WorldWideScience

Sample records for thermostable rna ligase

  1. Adenylylation of small RNA sequencing adapters using the TS2126 RNA ligase I.

    Science.gov (United States)

    Lama, Lodoe; Ryan, Kevin

    2016-01-01

    Many high-throughput small RNA next-generation sequencing protocols use 5' preadenylylated DNA oligonucleotide adapters during cDNA library preparation. Preadenylylation of the DNA adapter's 5' end frees from ATP-dependence the ligation of the adapter to RNA collections, thereby avoiding ATP-dependent side reactions. However, preadenylylation of the DNA adapters can be costly and difficult. The currently available method for chemical adenylylation of DNA adapters is inefficient and uses techniques not typically practiced in laboratories profiling cellular RNA expression. An alternative enzymatic method using a commercial RNA ligase was recently introduced, but this enzyme works best as a stoichiometric adenylylating reagent rather than a catalyst and can therefore prove costly when several variant adapters are needed or during scale-up or high-throughput adenylylation procedures. Here, we describe a simple, scalable, and highly efficient method for the 5' adenylylation of DNA oligonucleotides using the thermostable RNA ligase 1 from bacteriophage TS2126. Adapters with 3' blocking groups are adenylylated at >95% yield at catalytic enzyme-to-adapter ratios and need not be gel purified before ligation to RNA acceptors. Experimental conditions are also reported that enable DNA adapters with free 3' ends to be 5' adenylylated at >90% efficiency. © 2015 Lama and Ryan; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase

    Science.gov (United States)

    Lohman, Gregory J. S.; Zhang, Yinhua; Zhelkovsky, Alexander M.; Cantor, Eric J.; Evans, Thomas C.

    2014-01-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5′-phosphorylated dC or dG residue on the 3′ side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA. PMID:24203707

  3. Characterization of bacteriophage KVP40 and T4 RNA ligase 2

    International Nuclear Information System (INIS)

    Yin Shenmin; Kiong Ho, C.; Miller, Eric S.; Shuman, Stewart

    2004-01-01

    Bacteriophage T4 RNA ligase 2 (Rnl2) exemplifies a subfamily of RNA strand-joining enzymes that includes the trypanosome RNA editing ligases. A homolog of T4 Rnl2 is encoded in the 244-kbp DNA genome of vibriophage KVP40. We show that the 335-amino acid KVP40 Rnl2 is a monomeric protein that catalyzes RNA end-joining through ligase-adenylate and RNA-adenylate (AppRNA) intermediates. In the absence of ATP, pre-adenylated KVP40 Rnl2 reacts with an 18-mer 5'-PO 4 single-strand RNA (pRNA) to form an 18-mer RNA circle. In the presence of ATP, Rnl2 generates predominantly AppRNA. Isolated AppRNA can be circularized by KVP40 Rnl2 in the absence of ATP. The reactivity of phage Rnl2 and the distribution of the products are affected by the length of the pRNA substrate. Whereas 18-mer and 15-mer pRNAs undergo intramolecular sealing by T4 Rnl2 to form monomer circles, a 12-mer pRNA is ligated intermolecularly to form dimers, and a 9-mer pRNA is unreactive. In the presence of ATP, the 15-mer and 12-mer pRNAs are converted to AppRNAs, but the 9-mer pRNA is not. A single 5' deoxynucleotide substitution of an 18-mer pRNA substrate has no apparent effect on the 5' adenylation or circularization reactions of T4 Rnl2. In contrast, a single deoxyribonucleoside at the 3' terminus strongly and selectively suppresses the sealing step, thereby resulting in accumulation of high levels of AppRNA in the absence of ATP. The ATP-dependent 'capping' of RNA with AMP by Rnl2 is reminiscent of the capping of eukaryotic mRNA with GMP by GTP:RNA guanylyltransferase and suggests an evolutionary connection between bacteriophage Rnl2 and eukaryotic RNA capping enzymes

  4. Binding interactions between yeast tRNA ligase and a precursor transfer ribonucleic acid containing two photoreactive uridine analogues

    International Nuclear Information System (INIS)

    Tanner, N.K.; Hanna, M.M.; Abelson, J.

