MMOSS-I: a CANDU multiple-channel thermosyphoning flow stability model
Energy Technology Data Exchange (ETDEWEB)
Gulshani, P [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Huynh, H [Hydro-Quebec, Montreal, PQ (Canada)
1996-12-31
This paper presents a multiple-channel flow stability model, dubbed MMOSS, developed to predict the conditions for the onset of flow oscillations in a CANDU-type multiple-channel heat transport system under thermosyphoning conditions. The model generalizes that developed previously to account for the effects of any channel flow reversal. Two-phase thermosyphoning conditions are predicted by thermalhydraulic codes for some postulated accident scenarios in CANDU. Two-phase thermosyphoning experiments in the multiple-channel RD-14M facility have indicated that pass-to-pass out-of-phase oscillations in the loop conditions caused the flow in some of the heated channels to undergo sustained reversal in direction. This channel flow reversal had significant effects on the channel and loop conditions. It is, therefore, important to understand the nature of the oscillations and be able to predict the conditions for the onset of the oscillations or for stable flow in RD-14M and the reactor. For stable flow conditions, oscillation-induced channel flow reversal is not expected. MMOSS was developed for a figure-of-eight system with any number of channels. The system characteristic equation was derived from a linearization of the conservation equations. In this paper, the MMOSS characteristic equation is solved for a system of N identical channel assemblies. The resulting model is called MMOSS-I. This simplification provides valuable physical insight and reasonably accurate results. MMOSS-I and a previously-developed steady-state model THERMOSYPHON are used to predict thermosyphoning flow stability maps for RD-14M and the Gentilly 2 reactor. (author). 11 refs., 7 figs.
Visualisation of flow patterns in straight and C-shape thermosyphons
Ong, K. S.; Tshai, K. H.; Firwana, A.
2017-04-01
A heat pipe is a passive heat transfer device capable of transferring a large quantity of heat effectively and efficiently over a long distance and with a small temperature difference between the heat source and heat sink. A heat pipe consists of a metal pipe initially vacuumed and then filled with a small quantity of fluid inside. The pipe is separated into a heating (evaporator) section and a cooling (condenser) section by an adiabatic section. In a run-around-coil heating, ventilation and air conditioning system, a wrap-around heat pipe heat exchanger could be employed to increase dehumidification and to reduce cooling costs. The thermal performance of a thermosyphon is dependent upon type of fill liquid, fill ratio, power input, pipe inclination and pipe dimensions. The boiling and condensation processes that occur inside a thermosyphon are quite complex. During operation, dry-out, burn-out or boiling limit, entrainment or flooding limit and geysering occur. These phenomena would lead to non-uniform axial wall temperature distribution in the pipe, or worse still, ineffective operation. In order to have a better understanding of the internal heat transfer phenomena, a visual study using transparent glass tubes and high speed camera recording of the internal flow patterns would be most helpful. This paper reports on an experimental investigation conducted to visualise the flow patterns in straight and C-shape thermosyphons. The pictures recorded enabled the internal flow boiling and condensation pattern occurring inside a straight and a C-shape thermosyphon to be observed. The thermosyphons were fabricated from 10 mm O/D × 8 mm I/D × 300 mm long glass tubes and filled with water with fill ratios from 0.5 - 1.5. The evaporator sections of the thermosyphons were immersed into a hot water tank that was electrically heated from cold at ambient temperature till boiling. Cooling of the condenser section was achieved using a fan. Preliminary results showed that dry
A numerical study of boiling flow instability of a reactor thermosyphon system
International Nuclear Information System (INIS)
Nayak, A.K.; Lathouwers, D.; Hagen, T.H.J.J. van der; Schrauwen, Frans; Molenaar, Peter; Rogers, Andrew
2006-01-01
A numerical study has been carried out to investigate the boiling flow instability of a reactor thermosyphon system. The numerical model solves the conservation equations of mass, momentum and energy applicable to a two-fluid and three-field steam-water system using a finite difference technique. The computer code MONA was used for this purpose. The code was applied to the thermosyphon system of an EO (ethylene oxide) chemical reactor in which the heat released by a catalytic reaction is carried by boiling water under natural circulation conditions. The steady-state characteristics of the reactor thermosyphon system were predicted using the MONA code and conventional two-phase flow models in order to understand the model applicability for this type of thermosyphon system. The two-fluid model was found to predict the flow closest to the measured value of the plant. The stability behaviour of the thermosyphon system was investigated for a wide range of operating conditions. The effects of power, subcooling, riser length and riser diameter on the boiling flow instability were determined. The system was found to be unstable at higher power conditions which is typical for a Type II instability. However, with an increase in riser diameter, oscillations at low power were observed as well. These are classified as Type I instabilities. Stability maps were predicted for both Type I and Type II instabilities. Methods of improving the stability of the system are discussed
A numerical study of boiling flow instability of a reactor thermosyphon system
Energy Technology Data Exchange (ETDEWEB)
Nayak, A.K.; Lathouwers, D.; Hagen, T.H.J.J. van der [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Schrauwen, Frans; Molenaar, Peter; Rogers, Andrew [Shell Research and Technology Centre, Badhuisweg 3, 1031 CM Amsterdam (Netherlands)
2006-04-01
A numerical study has been carried out to investigate the boiling flow instability of a reactor thermosyphon system. The numerical model solves the conservation equations of mass, momentum and energy applicable to a two-fluid and three-field steam-water system using a finite difference technique. The computer code MONA was used for this purpose. The code was applied to the thermosyphon system of an EO (ethylene oxide) chemical reactor in which the heat released by a catalytic reaction is carried by boiling water under natural circulation conditions. The steady-state characteristics of the reactor thermosyphon system were predicted using the MONA code and conventional two-phase flow models in order to understand the model applicability for this type of thermosyphon system. The two-fluid model was found to predict the flow closest to the measured value of the plant. The stability behaviour of the thermosyphon system was investigated for a wide range of operating conditions. The effects of power, subcooling, riser length and riser diameter on the boiling flow instability were determined. The system was found to be unstable at higher power conditions which is typical for a Type II instability. However, with an increase in riser diameter, oscillations at low power were observed as well. These are classified as Type I instabilities. Stability maps were predicted for both Type I and Type II instabilities. Methods of improving the stability of the system are discussed. [Author].
Thermosyphoning in the CANDU reactor
International Nuclear Information System (INIS)
Spinks, N.J.; Wright, A.C.D.; Caplan, M.Z.; Prawirosoehardjo, S.; Gulshani, P.
1984-01-01
Thermosyphoning is defined as the natural convective flow of primary coolant over the boilers. It is the predicted mode of heat transport from core to boilers in many postulated scenarios for CANDU reactor safety analysis. The scenarios encompass a wide range of boundary conditions in reactor power, secondary temperature and primary coolant inventory. Loss of pumping of the primary coolant is a common feature. Thermosyphoning is single or two-phase depending on the boundary conditions. The paper describes the important thermohydraulic characteristics of thermosyphoning in CANDU reactors with emphasis on two-phase thermosyphoning. It utilizes predictions of a transient thermohydraulics computer code and describes experiments done for the purpose of verifying these predictions. Predictions are compared with single-phase thermosyphoning tests done during commissioning of the Gentilly-2 and Point Lepreau CANDU 600 reactors. (orig.)
Thermal performance of plate-type loop thermosyphon at sub-atmospheric pressures
International Nuclear Information System (INIS)
Tsoi, Vadim; Chang, Shyy Woei; Chiang Kuei Feng; Huang, Chuan Chin
2011-01-01
This experimental study examines the thermal performance of a newly devised plate-type two-phase loop thermosyphon with cooling applications to electronic boards of telecommunication systems. The evaporation section is configured as the inter-connected multi channels to emulate the bridging boiling mechanism in pulsating thermosyphon. Two thermosyphon plates using water as the coolant with filling ratios (FR) of 0.22 and 0.32 are tested at sub-atmospheric pressures. The vapor-liquid flow images as well as the thermal resistances and effective spreading thermal conductivities are individually measured for each thermosyphon test plate at various heating powers. The high-speed digital images of the vapor-liquid flow structures reveal the characteristic boiling phenomena and the vapor-liquid circulation in the vertical thermosyphon plate, which assist to explore the thermal physics for this type of loop thermosyphon. The bubble agglomeration and pumping action in the inter-connected boiling channels take place at metastable non-equilibrium conditions, leading to the intermittent slug flows with a pulsation character. Such hybrid loop-pulsating thermosyphon permits the vapor-liquid circulation in the horizontal plate. Thermal resistances and spreading thermal conductivities detected from the present thermosyphon plates; the vapor chamber flat plate heat pipe and the copper plate at free and forced convective cooling conditions with both vertical and horizontal orientations are cross-examined. In most telecommunication systems and units, the electrical boards are vertical so that the thermal performance data on the vertical thermosyphon are most relevant to this particular application. - Highlights: → We examine thermal performances of plate-type loop thermosyphon. → Thermal resistances and spreading conductivities are examined. → Bubble agglomeration in inter-connected boiling channels generates intermittent slug flows with pulsations. → Boiling instability
Bieliński, Henryk
2016-09-01
The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.
Hong, Bong Hwan; Jung, In Su
2017-07-01
A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimized design of an ex-vessel cooling thermosyphon for decay heat removal in SFR
International Nuclear Information System (INIS)
Choi, Jae Young; Jeong, Yong Hoon; Song, Sub Lee; Chang, Soon Heung
2017-01-01
Passive decay heat removal and sodium fire are two major key issues of nuclear safety in sodium-cooled fast reactor (SFR). Several decay heat removal systems (DHR) were suggested for SFR around the world so far. Those DHRS mainly classified into two concepts: Direct reactor cooling system and ex-vessel cooling system. Direct reactor cooling method represented by PDHRS from PGSFR has disadvantages on its additional in-vessel structure and potential sodium fire risk due to the sodium-filled heat exchanger exposed to air. Contrastively, ex-vessel cooling method represented by RVACS from PRISM has low decay heat removal performance, which cannot be applicable to large scale reactors, generally over 1000 MWth. No passive DHRSs which can solve both side of disadvantages has been suggested yet. The goal of this study was to propose ex-vessel cooling system using two-phase closed thermosyphon to compensate the disadvantages of the past DHRSs. Reference reactor was Innovative SFR (iSFR), a pool-type SFR designed by KAIST and featured by extended core lifetime and increased thermal efficiency. Proposed ex-vessel cooling system consisted of 4 trains of thermosyphons and designed to remove 1% of thermal power with 10% of margin. The scopes of this study were design of proposed passive DHRS, validation of system analysis and optimization of system design. Mercury was selected as working fluid to design ex-vessel thermosyphon in consideration of system geometry, operating temperature and required heat flux. SUS 316 with chrome coated liner was selected as case material to resist against high corrosivity of mercury. Thermosyphon evaporator was covered on the surface of reactor vessel as the geometry of hollow shell filled with mercury. Condenser was consisted of finned tube bundles and was located in isolated water pool, the ultimate heat sink. Operation limits and thermal resistance was estimated to guarantee whether the design was adequate. System analysis was conducted by in
International Nuclear Information System (INIS)
Chehade, Ali; Louahlia-Gualous, Hasna; Le Masson, Stéphane; Lépinasse, Eric
2015-01-01
This paper presents an analytical model for a thermosyphon loop developed for cooling air inside a telecommunication cabinet. The proposed model is based on the combination of thermal and hydraulic management of two-phase flow in the loop. Experimental tests on a closed thermosyphon loop are conducted with different working fluids that could be used for electronic cooling. Correlations for condensation and evaporation heat transfer in the thermosyphon loop are proposed. They are used in the model to calculate condenser and evaporator thermal resistances in order to predict the cabinet operating temperature, the loop's mass flow rate and pressure drops. Furthermore, various figures of merit proposed in the previous works are evaluated in order to be used for selection of the best loop's working fluid. The comparative studies show that the present model well predicts the experimental data. The mean deviation between the predictions of the theoretical model with the measurements for operating temperature is about 6%. Besides, the model is used to define an optimal liquid and vapor lines diameters and the effect of the ambient temperature on the fluid's mass flow rate and pressure drop. - Highlights: • Modeling of thermosyphon loop for cooling telecommunication cabinet. • The cooling system operates with zero electrical consumption. • The new correlations are proposed for condensation and evaporation heat transfer. • FOM equation is defined for selecting the best working fluid. • The proposed model well predicts the experimental data and operating temperature
Majorana Thermosyphon Prototype Experimental Results
International Nuclear Information System (INIS)
Fast, James E.; Reid, Douglas J.; Aguayo Navarrete, Estanislao
2010-01-01
The Majorana demonstrator will operate at liquid Nitrogen temperatures to ensure optimal spectrometric performance of its High Purity Germanium (HPGe) detector modules. In order to transfer the heat load of the detector module, the Majorana demonstrator requires a cooling system that will maintain a stable liquid nitrogen temperature. This cooling system is required to transport the heat from the detector chamber outside the shield. One approach is to use the two phase liquid-gas equilibrium to ensure constant temperature. This cooling technique is used in a thermosyphon. The thermosyphon can be designed so the vaporization/condensing process transfers heat through the shield while maintaining a stable operating temperature. A prototype of such system has been built at PNNL. This document presents the experimental results of the prototype and evaluates the heat transfer performance of the system. The cool down time, temperature gradient in the thermosyphon, and heat transfer analysis are studied in this document with different heat load applied to the prototype.
Thermosyphon analysis of a repository: A simplified model for vapor flow and heat transfer
International Nuclear Information System (INIS)
Manteufel, R.D.; Powell, M.W.
1994-01-01
A simplified model is developed for thermally-driven buoyant gas flow in an unsaturated repository such as that anticipated at Yucca Mountain. Based on a simplified thermosyphon model, the strength of buoyant gas flow is related to key thermal-hydraulic parameters (e.g., bulk permeability and maximum repository temperature). The effects of buoyant gas flow on vapor flow and heat transport near the repository horizon are assessed, namely: (i) the strength of buoyant flow through the repository, (ii) the effect of buoyant flow on vapor transfer, and (iii) the effect of buoyant flow on heat transfer
Performance of Thermosyphon Solar Water Heaters in Series
Directory of Open Access Journals (Sweden)
Tsong-Sheng Lee
2012-08-01
Full Text Available More than a single thermosyphon solar water heater may be employed in applications when considerable hot water consumption is required. In this experimental investigation, eight typical Taiwanese solar water heaters were connected in series. Degree of temperature stratification and thermosyphon flow rate in a horizontal tank were evaluated. The system was tested under no-load, intermittent and continuous load conditions. Results showed that there was stratification in tanks under the no-load condition. Temperature stratification also redeveloped after the draw-off. Analysis of thermal performance of the system was conducted for each condition.
Vapordynamic thermosyphon - heat transfer two-phase device for wide applications
Vasiliev, Leonard; Vasiliev, Leonid; Zhuravlyov, Alexander; Shapovalov, Aleksander; Rodin, Aleksei
2015-12-01
Vapordynamic thermosyphon (VDT) is an efficient heat transfer device. The two-phase flow generation and dynamic interaction between the liquid slugs and vapor bubbles in the annular minichannel of the VDT condenser are the main features of such thermosyphon, which allowed to increase its thermodynamic efficiency. VDT can transfer heat in horizontal position over a long distance. The condenser is nearly isothermal with the length of tens of meters. The VDT evaporators may have different forms. Some practical applications of VDT are considered.
The onset of flows and instabilities in a thermosyphon with parallel loops
International Nuclear Information System (INIS)
Zvirin, Y.
1986-01-01
A theoretical study is presented for the stability of various steady flows in a thermosyphon with multiple vertical channels. The main interest is in the onset of motion from a rest state or in a stagnant branch, therefore laminar flow is considered and a one-dimensional model is used to describe the flow and temperature fields. The steady state solutions include a state of no flow (rest) in the whole system and two basic flow configurations: a single loop between two channels while the others are stagnant and a symmetric flow. For a three-channel system the latter consists of an upward velocity in one branch and downward velocities in the other two. The mirror image of these basic flows are also steady state solutions. A critical modified number is found to be the stability margin for the onset of motion from a rest state in the entire system. This result was obtained both by a study of the steady state solution and by the stability analysis. The steady flow with a stagnant loop is always unstable while the symmetric flow solution in the system considered here is always stable. (orig./HP)
A thermosyphon heat pipe cooler for high power LEDs cooling
Li, Ji; Tian, Wenkai; Lv, Lucang
2016-08-01
Light emitting diode (LED) cooling is facing the challenge of high heat flux more seriously with the increase of input power and diode density. The proposed unique thermosyphon heat pipe heat sink is particularly suitable for cooling of high power density LED chips and other electronics, which has a heat dissipation potential of up to 280 W within an area of 20 mm × 22 mm (>60 W/cm2) under natural air convection. Meanwhile, a thorough visualization investigation was carried out to explore the two phase flow characteristics in the proposed thermosyphon heat pipe. Implementing this novel thermosyphon heat pipe heat sink in the cooling of a commercial 100 W LED integrated chip, a very low apparent thermal resistance of 0.34 K/W was obtained under natural air convection with the aid of the enhanced boiling heat transfer at the evaporation side and the enhanced natural air convection at the condensation side.
Titanium-Water Thermosyphon Gamma Radiation Exposure and Results
Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.
2012-01-01
Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.
Titanium-Water Thermosyphon Gamma Radiation Effects and Results
Sanzi, James L.; Jaworske, Donald A.; Goodenow, Debra A.
2012-01-01
Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some exposure to gamma irradiation. Non-condensable gas formation from radiation may breakdown water over time and render a portion of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature with accelerated gamma irradiation exposures on the same order of magnitude that is expected in eight years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon; evaporator, condenser, and condenser end cap. Some non-condensable gas was evident, however thermosyphon performance was not affected because the non-condensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of non-condensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the non-condensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of selected thermosyphons at temperature and in a vacuum chamber revealed that the non-condensable gas likely diffused out of the thermosyphons over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.
Energy Technology Data Exchange (ETDEWEB)
Kim, Won Tae [Kongju National Univ., Kongju (Korea, Republic of); Song, Kyu Sub [Electronics and Telecommunications Research Institute, Taejon (Korea, Republic of); Lee, Young [Univ. of Ottawa, Ontario (Canada)
1998-10-01
A two-phase loop thermosyphon system is developed for the B-ISDN telecommunications system and its performance is evaluated both experimentally and by visualization techniques. The design of the thermosyphon system proposed is aimed to cool MultiChip Modules (MCM) upto heat flux of 8 W/cm{sup 2}. The results indicate that in the loop thermosyphon system cooling heat flux is capable of 12 W/cm{sup 2} with two condensers under the forced convection cooling of the condenser section with acetone or FC-87 as the working fluid. The instability of the working fluid flow within the loop is observed using the visualization techniques and temperature fluctuation is stabilized with orifice insertion.
International Nuclear Information System (INIS)
Kim, Won Tae; Song, Kyu Sub; Lee, Young
1998-01-01
A two-phase loop thermosyphon system is developed for the B-ISDN telecommunications system and its performance is evaluated both experimentally and by visualization techniques. The design of the thermosyphon system proposed is aimed to cool MultiChip Modules (MCM) upto heat flux of 8 W/cm 2 . The results indicate that in the loop thermosyphon system cooling heat flux is capable of 12 W/cm 2 with two condensers under the forced convection cooling of the condenser section with acetone or FC-87 as the working fluid. The instability of the working fluid flow within the loop is observed using the visualization techniques and temperature fluctuation is stabilized with orifice insertion
Exergy Analysis of Serpentine Thermosyphon Solar Water Heater
Directory of Open Access Journals (Sweden)
Muhammad Faisal Hasan
2018-03-01
Full Text Available The performance of a solar hot water system is assessed for heat pump and domestic heating applications. Thermodynamic analysis on a serpentine-type thermosyphon flat-plate solar heater is conducted using the Second Law of thermodynamics. Exergetic optimization is first performed to determine the parameters for the maximum exergy efficiency using MATLAB optimization toolbox. Geometric parameters (collector surface area, dimensions, and pipe diameter, optical parameters (transmittance absorptance product, ambient temperature, solar irradiation and operating parameters (mass flow rate, fluid temperature, and overall heat transfer (loss coefficient are accounted for in the optimization scheme. The exergy efficiency at optimum condition is found to be 3.72%. The results are validated using experimental data and found to be in good agreement. The analysis is further extended to the influence of various operating parameters on the exergetic efficiency. It is observed that optical and thermal exergy losses contribute almost 20%, whereas approximately 77% exergy destruction is contributed by the thermal energy conversion. Exergy destruction due to pressure drop is found negligible. The result of this analysis can be used for designing and optimization of domestic heat pump system and hot water application.
International Nuclear Information System (INIS)
Kang, Myeong Cheol
1999-02-01
Solar energy is one of the promising resources of renewable energy. It is of particular interest due to the energy shortage and environment pollution problems. Water heating by solar energy for domestic use is one of the most successful and feasible applications of solar energy. The thermosyphon SDHWS and the loop type thermosyphon systems are widely used for domestic hot water system. The loop type thermosyphon is a circulation device for transferring the heat produced at the evaporator area to the condenser area in the loop by a working fluid. The system has the advantage of high heat transfer rate. A phase change of the working fluid occurs at the evaporator section and the vapor is transported to the condenser by the density gradient. The loop type thermosyphon collector can be made of smaller area and has higher efficiency than the present thermosyphon SDHWS. In this study, the operating characteristics of various working fluids being used have been identified. The working fluids employed in the study were ethanol, water and a binary mixture of ethanol and water. The volume of working fluid used in this study were 30%, 40%, 50%, 60% and 70% of evaporator volume. An increased heat was applied with the increased volume of working fluid. It is observed that, in the thermosyphon with low volume of working fluid, such as 30% or 40%, the fluid was dried out. The average efficiency of the loop type thermosyphon was 46% with high solar irradiation and 43% with low irradiation. The flow pattern and mechanism of the heat transfer were identified through this study. Flow patterns of the binary mixture working fluid were also investigated, and the patterns were recorded in the camera. The system parameters were calculated using the thermal performance data. Modelling of the system was carried out using PSTAR method and TRNSYS program
Numerical simulation and experimental verification of a flat two-phase thermosyphon
International Nuclear Information System (INIS)
Zhang Ming; Liu Zhongliang; Ma Guoyuan; Cheng Shuiyuan
2009-01-01
The flat two-phase thermosyphon is placed between the heat source and the heat sink, which can achieve the uniform heat flux distribution and improve the performance of heat sink. In this paper, a two-dimensional heat and mass transfer model for a disk-shaped flat two-phase thermosyphon is developed. By solving the equations of continuity, momentum and energy numerically, the vapor velocity and temperature distributions of the flat two-phase thermosyphon are obtained. An analysis is also carried out on the ability of flat two-phase thermosyphon to spread heat and remove hot spots. In order to observe boiling and condensation phenomena, a transparent flat two-phase thermosyphon is manufactured and studied experimentally. The experimental results are compared with numerical results, which verify the physical and mathematical model of the flat two-phase thermosyphon. In order to study the main factors affecting the axial thermal resistance of two-phase thermosyphon, the temperatures inside the flat two-phase thermosyphon are measured and analyzed
Experimental study for transient response of a double-tube thermosyphon (DTTH)
International Nuclear Information System (INIS)
Salem, M.A.M.
2010-01-01
Energy conservation is becoming increasingly important as the cost of fuel continuously rises. The heat pipe and the closed two-phase thermosyphon are particularly effective tools in the heat transfer process.A theoretical and experimental investigation was conducted to study the double-tube two-phase closed-thermosyphon (DTTH) behavior in transient regimes. Experiments were performed to investigate the effects of changing the heating and cooling rate as well as the evaporator length on the double tube thermosyphon in actual integrated operation (start-up, steady-state and shut-down). he necessity for a dynamic model of DTTH for some applications of discontinuous operation imposed the need to the current applied investigation. Therefore, the main objective of the current study is to develop a theoretical model that can predict the dynamic behavior of the double-tube evaporator by tracing various transient parameters during operation from start up to steady state until shut down condition. A model describing both thermal and phase flows of the closed two-phase double tube thermosyphon (DTTH) has been simulated. The theoretical model provides a general description of the behavior of our practical setup based on experimental observations which show a simple exponential behavior. It is based on a two thermal body description (evaporator wall and working fluid) there is good agreement between experiments data and numerical prediction.A computer simulation program based on the method was developed to estimate temperature and the other performance of double tube thermosyphon as well as the time needed to reach steady state condition. The governing equations of the simple 1-D model were solved by Engineering Equation Solver program (EES) using finite difference Euler method. A computer program is designed to solve these differential equations by an explicit finite difference method. The results from this model were found to be in general agreement with the experimental
Development of dynamic simulator for thermosyphon evaporator process with an application
International Nuclear Information System (INIS)
Shimizu, Yoshiaki; Tsutsui, Tenson.
1986-06-01
A dynamic simulator has been developed for radwaste evaporator system in the Research Reactor Institute of Kyoto University. Under mild assumptions, two-phase flow model of the thermosyphon evaporator was shown to be modelled by a set of ordinary and algebraic equations. Through a structure analysis of such equations, a compact but efficient computer program was realized using FORTRAN computer language. By comparing numerical results with experimental ones, reliability of the model has been examined. Furthermore, mentioning several applications imbedded into the developed simulator, a bi-objective optimal problem was formulated generally, and then solved numerically through a practical procedure. It is expected that such a consideration is helpful for the radwaste management in practice. (author)
Design of Passive Decay Heat Removal System using Mercury Thermosyphon for SFR
Energy Technology Data Exchange (ETDEWEB)
You, Byung Hyun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2013-10-15
In this study, thermosyphon application is suggested to accomplish the fully passive safety grade system and compactness of components via enhance the heat removal performance. A two-phase evaporating thermosyphon operates when the evaporator is heated, the working fluid start boiling, the vapor that is formed moves to the condenser, where it is condensed on the walls, giving up the heat of phase change to the cooling fluid. Gravity forces cause the condensate to condensed liquid flow to the evaporator again. These processes occur continuously, which causes transfer of heat from evaporator to condenser vice versa. After the thermal design and performance evaluation, the results were compared with the performance of conventional DRACS system. For the same amount of decay heat removal performance of PDRC system of KALIMER-600 mercury thermosyphon system can archive around 30∼50% of compactness. For the detailed design, improved analytical model and experimental data for the validation will be required to specify the new DHR system.
Shaanika, E.; Yamaguchi, K.; Miki, M.; Ida, T.; Izumi, M.; Murase, Y.; Oryu, T.; Yanamoto, T.
2017-12-01
Superconducting generators offer numerous advantages over conventional generators of the same rating. They are lighter, smaller and more efficient. Amongst a host of methods for cooling HTS machinery, thermosyphon-based cooling systems have been employed due to their high heat transfer rate and near-isothermal operating characteristics associated with them. To use them optimally, it is essential to study thermal characteristics of these cryogenic thermosyphons. To this end, a stand-alone neon thermosyphon cooling system with a topology resembling an HTS rotating machine was studied. Heat load tests were conducted on the neon thermosyphon cooling system by applying a series of heat loads to the evaporator at different filling ratios. The temperature at selected points of evaporator, adiabatic tube and condenser as well as total heat leak were measured. A further study involving a computer thermal model was conducted to gain further insight into the estimated temperature distribution of thermosyphon components and heat leak of the cooling system. The model employed boundary conditions from data of heat load tests. This work presents a comparison between estimated (by model) and experimental (measured) temperature distribution in a two-phase cryogenic thermosyphon cooling system. The simulation results of temperature distribution and heat leak compared generally well with experimental data.
Thermosyphon Flooding in Reduced Gravity Environments
Gibson, Marc Andrew
2013-01-01
An innovative experiment to study the thermosyphon flooding limits was designed and flown on aparabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtainempirical data for analysis. Current correlation models of Faghri and Tien and Chung do not agreewith the data. A new model is presented that predicts the flooding limits for thermosyphons inearths gravity and lunar gravity with a 95 confidence level of +- 5W.
Application of a two-phase thermosyphon loop with minichannels and a minipump in computer cooling
Directory of Open Access Journals (Sweden)
Bieliński Henryk
2016-03-01
Full Text Available This paper focuses on the computer cooling capacity using the thermosyphon loop with minichannels and minipump. The one-dimensional separate model of two-phase flow and heat transfer in a closed thermosyphon loop with minichannels and minipump has been used in calculations. The latest correlations for minichannels available in literature have been applied. This model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser and the falling tube. A numerical analysis of the mass flux and heat transfer coefficient in the steady state has been presented.
A study of flow patterns in a thermosyphon for compact heat exchanger applications
Grooten, M.H.M.; Geld, van der C.W.M.; Deursen, van L.G.M.
2008-01-01
Recently, thermosyphons have attracted interest in the design of smaller, lighter and cheaper heat exchangers, because of their compactness, low thermal resistance, high heat recovery effectiveness, safety and reliability. In order to understand the effects of the angle of inclination on heat
Modeling and experimental tests of a copper thermosyphon
Directory of Open Access Journals (Sweden)
Paulo Henrique Dias dos Santos
2017-02-01
Full Text Available Electrical energy, solar energy, and/or direct combustion of a fuel are the most common thermal sources for home water heating. In recent years, the use of solar energy has become popular because it is a renewable and economic energy source. Among the solar collectors, those assisted by thermosyphons are more efficient; therefore, they can enhance the heat transfer to water. A thermosyphon is basically a sealed tube filled with a working fluid and, normally, it has three regions: the evaporator, the adiabatic section and the condenser. The great advantage of this device is that the thermal resistance to heat transfer between its regions is very small, and as a result, there is a small temperature difference. This article aims to model a thermosyphon by using correlations based on its operation limits. This modeling will be used as a design tool for compact solar collectors assisted by thermosyphons. Based on the results obtained with the mathematical modeling, one copper thermosyphon, with deionized water as the working fluid, was developed and experimentally tested. The tests were carried out for a heat load varying from 30 to 60W in a vertical position. The theoretical and experimental results were compared to verify the mathematical model.
Experimental analysis of natural convection within a thermosyphon
International Nuclear Information System (INIS)
Clarksean, R.
1993-01-01
The heat transfer characteristics of a thermosyphon designed to passively cool cylindrical heat sources are experimentally studied. The analysis is based on recognizing the physics of the flow within different regions of the thermosyphon to develop empirical heat transfer correlations. The basic system consists of three concentric cylinders, with an outer channel between the outer two cylinders, and an inner channel between the inner two cylinders. Tests were conducted. with two different process material container diameters, representing the inner cylinder, and several different power levels. The experimentally determined local and average Nu numbers for the inner channel are in good agreement with previous work for natural convection between vertical parallel plates, one uniformly heated and the other thermally insulated. The implication is that the heat transfer off of each surface is independent of the adjacent surface for sufficiently high Ra numbers. The heat transfer is independent because of limited interaction between the boundary layers at sufficiently high Ra numbers. As a result of the limited interaction, the maximum temperature within the system remained constant, or decreased slightly when the radii of the inner cylinders increased for the same amount of heat removal
Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids
International Nuclear Information System (INIS)
Huminic, Gabriela; Huminic, Angel
2013-01-01
Highlights: • Numerical study of nanofluid heat transfer in thermosyphon heat pipes is performed. • Effect of nanoparticle concentration and operating temperature are studied. • Fe 2 O 3 –water nanofluid with 5.3% volume concentration shows the best performance. • Results show the improvement the thermal performances of thermosyphon heat pipe with nanofluids. - Abstract: In this work, a three-dimensional analysis is used to investigate the heat transfer of thermosyphon heat pipe using water and nanofluids as the working fluid. The study focused mainly on the effects of volume concentrations of nanoparticles and the operating temperature on the heat transfer performance of the thermosyphon heat pipe using the nanofluids. The analysis was performed for water and γ-Fe 2 O 3 nanoparticles, three volume concentrations of nanoparticles (0 vol.%, 2 vol.% and 5.3 vol.%) and four operating temperatures (60, 70, 80 and 90 °C). The numerical results show that the volume concentration of nanoparticles had a significant effect in reducing the temperature difference between the evaporator and condenser. Experimental and numerical results show qualitatively that the thermosyphon heat pipe using the nanofluid has better heat transfer characteristics than the thermosyphon heat pipe using water
Advanced multi-evaporator loop thermosyphon
International Nuclear Information System (INIS)
Mameli, M.; Mangini, D.; Vanoli, G.F.T.; Araneo, L.; Filippeschi, S.; Marengo, M.
2016-01-01
A novel prototype of multi-evaporator closed loop thermosyphon is designed and tested at different heaters position, inclinations and heat input levels, in order to prove that a peculiar arrangement of multiple heaters may be used in order to enhance the flow motion and consequently the thermal performance. The device consists in an aluminum tube (Inner/Outer tube diameter 3.0 mm/5.0 mm), bent into a planar serpentine with five U-turns and partially filled with FC-72, 50% vol. The evaporator zone is equipped with five heated patches (one for each U-turn) in series with respect to the flow path. In the first arrangement, heaters are wrapped on each bend symmetrically, while in the second layout heaters are located on the branch just above the U-turn, non-symmetrical with respect to the gravity direction, in order to promote the fluid circulation in a preferential direction. The condenser zone is cooled by forced air and equipped with a 50 mm transparent section for the flow pattern visualization. The non-symmetrical heater arrangement effectively promotes a stable fluid circulation and a reliable operation for a wider range of heat input levels and orientations with respect to the symmetrical case. In vertical position, the heat flux dissipation exceeds the pool boiling heat transfer limit for FC-72 by 75% and the tube wall temperatures in the evaporator zone are kept lower than 80 °C. Furthermore, the heat flux capability is up to five times larger with respect to the other existing wickless heat pipe technologies demonstrating the attractiveness of the new concept for electronic cooling thermal management. - Highlights: • A novel passive heat transfer device named Multi-Evaporator Loop Thermosyphon is tested. • The loop is investigated at different heating patterns, inclinations and heat power levels. • The non-symmetrical heating configuration promotes the fluid circulation within the loop. • The performance in terms of maximum heat flux exceeds the
Predicting heat transfer in long, R-134a filled thermosyphons
Grooten, M.H.M.; Geld, van der C.W.M.
2008-01-01
When traditional air-to-air cooling is too voluminous, heat exchangers with long thermosyphons offer a good alternative. Experiments with a single thermosyphon with a large length-to-diameter ratio (188) and filled with R-134a are presented and analyzed. Saturation temperatures, filling ratios, and
International Nuclear Information System (INIS)
Agunlejika, Ezekiel O.; Langston, Paul A.; Azzopardi, Barry J.; Hewakandamby, Buddhika N.
2016-01-01
Graphical abstract: The highlight of the characteristics of the geysering instability from analysed WMS data. Pictorial view of geysering instability, heat flux 9 kW/m"2 (P_S = 1.14 bar(a)), Static head = 1.265 m, valve setting = 1.0, process side pressure = 0.5 bar(a). - Highlights: • Characteristics of geysering instability in a horizontal thermosyphon reboiler loop is highlighted using Wire Mesh Sensor. • Interconnection between geysering instability and accompanying churn flow is identified. • Effects of stability parameters and pressure drop feedbacks on the loop at low heat fluxes are described. - Abstract: Distillation and chemical processing under vacuum is of immense interest to petroleum and chemical industries due to lower energy costs and improved safety. To tap into these benefits, energy efficient reboilers with lower maintenance costs are required. Here, a horizontal thermosyphon reboiler is investigated at subatmospheric pressures and low heat fluxes. This paper presents detailed experimental data obtained using Wire Mesh Sensor in a gas-liquid flow with heat transfer as well as temperatures, pressures and recirculation rates around the loop. Flow regimes which have been previously identified in other systems were detected. The nature of the instability which underpins the mechanisms involved and conditions aiding instability are reported. Churn flow pattern is persistently detected during instability. The nature of the instability and existence of oscillatory churn flow are interconnected.
International Nuclear Information System (INIS)
Ross, W.E.
1994-02-01
This report documents the thermosyphoning analysis which was performed with the CATHENA network model of one of the blanket and first wall cooling loops of the SEAFP reactor design. This thermosyphoning analysis includes four simulations, each with a slightly different model feature or assumption. These simulations are performed to assess the primary heat transport system behaviour for a complete loss of electrical power event (total loss of flow) and to estimate the rate and extent of heat-up of the incore components. For each event, a description of some of the important aspects of the transient thermalhydraulic behaviour including coolant temperatures, circuit and sector flows, circuit pressure, pressurizer level and outflow, and first wall and blanket temperatures is provided. (author). 4 refs., 2 tabs., 32 figs
Effect of non-condensable gas on steady-state operation of a loop thermosyphon
International Nuclear Information System (INIS)
He, Jiang; Lin, Guiping; Bai, Lizhan; Miao, Jianyin; Zhang, Hongxing; Wang, Lu
2014-01-01
Non-condensable gas (NCG) generated inside two-phase heat transfer devices can adversely affect the thermal performance and limit the lifetime of such devices. In this work, extensive experimental investigation of the effect of NCG on the steady-state operation of an ammonia-stainless steel loop thermosyphon was conducted. In the experiments, nitrogen was injected into the loop thermosyphon as NCG, and the thermal performance of the loop thermosyphon was tested at different NCG inventories, heat loads applied to the evaporator and condenser cooling conditions, i.e. natural air cooling or circulating ethanol cooling. Experimental results reveal that NCG elevates the steady-state operating temperature of the evaporator, especially when the loop thermosyphon is operating in the low temperature range; meanwhile, the more NCG exists in the loop thermosyphon, the higher the operating temperature of the evaporator, and the lower the reservoir temperature. In addition, the existence of NCG results in the decrease of the overall thermal conductance of the loop thermosyphon, and the overall thermal conductance under the ethanol cooling condition may be even lower than that under the air cooling condition when the heat load is smaller than a certain value. Finally, the experimental results are theoretically analysed and explained. (authors)
Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer
International Nuclear Information System (INIS)
Zhang, Penglei; Wang, Baolong; Shi, Wenxing; Li, Xianting
2015-01-01
Highlights: • A visual thermosyphon loop test bench is established. • Partially liquid-filled phenomenon in the downcomer is discovered. • The driving force may be smaller than the conventional prediction. • Liquid head in the downcomer is self-regulated by influencing factors. • Larger height difference does not always lead to better performance. - Abstract: Two-phase thermosyphon loops (TPTLs) are beginning to be extensively used in the field of air conditioning and heat recovery, where they have quite different flow characteristics compared with the traditional TPTLs used in cooling of electronics. However, in the existing studies, the flow features in the downcomer were ignored, and most researchers simply thought the downcomer was always full of liquid. In this study, a visual experimental setup was established, the flow features in the downcomer were observed and measured. And the influencing factors including temperature difference, liquid charge, height difference, and circulation flow resistance on the liquid head have been identified and investigated experimentally. The results show that, different from the conventional understandings, the downcomer can be partially liquid filled. At this time, the upper part of downcomer is a static saturation gas blockage, surrounded by a layer of liquid film, which does not provide the driving force. The liquid head in the downcomer, which provides the driving force, shows great self-regulation ability with different working conditions. Increasing the refrigerant charge, temperature difference, circulation flow resistance, and decreasing the height difference drives the liquid head to rise, and the downcomer tends to be fully liquid filled.
International Nuclear Information System (INIS)
Aung, Nay Zar; Li, Songjing
2013-01-01
Highlights: • Optimum inclination for maximum heat flux changes with latitude of location. • Optimum inclination for maximum heat flux also changes local solar time. • Maximum flow rate increases with increasing of riser tube size. • Maximum mass flow rate is obtained at different inclinations for different risers. • Length of two-phase region depends on inclination angles but not riser tube size. - Abstract: In this work, the effect of riser diameter and its inclination angle on system parameters in a two-phase closed loop thermosyphon solar water heater has been numerically investigated. Here, receivable heat flux by the collector, circulating mass flow rate, driving pressure, total pressure drop, heat transfer coefficient in risers and collector efficiency are defined as system parameters. For this aim, a model of two-phase thermosyphon solar water heater that is acceptable for various inclinations is presented and variations of riser diameter and inclination are considered. The riser tube size is varied from 1.25 cm to 2.5 cm with inclination range 2–75°. The system absolute pressure is set as 3567 Pa and water is chosen as working fluid. The results show that higher inclination angle is required for higher latitude location to obtain maximum solar heat flux. At local solar noon of 21.996 north latitude, the optimum inclination angle increases in the range of 24–44° with increasing of riser diameter giving maximum circulating mass flow rate from 0.02288 kg/s to 0.03876 kg/s. The longer two-phase heat transfer characteristics can be obtained at smaller inclination angles and mass flow rate for all riser tube sizes. Therefore, it is observed that the optimum inclination angles and diameters for solar heat flux, circulating mass flow rate and heat transfer coefficient in two-phase thermosyphon systemdo not coincide. From this work, better understanding and useful information are provided for constructing two-phase thermosyphon solar heaters
International Nuclear Information System (INIS)
Xia, Fang; Qian, Gujie; Etschmann, Barbara; University of Adelaide, South Australia, Australia; University of Adelaide, South Australia, Australia; Studer, Andrew; Olsen, Scott
2009-01-01
Full text: A flow-through cell for hydrothermal phase transformation studies by in situ and time-resolved neutron diffraction has been designed and constructed. The cell has a large internal volume of 320 m L and can work at up to 300 degree Centigrade under autogeneous vapour pressures (-85 bar). The fluid flow is driven by thermosyphon which is realized by the proper design of temperature difference around the closed loop[1,2). The main body of the cell is made of stainless steel (316 type), but the sample compartment is constructed from non-scattering Ti/Zr alloy. We have successfully commissioned the cell on Australia's new high intensity powder diffractometer WOMBAT in ANSTO, using a simple transformation reaction from leucite (KAISi 2 O 6 ) to analcime (NaAISi 2 O 6H2O ) and then back from analcime to leucite. The demonstration proved that the cell is an excellent tool for probing hydrothermal phase transformations. By collecting diffraction data every 5 min, it was clearly seen that leucite was progressively transformed to analcime in a NaCI solution, and the produced analcime was progressively transformed back to leucite in a K 2 CO 3 solution.
Thermosyphon Flooding in Reduced Gravity Environments Test Results
Gibson, Marc A.; Jaworske, Donald A.; Sanzi, Jim; Ljubanovic, Damir
2013-01-01
The condenser flooding phenomenon associated with gravity aided two-phase thermosyphons was studied using parabolic flights to obtain the desired reduced gravity environment (RGE). The experiment was designed and built to test a total of twelve titanium water thermosyphons in multiple gravity environments with the goal of developing a model that would accurately explain the correlation between gravitational forces and the maximum axial heat transfer limit associated with condenser flooding. Results from laboratory testing and parabolic flights are included in this report as part I of a two part series. The data analysis and correlations are included in a follow on paper.
Experimental investigations of heat transfer from an internally finned two phase closed thermosyphon
International Nuclear Information System (INIS)
Naresh, Y.; Balaji, C.
2017-01-01
Highlights: • Experimental investigations on an internally finned vertical thermosyphon. • Two fluids – water and acetone considered. • Optimum fill ratio determined to be 50%. • Addition of internal fins at the condenser leads to improved thermal performance. - Abstract: This paper reports the results of an experimental investigation of heat transfer from an internally finned thermosyphon charged with either water or acetone. Six constant area fins with a rectangular cross section are placed internally along the length at the condenser section. The ratio of initial liquid pool volume to the evaporator volume, known as the filling ratio in a thermosyphon system, has been varied in this study. Experiments are carried out for filling ratios of 20, 50, and 80% for two working fluids (i) water and (ii) acetone. Results show that a fill ratio of 50% gives better heat transfer performance. Providing internal fins at the condenser produces additional condensation which improves the thermal performance of the thermosyphon by 17% in terms of the temperature reduction at the source and sink and 35.48% in terms of reduction in thermal resistance at lower heat inputs. The thermosyphon is tested between power levels of 50 and 275 W.
Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons
Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.
2009-01-01
Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.
Thermosyphon Flooding Limits in Reduced Gravity Environments
Gibson, Marc A.; Jaworske, Donald A.; Sanzi, James L.; Ljubanovic, Damir
2012-01-01
Fission Power Systems have long been recognized as potential multi-kilowatt power solutions for lunar, Martian, and extended planetary surface missions. Current heat rejection technology associated with fission surface power systems has focused on titanium water thermosyphons embedded in carbon composite radiator panels. The thermosyphons, or wickless heat pipes, are used as a redundant and efficient way to spread the waste heat from the power conversion unit(s) over the radiator surface area where it can be rejected to space. It is well known that thermosyphon performance is reliant on gravitational forces to keep the evaporator wetted with the working fluid. One of the performance limits that can be encountered, if not understood, is the phenomenon of condenser flooding, otherwise known as evaporator dry out. This occurs when the gravity forces acting on the condensed fluid cannot overcome the shear forces created by the vapor escaping the evaporator throat. When this occurs, the heat transfer process is stalled and may not re-stabilize to effective levels without corrective control actions. The flooding limit in earth's gravity environment is well understood as experimentation is readily accessible, but when the environment and gravity change relative to other planetary bodies, experimentation becomes difficult. An innovative experiment was designed and flown on a parabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtain empirical data for analysis. The test data is compared to current correlation models for validation and accuracy.
Successful pilot of thermosyphon process heater reduces GHG emissions and operating costs
International Nuclear Information System (INIS)
Arnold, W.A.; Neulander, J.I.
1999-01-01
A joint pilot study was conducted by Hudson Products Corporation and PanCanadian Petroleum Ltd. to test the feasibility of using a thermosyphon as a part of a thermal recovery process for cold heavy oil reservoir exploitation in the Western Canada Sedimentary Basin. A thermosyphon process heater can transfer heat from an external combustion chamber to a liquid inside a tank. This paper described the pilot project in which such a heater was successfully tested in a heavy oil field production tank. The field trial was conducted at the Marwayne Field in northeastern Alberta. The results of the pilot study demonstrated that the thermosyphon not only improved process efficiency, but also reduced greenhouse gas (GHG) emissions, lowered operating costs and improved safety. 5 refs., 3 tabs., 1 fig., 3 appendices
Energy Technology Data Exchange (ETDEWEB)
Moon, Jangsik; You, Byung Hyun; Jung, Yong Hun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2013-10-15
In seawater desalination process which doesn't need high temperature steam, the reactor has profitability. KAIST has be developing the new reactor design, AHR400, for only desalination. For maximizing safety, the reactor requires passive decay heat removal system. In many nuclear reactors, DHR system is loop form. The DHR system can be designed simple by applying conventional thermosyphon, which is fully passive device, shows high heat transfer performance and simple structure. DHR system utilizes conventional thermosyphon and its heat transfer characteristics are analyzed for AHR400. For maximizing safety of the reactor, passive decay heat removal system are prepared. Thermosyphon is useful device for DHR system of low pressure and low temperature pool type reactor. Thermosyphon is operated fully passive and has simple structure. Bundle of thermosyphon get the goal to prohibit boiling in reactor and high pressure in reactor vessel.
