 50 to 70 °C.

  8. Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica as revealed by 454 pyrosequencing

    Directory of Open Access Journals (Sweden)

    Neng Fei eWang

    2015-10-01

    Full Text Available This study assessed the diversity and composition of bacterial communities in four different soils (human-, penguin-, seal-colony impacted soils and pristine soil in the Fildes Region (King George Island, Antarctica using 454 pyrosequencing with bacterial-specific primers targeting the 16S rRNA gene. Proteobacteria, Actinobacteria, Acidobacteria, and Verrucomicrobia were abundant phyla in almost all the soil samples. The four types of soils were significantly different in geochemical properties and bacterial community structure. Thermotogae, Cyanobacteria, Fibrobacteres, Deinococcus-Thermus, and Chlorobi obviously varied in their abundance among the 4 soil types. Considering all the samples together, members of the genera Gaiella, Chloracidobacterium, Nitrospira, Polaromonas, Gemmatimonas, Sphingomonas and Chthoniobacter were found to predominate, whereas members of the genera Chamaesiphon, Herbaspirillum, Hirschia, Nevskia, Nitrosococcus, Rhodococcus, Rhodomicrobium, and Xanthomonas varied obviously in their abundance among the four soil types. Distance-based redundancy analysis revealed that pH (p < 0.01, phosphate phosphorus (p < 0.01, organic carbon (p < 0.05, and organic nitrogen (p < 0.05 were the most significant factors that correlated with the community distribution of soil bacteria. To our knowledge, this is the first study to explore the soil bacterial communities in human-, penguin-, and seal- colony impacted soils from ice-free areas in maritime Antarctica using high-throughput pyrosequencing.

  9. Thermostability promotes the cooperative function of split adenylate kinases.

    Science.gov (United States)

    Nguyen, Peter Q; Liu, Shirley; Thompson, Jeremy C; Silberg, Jonathan J

    2008-05-01

    Proteins can often be cleaved to create inactive polypeptides that associate into functional complexes through non-covalent interactions, but little is known about what influences the cooperative function of the ensuing protein fragments. Here, we examine whether protein thermostability affects protein fragment complementation by characterizing the function of split adenylate kinases from the mesophile Bacillus subtilis (AKBs) and the hyperthermophile Thermotoga neapolitana (AKTn). Complementation studies revealed that the split AKTn supported the growth of Escherichia coli with a temperature-sensitive AK, but not the fragmented AKBs. However, weak complementation occurred when the AKBs fragments were fused to polypeptides that strongly associate, and this was enhanced by a Q16L mutation that thermostabilizes the full-length protein. To examine how the split AK homologs differ in structure and function, their catalytic activity, zinc content, and circular dichroism spectra were characterized. The reconstituted AKTn had higher levels of zinc, greater secondary structure, and >10(3)-fold more activity than the AKBs pair, albeit 17-fold less active than full-length AKTn. These findings provide evidence that the design of protein fragments that cooperatively function can be improved by choosing proteins with the greatest thermostability for bisection, and they suggest that this arises because hyperthermophilic protein fragments exhibit greater residual structure compared to their mesophilic counterparts.

  10. A novel pH-stable, endoglucanase (JqCel5A isolated from a salt-lake microorganism, Jonesia quinghaiensis

    Directory of Open Access Journals (Sweden)

    Ling Lin

    2016-11-01

    Conclusions: It was believed that these properties might make JqCel5A to be potentially used in the suitable industrial catalytic condition, which has a broad pH fluctuation and/or chemical disturbance.

  11. A novel cellulase free alkaliphilic xylanase from alkali tolerant Penicillium citrinum: production, purification and characterization.

    Science.gov (United States)

    Dutta, T; Sengupta, R; Sahoo, R; Sinha Ray, S; Bhattacharjee, A; Ghosh, S

    2007-02-01

    The enzymatic hydrolysis of xylan has potential economic and environment-friendly applications. Therefore, attention is focused here on the discovery of new extremophilic xylanase in order to meet the requirements of industry. An extracellular xylanase was purified from the culture filtrate of P. citrinum grown on wheat bran bed in solid substrate fermentation. Single step purification was achieved using hydrophobic interaction chromatography. The purified enzyme showed a single band on SDS-PAGE with an apparent molecular weight of c. 25 kDa and pI of 3.6. Stimulation of the activity by beta mercaptoethanol, dithiotheritol (DTT) and cysteine was observed. Moderately thermostable xylanase showed optimum activity at 50 degrees C at pH 8.5. Xylanase purified from P. citrinum was alkaliphilic and moderately thermostable in nature. The present work reports for the first time the purification and characterization of a novel endoglucanase free alkaliphilic xylanase from the alkali tolerant fungus Penicillium citrinum. The alkaliphilicity and moderate thermostability of this xylanase may have potential implications in paper and pulp industries.

  12. Enzymatic transformation of nonfood biomass to starch

    Science.gov (United States)

    You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y.-H. Percival

    2013-01-01

    The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world’s future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma. PMID:23589840

  13. Beta-Glucosidases from a new Aspergillus species can substitute commercial beta-glucosidases for saccharification of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Annette; Lubeck, Peter Stephensen; Lubeck, Mette; Teller, Philip Johan; Kiaer Ahring, Birgitte

    2011-07-01

    Exploitation of lignocellulosic biomasses for the production of biofuels and biochemicals gives a promising alternative to the world's limited fossil energy resources. Cellulose is of great interest in terms of producing sugars for biofuels and biochemicals, since its hydrolysis product, glucose, can readily be fermented into ethanol or converted into high-value chemicals. The hydrolysis of cellulose involves the synergistic action of cellobiohydrolases, endoglucanases and B-glucosidases, and B-glucosidases is key in ensuring final glucose release and the decrease of the accumulation of cellobiose and shorter cellodextrins, known as product inhibitors of the cellobiohydrolases. The aim of the present work was to search for efficient B-glucosidase-producing fungi using a screening strategy based on wheat bran as fermentation substrate. The fungi selected originated from several different countries and fungal fermentation broth were compared with an onsite enzyme production in mind. The broth of the best strain was tested against commercial enzyme preparations based on enzyme kinetics and it proved to be a valid substitute.

  14. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes.

    Science.gov (United States)

    Pierce, Brian C; Agger, Jane Wittrup; Zhang, Zhenghong; Wichmann, Jesper; Meyer, Anne S

    2017-09-08

    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes capable of the oxidative breakdown of polysaccharides. They are of industrial interest due to their ability to enhance the enzymatic depolymerization of recalcitrant substrates by glycoside hydrolases. In this paper, twenty-four lytic polysaccharide monooxygenases (LPMOs) expressed in Trichoderma reesei were evaluated for their ability to oxidize the complex polysaccharides in soybean spent flakes, an abundant and industrially relevant substrate. TrCel61A, a soy-polysaccharide-active AA9 LPMO from T. reesei, was used as a benchmark in this evaluation. In total, seven LPMOs demonstrated activity on pretreated soy spent flakes, with the products from enzymatic treatments evaluated using mass spectrometry and high performance anion exchange chromatography. The hydrolytic boosting effect of the top-performing enzymes was evaluated in combination with endoglucanase and beta-glucosidase. Two enzymes (TrCel61A and Aspte6) showed the ability to release more than 36% of the pretreated soy spent flake glucose - a greater than 75% increase over the same treatment without LPMO addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Accessibility of Enzymatically Delignified Bambusa bambos for Efficient Hydrolysis at Minimum Cellulase Loading: An Optimization Study.

    Science.gov (United States)

    Kuila, Arindam; Mukhopadhyay, Mainak; Tuli, D K; Banerjee, Rintu

    2011-01-01

    In the present investigation, Bambusa bambos was used for optimization of enzymatic pretreatment and saccharification. Maximum enzymatic delignification achieved was 84%, after 8 h of incubation time. Highest reducing sugar yield from enzyme-pretreated Bambusa bambos was 818.01 mg/g dry substrate after 8 h of incubation time at a low cellulase loading (endoglucanase, β-glucosidase, exoglucanase, and xylanase were 1.63 IU/mL, 1.28 IU/mL, 0.08 IU/mL, and 47.93 IU/mL, respectively). Enzyme-treated substrate of Bambusa bambos was characterized by analytical techniques such as Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The FTIR spectrum showed that the absorption peaks of several functional groups were decreased after enzymatic pretreatment. XRD analysis indicated that cellulose crystallinity of enzyme-treated samples was increased due to the removal of amorphous lignin and hemicelluloses. SEM image showed that surface structure of Bambusa bambos was distorted after enzymatic pretreatment.