International Nuclear Information System (INIS)
Han, Kyu Il; Cho, Dong Hyun
2005-01-01
This study concerns the performance of condensing heat transfer in two-phase closed thermosyphons with various helical grooves. Distilled water, methanol, ethanol have been used as the working fluid. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A experimental study was carried out for analyzing the performances of having 50, 60, 70, 80, 90 helical grooves. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphons is also tested for the comparison. The type of working fluid and the numbers of grooves of the thermosyphons with various helical grooves have been used as the experimental parameters. The experimental results have been assessed and compared with existing theories. The results show that the type of working fluids are very important factors for the operation of thermosyphons. And the maximum enhancement (i.e. the ratio of the heat transfer coefficients the helical thermosyphons to plain thermosyphons) is 1.5∼2 for condensation
Effect of non-condensable gas on startup of a loop thermosyphon
International Nuclear Information System (INIS)
He, Jiang; Lin, Guiping; Bai, Lizhan; Miao, Jianyin; Zhang, Hongxing; Wang, Lu
2013-01-01
Non-condensable gas (NCG) generated inside two-phase heat transfer devices can adversely affect the thermal performance and limit the lifetime of such devices. In this work, experimental investigation of the effect of NCG on the startup of an ammonia-stainless steel loop thermosyphon was conducted. In the experiment, nitrogen was injected into the loop thermosyphon as NCG. The effect of NCG inventory on the startup behavior was investigated by adjusting the injected amount of nitrogen. The experimental results reveal that NCG prolongs the startup time and increases the startup liquid superheat and temperature overshoot; the more NCG exists in the loop thermosyphon, the higher the liquid superheat and temperature overshoot. When NCG is present in the system, boiling usually occurs in the evaporator before startup, but it does not mean the system will start up instantly, which differs from the conditions without NCG. Under all the conditions, increasing the heat load can effectively shorten the startup time but leads to a large temperature overshoot; forced convection cooling of the condenser has almost no effect on shortening the startup time especially for large NCG inventory situations, but it can effectively limit the temperature overshoot. For large NCG inventory situations, the loop thermosyphon can start up at a small heat load (5 W) or even without a heat load when the condenser is cooled by forced convection of ethanol. No failed start-ups occurred during any of the tests. (authors)
International Nuclear Information System (INIS)
Liu, Zhen-Hua; Hu, Ren-Lin; Lu, Lin; Zhao, Feng; Xiao, Hong-shen
2013-01-01
Highlights: • A novel solar air collector with simplified CPC and open thermosyphon is designed and tested. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • Nanofluid effectively improves thermal performance of the above solar air collector. • Solar air collector with open thermosyphon is better than that with concentric tube. - Abstract: A novel evacuated tubular solar air collector integrated with simplified CPC (compound parabolic concentrator) and special open thermosyphon using water based CuO nanofluid as the working fluid is designed to provide air with high and moderate temperature. The experimental system has two linked panels and each panel includes an evacuated tube, a simplified CPC and an open thermosyphon. Outdoor experimental study has been carried out to investigate the actual solar collecting performance of the designed system. Experimental results show that air outlet temperature and system collecting efficiency of the solar air collector using nanofluid as the open thermosyphon’s working fluid are both higher than that using water. Its maximum air outlet temperature exceeds 170 °C at the air volume rate of 7.6 m 3 /h in winter, even though the experimental system consists of only two collecting panels. The solar collecting performance of the solar collector integrated with open thermosyphon is also compared with that integrated with common concentric tube. Experimental results show that the solar collector integrated with open thermosyphon has a much better collecting performance
Directory of Open Access Journals (Sweden)
Nurpeiis Аtlant
2016-01-01
Full Text Available The opportunity analyses of using the thermosyphons as the main elements in the systems of thermal regime supplying has been conducted under the conditions of their usage in power transformers on thermal stations. Mathematical modeling of jointly proceeding processes of conduction, forced convection and phase transitions (evaporation and condensation of coolant in the thermosyphon of rectangular cross section has been carried out. The problem of conjugated conductive-convective heat transfer was formulated in dimensionless variables “vorticity/stream function/temperature” and solved by finite difference method. The effect of the heat flux density supplied to the bottom cover of the thermosyphon from a transformer tank on the temperature drop in the steam channel was shown based on the analysis of numerical simulation results (temperature fields and velocities of steam. The parameters of energy-saturated equipment of thermal stations were found to be controlled by an intensification of heat removal from the top cover surface of the thermosyphon.
Temperature control of paddy bulk storage with aeration-thermosyphon heat pipe
International Nuclear Information System (INIS)
Dussadee, Natthawud; Punsaensri, Tammasak; Kiatsiriroat, Tanongkiat
2007-01-01
A technology of an aeration-thermosyphon heat pipe is developed for controlling paddy temperature in a paddy bulk silo. A prototype of paddy bulk storage of 1000 kg has a set of copper tubes with steel fins embedded in the paddy bed. The total heat transfer area of the tubes with fins is 16 m 2 . The tubes act as the evaporator of a thermosyphon heat pipe and absorb heat resulting from the paddy respiration. The thermosyphon has a total condenser area of 12.2 m 2 that is exposed to ambient air. At the bottom of the silo, ambient air is fed upward through the paddy bed for the aeration. The initial moisture content of the paddy is around 12.8% wet basis. A mathematical model to predict the paddy bed temperature in the silo with the hybrid aeration-thermosyphon is developed, and the results agree very well with the experimental data. The operating period of its blower could be found from the simulation. The blower is on when the paddy bed temperature, T b , is over or equal to 28 deg. C and the difference temperature between the bed and the ambient, T d , is over or equal to 1 deg. C. The appropriate evaporator area should be over 8 m 2 . At the area of 8 m 2 , the operation time of the blower is 8-9% of the annual period compared with 30-40% for normal aeration alone. The monthly paddy bed temperature could be maintained between 24 and 27 deg. C under the climate of Chiang Mai, Thailand
Oscillation phenomena and operating limits of the closed two-phase thermosyphon
International Nuclear Information System (INIS)
Fukano, T.; Kadoguchi, K.; Tien, C.L.
1986-01-01
In a vertical thermosyphon an up-going vapor flow prevents a liquid film from flowing downward and causes flooding if the heat input exceeds a certain value. Then the evaporator wall partially dries out. The wall temperature in the evaporator and the system pressure are measured and their post-dryout behavior is classified into three types: (1) the periodic oscillation, and transient variations going asymptotically to (2) the higher and (3) the lower than the initial system pressure setting. The occurrence of the first type, periodic oscillation, is limited to when the amount of working fluid, methanol, is about one-third of the evaporator volume. To explain these changes in the system pressure and wall temperature a physical model, based on the alternating flooding and deflooding concept is proposed. In this work the effect of the tube diameter, amount of working fluid, and system pressure on these oscillations and the flow and heat transfer characteristics during the oscillations are also experimentally investigated
International Nuclear Information System (INIS)
Kim, Y. S.; Sim, Y. S.; Kim, W. K.
2000-01-01
A study related to understand the characteristics of the heat pipe and thermosyphon was performed to evaluate their applicabilities to the current PSDRS (Passive Safety Decay heat Removal System) in the KALIMER (Korea Advanced LIquid MEtal Reactor) design. The possible heat transfer rate by the heat pipe and thermosyphon was reviewed to compare the required capability in the PSDRS. A quantitative comparison was done between the current PSDRS and the modified PSDRS with the thermosyphon. The result showed the dominant heat transfer rate in the air channel, e.g. radiation or convection, is different from each other. The total heat transfer rate is not sensitive to the operating temperature of the thermosyphon. The heat removal by the air in the modified case is relatively reduced and the resultant outlet temperature appears less than above 10 .deg. C. A reversal heat transfer between the air and the thermosyphon may exist near the exit of the active heat transfer region. The total heat transfer rate by the modified case showed about 20∼40% increase relative to the reference one
Energy Technology Data Exchange (ETDEWEB)
Ordaz-Flores, A. [Posgrado en Ingenieria (Energia), Univ. Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Garcia-Valladares, O.; Gomez, V.H. [Centro de Investigacion en Energia, Univ. Nacional Autonoma de Mexico, Temixco, Morelos (Mexico)
2008-07-01
A water heating closed two-phase thermosyphon solar system was designed and built. The system consists of a flat plate solar collector coupled to a thermotank by a continuous copper tubing in which the working fluid circulates. The working fluid evaporates in the collector and condensates in the thermotank transferring its latent heat to the water through a coil heat exchanger. The tested fluids are acetone and R134a. The thermal performance of the proposed systems is compared with a conventional solar water thermosyphon under the same operating conditions. Advantages of a two-phase system include the elimination of freezing, fouling, scaling and corrosion. Geometry and construction materials are the same except for the closed circuit presented in the two-phase system. Data were collected from temperature and pressure sensors throughout the two systems. Early results suggest that R134a may provide a better performance than acetone for this kind of systems. (orig.)
Design of a two-phase loop thermosyphon for telecommunications system(II): analysis and simulation
International Nuclear Information System (INIS)
Kim, Won Tae; Song, Kyu Sub; Lee, Young
1998-01-01
A computer simulation is performed for a two-phase loop thermosyphon for the B-ISDN telecommunications. The aim of this code development is to provide capabilities to predict the affects of many variables on the performance of the proposed TLT system using different empirical correlations obtained from the literature for the evaporation and condensation, and the shape factors available. In this present study, the simulation code is based on the sectorial thermal resistance network built on the flow regimes of the two-phase flows involved. The nodal resistances are solved by the typical Gauss-Seidal iteration method. The code can predict whether the proposed design is possible based on the flooding limit calculation of the system and its results are compared with the experimental results
Design of a two-phase loop thermosyphon for telecommunications system(II): analysis and simulation
Energy Technology Data Exchange (ETDEWEB)
Kim, Won Tae [Kongju National Univ., Kongju (Korea, Republic of); Song, Kyu Sub [Electronics and Telecommunications Research Institute, Taejon (Korea, Republic of); Lee, Young [Univ. of Ottawa, Ontario (Canada)
1998-10-01
A computer simulation is performed for a two-phase loop thermosyphon for the B-ISDN telecommunications. The aim of this code development is to provide capabilities to predict the affects of many variables on the performance of the proposed TLT system using different empirical correlations obtained from the literature for the evaporation and condensation, and the shape factors available. In this present study, the simulation code is based on the sectorial thermal resistance network built on the flow regimes of the two-phase flows involved. The nodal resistances are solved by the typical Gauss-Seidal iteration method. The code can predict whether the proposed design is possible based on the flooding limit calculation of the system and its results are compared with the experimental results.
Hoseinzadeh, S.; Sahebi, S. A. R.; Ghasemiasl, R.; Majidian, A. R.
2017-05-01
In the present study an experimental set-up is used to investigate the effect of a nanofluid as a working fluid to increase thermosyphon efficiency. Nanofluids are a new form of heat transfer media prepared by suspending metallic and nonmetallic nanoparticles in a base fluid. The nanoparticles added to the fluid enhance the thermal characteristics of the base fluid. The nanofluid used in this experiment was a mixture of water and nanoparticles prepared with 0.5%, 1%, 1.5%, or 2% (v) concentration of silicon carbide (SiC) nanoparticles and 1%, 2% and 3% (v) concentration of aluminum oxide (Al2O3) in an ultrasonic homogenizer. The results indicate that the SiC/water and Al2O3/water nanofluids increase the thermosyphon performance. The efficiency of the thermosyphon using the 2% (v) (SiC) nanoparticles nanofluid was 1.11 times that of pure water and the highest efficiency occurs for the 3% (Al2O3) nanoparticle concentration with input power of 300 W. The decrease in the temperature difference between the condenser and evaporator confirms these enhancements.
Investigation and Construction of a Thermosyphoning Solar Hot Water System
Johnson, Harvey
1978-01-01
Describes how a thermosyphoning solar water heater capable of heating 110 kilogram of water to 80 degree Celsius and maintaining this temperature for 24 hours was constructed by four students in the fifth form of Sekolah Date Abdul Razak, Seremban, Malaysia in 1976. (HM)
Heat-transfer enhancement of two-phase closed thermosyphon using a novel cross-flow condenser
Aghel, Babak; Rahimi, Masoud; Almasi, Saeed
2017-03-01
The present study reports the heat-transfer performance of a two-phase closed thermosyphon (TPCT) equipped with a novel condenser. Distillated water was used as working fluid, with a volumetric liquid filling ratio of 75 %. An increase in heat flux was used to measure the response of the TPCT, including variations in temperature distribution, thermal resistance, average temperature of each section of TPCT and overall thermal difference. Results show that for various power inputs from 71 to 960 W, the TPCT with the novel condenser had a lower wall-temperature difference between the evaporator and condenser sections than did the unmodified TPCT. Given the experimental data for heat-transfer performance, it was found that the thermal resistance in the TPCT equipped with the proposed condenser was between 10 and 17 % lower than in the one without.
Load flow optimization and optimal power flow
Das, J C
2017-01-01
This book discusses the major aspects of load flow, optimization, optimal load flow, and culminates in modern heuristic optimization techniques and evolutionary programming. In the deregulated environment, the economic provision of electrical power to consumers requires knowledge of maintaining a certain power quality and load flow. Many case studies and practical examples are included to emphasize real-world applications. The problems at the end of each chapter can be solved by hand calculations without having to use computer software. The appendices are devoted to calculations of line and cable constants, and solutions to the problems are included throughout the book.
Energy Technology Data Exchange (ETDEWEB)
Zhou, F.; Tian, X.; Ma, G. [Beijing Univ. of Technology, Beijing (China). College of Environmental and Energy Engineering
2010-07-01
The energy consumption of the air-conditioning system at the Internet Data Center (IDC) in Beijing comprises 40 per cent of the building's total energy consumption. Of all the energy energy management strategies available at the IDC, the most unique one is the use of ambient energy to cool the IDC by the thermosyphon heat exchanger. Atmospheric energy can reduce the air conditioner's running time while maintaining the humidity and cleanliness of the IDC. In this study, an IDC test model was set up to analyze the heat dissipating characteristics and the energy consumption of the thermosyphon heat exchanger and the air conditioner in the IDC for winter conditions. The heat dissipating capacity of the building envelope was measured and calculated. The energy consumption of the air conditioner was compared under different indoor and outdoor temperatures. The study showed that the heat dissipating need of the IDC cannot be met just by the heat dissipation of the building envelope in winter conditions. The heat dissipating capacity of the IDC building envelope comprises 19.5 per cent of the total heat load. The average energy consumption of the air conditioner is 3.5 to 4 kWh per day. The temperature difference between indoor and outdoor temperature in the IDC with the thermosyphon heat exchanger was less than 20 degrees C, and the energy consumption of the thermosyphon heat exchanger comprised only 41 per cent of that of the air conditioner. 8 refs., 1 tab., 8 figs.
Numerical and experimental investigation of thermosyphon solar water heater
International Nuclear Information System (INIS)
Zelzouli, Khaled; Guizani, Amenallah; Kerkeni, Chakib
2014-01-01
Highlights: • We studied a thermosyphon solar water heater composed of high-performance components. • A differential equations solution technique is investigated. • The influences of the collector and storage losses on the system performance were examined. • The storage losses have more influence on the long-term performance. - Abstract: A glassed flat plate collector with selective black chrome coated absorber and a low wall conductance horizontal storage are combined in order to set up a high performance thermosyphon system. Each component is tested separately before testing the complete system in spring days. During the test period, effect of different inlet water temperatures on the collector performance is studied and results have shown that the collector can reach a high efficiency and high outlet water temperature even for elevated inlet water temperatures. Subsequently, long term system performance is estimated by using a developed numerical model. The proposed model, accurate and gave a good agreement with experimental results, allowed to describe the heat transfer in the storage. It has shown also that the long-term performances are strongly influenced by losses from the storage than losses from the collector
International Nuclear Information System (INIS)
Jouhara, Hussam; Robinson, Anthony J.
2010-01-01
An experimental investigation of the performance of thermosyphons charged with water as well as the dielectric heat transfer liquids FC-84, FC-77 and FC-3283 has been carried out. The copper thermosyphon was 200 mm long with an inner diameter of 6 mm, which can be considered quite small compared with the vast majority of thermosyphons reported in the open literature. The evaporator length was 40 mm and the condenser length was 60 mm which corresponds with what might be expected in compact heat exchangers. With water as the working fluid two fluid loadings were investigated, that being 0.6 ml and 1.8 ml, corresponding to approximately half filled and overfilled evaporator section in order to ensure combined pool boiling and thin film evaporation/boiling and pool boiling only conditions, respectively. For the Fluorinert TM liquids, only the higher fill volume was tested as the aim was to investigate pool boiling opposed to thin film evaporation. Generally, the water-charged thermosyphon evaporator and condenser heat transfer characteristics compared well with available predictive correlations and theories. The thermal performance of the water-charged thermosyphon also outperformed the other three working fluids in both the effective thermal resistance as well as maximum heat transport capabilities. Even so, FC-84, the lowest saturation temperature fluid tested, shows marginal improvement in the heat transfer at low operating temperatures. All of the tested Fluorinert TM liquids offer the advantage of being dielectric fluids, which may be better suited for sensitive electronics cooling applications and were all found to provide adequate thermal performance up to approximately 30-50 W after which liquid entrainment compromised their performance.
Closed Loop Two-Phase Thermosyphon of Small Dimensions: a Review of the Experimental Results
Franco, Alessandro; Filippeschi, Sauro
2012-06-01
A bibliographical review on the heat and mass transfer in gravity assisted Closed Loop Two Phase Thermosyphons (CLTPT) with channels having a hydraulic diameter of the order of some millimetres and input power below 1 kW is proposed. The available experimental works in the literature are critically analysed in order to highlight the main results and the correlation between mass flow rate and heat input in natural circulation loops. A comparison of different experimental apparatuses and results is made. It is observed that the results are very different among them and in many cases the experimental data disagree with the conventional theory developed for an imposed flow rate. The paper analyses the main differences among the experimental devices and try to understand these disagreements. From the present analysis it is evident that further systematic studies are required to generate a meaningful body of knowledge of the heat and mass transport mechanism in these devices for practical applications in cooling devices or energy systems.
Theoretical and experimental investigation of the performance of solar thermosyphon heat pipe
International Nuclear Information System (INIS)
Hamidi, A.A.; Khalji Asadi, M.; Yousefi, L.; Moeini, G.
2001-01-01
Thermosyphon is a kind of heat pipe consisting of a tube which after through degassing has been filled with the required working fluid under vacuum, the pipe is equipped with wide fines on both sides in order to absorb solar radiation effectively. In order to eliminate conduction and convection heat transfer phenomena the tube is situated inside an evacuated glass bulb. In order to increase the efficiency and improve the design and working conditions of various types of heat pipes, a fundamental knowledge of the variation of operating parameters inside the heat pipes is necessary. In this paper, effective operating parameters of a thermosyphon heat pipe in uniform and steady condition are studied. These parameters include saturation temperature of the fluid inside the pipe, the variation of liquid and vapor flow rates inside the pipe and finally the pressure drop of liquid and vapor along the length of the pipe. The modeling is first started by writing an energy balance for the control volume of the pipe so that a first approximation for the above mentioned parameters is obtained. In this balance, depending on the type of fluid next to the condenser section and the type of heat transfer phenomena (free or forced convection) and also with due regards to the experimental correlations available, first the Nusselt number and then the heat transfer coefficient is calculated. From the latter, a first estimate of the required values for the liquid and vapor flow rates are found to be 0.222 and 0.0001126 Kg/s, respectively. The thickness of the film was determined to be 0.2 mm. In order to calculate the variations of the above mentioned parameters along the length of the tube, mass heat and momentum balances were written in next step for the control volumes on the liquid film, vapor phase and the system as a whole. Diagrams of these variations were obtained. The results were compared with both the data available in the literature and the experimental findings of a heat
Heat transfer characteristics of the two-phase closed thermosyphon (wickless heat pipe)
International Nuclear Information System (INIS)
Andros, F.E.; Florschuetz, L.W.
1982-01-01
Steady-state heat transfer characteristics and heat transfer limits (dry-out) for a vertical stainless steel tubular two-phase closed thermosyphon with Freon-113 working fluid are reported as a function of certain geometric parameters and liquid fill quantity. Condenser section heat transfer characteristics agreed reasonably well with existing laminar film condensation correlations and were found to be independent of the evaporator section, except for larger liquid fills. Evaporator characteristics were quite complex and appeared, under some conditions, to be coupled to condenser characteristics through effects of system pressure and/or surface wave as present on the descending condensate film. A laminar thin film evaporation model was found to give reasonable agreement with local evaporator temperature measurements in those regions of the evaporator where a continuous film apparently persisted. The measured heat transfer characteristics are interpreted relative to an earlier investigation by the authors in which flow characteristics in a similar device were visually and photographically observed. 10 references
Thermosyphon evaporator for nuclear waste management application
Energy Technology Data Exchange (ETDEWEB)
Menon, Rajani; Singh, A K; Rana, D S [Waste Management Projects Division, Bhabha Atomic Research Centre, Mumbai (India)
1994-06-01
Nuclear plant equipment are associated with radioactive material which needs to be safely contained under all conditions of operation. Because of large radioactivity associated with the operations of nuclear waste management plants, the equipment are not accessible to human intervention. Hence, the design of the equipment needs to incorporate features for high reliability and safety so as to avoid unnecessary outage. As far as possible the equipment must be maintenance free. Wherever maintenance is inevitable, it has to be designed to be carried out without exposure of personnel to radiation, preventing spread of radiation or contamination. This paper outlines the design features of a thermosyphon evaporator for nuclear application. (author). 2 figs., 1 tab.
International Nuclear Information System (INIS)
Araiz, M.; Martínez, A.; Astrain, D.; Aranguren, P.
2017-01-01
Highlights: • Thermosyphon with phase change heat exchanger computational model. • Construction and experimentation of a prototype. • ±9% of maximum deviation from experimental values of the main outputs. • Influence of the auxiliary equipment on the net power generation. - Abstract: An important issue in thermoelectric generators is the thermal design of the heat exchangers since it can improve their performance by increasing the heat absorbed or dissipated by the thermoelectric modules. Due to its several advantages, compared to conventional dissipation systems, a thermosyphon heat exchanger with phase change is proposed to be placed on the cold side of thermoelectric generators. Some of these advantages are: high heat-transfer rates; absence of moving parts and lack of auxiliary consumption (because fans or pumps are not required); and the fact that these systems are wickless. A computational model is developed to design and predict the behaviour of this heat exchangers. Furthermore, a prototype has been built and tested in order to demonstrate its performance and validate the computational model. The model predicts the thermal resistance of the heat exchanger with a relative error in the interval [−8.09; 7.83] in the 95% of the cases. Finally, the use of thermosyphons with phase change in thermoelectric generators has been studied in a waste-heat recovery application, stating that including them on the cold side of the generators improves the net thermoelectric production by 36% compared to that obtained with finned dissipators under forced convection.
Energy Technology Data Exchange (ETDEWEB)
Kupka, Alexandre; Penteado, Ricardo Assis [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica]. E-mails: kupka@labsolar.ufsc.br; boto@labsolar.ufsc.br; Mantelli, Marcia B.H. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Matematica]. E-mail: marcia@labsolar.ufsc.br
2000-07-01
The present paper study thermosyphons applied to bakery ovens with special attention in the energy conservation and the quality of final baked product. A prototype simulating one internal section of a commercial oven was built for the experimental study. Stainless steel/water thermosyphons are installed vertically, close to the two lateral walls of this section The thermosyphons are very efficient heat exchangers and improves the temperature distribution inside the oven, saving energy and avoiding the product waste by under or overcooking. This research also intends to replace electric power and GLP by natural gas as the energy source, that is available in the South of Brazil, after the recent implantation of the Brazil/Bolivia gas line. The gas combustion happens in a separated chamber, so that, just the heated air are in contact with be bread in the cooking chamber. The final product has better quality and is free from the combustion residues. (author)
Investigation of two-phase thermosyphon performance filled with modern HFC refrigerants
Gorecki, Grzegorz
2018-02-01
Two-phase closed thermosyphons (TPCTs) are widely utilized as heat exchanger elements in waste heat recovery systems and as passive heating/cooling devices. They are popular because of their high thermal conductivity, simple construction and reliability. Previous researches indicate that refrigerants are performing better than typical TPCT working fluids like deionized water or alcohols in the low temperature range. In the present study three HFC (Hydrofluorocarbons) refrigerants were tested: R134a, R404A and R407C. The total length of the investigated TPCT is 550 mm with equal length (245 mm) condenser and evaporator sections. Its outer diameter is 22 mm with 1 mm wall thickness. The evaporator section was heated by hot water with varying inlet temperature by 5 K step in the range of 288 K - 323 K. The condenser was cooled by cold water with inlet temperature kept at a constant value of 283 K. It was found that using R134a and R404A as working fluids heat transfer rates are the highest. For both refrigerants 10% is optimal filling ratio. They can be utilized interchangeably because the differences between their throughputs are within uncertainty bands. R407C performance was 50% lower. Other disadvantages of using this refrigerant are relatively high working pressures and higher optimal filling ratio (30%).
Effect of nanofluid concentration on two-phase thermosyphon heat exchanger performance
Cieśliński Janusz T.
2016-01-01
An approach - relaying on application of nanofluid as a working fluid, to improve performance of the two-phase thermosyphon heat exchanger (TPTHEx) has been proposed. The prototype heat exchanger consists of two horizontal cylindrical vessels connected by two risers and a downcomer. Tube bundles placed in the lower and upper cylinders work as an evaporator and a condenser, respectively. Distilled water and nanofluid water-Al2O3 solution were used as working fluids. Nanoparticles were tested a...
International Nuclear Information System (INIS)
Piyush Sabharwall; Fred Gunnerson; Akira Tokuhiro; Vivek Utgiker; Kevan Weaver; Steven Sherman
2007-01-01
The work reported here is the preliminary analysis of two-phase Thermosyphon heat transfer performance with various alkali metals. Thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are required to transfer heat from the NGNP to the hydrogen plant in the most efficient way possible. The production of power at higher efficiency using Brayton Cycle, and hydrogen production requires both heat at higher temperatures (up to 1000 C) and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. The purpose for selecting a compact heat exchanger is to maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. The IHX design requirements are governed by the allowable temperature drop between the outlet of the NGNP (900 C, based on the current capabilities of NGNP), and the temperatures in the hydrogen production plant. Spiral Heat Exchangers (SHE's) have superior heat transfer characteristics, and are less susceptible to fouling. Further, heat losses to surroundings are minimized because of its compact configuration. SHEs have never been examined for phase-change heat transfer applications. The research presented provides useful information for thermosyphon design and Spiral Heat Exchanger
Experimental study on the effect of fill ratio on an R744 two-phase thermosyphon loop
International Nuclear Information System (INIS)
Tong, Zhen; Liu, Xiao-Hua; Li, Zhen; Jiang, Yi
2016-01-01
Highlights: • Performance of R744 two-phase thermosyphon loop is experimentally analyzed. • There are usually some fluids that circulate in the loop without changing phase. • Maximum heat transfer ability is achieved at the fill ratio around 100%. • Lowest driving temperature difference is achieved at the fill ratio around 62%. • Thermosyphon loop with a lower fill ratio is more likely to fluctuate at small heat loads. - Abstract: As a natural, environmentally friendly fluid with excellent thermodynamic and transport properties, carbon dioxide is an effective alternative refrigerant. This paper describes an experiment conducted on an R744-based two-phase thermosyphon loop (TPTL). With different fill ratios of 45~151%, the effect of fill ratio on the working performance of the R744 TPTL is investigated. To maintain the conservation of momentum, part of the fluid circulates in the loop without changing phase; this part of the fluid may be liquid, vapor, or both liquid and vapor depending on the fill ratio. This is how the R744 TPTL self-adjusts among different heat loads. The experimental results show that the working state of the R744 TPTL has a lot to do with the fill ratio. With a low fill ratio, the TPTL is more likely to fluctuate under small heat loads. When the fill ratio is around 100%, the TPTL reaches its maximum heat transfer ability, and when the fill ratio is around 62%, the lowest driving temperature difference is achieved. Considering that the fill ratio's effect on the driving temperature difference is not very significant and that pursuing maximum heat transfer ability is more meaningful, a fill ratio of around 100% is recommended.
Directory of Open Access Journals (Sweden)
Nurpeiis Atlant
2017-01-01
Full Text Available Numerical analyses of the effect of a biphasic thermosyphon vapor channel sizes on the heat transfer intensity was conducted when heat removing from an oil tank of a power transformer of combined heat and power station (CHP. The power transformer cooling system by the closed biphasic thermosyphon was proposed. The mathematical modeling of heat transfer and phase transitions of coolant in the thermosyphon was performed. The problem of heat transfer is formulated in dimensionless variables “velocity vorticity vector – current function – temperature” and solved by finite difference method. As a result of numerical simulation it is found that an increase in the vapor channel length from 0.15m to 1m leads to increasing the temperature difference by 3.5 K.
DEFF Research Database (Denmark)
Taherian, H.; Kolaei, Alireza Rezania; Sadeghi, S.
2011-01-01
This work studies the dynamic simulation of thermosyphon solar water heater collector considering the weather conditions of a city in north of Iran. The simulation was done for clear and partly cloudy days. The useful energy, the efficiency diagrams, the inlet and the outlet of collector, center...
A 100-W grade closed-cycle thermosyphon cooling system used in HTS rotating machines
Felder, Brice; Miki, Motohiro; Tsuzuki, Keita; Shinohara, Nobuyuki; Hayakawa, Hironao; Izumi, Mitsuru
2012-06-01
The cooling systems used for rotating High-Temperature Superconducting (HTS) machines need a cooling power high enough to ensure a low temperature during various utilization states. Radiation, torque tube or current leads represent hundreds of watts of invasive heat. The architecture also has to allow the rotation of the refrigerant. In this paper, a free-convection thermosyphon using two Gifford-McMahon (GM) cryocoolers is presented. The cryogen is mainly neon but helium can be added for an increase of the heat transfer coefficient. The design of the heat exchangers was first optimized with FEM thermal analysis. After manufacture, they were assembled for preliminary experiments and the necessity of annealing was studied for the copper parts. A single evaporator was installed to evaluate the thermal properties of such a heat syphon. The maximum bearable static heat load was also investigated, but was not reached even at 150 W of load. Finally, this cooling system was tested in the cooling down of a 100-kW range HTS rotating machine containing 12 Bi-2223 double-pancake coils (DPC).
Performance enhancement studies in a thermosyphon flat plate solar water heater with CuO nanofluid
Directory of Open Access Journals (Sweden)
Dasaien Anin Vincely
2017-01-01
Full Text Available Experiments were conducted on a thermosyphon type flat plate collector, inclined at 45°, for water heating application. Water and water based nanofluids were used as absorber fluid to gain heat from solar rays incident on the flat plate col-lector. Nanofluids were prepared by adding CuO nanoparticles of 40-50 nm size to the base fluid at 0.1, 0.2, 0.3, and 0.5 wt% (ζ. The hot absorber fluid was made to circulate in the shell side of a heat exchanger, placed at the top of the flat plate collector, where utility water was circulated inside a helically coiled Cu tube. Temperatures at strategic locations in the flat plate collector, working fluid, utility water inlet and outlet were measured. The nanofluid increases the collector efficiency with increasing ζ. A highest efficiency enhancement of 5.7% was observed for the nanofluid with ζ = 0.2 having a mass flow rate of 0.0033 kg/s. The 3-D, steady-state, conjugate heat transfer CFD analyses were carried out using the ANSYS FLUENT 15.0 software. Theoretically estimated buoyancy induced fluid flow rates were close with the CFD predictions and thus validates the computational methodology.
Topology optimization of flow problems
DEFF Research Database (Denmark)
Gersborg, Allan Roulund
2007-01-01
This thesis investigates how to apply topology optimization using the material distribution technique to steady-state viscous incompressible flow problems. The target design applications are fluid devices that are optimized with respect to minimizing the energy loss, characteristic properties...... transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the thesis gives a proof-of-concept for the application of the method within fluid dynamic problems and it remains of interest for the design of microfluidic devices. Furthermore, the thesis contributes...... at the Technical University of Denmark. Large topology optimization problems with 2D and 3D Stokes flow modeling are solved with direct and iterative strategies employing the parallelized Sun Performance Library and the OpenMP parallelization technique, respectively....
Numerical optimization using flow equations
Punk, Matthias
2014-12-01
We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.
International Nuclear Information System (INIS)
Khodabandeh, Rahmatollah
2004-01-01
In this investigation an advanced thermosyphon loop with extended evaporator and condenser surfaces has been tested at high heat fluxes. The thermosyphon investigated is designed for the cooling of three parallel high heat flux electronic components. The tested evaporators were made from small blocks of copper in which five vertical channels with a diameter of 1.5 mm and length of 14.6 mm were drilled. The riser and downcomer connected the evaporators to the condenser, which is an air-cooled roll-bond type with a total surface area of 1.5 m 2 on the airside. Tests were done with Isobutane (R600a) at heat loads in the range of 10-90 W/cm 2 to each of the components with forced convection condenser cooling and with natural convection with heat loads of 10-70 W
Flow area optimization in point to area or area to point flows
International Nuclear Information System (INIS)
Ghodoossi, Lotfollah; Egrican, Niluefer
2003-01-01
This paper deals with the constructal theory of generation of shape and structure in flow systems connecting one point to a finite size area. The flow direction may be either from the point to the area or the area to the point. The formulation of the problem remains the same if the flow direction is reversed. Two models are used in optimization of the point to area or area to point flow problem: cost minimization and revenue maximization. The cost minimization model enables one to predict the shape of the optimized flow areas, but the geometric sizes of the flow areas are not predictable. That is, as an example, if the area of flow is a rectangle with a fixed area size, optimization of the point to area or area to point flow problem by using the cost minimization model will only predict the height/length ratio of the rectangle not the height and length itself. By using the revenue maximization model in optimization of the flow problems, all optimized geometric aspects of the interested flow areas will be derived as well. The aim of this paper is to optimize the point to area or area to point flow problems in various elemental flow area shapes and various structures of the flow system (various combinations of elemental flow areas) by using the revenue maximization model. The elemental flow area shapes used in this paper are either rectangular or triangular. The forms of the flow area structure, made up of an assembly of optimized elemental flow areas to obtain bigger flow areas, are rectangle-in-rectangle, rectangle-in-triangle, triangle-in-triangle and triangle-in-rectangle. The global maximum revenue, revenue collected per unit flow area and the shape and sizes of each flow area structure have been derived in optimized conditions. The results for each flow area structure have been compared with the results of the other structures to determine the structure that provides better performance. The conclusion is that the rectangle-in-triangle flow area structure
Reagan, Andrew J; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M
2016-01-01
A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.
Directory of Open Access Journals (Sweden)
Andrew J Reagan
Full Text Available A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.
Topology optimization of Channel flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.
2005-01-01
function which measures either some local aspect of the velocity field or a global quantity, such as the rate of energy dissipation. We use the finite element method to model the flow, and we solve the optimization problem with a gradient-based math-programming algorithm that is driven by analytical......This paper describes a topology design method for simple two-dimensional flow problems. We consider steady, incompressible laminar viscous flows at low to moderate Reynolds numbers. This makes the flow problem non-linear and hence a non-trivial extension of the work of [Borrvall&Petersson 2002......]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Simonetto, Andrea
2018-03-01
This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall, the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.
Transmission tariffs based on optimal power flow
International Nuclear Information System (INIS)
Wangensteen, Ivar; Gjelsvik, Anders
1998-01-01
This report discusses transmission pricing as a means of obtaining optimal scheduling and dispatch in a power system. This optimality includes consumption as well as generation. The report concentrates on how prices can be used as signals towards operational decisions of market participants (generators, consumers). The main focus is on deregulated systems with open access to the network. The optimal power flow theory, with demand side modelling included, is briefly reviewed. It turns out that the marginal costs obtained from the optimal power flow gives the optimal transmission tariff for the particular load flow in case. There is also a correspondence between losses and optimal prices. Emphasis is on simple examples that demonstrate the connection between optimal power flow results and tariffs. Various cases, such as open access and single owner are discussed. A key result is that the location of the ''marketplace'' in the open access case does not influence the net economical result for any of the parties involved (generators, network owner, consumer). The optimal power flow is instantaneous, and in its standard form cannot deal with energy constrained systems that are coupled in time, such as hydropower systems with reservoirs. A simplified example of how the theory can be extended to such a system is discussed. An example of the influence of security constraints on prices is also given. 4 refs., 24 figs., 7 tabs
Security constrained optimal power flow by modern optimization tools
African Journals Online (AJOL)
Security constrained optimal power flow by modern optimization tools. ... International Journal of Engineering, Science and Technology ... If you would like more information about how to print, save, and work with PDFs, Highwire Press ...
Directory of Open Access Journals (Sweden)
Abdollah Riahi
2011-01-01
Full Text Available In the present study, a natural circulation closed thermosyphon flat plate solar water heater has been tested at the Faculty of Engineering of University of Mazandaran located in Babol city (36N, 52E. Data were collected for several sunny and cloudy days. Dynamic response of the system to variations in solar insolation was studied and analyzed. It was found that such systems can provide ample energy to satisfy the demand for hot water, contrary to misperception among locals
Optimal Power Flow by Interior Point and Non Interior Point Modern Optimization Algorithms
Directory of Open Access Journals (Sweden)
Marcin Połomski
2013-03-01
Full Text Available The idea of optimal power flow (OPF is to determine the optimal settings for control variables while respecting various constraints, and in general it is related to power system operational and planning optimization problems. A vast number of optimization methods have been applied to solve the OPF problem, but their performance is highly dependent on the size of a power system being optimized. The development of the OPF recently has tracked significant progress both in numerical optimization techniques and computer techniques application. In recent years, application of interior point methods to solve OPF problem has been paid great attention. This is due to the fact that IP methods are among the fastest algorithms, well suited to solve large-scale nonlinear optimization problems. This paper presents the primal-dual interior point method based optimal power flow algorithm and new variant of the non interior point method algorithm with application to optimal power flow problem. Described algorithms were implemented in custom software. The experiments show the usefulness of computational software and implemented algorithms for solving the optimal power flow problem, including the system model sizes comparable to the size of the National Power System.
A solution to the optimal power flow using multi-verse optimizer
Directory of Open Access Journals (Sweden)
Bachir Bentouati
2016-12-01
Full Text Available In this work, the most common problem of the modern power system named optimal power flow (OPF is optimized using the novel meta-heuristic optimization Multi-verse Optimizer(MVO algorithm. In order to solve the optimal power flow problem, the IEEE 30-bus and IEEE 57-bus systems are used. MVO is applied to solve the proposed problem. The problems considered in the OPF problem are fuel cost reduction, voltage profile improvement, voltage stability enhancement. The obtained results are compared with recently published meta-heuristics. Simulation results clearly reveal the effectiveness and the rapidity of the proposed algorithm for solving the OPF problem.
Security constrained optimal power flow by modern optimization tools
African Journals Online (AJOL)
The main objective of an optimal power flow (OPF) functions is to optimize .... It is characterized as propagation of plants and this happens by gametes union. ... ss and different variables, for example, wind, nearby fertilization can have a critic.
Experimental study of high-performance cooling system pipeline diameter and working fluid amount
Nemec, Patrik; Malcho, Milan; Hrabovsky, Peter; Papučík, Štefan
2016-03-01
This work deals with heat transfer resulting from the operation of power electronic components. Heat is removed from the mounting plate, which is the evaporator of the loop thermosyphon to the condenser and by natural convection is transferred to ambient. This work includes proposal of cooling device - loop thermosyphon, with its construct and follow optimization of cooling effect. Optimization proceeds by selecting the quantity of working fluid and selection of diameters vapour line and liquid line of loop thermosyphon.
A study of natural circulation cooling using a flow visualization rig
International Nuclear Information System (INIS)
Bowman, W.C.; Ferch, R.L.; Omar, A.M.
1985-01-01
A flow visualization rig has been built at Monserco Limited to provide visual insight into the thermalhydraulic phenomena which occur during single phase and two phase thermosyphoning in a figure-of-eight heat transport loop. Tests performed with the rig have provided design information for the scaling and instrumentation of a high pressure rig being investigated for simulating CANDU reactor conditions during natural circulation cooling. A videotape was produced, for viewing at this presentation, to show important thermalhydraulic features of the thermosyphoning process. The rig is a standard figure-of-eight loop with two steam generators and three heated channels per pass. An elevated surge tank open to atmosphere was used for pressure control. Two variable speed pumps provided forced circulation for warming up the rig, and for establishing the desired initial conditions for testing. Test rig power could be varied between 0 and 15 kW
Topology optimization of turbulent flows
DEFF Research Database (Denmark)
Dilgen, Cetin B.; Dilgen, Sumer B.; Fuhrman, David R.
2018-01-01
The aim of this work is to present a fast and viable approach for taking into account turbulence in topology optimization of complex fluid flow systems, without resorting to any simplifying assumptions in the derivation of discrete adjoints. Topology optimization is an iterative gradient...
Innovative model-based flow rate optimization for vanadium redox flow batteries
König, S.; Suriyah, M. R.; Leibfried, T.
2016-11-01
In this paper, an innovative approach is presented to optimize the flow rate of a 6-kW vanadium redox flow battery with realistic stack dimensions. Efficiency is derived using a multi-physics battery model and a newly proposed instantaneous efficiency determination technique. An optimization algorithm is applied to identify optimal flow rates for operation points defined by state-of-charge (SoC) and current. The proposed method is evaluated against the conventional approach of applying Faraday's first law of electrolysis, scaled to the so-called flow factor. To make a fair comparison, the flow factor is also optimized by simulating cycles with different charging/discharging currents. It is shown through the obtained results that the efficiency is increased by up to 1.2% points; in addition, discharge capacity is also increased by up to 1.0 kWh or 5.4%. Detailed loss analysis is carried out for the cycles with maximum and minimum charging/discharging currents. It is shown that the proposed method minimizes the sum of losses caused by concentration over-potential, pumping and diffusion. Furthermore, for the deployed Nafion 115 membrane, it is observed that diffusion losses increase with stack SoC. Therefore, to decrease stack SoC and lower diffusion losses, a higher flow rate during charging than during discharging is reasonable.
Airfoil Shape Optimization in Transonic Flow
International Nuclear Information System (INIS)
Islam, Z.
2004-01-01
A computationally efficient and adaptable design tool is constructed by coupling a flow analysis code based on Euler equations, with the well established numerical optimization algorithms. Optimization technique involving two analysis methods of Simplex and Rosenbrock have been used. The optimization study involves the minimization of wave drag for two different airfoils with geometric constraints on the airfoil maximum thickness or the cross sectional area along with aerodynamic constraint on lift coefficient. The method is applied to these airfoils transonic flow design points, and the results are compared with the original values. This study shows that the conventional low speed airfoils can be optimized to become supercritical for transonic flight speeds, while existing supercritical airfoils can still be improved further at particular design condition. (author)
International Nuclear Information System (INIS)
Taherian, H.; Rezania, A.; Sadeghi, S.; Ganji, D.D.
2011-01-01
This work studies the dynamic simulation of thermosyphon solar water heater collector considering the weather conditions of a city in north of Iran. The simulation was done for clear and partly cloudy days. The useful energy, the efficiency diagrams, the inlet and the outlet of collector, center of the absorber and center of the glass cover temperatures, were obtained. The simulation results were then compared with the experimental results in fall and showed a good agreement.
Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Admed S. [University of Minnesota; Sidiropoulos, Nicholas D. [University of Minnesota; Taylor, Josh A. [University of Toronto
2018-01-12
This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successive convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.
Loop thermosyphon thermal management of the avionics of an in-flight entertainment system
International Nuclear Information System (INIS)
Sarno, C.; Tantolin, C.; Hodot, R.; Maydanik, Yu.; Vershinin, S.
2013-01-01
A new generation of in-flight entertainment systems (IFEs) used on board commercial aircrafts is required to provide more and more services (audio, video, internet, multimedia, phone, etc.). But, unlike other avionics systems most of the IFE equipment and boxes are installed inside the cabin and they are not connected to the aircraft cooling system. The most critical equipment of the IFE system is a seat electronic box (SEB) installed under each passenger seat. Fans are necessary to face the increasing power dissipation. But this traditional approach has some drawbacks: extra cost multiplied by the seat number, reliability and maintenance. The objective of this work is to develop and evaluate an alternative completely passive cooling system (PCS) based on a two-phase technology including heat pipes and loop thermosyphons (LTSs) adequately integrated inside the seat structure and using the benefit of the seat frame as a heat sink. Previous works have been performed to evaluate these passive cooling systems which were based on loop heat pipe. This paper presents results of thermal tests of a passive cooling system of the SEB consisting of two LTSs and R141b as a working fluid. These tests have been carried out at different tilt angles and heat loads from 10 to 100 W. It has been shown that the cooled object temperature does not exceed the maximum given value in the range of tilt angles ±20° which is more wider than the range which is typical for ordinary evolution of passenger aircrafts. -- Highlights: ► A passive cooling system has been developed for avionics application. ► The system consists of loop thermosyphons and a passenger seat as a heat sink. ► Successful system tests have been run at heat loads to 100 W and angle tilts to 20°
Optimal Power Flow Control by Rotary Power Flow Controller
Directory of Open Access Journals (Sweden)
KAZEMI, A.
2011-05-01
Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.
Dense Array Optimization of Cross-Flow Turbines
Scherl, Isabel; Strom, Benjamin; Brunton, Steven; Polagye, Brian
2017-11-01
Cross-flow turbines, where the axis of rotation is perpendicular to the freestream flow, can be used to convert the kinetic energy in wind or water currents to electrical power. By taking advantage of mean and time-resolved wake structures, the optimal density of an array of cross-flow turbines has the potential for higher power output per unit area of land or sea-floor than an equivalent array of axial-flow turbines. In addition, dense arrays in tidal or river channels may be able to further elevate efficiency by exploiting flow confinement and surface proximity. In this work, a two-turbine array is optimized experimentally in a recirculating water channel. The spacing between turbines, as well as individual and coordinated turbine control strategies are optimized. Array efficiency is found to exceed the maximum efficiency for a sparse array (i.e., no interaction between turbines) for stream-wise rotor spacing of less than two diameters. Results are discussed in the context of wake measurements made behind a single rotor.
3D Topology optimization of Stokes flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Dammann, Bernd
of energy efficient devices for 2D Stokes flow. Creeping flow problems are described by the Stokes equations which model very viscous fluids at macro scales or ordinary fluids at very small scales. The latter gives the motivation for topology optimization problems based on the Stokes equations being a model......The present talk is concerned with the application of topology optimization to creeping flow problems in 3D. This research is driven by the fact that topology optimization has proven very successful as a tool in academic and industrial design problems. Success stories are reported from such diverse...
Flooding in counter-current two-phase flow
International Nuclear Information System (INIS)
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding
Flooding in counter-current two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.
Thermodynamic optimization of geometry in engineering flow systems
Energy Technology Data Exchange (ETDEWEB)
Bejan, A.; Jones, J.A. [Duke Univ., Durham, NC (United States)
2000-07-01
This review draws attention to an emerging body of work that relies on global thermodynamic optimization in the pursuit of flow system architecture. Exergy analysis establishes the theoretical performance limit. Thermodynamic optimization (or entropy generation minimization) brings the design as closely as permissible to the theoretical limit. The design is destined to remain imperfect because of constraints (finite sizes, times, and costs). Improvements are registered by spreading the imperfection (e.g., flow resistances) through the system. Resistances compete against each other and must be optimized together. Optimal spreading means spatial distribution, geometric form, topology, and geography. System architecture springs out of constrained global optimization. The principle is illustrated by simple examples: the optimization of dimensions, spacings, and the distribution (allocation) of heat transfer surface to the two heat exchangers of a power plant. Similar opportunities for deducing flow architecture exist in more complex systems for power and refrigeration. Examples show that the complete structure of heat exchangers for environmental control systems of aircraft can be derived based on this principle. (authors)
Energy Technology Data Exchange (ETDEWEB)
Nam, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Sang Nyung [Kyunghee Univ., Gyeonggi-do (Korea, Republic of)
2017-06-15
After the Fukushima accident, increasing interest has been raised in passive safety systems that maintain the integrity of the containment building. To improve the reliability and safety of nuclear power plants, long-term passive cooling concepts have been developed for advanced reactors. In a previous study, the proposed design was based on an ordinary cylindrical Two-Phase Closed Thermosyphon (TPCT). The exact assembly size and number of TPCTs should be elaborated upon through accurate calculations based on experiments. While the ultimate goal is to propose an effective MPHP design for the PCCS and experimentally verify its performance, a TPCT assembly that was manufactured based on the conceptual design in this paper was tested.
Integral Optimization of Systematic Parameters of Flip-Flow Screens
Institute of Scientific and Technical Information of China (English)
翟宏新
2004-01-01
The synthetic index Ks for evaluating flip-flow screens is proposed and systematically optimized in view of the whole system. A series of optimized values of relevant parameters are found and then compared with those of the current industrial specifications. The results show that the optimized value Ks approaches the one of those famous flip-flow screens in the world. Some new findings on geometric and kinematics parameters are useful for improving the flip-flow screens with a low Ks value, which is helpful in developing clean coal technology.
Computational Optimization of a Natural Laminar Flow Experimental Wing Glove
Hartshom, Fletcher
2012-01-01
Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.
Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe
Energy Technology Data Exchange (ETDEWEB)
Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)
2015-10-15
The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B{sub 4}C) to have the ability of reactivity control. It has annular vapor space and
Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe
International Nuclear Information System (INIS)
Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol
2015-01-01
The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B 4 C) to have the ability of reactivity control. It has annular vapor space and it
Traffic Flow Optimization Using a Quantum Annealer
Directory of Open Access Journals (Sweden)
Florian Neukart
2017-12-01
Full Text Available Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum processing units (QPUs produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology’s usefulness for optimization and sampling tasks. In this paper, we present a real-world application that uses quantum technologies. Specifically, we show how to map certain parts of a real-world traffic flow optimization problem to be suitable for quantum annealing. We show that time-critical optimization tasks, such as continuous redistribution of position data for cars in dense road networks, are suitable candidates for quantum computing. Due to the limited size and connectivity of current-generation D-Wave QPUs, we use a hybrid quantum and classical approach to solve the traffic flow problem.
Thermosyphon Phenomenon as an alternate heat sink of Shutdown Cooling System for the CANDU reactor
Energy Technology Data Exchange (ETDEWEB)
Kim, Jonghyun [GNEST, Seoul (Korea, Republic of); Lee, Kwangho; Oh, Haechol; Jun, Hwangyong [KEPRI, Taejon (Korea, Republic of)
2006-07-01
During the outage(overhaul) of the CANDU plant, there is a period when the coolant is partially drained to the reactor header level and the coolant is cooled and depressurized by Shutdown Cooling System(SDCS) other than PHTS pump. In the postulated accident of the loss of SDCS-the PHTS pump failure, the primary coolant system should be cooled by the alternate heat sink using the thermosyphon pheonomenon(TS) through the steam generator(SG) This study was aimed at verification and analyzing the core cooling ability of the TS. And the sensitivity analysis was done for the number of SGs used in the TS. As an analysis tool, RELAP5/CANDU was used.
Particle Swarm Optimization with Various Inertia Weight Variants for Optimal Power Flow Solution
Directory of Open Access Journals (Sweden)
Prabha Umapathy
2010-01-01
Full Text Available This paper proposes an efficient method to solve the optimal power flow problem in power systems using Particle Swarm Optimization (PSO. The objective of the proposed method is to find the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow, and voltage. Three different inertia weights, a constant inertia weight (CIW, a time-varying inertia weight (TVIW, and global-local best inertia weight (GLbestIW, are considered with the particle swarm optimization algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated for each of the method individually. It is observed that the PSO algorithm with the proposed inertia weight yields better results, both in terms of optimal solution and faster convergence. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The algorithm is computationally faster, in terms of the number of load flows executed, and provides better results than other heuristic techniques.
Optimized open-flow mixing: insights from microbubble streaming
Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha
2015-11-01
Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.
Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors
Tun, Min Thaw; Sakaguchi, Daisaku
2016-06-01
High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.
Thermal and hydrodynamic characteristics of supercritical CO2 natural circulation in closed loops
International Nuclear Information System (INIS)
Chen, Lin; Deng, Bi-Li; Jiang, Bin; Zhang, Xin-Rong
2013-01-01
Highlights: ► We model thermosyphon heat transfer and stability with super-/trans-critical turbulence model incorporated. ► Potentials of super-/trans-critical CO 2 thermosyphon are confirmed. ► Three characteristics found: flow instability; high flow rate with density wave; heat transfer discrepancies. ► Major laws of system stability factors are different compared with traditional fluids. ► Traditional thermosyphon flow correlation has its limitations and deserves further development. -- Abstract: Natural convective flow of supercritical fluids has become a hot topic in engineering applications. Natural circulation thermosyphon using supercritical/trans-critical CO 2 can be a potential choice for effectively transportation of heat and mass without pumping devices. This paper presents a series of numerical investigations into the fundamental features in a supercritical/trans-critical CO 2 based natural circulation loop. New heat transport model aiming at trans-critical thermosyphon heat transfer and stability is proposed with supercritical/trans-critical turbulence model incorporated. In this study, the fundamentals include the basic flow and heat transfer behavior of the above loop, the effect of heat source temperature on system stability, the effect of loop diameter on natural convection supercritical CO 2 loop and its coupling effect with heat source temperature and the effect of constant changing heat input condition and system behavior evolution during unsteady input or failure conditions. The fundamental potentials of supercritical/trans-critical CO 2 based natural convection system are confirmed. Basic supercritical CO 2 closed loop flow and heat transfer behaviors are clarified. During this study, the CO 2 loop stability map are also put forward and introduced as an important feature of supercritical CO 2 system. Stability factors of natural convective trans-critical CO 2 flow and its implications on real system control are also discussed in
International Nuclear Information System (INIS)
Jaisankar, S.; Radhakrishnan, T.K.; Sheeba, K.N.
2011-01-01
Research highlights: → Conventional solar heaters are inefficient due to poor convective heat transfer. → Twisted tapes improve the heat transfer rate in solar water heater system. → Increase in outlet water temperature by 15 o C through the use of twisted tapes. →Thermal performance of twisted tape collector is 19% more than plain tube system. → Reduces collector area (0.6 m 2 ) whereas area for conventional collector is 1 m 2 . -- Abstract: Experimental investigation of heat transfer, friction factor and thermal performance of thermosyphon solar water heater system fitted with helical and Left-Right twist of twist ratio 3 has been performed and presented. The helical twisted tape induces swirl flow inside the riser tubes unidirectional over the length. But, in Left-Right system the swirl flow is bidirectional which increases the heat transfer and pressure drop when compared to the helical system. The experimental heat transfer and friction factors characteristics are validated with theoretical equations and the deviation falls with in the acceptable limits. The results show that heat transfer enhancement in twisted tape collector is higher than the plain tube collector. Compared to helical and Left-Right twisted tape system of same twist ratio 3, maximum thermal performance is obtained for Left-Right twisted tape collector with increase in solar intensity.
Cash flow optimization in industrial enterprise
Directory of Open Access Journals (Sweden)
Myznikova T.N.
2017-01-01
Full Text Available Optimization of cash flows of the industrial company provides economic entity necessity and sufficiency of financial resources for sustainable activities. Cash optimization techniques are grouped into two blocks: theoretical - is mainly foreign methods and applied techniques that are mostly used by Russian authors. Models described in the literature are not allowed for the particular industry in the formation of cash. The mathematical models described in the literature do not allow to take into account industry characteristics in the formation of funds. The proposed methodology by authors allows to predict cash amounts based on business company. The balance of cash flows is provided by the budgeting system. The company’s the released money can send funds for investment purposes. Effectiveness of confirmed by practical testing methodology on the existing machine-building enterprise.
Effect of nanofluid concentration on two-phase thermosyphon heat exchanger performance
Directory of Open Access Journals (Sweden)
Cieśliński Janusz T.
2016-06-01
Full Text Available An approach - relaying on application of nanofluid as a working fluid, to improve performance of the two-phase thermosyphon heat exchanger (TPTHEx has been proposed. The prototype heat exchanger consists of two horizontal cylindrical vessels connected by two risers and a downcomer. Tube bundles placed in the lower and upper cylinders work as an evaporator and a condenser, respectively. Distilled water and nanofluid water-Al2O3 solution were used as working fluids. Nanoparticles were tested at the concentration of 0.01% and 0.1% by weight. A modified Peclet equation and Wilson method were used to estimate the overall heat transfer coefficient of the tested TPTHEx. The obtained results indicate better performance of the TPTHEx with nanofluids as working fluid compared to distilled water, independent of nanoparticle concentration tested. However, increase in nanoparticle concentration results in overall heat transfer coefficient decrease of the TPTHEx examined. It has been observed that, independent of nanoparticle concentration tested, decrease in operating pressure results in evaporation heat transfer coefficient increase.
Effect of nanofluid concentration on two-phase thermosyphon heat exchanger performance
Cieśliński, Janusz T.
2016-06-01
An approach - relaying on application of nanofluid as a working fluid, to improve performance of the two-phase thermosyphon heat exchanger (TPTHEx) has been proposed. The prototype heat exchanger consists of two horizontal cylindrical vessels connected by two risers and a downcomer. Tube bundles placed in the lower and upper cylinders work as an evaporator and a condenser, respectively. Distilled water and nanofluid water-Al2O3 solution were used as working fluids. Nanoparticles were tested at the concentration of 0.01% and 0.1% by weight. A modified Peclet equation and Wilson method were used to estimate the overall heat transfer coefficient of the tested TPTHEx. The obtained results indicate better performance of the TPTHEx with nanofluids as working fluid compared to distilled water, independent of nanoparticle concentration tested. However, increase in nanoparticle concentration results in overall heat transfer coefficient decrease of the TPTHEx examined. It has been observed that, independent of nanoparticle concentration tested, decrease in operating pressure results in evaporation heat transfer coefficient increase.
Shape signature based on Ricci flow and optimal mass transportation
Luo, Wei; Su, Zengyu; Zhang, Min; Zeng, Wei; Dai, Junfei; Gu, Xianfeng
2014-11-01
A shape signature based on surface Ricci flow and optimal mass transportation is introduced for the purpose of surface comparison. First, the surface is conformally mapped onto plane by Ricci flow, which induces a measure on the planar domain. Second, the unique optimal mass transport map is computed that transports the new measure to the canonical measure on the plane. The map is obtained by a convex optimization process. This optimal transport map encodes all the information of the Riemannian metric on the surface. The shape signature consists of the optimal transport map, together with the mean curvature, which can fully recover the original surface. The discrete theories of surface Ricci flow and optimal mass transportation are explained thoroughly. The algorithms are given in detail. The signature is tested on human facial surfaces with different expressions accquired by structured light 3-D scanner based on phase-shifting method. The experimental results demonstrate the efficiency and efficacy of the method.
Topology optimization considering design-dependent Stokes flow loads
Picelli, R.; Vicente, W.M.; Pavanello, R.; van Keulen, A.; Li, Qing; Steven, Grant P.; Zhang, Zhongpu
2015-01-01
This article presents an evolutionary topology optimization method for mean compliance minimization of structures under design-dependent viscous fluid flow loads. The structural domain is governed by the elasticity equation and the fluid by the incompressible Stokes flow equations. When the
Optimal energy growth in a stably stratified shear flow
Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama
2018-02-01
Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.
International Nuclear Information System (INIS)
Jaisankar, S.; Radhakrishnan, T.K.; Sheeba, K.N.; Suresh, S.
2009-01-01
Experimental investigation of heat transfer and friction factor characteristics of thermosyphon solar water heater with full length Left-Right twist, twist fitted with rod and spacer at the trailing edge for lengths of 100, 200 and 300 mm for twist ratio 3 and 5 has been studied. The experimental data for plain tube collector has been compared with fundamental equation within a discrepancy of ±7.41% and ±14.97% for Nusselt number and friction factor, respectively. Result shows that the Nusselt number decreases by 11% and 19% for twist fitted with rod and twist with spacer, respectively, when compared with full length twist. Friction factor also decreases by 18% and 29% for twist fitted with rod and spacer, respectively, as compared with full length twist. The heat enhancement in twist fitted with rod at the trailing edge is maximum when compared with twist fitted with spacer because the swirl flow is maintained throughout the length of rod.
Design and Optimization of Annular Flow Electromagnetic Measurement System for Drilling Engineering
Directory of Open Access Journals (Sweden)
Liang Ge
2018-01-01
Full Text Available Using the downhole annular flow measurement system to get real-time information of downhole annular flow is the core and foundation of downhole microflux control drilling technology. The research work of electromagnetic flowmeter in recent years creates a challenge to the design of downhole annular flow measurement. This paper proposes a design and optimization of annular flow electromagnetic measurement system for drilling engineering based on the finite element method. Firstly, the annular flow measuring and optimization principle are described. Secondly, a simulation model of an annular flow electromagnetic measurement system with two pairs of coil is built based on the fundamental equation of electromagnetic flowmeter by COMSOL. Thirdly, simulations of the structure of excitation system of the measurement system are carried out, and simulations of the size of the electrode’s radius are also carried out based on the optimized structure, and then all the simulation results are analyzed to evaluate the optimization effect based on the evaluation indexes. The simulation results show that optimized shapes of the excitation system and electrode size can yield a better performance in the annular flow measurement.
Determination of Optimal Flow Paths for Safety Injection According to Accident Conditions
Energy Technology Data Exchange (ETDEWEB)
Yoo, Kwae Hwan; Kim, Ju Hyun; Kim, Dong Yeong; Na, Man Gyun [Chosun Univ., Gwangju (Korea, Republic of); Hur, Seop; Kim, Changhwoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In case severe accidents happen, major safety parameters of nuclear reactors are rapidly changed. Therefore, operators are unable to respond appropriately. This situation causes the human error of operators that led to serious accidents at Chernobyl. In this study, we aimed to develop an algorithm that can be used to select the optimal flow path for cold shutdown in serious accidents, and to recover an NPP quickly and efficiently from the severe accidents. In order to select the optimal flow path, we applied a Dijkstra algorithm. The Dijkstra algorithm is used to find the path of minimum total length between two given nodes and needs a weight (or length) matrix. In this study, the weight between nodes was calculated from frictional and minor losses inside pipes. That is, the optimal flow path is found so that the pressure drop between a starting node (water source) and a destination node (position that cooling water is injected) is minimized. In case a severe accident has happened, if we inject cooling water through the optimized flow path, then the nuclear reactor will be safely and effectively returned into the cold shutdown state. In this study, we have analyzed the optimal flow paths for safety injection as a preliminary study for developing an accident recovery system. After analyzing the optimal flow path using the Dijkstra algorithm, and the optimal flow paths were selected by calculating the head loss according to path conditions.
Preventive Security-Constrained Optimal Power Flow Considering UPFC Control Modes
Directory of Open Access Journals (Sweden)
Xi Wu
2017-08-01
Full Text Available The successful application of the unified power flow controller (UPFC provides a new control method for the secure and economic operation of power system. In order to make the full use of UPFC and improve the economic efficiency and static security of a power system, a preventive security-constrained power flow optimization method considering UPFC control modes is proposed in this paper. Firstly, an iterative method considering UPFC control modes is deduced for power flow calculation. Taking into account the influence of different UPFC control modes on the distribution of power flow after N-1 contingency, the optimization model is then constructed by setting a minimal system operation cost and a maximum static security margin as the objective. Based on this model, the particle swarm optimization (PSO algorithm is utilized to optimize power system operating parameters and UPFC control modes simultaneously. Finally, a standard IEEE 30-bus system is utilized to demonstrate that the proposed method fully exploits the potential of static control of UPFC and significantly increases the economic efficiency and static security of the power system.
Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.
2017-11-01
A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.
Topology Optimization of Large Scale Stokes Flow Problems
DEFF Research Database (Denmark)
Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan
2008-01-01
This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....
Topology optimization of unsteady flow problems using the lattice Boltzmann method
DEFF Research Database (Denmark)
Nørgaard, Sebastian Arlund; Sigmund, Ole; Lazarov, Boyan Stefanov
2016-01-01
This article demonstrates and discusses topology optimization for unsteady incompressible fluid flows. The fluid flows are simulated using the lattice Boltzmann method, and a partial bounceback model is implemented to model the transition between fluid and solid phases in the optimization problems...
Dynamic ADMM for Real-time Optimal Power Flow: Preprint
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-02-23
This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation of the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.
Performance evaluation of photovoltaic-thermosyphon system for subtropical climate application
Energy Technology Data Exchange (ETDEWEB)
Chow, T.T.; He, W.; Chan, A.L.S. [Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR (China); Ji, J. [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Anhui (China)
2007-01-15
The rapid development and sales volume of photovoltaic (PV) modules has created a promising business environment in the foreseeable future. However, the current electricity cost from PV is still several times higher than from the conventional power generation. One way to shorten the payback period is to bring in the hybrid photovoltaic-thermal (PVT) technology, which multiplies the energy outputs from the same collector surface area. In this paper, the performance evaluation of a new water-type PVT collector system is presented. The thermal collection making use of the thermosyphon principle eliminates the expense of pumping power. Experimental rigs were successfully built. A dynamic simulation model of the PVT collector system was developed and validated by the experimental measurements, together with two other similar models developed for PV module and solar hot-water collector. These were then used to predict the energy outputs and the payback periods for their applications in the subtropical climate, with Hong Kong as an example. The numerical results show that a payback period of 12 year for the PVT collector system is comparable to the side-by-side system, and is much shorter than the plain PV application. This is a great encouragement in marketing the PVT technology. (author)
Performance evaluation of photovoltaic-thermosyphon system for subtropical climate application
International Nuclear Information System (INIS)
Chow, T.T.; He, W.; Chan, A.L.S.; Ji, J.
2007-01-01
The rapid development and sales volume of photovoltaic (PV) modules has created a promising business environment in the foreseeable future. However, the current electricity cost from PV is still several times higher than from the conventional power generation. One way to shorten the payback period is to bring in the hybrid photovoltaic-thermal (PVT) technology, which multiplies the energy outputs from the same collector surface area. In this paper, the performance evaluation of a new water-type PVT collector system is presented. The thermal collection making use of the thermosyphon principle eliminates the expense of pumping power. Experimental rigs were successfully built. A dynamic simulation model of the PVT collector system was developed and validated by the experimental measurements, together with two other similar models developed for PV module and solar hot-water collector. These were then used to predict the energy outputs and the payback periods for their applications in the subtropical climate, with Hong Kong as an example. The numerical results show that a payback period of 12 year for the PVT collector system is comparable to the side-by-side system, and is much shorter than the plain PV application. This is a great encouragement in marketing the PVT technology. (author)
Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji
2002-06-01
This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright
Optimal power flow based on glow worm-swarm optimization for three-phase islanded microgrids
DEFF Research Database (Denmark)
Quang, Ninh Nguyen; Sanseverino, Eleonora Riva; Di Silvestre, Maria Luisa
2014-01-01
This paper presents an application of the Glowworm Swarm Optimization method (GSO) to solve the optimal power flow problem in three-phase islanded microgrids equipped with power electronics dc-ac inverter interfaced distributed generation units. In this system, the power injected by the distribut...
Optimization of plasma flow parameters of the magnetoplasma compressor
International Nuclear Information System (INIS)
Dojcinovic, I P; Kuraica, M M; Obradovc, B M; Cvetanovic, N; Puric, J
2007-01-01
Optimization of the working conditions of the magnetoplasma compressor (MPC) has been performed through analysing discharge and compression plasma flow parameters in hydrogen, nitrogen and argon at different pressures. Energy conversion rate, volt-ampere curve exponent and plasma flow velocities have been studied to optimize the efficiency of energy transfer from the supply source to the plasma. It has been found that the most effective energy transfer from the supply to the plasma is in hydrogen as a working gas at 1000 Pa pressure. It was found that the accelerating regime exists for hydrogen up to 3000 Pa pressures, in nitrogen up to 2000 Pa and in argon up to 1000 Pa pressure. At higher pressures MPC in all the gases works in the decelerating regime. At pressures lower than 200 Pa, high cathode erosion is observed. MPC plasma flow parameter optimization is very important because this plasma accelerating system may be of special interest for solid surface modification and other technology applications
International Nuclear Information System (INIS)
Wang, Ping-Yang; Hu, Bo-Wen; Liu, Zhen-Hua
2015-01-01
Highlights: • A novel open heat pipe thermal storage unit is design to improve its performance. • Mechanism of its operation is phase-change heat transfer. • Tubular canisters with phase change material were placed in thermal storage unit. • Experiment and analysis are carried out to investigate its operation properties. - Abstract: A novel open thermosyphon-type thermal storage unit is presented to improve design and performance of heat pipe type thermal storage unit. In the present study, tubular canisters filled with a solid–liquid phase change material are vertically placed in the middle of the thermal storage unit. The phase change material melts at 100 °C. Water is presented as the phase-change heat transfer medium of the thermal storage unit. The tubular canister is wrapped tightly with a layer of stainless steel mesh to increase the surface wettability. The heat transfer mechanism of charging/discharging is similar to that of the thermosyphon. Heat transfer between the heat resource or cold resource and the phase change material in this device occurs in the form of a cyclic phase change of the heat-transfer medium, which occurs on the surface of the copper tubes and has an extremely high heat-transfer coefficient. A series of experiments and theoretical analyses are carried out to investigate the properties of the thermal storage unit, including power distribution, start-up performance, and temperature difference between the phase change material and the surrounding vapor. The results show that the whole system has excellent heat-storage/heat-release performance
Optical flow optimization using parallel genetic algorithm
Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe
2011-06-01
A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.
A model for cooling systems analysis under natural convection
International Nuclear Information System (INIS)
Santos, S.J. dos.
1988-01-01
The present work analyses thermosyphons and their non dimensional numbers. The mathematical model considers constant pressure, single-phase incompressible flow. It simulates both open and closed thermosyphons, and deals with heat sources like PWR cores of electrical heaters and cold sinks like heat exchangers or reservoirs. A computer code named STRATS was developed based on this model. (author)
Optimal power flow for technically feasible Energy Management systems in Islanded Microgrids
DEFF Research Database (Denmark)
Sanseverino, Eleonora Riva; T. T. Quynh, T.; Di Silvestre, Maria Luisa
2016-01-01
This paper presents a combined optimal energy and power flow management for islanded microgrids. The highest control level in this case will provide a feasible and optimized operating point around the economic optimum. In order to account for both unbalanced and balanced loads, the optimal power...... flow is carried out using a Glow-worm Swarm Optimizer. The control level is organized into two different sub-levels, the highest of which accounts for minimum cost operation and the lowest one solving the optimal power flow and devising the set points of inverter interfaced generation units...... and rotating machines with a minimum power loss. A test has been carried out for 6 bus islanded microgrids to show the efficiency and feasibility of the proposed technique....
Numerical optimization of conical flow waveriders including detailed viscous effects
Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego
1987-01-01
A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.
Adaptive optimization for active queue management supporting TCP flows
Baldi, S.; Kosmatopoulos, Elias B.; Pitsillides, Andreas; Lestas, Marios; Ioannou, Petros A.; Wan, Y.; Chiu, George; Johnson, Katie; Abramovitch, Danny
2016-01-01
An adaptive decentralized strategy for active queue management of TCP flows over communication networks is presented. The proposed strategy solves locally, at each link, an optimal control problem, minimizing a cost composed of residual capacity and buffer queue size. The solution of the optimal
Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles
DEFF Research Database (Denmark)
Löschner, Katrin; Navratilova, Jana; Legros, Samuel
2013-01-01
flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses...... especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross...... obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs...
Geometric optimization of cross-flow heat exchanger based on dynamic controllability
Directory of Open Access Journals (Sweden)
Alotaibi Sorour
2008-01-01
Full Text Available The operation of heat exchangers and other thermal equipments in the face of variable loads is usually controlled by manipulating inlet fluid temperatures or mass flow rates, where the controlled variable is usually one of the output temperatures. The aim of this work is to optimize the geometry of a tube with internal flow of water and an external cross-flow of air, based on its controllability characteristics. Controllability is a useful concept both from theoretical and practical perspective since it tells us if a particular output can be controlled by a particular input. This concept can also provide us with information about the easiest operating condition to control a particular output. A transient model of a tube in cross-flow is developed, where an implicit formulation is used for transient numerical solutions. The aspect ratio of the tube is optimized, subject to volume constraints, based on the optimum operation in terms of controllability. The reported optimized aspect ratio, water mass flow rate and controllability are studied for deferent external properties of the tube.
Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint
Energy Technology Data Exchange (ETDEWEB)
Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Low, Steven H. [California Institute of Technology
2017-11-27
This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.
Airfoil optimization for unsteady flows with application to high-lift noise reduction
Rumpfkeil, Markus Peer
The use of steady-state aerodynamic optimization methods in the computational fluid dynamic (CFD) community is fairly well established. In particular, the use of adjoint methods has proven to be very beneficial because their cost is independent of the number of design variables. The application of numerical optimization to airframe-generated noise, however, has not received as much attention, but with the significant quieting of modern engines, airframe noise now competes with engine noise. Optimal control techniques for unsteady flows are needed in order to be able to reduce airframe-generated noise. In this thesis, a general framework is formulated to calculate the gradient of a cost function in a nonlinear unsteady flow environment via the discrete adjoint method. The unsteady optimization algorithm developed in this work utilizes a Newton-Krylov approach since the gradient-based optimizer uses the quasi-Newton method BFGS, Newton's method is applied to the nonlinear flow problem, GMRES is used to solve the resulting linear problem inexactly, and last but not least the linear adjoint problem is solved using Bi-CGSTAB. The flow is governed by the unsteady two-dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence model, which are discretized using structured grids and a finite difference approach. The effectiveness of the unsteady optimization algorithm is demonstrated by applying it to several problems of interest including shocktubes, pulses in converging-diverging nozzles, rotating cylinders, transonic buffeting, and an unsteady trailing-edge flow. In order to address radiated far-field noise, an acoustic wave propagation program based on the Ffowcs Williams and Hawkings (FW-H) formulation is implemented and validated. The general framework is then used to derive the adjoint equations for a novel hybrid URANS/FW-H optimization algorithm in order to be able to optimize the shape of airfoils based on their calculated far
Directory of Open Access Journals (Sweden)
Iliev Iliya K.
2016-01-01
Full Text Available The experimental research aims at the analysis of the thermal performance of a gas-liquid heat exchanger in a pilot plant. Results of the conducted experiment with a finned tubes thermosyphon heat exchanger using natural gas are presented. The installation was mounted at the exit of a flue gas from an existing steam generator “PK-4” with total power of 2.88 MW in the boiler room of Vini, Sliven, Bulgaria. Different experiments were carried out at different loads of the steam generator in order to determine the efficiency of the heat exchanger. Based on these results the coefficient of heat transfer of flue gas to the finned tubes was determined, based on different modes of operation with crossed and straight pipe bundles. The effectiveness-number of transfer units method was used.
Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays
Directory of Open Access Journals (Sweden)
Helen V. Hsieh
2017-05-01
Full Text Available Immunochromatographic or lateral flow assays (LFAs are inexpensive, easy to use, point-of-care medical diagnostic tests that are found in arenas ranging from a doctor’s office in Manhattan to a rural medical clinic in low resource settings. The simplicity in the LFA itself belies the complex task of optimization required to make the test sensitive, rapid and easy to use. Currently, the manufacturers develop LFAs by empirical optimization of material components (e.g., analytical membranes, conjugate pads and sample pads, biological reagents (e.g., antibodies, blocking reagents and buffers and the design of delivery geometry. In this paper, we will review conventional optimization and then focus on the latter and outline analytical tools, such as dynamic light scattering and optical biosensors, as well as methods, such as microfluidic flow design and mechanistic models. We are applying these tools to find non-obvious optima of lateral flow assays for improved sensitivity, specificity and manufacturing robustness.
Efficient relaxations for joint chance constrained AC optimal power flow
Energy Technology Data Exchange (ETDEWEB)
Baker, Kyri; Toomey, Bridget
2017-07-01
Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality as an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.
Optimal orientation in flows : Providing a benchmark for animal movement strategies
McLaren, James D.; Shamoun-Baranes, Judy; Dokter, Adriaan M.; Klaassen, Raymond H. G.; Bouten, Willem
2014-01-01
Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal)
Optimization of micropillar sequences for fluid flow sculpting
Energy Technology Data Exchange (ETDEWEB)
Stoecklein, Daniel; Ganapathysubramanian, Baskar [Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Wu, Chueh-Yu; Kim, Donghyuk; Di Carlo, Dino [Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)
2016-01-15
Inertial fluid flow deformation around pillars in a microchannel is a new method for controlling fluid flow. Sequences of pillars have been shown to produce a rich phase space with a wide variety of flow transformations. Previous work has successfully demonstrated manual design of pillar sequences to achieve desired transformations of the flow cross section, with experimental validation. However, such a method is not ideal for seeking out complex sculpted shapes as the search space quickly becomes too large for efficient manual discovery. We explore fast, automated optimization methods to solve this problem. We formulate the inertial flow physics in microchannels with different micropillar configurations as a set of state transition matrix operations. These state transition matrices are constructed from experimentally validated streamtraces for a fixed channel length per pillar. This facilitates modeling the effect of a sequence of micropillars as nested matrix-matrix products, which have very efficient numerical implementations. With this new forward model, arbitrary micropillar sequences can be rapidly simulated with various inlet configurations, allowing optimization routines quick access to a large search space. We integrate this framework with the genetic algorithm and showcase its applicability by designing micropillar sequences for various useful transformations. We computationally discover micropillar sequences for complex transformations that are substantially shorter than manually designed sequences. We also determine sequences for novel transformations that were difficult to manually design. Finally, we experimentally validate these computational designs by fabricating devices and comparing predictions with the results from confocal microscopy.
Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint
Energy Technology Data Exchange (ETDEWEB)
Baker, Kyri; Dall' Anese, Emiliano; Summers, Tyler
2016-09-01
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flow equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.
Cost-optimal power system extension under flow-based market coupling
Energy Technology Data Exchange (ETDEWEB)
Hagspiel, Simeon; Jaegemann, Cosima; Lindenberger, Dietmar [Koeln Univ. (Germany). Energiewirtschaftliches Inst.; Brown, Tom; Cherevatskiy, Stanislav; Troester, Eckehard [Energynautics GmbH, Langen (Germany)
2013-05-15
Electricity market models, implemented as dynamic programming problems, have been applied widely to identify possible pathways towards a cost-optimal and low carbon electricity system. However, the joint optimization of generation and transmission remains challenging, mainly due to the fact that different characteristics and rules apply to commercial and physical exchanges of electricity in meshed networks. This paper presents a methodology that allows to optimize power generation and transmission infrastructures jointly through an iterative approach based on power transfer distribution factors (PTDFs). As PTDFs are linear representations of the physical load flow equations, they can be implemented in a linear programming environment suitable for large scale problems. The algorithm iteratively updates PTDFs when grid infrastructures are modified due to cost-optimal extension and thus yields an optimal solution with a consistent representation of physical load flows. The method is first demonstrated on a simplified three-node model where it is found to be robust and convergent. It is then applied to the European power system in order to find its cost-optimal development under the prescription of strongly decreasing CO{sub 2} emissions until 2050.
Multi-objective optimal power flow with FACTS devices
International Nuclear Information System (INIS)
Basu, M.
2011-01-01
This paper presents multi-objective differential evolution to optimize cost of generation, emission and active power transmission loss of flexible ac transmission systems (FACTS) device-equipped power systems. In the proposed approach, optimal power flow problem is formulated as a multi-objective optimization problem. FACTS devices considered include thyristor controlled series capacitor (TCSC) and thyristor controlled phase shifter (TCPS). The proposed approach has been examined and tested on the modified IEEE 30-bus and 57-bus test systems. The results obtained from the proposed approach have been compared with those obtained from nondominated sorting genetic algorithm-II, strength pareto evolutionary algorithm 2 and pareto differential evolution.
CFD Simulation and Optimization of Very Low Head Axial Flow Turbine Runner
Directory of Open Access Journals (Sweden)
Yohannis Mitiku Tobo
2015-10-01
Full Text Available The main objective of this work is Computational Fluid Dynamics (CFD modelling, simulation and optimization of very low head axial flow turbine runner to be used to drive a centrifugal pump of turbine-driven pump. The ultimate goal of the optimization is to produce a power of 1kW at head less than 1m from flowing river to drive centrifugal pump using mechanical coupling (speed multiplier gear directly. Flow rate, blade numbers, turbine rotational speed, inlet angle are parameters used in CFD modeling, simulation and design optimization of the turbine runner. The computed results show that power developed by a turbine runner increases with increasing flow rate. Pressure inside the turbine runner increases with flow rate but, runner efficiency increases for some flow rate and almost constant thereafter. Efficiency and power developed by a runner drops quickly if turbine speed increases due to higher pressure losses and conversion of pressure energy to kinetic energy inside the runner. Increasing blade number increases power developed but, efficiency does not increase always. Efficiency increases for some blade number and drops down due to the fact that change in direction of the relative flow vector at the runner exit, which decreases the net rotational momentum and increases the axial flow velocity.
Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Baker, Kyri; Summers, Tyler
2016-12-01
The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.
Modeling Vertical Flow Treatment Wetland Hydraulics to Optimize Treatment Efficiency
2011-03-24
be forced to flow in a 90 serpentine manner back and forth as it moves upward through the wetland (think waiting in line at Disneyland ). This...Flow Treatment Wetland Hydraulics to Optimize Treatment Efficiency 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR
CFD-Driven Valve Shape Optimization for Performance Improvement of a Micro Cross-Flow Turbine
Directory of Open Access Journals (Sweden)
Endashaw Tesfaye Woldemariam
2018-01-01
Full Text Available Turbines are critical parts in hydropower facilities, and the cross-flow turbine is one of the widely applied turbine designs in small- and micro-hydro facilities. Cross-flow turbines are relatively simple, flexible and less expensive, compared to other conventional hydro-turbines. However, the power generation efficiency of cross-flow turbines is not yet well optimized compared to conventional hydro-turbines. In this article, a Computational Fluid Dynamics (CFD-driven design optimization approach is applied to one of the critical parts of the turbine, the valve. The valve controls the fluid flow, as well as determines the velocity and pressure magnitudes of the fluid jet leaving the nozzle region in the turbine. The Non-Uniform Rational B-Spline (NURBS function is employed to generate construction points for the valve profile curve. Control points from the function that are highly sensitive to the output power are selected as optimization parameters, leading to the generation of construction points. Metamodel-assisted and metaheuristic optimization tools are used in the optimization. Optimized turbine designs from both optimization methods outperformed the original design with regard to performance of the turbine. Moreover, the metamodel-assisted optimization approach reduced the computational cost, compared to its counterpart.
Robust optimization-based DC optimal power flow for managing wind generation uncertainty
Boonchuay, Chanwit; Tomsovic, Kevin; Li, Fangxing; Ongsakul, Weerakorn
2012-11-01
Integrating wind generation into the wider grid causes a number of challenges to traditional power system operation. Given the relatively large wind forecast errors, congestion management tools based on optimal power flow (OPF) need to be improved. In this paper, a robust optimization (RO)-based DCOPF is proposed to determine the optimal generation dispatch and locational marginal prices (LMPs) for a day-ahead competitive electricity market considering the risk of dispatch cost variation. The basic concept is to use the dispatch to hedge against the possibility of reduced or increased wind generation. The proposed RO-based DCOPF is compared with a stochastic non-linear programming (SNP) approach on a modified PJM 5-bus system. Primary test results show that the proposed DCOPF model can provide lower dispatch cost than the SNP approach.
Optimizing transformations for automated, high throughput analysis of flow cytometry data.
Finak, Greg; Perez, Juan-Manuel; Weng, Andrew; Gottardo, Raphael
2010-11-04
In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, and gating have received considerable scrutiny from the community, the influence of data transformation on the output of high throughput analysis has been largely overlooked. Flow cytometry measurements can vary over several orders of magnitude, cell populations can have variances that depend on their mean fluorescence intensities, and may exhibit heavily-skewed distributions. Consequently, the choice of data transformation can influence the output of automated gating. An appropriate data transformation aids in data visualization and gating of cell populations across the range of data. Experience shows that the choice of transformation is data specific. Our goal here is to compare the performance of different transformations applied to flow cytometry data in the context of automated gating in a high throughput, fully automated setting. We examine the most common transformations used in flow cytometry, including the generalized hyperbolic arcsine, biexponential, linlog, and generalized Box-Cox, all within the BioConductor flowCore framework that is widely used in high throughput, automated flow cytometry data analysis. All of these transformations have adjustable parameters whose effects upon the data are non-intuitive for most users. By making some modelling assumptions about the transformed data, we develop maximum likelihood criteria to optimize parameter choice for these different transformations. We compare the performance of parameter-optimized and default-parameter (in flowCore) data transformations on real and simulated data by measuring the variation in the locations of cell populations across samples, discovered via automated gating in both the scatter and fluorescence channels. We find that parameter-optimized transformations improve visualization, reduce
Optimizing transformations for automated, high throughput analysis of flow cytometry data
Directory of Open Access Journals (Sweden)
Weng Andrew
2010-11-01
Full Text Available Abstract Background In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, and gating have received considerable scrutiny from the community, the influence of data transformation on the output of high throughput analysis has been largely overlooked. Flow cytometry measurements can vary over several orders of magnitude, cell populations can have variances that depend on their mean fluorescence intensities, and may exhibit heavily-skewed distributions. Consequently, the choice of data transformation can influence the output of automated gating. An appropriate data transformation aids in data visualization and gating of cell populations across the range of data. Experience shows that the choice of transformation is data specific. Our goal here is to compare the performance of different transformations applied to flow cytometry data in the context of automated gating in a high throughput, fully automated setting. We examine the most common transformations used in flow cytometry, including the generalized hyperbolic arcsine, biexponential, linlog, and generalized Box-Cox, all within the BioConductor flowCore framework that is widely used in high throughput, automated flow cytometry data analysis. All of these transformations have adjustable parameters whose effects upon the data are non-intuitive for most users. By making some modelling assumptions about the transformed data, we develop maximum likelihood criteria to optimize parameter choice for these different transformations. Results We compare the performance of parameter-optimized and default-parameter (in flowCore data transformations on real and simulated data by measuring the variation in the locations of cell populations across samples, discovered via automated gating in both the scatter and fluorescence channels. We find that parameter-optimized
Axiomatic Design of a Framework for the Comprehensive Optimization of Patient Flows in Hospitals
Directory of Open Access Journals (Sweden)
Gabriele Arcidiacono
2017-01-01
Full Text Available Lean Management and Six Sigma are nowadays applied not only to the manufacturing industry but also to service industry and public administration. The manifold variables affecting the Health Care system minimize the effect of a narrow Lean intervention. Therefore, this paper aims to discuss a comprehensive, system-based approach to achieve a factual holistic optimization of patient flows. This paper debates the efficacy of Lean principles applied to the optimization of patient flows and related activities, structures, and resources, developing a theoretical framework based on the principles of the Axiomatic Design. The demand for patient-oriented and efficient health services leads to use these methodologies to improve hospital processes. In the framework, patients with similar characteristics are clustered in families to achieve homogeneous flows through the value stream. An optimization checklist is outlined as the result of the mapping between Functional Requirements and Design Parameters, with the right sequence of the steps to optimize the patient flow according to the principles of Axiomatic Design. The Axiomatic Design-based top-down implementation of Health Care evidence, according to Lean principles, results in a holistic optimization of hospital patient flows, by reducing the complexity of the system.
Energy and ancillary service dispatch through dynamic optimal power flow
International Nuclear Information System (INIS)
Costa, A.L.; Costa, A. Simoes
2007-01-01
This paper presents an approach based on dynamic optimal power flow (DOPF) to clear both energy and spinning reserve day-ahead markets. A competitive environment is assumed, where agents can offer active power for both demand supply and ancillary services. The DOPF jointly determines the optimal solutions for both energy dispatch and reserve allocation. A non-linear representation for the electrical network is employed, which is able to take transmission losses and power flow limits into account. An attractive feature of the proposed approach is that the final optimal solution will automatically meet physical constraints such as generating limits and ramp rate restrictions. In addition, the proposed framework allows the definition of multiple zones in the network for each time interval, in order to ensure a more adequate distribution of reserves throughout the power system. (author)
Optimal propulsive flapping in Stokes flows.
Was, Loïc; Lauga, Eric
2014-03-01
Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers.
Optimal propulsive flapping in Stokes flows
International Nuclear Information System (INIS)
Was, Loïc; Lauga, Eric
2014-01-01
Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers. (paper)
International Nuclear Information System (INIS)
Zhou Bing; Cheng Xue-Tao; Liang Xin-Gang
2013-01-01
In thermal radiation, taking heat flow as an extensive quantity and defining the potential as temperature T or the blackbody emissive power U will lead to two different definitions of radiation entransy flow and the corresponding principles for thermal radiation optimization. The two definitions of radiation entransy flow and the corresponding optimization principles are compared in this paper. When the total heat flow is given, the optimization objectives of the extremum entransy dissipation principles (EEDPs) developed based on potentials T and U correspond to the minimum equivalent temperature difference and the minimum equivalent blackbody emissive power difference respectively. The physical meaning of the definition based on potential U is clearer than that based on potential T, but the latter one can be used for the coupled heat transfer optimization problem while the former one cannot. The extremum entropy generation principle (EEGP) for thermal radiation is also derived, which includes the minimum entropy generation principle for thermal radiation. When the radiation heat flow is prescribed, the EEGP reveals that the minimum entropy generation leads to the minimum equivalent thermodynamic potential difference, which is not the expected objective in heat transfer. Therefore, the minimum entropy generation is not always appropriate for thermal radiation optimization. Finally, three thermal radiation optimization examples are discussed, and the results show that the difference in optimization objective between the EEDPs and the EEGP leads to the difference between the optimization results. The EEDP based on potential T is more useful in practical application since its optimization objective is usually consistent with the expected one. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Optimal scheduling for distribution network with redox flow battery storage
International Nuclear Information System (INIS)
Hosseina, Majid; Bathaee, Seyed Mohammad Taghi
2016-01-01
Highlights: • A novel method for optimal scheduling of storages in radial network is presented. • Peak shaving and load leveling are the main objectives. • Vanadium redox flow battery is considered as the energy storage unit. • Real data is used for simulation. - Abstract: There are many advantages to utilize storages in electric power system. Peak shaving, load leveling, load frequency control, integration of renewable, energy trading and spinning reserve are the most important of them. Batteries, especially redox flow batteries, are one of the appropriate storages for utilization in distribution network. This paper presents a novel, heuristic and practical method for optimal scheduling in distribution network with flow battery storage. This heuristic method is more suitable for scheduling and operation of distribution networks which require installation of storages. Peak shaving and load leveling is considered as the main objective in this paper. Several indices are presented in this paper for determine the place of storages and also scheduling for optimal use of energy in them. Simulations of this paper are based on real information of distribution network substation that located in Semnan, Iran.
Intelligent Network Flow Optimization (INFLO) prototype acceptance test summary.
2015-05-01
This report summarizes the results of System Acceptance Testing for the implementation of the Intelligent Network : Flow Optimization (INFLO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected : Vehicle Program. ...
Phase change heat transfer device for process heat applications
International Nuclear Information System (INIS)
Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred
2010-01-01
The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.
International Nuclear Information System (INIS)
Wang, Chao; Chen, Lingen; Xia, Shaojun; Sun, Fengrui
2016-01-01
A sulphuric acid decomposition process in a tubular plug-flow reactor with fixed inlet flow rate and completely controllable exterior wall temperature profile and reactants pressure profile is studied in this paper by using finite-time thermodynamics. The maximum production rate of the aimed product SO 2 and the optimal exterior wall temperature profile and reactants pressure profile are obtained by using nonlinear programming method. Then the optimal reactor with the maximum production rate is compared with the reference reactor with linear exterior wall temperature profile and the optimal reactor with minimum entropy generation rate. The result shows that the production rate of SO 2 of optimal reactor with the maximum production rate has an increase of more than 7%. The optimization of temperature profile has little influence on the production rate while the optimization of reactants pressure profile can significantly increase the production rate. The results obtained may provide some guidelines for the design of real tubular reactors. - Highlights: • Sulphuric acid decomposition process in tubular plug-flow reactor is studied. • Fixed inlet flow rate and controllable temperature and pressure profiles are set. • Maximum production rate of aimed product SO 2 is obtained. • Corresponding optimal temperature and pressure profiles are derived. • Production rate of SO 2 of optimal reactor increases by 7%.
Design and Testing for a New Thermosyphon Irradiation Vehicle
Energy Technology Data Exchange (ETDEWEB)
Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-09-01
The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) requires most materials and all fuel experiments to be placed in a pressure containment vessel to ensure that internal contaminants such as fission products cannot be released into the primary coolant. It also requires that all experiments be capable of withstanding various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. These requirements are intended to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant, and by reducing heat loads to the HFIR primary coolant, thus ensuring that no boiling can occur. A proposed design for materials irradiation would remove these limitations by providing the required primary containment with an internal cooling flow. This would allow for experiments to be irradiated without concern for coolant contamination (e.g., from cladding failure of advanced fuel pins) or for specimen heat load. This report describes a new materials irradiation experiment design that uses a thermosyphon cooling system to allow experimental materials direct access to a liquid coolant. The new design also increases the range of conditions that can be tested in HFIR. This design will provide a unique capability to validate the performance of current and advanced fuels and materials. Because of limited supporting data for this kind of irradiation vehicle, a test program was initiated to obtain operating data that can be used to (1) qualify the vehicle for operation in HFIR and (2) validate computer models used to perform design- and safety-basis calculations. This report also describes the test facility and experimental data, and it provides a comparison of the experimental data to computer simulations. A total of 51 tests have been completed: four tests with pure steam, 12 tests with argon, and 35 tests with helium. A total
Optimal power flow management for distributed energy resources with batteries
International Nuclear Information System (INIS)
Tazvinga, Henerica; Zhu, Bing; Xia, Xiaohua
2015-01-01
Highlights: • A PV-diesel-battery hybrid system is proposed. • Model minimizes fuel and battery wear costs. • Power flows are analysed in a 24-h period. • Results provide a practical platform for decision making. - Abstract: This paper presents an optimal energy management model of a solar photovoltaic-diesel-battery hybrid power supply system for off-grid applications. The aim is to meet the load demand completely while satisfying the system constraints. The proposed model minimizes fuel and battery wear costs and finds the optimal power flow, taking into account photovoltaic power availability, battery bank state of charge and load power demand. The optimal solutions are compared for cases when the objectives are weighted equally and when a larger weight is assigned to battery wear. A considerable increase in system operational cost is observed in the latter case owing to the increased usage of the diesel generator. The results are important for decision makers, as they depict the optimal decisions considered in the presence of trade-offs between conflicting objectives
Uncertainty quantification-based robust aerodynamic optimization of laminar flow nacelle
Xiong, Neng; Tao, Yang; Liu, Zhiyong; Lin, Jun
2018-05-01
The aerodynamic performance of laminar flow nacelle is highly sensitive to uncertain working conditions, especially the surface roughness. An efficient robust aerodynamic optimization method on the basis of non-deterministic computational fluid dynamic (CFD) simulation and Efficient Global Optimization (EGO)algorithm was employed. A non-intrusive polynomial chaos method is used in conjunction with an existing well-verified CFD module to quantify the uncertainty propagation in the flow field. This paper investigates the roughness modeling behavior with the γ-Ret shear stress transport model including modeling flow transition and surface roughness effects. The roughness effects are modeled to simulate sand grain roughness. A Class-Shape Transformation-based parametrical description of the nacelle contour as part of an automatic design evaluation process is presented. A Design-of-Experiments (DoE) was performed and surrogate model by Kriging method was built. The new design nacelle process demonstrates that significant improvements of both mean and variance of the efficiency are achieved and the proposed method can be applied to laminar flow nacelle design successfully.
International Nuclear Information System (INIS)
Nwosu, P. N.; Oparaku, O. U.; Okonkwo, W. I.; Unachukwu, G. O.; Agbiogwu, D.
2011-01-01
The thermal performance of the thermosyphon solar water heater was analyzed to show its applicability in a tropical climate using data of cloudy, sunny and hazy days. The average daily efficiency of the parallel-connected module, ranged between 35 and 40%. Also, an analysis of the temperature storage characteristics of a novel fibre-reinforced plastic (FRP) storage tank was undertaken. The inlet andoutlet positions were determined using the recommendation of Simon and Wenxian [1]: the optional position for the inlet/outlet was around the very top/bottom of the tank. The obtained results showed that the coupled FRP tank substantially retained and delivered the stored hot water during off-sunshine hours with minimal losses, and stratification occurred in the tank as a result. In view of the thermal performance, FRP materials can be efficiently employed in the design of solar hot water storage tanks. (authors)
A decoupled power flow algorithm using particle swarm optimization technique
International Nuclear Information System (INIS)
Acharjee, P.; Goswami, S.K.
2009-01-01
A robust, nondivergent power flow method has been developed using the particle swarm optimization (PSO) technique. The decoupling properties between the power system quantities have been exploited in developing the power flow algorithm. The speed of the power flow algorithm has been improved using a simple perturbation technique. The basic power flow algorithm and the improvement scheme have been designed to retain the simplicity of the evolutionary approach. The power flow is rugged, can determine the critical loading conditions and also can handle the flexible alternating current transmission system (FACTS) devices efficiently. Test results on standard test systems show that the proposed method can find the solution when the standard power flows fail.