  16. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis

    Science.gov (United States)

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement. PMID:24830736

  17. A Newly Isolated Penicillium oxalicum 16 Cellulase with High Efficient Synergism and High Tolerance of Monosaccharide.

    Science.gov (United States)

    Zhao, Xi-Hua; Wang, Wei; Tong, Bin; Zhang, Su-Ping; Wei, Dong-Zhi

    2016-01-01

    Compared to Trichoderma reesei RUT-C30 cellulase (Trcel), Penicillium oxalicum 16 cellulase (P16cel) from the fermentation supernatant produced a 2-fold higher glucose yield when degrading microcrystalline cellulose (MCC), possessed a 10-fold higher β-glucosidase (BGL) activity, but obtained somewhat lower other cellulase component activities. The optimal temperature and pH of β-1,4-endoglucanase, cellobiohydrolase, and filter paperase from P16cel were 50-60 °C and 4-5, respectively, but those of BGL reached 70 °C and 5. The cellulase cocktail of P16cel and Trcel had a high synergism when solubilizing MCC and generated 1.7-fold and 6.2-fold higher glucose yields than P16cel and Trcel at the same filter paperase loading, respectively. Additional low concentration of fructose enhanced the glucose yield during enzymatic hydrolysis of MCC; however, additional high concentration of monosaccharide (especially glucose) reduced cellulase activities and gave a stronger monosaccharide inhibition on Trcel. These results indicate that P16cel is a more excellent cellulase than Trcel.

  18. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    Science.gov (United States)

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  19. Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis.

    Science.gov (United States)

    Jeya, Marimuthu; Nguyen, Ngoc-Phuong-Thao; Moon, Hee-Jung; Kim, Sang-Hwan; Lee, Jung-Kul

    2010-11-01

    Agaricus arvensis, a newly isolated basidiomycetous fungus, was found to secrete efficient cellulases. The strain produced the highest endoglucanase (EG), cellobiohydrolase (CBH) and beta-glucosidase (BGL) activities of 0.3, 3.2 and 8U/mg-protein, respectively, with rice straw as the carbon source. Saccharification of the woody biomass with A. arvensis cellulase as the enzyme source released a high level of fermentable sugars. Enzymatic hydrolysis of the poplar biomass was optimized using the response surface methodology in order to study the influence of the variables (pH, temperature, cellulases concentration and substrate concentration). The enzyme and substrate concentrations were identified as the limiting factors for the saccharification of poplar wood biomass. A total reducing sugar level of 29g/L (293mg/g-substrate) was obtained at an enzyme concentration of 65FPU/g-substrate after optimization of the hydrolysis parameters. The model validation showed a good agreement between the experimental results and the predicted responses. A. arvensis could be a good candidate for the production of reducing sugars from a cellulosic biomass.

  20. Isolation and Screening of Potential Cellulolytic and Xylanolytic Bacteria from Soil Sample for Degradation of Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Bhupal Govinda Shrestha

    2016-11-01

    them with the aptitude to produce stable enzymes, little emphasis has been given to cellulose/xylanase production from bacteria. Seven soil samples were collected from eastern hilly districts of Nepal viz. Taplejung, Panchthar and Sankhuwasabha districts, from soil surface and at depth of 10cm to 20cm, and were isolated separately. From the seven soil samples, four bacterial isolates were obtained. Isolates (PSS, P1D, TLC, SNK were then screened for cellulolytic/xylanolytic activity using Congo red assay on Carboxymethylcellulose (CMC/xylan agar plates. The enzyme activity obtained from isolates was dependent on substrate concentration. The activity of enzymes produced by isolates were also measured and compared on pretreated sugarcane bagasse. Among those samples, the greatest zone of inhibition in both CMC (1.3 cm and xylan (1.0 cm agar media was seen in isolate P1D. It also produced the highest activity of endoglucanase and xylanase i.e. activity 0.035 U/mL and 0.050 U/mL respectively at 0.010 mg mL-1 standard substrate concentration of CMC and xylan.