Axiomatic Design of a Framework for the Comprehensive Optimization of Patient Flows in Hospitals
Arcidiacono, Gabriele; Matt, Dominik T.; Rauch, Erwin
2017-01-01
Lean Management and Six Sigma are nowadays applied not only to the manufacturing industry but also to service industry and public administration. The manifold variables affecting the Health Care system minimize the effect of a narrow Lean intervention. Therefore, this paper aims to discuss a comprehensive, system-based approach to achieve a factual holistic optimization of patient flows. This paper debates the efficacy of Lean principles applied to the optimization of patient flows and related activities, structures, and resources, developing a theoretical framework based on the principles of the Axiomatic Design. The demand for patient-oriented and efficient health services leads to use these methodologies to improve hospital processes. In the framework, patients with similar characteristics are clustered in families to achieve homogeneous flows through the value stream. An optimization checklist is outlined as the result of the mapping between Functional Requirements and Design Parameters, with the right sequence of the steps to optimize the patient flow according to the principles of Axiomatic Design. The Axiomatic Design-based top-down implementation of Health Care evidence, according to Lean principles, results in a holistic optimization of hospital patient flows, by reducing the complexity of the system. © 2017 Gabriele Arcidiacono et al.
2014-12-01
The report documents policy considerations for the Intelligent Network Flow Optimization (INFLO) connected vehicle applications : bundle. INFLO aims to optimize network flow on freeways and arterials by informing motorists of existing and impen...
Optimization of up-flow anaerobic sludge blanket reactor for ...
African Journals Online (AJOL)
Optimization of up-flow anaerobic sludge blanket reactor for treatment of composite ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... Granules grown in the bottom part of UASB reactor were more compact and tense ...
Robust optimal control of material flows in demand-driven supply networks
Laumanns, M.; Lefeber, A.A.J.
2006-01-01
We develop a model based on stochastic discrete-time controlleddynamical systems in order to derive optimal policies for controllingthe material flow in supply networks. Each node in the network isdescribed as a transducer such that the dynamics of the material andinformation flows within the entire
Parametric modeling and stagger angle optimization of an axial flow fan
International Nuclear Information System (INIS)
Li, M X; Zhang, C H; Liu, Y; Zheng, S Y
2013-01-01
Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%
Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling
DEFF Research Database (Denmark)
Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig
2016-01-01
Design of a gas distributor to distribute gas flow into parallel channels for Solid Oxide Cells (SOC) is optimized, with respect to flow distribution, using Computational Fluid Dynamics (CFD) modelling. The CFD model is based on a 3d geometric model and the optimized structural parameters include...... the width of the channels in the gas distributor and the area in front of the parallel channels. The flow of the optimized design is found to have a flow uniformity index value of 0.978. The effects of deviations from the assumptions used in the modelling (isothermal and non-reacting flow) are evaluated...... and it is found that a temperature gradient along the parallel channels does not affect the flow uniformity, whereas a temperature difference between the channels does. The impact of the flow distribution on the maximum obtainable conversion during operation is also investigated and the obtainable overall...
Santosa, B.; Siswanto, N.; Fiqihesa
2018-04-01
This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution
Directory of Open Access Journals (Sweden)
Joris Meurs
2016-08-01
Full Text Available This paper aimed to develop a standalone application for optimizing flow rates in liquid chromatography (LC, gas chromatography (GC and supercritical fluid chromatography (SFC. To do so, Van Deemter’s equation, Knox’ equation and Golay’s equation were implemented in a MATLAB script and subsequently a graphical user interface (GUI was created. The application will show the optimal flow rate or linear velocity and the corresponding plate height for the set input parameters. Furthermore, a plot will be shown in which the plate height is plotted against the linear flow velocity. Hence, this application will give optimized flow rates for any set conditions with minimal effort.
Energy Technology Data Exchange (ETDEWEB)
Monde, M.; Mitsutake, Y. [Saga University, Saga (Japan). Faculty of Science and Engineering
2000-02-25
An experiment has been carried out to elucidate the critical heat flux (CHF) of an open two-phase thermosyphon with a bottom heated chamber in which heat is absorbed by evaporation of liquid. Another objective is to enhance the CHF using a concentric-tube by which counter-current flow of vapor and liquid in the throat of the chamber can be controlled well. The CHF data are measured for the saturated liquid of R 113 at a different pressure and different configuration of concentric tubes. The CHF data without the inner tube are in good agreement with the existing correlation and analytical result. The CHF increases by as much as several times of the CHF without the inner tube with an increase in the inner tube diameter up to a certain diameter of the inner tube and then decreases continuously as the inner tube diameter approaches the outer tube diameter. The optimum diameter of inner tube exists at which the CHF is maximum. (author)
Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.
Loeschner, Katrin; Navratilova, Jana; Legros, Samuel; Wagner, Stephan; Grombe, Ringo; Snell, James; von der Kammer, Frank; Larsen, Erik H
2013-01-11
Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses of AgNPs from 0.2 to 5.0 μg. The on-line combination of AF(4) with detection methods including ICP-MS, light absorbance and light scattering was helpful because each detector provided different types of information about the eluting NP fraction. Differences in the time-resolved appearance of the signals obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs) and calculations of size based on AF(4) theory. Fraction collection followed by transmission electron microscopy was performed to confirm the obtained size distributions and to obtain further information regarding the AgNP shape. Characteristics of the absorbance spectra were used to confirm the presence of non-spherical AgNP. Copyright © 2012 Elsevier B.V. All rights reserved.
A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.
Directory of Open Access Journals (Sweden)
Huan Chen
Full Text Available This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN. Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.
A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.
Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong
2015-01-01
This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.
Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease
Marsden, Alison
2009-11-01
Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.
Optimization Design of Bipolar Plate Flow Field in PEM Stack
Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong
2017-12-01
A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.
Low NOx combustion and SCR flow field optimization in a low volatile coal fired boiler.
Liu, Xing; Tan, Houzhang; Wang, Yibin; Yang, Fuxin; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven
2018-08-15
Low NO x burner redesign and deep air staging have been carried out to optimize the poor ignition and reduce the NO x emissions in a low volatile coal fired 330 MW e boiler. Residual swirling flow in the tangentially-fired furnace caused flue gas velocity deviations at furnace exit, leading to flow field unevenness in the SCR (selective catalytic reduction) system and poor denitrification efficiency. Numerical simulations on the velocity field in the SCR system were carried out to determine the optimal flow deflector arrangement to improve flow field uniformity of SCR system. Full-scale experiment was performed to investigate the effect of low NO x combustion and SCR flow field optimization. Compared with the results before the optimization, the NO x emissions at furnace exit decreased from 550 to 650 mg/Nm³ to 330-430 mg/Nm³. The sample standard deviation of the NO x emissions at the outlet section of SCR decreased from 34.8 mg/Nm³ to 7.8 mg/Nm³. The consumption of liquid ammonia reduced from 150 to 200 kg/h to 100-150 kg/h after optimization. Copyright © 2018. Published by Elsevier Ltd.
Topology optimization of 3D Stokes flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Sigmund, Ole; Bendsøe, Martin P.
fluid mechanics. In future practice a muTAS could be used by doctors, engineers etc. as a hand held device with short reaction time that provides on-site analysis of a flowing substance such as blood, polluted water or similar. Borrvall and Petersson [2] paved the road for using the topology...... particular at micro scales since they are easily manufacturable and maintenance free. Here we consider topology optimization of 3D Stokes flow problems which is a reasonable fluid model to use at small scales. The presentation elaborates on effects caused by 3D fluid modelling on the design. Numerical...
Flow characteristics and optimal design for RDT sparger
International Nuclear Information System (INIS)
Kim, Kwang Chu; Park, Man Heung; Park, Kyoung Suk; Lee, Jong Won
1999-01-01
A numerical analysis for RDT sparger of PWR is carried out. Computation is performed to investigate the flow characteristics as the change of design factor. As the result of this study, RDT sparger's flow resistance coefficient is K = 3.53 at the present design condition if engineering margin is considered with 20 percent, and flow ratio into branch pipe is Q s /Q i 0.41. Velocity distribution at exit is not uniform because of separation in branch pipe. In the change of inlet flow rate and second area ratio of branch pipe for main pipe, Flow resistance coefficient is increased as Q s /Q i decreasing, but in the change of branch angle and outlet nozzle diameter of main pipe, flow resistance coefficient is decreased as Q s /Q i decreasing. As the change rate of Q s /Q i is the larger, the change rate of flow resistance coefficient is the larger. The change rate of pressure loss is the largest change as section area ratio changing. The optimal design condition of sparger is estimated as the outlet nozzle diameter ratio of main pipe is D e /D i = 0.333, the second area ratio is A s /A i = 0.2 and the branch angle is α = 55 o . (author)
Topology Optimization of Active Transport Flows
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe
2017-01-01
Fluid flows with particle transport are common in many industrial processes and components. The design of components for addition or removal of particles as well as mixing or stratification is of great importance in the specific processes. This work presents a methodology to apply topology....... The paper present the design and optimization of a particle separator and the important interpolation for modeling both solids, fluids and particles with a monolithic problem formulation. The interplay with the physics behind the model are discussed and the influence of parameters are demonstrated....
Optimizing Environmental Flow Operation Rules based on Explicit IHA Constraints
Dongnan, L.; Wan, W.; Zhao, J.
2017-12-01
Multi-objective operation of reservoirs are increasingly asked to consider the environmental flow to support ecosystem health. Indicators of Hydrologic Alteration (IHA) is widely used to describe environmental flow regimes, but few studies have explicitly formulated it into optimization models and thus is difficult to direct reservoir release. In an attempt to incorporate the benefit of environmental flow into economic achievement, a two-objective reservoir optimization model is developed and all 33 hydrologic parameters of IHA are explicitly formulated into constraints. The benefit of economic is defined by Hydropower Production (HP) while the benefit of environmental flow is transformed into Eco-Index (EI) that combined 5 of the 33 IHA parameters chosen by principal component analysis method. Five scenarios (A to E) with different constraints are tested and solved by nonlinear programming. The case study of Jing Hong reservoir, located in the upstream of Mekong basin, China, shows: 1. A Pareto frontier is formed by maximizing on only HP objective in scenario A and on only EI objective in scenario B. 2. Scenario D using IHA parameters as constraints obtains the optimal benefits of both economic and ecological. 3. A sensitive weight coefficient is found in scenario E, but the trade-offs between HP and EI objectives are not within the Pareto frontier. 4. When the fraction of reservoir utilizable capacity reaches 0.8, both HP and EI capture acceptable values. At last, to make this modelmore conveniently applied to everyday practice, a simplified operation rule curve is extracted.
Price-based optimal control of power flow in electrical energy transmission networks
Jokic, A.; Lazar, M.; Bosch, van den P.P.J.; Bemporad, A.; Bicchi, A.; Buttazzo, G.
2007-01-01
This article presents a novel control scheme for achieving optimal power balancing and congestion control in electrical energy transmission networks via nodal prices. We develop an explicit controller that guarantees economically optimal steady-state operation while respecting all line flow
An Optimal Power Flow (OPF) Method with Improved Power System Stability
DEFF Research Database (Denmark)
Su, Chi; Chen, Zhe
2010-01-01
This paper proposes an optimal power flow (OPF) method taking into account small signal stability as additional constraints. Particle swarm optimization (PSO) algorithm is adopted to realize the OPF process. The method is programmed in MATLAB and implemented to a nine-bus test power system which...... has large-scale wind power integration. The results show the ability of the proposed method to find optimal (or near-optimal) operating points in different cases. Based on these results, the analysis of the impacts of wind power integration on the system small signal stability has been conducted....
Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220
Discrete bat algorithm for optimal problem of permutation flow shop scheduling.
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.
Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids
Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.
2009-01-01
An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.
Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems
DEFF Research Database (Denmark)
Fang, Jiakun; Zeng, Qing; Ai, Xiaomeng
2018-01-01
. Simulation on the test case illustrates the success of the modelling and the beneficial roles of the power-to-gas are analyzed. The proposed model can be used in the decision support for both planning and operation of the coordinated natural gas and electrical power systems.......This work focuses on the optimal operation of the integrated gas and electrical power system with bi-directional energy conversion. Considering the different response times of the gas and power systems, the transient gas flow and steady- state power flow are combined to formulate the dynamic...... optimal energy flow in the integrated gas and power systems. With proper assumptions and simplifications, the problem is transformed into a single stage linear programming. And only a single stage linear programming is needed to obtain the optimal operation strategy for both gas and power systems...
CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows
International Nuclear Information System (INIS)
Noori Rahim Abadi, S.M.A.; Ahmadpour, A.; Abadi, S.M.N.R.; Meyer, J.P.
2017-01-01
Highlights: • CFD-based shape optimization of a nozzle and a turbine blade regarding nucleating steam flow is performed. • Nucleation rate and droplet radius are the best suited objective functions for the optimization process. • Maximum 34% reduction in entropy generation rate is reported for turbine cascade. • A maximum 10% reduction in Baumann factor and a maximum 2.1% increase in efficiency is achieved for a turbine cascade. - Abstract: In this study CFD-based shape optimization of a 3D nozzle and a 2D turbine blade cascade is undertaken in the presence of non-equilibrium condensation within the considered flow channels. A two-fluid formulation is used for the simulation of unsteady, turbulent, supersonic and compressible flow of wet steam accounting for relevant phase interaction between nucleated liquid droplets and continuous vapor phase. An in-house CFD code is developed to solve the governing equations of the two phase flow and was validated against available experimental data. Optimization is carried out in respect to various objective functions. It is shown that nucleation rate and maximum droplet radius are the best suited target functions for reducing thermodynamic and aerodynamic losses caused by the spontaneous nucleation. The maximum increase of 2.1% in turbine blade efficiency is achieved through shape optimization process.
International Nuclear Information System (INIS)
Sumijanto; Sriyono
2016-01-01
Carbon monoxide is a species that is difficult to be separated from the reactor coolant helium because it has a relatively small molecular size. So it needs a process of conversion from carbon monoxide to carbondioxide. The rate of conversion of carbon monoxide in the purification system is influenced by several parameters including concentration, temperature and mass flow rate. In this research, optimization of the mass flow rate in coolant purification of RGTT200K for carbon monoxide conversion process was done. Optimization is carried out by using software Super Pro Designer. The rate of reduction of reactant species, the growth rate between the species and the species products in the conversion reactions equilibrium were analyzed to derive the mass flow rate optimization of purification for carbon monoxide conversion process. The purpose of this study is to find the mass flow rate of purification for the preparation of the basic design of the RGTT200K coolant helium purification system. The analysis showed that the helium mass flow rate of 0.6 kg/second resulted in an un optimal conversion process. The optimal conversion process was reached at a mass flow rate of 1.2 kg/second. A flow rate of 3.6 kg/second – 12 kg/second resulted in an ineffective process. For supporting the basic design of the RGTT200K helium purification system, the mass flow rate for carbon monoxide conversion process is suggested to be 1.2 kg/second. (author)
Effect of Local Junction Losses in the Optimization of T-shaped Flow Channels
Kosaraju, Srinivas
2015-11-01
T-shaped channels are extensively used in flow distribution applications such as irrigation, chemical dispersion, gas pipelines and space heating and cooling. The geometry of T-shaped channels can be optimized to reduce the overall pressure drop in stem and branch sections. Results of such optimizations are in the form of geometric parameters such as the length and diameter ratios of the stem and branch sections. The traditional approach of this optimization accounts for the pressure drop across the stem and branch sections, however, ignores the pressure drop in the T-junction. In this paper, we conduct geometry optimization while including the effect of local junction losses in laminar flows. From the results, we are able to identify a non-dimensional parameter that can be used to predict the optimal geometric configurations. This parameter can also be used to identify the conditions in which the local junction losses can be ignored during the optimization.
Application of Newton's optimal power flow in voltage/reactive power control
Energy Technology Data Exchange (ETDEWEB)
Bjelogrlic, M.; Babic, B.S. (Electric Power Board of Serbia, Belgrade (YU)); Calovic, M.S. (Dept. of Electrical Engineering, University of Belgrade, Belgrade (YU)); Ristanovic, P. (Institute Nikola Tesla, Belgrade (YU))
1990-11-01
This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.
Design and optimization of mixed flow pump impeller blades by varying semi-cone angle
Dash, Nehal; Roy, Apurba Kumar; Kumar, Kaushik
2018-03-01
The mixed flow pump is a cross between the axial and radial flow pump. These pumps are used in a large number of applications in modern fields. For the designing of these mixed flow pump impeller blades, a lot number of design parameters are needed to be considered which makes this a tedious task for which fundamentals of turbo-machinery and fluid mechanics are always prerequisites. The semi-cone angle of mixed flow pump impeller blade has a specified range of variations generally between 45o to 60o. From the literature review done related to this topic researchers have considered only a particular semi-cone angle and all the calculations are based on this very same semi-cone angle. By varying this semi-cone angle in the specified range, it can be verified if that affects the designing of the impeller blades for a mixed flow pump. Although a lot of methods are available for designing of mixed flow pump impeller blades like inverse time marching method, the pseudo-stream function method, Fourier expansion singularity method, free vortex method, mean stream line theory method etc. still the optimized design of the mixed flow pump impeller blade has been a cumbersome work. As stated above since all the available research works suggest or propose the blade designs with constant semi-cone angle, here the authors have designed the impeller blades by varying the semi-cone angle in a particular range with regular intervals for a Mixed-Flow pump. Henceforth several relevant impeller blade designs are obtained and optimization is carried out to obtain the optimized design (blade with optimal geometry) of impeller blade.
High-Fidelity Aerodynamic Shape Optimization for Natural Laminar Flow
Rashad, Ramy
To ensure the long-term sustainability of aviation, serious effort is underway to mitigate the escalating economic, environmental, and social concerns of the industry. Significant improvement to the energy efficiency of air transportation is required through the research and development of advanced and unconventional airframe and engine technologies. In the quest to reduce airframe drag, this thesis is concerned with the development and demonstration of an effective design tool for improving the aerodynamic efficiency of subsonic and transonic airfoils. The objective is to advance the state-of-the-art in high-fidelity aerodynamic shape optimization by incorporating and exploiting the phenomenon of laminar-turbulent transition in an efficient manner. A framework for the design and optimization of Natural Laminar Flow (NLF) airfoils is developed and demonstrated with transition prediction capable of accounting for the effects of Reynolds number, freestream turbulence intensity, Mach number, and pressure gradients. First, a two-dimensional Reynolds-averaged Navier-Stokes (RANS) flow solver has been extended to incorporate an iterative laminar-turbulent transition prediction methodology. The natural transition locations due to Tollmien-Schlichting instabilities are predicted using the simplified eN envelope method of Drela and Giles or, alternatively, the compressible form of the Arnal-Habiballah-Delcourt criterion. The boundary-layer properties are obtained directly from the Navier-Stokes flow solution, and the transition to turbulent flow is modeled using an intermittency function in conjunction with the Spalart-Allmaras turbulence model. The RANS solver is subsequently employed in a gradient-based sequential quadratic programming shape optimization framework. The laminar-turbulent transition criteria are tightly coupled into the objective and gradient evaluations. The gradients are obtained using a new augmented discrete-adjoint formulation for non-local transition
Experimental Study of Silicon Oil Effect on Two-Phase Closed Thermosyphon
Energy Technology Data Exchange (ETDEWEB)
Jung, Jun Yeong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)
2015-05-15
Two-phase closed thermosyphon (TPCT) is vertically oriented wickless heat pipe that has working fluid in the interior. The TPCT transports a large amount of heat from evaporator to condenser by phase change of working fluid, and the working fluid passively returns to evaporator by gravity. Due to these advantages of the TPCT, the TPCT is considered as method of PRHR (Passive Residual Heat Removal) system in nuclear system. Parametric studies have done to investigate the heat transfer characteristics of the TPCT. Different working fluids such as water, ethanol, methanol and acetone were used at various filling ratios and at different operating temperatures to find maximum heat transport capabilities of TPCT. Effect of heat transfer rate, filling ratio and aspect ratio were investigated. Inclined angle effect was investigated at several filling ratios and working fluids. This study is interested in silicon oil effect on the TPCT. To carry out the experiment, experimental apparatus is designed and manufactured. In design process, the TPCT operation limit is considered This study is interested in silicon oil effect on the TPCT. Experiments were carried out at three oil weight percent with three input power. Effect of oil on the TPCT is evaluated by inner wall temperature distribution and thermal resistance. In this study, silicon oil effect on TPCT was investigated. The TPCT was operated with several oil weight percent and input power. From experiment, overall, the silicon oil reduced evaporator thermal performance, but enhanced condenser thermal performance. However, the TPCT total thermal performance was reduced by 100 c St silicon oil.
Experimental Study of Silicon Oil Effect on Two-Phase Closed Thermosyphon
International Nuclear Information System (INIS)
Jung, Jun Yeong; Jeong, Yong Hoon
2015-01-01
Two-phase closed thermosyphon (TPCT) is vertically oriented wickless heat pipe that has working fluid in the interior. The TPCT transports a large amount of heat from evaporator to condenser by phase change of working fluid, and the working fluid passively returns to evaporator by gravity. Due to these advantages of the TPCT, the TPCT is considered as method of PRHR (Passive Residual Heat Removal) system in nuclear system. Parametric studies have done to investigate the heat transfer characteristics of the TPCT. Different working fluids such as water, ethanol, methanol and acetone were used at various filling ratios and at different operating temperatures to find maximum heat transport capabilities of TPCT. Effect of heat transfer rate, filling ratio and aspect ratio were investigated. Inclined angle effect was investigated at several filling ratios and working fluids. This study is interested in silicon oil effect on the TPCT. To carry out the experiment, experimental apparatus is designed and manufactured. In design process, the TPCT operation limit is considered This study is interested in silicon oil effect on the TPCT. Experiments were carried out at three oil weight percent with three input power. Effect of oil on the TPCT is evaluated by inner wall temperature distribution and thermal resistance. In this study, silicon oil effect on TPCT was investigated. The TPCT was operated with several oil weight percent and input power. From experiment, overall, the silicon oil reduced evaporator thermal performance, but enhanced condenser thermal performance. However, the TPCT total thermal performance was reduced by 100 c St silicon oil
Directory of Open Access Journals (Sweden)
J. Trdlicka
2010-12-01
Full Text Available This work proposes a distributed algorithm for energy optimal routing in a wireless sensor network. The routing problem is described as a mathematical problem by the minimum-cost multi-commodity network flow problem. Due to the separability of the problem, we use the duality theorem to derive the distributed algorithm. The algorithm computes the energy optimal routing in the network without any central node or knowledge of the whole network structure. Each node only needs to know the flow which is supposed to send or receive and the costs and capacities of the neighboring links. An evaluation of the presented algorithm on benchmarks for the energy optimal data flow routing in sensor networks with up to 100 nodes is presented.
Directory of Open Access Journals (Sweden)
Jun Yang
2015-08-01
Full Text Available The carbon emissions trading market and direct power purchases by large consumers are two promising directions of power system development. To trace the carbon emission flow in the power grid, the theory of carbon emission flow is improved by allocating power loss to the load side. Based on the improved carbon emission flow theory, an optimal dispatch model is proposed to optimize the cost of both large consumers and the power grid, which will benefit from the carbon emissions trading market. Moreover, to better simulate reality, the direct purchase of power by large consumers is also considered in this paper. The OPF (optimal power flow method is applied to solve the problem. To evaluate our proposed optimal dispatch strategy, an IEEE 30-bus system is used to test the performance. The effects of the price of carbon emissions and the price of electricity from normal generators and low-carbon generators with regards to the optimal dispatch are analyzed. The simulation results indicate that the proposed strategy can significantly reduce both the operation cost of the power grid and the power utilization cost of large consumers.
Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM: Preprint
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yijian; Hong, Mingyi; Dall' Anese, Emiliano; Dhople, Sairaj; Xu, Zi
2017-03-03
This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposed here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.
International Nuclear Information System (INIS)
Bouchekara, H.R.E.H.; Abido, M.A.; Chaib, A.E.; Mehasni, R.
2014-01-01
Highlights: • Optimal power flow. • Reducing electrical energy loss. • Saving electrical energy. • Optimal operation. - Abstract: A new efficient optimization method, called the League Championship Algorithm (LCA) is proposed in this paper for solving the optimal power flow problem. This method is inspired by the competition of sport teams in an artificial sport league for several weeks and over a number of seasons. The proposed method has been applied to the Algerian power system network for different objectives. Furthermore, in order to assess the effectiveness of the proposed LCA method the obtained results using this method have been compared to those obtained using other methods reported in the literature. The obtained results and the comparison with other techniques indicate that the league championship algorithm provides effective and high-quality solution when solving the optimal power flow problem
Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power
DEFF Research Database (Denmark)
Hermann, Alexander Niels August; Wu, Qiuwei; Huang, Shaojun
2016-01-01
There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar...... panels with uncontrolled inverters, the upper limit of installable capacity is quickly reached in many of today’s distribution feeders. This problem can often be mitigated by optimally controlling the voltage angles of inverters. However, the optimal power flow problem in its standard form is a large...... scale non-convex optimization problem, and thus can’t be solved precisely and also is computationally heavy and intractable for large systems. This paper examines the use of a convex relaxation using Semi-definite programming to optimally control solar power inverters in a distribution grid in order...
A modified teaching–learning based optimization for multi-objective optimal power flow problem
International Nuclear Information System (INIS)
Shabanpour-Haghighi, Amin; Seifi, Ali Reza; Niknam, Taher
2014-01-01
Highlights: • A new modified teaching–learning based algorithm is proposed. • A self-adaptive wavelet mutation strategy is used to enhance the performance. • To avoid reaching a large repository size, a fuzzy clustering technique is used. • An efficiently smart population selection is utilized. • Simulations show the superiority of this algorithm compared with other ones. - Abstract: In this paper, a modified teaching–learning based optimization algorithm is analyzed to solve the multi-objective optimal power flow problem considering the total fuel cost and total emission of the units. The modified phase of the optimization algorithm utilizes a self-adapting wavelet mutation strategy. Moreover, a fuzzy clustering technique is proposed to avoid extremely large repository size besides a smart population selection for the next iteration. These techniques make the algorithm searching a larger space to find the optimal solutions while speed of the convergence remains good. The IEEE 30-Bus and 57-Bus systems are used to illustrate performance of the proposed algorithm and results are compared with those in literatures. It is verified that the proposed approach has better performance over other techniques
Data on flow cell optimization for membrane-based electrokinetic energy conversion
Directory of Open Access Journals (Sweden)
David Nicolas Østedgaard-Munck
2017-12-01
Full Text Available This article elaborates on the design and optimization of a specialized flow cell for the measurement of direct conversion of pressure into electrical energy (Electrokinetic Energy Conversion, EKEC which has been presented in Østedgaard-Munck et al. (2017 [1]. Two main flow cell parameters have been monitored and optimized: A the hydraulic pressure profile on each side of the membrane introduced by pumps recirculating the electrolyte solution through the flow fields and B the electrical resistance between the current collectors across the combined flow cell. The latter parameter has been measured using four-point Electrochemical Impedance spectroscopy (EIS for different flow rates and concentrations. The total cell resistance consists of contributions from different components: the membrane (Rmem, anode charge transfer (RA, cathode charge transfer (RC, and ion diffusion in the porous electrodes (RD.The intrinsic membrane properties of Nafion 117 has been investigated experimentally in LiI/I2 solutions with concentrations ranging between 0.06 and 0.96 M and used to identify the preferred LiI/I2 solution concentration. This was achieved by measuring the solution uptake, internal solution concentration and ion exchange capacity. The membrane properties were further used to calculate the transport coefficients and electrokinetic Figure of merit in terms of the Uniform potential and Space charge models. Special attention has been put on the streaming potential coefficient which is an intrinsic property. Keywords: Electrokinetic energy conversion, Electrochemical flow cell, Conversion efficiency
Directory of Open Access Journals (Sweden)
Ouafa Herbadji
2016-03-01
Full Text Available This paper proposes a new hybrid metaheuristique algorithm based on the hybridization of Biogeography-based optimization with the Differential Evolution for solving the optimal power flow problem with emission control. The biogeography-based optimization (BBO algorithm is strongly influenced by equilibrium theory of island biogeography, mainly through two steps: Migration and Mutation. Differential Evolution (DE is one of the best Evolutionary Algorithms for global optimization. The hybridization of these two methods is used to overcome traps of local optimal solutions and problems of time consumption. The objective of this paper is to minimize the total fuel cost of generation, total emission, total real power loss and also maintain an acceptable system performance in terms of limits on generator real power, bus voltages and power flow of transmission lines. In the present work, BBO/DE has been applied to solve the optimal power flow problems on IEEE 30-bus test system and the Algerian electrical network 114 bus. The results obtained from this method show better performances compared with DE, BBO and other well known metaheuristique and evolutionary optimization methods.
International Nuclear Information System (INIS)
Benkheira, L.
2007-06-01
The method of cooling based on the thermosyphon principle is of great interest because of its simplicity, its passivity and its low cost. It is adopted to cool down to 4,5 K the superconducting magnet of the CMS particles detector of the Large Hadron Collider (LHC) experiment under construction at CERN, Geneva. This work studies heat and mass transfer characteristics of two phase He I in a natural circulation loop. The experimental set-up consists of a thermosyphon single branch loop mainly composed of a phase separator, a downward tube, and a test section. The experiments were conducted with varying several parameters such as the diameter of the test section (10 mm or 14 mm) and the applied heat flux up to the appearance of the boiling crisis. These experiments have permitted to determine the laws of evolution of the various parameters characterizing the flow (circulation mass flow rate, vapour mass flow rate, vapour quality, friction coefficient, two phase heat transfer coefficient and the critical heat flux) as a function of the applied heat flux. On the base of the obtained results, we discuss the validity of the various existing models in the literature. We show that the homogeneous model is the best model to predict the hydrodynamical properties of this type of flow in the vapour quality range 0≤x≤30%. Moreover, we propose two models for the prediction of the two phase heat transfer coefficient and the density of the critical heat flux. The first one considers that the effects of the forced convection and nucleate boiling act simultaneously and contribute to heat transfer. The second one correlates the measured critical heat flux density with the ratio altitude to diameter. (author)
Poscharny, K.; Fabry, D.C.; Heddrich, S.; Sugiono, E.; Liauw, M.A.; Rueping, Magnus
2018-01-01
A methodology for the synthesis of oxetanes from benzophenone and furan derivatives is presented. UV-light irradiation in batch and flow systems allowed the [2 + 2] cycloaddition reaction to proceed and a broad range of oxetanes could be synthesized in manual and automated fashion. The identification of high-yielding reaction parameters was achieved through a new self-optimizing photoreactor system.
Poscharny, K.
2018-04-07
A methodology for the synthesis of oxetanes from benzophenone and furan derivatives is presented. UV-light irradiation in batch and flow systems allowed the [2 + 2] cycloaddition reaction to proceed and a broad range of oxetanes could be synthesized in manual and automated fashion. The identification of high-yielding reaction parameters was achieved through a new self-optimizing photoreactor system.
International Nuclear Information System (INIS)
Lian Zhigang; Gu Xingsheng; Jiao Bin
2008-01-01
It is well known that the flow-shop scheduling problem (FSSP) is a branch of production scheduling and is NP-hard. Now, many different approaches have been applied for permutation flow-shop scheduling to minimize makespan, but current algorithms even for moderate size problems cannot be solved to guarantee optimality. Some literatures searching PSO for continuous optimization problems are reported, but papers searching PSO for discrete scheduling problems are few. In this paper, according to the discrete characteristic of FSSP, a novel particle swarm optimization (NPSO) algorithm is presented and successfully applied to permutation flow-shop scheduling to minimize makespan. Computation experiments of seven representative instances (Taillard) based on practical data were made, and comparing the NPSO with standard GA, we obtain that the NPSO is clearly more efficacious than standard GA for FSSP to minimize makespan
Systematic study of source mask optimization and verification flows
Ben, Yu; Latypov, Azat; Chua, Gek Soon; Zou, Yi
2012-06-01
Source mask optimization (SMO) emerged as powerful resolution enhancement technique (RET) for advanced technology nodes. However, there is a plethora of flow and verification metrics in the field, confounding the end user of the technique. Systemic study of different flows and the possible unification thereof is missing. This contribution is intended to reveal the pros and cons of different SMO approaches and verification metrics, understand the commonality and difference, and provide a generic guideline for RET selection via SMO. The paper discusses 3 different type of variations commonly arise in SMO, namely pattern preparation & selection, availability of relevant OPC recipe for freeform source and finally the metrics used in source verification. Several pattern selection algorithms are compared and advantages of systematic pattern selection algorithms are discussed. In the absence of a full resist model for SMO, alternative SMO flow without full resist model is reviewed. Preferred verification flow with quality metrics of DOF and MEEF is examined.
Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels
Kosaraju, Srinivas
2017-11-01
The layout of T- and V-shaped flow channel networks on a surface can be optimized for minimum pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, an effort has been made to study the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same input parameters and heat generation constraints. Comparisons are made with similar results published in literature.
Neural network modeling of chaotic dynamics in nuclear reactor flows
International Nuclear Information System (INIS)
Welstead, S.T.
1992-01-01
Neural networks have many scientific applications in areas such as pattern classification and time series prediction. The universal approximation property of these networks, however, can also be exploited to provide researchers with tool for modeling observed nonlinear phenomena. It has been shown that multilayer feed forward networks can capture important global nonlinear properties, such as chaotic dynamics, merely by training the network on a finite set of observed data. The network itself then provides a model of the process that generated the data. Characterizations such as the existence and general shape of a strange attractor and the sign of the largest Lyapunov exponent can then be extracted from the neural network model. In this paper, the author applies this idea to data generated from a nonlinear process that is representative of convective flows that can arise in nuclear reactor applications. Such flows play a role in forced convection heat removal from pressurized water reactors and boiling water reactors, and decay heat removal from liquid-metal-cooled reactors, either by natural convection or by thermosyphons
International Nuclear Information System (INIS)
Ross, W.E.
1994-08-01
This report documents the thermosyphoning analysis which was performed with the CATHENA network model of one of the blanket and first wall cooling loops of the SEAFP reactor design. This thermosyphoning analysis is similar to that reported in CFFTP-G--9355, Volume 4 except that a much larger decay power transient is used. Also, the pressurizer heaters are turned off following the loss of electrical power. This analysis is performed to assess the primary heat transport system behaviour for a complete loss of electrical power event (total loss of flow) and to estimate the rate of heatup of the in-core components. A description of the important aspects of the transient thermalhydraulic behaviour including coolant temperatures, circuit and sector flows, circuit pressure, pressurizer level and steam bleed flow, and first wall and blanket temperatures are provided. (author). 8 refs., 2 tabs., 26 figs
Density based topology optimization of turbulent flow heat transfer systems
DEFF Research Database (Denmark)
Dilgen, Sümer Bartug; Dilgen, Cetin Batur; Fuhrman, David R.
2018-01-01
The focus of this article is on topology optimization of heat sinks with turbulent forced convection. The goal is to demonstrate the extendibility, and the scalability of a previously developed fluid solver to coupled multi-physics and large 3D problems. The gradients of the objective and the con...... in the optimization process, while also demonstrating extension of the methodology to include coupling of heat transfer with turbulent flows.......The focus of this article is on topology optimization of heat sinks with turbulent forced convection. The goal is to demonstrate the extendibility, and the scalability of a previously developed fluid solver to coupled multi-physics and large 3D problems. The gradients of the objective...
Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow
Energy Technology Data Exchange (ETDEWEB)
Donna Post Guillen
2009-07-01
A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.
Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.
Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe
2017-10-01
Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.
Thermodynamic framework for discrete optimal control in multiphase flow systems
Sieniutycz, Stanislaw
1999-08-01
Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.
Peralta, Richard C.; Forghani, Ali; Fayad, Hala
2014-04-01
Many real water resources optimization problems involve conflicting objectives for which the main goal is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiobjective optimization techniques have shortcomings, especially as the number of objectives increases. Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties. Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir, stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods. Neural networks represent constrained state variables. The addressed objectives that can be optimized simultaneously in the coupled simulation-optimization model are: (1) maximizing water provided from sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.
Optimization of a flow injection analysis system for multiple solvent extraction
International Nuclear Information System (INIS)
Rossi, T.M.; Shelly, D.C.; Warner, I.M.
1982-01-01
The performance of a multistage flow injection analysis solvent extraction system has been optimized. The effect of solvent segmentation devices, extraction coils, and phase separators on performance characteristics is discussed. Theoretical consideration is given to the effects and determination of dispersion and the extraction dynamics within both glass and Teflon extraction coils. The optimized system has a sample recovery similar to an identical manual procedure and a 1.5% relative standard deviation between injections. Sample throughput time is under 5 min. These characteristics represent significant improvements over the performance of the same system before optimization. 6 figures, 2 tables
Learning Based Approach for Optimal Clustering of Distributed Program's Call Flow Graph
Abofathi, Yousef; Zarei, Bager; Parsa, Saeed
Optimal clustering of call flow graph for reaching maximum concurrency in execution of distributable components is one of the NP-Complete problems. Learning automatas (LAs) are search tools which are used for solving many NP-Complete problems. In this paper a learning based algorithm is proposed to optimal clustering of call flow graph and appropriate distributing of programs in network level. The algorithm uses learning feature of LAs to search in state space. It has been shown that the speed of reaching to solution increases remarkably using LA in search process, and it also prevents algorithm from being trapped in local minimums. Experimental results show the superiority of proposed algorithm over others.
Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller
International Nuclear Information System (INIS)
Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young; Park, Hong Seok
2015-01-01
This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β_h, chord angle β_c, cascade solidity of chord σ_c and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design
Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller
Energy Technology Data Exchange (ETDEWEB)
Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young [Pusan National University, Busan (Korea, Republic of); Park, Hong Seok [Ulsan University, Ulsan (Korea, Republic of)
2015-11-15
This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β{sub h}, chord angle β{sub c}, cascade solidity of chord σ{sub c} and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design.
International Nuclear Information System (INIS)
Sechilariu, Manuela; Wang, Bao Chao; Locment, Fabrice; Jouglet, Antoine
2014-01-01
Highlights: • DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control. • Power balancing following power flow optimization while providing interface for smart grid communication. • Optimization under constraints: storage capability, grid power limitations, grid time-of-use pricing. • Experimental validation of DC microgrid power flow optimization by multi-layer supervision control. • DC microgrid able to perform peak shaving, to avoid undesired injection, and to make full use of locally energy. - Abstract: Urban areas have great potential for photovoltaic (PV) generation, however, direct PV power injection has limitations for high level PV penetration. It induces additional regulations in grid power balancing because of lacking abilities of responding to grid issues such as reducing grid peak consumption or avoiding undesired injections. The smart grid implementation, which is designed to meet these requirements, is facilitated by microgrids development. This paper presents a DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control which handles instantaneous power balancing following the power flow optimization while providing interface for smart grid communication. The optimization takes into account forecast of PV power production and load power demand, while satisfying constraints such as storage capability, grid power limitations, grid time-of-use pricing and grid peak hour. Optimization, whose efficiency is related to the prediction accuracy, is carried out by mixed integer linear programming. Experimental results show that the proposed microgrid structure is able to control the power flow at near optimum cost and ensures self-correcting capability. It can respond to issues of performing peak shaving, avoiding undesired injection, and making full use of locally produced energy with respect to rigid element constraints
Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.
Sekhar, Y Raja; Sharma, K V; Kamal, Subhash
2016-05-01
The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
Design Optimization of An Axial Flow Fan Blade Considering Airfoil Shape and Stacking Line
Energy Technology Data Exchange (ETDEWEB)
Lee, Ki Sang; Kim, Kwang Yong; Samad, Abdus [Inha Univ., Incheon (Korea, Republic of)
2007-07-01
This work presents a numerical optimization procedure for a low-speed axial flow fan blade with polynomial response surface approximation model. Reynolds-averaged Navier-Stokes equations with Shear Stress Turbulence (SST) model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. The airfoil shape as well as stacking line is modified to enhance blade total efficiency, i.e., the objective function. The design variables of blade lean, maximum thickness and location of maximum thickness are selected, and a design of experiments technique produces design points where flow analyses are performed to obtain values of the objective function. A gradient-based search algorithm is used to find the optimal design in the design space from the constructed response surface model for the objective function. As a main result, the efficiency is increased effectively by the present optimization procedure. And, it is also shown that the modification of blade lean is more effective to improve the efficiency rather than modifying blade profile.
A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks
DEFF Research Database (Denmark)
Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui
2016-01-01
This paper proposes a sufficient condition for the convex relaxation of AC Optimal Power Flow (OPF) in radial distribution networks as a second order cone program (SOCP) to be exact. The condition requires that the allowed reverse power flow is only reactive or active, or none. Under the proposed...... solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....... sufficient condition, the feasible sub-injection region (power injections of nodes excluding the root node) of the AC OPF is convex. The exactness of the convex relaxation under the proposed condition is proved through constructing a group of monotonic series with limits, which ensures that the optimal...
Optimality and Conductivity for Water Flow: From Landscapes, to Unsaturated Soils, to Plant Leaves
Energy Technology Data Exchange (ETDEWEB)
Liu, H.H.
2012-02-23
Optimality principles have been widely used in many areas. Based on an optimality principle that any flow field will tend toward a minimum in the energy dissipation rate, this work shows that there exists a unified form of conductivity relationship for three different flow systems: landscapes, unsaturated soils and plant leaves. The conductivity, the ratio of water flux to energy gradient, is a power function of water flux although the power value is system dependent. This relationship indicates that to minimize energy dissipation rate for a whole system, water flow has a small resistance (or a large conductivity) at a location of large water flux. Empirical evidence supports validity of the relationship for landscape and unsaturated soils (under gravity dominated conditions). Numerical simulation results also show that the relationship can capture the key features of hydraulic structure for a plant leaf, although more studies are needed to further confirm its validity. Especially, it is of interest that according to this relationship, hydraulic conductivity for gravity-dominated unsaturated flow, unlike that defined in the classic theories, depends on not only capillary pressure (or saturation), but also the water flux. Use of the optimality principle allows for determining useful results that are applicable to a broad range of areas involving highly non-linear processes and may not be possible to obtain from classic theories describing water flow processes.
A Hybrid Genetic Algorithm Approach for Optimal Power Flow
Directory of Open Access Journals (Sweden)
Sydulu Maheswarapu
2011-08-01
Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.
RECOVERY ACT - Robust Optimization for Connectivity and Flows in Dynamic Complex Networks
Energy Technology Data Exchange (ETDEWEB)
Balasundaram, Balabhaskar [Oklahoma State Univ., Stillwater, OK (United States); Butenko, Sergiy [Texas A & M Univ., College Station, TX (United States); Boginski, Vladimir [Univ. of Florida, Gainesville, FL (United States); Uryasev, Stan [Univ. of Florida, Gainesville, FL (United States)
2013-12-25
The goal of this project was to study robust connectivity and flow patterns of complex multi-scale systems modeled as networks. Networks provide effective ways to study global, system level properties, as well as local, multi-scale interactions at a component level. Numerous applications from power systems, telecommunication, transportation, biology, social science, and other areas have benefited from novel network-based models and their analysis. Modeling and optimization techniques that employ appropriate measures of risk for identifying robust clusters and resilient network designs in networks subject to uncertain failures were investigated in this collaborative multi-university project. In many practical situations one has to deal with uncertainties associated with possible failures of network components, thereby affecting the overall efficiency and performance of the system (e.g., every node/connection has a probability of partial or complete failure). Some extreme examples include power grid component failures, airline hub failures due to weather, or freeway closures due to emergencies. These are also situations in which people, materials, or other resources need to be managed efficiently. Important practical examples include rerouting flow through power grids, adjusting flight plans, and identifying routes for emergency services and supplies, in the event network elements fail unexpectedly. Solutions that are robust under uncertainty, in addition to being economically efficient, are needed. This project has led to the development of novel models and methodologies that can tackle the optimization problems arising in such situations. A number of new concepts, which have not been previously applied in this setting, were investigated in the framework of the project. The results can potentially help decision-makers to better control and identify robust or risk-averse decisions in such situations. Formulations and optimal solutions of the considered problems need
Directory of Open Access Journals (Sweden)
Heba Ahmed Hassan
2017-01-01
Full Text Available This paper applies a relatively new optimization method, the Grey Wolf Optimizer (GWO algorithm for Optimal Power Flow (OPF of two-terminal High Voltage Direct Current (HVDC electrical power system. The OPF problem of pure AC power systems considers the minimization of total costs under equality and inequality constraints. Hence, the OPF problem of integrated AC-DC power systems is extended to incorporate HVDC links, while taking into consideration the power transfer control characteristics using a GWO algorithm. This algorithm is inspired by the hunting behavior and social leadership of grey wolves in nature. The proposed algorithm is applied to two different case-studies: the modified 5-bus and WSCC 9-bus test systems. The validity of the proposed algorithm is demonstrated by comparing the obtained results with those reported in literature using other optimization techniques. Analysis of the obtained results show that the proposed GWO algorithm is able to achieve shorter CPU time, as well as minimized total cost when compared with already existing optimization techniques. This conclusion proves the efficiency of the GWO algorithm.
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyung Mo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
2016-05-15
The representative operating limit of the thermosyphon heat pipe is flooding limit that arises from the countercurrent flow of vapor and liquid. The effect of difference between wetted perimeter and heated perimeter on the flooding limit of the thermosyphons has not been studied; despite the effect of cross-sectional area of the vapor path on the heat transfer characteristics of thermosyphons have been studied. Additionally, the hybrid heat pipe must operate at the high temperature and high pressure environment because it will be inserted to the active core to remove the decay heat. However, the previously studied heat pipes operated below the atmospheric pressure. Therefore, the effect of the unique geometry for hybrid heat pipe and operating pressure on the heat transfer characteristics including the flooding limit of hybrid heat pipe was experimentally measured. Hybrid heat pipe as a new conceptual decay heat removal device was proposed. For the development of hybrid heat pipe operating at high temperature and high pressure conditions, the pressurized hybrid heat pipe was prepared and the thermal performances including operation limits of hybrid heat pipe were experimentally measured. Followings were obtained: (1) As operating pressure of the heat pipe increases, the evaporation heat transfer coefficient increases due to heat transfer with convective pool boiling mode. (2) Non-condensable gas charged in the test section for the pressurization lowered the condensation heat transfer by impeding the vapor flow to the condenser. (3) The deviations between experimentally measured flooding limits for hybrid heat pipes and the values from correlation for annular thermosyphon were observed.
Apribowo, Chico Hermanu Brillianto; Ibrahim, Muhammad Hamka; Wicaksono, F. X. Rian
2018-02-01
The growing burden of the load and the complexity of the power system has had an impact on the need for optimization of power system operation. Optimal power flow (OPF) with optimal location placement and rating of thyristor controlled series capacitor (TCSC) is an effective solution used to determine the economic cost of operating the plant and regulate the power flow in the power system. The purpose of this study is to minimize the total cost of generation by placing the location and the optimal rating of TCSC using genetic algorithm-design of experiment techniques (GA-DOE). Simulation on Java-Bali system 500 kV with the amount of TCSC used by 5 compensator, the proposed method can reduce the generation cost by 0.89% compared to OPF without using TCSC.
Optimization of recirculating laminar air flow in operating room air conditioning systems
Directory of Open Access Journals (Sweden)
Enver Yalcin
2016-04-01
Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.
Numerical analysis and optimization of 3D magnetohydrodynamic flows in rectangular U-bend
Energy Technology Data Exchange (ETDEWEB)
He, Qingyun, E-mail: hqingyun@mail.ustc.edu.cn; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn
2016-11-01
Highlights: • MHD flows in rectangular U bends have been investigated under specific magnetic field. • U bends analyzed with different aspect ratio, distance of U bends and the wall conductance ratio. • Pressure optimization of rectangular U bends at corner region. • Studying different inclination of magnetic field cases according to original MHD flows. - Abstract: Liquid metal flow in rectangular bends is a common phenomenon of fusion liquid metal blanket operation, in which the velocity distributions and magnetohydrodynamic (MHD) pressure drop are considered as critical issues. Previous studies mainly aimed at specific fixed geometry for bend flows in LM blanket. The present investigation focuses on numerical analysis of MHD flow in 3D rectangular bends at laminar conditions, which is aimed to reduce MHD pressure drop caused by electromagnetic coupling in conductive flow, especially in bend corner region. The used code has been developed by University of Science and Technology of China (USTC) and validated by recommended benchmark cases such as Shercliff, ALEX experiments and KIT experiment cases, etc. In order to search the optimal duct bending, certain parameters such as different aspect ratio of the duct corner area cross-section, distance of import and export from the elbow and wall conductance ratio have been considered to investigate the pressure drop of MHD flow. Moreover, the effects of different magnetic field direction relative to flow distribution between bends have also been analyzed.
Numerical analysis and optimization of 3D magnetohydrodynamic flows in rectangular U-bend
International Nuclear Information System (INIS)
He, Qingyun; Feng, Jingchao; Chen, Hongli
2016-01-01
Highlights: • MHD flows in rectangular U bends have been investigated under specific magnetic field. • U bends analyzed with different aspect ratio, distance of U bends and the wall conductance ratio. • Pressure optimization of rectangular U bends at corner region. • Studying different inclination of magnetic field cases according to original MHD flows. - Abstract: Liquid metal flow in rectangular bends is a common phenomenon of fusion liquid metal blanket operation, in which the velocity distributions and magnetohydrodynamic (MHD) pressure drop are considered as critical issues. Previous studies mainly aimed at specific fixed geometry for bend flows in LM blanket. The present investigation focuses on numerical analysis of MHD flow in 3D rectangular bends at laminar conditions, which is aimed to reduce MHD pressure drop caused by electromagnetic coupling in conductive flow, especially in bend corner region. The used code has been developed by University of Science and Technology of China (USTC) and validated by recommended benchmark cases such as Shercliff, ALEX experiments and KIT experiment cases, etc. In order to search the optimal duct bending, certain parameters such as different aspect ratio of the duct corner area cross-section, distance of import and export from the elbow and wall conductance ratio have been considered to investigate the pressure drop of MHD flow. Moreover, the effects of different magnetic field direction relative to flow distribution between bends have also been analyzed.
A trust region interior point algorithm for optimal power flow problems
Energy Technology Data Exchange (ETDEWEB)
Wang Min [Hefei University of Technology (China). Dept. of Electrical Engineering and Automation; Liu Shengsong [Jiangsu Electric Power Dispatching and Telecommunication Company (China). Dept. of Automation
2005-05-01
This paper presents a new algorithm that uses the trust region interior point method to solve nonlinear optimal power flow (OPF) problems. The OPF problem is solved by a primal/dual interior point method with multiple centrality corrections as a sequence of linearized trust region sub-problems. It is the trust region that controls the linear step size and ensures the validity of the linear model. The convergence of the algorithm is improved through the modification of the trust region sub-problem. Numerical results of standard IEEE systems and two realistic networks ranging in size from 14 to 662 buses are presented. The computational results show that the proposed algorithm is very effective to optimal power flow applications, and favors the successive linear programming (SLP) method. Comparison with the predictor/corrector primal/dual interior point (PCPDIP) method is also made to demonstrate the superiority of the multiple centrality corrections technique. (author)
Baranovskaya T. P.; Loyko V. I.; Makarevich O. A.; Bogoslavskiy S. N.
2014-01-01
The article suggests a mathematical model of optimization of the volume of material flows: the model for the ideal conditions; the model for the working conditions; generalized model of determining the optimal input parameters. These models optimize such parameters of inventory management in technology-integrated grain production systems, as the number of cycles supply, the volume of the source material and financial flows. The study was carried out on the example of the integrated system of ...
Simultaneous integrated optimal energy flow of electricity, gas, and heat
International Nuclear Information System (INIS)
Shabanpour-Haghighi, Amin; Seifi, Ali Reza
2015-01-01
Highlights: • Integration of electrical, natural gas, and district heating networks is studied. • Part-load performances of units are considered in modeling. • A modified teaching–learning based optimization is used to solve the problem. • Results show the advantages of the integrated optimization approach. - Abstract: In this paper, an integrated approach to optimize electrical, natural gas, and district heating networks simultaneously is studied. Several interdependencies between these infrastructures are considered in details including a nonlinear part-load performance for boilers and CHPs besides the valve-point effect for generators. A novel approach based on selecting an appropriate set of state-variables for the problem is proposed that eliminates the addition of any new variable to convert irregular equations into a regular set while the optimization problem is still solvable. As a large optimization problem, the optimal solution cannot be achieved by conventional mathematical techniques. Hence, it is better to use evolutionary algorithms instead. In this paper, the well-known modified teaching–learning based optimization algorithm is utilized to solve the multi-period optimal power flow problem of multi-carrier energy networks. The proposed scheme is implemented and applied to a typical multi-carrier energy network. Results are compared with some other conventional heuristic algorithms and the applicability and superiority of the proposed methodology is verified
Huang, Darong; Bai, Xing-Rong
Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.
Li, Shuang-Fei; Wang, Ping-Yang; Liu, Zhen-hua
2018-05-01
This study proposed a novel thermosyphon-type thermal storage unit using water-based CuO nanofluid as the phase-change heat transfer medium. Seven tubular canisters containing solid-liquid phase-change material (PCM) with peak melting temperature of 100 °C were placed vertically into the center of the TSU which is a vertical cylindrical vessel made of stainless steel. Coat formed by depositing nanoparticles during the phase-change process was adopted to increase the wettability of the heat transfer surfaces of the canisters. We investigated the phase-change heat transfer, as well as the heat-storage and heat-release properties, of the TSU through experimental and computational analysis. Our results demonstrate that this thermal storage unit construction can propose good heat transfer and heat-storage/heat-release performance. The coating of nanoparticles onto the heat transfer surfaces increases the surface wettability and improves both the evaporation and condensation heat transfer. The main thermal resistance in the TSU results from the conductive heat transfer inside of the PCM. All phase-change thermal resistance of liquid film in charging and discharging processes can be ignored in this TSU.
Li, Shuang-Fei; Wang, Ping-Yang; Liu, Zhen-hua
2017-11-01
This study proposed a novel thermosyphon-type thermal storage unit using water-based CuO nanofluid as the phase-change heat transfer medium. Seven tubular canisters containing solid-liquid phase-change material (PCM) with peak melting temperature of 100 °C were placed vertically into the center of the TSU which is a vertical cylindrical vessel made of stainless steel. Coat formed by depositing nanoparticles during the phase-change process was adopted to increase the wettability of the heat transfer surfaces of the canisters. We investigated the phase-change heat transfer, as well as the heat-storage and heat-release properties, of the TSU through experimental and computational analysis. Our results demonstrate that this thermal storage unit construction can propose good heat transfer and heat-storage/heat-release performance. The coating of nanoparticles onto the heat transfer surfaces increases the surface wettability and improves both the evaporation and condensation heat transfer. The main thermal resistance in the TSU results from the conductive heat transfer inside of the PCM. All phase-change thermal resistance of liquid film in charging and discharging processes can be ignored in this TSU.
Wheeling rates evaluation using optimal power flows
International Nuclear Information System (INIS)
Muchayi, M.; El-Hawary, M. E.
1998-01-01
Wheeling is the transmission of electrical power and reactive power from a seller to a buyer through a transmission network owned by a third party. The wheeling rates are then the prices charged by the third party for the use of its network. This paper proposes and evaluates a strategy for pricing wheeling power using a pricing algorithm that in addition to the fuel cost for generation incorporates the optimal allocation of the transmission system operating cost, based on time-of-use pricing. The algorithm is implemented for the IEEE standard 14 and 30 bus system which involves solving a modified optimal power flow problem iteratively. The base of the proposed algorithm is the hourly spot price. The analysis spans a total time period of 24 hours. Unlike other algorithms that use DC models, the proposed model captures wheeling rates of both real and reactive power. Based on the evaluation, it was concluded that the model has the potential for wide application in calculating wheeling rates in a deregulated competitive power transmission environment. 9 refs., 3 tabs
Liang, Zhuoyuan; Ren, Lijie; Wang, Ting; Hu, Huoyou; Li, Weiping; Wang, Yaping; Liu, Dehong; Lie, Yi
2016-12-01
The efficacy of thrombolytic therapy for acute ischemic stroke (AIS) decreases when the administration of tissue plasminogen activator (tPA) is delayed. Derived from Toyota Production System, lean production aims to create top-quality products with high-efficiency procedures, a concept that easily applies to emergency medicine. In this study, we aimed to determine whether applying lean principles to flow optimization could hasten the initiation of thrombolysis. A multidisciplinary team (Stroke Team) was organized to implement an ongoing, continuous loop of lean production that contained the following steps: decomposition, recognition, intervention, reengineering and assessment. The door-to-needle time (DNT) and the percentage of patients with DNT ≤ 60 min before and after the adoption of lean principles were used to evaluate the efficiency of our flow optimization. Thirteen patients with AIS in the pre-lean period and 43 patients with AIS in the lean period (23 in lean period I and 20 patients in lean period II) were consecutively enrolled in our study. After flow optimization, we reduced DNT from 90 to 47 min (p < 0.001 ¤ ). In addition, the percentage of patients treated ≤60 min after hospital arrival increased from 38.46 to 75.0 % (p = 0.015 ¤ ). Adjusted analysis of covariance confirmed a significant influence of optimization on delay of tPA administration (p < 0.001). The patients were more likely to have a good prognosis (mRS ≤ 2 at 90 days) after the flow optimization (30.77-75.00 %, p = 0.012 ¤ ). Our study may offer an effective approach for optimizing the thrombolytic flow in the management of AIS.
Energy Technology Data Exchange (ETDEWEB)
Carter, Thomas; Liu, Zan; Sickinger, David; Regimbal, Kevin; Martinez, David
2017-02-01
The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device, the thermosyphon cooler (TSC), with an open cooling tower. A combination of equipment and controls, this new heat rejection system embraces the 'smart use of water,' using evaporative cooling when it is most advantageous and then saving water and modulating toward increased dry sensible cooling as system operations and ambient weather conditions permit. Innovative fan control strategies ensure the most economical balance between water savings and parasitic fan energy. The unique low-pressure-drop design of the TSC allows water to be cooled directly by the TSC evaporator without risk of bursting tubes in subfreezing ambient conditions. Johnson Controls partnered with the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories to deploy the TSC as a test bed at NREL's high-performance computing (HPC) data center in the first half of 2016. Located in NREL's Energy Systems Integration Facility (ESIF), this HPC data center has achieved an annualized average power usage effectiveness rating of 1.06 or better since 2012. Warm-water liquid cooling is used to capture heat generated by computer systems direct to water; that waste heat is either reused as the primary heat source in the ESIF building or rejected using evaporative cooling. This data center is the single largest source of water and power demand on the NREL campus, using about 7,600 m3 (2.0 million gal) of water during the past year with an hourly average IT load of nearly 1 MW (3.4 million Btu/h) -- so dramatically reducing water use while continuing efficient data center operations is of significant interest. Because Sandia's climate is similar to NREL's, this new heat rejection system being deployed at NREL has gained interest at Sandia. Sandia's data centers utilize an hourly average of 8.5 MW (29 million Btu/h) and are also one of the largest consumers of
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
2015-07-01
This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the control of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.
Experimental and Numerical Design and Optimization of a Counter-Flow Heat Exchanger
Directory of Open Access Journals (Sweden)
Bahrami Salman
2018-01-01
Full Text Available A new inexpensive counter-flow heat exchanger has been designed and optimized for a vapor-compression cooling system in this research. The main aim is to experimentally and numerically evaluate the effect of an internal heat exchanger (IHX adaptation in an automotive air conditioning system. In this new design of IHX, the high-pressure liquid passes through the central channel and the low-pressure vapor flows in several parallel channels in the opposite direction. The experimental set-up has been made up of original components of the air conditioning system of a medium sedan car, specially designed and built to analyze vehicle A/C equipment under real operating conditions. The results show that this compact IHX may achieve up to 10% of the evaporator capacity while low pressure drop will be imposed on this refrigeration cycle. Also, they confirm considerable decrease of compressor power consumption (CPC, which is intensified at higher evaporator air flow. A significant improvement of the coefficient of performance (COP is achieved with the IHX employment too. The influence of operating conditions has been also discussed in this paper. Finally, numerical analyses have been briefly presented, which bring more details of the flow behavior and heat transfer phenomena, and help to determine the optimal arrangement of channels.
Flow shop scheduling algorithm to optimize warehouse activities
Directory of Open Access Journals (Sweden)
P. Centobelli
2016-01-01
Full Text Available Successful flow-shop scheduling outlines a more rapid and efficient process of order fulfilment in warehouse activities. Indeed the way and the speed of order processing and, in particular, the operations concerning materials handling between the upper stocking area and a lower forward picking one must be optimized. The two activities, drops and pickings, have considerable impact on important performance parameters for Supply Chain wholesaler companies. In this paper, a new flow shop scheduling algorithm is formulated in order to process a greater number of orders by replacing the FIFO logic for the drops activities of a wholesaler company on a daily basis. The System Dynamics modelling and simulation have been used to simulate the actual scenario and the output solutions. Finally, a t-Student test validates the modelled algorithm, granting that it can be used for all wholesalers based on drop and picking activities.
Heating Performance Study on a Passive Solar Heater
Directory of Open Access Journals (Sweden)
Naz Muhammad Y.
2017-01-01
Full Text Available A passive thermosyphon heating system was designed, fabricated and tested for its thermal performance in semi-arid and four-season climate of Pakistan. The heating system design was based on a two-stage storage and natural thermosyphon circulation of the water. The objective of the study was to enhance the heating performance of the thermosyphon systems by using a semicircular steel pot collector, water carrying copper coil cover, two step water storage, and side mirror reflectors. The experiments were conducted during April to July 2014 when ambient temperature was reported to vary between 32°C and 44°C. In continuous flow mode operation, the hot water temperature remained between 46°C and 78°C. Since water temperature in the range of 45°C to 50°C is considered suitable for the domestic use, the presented design can easily reach the temperatures even higher than those acceptable for the domestic use.
Optimization of a conversion electron Moessbauer spectroscopy gas flow He/CH4 proportional counter
International Nuclear Information System (INIS)
Hanzel, D.; Griesbach, P.; Meisel, W.; Guetlich, P.
1992-01-01
A new detector for CEMS has been built and optimized with respect to the statistical quality of spectra obtained. The optimization has been performed by measuring Moessbauer and pulse height spectra at in- and off-resonance. Single channel analyzer settings were calculated by a new optimization routine. A comparison of different detector designs has been performed using the statistical utility rate of spectra obtained from a stainless steel foil. A procedure for determining optimal operating parameters for ICEMS gas flow proposed. (orig.)
Optimal Power Flow for resistive DC Network : A Port-Hamiltonian approach
Benedito, Ernest; del Puerto-Flores, D.; Doria-Cerezo, A.; Scherpen, Jacquelien M.A.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri
This paper studies the optimal power flow problem for resistive DC networks. The gradient method algorithm is written in a port-Hamiltonian form and the stability of the resulting dynamics is studied. Stability conditions are provided for general cyclic networks and a solution, when these conditions
A quantitative flow visualization technique for on-site sport aerodynamics optimization
Sciacchitano, A.; Caridi, G.; Scarano, F.
2015-01-01
Aerodynamics plays a crucial role in many speed sports, where races are often won by fractions of a second. A thorough understanding of the flow field around an athlete is of paramount importance to optimize the athletes’ posture, garment roughness and equipment shape to achieve the minimum
A parametric level-set approach for topology optimization of flow domains
DEFF Research Database (Denmark)
Pingen, Georg; Waidmann, Matthias; Evgrafov, Anton
2010-01-01
of the design variables in the traditional approaches is seen as a possible cause for the slow convergence. Non-smooth material distributions are suspected to trigger premature onset of instationary flows which cannot be treated by steady-state flow models. In the present work, we study whether the convergence...... and the versatility of topology optimization methods for fluidic systems can be improved by employing a parametric level-set description. In general, level-set methods allow controlling the smoothness of boundaries, yield a non-local influence of design variables, and decouple the material description from the flow...... field discretization. The parametric level-set method used in this study utilizes a material distribution approach to represent flow boundaries, resulting in a non-trivial mapping between design variables and local material properties. Using a hydrodynamic lattice Boltzmann method, we study...
Marriage in Honey Bees Optimization Algorithm for Flow-shop Problems
Directory of Open Access Journals (Sweden)
Pedro PALOMINOS
2012-01-01
Full Text Available The objective of this work is to make a comparative study of the Marriage in Honeybees Op-timization (MBO metaheuristic for flow-shop scheduling problems. This paper is focused on the design possibilities of the mating flight space shared by queens and drones. The proposed algorithm uses a 2-dimensional torus as an explicit mating space instead of the simulated an-nealing one in the original MBO. After testing different alternatives with benchmark datasets, the results show that the modeled and implemented metaheuristic is effective to solve flow-shop type problems, providing a new approach to solve other NP-Hard problems.
Adjoint shape optimization for fluid-structure interaction of ducted flows
Heners, J. P.; Radtke, L.; Hinze, M.; Düster, A.
2018-03-01
Based on the coupled problem of time-dependent fluid-structure interaction, equations for an appropriate adjoint problem are derived by the consequent use of the formal Lagrange calculus. Solutions of both primal and adjoint equations are computed in a partitioned fashion and enable the formulation of a surface sensitivity. This sensitivity is used in the context of a steepest descent algorithm for the computation of the required gradient of an appropriate cost functional. The efficiency of the developed optimization approach is demonstrated by minimization of the pressure drop in a simple two-dimensional channel flow and in a three-dimensional ducted flow surrounded by a thin-walled structure.
Natural circulation in single-phase and two-phase flow
International Nuclear Information System (INIS)
Cheung, F.B.; El-Genk, M.S.
1989-01-01
Natural circulation usually arises in a closed loop between a heat source and a heat sink were the fluid motion is driven by density difference. It may also occur in enclosures or cavities where the flow is induced primarily by temperature or concentration gradients within the fluid. The subject has recently received special attention by the heat transfer and nuclear reactor safety communities because of it importance to the areas of energy extraction, decay, heat removal in nuclear reactors, solar and geothermal heating, and cooling of electronic equipment. Although many new results and physical insights have been gained of the various natural circulation phenomena, a number of critical issues remain unresolved. These include, for example, transition from laminar to turbulent flow, buoyancy-induced turbulent flow modeling, change of flow regimes, flow field visualization, variable property effects, and flow instability. This symposium volume contains papers presented in the Natural Circulation in Single-Phase and Two-Phase Flow session at the 1989 Winter Annual Meeting of ASME, by authors from different countries including the United States, Japan, Canada, and Brazil. The papers deal with experimental and theoretical studies as well as state-of-the-art reviews, covering a broad spectrum of topics in natural circulation including: variable-conductance thermosyphons, microelectronic chip cooling, natural circulation in anisotropic porous media and in cavities, heat transfer in flat plat solar collectors, shutdown heat removal in fast reactors, cooling of light-water and heavy-water reactors. The breadth of papers contained in this volume clearly reflect the importance of the current interest in natural circulation as a means for passive cooling and heating
Adam, Tijjani; Hashim, U.
2017-03-01
Optimum flow in micro channel for sensing purpose is challenging. In this study, The optimizations of the fluid sample flows are made through the design and characterization of the novel microfluidics' architectures to achieve the optimal flow rate in the micro channels. The biocompatibility of the Polydimetylsiloxane (Sylgard 184 silicon elastomer) polymer used to fabricate the device offers avenue for the device to be implemented as the universal fluidic delivery system for bio-molecules sensing in various bio-medical applications. The study uses the following methodological approaches, designing a novel microfluidics' architectures by integrating the devices on a single 4 inches silicon substrate, fabricating the designed microfluidic devices using low-cost solution soft lithography technique, characterizing and validating the flow throughput of urine samples in the micro channels by generating pressure gradients through the devices' inlets. The characterization on the urine samples flow in the micro channels have witnessed the constant flow throughout the devices.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Genetic search for an optimal power flow solution from a high density cluster
Energy Technology Data Exchange (ETDEWEB)
Amarnath, R.V. [Hi-Tech College of Engineering and Technology, Hyderabad (India); Ramana, N.V. [JNTU College of Engineering, Jagityala (India)
2008-07-01
This paper proposed a novel method to solve optimal power flow (OPF) problems. The method is based on a genetic algorithm (GA) search from a High Density Cluster (GAHDC). The algorithm of the proposed method includes 3 stages, notably (1) a suboptimal solution is obtained via a conventional analytical method, (2) a high density cluster, which consists of other suboptimal data points from the first stage, is formed using a density-based cluster algorithm, and (3) a genetic algorithm based search is carried out for the exact optimal solution from a low population sized, high density cluster. The final optimal solution thoroughly satisfies the well defined fitness function. A standard IEEE 30-bus test system was considered for the simulation study. Numerical results were presented and compared with the results of other approaches. It was concluded that although there is not much difference in numerical values, the proposed method has the advantage of minimal computational effort and reduced CPU time. As such, the method would be suitable for online applications such as the present Optimal Power Flow problem. 24 refs., 2 tabs., 4 figs.
Guex, Guillaume
2016-05-01
In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.
Brocade: Optimal flow placement in SDN networks
CERN. Geneva
2015-01-01
Today' network poses several challanges to network providers. These challanges fall in to a variety of areas ranging from determining efficient utilization of network bandwidth to finding out which user applications consume majority of network resources. Also, how to protect a given network from volumetric and botnet attacks. Optimal placement of flows deal with identifying network issues and addressing them in a real-time. The overall solution helps in building new services where a network is more secure and more efficient. Benefits derived as a result are increased network efficiency due to better capacity and resource planning, better security with real-time threat mitigation, and improved user experience as a result of increased service velocity.
Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming
2017-05-01
To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.
International Nuclear Information System (INIS)
Zhang, Xiaoshun; Yu, Tao; Yang, Bo; Zheng, Limin; Huang, Linni
2015-01-01
Highlights: • A novel optimal carbon-energy combined-flow (OCECF) model is firstly established. • A novel approximate ideal multi-objective solution Q(λ) learning is designed. • The proposed algorithm has a high convergence stability and reliability. • The proposed algorithm can be applied for OCECF in a large-scale power grid. - Abstract: This paper proposes a novel approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems. The carbon emissions, fuel cost, active power loss, voltage deviation and carbon emission loss are chosen as the optimization objectives, which are simultaneously optimized by five different Q-value matrices. The dynamic optimal weight of each objective is calculated online from the entire Q-value matrices such that the greedy action policy can be obtained. Case studies are carried out to evaluate the optimization performance for carbon-energy combined-flow in an IEEE 118-bus system and the regional power grid of southern China.
Improving Emergency Department flow through optimized bed utilization.
Chartier, Lucas Brien; Simoes, Licinia; Kuipers, Meredith; McGovern, Barb
2016-01-01
Over the last decade, patient volumes in the emergency department (ED) have grown disproportionately compared to the increase in staffing and resources at the Toronto Western Hospital, an academic tertiary care centre in Toronto, Canada. The resultant congestion has spilled over to the ED waiting room, where medically undifferentiated and potentially unstable patients must wait until a bed becomes available. The aim of this quality improvement project was to decrease the 90th percentile of wait time between triage and bed assignment (time-to-bed) by half, from 120 to 60 minutes, for our highest acuity patients. We engaged key stakeholders to identify barriers and potential strategies to achieve optimal flow of patients into the ED. We first identified multiple flow-interrupting challenges, including operational bottlenecks and cultural issues. We then generated change ideas to address two main underlying causes of ED congestion: unnecessary patient utilization of ED beds and communication breakdown causing bed turnaround delays. We subsequently performed seven tests of change through sequential plan-do-study-act (PDSA) cycles. The most significant gains were made by improving communication strategies: small gains were achieved through the optimization of in-house digital information management systems, while significant improvements were achieved through the implementation of a low-tech direct contact mechanism (a two-way radio or walkie-talkie). In the post-intervention phase, time-to-bed for the 90th percentile of high-acuity patients decreased from 120 minutes to 66 minutes, with special cause variation showing a significant shift in the weekly measurements.
DEFF Research Database (Denmark)
Ding, Tao; Li, Cheng; Yang, Yongheng
2017-01-01
The detailed topology of renewable resource bases may have the impact on the optimal power flow of the VSC-HVDC transmission network. To address this issue, this paper develops an optimal power flow with the hybrid VSC-HVDC transmission and active distribution networks to optimally schedule...... the generation output and voltage regulation of both networks, which leads to a non-convex programming model. Furthermore, the non-convex power flow equations are based on the Second Order Cone Programming (SOCP) relaxation approach. Thus, the proposed model can be relaxed to a SOCP that can be tractably solved...
Optimal power flow: a bibliographic survey I. Formulations and deterministic methods
Energy Technology Data Exchange (ETDEWEB)
Frank, Stephen [Colorado School of Mines, Department of Electrical Engineering and Computer Science, Golden, CO (United States); Steponavice, Ingrida [University of Jyvaskyla, Department of Mathematical Information Technology, Agora (Finland); Rebennack, Steffen [Colorado School of Mines, Division of Economics and Business, Golden, CO (United States)
2012-09-15
Over the past half-century, optimal power flow (OPF) has become one of the most important and widely studied nonlinear optimization problems. In general, OPF seeks to optimize the operation of electric power generation, transmission, and distribution networks subject to system constraints and control limits. Within this framework, however, there is an extremely wide variety of OPF formulations and solution methods. Moreover, the nature of OPF continues to evolve due to modern electricity markets and renewable resource integration. In this two-part survey, we survey both the classical and recent OPF literature in order to provide a sound context for the state of the art in OPF formulation and solution methods. The survey contributes a comprehensive discussion of specific optimization techniques that have been applied to OPF, with an emphasis on the advantages, disadvantages, and computational characteristics of each. Part I of the survey (this article) provides an introduction and surveys the deterministic optimization methods that have been applied to OPF. Part II of the survey examines the recent trend towards stochastic, or non-deterministic, search techniques and hybrid methods for OPF. (orig.)
Methods of the enterprise cash flows optimization in the context of sustainable development
O. Bardyn
2015-01-01
This paper deals with nature and analysis of current approaches to optimization of cash flows of the enterprise. Ways and management directions in order to achieve sustainable development by enterprise have been justified
Nocturnal reverse flow in water-in-glass evacuated tube solar water heaters
International Nuclear Information System (INIS)
Tang, Runsheng; Yang, Yuqin
2014-01-01
Highlights: • Performance of water-in-glass evacuated tube solar water heaters (SWH) at night was studied. • Experimental measurements showed that reverse flow occurred in SWHs at night. • Reverse flow in SWHs was very high but the heat loss due to reverse flow was very low. • Reverse flow seemed not sensitive to atmospheric clearness but sensitive to collector tilt-angle. - Abstract: In this work, the thermal performance of water-in-glass evacuated tube solar water heaters (SWH) at nights was experimentally investigated. Measurements at nights showed that the water temperature in solar tubes was always lower than that in the water tank but higher than the ambient air temperature and T exp , the temperature of water inside tubes predicted in the case of the water in tubes being naturally cooled without reverse flow. This signified that the reverse flow in the system occurred at nights, making the water in solar tubes higher than T exp . It is found that the reverse flow rate in the SWH, estimated based on temperature measurements of water in solar tubes, seemed not sensitive to the atmospheric clearness but sensitive to the collector tilt-angle, the larger the tilt-angle of the collector, the higher the reverse flow rate. Experimental results also showed that, the reverse flow in the SWH was much higher as compared to that in a thermosyphonic domestic solar water heater with flat-plate collectors, but the heat loss from collectors to the air due to reverse flow in SWHs was very small and only took about 8–10% of total heat loss of systems
Hadad, Ghada M; Abdel-Salam, Randa A; Emara, Samy
2011-12-01
Application of a sensitive and rapid flow injection analysis (FIA) method for determination of topiramate, piracetam, and levetiracetam in pharmaceutical formulations has been investigated. The method is based on the reaction with ortho-phtalaldehyde and 2-mercaptoethanol in a basic buffer and measurement of absorbance at 295 nm under flow conditions. Variables affecting the determination such as sample injection volume, pH, ionic strength, reagent concentrations, flow rate of reagent and other FIA parameters were optimized to produce the most sensitive and reproducible results using a quarter-fraction factorial design, for five factors at two levels. Also, the method has been optimized and fully validated in terms of linearity and range, limit of detection and quantitation, precision, selectivity and accuracy. The method was successfully applied to the analysis of pharmaceutical preparations.
Aerodynamic shape optimization of Airfoils in 2-D incompressible flow
Rangasamy, Srinivethan; Upadhyay, Harshal; Somasekaran, Sandeep; Raghunath, Sreekanth
2010-11-01
An optimization framework was developed for maximizing the region of 2-D airfoil immersed in laminar flow with enhanced aerodynamic performance. It uses genetic algorithm over a population of 125, across 1000 generations, to optimize the airfoil. On a stand-alone computer, a run takes about an hour to obtain a converged solution. The airfoil geometry was generated using two Bezier curves; one to represent the thickness and the other the camber of the airfoil. The airfoil profile was generated by adding and subtracting the thickness curve from the camber curve. The coefficient of lift and drag was computed using potential velocity distribution obtained from panel code, and boundary layer transition prediction code was used to predict the location of onset of transition. The objective function of a particular design is evaluated as the weighted-average of aerodynamic characteristics at various angles of attacks. Optimization was carried out for several objective functions and the airfoil designs obtained were analyzed.
A Hybrid Harmony Search Algorithm Approach for Optimal Power Flow
Directory of Open Access Journals (Sweden)
Mimoun YOUNES
2012-08-01
Full Text Available Optimal Power Flow (OPF is one of the main functions of Power system operation. It determines the optimal settings of generating units, bus voltage, transformer tap and shunt elements in Power System with the objective of minimizing total production costs or losses while the system is operating within its security limits. The aim of this paper is to propose a novel methodology (BCGAs-HSA that solves OPF including both active and reactive power dispatch It is based on combining the binary-coded genetic algorithm (BCGAs and the harmony search algorithm (HSA to determine the optimal global solution. This method was tested on the modified IEEE 30 bus test system. The results obtained by this method are compared with those obtained with BCGAs or HSA separately. The results show that the BCGAs-HSA approach can converge to the optimum solution with accuracy compared to those reported recently in the literature.
A Power Load Distribution Algorithm to Optimize Data Center Electrical Flow
Directory of Open Access Journals (Sweden)
Paulo Maciel
2013-07-01
Full Text Available Energy consumption is a matter of common concern in the world today. Research demonstrates that as a consequence of the constantly evolving and expanding field of information technology, data centers are now major consumers of electrical energy. Such high electrical energy consumption emphasizes the issues of sustainability and cost. Against this background, the present paper proposes a power load distribution algorithm (PLDA to optimize energy distribution of data center power infrastructures. The PLDA, which is based on the Ford-Fulkerson algorithm, is supported by an environment called ASTRO, capable of performing the integrated evaluation of dependability, cost and sustainability. More specifically, the PLDA optimizes the flow distribution of the energy flow model (EFM. EFMs are responsible for estimating sustainability and cost issues of data center infrastructures without crossing the restrictions of the power capacity that each device can provide (power system or extract (cooling system. Additionally, a case study is presented that analyzed seven data center power architectures. Significant results were observed, achieving a reduction in power consumption of up to 15.5%.
A measure theoretic approach to traffic flow optimization on networks
Cacace, Simone; Camilli, Fabio; De Maio, Raul; Tosin, Andrea
2018-01-01
We consider a class of optimal control problems for measure-valued nonlinear transport equations describing traffic flow problems on networks. The objective isto minimise/maximise macroscopic quantities, such as traffic volume or average speed,controlling few agents, for example smart traffic lights and automated cars. The measuretheoretic approach allows to study in a same setting local and nonlocal drivers interactionsand to consider the control variables as additional measures interacting ...
Directory of Open Access Journals (Sweden)
Marian C. Bryan
2011-08-01
Full Text Available The performance of the ThalesNano H-Cube®, a commercial packed bed flow hydrogenator, was evaluated in the context of small scale reaction screening and optimization. A model reaction, the reduction of styrene to ethylbenzene through a 10% Pd/C catalyst bed, was used to examine performance at various pressure settings, over sequential runs, and with commercial catalyst cartridges. In addition, the consistency of the hydrogen flow was indirectly measured by in-line UV spectroscopy. Finally, system contamination due to catalyst leaching, and the resolution of this issue, is described. The impact of these factors on the run-to-run reproducibility of the H-Cube® reactor for screening and reaction optimization is discussed.
System design and optimization study of axial flow turbine applied in ...
Indian Academy of Sciences (India)
between parameters of the turbine and flows, three different types of turbines with ... and the water are run through a multi-stage hydro-turbine for producing electricity. ... to optimize the runner blade shape of a tubular turbine. ..... Ranade V V, Perrard M, Le Sauze N, Xuereb C and Bertrand J 2001 Trailing vortices of Rushton ...
Time-optimal path planning in uncertain flow fields using ensemble method
Wang, Tong
2016-01-06
An ensemble-based approach is developed to conduct time-optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where a set deterministic predictions is used to model and quantify uncertainty in the predictions. In the operational setting, much about dynamics, topography and forcing of the ocean environment is uncertain, and as a result a single path produced by a model simulation has limited utility. To overcome this limitation, we rely on a finitesize ensemble of deterministic forecasts to quantify the impact of variability in the dynamics. The uncertainty of flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each the resulting realizations of the uncertain current field, we predict the optimal path by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of sampling strategy, and develop insight into extensions dealing with regional or general circulation models. In particular, the ensemble method enables us to perform a statistical analysis of travel times, and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.
Multi-condition optimization and experimental study of impeller blades in a mixed-flow pump
Directory of Open Access Journals (Sweden)
Houlin Liu
2016-05-01
Full Text Available On the basis of design of experiment and numerical simulation, a reliable optimization method for blades of a mixed-flow pump is proposed with the maximum weighted average efficiency at multi-conditions as optimum objective. First, the performance of the model pump was measured and the test results were used to validate the simulation method. To improve the simulation accuracy, the check of the grid independence and the comparison of different turbulence models were done in detail. Then, the method of design of experiment for key geometrical parameters was used to obtain the optimization scheme. The maximum weighted average efficiency of pump at three operation conditions was chosen as optimum objective. The optimum solution was gotten and confirmed by the experiment. The results demonstrate that efficiency of the mixed-flow pump with optimized impeller increases by 3.9%, and the high-efficiency zone is increased from 0.021 to 0.040.
Energy Technology Data Exchange (ETDEWEB)
Hagspiel, Simeon; Jaegemann, Cosima; Lindenberger, Dietmar [Koeln Univ. (Germany). Inst. of Energy Economics; Cherevatskiy, Stanislav; Troester, Eckehard; Brown, Tom [Energynautics GmbH, Langen (Germany)
2012-07-01
Electricity market models, implemented as dynamic programming problems, have been applied widely to identify possible pathways towards a cost-optimal and low carbon electricity system. However, the joint optimization of generation and transmission remains challenging, mainly due to the fact that different characteristics and rules apply to commercial and physical exchanges of electricity in meshed networks. This paper presents a methodology that allows to optimize power generation and transmission infrastructures jointly through an iterative approach based on power transfer distribution factors (PTDFs). As PTDFs are linear representations of the physical load flow equations, they can be implemented in a linear programming environment suitable for large scale problems such as the European power system. The algorithm iteratively updates PTDFs when grid infrastructures are modified due to cost-optimal extension and thus yields an optimal solution with a consistent representation of physical load flows. The method is demonstrated on a simplified three-node model where it is found to be stable and convergent. It is then scaled to the European level in order to find the optimal power system infrastructure development under the prescription of strongly decreasing CO{sub 2} emissions in Europe until 2050 with a specific focus on photovoltaic (PV) power. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Yao, Shunchun, E-mail: epscyao@scut.edu.cn [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, Hefei 230037 (China); Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Lu, Jidong, E-mail: jdlu@scut.edu.cn [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China)
2015-08-01
The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment. - Highlights: • Tapered tube was designed for beam-focusing the coal particle flow as well as enriching the particles in laser focus spot. • The characteristics of laser-induced plasma of coal particle flow were investigated carefully. • An appropriate diameter of coal particle flow was proven to benefit for improving the performance of LIBS measurement.
Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li
2014-01-01
Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions.
Directory of Open Access Journals (Sweden)
Ruyi Huang
2015-06-01
Full Text Available This paper introduces a new-type of antigravity mixing method, which was applied in the biogas production process, using organic wastewater fermentation. It was found that the digesters with two designs, a high-position, centralized pressure outlet and a high-position, dispersed pressure outlets, both lead to an increase in biogas production rates by 89% and 125%, respectively. The biogas production peak appeared 1 day and 7 days earlier, and the COD removal rates were raised by 27% and 42%, respectively. The results indicated that the optimized flow field had a significant impact. This work also explains the mechanism of flow field optimization using computational fluid dynamics (CFD software for the simulation of the flow field form in the hydraulic mixing.
Optimal Power Flow in three-phase islanded microgrids with inverter interfaced units
DEFF Research Database (Denmark)
Sanseverino, Eleonora Riva; Quang, Ninh Nguyen; Di Silvestre, Maria Luisa
2015-01-01
In this paper, the solution of the Optimal Power Flow (OPF) problem for three phase islanded microgrids is studied, the OPF being one of the core functions of the tertiary regulation level for an AC islanded microgrid with a hierarchical control architecture. The study also aims at evaluating the...
Shape optimization of an airfoil in a BZT flow with multiple-source uncertainties
International Nuclear Information System (INIS)
Congedo, P.M.; Corre, C.; Martinez, J.M.
2011-01-01
Bethe-Zel'dovich-Thompson fluids (BZT) are characterized by negative values of the fundamental derivative of gas dynamics for a range of temperatures and pressures in the vapor phase, which leads to non-classical gas dynamic behaviors such as the disintegration of compression shocks. These non-classical phenomena can be exploited, when using these fluids in Organic Rankine Cycles (ORCs), to increase isentropic efficiency. A predictive numerical simulation of these flows must account for two main sources of physical uncertainties: the BZT fluid properties often difficult to measure accurately and the usually fluctuating turbine inlet conditions. For taking full advantage of the BZT properties, the turbine geometry must also be specifically designed, keeping in mind the geometry achieved in practice after machining always slightly differs from the theoretical shape. This paper investigates some efficient procedures to perform shape optimization in a 2D BZT flow with multiple-source uncertainties (thermodynamic model, operating conditions and geometry). To demonstrate the feasibility of the proposed efficient strategies for shape optimization in the presence of multiple-source uncertainties, a zero incidence symmetric airfoil wave-drag minimization problem is retained as a case-study. This simplified configuration encompasses most of the features associated with a turbine design problem, as far the uncertainty quantification is concerned. A preliminary analysis of the contributions to the variance of the wave-drag allows to select the most significant sources of uncertainties using a reduced number of flow computations. The resulting mean value and variance of the objective are next turned into meta models. The optimal Pareto sets corresponding to the minimization of various substitute functions are obtained using a genetic algorithm as optimizer and their differences are discussed. (authors)
Buddala, Raviteja; Mahapatra, Siba Sankar
2017-11-01
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.
Directory of Open Access Journals (Sweden)
Afshin Mehrsai
2013-01-01
Full Text Available Alternative material flow strategies in logistics networks have crucial influences on the overall performance of the networks. Material flows can follow push, pull, or hybrid systems. To get the advantages of both push and pull flows in networks, the decoupling-point strategy is used as coordination mean. At this point, material pull has to get optimized concerning customer orders against pushed replenishment-rates. To compensate the ambiguity and uncertainty of both dynamic flows, fuzzy set theory can practically be applied. This paper has conceptual and mathematical parts to explain the performance of the push-pull flow strategy in a supply network and to give a novel solution for optimizing the pull side employing Conwip system. Alternative numbers of pallets and their lot-sizes circulating in the assembly system are getting optimized in accordance with a multi-objective problem; employing a hybrid approach out of meta-heuristics (genetic algorithm and simulated annealing and fuzzy system. Two main fuzzy sets as triangular and trapezoidal are applied in this technique for estimating ill-defined waiting times. The configured technique leads to smoother flows between push and pull sides in complex networks. A discrete-event simulation model is developed to analyze this thesis in an exemplary logistics network with dynamics.
Energy Technology Data Exchange (ETDEWEB)
Zalewski, L.
1996-11-27
The objective of this work is the analysis of a passive solar component: the composite solar wall, a building component, which includes an insulating panel located behind the massive wall. This panel has two vents located at the top and at the bottom, which allow the air to circulate from the room to the layer in contact with the back of the massive wall, where it is heated, and then back to the room. The solar energy is transferred to the building by conduction through the massive wall, and then by convection using a thermosyphon phenomenon. The monitoring of 2 solar houses in Verdun-Thierville (Meuse, France) has clearly shown, control issues of the air layer. The wall must be operated as autonomously as possible, to not be a constraint for the occupants and to get an optimization of the energy gains. To solve these problems, a composite solar wall prototype was erected in a test cell at Cadarache and tested in real operating conditions. This allows to use a more complete instrumentation, to have access more easily to the sensors and to study various configurations. The first experiments revealed an inverse thermosyphon phenomenon. To avoid this effect, two systems were designed, tested at Cadarache and then implemented in the walls at Verdun. (author) 77 refs.
Directory of Open Access Journals (Sweden)
Thang Diep Thanh
2017-12-01
Full Text Available In environmental uncertainties, the power flow problem in islanded microgrid (MG becomes complex and non-trivial. The optimal power flow (OPL problem is described in this paper by using the energy balance between the power generation and load demand. The paper also presents the hierarchical control structure which consists of primary, secondary, tertiary, and emergency controls. Clearly, optimal power flow (OPL which implements a distributed tertiary control in hierarchical control. MG consists of diesel engine generator (DEG, wind turbine generator (WTG, and photovoltaic (PV power. In the control system considered, operation planning is realized based on profiles such that the MG, load, wind and photovoltaic power must be forecasted in short-period, meanwhile the dispatch source (i.e., DEG needs to be scheduled. The aim of the control problem is to find the dispatch output power by minimizing the total cost of energy that leads to the Hamilton-Jacobi-Bellman equation. Experimental results are presented, showing the effectiveness of optimal control such that the generation allows demand profile.
Optimal power flow: a bibliographic survey II. Non-deterministic and hybrid methods
Energy Technology Data Exchange (ETDEWEB)
Frank, Stephen [Colorado School of Mines, Department of Electrical Engineering and Computer Science, Golden, CO (United States); Steponavice, Ingrida [Univ. of Jyvaskyla, Dept. of Mathematical Information Technology, Agora (Finland); Rebennack, Steffen [Colorado School of Mines, Division of Economics and Business, Golden, CO (United States)
2012-09-15
Over the past half-century, optimal power flow (OPF) has become one of the most important and widely studied nonlinear optimization problems. In general, OPF seeks to optimize the operation of electric power generation, transmission, and distribution networks subject to system constraints and control limits. Within this framework, however, there is an extremely wide variety of OPF formulations and solution methods. Moreover, the nature of OPF continues to evolve due to modern electricity markets and renewable resource integration. In this two-part survey, we survey both the classical and recent OPF literature in order to provide a sound context for the state of the art in OPF formulation and solution methods. The survey contributes a comprehensive discussion of specific optimization techniques that have been applied to OPF, with an emphasis on the advantages, disadvantages, and computational characteristics of each. Part I of the survey provides an introduction and surveys the deterministic optimization methods that have been applied to OPF. Part II of the survey (this article) examines the recent trend towards stochastic, or non-deterministic, search techniques and hybrid methods for OPF. (orig.)
Flow analysis and port optimization of geRotor pump using commercial CFD code
Energy Technology Data Exchange (ETDEWEB)
Kim, Byung Jo; Seong, Seung Hak; Yoon, Soon Hyun [Pusan National Univ., Pusan (Korea, Republic of)
2005-07-01
GeRotor pump is widely used in the automotive industry for fuel lift, injection, engine oil lubrication, and also in transmission systems. The CFD study of the pump, which is characterized by transient flow with moving rotor boundaries, has been performed to obtain the most optimum shape of the inlet/outlet port of the pump. Various shapes of the port have been tested to investigate how they affect flow rates and fluctuations. Based on the parametric study, an optimum shape has been determined for the maximum flow rate and minimum fluctuations. The result has been confirmed by experiments. For the optimization, Taguchi method has been adapted. The groove shape has been found to be the most important factor among the selected several parameters related to flow rate and fluctuations.
Cao, Jia; Yan, Zheng; He, Guangyu
2016-06-01
This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.
Pilavaki, Evdokia; Demosthenous, Andreas
2017-11-20
Detection and control of infectious diseases is a major problem, especially in developing countries. Lateral flow immunoassays can be used with great success for the detection of infectious diseases. However, for the quantification of their results an electronic reader is required. This paper presents an optimized handheld electronic reader for developing countries. It features a potentially low-cost, low-power, battery-operated device with no added optical accessories. The operation of this proof of concept device is based on measuring the reflected light from the lateral flow immunoassay and translating it into the concentration of the specific analyte of interest. Characterization of the surface of the lateral flow immunoassay has been performed in order to accurately model its response to the incident light. Ray trace simulations have been performed to optimize the system and achieve maximum sensitivity by placing all the components in optimum positions. A microcontroller enables all the signal processing to be performed on the device and a Bluetooth module allows transmission of the results wirelessly to a mobile phone app. Its performance has been validated using lateral flow immunoassays with influenza A nucleoprotein in the concentration range of 0.5 ng/mL to 200 ng/mL.
Directory of Open Access Journals (Sweden)
Evdokia Pilavaki
2017-11-01
Full Text Available Detection and control of infectious diseases is a major problem, especially in developing countries. Lateral flow immunoassays can be used with great success for the detection of infectious diseases. However, for the quantification of their results an electronic reader is required. This paper presents an optimized handheld electronic reader for developing countries. It features a potentially low-cost, low-power, battery-operated device with no added optical accessories. The operation of this proof of concept device is based on measuring the reflected light from the lateral flow immunoassay and translating it into the concentration of the specific analyte of interest. Characterization of the surface of the lateral flow immunoassay has been performed in order to accurately model its response to the incident light. Ray trace simulations have been performed to optimize the system and achieve maximum sensitivity by placing all the components in optimum positions. A microcontroller enables all the signal processing to be performed on the device and a Bluetooth module allows transmission of the results wirelessly to a mobile phone app. Its performance has been validated using lateral flow immunoassays with influenza A nucleoprotein in the concentration range of 0.5 ng/mL to 200 ng/mL.
The State Fiscal Policy: Determinants and Optimization of Financial Flows
Directory of Open Access Journals (Sweden)
Sitash Tetiana D.
2017-03-01
Full Text Available The article outlines the determinants of the state fiscal policy at the present stage of global transformations. Using the principles of financial science it is determined that regulation of financial flows within the fiscal sphere, namely centralization and redistribution of the GDP, which results in the regulation of the financial capacity of economic agents, is of importance. It is emphasized that the urgent measure for improving the tax model is re-considering the provision of fiscal incentives, which are used to stimulate the accumulation of capital, investment activity, innovation, increase of the competitiveness of national products, expansion of exports, increase of the level of the population employment. The necessity of applying the instruments of fiscal regulation of financial flows, which should take place on the basis of institutional economics emphasizing the analysis of institutional changes, the evolution of institutions and their impact on the behavior of participants of economic relations. At the same time it is determined that the maximum effect of fiscal regulation of financial flows is ensured when application of fiscal instruments is aimed not only at achieving the target values of parameters of financial flows but at overcoming institutional deformations as well. It is determined that the optimal movement of financial flows enables creating favorable conditions for development and maintenance of financial balance in the society and achievement of the necessary level of competitiveness of the national economy.
Directory of Open Access Journals (Sweden)
Zsuzsanna Kuklenyik
2015-02-01
Full Text Available In this report we demonstrate a practical multivariate design of experiment (DoE approach for asymmetric flow field-flow fractionation (AF4 method optimization using separation of lipoprotein subclasses as an example. First, with the aid of commercially available software, we built a full factorial screening design where the theoretical outcomes were calculated by applying established formulas that govern AF4 channel performance for a 5–35 nm particle size range of interest for lipid particles. Second, using the desirable ranges of instrumental parameters established from theoretical optimization, we performed fractional factorial DoE for AF4 separation of pure albumin and ferritin with UV detection to narrow the range of instrumental parameters and allow optimum size resolution while minimizing losses from membrane immobilization. Third, the optimal range of conditions were tested using response surface DoE for sub-fractionation of high and low density lipoproteins (HDL and LDL in human serum, where the recovery of the analytes were monitored by fraction collection and isotope-dilution LC-MS/MS analysis of each individual fraction for cholesterol and apolipoproteins (ApoA-1 and ApoB-100. Our results show that DoE is an effective tool in combining AF4 theoretical knowledge and experimental data in finding the most optimal set of AF4 instrumental parameters for quantitative coupling with LC-MS/MS measurements.
Optimization of a Vanadium Redox Flow Battery with Hydrogen generation
Wrang, Daniel
2016-01-01
We consider the modelling and optimal control of energy storage systems, in this study a Vanadium Redox Flow Battery. Such a battery can be introduced in the electrical grid to be charged when demand is low and discharged when demand is high, increasing the overall efficiency of the network while reducing costs and emission of greenhouse gases. The model of the battery proposed in this study is less complex than the majority of models on batteries and energy storage systems found in literatur...
Optimal Results and Numerical Simulations for Flow Shop Scheduling Problems
Directory of Open Access Journals (Sweden)
Tao Ren
2012-01-01
Full Text Available This paper considers the m-machine flow shop problem with two objectives: makespan with release dates and total quadratic completion time, respectively. For Fm|rj|Cmax, we prove the asymptotic optimality for any dense scheduling when the problem scale is large enough. For Fm‖ΣCj2, improvement strategy with local search is presented to promote the performance of the classical SPT heuristic. At the end of the paper, simulations show the effectiveness of the improvement strategy.
Simon, Moritz; Ulbrich, Michael
2013-01-01
Motivated by applications in subsurface CO2 sequestration, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. The objective is, e.g., to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, where the time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system and formulate the optimal control problem. For the discretization we use a variant of the BOX method, a locally conservative control-volume FE method. The timestep-wise Lagrangian of the control problem is implemented as a functional in the PDE toolbox Sundance, which is part of the HPC software Trilinos. The resulting MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT. Finally, we present some numerical results in a heterogeneous model reservoir.
Euler's fluid equations: Optimal control vs optimization
International Nuclear Information System (INIS)
Holm, Darryl D.
2009-01-01
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Directory of Open Access Journals (Sweden)
Leyzgold D.Yu.
2015-04-01
Full Text Available This article studies the problem of the transmission line conductor heating effect on the active power flows optimization in the local segment of industrial power supply. The purpose is to determine the optimal generation rating of the distributed power sources, in which the power flow values will correspond to the minimum active power losses in the power supply. The timeliness is the need to define the most appropriate rated power values of distributed sources which will be connected to current industrial power supply. Basing on the model of active power flow optimization, authors formulate the description of the nonlinear transportation problem considering the active power losses depending on the transmission line conductor heating. Authors proposed a new approach to the heating model parameters definition based on allowable current loads and nominal parameters of conductors as part of the optimization problem. Analysis of study results showed that, despite the relatively small active power losses reduction to the tune 0,45% due to accounting of the conductors heating effect for the present configuration of power supply, there are significant fluctuations in the required generation rating in nodes of the network to 9,32% within seasonal changes in the outer air temperature. This fact should be taken into account when selecting the optimum power of distributed generation systems, as exemplified by an arbitrary network configuration.
2012-06-01
The purpose of this project is to develop for the Intelligent Network Flow Optimization (INFLO), which is one collection (or bundle) of high-priority transformative applications identified by the United States Department of Transportation (USDOT) Mob...
2012-11-01
The purpose of this project is to develop for the Intelligent Network Flow Optimization (INFLO), which is one collection (or bundle) of high-priority transformative applications identified by the United States Department of Transportation (USDOT) Mob...
International Nuclear Information System (INIS)
Xu, Bing; Ye, Shaogan; Zhang, Junhui; Zhang, Chunfeng
2016-01-01
This paper investigates the potential of flow ripple reduction of an axial piston pump by a combination of cross-angle and pressure relief grooves. A dynamic model is developed to analyze the pumping dynamics of the pump and validated by experimental results. The effects of cross-angle on the flow ripples in the outlet and inlet ports, and the piston chamber pressure are investigated. The effects of pressure relief grooves on the optimal solutions obtained by a multi-objective optimization method are identified. A sensitivity analysis is performed to investigate the sensitivity of cross-angle to different working conditions. The results reveal that the flow ripples from the optimal solutions are smaller using the cross-angle and pressure relief grooves than those using the cross-angle and ordinary precompression and decompression angles and the cross-angle can be smaller. In addition, when the optimal design is used, the outlet flow ripples sensitivity can be reduced significantly.
International Nuclear Information System (INIS)
Azadeh, A.; Maleki Shoja, B.; Ghanei, S.; Sheikhalishahi, M.
2015-01-01
This research investigates a redundancy-scheduling optimization problem for a multi-state series parallel system. The system is a flow shop manufacturing system with multi-state machines. Each manufacturing machine may have different performance rates including perfect performance, decreased performance and complete failure. Moreover, warm standby redundancy is considered for the redundancy allocation problem. Three objectives are considered for the problem: (1) minimizing system purchasing cost, (2) minimizing makespan, and (3) maximizing system reliability. Universal generating function is employed to evaluate system performance and overall reliability of the system. Since the problem is in the NP-hard class of combinatorial problems, genetic algorithm (GA) is used to find optimal/near optimal solutions. Different test problems are generated to evaluate the effectiveness and efficiency of proposed approach and compared to simulated annealing optimization method. The results show the proposed approach is capable of finding optimal/near optimal solution within a very reasonable time. - Highlights: • A redundancy-scheduling optimization problem for a multi-state series parallel system. • A flow shop with multi-state machines and warm standby redundancy. • Objectives are to optimize system purchasing cost, makespan and reliability. • Different test problems are generated and evaluated by a unique genetic algorithm. • It locates optimal/near optimal solution within a very reasonable time
Directory of Open Access Journals (Sweden)
Laxmi A. Bewoor
2017-10-01
Full Text Available The no-wait flow shop is a flowshop in which the scheduling of jobs is continuous and simultaneous through all machines without waiting for any consecutive machines. The scheduling of a no-wait flow shop requires finding an appropriate sequence of jobs for scheduling, which in turn reduces total processing time. The classical brute force method for finding the probabilities of scheduling for improving the utilization of resources may become trapped in local optima, and this problem can hence be observed as a typical NP-hard combinatorial optimization problem that requires finding a near optimal solution with heuristic and metaheuristic techniques. This paper proposes an effective hybrid Particle Swarm Optimization (PSO metaheuristic algorithm for solving no-wait flow shop scheduling problems with the objective of minimizing the total flow time of jobs. This Proposed Hybrid Particle Swarm Optimization (PHPSO algorithm presents a solution by the random key representation rule for converting the continuous position information values of particles to a discrete job permutation. The proposed algorithm initializes population efficiently with the Nawaz-Enscore-Ham (NEH heuristic technique and uses an evolutionary search guided by the mechanism of PSO, as well as simulated annealing based on a local neighborhood search to avoid getting stuck in local optima and to provide the appropriate balance of global exploration and local exploitation. Extensive computational experiments are carried out based on Taillard’s benchmark suite. Computational results and comparisons with existing metaheuristics show that the PHPSO algorithm outperforms the existing methods in terms of quality search and robustness for the problem considered. The improvement in solution quality is confirmed by statistical tests of significance.
Improvement of Power Flow Calculation with Optimization Factor Based on Current Injection Method
Directory of Open Access Journals (Sweden)
Lei Wang
2014-01-01
Full Text Available This paper presents an improvement in power flow calculation based on current injection method by introducing optimization factor. In the method proposed by this paper, the PQ buses are represented by current mismatches while the PV buses are represented by power mismatches. It is different from the representations in conventional current injection power flow equations. By using the combined power and current injection mismatches method, the number of the equations required can be decreased to only one for each PV bus. The optimization factor is used to improve the iteration process and to ensure the effectiveness of the improved method proposed when the system is ill-conditioned. To verify the effectiveness of the method, the IEEE test systems are tested by conventional current injection method and the improved method proposed separately. Then the results are compared. The comparisons show that the optimization factor improves the convergence character effectively, especially that when the system is at high loading level and R/X ratio, the iteration number is one or two times less than the conventional current injection method. When the overloading condition of the system is serious, the iteration number in this paper appears 4 times less than the conventional current injection method.
Directory of Open Access Journals (Sweden)
Jie-Sheng Wang
2015-06-01
Full Text Available In order to improve the accuracy and real-time of all kinds of information in the cash business, and solve the problem which accuracy and stability is not high of the data linkage between cash inventory forecasting and cash management information in the commercial bank, a hybrid learning algorithm is proposed based on adaptive population activity particle swarm optimization (APAPSO algorithm combined with the least squares method (LMS to optimize the adaptive network-based fuzzy inference system (ANFIS model parameters. Through the introduction of metric function of population diversity to ensure the diversity of population and adaptive changes in inertia weight and learning factors, the optimization ability of the particle swarm optimization (PSO algorithm is improved, which avoids the premature convergence problem of the PSO algorithm. The simulation comparison experiments are carried out with BP-LMS algorithm and standard PSO-LMS by adopting real commercial banks’ cash flow data to verify the effectiveness of the proposed time series prediction of bank cash flow based on improved PSO-ANFIS optimization method. Simulation results show that the optimization speed is faster and the prediction accuracy is higher.
Investment cash flow sensitivity under managerial optimism: new evidence from NYSE panel data firms
Mohamed, Ezzeddine Ben; Fairchild, Richard; Bouri, Abdelfettah
2014-01-01
Investment cash flow sensitivity constitutes one important block of the corporate financial literature. While it is well documented in standard corporate finance, it is still young under behavioral corporate finance. In this paper, we test the investment cash flow sensitivity among panel data of American industrial firms during 1999-2010. Using Q-model of investment (Tobin, 1969), we construct and introduce a proxy of managerial optimism following Malmendier and Tate (2005a) to show the impac...
Using linear programming to analyze and optimize stochastic flow lines
DEFF Research Database (Denmark)
Helber, Stefan; Schimmelpfeng, Katja; Stolletz, Raik
2011-01-01
This paper presents a linear programming approach to analyze and optimize flow lines with limited buffer capacities and stochastic processing times. The basic idea is to solve a huge but simple linear program that models an entire simulation run of a multi-stage production process in discrete time...... programming and hence allows us to solve buffer allocation problems. We show under which conditions our method works well by comparing its results to exact values for two-machine models and approximate simulation results for longer lines....
Permutation flow-shop scheduling problem to optimize a quadratic objective function
Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu
2017-09-01
A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.
Modeling of a District Heating System and Optimal Heat-Power Flow
Directory of Open Access Journals (Sweden)
Wentao Yang
2018-04-01
Full Text Available With ever-growing interconnections of various kinds of energy sources, the coupling between a power distribution system (PDS and a district heating system (DHS has been progressively intensified. Thus, it is becoming more and more important to take the PDS and the DHS as a whole in energy flow analysis. Given this background, a steady state model of DHS is first presented with hydraulic and thermal sub-models included. Structurally, the presented DHS model is composed of three major parts, i.e., the straight pipe, four kinds of local pipes, and the radiator. The impacts of pipeline parameters and the environment temperature on heat losses and pressure losses are then examined. The term “heat-power flow” is next defined, and the optimal heat-power flow (OHPF model formulated as a quadratic planning problem, in which the objective is to minimize energy losses, including the heat losses and active power losses, and both the operational constraints of PDS and DHS are respected. The developed OHPF model is solved by the well-established IPOPT (Interior Point OPTimizer commercial solver, which is based on the YALMIP/MATLAB toolbox. Finally, two sample systems are served for demonstrating the characteristics of the proposed models.
Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee
2014-12-01
A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand. Copyright © 2014 Elsevier B.V. All rights reserved.
Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.
Hidalgo-Bastida, L Araida; Thirunavukkarasu, Sundaramoorthy; Griffiths, Sarah; Cartmell, Sarah H; Naire, Shailesh
2012-04-01
Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one. Copyright © 2011 Wiley Periodicals, Inc.
DEFF Research Database (Denmark)
Haertel, Jan Hendrik Klaas; Nellis, Gregory F.
2017-01-01
In this work, density-based topology optimization is applied to the design of the air-side surface of dry-cooled power plant condensers. A topology optimization model assuming a steady-state, thermally and fluid dynamically fully developed internal flow is developed and used for this application....
Mahmoudzadeh, Javid; Wlodarczyk, Marta; Cassel, Kevin
2017-11-01
Development of excessive intimal hyperplasia (IH) in the cephalic vein of renal failure patients who receive chronic hemodialysis treatment results in vascular access failure and multiple treatment complications. Specifically, cephalic arch stenosis (CAS) is known to exacerbate hypertensive blood pressure, thrombosis, and subsequent cardiovascular incidents that would necessitate costly interventional procedures with low success rates. It has been hypothesized that excessive blood flow rate post access maturation which strongly violates the venous homeostasis is the main hemodynamic factor that orchestrates the onset and development of CAS. In this article, a computational framework based on a strong coupling of computational fluid dynamics (CFD) and shape optimization is proposed that aims to identify the effective blood flow rate on a patient-specific basis that avoids the onset of CAS while providing the adequate blood flow rate required to facilitate hemodialysis. This effective flow rate can be achieved through implementation of Miller's surgical banding method after the maturation of the arteriovenous fistula and is rooted in the relaxation of wall stresses back to a homeostatic target value. The results are indicative that this optimized hemodialysis blood flow rate is, in fact, a subject-specific value that can be assessed post vascular access maturation and prior to the initiation of chronic hemodialysis treatment as a mitigative action against CAS-related access failure. This computational technology can be employed for individualized dialysis treatment.
Directory of Open Access Journals (Sweden)
Aouss Gabash
2016-02-01
Full Text Available It has recently been shown that using battery storage systems (BSSs to provide reactive power provision in a medium-voltage (MV active distribution network (ADN with embedded wind stations (WSs can lead to a huge amount of reverse power to an upstream transmission network (TN. However, unity power factors (PFs of WSs were assumed in those studies to analyze the potential of BSSs. Therefore, in this paper (Part-I, we aim to further explore the pure reactive power potential of WSs (i.e., without BSSs by investigating the issue of variable reverse power flow under different limits on PFs in an electricity market model. The main contributions of this work are summarized as follows: (1 Introducing the reactive power capability of WSs in the optimization model of the active-reactive optimal power flow (A-R-OPF and highlighting the benefits/impacts under different limits on PFs. (2 Investigating the impacts of different agreements for variable reverse power flow on the operation of an ADN under different demand scenarios. (3 Derivation of the function of reactive energy losses in the grid with an equivalent-π circuit and comparing its value with active energy losses. (4 Balancing the energy curtailment of wind generation, active-reactive energy losses in the grid and active-reactive energy import-export by a meter-based method. In Part-II, the potential of the developed model is studied through analyzing an electricity market model and a 41-bus network with different locations of WSs.
An entropy flow optimization technique for helium liquefaction cycles
International Nuclear Information System (INIS)
Minta, M.; Smith, J.L.
1984-01-01
This chapter proposes a new method of analyzing thermodynamic cycles based on a continuous distribution of precooling over the temperature range of the cycle. The method gives the optimum distribution of precooling over the temperature range of the cycle by specifying the mass flow to be expanded at each temperature. The result is used to select a cycle configuration with discrete expansions and to initialize the independent variables for final optimization. Topics considered include the continuous precooling model, the results for ideal gas, the results for real gas, and the application to the design of a saturated vapor compression (SVC) cycle. The optimization technique for helium liquefaction cycles starts with the minimization of the generated entropy in a cycle model with continuous precooling. The pressure ratio, the pressure level and the distribution of the heat exchange are selected based on the results of the continuous precooling analysis. It is concluded that the technique incorporates the non-ideal behavior of helium in the procedure and allows the trade-off between heat exchange area and losses to be determined
Energy Technology Data Exchange (ETDEWEB)
Benkheira, L
2007-06-15
The method of cooling based on the thermosyphon principle is of great interest because of its simplicity, its passivity and its low cost. It is adopted to cool down to 4,5 K the superconducting magnet of the CMS particles detector of the Large Hadron Collider (LHC) experiment under construction at CERN, Geneva. This work studies heat and mass transfer characteristics of two phase He I in a natural circulation loop. The experimental set-up consists of a thermosyphon single branch loop mainly composed of a phase separator, a downward tube, and a test section. The experiments were conducted with varying several parameters such as the diameter of the test section (10 mm or 14 mm) and the applied heat flux up to the appearance of the boiling crisis. These experiments have permitted to determine the laws of evolution of the various parameters characterizing the flow (circulation mass flow rate, vapour mass flow rate, vapour quality, friction coefficient, two phase heat transfer coefficient and the critical heat flux) as a function of the applied heat flux. On the base of the obtained results, we discuss the validity of the various existing models in the literature. We show that the homogeneous model is the best model to predict the hydrodynamical properties of this type of flow in the vapour quality range 0{<=}x{<=}30%. Moreover, we propose two models for the prediction of the two phase heat transfer coefficient and the density of the critical heat flux. The first one considers that the effects of the forced convection and nucleate boiling act simultaneously and contribute to heat transfer. The second one correlates the measured critical heat flux density with the ratio altitude to diameter. (author)
Full-order optimal compensators for flow control: the multiple inputs case
Semeraro, Onofrio; Pralits, Jan O.
2018-03-01
Flow control has been the subject of numerous experimental and theoretical works. We analyze full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors. The full-order controllers do not require any preliminary model reduction or low-order approximation: this feature allows us to assess the optimal performance of an actuated flow without relying on any estimation process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley et al. (Meccanica 51(12):2997-3014, 2016. https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this numerical work, we extend the ADA iteration into a more general framework that includes the design of controllers with multiple, coupled inputs and robust controllers (H_{∞} methods). First, we demonstrate our results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent scalability with the number of inputs (actuators), making the method a viable way for full-order control design in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the linearized Kuramoto-Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.
Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub
International Nuclear Information System (INIS)
Ma, Tengfei; Wu, Junyong; Hao, Liangliang
2017-01-01
Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.
2015-06-01
This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and : Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale : demonstration of ...
Directory of Open Access Journals (Sweden)
Ambarish Panda
2016-09-01
Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.
Directory of Open Access Journals (Sweden)
Islam S.M. Khalil
2016-06-01
Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr−1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr−1 and 30 ml.hr−1 are calculated to be 45 μm.s−1 and 15 μm.s−1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.
Modeling of Transient Response of the Wickless Heat Pipes
International Nuclear Information System (INIS)
Hussien, A.K.A.
2013-01-01
Thermosyphons transient response for startup from ambient temperature to steady state until shutdown conditions, is considered a stringent necessity for applications such as electronic, solar, geothermal and even nuclear reactors safety systems. This typically returns to the need to keep the temperature within certain limits before reaching critical conditions. A simple network model is derived for describing the transient response of closed two-phase thermosyphon (CTPT) at startup and shutdown states. In addition, for predicting the effect of operational characteristics of water/copper closed two-phase thermosyphon such as thermal load, filling ratio, evaporator length, and thermosyphon tube diameter. The thermosyphons operation was considered a thermal network of various components with different thermal resistances and dynamic responses. The network model consists of six sub-models. These models are pure conduction in walls of evaporator, adiabatic and condenser, and convection in evaporator pool, evaporator film, and condenser film. So, an energy balance for each sub-model was done to estimate temperatures, heat transfer coefficients, thermal resistances, time constant, and other thermal characteristics that describe the required transient response of the closed two-phase thermosyphon. Governing equations of the transient thermosyphon behavior can be simplified into a set of first-order linear ordinary differential equations. The Runge-Kutta method can be used to obtain transient thermosyphon temperatures from these equations.
International Nuclear Information System (INIS)
Wang Weishu; Zhu Xiaojing; Bi Qincheng; Wu Gang; Yu Shuiqing
2012-01-01
The optimized internal-ribbed tube is different from the normal internal-ribbed tube on the frictional pressure drop characteristics. The frictional pressure drop characteristics of steam-water two phase flow in horizontal four-head optimized internal-ribbed were studied under adiabatic condition. According to the experimental and calculation results, the two-phase multiplier is greatly affected by the steam quality and pressure. The two-phase multiplier increases with increasing quality, and decreases with increasing pressure. In the near-critical pressure region, the two-phase multiplier is close to 1. The frictional pressure drop of two phase flow in optimized tube is less than that in the normal tube under the same work condition. The good hydrodynamic condition could be achieved when the optimized internal-ribbed tube is used in the heat transfer equipment because the self-compensating characteristics exist due to the reduction of frictional pressure drop. (authors)
Towards Optimal Event Detection and Localization in Acyclic Flow Networks
Agumbe Suresh, Mahima
2012-01-03
Acyclic flow networks, present in many infrastructures of national importance (e.g., oil & gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures, have been proven costly and imprecise, especially when dealing with large scale distribution systems. In this paper, to the best of our knowledge for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. Sensor nodes move along the edges of the network and detect events (i.e., attacks) and proximity to beacon nodes with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensor and beacon nodes deployed), while ensuring a degree of sensing coverage in a zone of interest and a required accuracy in locating events. We propose algorithms for solving these problems and demonstrate their effectiveness with results obtained from a high fidelity simulator.
Model-based design and optimization of vanadium redox flow batteries
Energy Technology Data Exchange (ETDEWEB)
Koenig, Sebastian
2017-07-19
This work targets on increasing the efficiency of the Vanadium Redox Flow Battery (VRFB) using a model-based approach. First, a detailed instruction for setting up a VRFB model on a system level is given. Modelling of open-circuit-voltage, ohmic overpotential, concentration overpotential, Vanadium crossover, shunt currents as well as pump power demand is presented. All sub-models are illustrated using numerical examples. Using experimental data from three battery manufacturers, the voltage model validated. The identified deviations reveal deficiencies in the literature model. By correctly deriving the mass transfer coefficients and adapting the effective electrode area, these deficiencies are eliminated. The validated battery model is then deployed in an extensive design study. By varying the electrode area between 1000 and 4000 cm{sup 2} and varying the design of the electrolyte supply channel, twenty-four different cell designs are created using finite element analysis. These designs are subsequently simulated in 40-cell stacks deployed in systems with a single stack and systems with a three-stack string. Using the simulation results, the impact of different design parameters on different loss mechanisms is investigated. While operating the VRFB, the electrolyte flow rate is the most important operational parameter. A novel, model-based optimization strategy is presented and compared to established flow rate control strategies. Further, a voltage controller is introduced which delays the violation of cell voltage limits by controlling the flow rate as long as the pump capacity is not fully exploited.
Model-based design and optimization of vanadium redox flow batteries
International Nuclear Information System (INIS)
Koenig, Sebastian
2017-01-01
This work targets on increasing the efficiency of the Vanadium Redox Flow Battery (VRFB) using a model-based approach. First, a detailed instruction for setting up a VRFB model on a system level is given. Modelling of open-circuit-voltage, ohmic overpotential, concentration overpotential, Vanadium crossover, shunt currents as well as pump power demand is presented. All sub-models are illustrated using numerical examples. Using experimental data from three battery manufacturers, the voltage model validated. The identified deviations reveal deficiencies in the literature model. By correctly deriving the mass transfer coefficients and adapting the effective electrode area, these deficiencies are eliminated. The validated battery model is then deployed in an extensive design study. By varying the electrode area between 1000 and 4000 cm 2 and varying the design of the electrolyte supply channel, twenty-four different cell designs are created using finite element analysis. These designs are subsequently simulated in 40-cell stacks deployed in systems with a single stack and systems with a three-stack string. Using the simulation results, the impact of different design parameters on different loss mechanisms is investigated. While operating the VRFB, the electrolyte flow rate is the most important operational parameter. A novel, model-based optimization strategy is presented and compared to established flow rate control strategies. Further, a voltage controller is introduced which delays the violation of cell voltage limits by controlling the flow rate as long as the pump capacity is not fully exploited.
Xian, Guangming
2018-03-01
In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.
A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem
International Nuclear Information System (INIS)
Yuan, Xiaohui; Wang, Pengtao; Yuan, Yanbin; Huang, Yuehua; Zhang, Xiaopan
2015-01-01
Highlights: • Quantum theory is introduced to artificial bee colony algorithm (ABC) to increase population diversity. • A chaotic local search operator is used to enhance local search ability of ABC. • Quantum inspired chaotic ABC method (QCABC) is proposed to solve optimal power flow. • The feasibility and effectiveness of the proposed QCABC is verified by examples. - Abstract: This paper proposes a new artificial bee colony algorithm with quantum theory and the chaotic local search strategy (QCABC), and uses it to solve the optimal power flow (OPF) problem. Under the quantum computing theory, the QCABC algorithm encodes each individual with quantum bits to form a corresponding quantum bit string. By determining each quantum bits value, we can get the value of the individual. After the scout bee stage of the artificial bee colony algorithm, we begin the chaotic local search in the vicinity of the best individual found so far. Finally, the quantum rotation gate is used to process each quantum bit so that all individuals can update toward the direction of the best individual. The QCABC algorithm is carried out to deal with the OPF problem in the IEEE 30-bus and IEEE 118-bus standard test systems. The results of the QCABC algorithm are compared with other algorithms (artificial bee colony algorithm, genetic algorithm, particle swarm optimization algorithm). The comparison shows that the QCABC algorithm can effectively solve the OPF problem and it can get the better optimal results than those of other algorithms
Multi-objective design optimization of the transverse gaseous jet in supersonic flows
Huang, Wei; Yang, Jun; Yan, Li
2014-01-01
The mixing process between the injectant and the supersonic crossflow is one of the important issues for the design of the scramjet engine, and the efficiency mixing has a great impact on the improvement of the combustion efficiency. A hovering vortex is formed between the separation region and the barrel shock wave, and this may be induced by the large negative density gradient. The separation region provides a good mixing area for the injectant and the subsonic boundary layer. In the current study, the transverse injection flow field with a freestream Mach number of 3.5 has been optimized by the non-dominated sorting genetic algorithm (NSGA II) coupled with the Kriging surrogate model; and the variance analysis method and the extreme difference analysis method have been employed to evaluate the values of the objective functions. The obtained results show that the jet-to-crossflow pressure ratio is the most important design variable for the transverse injection flow field, and the injectant molecular weight and the slot width should be considered for the mixing process between the injectant and the supersonic crossflow. There exists an optimal penetration height for the mixing efficiency, and its value is about 14.3 mm in the range considered in the current study. The larger penetration height provides a larger total pressure loss, and there must be a tradeoff between these two objection functions. In addition, this study demonstrates that the multi-objective design optimization method with the data mining technique can be used efficiently to explore the relationship between the design variables and the objective functions.
Impact of Thyristors Controlled Series Capacitor Devices and Optimal Power Flow on Power Systems
Directory of Open Access Journals (Sweden)
Fatiha LAKDJA
2010-12-01
Full Text Available This paper presents an algorithm, for solving the Optimal Power Flow problem with flexible AC transmission systems (FACTS. The type of FACTS devices is used: thyristor-controlled series capacitor (TCSC. A method to determine the optimal location of thyristor controlled series compensators has been suggested. The proposed approaches have been implemented on an adapted IEEE 26 bus system. The simulation results are discussed to show the performance of the proposed algorithm and our FACTS programmer simulator technique, which are compared with TCSC and without TCSC.
Shaver, Aaron C; Greig, Bruce W; Mosse, Claudio A; Seegmiller, Adam C
2015-05-01
Optimizing a clinical flow cytometry panel can be a subjective process dependent on experience. We develop a quantitative method to make this process more rigorous and apply it to B lymphoblastic leukemia/lymphoma (B-ALL) minimal residual disease (MRD) testing. We retrospectively analyzed our existing three-tube, seven-color B-ALL MRD panel and used our novel method to develop an optimized one-tube, eight-color panel, which was tested prospectively. The optimized one-tube, eight-color panel resulted in greater efficiency of time and resources with no loss in diagnostic power. Constructing a flow cytometry panel using a rigorous, objective, quantitative method permits optimization and avoids problems of interdependence and redundancy in a large, multiantigen panel. Copyright© by the American Society for Clinical Pathology.
Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study
DEFF Research Database (Denmark)
Okkels, Fridolin; Dufva, Martin; Bruus, Henrik
2011-01-01
In recent years, the interest in small-scale bio-reactors has increased dramatically. To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continually feed bio-reactor with uniform perfusion flow. This is achieved...... by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained...... and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for, e. g., cell culturing and analysis and in feeding bio-arrays....
Directory of Open Access Journals (Sweden)
Á. Marroquín de Jesús
2009-07-01
Full Text Available Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198–L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m2, about 20% smaller than comparable copper–tube–based collectors offered in the market. Temperature measurements conducted over a 30–day period gave values which were a few degrees lower than the theoretically calculated water temperatures. Momentary thermal efficiency values between 35% and 77% were observed. The water temperature achieved in the tank at the end of the day aver ages 65°C in winter weather conditions in the central Mexican highland. This design of solar water heater is well suited to Mexican conditions, as it makes use of the high local intensity of the solar radiation, and as the channel shape of the ducts minimizes bursting during the rare occurrences of freezing temperatures in the region; it also has the advantage of being manufacturable at low cost from simple materials.
Marroquín de Jesús, Á.; Olivares-Ramírez, J.M.; Ramos-López, G.A.; Pless, R.C.
2009-01-01
Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198-L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m², about 20% smaller than ...
Á. Marroquín de Jesús; J.M. Olivares–Ramírez; G.A. Ramos–López; R.C. Pless
2009-01-01
Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198–L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m2, about 20% smaller than ...
Euler's fluid equations: Optimal control vs optimization
Energy Technology Data Exchange (ETDEWEB)
Holm, Darryl D., E-mail: d.holm@ic.ac.u [Department of Mathematics, Imperial College London, SW7 2AZ (United Kingdom)
2009-11-23
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Directory of Open Access Journals (Sweden)
Akanksha Mishra
2017-05-01
Full Text Available In a deregulated electricity market it may at times become difficult to dispatch all the required power that is scheduled to flow due to congestion in transmission lines. An Interline Power Flow Controller (IPFC can be used to reduce the system loss and power flow in the heavily loaded line, improve stability and loadability of the system. This paper proposes a Disparity Line Utilization Factor for the optimal placement and Gravitational Search algorithm based optimal tuning of IPFC to control the congestion in transmission lines. DLUF ranks the transmission lines in terms of relative line congestion. The IPFC is accordingly placed in the most congested and the least congested line connected to the same bus. Optimal sizing of IPFC is carried using Gravitational Search algorithm. A multi-objective function has been chosen for tuning the parameters of the IPFC. The proposed method is implemented on an IEEE-30 bus test system. Graphical representations have been included in the paper showing reduction in LUF of the transmission lines after the placement of an IPFC. A reduction in active power and reactive power loss of the system by about 6% is observed after an optimally tuned IPFC has been included in the power system. The effectiveness of the proposed tuning method has also been shown in the paper through the reduction in the values of the objective functions.
Design Optimization of Internal Flow Devices
DEFF Research Database (Denmark)
Madsen, Jens Ingemann
The power of computational fluid dynamics is boosted through the use of automated design optimization methodologies. The thesis considers both derivative-based search optimization and the use of response surface methodologies.......The power of computational fluid dynamics is boosted through the use of automated design optimization methodologies. The thesis considers both derivative-based search optimization and the use of response surface methodologies....
Exergetic optimization of the part-flow evaporative gas turbine cycles. Paper no. IGEC-1-ID23
International Nuclear Information System (INIS)
Yari, M.; Sarabch, K.
2005-01-01
The evaporative gas turbine cycle is a new high efficiency power cycle that has reached the pilot plant testing stage. The latest configuration proposed for this cycle is known as part flow evaporative gas turbine cycle (PEvGT) in which humidification is combined with steam injection. Having advantages of both steam injected and humid air cycles, it is regarded as a very desirable plant for future. In this paper the exergy equations have been added to the mathematical model. Then exergy analysis and optimization of the PEvGT cycles: PEvGT and PEvGT-IC have been done. This study show that the maximum exergy destruction rate related to combustion chamber in both cycles. The exergetic optimization shows, the maximum first and second efficiency occur in the highest values of part-flow humidification rate. (author)
Directory of Open Access Journals (Sweden)
Dimitrios I. Maditinos
2015-10-01
Full Text Available Purpose - The existence of optimism as a personal psychological characteristic of managers is a necessity in contemporary economy and decision making, although the phenomenon of over-optimism may lead to unfavourable outcomes. The purpose of this study is to examine the optimism bias and its impact on the firms' future performance. Especially regarding the recent years where Greece faces increased economic depression, high percentages of unemployment and lack of budgetary discipline, the goal is therefore, to find whether managerial optimism has an impact on corporate investment of Greek firms. Design/methodology/approach - The investment of firms with optimistic managers is more sensitive to cash flow than the investment of firms with managers who are not optimistic. To test the research question a number of fixed effect panel regressions of capital expenditures (capital expenditures divided by lagged assets is the dependent variable is run. In all regressions we analyse cash flow divided by lagged assets and lagged Tobin's Q as the independent variables, for firms whose managers are classified as optimistic and not optimistic. This classification is based on the optimism "dummy" variable, which is equal to 1 when members of the Executive Board and the Supervisory Board (ALL, only the Executive Board (EB, and only CEO are classified as optimistic. The concept of this study is tested for firms which are listed in the Athens Stock Exchange. A total of 243 firms are recorded, for the time period between 2007 and 2012, including firms from 11 different industries; basic materials, chemicals, consumer goods, consumer services, health care, industrials, financials, oil and gas, technology, telecommunications and utilities. Based on the literature and on related methodology aspects, financial firms are excluded. Findings - It was revealed that managerial optimism affects corporate investment in firms with high degree of closely held shares. Moreover
El Ayoubi, Carole; Hassan, Ibrahim; Ghaly, Wahid
2012-11-01
This paper aims to optimize film coolant flow parameters on the suction surface of a high-pressure gas turbine blade in order to obtain an optimum compromise between a superior cooling performance and a minimum aerodynamic penalty. An optimization algorithm coupled with three-dimensional Reynolds-averaged Navier Stokes analysis is used to determine the optimum film cooling configuration. The VKI blade with two staggered rows of axially oriented, conically flared, film cooling holes on its suction surface is considered. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. The optimization objective consists of maximizing the spatially averaged film cooling effectiveness and minimizing the aerodynamic penalty produced by film cooling. The effect of varying the coolant flow parameters on the film cooling effectiveness and the aerodynamic loss is analyzed using an optimization method and three dimensional steady CFD simulations. The optimization process consists of a genetic algorithm and a response surface approximation of the artificial neural network type to provide low-fidelity predictions of the objective function. The CFD simulations are performed using the commercial software CFX. The numerical predictions of the aero-thermal performance is validated against a well-established experimental database.
Directory of Open Access Journals (Sweden)
Christian León-Celi
2016-12-01
Full Text Available The optimal function of a water distribution network is reached when the consumer demands are satisfied using the lowest quantity of energy, maintaining the minimal pressure required at the same time. One way to achieve this is through optimization of flow rate injection based on the use of the setpoint curve concept. In order to obtain that, a methodology is proposed. It allows for the assessment of the flow rate and pressure head that each pumping station has to provide for the proper functioning of the network while the minimum power consumption is kept. The methodology can be addressed in two ways: the discrete method and the continuous method. In the first method, a finite set of combinations is evaluated between pumping stations. In the continuous method, the search for the optimal solution is performed using optimization algorithms. In this paper, Hooke–Jeeves and Nelder–Mead algorithms are used. Both the hydraulics and the objective function used by the optimization are solved through EPANET and its Toolkit. Two case studies are evaluated, and the results of the application of the different methods are discussed.
International Nuclear Information System (INIS)
Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S
2013-01-01
This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption. (paper)
Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.
2013-11-01
This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.
International Nuclear Information System (INIS)
Chandra, S.; Habicht, P.; Chexal, B.; Mahini, R.; McBrine, W.; Esselman, T.; Horowitz, J.
1995-01-01
A large amount of piping in a typical nuclear power plant is susceptible to Flow-Accelerated Corrosion (FAC) wall thinning to varying degrees. A typical PAC monitoring program includes the wall thickness measurement of a select number of components in order to judge the structural integrity of entire systems. In order to appropriately allocate resources and maintain an adequate FAC program, it is necessary to optimize the selection of components for inspection by focusing on those components which provide the best indication of system susceptibility to FAC. A better understanding of system FAC predictability and the types of FAC damage encountered can provide some of the insight needed to better focus and optimize the inspection plan for an upcoming refueling outage. Laboratory examination of FAC damaged components removed from service at Northeast Utilities' (NU) nuclear power plants provides a better understanding of the damage mechanisms involved and contributing causes. Selected results of this ongoing study are presented with specific conclusions which will help NU to better focus inspections and thus optimize the ongoing FAC inspection program
Daily River Flow Forecasting with Hybrid Support Vector Machine – Particle Swarm Optimization
Zaini, N.; Malek, M. A.; Yusoff, M.; Mardi, N. H.; Norhisham, S.
2018-04-01
The application of artificial intelligence techniques for river flow forecasting can further improve the management of water resources and flood prevention. This study concerns the development of support vector machine (SVM) based model and its hybridization with particle swarm optimization (PSO) to forecast short term daily river flow at Upper Bertam Catchment located in Cameron Highland, Malaysia. Ten years duration of historical rainfall, antecedent river flow data and various meteorology parameters data from 2003 to 2012 are used in this study. Four SVM based models are proposed which are SVM1, SVM2, SVM-PSO1 and SVM-PSO2 to forecast 1 to 7 day ahead of river flow. SVM1 and SVM-PSO1 are the models with historical rainfall and antecedent river flow as its input, while SVM2 and SVM-PSO2 are the models with historical rainfall, antecedent river flow data and additional meteorological parameters as input. The performances of the proposed model are measured in term of RMSE and R2 . It is found that, SVM2 outperformed SVM1 and SVM-PSO2 outperformed SVM-PSO1 which meant the additional meteorology parameters used as input to the proposed models significantly affect the model performances. Hybrid models SVM-PSO1 and SVM-PSO2 yield higher performances as compared to SVM1 and SVM2. It is found that hybrid models are more effective in forecasting river flow at 1 to 7 day ahead at the study area.
Design optimization of flow channel and performance analysis for a new-type centrifugal blood pump
Ji, J. J.; Luo, X. W.; Y Wu, Q.
2013-12-01
In this paper, a new-type centrifugal blood pump, whose impeller is suspended inside a pump chamber with hydraulic bearings, is presented. In order to improve the hydraulic performance of the pump, an internal flow simulation is conducted to compare the effects of different geometrical parameters of pump flow passage. Based on the numerical results, the pumps can satisfy the operation parameters and be free of hemolysis. It is noted that for the pump with a column-type supporter at its inlet, the pump head and hydraulic efficiency decreases compared to the pump with a step-type support structure. The performance drop is caused by the disturbed flow upstream impeller inlet. Further, the unfavorable flow features such as reverse flow and low velocity in the pump may increases the possibility of thrombus. It is also confirmed that the casing shape can little influence pump performance. Those results are helpful for design optimization in blood pump development.
Optimal power flow for distribution networks with distributed generation
Directory of Open Access Journals (Sweden)
Radosavljević Jordan
2015-01-01
Full Text Available This paper presents a genetic algorithm (GA based approach for the solution of the optimal power flow (OPF in distribution networks with distributed generation (DG units, including fuel cells, micro turbines, diesel generators, photovoltaic systems and wind turbines. The OPF is formulated as a nonlinear multi-objective optimization problem with equality and inequality constraints. Due to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties, a probabilisticalgorithm is introduced in the OPF analysis. The Weibull and normal distributions are employed to model the input random variables, namely the wind speed, solar irradiance and load power. The 2m+1 point estimate method and the Gram Charlier expansion theory are used to obtain the statistical moments and the probability density functions (PDFs of the OPF results. The proposed approach is examined and tested on a modified IEEE 34 node test feeder with integrated five different DG units. The obtained results prove the efficiency of the proposed approach to solve both deterministic and probabilistic OPF problems for different forms of the multi-objective function. As such, it can serve as a useful decision-making supporting tool for distribution network operators. [Projekat Ministarstva nauke Republike Srbije, br. TR33046
Design and optimization of a large flow rate booster pump in SWRO energy recovery system
International Nuclear Information System (INIS)
Lai, Z N; Wu, P; Wu, D Z; Wang, L Q
2013-01-01
Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m 3 /h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result
Design and optimization of a large flow rate booster pump in SWRO energy recovery system
Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.
2013-12-01
Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.
Increasing power generation in horizontal axis wind turbines using optimized flow control
Cooney, John A., Jr.
In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a
Assessment of Displacement Flow at Ketandan Creeks to Optimizing Land Use in Jember New City Housing
Directory of Open Access Journals (Sweden)
Entin Hidayah
2015-11-01
Full Text Available Displacement flow will caused a change in the flow characteristics such as flow depth, discharge, river slope and width of the river surface. If not carefully examined, it will cause the riverbed erosion, sedimentation and risk of flooding. This paper aims to assess the hydrology and hydraulics of the river flow changes in Ketandan creek in optimizing the use of land housing for Jember New City (JNC. Hydrology modelling studies conducted for the return period rainfall include a 2 year as normal discharge, and 100 year as flood condition. Simulation of flood designs used to assess changes in the flow regime in the channel and the risk of flooding with HEC-RAS program. The results of the study showed that for the flood design 3,1 m3/sec and 12,8 m3/sec will give the effect of critical water surface. In order to keep the flow of the river bed of critically needed as the drop-structure and spillway construction.
Directory of Open Access Journals (Sweden)
Xiangmin Guan
2015-01-01
Full Text Available Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology.
Energy Technology Data Exchange (ETDEWEB)
Chen, Lingen; Kan, Xuxian; Sun, Fengrui; Wu, Feng [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)
2013-07-01
The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate) and the utilization factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.
Miller, V. M.; Semiatin, S. L.; Szczepanski, C.; Pilchak, A. L.
2018-06-01
The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the α + β temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured α textures after accounting for the β → α transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental α phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.
Yanagisawa, Keisuke; Komine, Shunta; Kubota, Rikuto; Ohue, Masahito; Akiyama, Yutaka
2018-03-16
The need to accelerate large-scale protein-ligand docking in virtual screening against a huge compound database led researchers to propose a strategy that entails memorizing the evaluation result of the partial structure of a compound and reusing it to evaluate other compounds. However, the previous method required frequent disk accesses, resulting in insufficient acceleration. Thus, more efficient memory usage can be expected to lead to further acceleration, and optimal memory usage could be achieved by solving the minimum cost flow problem. In this research, we propose a fast algorithm for the minimum cost flow problem utilizing the characteristics of the graph generated for this problem as constraints. The proposed algorithm, which optimized memory usage, was approximately seven times faster compared to existing minimum cost flow algorithms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
International Nuclear Information System (INIS)
DePorter, E.L.
1977-01-01
The nuclear fuel cycle is modelled as a cyclic, multi-stage production-to-inventory system. The objective is to meet a known deterministic demand for energy while minimizing acquisition, production, and inventory holding costs for all stages of the fuel cycle. The model allows for cyclic flow (feedback) of materials, material flow conversion factors at each stage, production lag times at each stage, and for escalating costs of uranium ore. It does not allow shortages to occur in inventories. The model is optimized by the application of the calculus of variations and specifically through recently developed theorems on the solution of functionals constrained by inequalities. The solution is a set of optimal cumulative production trajectories which define the stagewise production rates. Analysis of these production rates reveals the optimal nuclear fuel cycle costs and that inventories (stockpiles) occur in uranium fields, enriched uranium hexafluoride, and fabricated fuel assemblies. An analysis of the sensitivity of the model to variation in three important parameters is performed
Transformation of Commercial Flows into Physical Flows of Electricity – Flow Based Method
Directory of Open Access Journals (Sweden)
M. Adamec
2009-01-01
Full Text Available We are witnesses of large – scale electricity transport between European countries under the umbrella of the UCTE organization. This is due to the inabilyof generators to satisfy the growing consumption in some regions. In this content, we distinguish between two types of flow. The first type is physical flow, which causes costs in the transmission grid, whilst the second type is commercial flow, which provides revenues for the market participants. The old methods for allocating transfer capacity fail to take this duality into account. The old methods that allocate transmission border capacity to “virtual” commercial flows which, in fact, will not flow over this border, do not lead to optimal allocation. Some flows are uselessly rejected and conversely, some accepted flows can cause congestion on another border. The Flow Based Allocation method (FBA is a method which aims to solve this problem.Another goal of FBA is to ensure sustainable development of expansion of transmission capacity. Transmission capacity is important, because it represents a way to establish better transmission system stability, and it provides a distribution channel for electricity to customers abroad. For optimal development, it is necessary to ensure the right division of revenue allocation among the market participants.This paper contains a brief description of the FBA method. Problems of revenue maximization and optimal revenue distribution are mentioned.
Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver
International Nuclear Information System (INIS)
Wei, Min; Fan, Yilin; Luo, Lingai; Flamant, Gilles
2015-01-01
High temperature solar receiver is a core component of solar thermal power plants. However, non-uniform solar irradiation on the receiver walls and flow maldistribution of heat transfer fluid inside the tubes may cause the excessive peak temperature, consequently leading to the reduced lifetime. This paper presents an original CFD (computational fluid dynamics)-based evolutionary algorithm to determine the optimal fluid distribution in a tubular solar receiver for the minimization of its peak temperature. A pressurized-air solar receiver comprising of 45 parallel tubes subjected to a Gaussian-shape net heat flux absorbed by the receiver is used for study. Two optimality criteria are used for the algorithm: identical outlet fluid temperatures and identical temperatures on the centerline of the heated surface. The influences of different filling materials and thermal contact resistances on the optimal fluid distribution and on the peak temperature reduction are also evaluated and discussed. Results show that the fluid distribution optimization using the algorithm could minimize the peak temperature of the receiver under the optimality criterion of identical temperatures on the centerline. Different shapes of optimal fluid distribution are determined for various filling materials. Cheap material with low thermal conductivity can also meet the peak temperature threshold through optimizing the fluid distribution. - Highlights: • A 3D pressurized-air solar receiver based on the tube-in-matrix concept is studied. • An original evolutionary algorithm is developed for fluid distribution optimization. • A new optimality criterion is proposed for minimizing the receiver peak temperature. • Different optimal fluid distributions are determined for various filling materials. • Filling material with high thermal conductivity is more favorable in practical use.
International Nuclear Information System (INIS)
Wang Xiaodong; Huang Yuxian; Cheng, C.-H.; Jang, J.-Y.; Lee, D.-J.; Yan, W.-M.; Su Ay
2009-01-01
The optimal cathode flow field design of a single serpentine proton exchange membrane fuel cell is obtained by adopting a combined optimization procedure including a simplified conjugate-gradient method (SCGM) and a completely three-dimensional, two-phase, non-isothermal fuel cell model. The cell output power density P cell is the objective function to be maximized with channel heights, H 1 -H 5 , and channel widths, W 2 -W 5 as search variables. The optimal design has tapered channels 1, 3 and 4, and diverging channels 2 and 5, producing 22.51% increment compared with the basic design with all heights and widths setting as 1 mm. Reduced channel heights of channels 2-4 significantly enhance sub-rib convection to effectively transport oxygen to and liquid water out of diffusion layer. The final diverging channel prevents significant leakage of fuel to outlet via sub-rib convection from channel 4. Near-optimal design without huge loss in cell performance but is easily manufactured is discussed.
Kucza, Witold
2013-07-25
Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Cardenas, Abner Barzola
1992-07-01
A design methodology and to perform the simulation of flat plate solar collectors coupled with a water storage tank and operating by natural convection circulation is presented. For a given site the incident solar radiation on a tilted and previously oriented surface is determined from solar astronomy and the dally average of the monthly data of the horizontal total solar radiation. Huancayo situated in Peru (at 12.05 deg S, long. 76.18 deg W, altitude 3,312 m), is chosen as the site to be installed the solar water system, as a mean to improve the peasant's standard of life. An optimum tilt angle for a north oriented collector surface is obtained in order to have a maximum solar capture during the water. The theoretical methodology use here is based upon the ONG's paper (1976), and in attrition is considered the hot water drainage due to the dally consumption. For the sake of comparison, the calculated flowrate values are confronted with the experimental data obtained by FERNANDEZ, for a same site location (Rio de Janeiro) and are used identical dimensions for the water thermosyphon heater. Finally, the economic feasibility of the solar water system is demonstrated when it is compared with the usual immersion electric resistance boiler. For the Peruvian conditions the more adequate solar water system for a rural or domestic usage is a 1.4 m{sup 2} area solar collector (6 parallel, 15,875 mm copper tubes), 100 l capacity for the water storage tank, 33.5 mm for the connecting tubes, being of 300 mm. The height between the collector top and the bottom of the tank. (author)
Energy Technology Data Exchange (ETDEWEB)
Cardenas, Abner Barzola
1992-07-01
A design methodology and to perform the simulation of flat plate solar collectors coupled with a water storage tank and operating by natural convection circulation is presented. For a given site the incident solar radiation on a tilted and previously oriented surface is determined from solar astronomy and the dally average of the monthly data of the horizontal total solar radiation. Huancayo situated in Peru (at 12.05 deg S, long. 76.18 deg W, altitude 3,312 m), is chosen as the site to be installed the solar water system, as a mean to improve the peasant's standard of life. An optimum tilt angle for a north oriented collector surface is obtained in order to have a maximum solar capture during the water. The theoretical methodology use here is based upon the ONG's paper (1976), and in attrition is considered the hot water drainage due to the dally consumption. For the sake of comparison, the calculated flowrate values are confronted with the experimental data obtained by FERNANDEZ, for a same site location (Rio de Janeiro) and are used identical dimensions for the water thermosyphon heater. Finally, the economic feasibility of the solar water system is demonstrated when it is compared with the usual immersion electric resistance boiler. For the Peruvian conditions the more adequate solar water system for a rural or domestic usage is a 1.4 m{sup 2} area solar collector (6 parallel, 15,875 mm copper tubes), 100 l capacity for the water storage tank, 33.5 mm for the connecting tubes, being of 300 mm. The height between the collector top and the bottom of the tank. (author)
Derived heuristics-based consistent optimization of material flow in a gold processing plant
Myburgh, Christie; Deb, Kalyanmoy
2018-01-01
Material flow in a chemical processing plant often follows complicated control laws and involves plant capacity constraints. Importantly, the process involves discrete scenarios which when modelled in a programming format involves if-then-else statements. Therefore, a formulation of an optimization problem of such processes becomes complicated with nonlinear and non-differentiable objective and constraint functions. In handling such problems using classical point-based approaches, users often have to resort to modifications and indirect ways of representing the problem to suit the restrictions associated with classical methods. In a particular gold processing plant optimization problem, these facts are demonstrated by showing results from MATLAB®'s well-known fmincon routine. Thereafter, a customized evolutionary optimization procedure which is capable of handling all complexities offered by the problem is developed. Although the evolutionary approach produced results with comparatively less variance over multiple runs, the performance has been enhanced by introducing derived heuristics associated with the problem. In this article, the development and usage of derived heuristics in a practical problem are presented and their importance in a quick convergence of the overall algorithm is demonstrated.
Heat Removal Performance of Hybrid Control Rod for Passive In-Core Cooling System
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyung Mo; Jeong, Yeong Shin; Kim, In Guk; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)
2015-10-15
The two-phase closed heat transfer device can be divided by thermosyphon heat pipe and capillary wicked heat pipe which uses gravitational force or capillary pumping pressure as a driving force of the convection of working fluid. If there is a temperature difference between reactor core and ultimate heat sink, the decay heat removal and reactor shutdown is possible at any accident conditions without external power sources. To apply the hybrid control rod to the commercial nuclear power plants, its modelling about various parameters is the most important work. Also, its unique geometry is coexistence of neutron absorber material and working fluid in a cladding material having annular vapor path. Although thermosyphon heat pipe (THP) or wicked heat pipe (WHP) shows high heat transfer coefficients for limited space, the maximum heat removal capacity is restricted by several phenomena due to their unique heat transfer mechanism. Validation of the existing correlations on the annular vapor path thermosyphon (ATHP) which has different wetted perimeter and heated diameter must be conducted. The effect of inner structure, and fill ratio of the working fluid on the thermal performance of heat pipe has not been investigated. As a first step of the development of hybrid heat pipe, the ATHP which contains neutron absorber in the concentric thermosyphon (CTHP) was prepared and the thermal performance of the annular thermosyphon was experimentally studied. The heat transfer characteristics and flooding limit of the annular vapor path thermosyphon was studied experimentally to model the performance of hybrid control rod. The following results were obtained: (1) The annular vapor path thermosyphon showed better evaporation heat transfer due to the enhanced convection between adiabatic and condenser section. (2) Effect of fill ratio on the heat transfer characteristics was negligible. (3) Existing correlations about flooding limit of thermosyphon could not reflect the annular vapor
Directory of Open Access Journals (Sweden)
S.V. Myronenko
2016-12-01
Full Text Available At present sharply there is a problem of traffic management especially in big cities. The increase in the number of vehicles, both personal and public, led to congestion of city roads, many hours of traffic jams, difficulty of movement of pedestrians, increase the number of accidents, etc. Aim: The aim of the study is to evaluate the possibility of using simulation models to solve problems of analysis and optimization of traffic flows. To achieve this goal in a simulation environment the data base of the transport network will be developed. Materials and Methods: The problem of analysis and optimization of traffic flow is considered by the example of the city of Odessa (Ukraine, the results and recommendations can be easily adapted for other cities of Ukraine, and for the cities of most countries of the former socialist bloc. Features of transport systems make it impossible to build an adequate analytical model to explore options for the management of the system and its characteristic in different conditions. At the same time simulation modelling as a method to study such objects is a promising for the solution to this problem. As a simulation environment an OmniTRANS package as a universal tool for modeling of discrete, continuous and hybrid systems. Results: With OmniTRANS programs the model of traffic in Odessa was derived and the intensity of the traffic flow. B first approximation the transport network of the central district of the city was considered and built; without calibration and simulation it was developed a database of elements of the transport network and shown how it can be used to solve problems of analysis and optimization of traffic flows. Models constructed from elements of created database, allows you to change the level of detail of the simulated objects and phenomena, thereby obtaining models as macro and micro level.
Parametric Study and Optimization of a Piezoelectric Energy Harvester from Flow Induced Vibration
Ashok, P.; Jawahar Chandra, C.; Neeraj, P.; Santhosh, B.
2018-02-01
Self-powered systems have become the need of the hour and several devices and techniques were proposed in favour of this crisis. Among the various sources, vibrations, being the most practical scenario, is chosen in the present study to investigate for the possibility of harvesting energy. Various methods were devised to trap the energy generated by vibrating bodies, which would otherwise be wasted. One such concept is termed as flow-induced vibration which involves the flow of a fluid across a bluff body that oscillates due to a phenomenon known as vortex shedding. These oscillations can be converted into electrical energy by the use of piezoelectric patches. A two degree of freedom system containing a cylinder as the primary mass and a cantilever beam as the secondary mass attached with a piezoelectric circuit, was considered to model the problem. Three wake oscillator models were studied in order to determine the one which can generate results with high accuracy. It was found that Facchinetti model produced better results than the other two and hence a parametric study was performed to determine the favourable range of the controllable variables of the system. A fitness function was formulated and optimization of the selected parameters was done using genetic algorithm. The parametric optimization led to a considerable improvement in the harvested voltage from the system owing to the high displacement of secondary mass.
International Nuclear Information System (INIS)
Amanifard, N.; Nariman-Zadeh, N.; Borji, M.; Khalkhali, A.; Habibdoust, A.
2008-01-01
Three-dimensional heat transfer characteristics and pressure drop of water flow in a set of rectangular microchannels are numerically investigated using Fluent and compared with those of experimental results. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks are then obtained for modelling of both pressure drop (ΔP) and Nusselt number (Nu) with respect to design variables such as geometrical parameters of microchannels, the amount of heat flux and the Reynolds number. Using such obtained polynomial neural networks, multi-objective genetic algorithms (GAs) (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism is then used for Pareto based optimization of microchannels considering two conflicting objectives such as (ΔP) and (Nu). It is shown that some interesting and important relationships as useful optimal design principles involved in the performance of microchannels can be discovered by Pareto based multi-objective optimization of the obtained polynomial metamodels representing their heat transfer and flow characteristics. Such important optimal principles would not have been obtained without the use of both GMDH type neural network modelling and the Pareto optimization approach
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj
2016-12-29
This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltage measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.
Herberhold, S; Röttker, J; Bartmann, D; Solbach, A; Keiner, S; Welz, A; Bootz, F; Laffers, W
2016-03-01
INDRODUCTION: The regular application of transit time flow measurement in microvascular anastomoses during heart surgery has lead to improvements of the outcome of coronary artery bypass grafts. Our study was meant to discover whether this measurement method was also applicable for evaluation and optimization of microvascular arterial anastomoses of radial forearm flaps. In this prospective examination a combining ultrasound imaging and transit time flow measurement device (VeriQ, MediStim) was used during surgery to assess anastomotic quality of 15 radial forearm flaps. Pulsatility index (PI) and mean blood flow were measured immediately after opening the arterial anastomosis as well as 15 min afterwards. Furthermore, application time and description of handling were recorded seperately for every assessment. Mean blood flow immediately after opening the anastomosis and 15 min later were 3.9 and 3.4 ml/min resepectively showing no statistically significant difference (p=0.96). There was no significance in the increase of pulsatility index from 22.1 to 27.2 (p=0.09) during the same time range, either. Due to measurement results showing atypical pulse curves in 2 cases decision for surgical revision of the anastomoses was made. All forearm flaps showed good vascularisation during follow-up. Time for device set up, probe placement and measurements was about 20 min. Handling was described to be uncomplicated without exception. There were no noteworthy problems. Transit time flow measurement contributes to the improvement of anastomotic quality and therefore to the overall outcome of radial forearm flaps. The examined measurement method provides objective results and is useful for documentation purposes. © Georg Thieme Verlag KG Stuttgart · New York.
Graham, Wendy D.; Neff, Christina R.
1994-05-01
The first-order analytical solution of the inverse problem for estimating spatially variable recharge and transmissivity under steady-state groundwater flow, developed in Part 1 is applied to the Upper Floridan Aquifer in NE Florida. Parameters characterizing the statistical structure of the log-transmissivity and head fields are estimated from 152 measurements of transmissivity and 146 measurements of hydraulic head available in the study region. Optimal estimates of the recharge, transmissivity and head fields are produced throughout the study region by conditioning on the nearest 10 available transmissivity measurements and the nearest 10 available head measurements. Head observations are shown to provide valuable information for estimating both the transmissivity and the recharge fields. Accurate numerical groundwater model predictions of the aquifer flow system are obtained using the optimal transmissivity and recharge fields as input parameters, and the optimal head field to define boundary conditions. For this case study, both the transmissivity field and the uncertainty of the transmissivity field prediction are poorly estimated, when the effects of random recharge are neglected.
Numerical analysis of ion wind flow using space charge for optimal design
Ko, Han Seo; Shin, Dong Ho; Baek, Soo Hong
2014-11-01
Ion wind flow has been widly studied for its advantages of a micro fluidic device. However, it is very difficult to predict the performance of the ion wind flow for various conditions because of its complicated electrohydrodynamic phenomena. Thus, a reliable numerical modeling is required to design an otimal ion wind generator and calculate velocity of the ion wind for the proper performance. In this study, the numerical modeling of the ion wind has been modified and newly defined to calculate the veloctiy of the ion wind flow by combining three basic models such as electrostatics, electrodynamics and fluid dynamics. The model has included presence of initial space charges to calculate transfer energy between space charges and air gas molecules using a developed space charge correlation. The simulation has been performed for a geometry of a pin to parallel plate electrode. Finally, the results of the simulation have been compared with the experimental data for the ion wind velocity to confirm the accuracy of the modified numerical modeling and to obtain the optimal design of the ion wind generator. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2013R1A2A2A01068653).
International Nuclear Information System (INIS)
Castillo, Edward; Guerrero, Thomas; Castillo, Richard; White, Benjamin; Rojo, Javier
2012-01-01
Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. (paper)
Optimal power flow application issues in the Pool paradigm
International Nuclear Information System (INIS)
Gross, G.; Bompard, E.
2004-01-01
This paper focuses on the application of the Optimal Power Flow (OPF) to competitive markets. Since the OPF is a central decision-making tool its application to the more decentralized decision-making in the competitive electricity markets requires considerable care. There are some intrinsic challenges associated with the effective OPF application in the competitive environment due to the inherent characteristics of the OPF formulation. Two such characteristics are the flatness of the optimum surface and the consequent continuum associated with the optimum. In addition to these OPF structural characteristics, the level of authority vested in the central decision-making entity has major ramifications. These factors have wide ranging economic impacts, whose implications are very pronounced due to the fact that, unlike in the old vertically integrated utility environment, various market players are affected differently. The effects include price volatility, financial health of various players and the integrity of the market itself. We apply appropriate metrics to evaluate market efficiency and how the various players fare. We study the impacts of OPF applications in the Pool paradigm, with both supply and demand side explicitly modeled, and provide extensive numerical results on systems based on IEEE 30-bus and 118-bus networks. The results show the variability of nodal prices and the skew possible in different 'optimal' allocations among competing suppliers. Such variability in the results may lead to serious disputes among the players and the central decision-making authority. Directions for future research are discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Costa, Geraldo R.M. da [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia
1994-12-31
This paper discusses, partially, the advantages and the disadvantages of the optimal power flow. It shows some of the difficulties of implementation and proposes solutions. An analysis is made comparing the power flow, BIGPOWER/CESP, and the optimal power flow, FPO/SEL, developed by the author, when applied to the CEPEL-ELETRONORTE and CESP systems. (author) 8 refs., 5 tabs.
DEFF Research Database (Denmark)
Shuai, Hang; Ai, Xiaomeng; Wen, Jinyu
2017-01-01
This paper proposes a hybrid approximate dynamic programming (ADP) approach for the multiple time-period optimal power flow in integrated gas and power systems. ADP successively solves Bellman's equation to make decisions according to the current state of the system. So, the updated near future...
Energy Technology Data Exchange (ETDEWEB)
Kusuma, Mukhsinun Hadi; Putra, Nandy; Imawan, Ficky Augusta [Heat Transfer Laboratory, Department of Mechanical Engineering Universitas Indonesia, Kampus (Indonesia); Antariksawan, Anhar Riza [Centre for Nuclear Reactor Safety and Technology, National Nuclear Energy Agency of Indonesia (BATAN), Kawasan Puspiptek Serpong (Indonesia)
2017-04-15
The decay heat that is produced by nuclear reactor spent fuel must be cooled in a spent fuel storage pool. A wickless heat pipe or a vertical two-phase closed thermosyphon (TPCT) is used to remove this decay heat. The objective of this research is to investigate the thermal performance of a prototype model for a large-scale vertical TPCT as a passive cooling system for a nuclear research reactor spent fuel storage pool. An experimental investigation and numerical simulation using RELAP5/MOD 3.2 were used to investigate the TPCT thermal performance. The effects of the initial pressure, filling ratio, and heat load were analyzed. Demineralized water was used as the TPCT working fluid. The cooled water was circulated in the water jacket as a cooling system. The experimental results show that the best thermal performance was obtained at a thermal resistance of 0.22°C/W, the lowest initial pressure, a filling ratio of 60%, and a high evaporator heat load. The simulation model that was experimentally validated showed a pattern and trend line similar to those of the experiment and can be used to predict the heat transfer phenomena of TPCT with varying inputs.
A Bee Colony Optimization Approach for Mixed Blocking Constraints Flow Shop Scheduling Problems
Directory of Open Access Journals (Sweden)
Mostafa Khorramizadeh
2015-01-01
Full Text Available The flow shop scheduling problems with mixed blocking constraints with minimization of makespan are investigated. The Taguchi orthogonal arrays and path relinking along with some efficient local search methods are used to develop a metaheuristic algorithm based on bee colony optimization. In order to compare the performance of the proposed algorithm, two well-known test problems are considered. Computational results show that the presented algorithm has comparative performance with well-known algorithms of the literature, especially for the large sized problems.
Incremental Optimization of Hub and Spoke Network for the Spokes’ Numbers and Flow
Directory of Open Access Journals (Sweden)
Yanfeng Wang
2015-01-01
Full Text Available Hub and spoke network problem is solved as part of a strategic decision making process which may have a profound effect on the future of enterprises. In view of the existing network structure, as time goes on, the number of spokes and the flow change because of different sources of uncertainty. Hence, the incremental optimization of hub and spoke network problem is considered in this paper, and the policy makers should adopt a series of strategies to cope with the change, such as setting up new hubs, adjusting the capacity level of original hubs, or closing some original hubs. The objective is to minimize the total cost, which includes the setup costs for the new hubs, the closure costs, and the adjustment costs for the original hubs as well as the flow routing costs. Two mixed-integer linear programming formulations are proposed and analyzed for this problem. China Deppon Logistics as an example is performed to present computational analysis, and we analyze the changes in the solutions driven by the number of spokes and the flow. The tests also allow an analysis to consider the effect of variation in parameters on network.
Directory of Open Access Journals (Sweden)
Danilo Donato
2014-01-01
Full Text Available Radial flow perfusion of cell-seeded hollow cylindrical porous scaffolds may overcome the transport limitations of pure diffusion and direct axial perfusion in the realization of bioengineered substitutes of failing or missing tissues. Little has been reported on the optimization criteria of such bioreactors. A steady-state model was developed, combining convective and dispersive transport of dissolved oxygen with Michaelis-Menten cellular consumption kinetics. Dimensional analysis was used to combine more effectively geometric and operational variables in the dimensionless groups determining bioreactor performance. The effectiveness of cell oxygenation was expressed in terms of non-hypoxic fractional construct volume. The model permits the optimization of the geometry of hollow cylindrical constructs, and direction and magnitude of perfusion flow, to ensure cell oxygenation and culture at controlled oxygen concentration profiles. This may help engineer tissues suitable for therapeutic and drug screening purposes.
Optimization of Orifice Geometry for Cross-Flow Mixing in a Cylindrical Duct
Kroll, J. T.; Sowa, W. A.; Samuelsen, G. S.
1996-01-01
Mixing of gaseous jets in a cross-flow has significant applications in engineering, one example of which is the dilution zone of a gas turbine combustor. Despite years of study, the design of the jet injection in combustors is largely based on practical experience. The emergence of NO(x) regulations for stationary gas turbines and the anticipation of aero-engine regulations requires an improved understanding of jet mixing as new combustor concepts are introduced. For example, the success of the staged combustor to reduce the emission of NO(x) is almost entirely dependent upon the rapid and complete dilution of the rich zone products within the mixing section. It is these mixing challenges to which the present study is directed. A series of experiments was undertaken to delineate the optimal mixer orifice geometry. A cross-flow to core-flow momentum-flux ratio of 40 and a mass flow ratio of 2.5 were selected as representative of a conventional design. An experimental test matrix was designed around three variables: the number of orifices, the orifice length-to- width ratio, and the orifice angle. A regression analysis was performed on the data to arrive at an interpolating equation that predicted the mixing performance of orifice geometry combinations within the range of the test matrix parameters. Results indicate that the best mixing orifice geometry tested involves eight orifices with a long-to-short side aspect ratio of 3.5 at a twenty-three degree inclination from the center-line of the mixing section.
Badiger, S; John, M; Fearnley, R A; Ahmad, I
2015-10-01
Awake fibre-optic intubation is a widely practised technique for anticipated difficult airway management. Despite the administration of supplemental oxygen during the procedure, patients are still at risk of hypoxia because of the effects of sedation, local anaesthesia, procedural complications, and the presence of co-morbidities. Traditionally used oxygen-delivery devices are low flow, and most do not have a sufficient reservoir or allow adequate fresh gas flow to meet the patient's peak inspiratory flow rate, nor provide an adequate fractional inspired oxygen concentration to prevent desaturation should complications arise. A prospective observational study was conducted using a high-flow humidified transnasal oxygen-delivery system during awake fibre-optic intubation in 50 patients with anticipated difficult airways. There were no episodes of desaturation or hypercapnia using the high-flow system, and in all patients the oxygen saturation improved above baseline values, despite one instance of apnoea resulting from over-sedation. All patients reported a comfortable experience using the device. The high-flow nasal oxygen-delivery system improves oxygenation saturation, decreases the risk of desaturation during the procedure, and potentially, optimizes conditions for awake fibre-optic intubation. The soft nasal cannulae uniquely allow continuous oxygenation and simultaneous passage of the fibrescope and tracheal tube. The safety of the procedure may be increased, because any obstruction, hypoventilation, or periods of apnoea that may arise may be tolerated for longer, allowing more time to achieve ventilation in an optimally oxygenated patient. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Xian, Guangming
2018-03-01
A method for predicting the optimal vibration field parameters by least square support vector machine (LS-SVM) is presented in this paper. One convenient and commonly used technique for characterizing the the vibration flow field of polymer melts films is small angle light scattering (SALS) in a visualized slit die of the electromagnetism dynamic extruder. The optimal value of vibration vibration frequency, vibration amplitude, and the maximum light intensity projection area can be obtained by using LS-SVM for prediction. For illustrating this method and show its validity, the flowing material is used with polypropylene (PP) and fifteen samples are tested at the rotation speed of screw at 36rpm. This paper first describes the apparatus of SALS to perform the experiments, then gives the theoretical basis of this new method, and detail the experimental results for parameter prediction of vibration flow field. It is demonstrated that it is possible to use the method of SALS and obtain detailed information on optimal parameter of vibration flow field of PP melts by LS-SVM.
Simulation of natural convection in a rectangular loop using finite elements
International Nuclear Information System (INIS)
Pepper, D.W.; Hamm, L.L.; Kehoe, A.B.
1984-01-01
A two-dimensional finite-element analysis of natural convection in a rectangular loop is presented. A psi-omega formulation of the Boussinesque approximation to the Navier-Stokes equation is solved by the false transient technique. Streamlines and isotherms at Ra = 10 4 are shown for three different modes of heating. The results indicate that corner effects should be considered when modeling flow patterns in thermosyphons
An MFA-based optimization model for increased resource efficiency: Phosphorus flows in Denmark
DEFF Research Database (Denmark)
Klinglmair, Manfred; Vadenbo, Carl; Astrup, Thomas Fruergaard
2017-01-01
various secondary-P fertilisers, to allow for exchange of secondary-P fertilisers between regions (sewage sludge incineration ash and composted organic household waste), and to reflect the system's development over 3 annual time steps. Since P accumulating in agricultural soil gradually becomes available...... to be substituted. This quality of secondary resources is not captured well by material flow analysis (MFA). A static MFA of the Danish anthropogenic P cycle was adapted for optimization via linear programming to minimize primary P imports. The MFA system was adapted to reflect typical nutrient availability from...
Research on the Method of Traffic Organization and Optimization Based on Dynamic Traffic Flow Model
Directory of Open Access Journals (Sweden)
Shu-bin Li
2017-01-01
Full Text Available The modern transportation system is becoming sluggish by traffic jams, so much so that it can harm the economic and society in our country. One of the reasons is the surging vehicles day by day. Another reason is the shortage of the traffic supply seriously. But the most important reason is that the traffic organization and optimization hardly met the conditions of modern transport development. In this paper, the practical method of the traffic organization and optimization used in regional area is explored by the dynamic traffic network analysis method. Firstly, the operational states of the regional traffic network are obtained by simulation method based on the self-developed traffic simulation software DynaCHINA, in which the improved traffic flow simulation model was proposed in order to be more suitable for actual domestic urban transport situation. Then the appropriated optimization model and algorithm were proposed according to different optimized content and organization goals, and the traffic simulation processes more suitable to regional optimization were designed exactly. Finally, a regional network in Tai’an city was selected as an example. The simulation results show that the proposed method is effective and feasible. It can provide strong scientific and technological support for the traffic management department.
Hou, Huirang; Zheng, Dandan; Nie, Laixiao
2015-04-01
For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.
Optimizing Endoscope Reprocessing Resources Via Process Flow Queuing Analysis.
Seelen, Mark T; Friend, Tynan H; Levine, Wilton C
2018-05-04
The Massachusetts General Hospital (MGH) is merging its older endoscope processing facilities into a single new facility that will enable high-level disinfection of endoscopes for both the ORs and Endoscopy Suite, leveraging economies of scale for improved patient care and optimal use of resources. Finalized resource planning was necessary for the merging of facilities to optimize staffing and make final equipment selections to support the nearly 33,000 annual endoscopy cases. To accomplish this, we employed operations management methodologies, analyzing the physical process flow of scopes throughout the existing Endoscopy Suite and ORs and mapping the future state capacity of the new reprocessing facility. Further, our analysis required the incorporation of historical case and reprocessing volumes in a multi-server queuing model to identify any potential wait times as a result of the new reprocessing cycle. We also performed sensitivity analysis to understand the impact of future case volume growth. We found that our future-state reprocessing facility, given planned capital expenditures for automated endoscope reprocessors (AERs) and pre-processing sinks, could easily accommodate current scope volume well within the necessary pre-cleaning-to-sink reprocessing time limit recommended by manufacturers. Further, in its current planned state, our model suggested that the future endoscope reprocessing suite at MGH could support an increase in volume of at least 90% over the next several years. Our work suggests that with simple mathematical analysis of historic case data, significant changes to a complex perioperative environment can be made with ease while keeping patient safety as the top priority.
Optimal Power Flow Modelling and Analysis of Hybrid AC-DC Grids with Offshore Wind Power Plant
DEFF Research Database (Denmark)
Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei
2017-01-01
In order to develop renewables based energy systems, the installation of the offshore wind power plants (WPPs) is globally encouraged. However, wind power generation is intermittent and uncertain. An accurate modelling and evaluation reduces investment and provide better operation. Hence......, the wind power production level also plays a major role in a hybrid system on transmission loss evaluation. The developed model is tested in Low, Medium and High wind power production levels to determine the objective function of the OPF solution. MATLAB Optimization Toolbox and MATLAB script are used......, it is essential to develop a suitable model and apply optimization algorithms for different application scenarios. The objective of this work is to develop a generalized model and evaluate the Optimal Power Flow (OPF) solutions in a hybrid AC/DC system including HVDC (LCC based) and offshore WPP (VSC based...
An Optimal Homotopy Asymptotic Approach Applied to Nonlinear MHD Jeffery-Hamel Flow
Directory of Open Access Journals (Sweden)
Vasile Marinca
2011-01-01
Full Text Available A simple and effective procedure is employed to propose a new analytic approximate solution for nonlinear MHD Jeffery-Hamel flow. This technique called the Optimal Homotopy Asymptotic Method (OHAM does not depend upon any small/large parameters and provides us with a convenient way to control the convergence of the solution. The examples given in this paper lead to the conclusion that the accuracy of the obtained results is growing along with increasing the number of constants in the auxiliary function, which are determined using a computer technique. The results obtained through the proposed method are in very good agreement with the numerical results.
International Nuclear Information System (INIS)
Perković, Luka; Novosel, Tomislav; Pukšec, Tomislav; Ćosić, Boris; Mustafa, Manal; Krajačić, Goran; Duić, Neven
2016-01-01
Highlights: • A new methodology for optimal management of energy systems is proposed. • Critical excess of electricity production is reduced by optimizing the energy flows. • At the same time, the curtailment from the RES can be decreased. - Abstract: This paper presents a new approach for modeling energy flows in complex energy systems with parallel supply of fresh water and electricity. Such systems consist of renewable energy sources (RES), desalination plant, conventional power plants and the residual brine storage which is used as energy storage. The presented method is treating energy vectors in the system as control variables to provide the optimal solution in terms of the lowest critical excess of electricity production (CEEP) and highest possible share of RES in the supply mix. The optimal solution for supplying the demands for fresh water and electricity is always found within the framework of model constraints which are derived from the physical limitations of the system. The presented method enables the optimization of energy flows for a larger period of time. This increases the role of energy storage when higher integration of RES in the supply mix. The method is tested on a hypothetical case of Jordan for different levels of installed wind and PV capacities, as well as different sizes of the brine storage. Results show that increasing the optimization horizon from one hour to 24 h can reduce the CEEP by 80% and allow the increase of RES in the supply mix by more than 5% without violating the CEEP threshold limit of 5%. The activity of the energy (brine) storage is crucial for achieving this goal.
Near-Optimal Heuristics for Just-In-Time Jobs Maximization in Flow Shop Scheduling
Directory of Open Access Journals (Sweden)
Helio Yochihiro Fuchigami
2018-04-01
Full Text Available The number of just-in-time jobs maximization in a permutation flow shop scheduling problem is considered. A mixed integer linear programming model to represent the problem as well as solution approaches based on enumeration and constructive heuristics were proposed and computationally implemented. Instances with up to 10 jobs and five machines are solved by the mathematical model in an acceptable running time (3.3 min on average while the enumeration method consumes, on average, 1.5 s. The 10 constructive heuristics proposed show they are practical especially for large-scale instances (up to 100 jobs and 20 machines, with very good-quality results and efficient running times. The best two heuristics obtain near-optimal solutions, with only 0.6% and 0.8% average relative deviations. They prove to be better than adaptations of the NEH heuristic (well-known for providing very good solutions for makespan minimization in flow shop for the considered problem.
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj
2016-12-01
This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltage measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.
Optimal Research and Numerical Simulation for Scheduling No-Wait Flow Shop in Steel Production
Directory of Open Access Journals (Sweden)
Huawei Yuan
2013-01-01
Full Text Available This paper considers the m-machine flow shop scheduling problem with the no-wait constraint to minimize total completion time which is the typical model in steel production. First, the asymptotic optimality of the Shortest Processing Time (SPT first rule is proven for this problem. To further evaluate the performance of the algorithm, a new lower bound with performance guarantee is designed. At the end of the paper, numerical simulations show the effectiveness of the proposed algorithm and lower bound.
Directory of Open Access Journals (Sweden)
Tímea Magyaródi
2015-11-01
Full Text Available Previous assumptions note that the most powerful experiences of engagement are shared with others. Therefore, in the framework of positive psychology, to expand the dynamic interactionism-related flow theory, we have attempted to conduct an exploratory study about flow to reveal the most common activities that can trigger this experience during solitary or social situations. The study involved 1,709 adult participants from Hungary (Age: M = 26.95, SD = 11.23. They read descriptions about optimal experience in solitary and social situations and were asked to identify the activity from their life that is most typically followed by the described experiences. The social context was supplemented by other flow-related questions for a deeper understanding and to contribute to the research. According to the results the most typical solitary flow activities are found to be work, sports, creative activities and reading. The most common flow-inducing social activities are work and sports. The choice of the most frequent flow-inducing activities in both solitary and interpersonal situations is dependent on the gender of the respondent, and various demographical factors can influence the frequency of flow experiences in different contexts. Analysis reveal that optimal experience during a social interaction is determined by the perceived level of challenges, the perceived level of cooperation, the immediateness and clarity of the feedback, and the level of the skill. Our study may contribute to the broadening purpose of positive psychology as it focuses on the interpersonal level in relation to flow experience, which, in turn, may also support a higher level of well-being.
Huang, Zhujian; Zhang, Xianning; Cui, Lihua; Yu, Guangwei
2016-09-15
In this work, three hybrid vertical down-flow constructed wetland (HVDF-CW) systems with different compound substrates were fed with domestic sewage and their pollutants removal performance under different hydraulic loading and step-feeding ratio was investigated. The results showed that the hydraulic loading and step-feeding ratio were two crucial factors determining the removal efficiency of most pollutants, while substrate types only significantly affected the removal of COD and NH4(+)-N. Generally, the lower the hydraulic loading, the better removal efficiency of all contaminants, except for TN. By contrast, the increase of step-feeding ratio would slightly reduce the removal rate of ammonium and TP but obviously promoted the TN removal. Therefore, the optimal operation of this CWs could be achieved with low hydraulic loading combined with 50% of step-feeding ratio when TN removal is the priority, whereas medium or low hydraulic loading without step-feeding would be suitable when TN removal is not taken into consideration. The obtained results in this study can provide us with a guideline for design and optimization of hybrid vertical flow constructed wetland systems to improve the pollutants removal from domestic sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimization of Financial Flow Management Based on Estimates of Regional Multiplicative Effects
Directory of Open Access Journals (Sweden)
Denis Aleksandrovich Tatarkin
2015-12-01
Full Text Available The article deals with questions of increasing the management efficiency of the regional financial resources. As the main hypothesis, the idea of the optimization of the management of the regional financial flows based on the multiplicative economic effect is proved. This measure will allow to evaluate more efficiently the impact of the regional socio-economic policy. The article presents a multifactor model of the management of the regional financial flows on the regional level — the matrix of financial flows, based on the principles of the general economic equilibrium theory, the balance method of «input-output» and the methodology of national accounts. The paper introduces a methodology for the integration of the regional consolidated budget balance in a matrix of financial flows. Matrix multipliers of the consolidated budget balance are calculated for some regions of the Russian Federation allowing to model the economic multiplicative effects resulting from impact of different types of exogenous factors on the economic development of the regions, such as to predict the impact of fiscal redistribution on the GRP and income, to assess the impact of foreign investment on economic growth, to explore the effectiveness of the federal tax policy at the regional level. The article shows that the multiplier effect depends on several factors, including the foreign trade relations of the region, its dependence on imports, the share of value added in gross output, as well as the household savings. Various levels of government can use the author’s approach during development of strategies for socio-economic development, in assessing the extent and direction of the influence of exogenous factors on the economy of the territory, as well as in analyzing the investment initiatives from the private sector applying for state financial support for projects. In the conclusion, the ways of improving the management of financial flows on the basis of
International Nuclear Information System (INIS)
Hou, Huirang; Zheng, Dandan; Nie, Laixiao
2015-01-01
For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until –10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method. (paper)
2016-11-17
returned from the condenser to the evaporator by a variety of methods. In the simplest implementation of a heat pipe, a thermo-syphon, the walls of the...flow condensation as compared to that with natural convection cooling spread over the entire exposed pipe. The use of an aluminum heat transfer ...a larger thermal resistance throughout the tube. This resistance would work against heat transfer into the evaporator section. Excess permanganate
Energy Technology Data Exchange (ETDEWEB)
Harari, R; Weis, Y; Barnea, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev
1996-12-01
Following postulated events of a LOCA, the passive Containment Cooling System (PCCS) uses dry air to transfer the residual heat by natural circulation. The air flow path, designed between the steel reactor containment hot shell and the concrete shield building, creates an open thermosyphon. The purpose of this inherently safe process is to assure the long term steady-state cooling of the nuclear core after an emergency shutdown (authors).
DEFF Research Database (Denmark)
Courdent, V.; Grum, M.; Munk-Nielsen, T.
2017-01-01
). The specificity of this study is to optimize the energy consumption in IUDWS during low-flow periods by exploiting the electrical smart grid market (i.e. the actions are taken when no events are forecast). Furthermore, the results demonstrate the benefit of NWP neighbourhood post-processing methods to enhance......Precipitation is the cause of major perturbation to the flow in urban drainage and wastewater systems. Flow forecasts, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimize the operation of integrated urban drainage-wastewater systems (IUDWSs......) during both wet and dry weather periods. Numerical weather prediction (NWP) models have significantly improved in recent years, having increased their spatial and temporal resolution. Finer resolution NWP are suitable for urban-catchment-scale applications, providing longer lead time than radar...
Research on the Flow Field and Structure Optimization in Cyclone Separator with Downward Exhaust Gas
Directory of Open Access Journals (Sweden)
Wang Weiwei
2017-01-01
Full Text Available A numerical software analysis of the turbulent and strongly swirling flow field of a cyclone separator with downward exhaust gas and its performances is described. The ANSYS 14.0 simulations based on DPM model are also used in the investigation. A new set of geometrical design has been optimized to achieve minimum pressure drop and maximum separation efficiency. A comparison of numerical simulation of the new design confirm the superior performance of the new design compared to the conventional design. The influence of the structure parameters such as the length of the guide pipe, the shape of the guide, the inlet shape on the separation performance was analyzed in this research. This research result has certain reference value for cyclone separator design and performance optimization.
A Two Element Laminar Flow Airfoil Optimized for Cruise. M.S. Thesis
Steen, Gregory Glen
1994-01-01
Numerical and experimental results are presented for a new two-element, fixed-geometry natural laminar flow airfoil optimized for cruise Reynolds numbers on the order of three million. The airfoil design consists of a primary element and an independent secondary element with a primary to secondary chord ratio of three to one. The airfoil was designed to improve the cruise lift-to-drag ratio while maintaining an appropriate landing capability when compared to conventional airfoils. The airfoil was numerically developed utilizing the NASA Langley Multi-Component Airfoil Analysis computer code running on a personal computer. Numerical results show a nearly 11.75 percent decrease in overall wing drag with no increase in stall speed at sailplane cruise conditions when compared to a wing based on an efficient single element airfoil. Section surface pressure, wake survey, transition location, and flow visualization results were obtained in the Texas A&M University Low Speed Wind Tunnel. Comparisons between the numerical and experimental data, the effects of the relative position and angle of the two elements, and Reynolds number variations from 8 x 10(exp 5) to 3 x 10(exp 6) for the optimum geometry case are presented.
Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores
DEFF Research Database (Denmark)
Bigler, Matthias; Svensson, Anders; Kettner, Ernesto
2011-01-01
Over the past two decades, continuous flow analysis (CFA) systems have been refined and widely used to measure aerosol constituents in polar and alpine ice cores in very high-depth resolution. Here we present a newly designed system consisting of sodium, ammonium, dust particles, and electrolytic...... meltwater conductivity detection modules. The system is optimized for high- resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features...
Senkpiel, Charlotte; Biener, Wolfgang; Shammugam, Shivenes; Längle, Sven
2018-02-01
Energy system models serve as a basis for long term system planning. Joint optimization of electricity generating technologies, storage systems and the electricity grid leads to lower total system cost compared to an approach in which the grid expansion follows a given technology portfolio and their distribution. Modelers often face the problem of finding a good tradeoff between computational time and the level of detail that can be modeled. This paper analyses the differences between a transport model and a DC load flow model to evaluate the validity of using a simple but faster transport model within the system optimization model in terms of system reliability. The main findings in this paper are that a higher regional resolution of a system leads to better results compared to an approach in which regions are clustered as more overloads can be detected. An aggregation of lines between two model regions compared to a line sharp representation has little influence on grid expansion within a system optimizer. In a DC load flow model overloads can be detected in a line sharp case, which is therefore preferred. Overall the regions that need to reinforce the grid are identified within the system optimizer. Finally the paper recommends the usage of a load-flow model to test the validity of the model results.
International Nuclear Information System (INIS)
Lim, Sang-Gyu; Lee, Seok-Ho; Kim, Han-Gon
2010-01-01
A passive flow controller or a fluidic device (FD) is used for a safety injection system (SIS) for efficient use of nuclear reactor emergency cooling water since it can control the injection flow rate in a passive and optimal way. The performance of the FD is represented by pressure loss coefficient (K-factor) which is further affected by the configuration of the components such as a control port direction and a nozzle angle. The flow control mechanism that is varied according to the water level inside a vortex chamber determines the duration of the safety injection. This paper deals with a computational fluid dynamics (CFD) analysis for simulating the flow characteristics of the FD using the ANSYS CFX 11.0. The CFD analysis is benchmarked against existing experimental data to obtain applicability to the prediction of the FD performance in terms of K-factor. The CFD calculation is implemented with Shear Stress Transport (SST) model for a swirling flow and a strong streamline curvature in the vortex chamber of the FD, considering a numerical efficiency. Based on the benchmark results, parametric analyses are performed for an optimal design of the FD by varying the control port direction and the nozzle angle. Consequently, the FD performance is enhanced according to the angle of the control port nozzle.
Simon, Moritz
2014-11-14
© 2014, Springer Science+Business Media New York. With the target of optimizing CO2 sequestration in underground reservoirs, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. Our objective is to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, while time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system, formulate the optimal control problem and derive the continuous adjoint equations. For the discretization we apply a variant of the so-called BOX method, a locally conservative control-volume FE method that we further stabilize by a periodic averaging feature to reduce oscillations. The timestep-wise Lagrange function of the control problem is implemented as a variational form in Sundance, a toolbox for rapid development of parallel FE simulations, which is part of the HPC software Trilinos. We discuss the BOX method and our implementation in Sundance. The MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT, using limited-memory BFGS updates for approximating second derivatives. Finally, we present and discuss different types of optimal control results.
Challenges in wind farm optimization
DEFF Research Database (Denmark)
Larsen, Gunner Chr.
To achieve the optimal economic output from a wind farm over its lifetime, an optimal balance between capital costs, operation and maintenance costs, fatigue lifetime consumption of turbine components and power production is to be determined on a rational basis. This has implications both...... for the wind turbine modeling, where aeroelastic models are required, and for the wind farm flow field description, where in-stationary flow field modeling is needed to capture the complicated mixture of atmospheric boundary layer (ABL) flows and upstream emitted meandering wind turbine wakes, which together...... dictates the fatigue loading of the individual wind turbines. Within an optimization context, the basic challenge in describing the in-stationary wind farm flow field is computational speed. The Dynamic Wake Meandering (DWM) model includes the basic features of a CFD Large Eddy Simulation approach...
Scifoni, S.; Coltelli, M.; Marsella, M.; Proietti, C.; Napoleoni, Q.; Vicari, A.; Del Negro, C.
2010-04-01
Lava flow spreading along the flanks of Etna volcano often produces damages to the land and proprieties. The impact of these eruptions could be mitigated by building artificial barriers for controlling and slowing down the lava, as recently experienced in 1983, 1991-1993, 2001 and 2002. This study investigates how numerical simulations can be adopted for evaluating the effectiveness of barrier construction and for optimizing their geometry, considering as test case the lava flows emplaced on Etna's south flank during 2001. The flow temporal evolutions were reconstructed deriving the effusion rate trends, together with the pre-eruption topography were adopted as input data of the MAGFLOW simulation code. Three simulations were then conducted to simulate lava flow with and without barriers. The first aimed at verifying the reconstruction of the effusion rate trends, while the others at assessing the performance of the barrier system realized during the eruption in comparison with an alternative solution here proposed. A quantitative analysis carried out on the first simulation confirms the suitability of the selected test case. The comparison of the three simulated thickness distributions showed both the effectiveness of the barriers in slowing down the lava flow and the sensitivity of the MAGFLOW code to the topographical variations represented by the barriers. Finally, for reducing both the time necessary to erect the barrier and the barrier environmental impact, the gabion's barrier construction was analyzed. The implemented and tested procedure enforces the capability of using numerical simulations for designing optimized lava flow barriers aimed at making swifter mitigatory actions upon lava flows and improving the effectiveness of civil protection interventions during emergencies.
Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu
2016-01-01
Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.
Directory of Open Access Journals (Sweden)
Xianzhi Song
Full Text Available Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2 as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in
Theory and design of heat exchanger : shell and tube condenser and reboiler
International Nuclear Information System (INIS)
Min, Ui Dong
1996-02-01
This book gives descriptions of shell and tube heat exchanger including from, sorts, structure like shell and shell side, channel, and sliding bar, basic design of heat exchanger, flow-induced vibration, shell side condenser, tube side condenser and design of basic structure of condenser by types, selection of reboiler type, kettle type reboiler, internal reboiler, pump through reboiler, design of reboiler like kettle and internal reboiler, and horizontal and vertical thermosyphon reboiler.
Bernico, Michael
2018-01-01
This book is a practical guide to applying deep neural networks including MLPs, CNNs, LSTMs, and more in Keras and TensorFlow. Packed with useful hacks to solve real-world challenges along with the supported math and theory around each topic, this book will be a quick reference for training and optimize your deep neural networks.
Directory of Open Access Journals (Sweden)
Liling Sun
2015-01-01
Full Text Available An improved multiobjective ABC algorithm based on K-means clustering, called CMOABC, is proposed. To fasten the convergence rate of the canonical MOABC, the way of information communication in the employed bees’ phase is modified. For keeping the population diversity, the multiswarm technology based on K-means clustering is employed to decompose the population into many clusters. Due to each subcomponent evolving separately, after every specific iteration, the population will be reclustered to facilitate information exchange among different clusters. Application of the new CMOABC on several multiobjective benchmark functions shows a marked improvement in performance over the fast nondominated sorting genetic algorithm (NSGA-II, the multiobjective particle swarm optimizer (MOPSO, and the multiobjective ABC (MOABC. Finally, the CMOABC is applied to solve the real-world optimal power flow (OPF problem that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results demonstrate that, compared to NSGA-II, MOPSO, and MOABC, the proposed CMOABC is superior for solving OPF problem, in terms of optimization accuracy.
Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control
Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.
2016-02-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method
Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji
2002-06-01
With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright
Utilising heat from nuclear waste for space heating
International Nuclear Information System (INIS)
Deacon, D.
1982-01-01
A heating unit utilising the decay heat from irradiated material comprises a storage envelope for the material associated with a heat exchange system, means for producing a flow of air over the heat exchange system to extract heat from the material, an exhaust duct capable of discharging the heated air to the atmosphere, and means for selectively diverting at least some of the heated air to effect the required heating. With the flow of air over the heat exchange system taking place by a natural thermosyphon process the arrangement is self regulating and inherently reliable. (author)
Directory of Open Access Journals (Sweden)
Mayank M Agarwal
2010-01-01
Full Text Available Introduction : Flow-volume nomograms and volume-corrected flow-rates (cQ are tools to correct uroflow rates (Q with varied voided volumes (VV of urine. We investigated the applicability of the available nomograms in our local population. Materials and Methods : Raw data of our previous study on variation in Q with voiding position (standing, sitting, and squatting in healthy adult men was reanalyzed. Additionally, the departmental urodynamic database of the last four years was searched for uroflow data of men with voiding symptoms (International Prostatic Symptom Score (IPSS > 7 and global quality of life score >2. These results were projected on the Liverpool and Siroky nomograms for men. The Q-VV relations were statistically analyzed using curve-estimation regression method to examine the current definition of corrected maximum flow rate (Qmax. Results : We found a cubic relation between Q and VV; based on this we developed novel equation for cQ [cQ=Q/(VV 1/3 ] and novel confidence-limit flow-volume nomograms. The imaginary 16 th percentile line of Liverpool nomogram, -1 standard-deviation line of Siroky nomogram and lower 68% confidence-limit line of our nomogram had sensitivity of 96.2%, 100% and 89.3%, and specificity of 75.3% 69.3% and 86.0%, respectively for Qmax-VV relations. Corresponding values for average flow rate (Qave-volume relations were 96.2%, 100% and 94.6%, and 75.2%, 50.4% and 86.0%, respectively. The area under curve of the receiver operating characteristics (ROC curve for cQmax and cQave was 0.954 and 0.965, respectively, suggesting significantly higher discriminatory power than chance (P = 0.0001. Conclusion : Flow-volume nomograms developed on Caucasian population may not be optimally applicable to the Indian population. We introduce flow-volume nomograms and cQ, which have high sensitivity and specificity.
International Nuclear Information System (INIS)
Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing
2015-01-01
The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system
3D FEM Geometry and Material Flow Optimization of Porthole-Die Extrusion
International Nuclear Information System (INIS)
Ceretti, Elisabetta; Mazzoni, Luca; Giardini, Claudio
2007-01-01
The aim of this work is to design and to improve the geometry of a porthole-die for the production of aluminum components by means of 3D FEM simulations. In fact, the use of finite element models will allow to investigate the effects of the die geometry (webs, extrusion cavity) on the material flow and on the stresses acting on the die so to reduce the die wear and to improve the tool life. The software used to perform the simulations was a commercial FEM code, Deform 3D. The technological data introduced in the FE model have been furnished by METRA S.p.A. Company, partner in this research. The results obtained have been considered valid and helpful by the Company for building a new optimized extrusion porthole-die
Energy Technology Data Exchange (ETDEWEB)
Toi, M; Sugiura, S [Toyota Motor Corp., Tokyo (Japan)
1997-10-01
By using computational fluid dynamics and statistical quality control method, we investigated the contribution of front and rear catalytic converter cone shape for the pressure loss and the partial flow, also led the optimal terms and the predictional formulations efficiently. According to this, we can investigate the optimal position of the catalytic converter from the planning. 8 figs., 6 tabs.
International Nuclear Information System (INIS)
Roy, Arup Singha; Palani Selvam, T.; Raman, Anand; Raja, V.; Chaudhury, Probal
2014-01-01
Over the years, various types of tritium-in-air monitors have been designed and developed based on different principles. Ionization chamber, proportional counter and scintillation detector systems are few among them. A plastic scintillator based, flow-cell type online tritium-in-air monitoring system was developed for online monitoring of tritium in air. The value of the scintillator mass inside the cell-volume, which maximizes the response of the detector system, should be obtained to get maximum efficiency. The present study is aimed to optimize the amount of mass of the plastic scintillator film for the flow-cell based tritium monitoring instrument so that maximum efficiency is achieved. The Monte Carlo based EGSnrc code system has been used for this purpose
Directory of Open Access Journals (Sweden)
Kiran Teeparthi
2017-04-01
Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.
DEFF Research Database (Denmark)
Mussati, Sergio F.; Cignitti, Stefano; Mansouri, Seyed Soheil
2018-01-01
An optimal process configuration for double-effect water-lithium bromide absorption refrigeration systems with series flow – where the solution is first passed through the high-temperature generator – is obtained by minimization of the total annual cost for a required cooling capacity. To this end......) takes place entirely at the high-temperature zone, and the sizes and operating conditions of the other process units change accordingly in order to meet the problem specification with the minimal total annual cost. This new configuration was obtained for wide ranges of the cooling capacity (150–450 k.......9%, respectively. Most importantly, the obtained optimal solution eliminates the low-temperature solution heat exchanger from the conventional configuration, rendering a new process configuration. The energy integration between the weak and strong lithium bromide solutions (cold and hot streams, respectively...
Optimization Design of IGV Profile in Centrifugal Compressor
Directory of Open Access Journals (Sweden)
Qi Sun
2017-01-01
Full Text Available Variable inlet guide vane (IGV is used to control the mass flow and generate prewhirl in centrifugal compressors. The efficient operation of IGV is limited to the range of aerodynamic characteristics of their vane profiles. In order to find out the best vane profile for IGV regulation, the modern optimization method was adopted to optimize the inlet guide vane profile. The main methodology idea was to use artificial neural network for continuous fitness evaluation and use genetic algorithm for global optimization. After optimization, the regulating performance of IGV has improved significantly, the prewhirl ability has been enhanced greatly, and the pressure loss has been reduced. The mass flow and power of compressor reduced by using the optimized guide vane at large setting angles, and the efficiency increased significantly; the flow field distribution has been improved obviously, since the nonuniform distribution of flow and flow separation phenomenon greatly weakened or even completely disappeared. The achievement of this research can effectively improve the regulation ability of IGV and the performance of compressor.
Convection in complex shaped vessel; Convection dans des enceintes de forme complexe
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-07-01
The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)
2012-11-01
The purpose of this project is to develop for the Intelligent Network Flow Optimization (INFLO), which is one collection (or bundle) of high-priority transformative applications identified by the United States Department of Transportation (USDOT) Mob...
Directory of Open Access Journals (Sweden)
Suresh Chintalapudi Venkata
2015-09-01
Full Text Available In this paper a novel non-linear optimization problem is formulated to maximize the social welfare in restructured environment with generalized unified power flow controller (GUPFC. This paper presents a methodology to optimally allocate the reactive power by minimizing voltage deviation at load buses and total transmission power losses so as to maximize the social welfare. The conventional active power generation cost function is modified by combining costs of reactive power generated by the generators, shunt capacitors and total power losses to it. The formulated objectives are optimized individually and simultaneously as multi-objective optimization problem, while satisfying equality, in-equality, practical and device operational constraints. A new optimization method, based on two stage initialization and random distribution processes is proposed to test the effectiveness of the proposed approach on IEEE-30 bus system, and the detailed analysis is carried out.
Optimizing parameter of particle damping based on Leidenfrost effect of particle flows
Lei, Xiaofei; Wu, Chengjun; Chen, Peng
2018-05-01
Particle damping (PD) has strongly nonlinearity. With sufficiently vigorous vibration conditions, it always plays excellent damping performance and the particles which are filled into cavity are on Leidenfrost state considered in particle flow theory. For investigating the interesting phenomenon, the damping effect of PD on this state is discussed by the developed numerical model which is established based on principle of gas and solid. Furtherly, the numerical model is reformed and applied to study the relationship of Leidenfrost velocity with characteristic parameters of PD such as particle density, diameter, mass packing ratio and diameter-length ratio. The results indicate that particle density and mass packing ratio can drastically improve the damping performance as opposed as particle diameter and diameter-length ratio, mass packing ratio and diameter-length ratio can low the excited intensity for Leidenfrost state. For discussing the application of the phenomenon in engineering, bound optimization by quadratic approximation (BOBYQA) method is employed to optimize mass packing ratio of PD for minimize maximum amplitude (MMA) and minimize total vibration level (MTVL). It is noted that the particle damping can drastically reduce the vibrating amplitude for MMA as Leidenfrost velocity equal to the vibrating velocity relative to maximum vibration amplitude. For MTVL, larger mass packing ratio is best option because particles at relatively wide frequency range is adjacent to Leidenfrost state.
Directory of Open Access Journals (Sweden)
Ahmed M. Elsayed
2013-01-01
Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.
Dynamic population artificial bee colony algorithm for multi-objective optimal power flow
Directory of Open Access Journals (Sweden)
Man Ding
2017-03-01
Full Text Available This paper proposes a novel artificial bee colony algorithm with dynamic population (ABC-DP, which synergizes the idea of extended life-cycle evolving model to balance the exploration and exploitation tradeoff. The proposed ABC-DP is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. ABC-DP is then used for solving the optimal power flow (OPF problem in power systems that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results, which are also compared to nondominated sorting genetic algorithm II (NSGAII and multi-objective ABC (MOABC, are presented to illustrate the effectiveness and robustness of the proposed method.
Directory of Open Access Journals (Sweden)
Lili Wang
2015-01-01
Full Text Available With the rapid development of urban rail transit, the phenomenon of outburst passenger flows flocking to stations is occurring much more frequently. Passenger flow control is one of the main methods used to ensure passengers’ safety. While most previous studies have only focused on control measures inside the target station, ignoring the collaboration between stops, this paper puts emphasis on joint passenger control methods during the occurrence of large passenger flows. To provide a theoretic description for the problem under consideration, an integer programming model is built, based on the analysis of passenger delay and the processes by which passengers alight and board. Taking average passenger delay as the objective, the proposed model aims to disperse the pressure of oversaturated stations into others, achieving the optimal state for the entire line. The model is verified using a case study and the results show that restricted access measures taken collaboratively by stations produce less delay and faster evacuation. Finally, a sensitivity analysis is conducted, from which we find that the departure interval and maximum conveying capacity of the train affect passenger delay markedly in the process of passenger control and infer that control measures should be taken at stations near to the one experiencing an emergency.
Topology optimization of fluid mechanics problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan
While topology optimization for solid continuum structures have been studied for about 20 years and for the special case of trusses for many more years, topology optimization of fluid mechanics problems is more recent. Borrvall and Petersson [1] is the seminal reference for topology optimization......D Navier-Stokes equation as well as an example with convection dominated transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the present work gives a proof-of-concept for the application of the method within fluid mechanics problems and it remains...... processing tool. Prior to design manufacturing this allows the engineer to quantify the performance of the computed topology design using standard, credible analysis tools with a body-fitted mesh. [1] Borrvall and Petersson (2003) "Topology optimization of fluids in Stokes flow", Int. J. Num. Meth. Fluids...
A PROCEDURE FOR DETERMINING OPTIMAL FACILITY LOCATION AND SUB-OPTIMAL POSITIONS
Directory of Open Access Journals (Sweden)
P.K. Dan
2012-01-01
Full Text Available
ENGLISH ABSTRACT: This research presents a methodology for determining the optimal location of a new facility, having physical flow interaction of various degrees with other existing facilities in the presence of barriers impeding the shortest flow-path as well as the sub-optimal iso-cost positions. It also determines sub-optimal iso-cost positions with additional cost or penalty for not being able to site it at the computed optimal point. The proposed methodology considers all types of quadrilateral barrier or forbidden region configurations to generalize and by-pass such impenetrable obstacles, and adopts a scheme of searching through the vertices of the quadrilaterals to determine the alternative shortest flow-path. This procedure of obstacle avoidance is novel. Software has been developed to facilitate computations for the search algorithm to determine the optimal and iso-cost co-ordinates. The test results are presented.
AFRIKAANSE OPSOMMING: Die navorsing behandel ‘n procedure vir die bepaling van optimum stigtingsposisie vir ‘n onderneming met vloei vanaf ander bestaande fasiliteite in die teenwoordigheid van ‘n verskeidenheid van randvoorwaardes. Die prodedure lewer as resultaat suboptimale isokoste-stigtingsplekke met bekendmaking van die koste wat onstaan a.g.v. afwyking van die randvoorwaardlose optimum oplossingskoste, die prosedure maak gebruik van ‘n vindingryke soekmetode wat toegepas word op niersydige meerkundige voorstellings vir die bepaling van korste roetes wat versperring omseil. Die prosedure word onderskei deur programmatuur. Toetsresultate word voorgehou.
Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed
2018-06-01
Darcy-Forchheimer three dimensional flow of Carreau nanoliquid induced by a linearly stretchable surface with convective boundary condition has been analyzed. Buongiorno model has been employed to elaborate thermophoresis and Brownian diffusion effects. Zero nanoparticles mass flux and convective surface conditions are implemented at the boundary. The governing problems are nonlinear. Optimal homotopic procedure has been used to tackle the governing mathematical system. Graphical results clearly depict the outcome of temperature and concentration fields. Surface drag coefficients and local Nusselt number are also plotted and discussed.
Optimization of Mangala Hydropower Station, Pakistan, using Optimization Techniques
Directory of Open Access Journals (Sweden)
Zaman Muhammad
2017-01-01
Full Text Available Hydropower generation is one of the key element in the economy of a country. The present study focusses on the optimal electricity generation from the Mangla reservoir in Pakistan. A mathematical model has been developed for the Mangla hydropower station and particle swarm and genetic algorithm optimization techniques were applied at this model for optimal electricity generation. Results revealed that electricity production increases with the application of optimization techniques at the proposed mathematical model. Genetic Algorithm can produce maximum electricity than Particle swarm optimization but the time of execution of particle swarm optimization is much lesser than the Genetic algorithm. Mangla hydropower station can produce up to 59*109 kWh electricity by using the flows optimally than 47*108 kWh production from traditional methods.
Directory of Open Access Journals (Sweden)
Gonggui Chen
2017-01-01
Full Text Available The optimal power flow (OPF is well-known as a significant optimization tool for the security and economic operation of power system, and OPF problem is a complex nonlinear, nondifferentiable programming problem. Thus this paper proposes a Gbest-guided cuckoo search algorithm with the feedback control strategy and constraint domination rule which is named as FCGCS algorithm for solving OPF problem and getting optimal solution. This FCGCS algorithm is guided by the global best solution for strengthening exploitation ability. Feedback control strategy is devised to dynamically regulate the control parameters according to actual and specific feedback value in the simulation process. And the constraint domination rule can efficiently handle inequality constraints on state variables, which is superior to traditional penalty function method. The performance of FCGCS algorithm is tested and validated on the IEEE 30-bus and IEEE 57-bus example systems, and simulation results are compared with different methods obtained from other literatures recently. The comparison results indicate that FCGCS algorithm can provide high-quality feasible solutions for different OPF problems.
International Nuclear Information System (INIS)
Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz
2015-01-01
Highlights: • Defining a dimensionless parameter includes the finite-time and size concepts. • Inserting the concept of exergy of fluid streams into finite-time thermodynamics. • Defining, drawing and modifying of maximum ecological function curve. • Suggesting the appropriate performance zone, according to maximum ecological curve. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power and then ecological function maximization using finite-time thermodynamic concept and finite-size components. Multi-objective optimization is used for maximizing the ecological function. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is introduced deploying time variations. The variations of output power, total exergy destruction of the system, and decision variables for the optimum state (maximum ecological function state) are compared to the maximum power state using the dimensionless parameter. The modified ecological function in optimum state is obtained and plotted relating to the dimensionless mass-flow parameter. One can see that the modified ecological function study results in a better performance than that obtained with the maximum power state. Finally, the appropriate performance zone of the heat engine will be obtained
Hopmann, Ch.; Windeck, C.; Kurth, K.; Behr, M.; Siegbert, R.; Elgeti, S.
2014-05-01
The rheological design of profile extrusion dies is one of the most challenging tasks in die design. As no analytical solution is available, the quality and the development time for a new design highly depend on the empirical knowledge of the die manufacturer. Usually, prior to start production several time-consuming, iterative running-in trials need to be performed to check the profile accuracy and the die geometry is reworked. An alternative are numerical flow simulations. These simulations enable to calculate the melt flow through a die so that the quality of the flow distribution can be analyzed. The objective of a current research project is to improve the automated optimization of profile extrusion dies. Special emphasis is put on choosing a convenient starting geometry and parameterization, which enable for possible deformations. In this work, three commonly used design features are examined with regard to their influence on the optimization results. Based on the results, a strategy is derived to select the most relevant areas of the flow channels for the optimization. For these characteristic areas recommendations are given concerning an efficient parameterization setup that still enables adequate deformations of the flow channel geometry. Exemplarily, this approach is applied to a L-shaped profile with different wall thicknesses. The die is optimized automatically and simulation results are qualitatively compared with experimental results. Furthermore, the strategy is applied to a complex extrusion die of a floor skirting profile to prove the universal adaptability.
International Nuclear Information System (INIS)
Al-Muhawesh, Tareq A.; Qamber, Isa S.
2008-01-01
A current trend in electric power industries is the deregulation around the world. One of the questions arise during any deregulation process is: where will be the future generation expansion? In the present paper, the study is concentrated on the wheeling computational method as a part of mega watt (MW) linear programming-based optimal power flow (LP-based OPF) method. To observe the effects of power wheeling on the power system operations, the paper uses linear interactive and discrete optimizer (LINDO) optimizer software as a powerful tool for solving linear programming problems to evaluate the influence of the power wheeling. As well, the paper uses the optimization tool to solve the economic generation dispatch and transmission management problems. The transmission line flow was taken in consideration with some constraints discussed in this paper. The complete linear model of the MW LP-based OPF, which is used to know the future generation potential areas in any utility is proposed. The paper also explains the available economic load dispatch (ELD) as the basic optimization tool to dispatch the power system. It can be concluded in the present study that accuracy is expensive in terms of money and time and in the competitive market enough accuracy is needed without paying much
Directory of Open Access Journals (Sweden)
Xuanhu He
2015-03-01
Full Text Available Optimal power flow (OPF objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.
Evaluation of air flow rates through spargers for optimization of KNGR IRWST and SDVS design
International Nuclear Information System (INIS)
Jung, J. S.; Rha, I. S.; Jang, Y. S.; Koh, H. J.; Park, J. N.; Lee, S. W.
1999-01-01
In KNGR in the event of POSRVs actuation water, air and steam discharged from the RCS impose the dynamic loads on IRWST walls and submerged structures. The largest load is air clearing load. The main factors having an effect on the air clearing load are steam mass flux, the pressure and air volume in the POSRV discharge line. It is practically difficult to make the amount of air mass and its flow rates discharged through each sparger evenly distributed because several spargers are branched from one horizontal header. For an optimization of KNGR IRWST and SDVS design to minimize the T/H loads, the pressure in the discharge pipe and the air mass flow rates through spargers are evaluated using RELAP5/MOD3 code with changing the POSRV opening time and line and sparger arrangement. It is shown that as the opening time is the longer, the pressure in the discharge line is decreased and difference of the amount of air mass between spargers is reduced. And sparger headers with three spargers show better performance rather than those with six ones
Optimal power flow by particle swarm optimization with an aging ...
African Journals Online (AJOL)
In this paper, a particle swarm optimization (PSO) with an aging leader and challengers (ALC-PSO) is applied for the solution of OPF problem of power system. This study is implemented on modified IEEE 30-bus test power system with different objectives that reflect minimization of either fuel cost or active power loss or sum ...
Hyperspectral imaging flow cytometer
Sinclair, Michael B.; Jones, Howland D. T.
2017-10-25
A hyperspectral imaging flow cytometer can acquire high-resolution hyperspectral images of particles, such as biological cells, flowing through a microfluidic system. The hyperspectral imaging flow cytometer can provide detailed spatial maps of multiple emitting species, cell morphology information, and state of health. An optimized system can image about 20 cells per second. The hyperspectral imaging flow cytometer enables many thousands of cells to be characterized in a single session.
Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar
2013-11-01
Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal
CFD Numerical Simulation of the Complex Turbulent Flow Field in an Axial-Flow Water Pump
Directory of Open Access Journals (Sweden)
Wan-You Li
2014-09-01
Full Text Available Further optimal design of an axial-flow water pump calls for a thorough recognition of the characteristics of the complex turbulent flow field in the pump, which is however extremely difficult to be measured using the up-to-date experimental techniques. In this study, a numerical simulation procedure based on computational fluid dynamics (CFD was elaborated in order to obtain the fully three-dimensional unsteady turbulent flow field in an axial-flow water pump. The shear stress transport (SST k-ω model was employed in the CFD calculation to study the unsteady internal flow of the axial-flow pump. Upon the numerical simulation results, the characteristics of the velocity field and pressure field inside the impeller region were discussed in detail. The established model procedure in this study may provide guidance to the numerical simulations of turbomachines during the design phase or the investigation of flow and pressure field characteristics and performance. The presented information can be of reference value in further optimal design of the axial-flow pump.
Energy Technology Data Exchange (ETDEWEB)
Meyer, J.S.; Shinohara, T.; Imai, A.; Kobari, M.; Sakai, F.; Hata, T.; Oravez, W.T.; Timpe, G.M.; Deville, T.; Solomon, E.
1988-08-01
Methods are described for non-invasive, computer-assisted serial scanning throughout the human brain during eight minutes of inhalation of 27%-30% xenon gas in order to measure local cerebral blood flow (LCBF). Optimized xenon-enhanced computed tomography (XeCT) was achieved by 5-second scanning at one-minute intervals utilizing a state-of-the-art CT scanner and rapid delivery of xenon gas via a face mask. Values for local brain-blood partition coefficients (Llambda) measured in vivo were utilized to calculate LCBF values. Previous methods assumed Llambda values to be normal, introducing the risk of systematic errors, because Llambda values differ throughout normal brain and may be altered by disease. Color-coded maps of Llambda and LCBF values were formatted directly onto CT images for exact correlation of function with anatomic and pathologic observations (spatial resolution: 26.5 cubic mm). Results were compared among eight normal volunteers, aged between 50 and 88 years. Mean cortical gray matter blood flow was 46.3 +- 7.7, for subcortical gray matter it was 50.3 +- 13.2 and for white matter it was 18.8 +- 3.2. Modern CT scanners provide stability, improved signal to noise ratio and minimal radiation scatter. Combining these advantages with rapid xenon saturation of the blood provides correlations of Llambda and LCBF with images of normal and abnormal brain in a safe, useful and non-invasive manner.
International Nuclear Information System (INIS)
Shi, Zhongyuan; Dong, Tao
2015-01-01
Highlights: • A constructal thermohydraulic optimization was carried out. • The effect of manufacturing limit on the Pareto solution set was discussed. • The suitable constraints may differ from those on a quasi-continuous basis. - Abstract: A synthetic optimization is presented for the Pareto layouts of discrete heat sources (with uniform heat flux) flush mounted on a flat plate over which laminar flow serves for cooling purpose. The peak temperatures and the flow drag loss are minimizing simultaneously provided that the total heat dissipation rate and the plate length are held constant. The impact of the manufacturing limit, i.e. the minimum length of the heated or the adiabatic patch, on the optimum layout is discussed. The results in general comply with analytical deduction based on the constructal theory. However in a finite length scenario, geometric constraints on the adiabatic spacing differ from that fits the situation in which maximum heat transfer performance alone is to be achieved.
Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi
2017-09-01
There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.
Design of microfluidic bioreactors using topology optimization
DEFF Research Database (Denmark)
Okkels, Fridolin; Bruus, Henrik
2007-01-01
We address the design of optimal reactors for supporting biological cultures using the method of topology optimization. For some years this method have been used to design various optimal microfluidic devices.1-4 We apply this method to distribute optimally biologic cultures within a flow...
Rodriguez-Pretelin, A.; Nowak, W.
2017-12-01
For most groundwater protection management programs, Wellhead Protection Areas (WHPAs) have served as primarily protection measure. In their delineation, the influence of time-varying groundwater flow conditions is often underestimated because steady-state assumptions are commonly made. However, it has been demonstrated that temporary variations lead to significant changes in the required size and shape of WHPAs. Apart from natural transient groundwater drivers (e.g., changes in the regional angle of flow direction and seasonal natural groundwater recharge), anthropogenic causes such as transient pumping rates are of the most influential factors that require larger WHPAs. We hypothesize that WHPA programs that integrate adaptive and optimized pumping-injection management schemes can counter transient effects and thus reduce the additional areal demand in well protection under transient conditions. The main goal of this study is to present a novel management framework that optimizes pumping schemes dynamically, in order to minimize the impact triggered by transient conditions in WHPA delineation. For optimizing pumping schemes, we consider three objectives: 1) to minimize the risk of pumping water from outside a given WHPA, 2) to maximize the groundwater supply and 3) to minimize the involved operating costs. We solve transient groundwater flow through an available transient groundwater and Lagrangian particle tracking model. The optimization problem is formulated as a dynamic programming problem. Two different optimization approaches are explored: I) the first approach aims for single-objective optimization under objective (1) only. The second approach performs multiobjective optimization under all three objectives where compromise pumping rates are selected from the current Pareto front. Finally, we look for WHPA outlines that are as small as possible, yet allow the optimization problem to find the most suitable solutions.
Optimal stretching in the reacting wake of a bluff body.
Wang, Jinge; Tithof, Jeffrey; Nevins, Thomas D; Colón, Rony O; Kelley, Douglas H
2017-12-01
We experimentally study spreading of the Belousov-Zhabotinsky reaction behind a bluff body in a laminar flow. Locations of reacted regions (i.e., regions with high product concentration) correlate with a moderate range of Lagrangian stretching and that range is close to the range of optimal stretching previously observed in topologically different flows [T. D. Nevins and D. H. Kelley, Phys. Rev. Lett. 117, 164502 (2016)]. The previous work found optimal stretching in a closed, vortex dominated flow, but this article uses an open flow and only a small area of appreciable vorticity. We hypothesize that optimal stretching is common in advection-reaction-diffusion systems with an excitation threshold, including excitable and bistable systems, and that the optimal range depends on reaction chemistry and not on flow shape or characteristic speed. Our results may also give insight into plankton blooms behind islands in ocean currents.
The Relationship between High Flow Nasal Cannula Flow Rate and Effort of Breathing in Children.
Weiler, Thomas; Kamerkar, Asavari; Hotz, Justin; Ross, Patrick A; Newth, Christopher J L; Khemani, Robinder G
2017-10-01
To use an objective metric of effort of breathing to determine optimal high flow nasal cannula (HFNC) flow rates in children flow rates of 0.5, 1.0, 1.5, and 2.0 L/kg/minute. For a subgroup of patients, 2 different HFNC delivery systems (Fisher & Paykel [Auckland, New Zealand] and Vapotherm [Exeter, New Hampshire]) were compared. Twenty-one patients (49 titration episodes) were studied. The most common diagnoses were bronchiolitis and pneumonia. Overall, there was a significant difference in the percent change in PRP from baseline (of 0.5 L/kg/minute) with increasing flow rates for the entire cohort (P flow rates were increased (P = .001) than patients >8 kg. The optimal HFNC flow rate to reduce effort of breathing in infants and young children is approximately 1.5-2.0 L/kg/minute with more benefit seen in children ≤8 kg. Copyright © 2017 Elsevier Inc. All rights reserved.
LOGISTICS OPTIMIZATION USING ONTOLOGIES
Hendi , Hayder; Ahmad , Adeel; Bouneffa , Mourad; Fonlupt , Cyril
2014-01-01
International audience; Logistics processes involve complex physical flows and integration of different elements. It is widely observed that the uncontrolled processes can decline the state of logistics. The optimization of logistic processes can support the desired growth and consistent continuity of logistics. In this paper, we present a software framework for logistic processes optimization. It primarily defines logistic ontologies and then optimize them. It intends to assist the design of...
Guidelines on CV networking information flow optimization for Texas.
2017-03-01
Recognizing the fundamental role of information flow in future transportation applications, the research team investigated the quality and security of information flow in the connected vehicle (CV) environment. The research team identified key challe...
International Nuclear Information System (INIS)
Igra, R.; Scurlock, R.G.; Wu, Y.Y.
1986-01-01
Experimental studies of thermo-syphon flows in radial tubes and loops between the axis and the periphery of a rotating helium cryostat have shown that when heat is supplied at an intermediate radius, the heat is carried radially inwards as A flow and radially outwards as B flow. The results with helium suggest that while the steady state patterns of the A and B flows are complex, the heat is divided approximately equally between the conventional A flow and the reverse B flow. A model of convective heating in the rotating frame is presented and two necessary conditions for reverse convection are identified and discussed. The model predicts reverse convection in liquid nitrogen and this is confirmed by experimental measurement. An array of radial ducts is proposed for the cooling of a superconducting AC generator in order to counter the effects of reverse convection in the helium refrigerant
Coordinated Control of Cross-Flow Turbines
Strom, Benjamin; Brunton, Steven; Polagye, Brian
2016-11-01
Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.
An Optimization Scheme for ProdMod
International Nuclear Information System (INIS)
Gregory, M.V.
1999-01-01
A general purpose dynamic optimization scheme has been devised in conjunction with the ProdMod simulator. The optimization scheme is suitable for the Savannah River Site (SRS) High Level Waste (HLW) complex operations, and able to handle different types of optimizations such as linear, nonlinear, etc. The optimization is performed in the stand-alone FORTRAN based optimization deliver, while the optimizer is interfaced with the ProdMod simulator for flow of information between the two
Translator for Optimizing Fluid-Handling Components
Landon, Mark; Perry, Ernest
2007-01-01
A software interface has been devised to facilitate optimization of the shapes of valves, elbows, fittings, and other components used to handle fluids under extreme conditions. This software interface translates data files generated by PLOT3D (a NASA grid-based plotting-and- data-display program) and by computational fluid dynamics (CFD) software into a format in which the files can be read by Sculptor, which is a shape-deformation- and-optimization program. Sculptor enables the user to interactively, smoothly, and arbitrarily deform the surfaces and volumes in two- and three-dimensional CFD models. Sculptor also includes design-optimization algorithms that can be used in conjunction with the arbitrary-shape-deformation components to perform automatic shape optimization. In the optimization process, the output of the CFD software is used as feedback while the optimizer strives to satisfy design criteria that could include, for example, improved values of pressure loss, velocity, flow quality, mass flow, etc.
Solution of optimal power flow using evolutionary-based algorithms
African Journals Online (AJOL)
It aims to estimate the optimal settings of real generator output power, bus voltage, ...... Lansey, K. E., 2003, Optimization of water distribution network design using ... Pandit, M., 2016, Economic load dispatch of wind-solar-thermal system using ...
International Nuclear Information System (INIS)
Adamovich, L.A.; Gabaraev, B.A.; Solovjev, S.L.; Shpansky, S.B.
2002-01-01
In the paper the results of study in heat transfer capacity of the thermosyphon mock-up which is considered as an intermediate circuit of the reactor under design, are presented. The mock-up design, the test rig and the experimental results are described. It is shown that the simplest mathematical model describes the processes of power transfer by the thermosyphon under certain conditions. (authors)
Multidisciplinary Design Optimization of a Swash-Plate Axial Piston Pump
Directory of Open Access Journals (Sweden)
Guangjun Liu
2016-12-01
Full Text Available This work proposes an MDO (multidisciplinary design optimization procedure for a swash-plate axial piston pump based on co-simulation and integrated optimization. The integrated hydraulic-mechanical model of the pump is built to reflect its actual performance, and a hydraulic-mechanical co-simulation is conducted through data exchange between different domains. The flow ripple of the pump is optimized by using a MDO procedure. A CFD (Computational Fluid Dynamics simulation of the pump’s flow field is done, which shows that the hydrodynamic shock of the pump is improved after optimization. To verify the MDO effect, an experimental system is established to test the optimized piston pump. Experimental results show that the simulated and experimental curves are similar. The flow ripple is improved by the MDO procedure. The peak of the pressure curve is lower than before optimization, and the pressure pulsation is reduced by 0.21 MPa, which shows that the pressure pulsation is improved with the decreasing of the flow ripple. Comparing the experimental and simulation results shows that MDO method is effective and feasible in the optimization design of the pump.
Using Crossflow for Flow Measurements and Flow Analysis
Energy Technology Data Exchange (ETDEWEB)
Gurevich, A.; Chudnovsky, L.; Lopeza, A. [Advanced Measurement and Analysis Group Inc., Ontario (Canada); Park, M. H. [Sungjin Nuclear Engineering Co., Ltd., Gyeongju (Korea, Republic of)
2016-10-15
Ultrasonic Cross Correlation Flow Measurements are based on a flow measurement method that is based on measuring the transport time of turbulent structures. The cross correlation flow meter CROSSFLOW is designed and manufactured by Advanced Measurement and Analysis Group Inc. (AMAG), and is used around the world for various flow measurements. Particularly, CROSSFLOW has been used for boiler feedwater flow measurements, including Measurement Uncertainty Recovery (MUR) reactor power uprate in 14 nuclear reactors in the United States and in Europe. More than 100 CROSSFLOW transducers are currently installed in CANDU reactors around the world, including Wolsung NPP in Korea, for flow verification in ShutDown System (SDS) channels. Other CROSSFLOW applications include reactor coolant gross flow measurements, reactor channel flow measurements in all channels in CANDU reactors, boiler blowdown flow measurement, and service water flow measurement. Cross correlation flow measurement is a robust ultrasonic flow measurement tool used in nuclear power plants around the world for various applications. Mathematical modeling of the CROSSFLOW agrees well with laboratory test results and can be used as a tool in determining the effect of flow conditions on CROSSFLOW output and on designing and optimizing laboratory testing, in order to ensure traceability of field flow measurements to laboratory testing within desirable uncertainty.
FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)
Energy Technology Data Exchange (ETDEWEB)
Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong
2006-03-15
The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.
Constructal tree-shaped two-phase flow for cooling a surface
Energy Technology Data Exchange (ETDEWEB)
Zamfirescu, C.; Bejan, A. [Duke University, Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science
2003-07-01
This paper documents the strong relation that exists between the changing architecture of a complex flow system and the maximization of global performance under constraints. The system is a surface with uniform heating per unit area, which is cooled by a network with evaporating two-phase flow. Illustrations are based on the design of the cooling network for a skating rink. The flow structure is optimized as a sequence of building blocks, which starts with the smallest (elemental volume of fixed size), and continues with assemblies of stepwise larger sizes (first construct, second construct, etc.). The optimized flow network is tree shaped. Three features of the elemental volume are optimized: the cross-sectional shape, the elemental tube diameter, and the shape of the elemental area viewed from above. The tree that emerges at larger scales is optimized for minimal amount of header material and fixed pressure drop. The optimal number of constituents in each new (larger) construct decreases as the size and complexity of the construct increase. Constructs of various levels of complexity compete: the paper shows how to select the optimal flow structure subject to fixed size (cooled surface), pressure drop and amount of header material. (author)
Application of Nontraditional Optimization Techniques for Airfoil Shape Optimization
Directory of Open Access Journals (Sweden)
R. Mukesh
2012-01-01
Full Text Available The method of optimization algorithms is one of the most important parameters which will strongly influence the fidelity of the solution during an aerodynamic shape optimization problem. Nowadays, various optimization methods, such as genetic algorithm (GA, simulated annealing (SA, and particle swarm optimization (PSO, are more widely employed to solve the aerodynamic shape optimization problems. In addition to the optimization method, the geometry parameterization becomes an important factor to be considered during the aerodynamic shape optimization process. The objective of this work is to introduce the knowledge of describing general airfoil geometry using twelve parameters by representing its shape as a polynomial function and coupling this approach with flow solution and optimization algorithms. An aerodynamic shape optimization problem is formulated for NACA 0012 airfoil and solved using the methods of simulated annealing and genetic algorithm for 5.0 deg angle of attack. The results show that the simulated annealing optimization scheme is more effective in finding the optimum solution among the various possible solutions. It is also found that the SA shows more exploitation characteristics as compared to the GA which is considered to be more effective explorer.
Ask the experts: the challenges and benefits of flow chemistry to optimize drug development.
Anderson, Neal; Gernaey, Krist V; Jamison, Timothy F; Kircher, Manfred; Wiles, Charlotte; Leadbeater, Nicholas E; Sandford, Graham; Richardson, Paul
2012-09-01
Against a backdrop of a struggling economic and regulatory climate, pharmaceutical companies have recently been forced to develop new ways to provide more efficient technology to meet the demands of a competitive drug industry. This issue, coupled with an increase in patent legislation and a rising generics market, makes these themes common issues in the growth of drug development. As a consequence, the importance of process chemistry and scale-up has never been more under the spotlight. Future Medicinal Chemistry wishes to share the thoughts and opinions of a variety of experts from this field, discussing issues concerning the use of flow chemistry to optimize drug development, the potential regulatory and environmental challenges faced with this, and whether the academic and industrial sectors could benefit from a more harmonized system relevant to process chemistry.
Directory of Open Access Journals (Sweden)
Yu Wang
2016-04-01
Full Text Available Multiple-factor analysis and optimization play a critical role in the the ability to maximizethe stimulated reservoir volume (SRV and the success of economic shale gas production. In this paper, taking the typical continental naturally fractured silty laminae shale in China as anexample, response surface methodology (RSM was employed to optimize multiple hydraulic fracturing parameters to maximize the stimulated area in combination with numerical modeling based on the coupled flow-stress-damage (FSD approach. This paper demonstrates hydraulic fracturing effectiveness by defining two indicesnamelythe stimulated reservoir area (SRA and stimulated silty laminae area (SLA. Seven uncertain parameters, such as laminae thickness, spacing, dip angle, cohesion, internal friction angle (IFA, in situ stress difference (SD, and an operational parameter-injection rate (IR with a reasonable range based on silty Laminae Shale, Southeastern Ordos Basin, are used to fit a response of SRA and SLA as the objective function, and finally identity the optimum design under the parameters based on simultaneously maximizingSRA and SLA. In addition, asensitivity analysis of the influential factors is conducted for SRA and SLA. The aim of the study is to improve the artificial ability to control the fracturing network by means of multi-parameteroptimization. This work promises to provide insights into the effective exploitation of unconventional shale gas reservoirs via optimization of the fracturing design for continental shale, Southeastern Ordos Basin, China.
Directory of Open Access Journals (Sweden)
Dharmbir Prasad
2016-03-01
Full Text Available In this paper, symbiotic organisms search (SOS algorithm is proposed for the solution of optimal power flow (OPF problem of power system equipped with flexible ac transmission systems (FACTS devices. Inspired by interaction between organisms in ecosystem, SOS algorithm is a recent population based algorithm which does not require any algorithm specific control parameters unlike other algorithms. The performance of the proposed SOS algorithm is tested on the modified IEEE-30 bus and IEEE-57 bus test systems incorporating two types of FACTS devices, namely, thyristor controlled series capacitor and thyristor controlled phase shifter at fixed locations. The OPF problem of the present work is formulated with four different objective functions viz. (a fuel cost minimization, (b transmission active power loss minimization, (c emission reduction and (d minimization of combined economic and environmental cost. The simulation results exhibit the potential of the proposed SOS algorithm and demonstrate its effectiveness for solving the OPF problem of power system incorporating FACTS devices over the other evolutionary optimization techniques that surfaced in the recent state-of-the-art literature.
Directory of Open Access Journals (Sweden)
Chatnugrob Sangsawang
2016-06-01
Full Text Available This paper addresses a problem of the two-stage flexible flow shop with reentrant and blocking constraints in Hard Disk Drive Manufacturing. This problem can be formulated as a deterministic FFS|stage=2,rcrc, block|Cmax problem. In this study, adaptive Hybrid Particle Swarm Optimization with Cauchy distribution (HPSO was developed to solve the problem. The objective of this research is to find the sequences in order to minimize the makespan. To show their performances, computational experiments were performed on a number of test problems and the results are reported. Experimental results show that the proposed algorithms give better solutions than the classical Particle Swarm Optimization (PSO for all test problems. Additionally, the relative improvement (RI of the makespan solutions obtained by the proposed algorithms with respect to those of the current practice is performed in order to measure the quality of the makespan solutions generated by the proposed algorithms. The RI results show that the HPSO algorithm can improve the makespan solution by averages of 14.78%.
Optimal Power Flow in Microgrids with Energy Storage
DEFF Research Database (Denmark)
Levron, Yoash; Guerrero, Josep M.; Beck, Yuval
2013-01-01
Energy storage may improve power management in microgrids that include renewable energy sources. The storage devices match energy generation to consumption, facilitating a smooth and robust energy balance within the microgrid. This paper addresses the optimal control of the microgrid’s energy...... storage devices. Stored energy is controlled to balance power generation of renewable sources to optimize overall power consumption at the microgrid point of common coupling. Recent works emphasize constraints imposed by the storage device itself, such as limited capacity and internal losses. However...
International Nuclear Information System (INIS)
Meyer, J.S.; Shinohara, T.; Imai, A.; Kobari, M.; Solomon, E.
1988-01-01
Methods are described for non-invasive, computer-assisted serial scanning throughout the human brain during eight minutes of inhalation of 27%-30% xenon gas in order to measure local cerebral blood flow (LCBF). Optimized xenon-enhanced computed tomography (XeCT) was achieved by 5-second scanning at one-minute intervals utilizing a state-of-the-art CT scanner and rapid delivery of xenon gas via a face mask. Values for local brain-blood partition coefficients (Lλ) measured in vivo were utilized to calculate LCBF values. Previous methods assumed Lλ values to be normal, introducing the risk of systematic errors, because Lλ values differ throughout normal brain and may be altered by disease. Color-coded maps of Lλ and LCBF values were formatted directly onto CT images for exact correlation of function with anatomic and pathologic observations (spatial resolution: 26.5 cubic mm). Results were compared among eight normal volunteers, aged between 50 and 88 years. Mean cortical gray matter blood flow was 46.3 ± 7.7, for subcortical gray matter it was 50.3 ± 13.2 and for white matter it was 18.8 ± 3.2. Modern CT scanners provide stability, improved signal to noise ratio and minimal radiation scatter. Combining these advantages with rapid xenon saturation of the blood provides correlations of Lλ and LCBF with images of normal and abnormal brain in a safe, useful and non-invasive manner. (orig.)
International Nuclear Information System (INIS)
Hong, Sung Duk; Im, Jong Sun; Yoo, Yun Jong; Kwon, Jung Taek; Park, Jong Ryool
1995-01-01
The recent ABB/CE(Asea Brown Boveri Combustion Engineering) type pressurized water reactors have the on-line monitoring system, i.e., the COLSS(core operating limit supervisory system), to prevent the specified acceptable fuel design limits from being violated during normal operation and anticipated operational occurrences. One of the main functions of COLSS is the on-line monitoring of the DNB(departure from nucleate boiling) overpower margin by calculating the MDNBR(minimum DNB ratio) for the measured operating condition at every second. The CETOP-D model, used in the MDNBR calculation of COLSS, is benchmarked conservatively against the TORC model using an inlet flow factor of hot assembly in CETOP-D as an adjustment factor for TORC. In this study, a technique to optimize the CETOP-D inlet flow factor has been developed by eliminating the excessive conservatism in the ABB/CE's. A correlation is introduced to account for the actual variation of the CETOP-D inlet flow factor within the core operating limits. This technique was applied to the core operating range of the Yonggwang Units 3 and 4 Cycle 1, which results in the increase of 2% in the DNB overpower margin at the normal operating condition, compared with that from the ABB/CE method. 7 figs., 2 tabs., 10 refs. (Author)
Production Optimization for Two-Phase Flow in an Oil Reservoir
DEFF Research Database (Denmark)
Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove
2012-01-01
framework to increase the production and economic value of an oil reservoir. Wether the objective is to maximize recovery or some financial measure like Net Present Value, the increased production is achieved by manipulation of the well rates and bottom-hole pressures of the injection and production wells....... The optimal water injection rates and production well bottom-hole pressures are computed by solution of a large-scale constrained optimal control problem. The objective is to maximize production by manipulating the well rates and bottom hole pressures of injection and production wells. Optimal control...... settings of injection and production wells are computed by solution of a large scale constrained optimal control problem. We describe a gradient based method to compute the optimal control strategy of the water flooding process. An explicit singly diagonally implicit Runge-Kutta (ESDIRK) method...
Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto
2008-11-01
An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).
Enhanced Multi-Objective Optimization of Groundwater Monitoring Networks
DEFF Research Database (Denmark)
Bode, Felix; Binning, Philip John; Nowak, Wolfgang
Drinking-water well catchments include many sources for potential contaminations like gas stations or agriculture. Finding optimal positions of monitoring wells for such purposes is challenging because there are various parameters (and their uncertainties) that influence the reliability...... and optimality of any suggested monitoring location or monitoring network. The goal of this project is to develop and establish a concept to assess, design, and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: (1) a high...... be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, wrapped up within the framework of formal multi-objective optimization. In order to gain insight into the flow and transport physics...
Experimental study of the influence of flow passage subtle variation on mixed-flow pump performance
Bing, Hao; Cao, Shuliang
2014-05-01
In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump.
DEFF Research Database (Denmark)
Li, Chendan; de Bosio, Federico; Chaudhary, Sanjay Kumar
2015-01-01
In this paper, an optimal power flow problem is formulated in order to minimize the total operation cost by considering real-time pricing in DC microgrids. Each generation resource in the system, including the utility grid, is modeled in terms of operation cost, which combines the cost...... problem is solved in a heuristic way by using genetic algorithms. In order to test the proposed algorithm, a six-bus droop-controlled DC microgrid is used as a case-study. The obtained simulation results show that under variable renewable generation, load, and electricity prices, the proposed method can...
Holmes, Morgan; Bodie, Kelly; Porter, Geoffrey; Sullivan, Victoria; Tarasuk, Joy; Trembley, Jodie; Trudeau, Maureen
2010-01-01
Optimizing human and physical resources is a major concern for cancer care decision-makers and practitioners. This issue is particularly acute in the context of ambulatory out patient chemotherapy clinics, especially when - as is the case almost everywhere in the industrialized world - the number of people requiring systemic therapy is increasing while budgets, staffing and physical space remain static. Recent initiatives at three hospital-based chemotherapy units - in Halifax, Toronto and Kingston - shed light on the value of process analysis and reorganization for using existing human and physical resources to their full potential, improving patient flow and enhancing patient satisfaction. The steps taken in these settings are broadly applicable to other healthcare settings and would likely result in similar benefits in those environments.
Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell
International Nuclear Information System (INIS)
Jiao, Kui; Bachman, John; Zhou, Yibo; Park, Jae Wan
2014-01-01
Highlights: • 3D numerical works to study the effect of cross flow on the PEMFC performance. • The cross flow ensure more evenly distributed water and oxygen in the CL. • The optimal net power output can be identified by controlling the back pressure. • Results confirm that present design is effective in improving performance. - Abstract: The cross flow in proton exchange membrane fuel cells (PEMFCs) plays an important role in changing the transport pattern and performance. In this study, three-dimensional numerical simulations are carried out to investigate the effect of induced cross flow on the flow pattern and performance of a PEMFC with a previously proposed and experimentally studied novel parallel flow channel design. The numerical results indicate that the liquid water and oxygen become more evenly distributed in the catalyst layer (CL) as the pressure difference between the low-pressure and high-pressure flow channels increases. It has been found that, in the low-pressure channels, the cross flow drives a convective flow from the CL to the flow channel resulting in improved liquid water removal. The optimal net power output can be identified by controlling the back pressure on the high-pressure flow channels. The numerical results confirm that this novel parallel flow channel design is effective in improving PEMFC performance
Optimal Growth in Hypersonic Boundary Layers
Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan
2016-01-01
The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.
Fifth French-German Conference on Optimization
1989-01-01
The 2-yearly French-German Conferences on Optimization review the state-of-the-art and the trends in the field. The proceedings of the Fifth Conference include papers on projective methods in linear programming (special session at the conference), nonsmooth optimization, two-level optimization, multiobjective optimization, partial inverse method, variational convergence, Newton type algorithms and flows and on practical applications of optimization. A. Ioffe and J.-Ph. Vial have contributed survey papers on, respectively second order optimality conditions and projective methods in linear programming.
Texture mapping via optimal mass transport.
Dominitz, Ayelet; Tannenbaum, Allen
2010-01-01
In this paper, we present a novel method for texture mapping of closed surfaces. Our method is based on the technique of optimal mass transport (also known as the "earth-mover's metric"). This is a classical problem that concerns determining the optimal way, in the sense of minimal transportation cost, of moving a pile of soil from one site to another. In our context, the resulting mapping is area preserving and minimizes angle distortion in the optimal mass sense. Indeed, we first begin with an angle-preserving mapping (which may greatly distort area) and then correct it using the mass transport procedure derived via a certain gradient flow. In order to obtain fast convergence to the optimal mapping, we incorporate a multiresolution scheme into our flow. We also use ideas from discrete exterior calculus in our computations.
Diffusion-limited mixing by incompressible flows
Miles, Christopher J.; Doering, Charles R.
2018-05-01
Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).
Energy Technology Data Exchange (ETDEWEB)
Man, Jun [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Zhang, Jiangjiang [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Zeng, Lingzao [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA
2016-10-01
The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.
Daripa, Prabir
2011-11-01
We numerically investigate the optimal viscous profile in constant time injection policy of enhanced oil recovery. In particular, we investigate the effect of a combination of interfacial and layer instabilities in three-layer porous media flow on the overall growth of instabilities and thereby characterize the optimal viscous profile. Results based on monotonic and non-monotonic viscous profiles will be presented. Time permitting. we will also present results on multi-layer porous media flows for Newtonian and non-Newtonian fluids and compare the results. The support of Qatar National Fund under a QNRF Grant is acknowledged.
Experimental Flow Characterization of a Flow Diverting Device
Sparrow, Eph; Chow, Ricky; Campbell, Gary; Divani, Afshin; Sheng, Jian
2012-11-01
Flow diverters, such as the Pipeline Embolization Device, are a new class of endovascular devices for the treatment of intracranial aneurysms. While clinical studies have demonstrated safety and efficacy, their impact on intra-aneurysmal flow is not confirmed experimentally. As such, optimization of the flow diversion behavior is not currently possible. A quasi-3D PIV technique was developed and applied in various glass models at Re = 275 and 550 to determine the changes to flow characteristics due to the deployment of a flow diverter across the aneurysm neck. Outcomes such as mean velocity, wall shear stress, and others metrics will be presented. Glass models with varying radii of curvature and aneurysm locations will be examined. Experiments were performed in a fully index-matched flow facility using ~10 μm diameter polystyrene particles doped with Rhodium 6G dye. The particles were illuminated with a 532nm laser sheet and observed with a CCD camera and a 592nm +/-43 nm bandpass filter. A quasi 3D flow field was reconstructed from multiple orthogonal planes (spaced 0.4mm apart) encompassing the entire glass model. Wall stresses were evaluated from the near-wall flow viscous stresses.
Mao, Yanhui; Roberts, Scott; Pagliaro, Stefano; Csikszentmihalyi, Mihaly; Bonaiuto, Marino
2016-01-01
Eudaimonistic identity theory posits a link between activity and identity, where a self-defining activity promotes the strength of a person’s identity. An activity engaged in with high enjoyment, full involvement, and high concentration can facilitate the subjective experience of flow. In the present paper, we hypothesized in accordance with the theory of psychological selection that beyond the promotion of individual development and complexity at the personal level, the relationship between flow and identity at the social level is also positive through participation in self-defining activities. Three different samples (i.e., American, Chinese, and Spanish) filled in measures for flow and social identity, with reference to four previously self-reported activities, characterized by four different combinations of skills (low vs. high) and challenges (low vs. high). Findings indicated that flow was positively associated with social identity across each of the above samples, regardless of participants’ gender and age. The results have implications for increasing social identity via participation in self-defining group activities that could facilitate flow. PMID:26924995