    1988-01-01

    Yeast tRNA ligase, from Saccharomyces cerevisiae, is one of the protein components that is involved in the splicing reaction of intron-containing yeast precursor tRNAs. It is an unusual protein because it has three distinct catalytic activities. It functions as a polynucleotide kinase, as a cyclic phosphodiesterase, and as an RNA ligase. We have studied the binding interactions between ligase and precursor tRNAs containing two photoreactive uridine analogues, 4-thiouridine and 5-bromouridine. When irradiated with long ultraviolet light, RNA containing these analogues can form specific covalent bonds with associated proteins. In this paper, we show that 4-thiouridine triphosphate and 5-bromouridine triphosphate were readily incorporated into a precursor tRNA(Phe) that was synthesized, in vitro, with bacteriophage T7 RNA polymerase. The analogue-containing precursor tRNAs were authentic substrates for the two splicing enzymes that were tested (endonuclease and ligase), and they formed specific covalent bonds with ligase when they were irradiated with long-wavelength ultraviolet light. We have determined the position of three major cross-links and one minor cross-link on precursor tRNA(Phe) that were located within the intron and near the 3' splice site. On the basis of these data, we present a model for the in vivo splicing reaction of yeast precursor tRNAs

  5. High-throughput sequencing of human plasma RNA by using thermostable group II intron reverse transcriptases

    Science.gov (United States)

    Qin, Yidan; Yao, Jun; Wu, Douglas C.; Nottingham, Ryan M.; Mohr, Sabine; Hunicke-Smith, Scott; Lambowitz, Alan M.

    2016-01-01

    Next-generation RNA-sequencing (RNA-seq) has revolutionized transcriptome profiling, gene expression analysis, and RNA-based diagnostics. Here, we developed a new RNA-seq method that exploits thermostable group II intron reverse transcriptases (TGIRTs) and used it to profile human plasma RNAs. TGIRTs have higher thermostability, processivity, and fidelity than conventional reverse transcriptases, plus a novel template-switching activity that can efficiently attach RNA-seq adapters to target RNA sequences without RNA ligation. The new TGIRT-seq method enabled construction of RNA-seq libraries from RNA in RNA in 1-mL plasma samples from a healthy individual revealed RNA fragments mapping to a diverse population of protein-coding gene and long ncRNAs, which are enriched in intron and antisense sequences, as well as nearly all known classes of small ncRNAs, some of which have never before been seen in plasma. Surprisingly, many of the small ncRNA species were present as full-length transcripts, suggesting that they are protected from plasma RNases in ribonucleoprotein (RNP) complexes and/or exosomes. This TGIRT-seq method is readily adaptable for profiling of whole-cell, exosomal, and miRNAs, and for related procedures, such as HITS-CLIP and ribosome profiling. PMID:26554030

  6. A cost-effective method for Illumina small RNA-Seq library preparation using T4 RNA ligase 1 adenylated adapters

    Directory of Open Access Journals (Sweden)

    Chen Yun-Ru

    2012-09-01

    Full Text Available Abstract Background Deep sequencing is a powerful tool for novel small RNA discovery. Illumina small RNA sequencing library preparation requires a pre-adenylated 3’ end adapter containing a 5’,5’-adenyl pyrophosphoryl moiety. In the absence of ATP, this adapter can be ligated to the 3’ hydroxyl group of small RNA, while RNA self-ligation and concatenation are repressed. Pre-adenylated adapters are one of the most essential and costly components required for library preparation, and few are commercially available. Results We demonstrate that DNA oligo with 5’ phosphate and 3’ amine groups can be enzymatically adenylated by T4 RNA ligase 1 to generate customized pre-adenylated adapters. We have constructed and sequenced a small RNA library for tomato (Solanum lycopersicum using the T4 RNA ligase 1 adenylated adapter. Conclusion We provide an efficient and low-cost method for small RNA sequencing library preparation, which takes two days to complete and costs around $20 per library. This protocol has been tested in several plant species for small RNA sequencing including sweet potato, pepper, watermelon, and cowpea, and could be readily applied to any RNA samples.

  7. 3' RNA ligase mediated rapid amplification of cDNA ends for validating viroid induced cleavage at the 3' extremity of the host mRNA.

    Science.gov (United States)

    Adkar-Purushothama, Charith Raj; Bru, Pierrick; Perreault, Jean-Pierre

    2017-12-01

    5' RNA ligase-mediated rapid amplification of cDNA ends (5' RLM-RACE) is a widely-accepted method for the validation of direct cleavage of a target gene by a microRNA (miRNA) and viroid-derived small RNA (vd-sRNA). However, this method cannot be used if cleavage takes place in the 3' extremity of the target RNA, as this gives insufficient sequence length to design nested PCR primers for 5' RLM RACE. To overcome this hurdle, we have developed 3' RNA ligase-mediated rapid amplification of cDNA ends (3' RLM RACE). In this method, an oligonucleotide adapter having 5' adenylated and 3' blocked is ligated to the 3' end of the cleaved RNA followed by PCR amplification using gene specific primers. In other words, in 3' RLM RACE, 3' end is mapped using 5' fragment instead of small 3' fragment. The method developed here was verified by examining the bioinformatics predicted and parallel analysis of RNA ends (PARE) proved cleavage sites of chloride channel protein CLC-b-like mRNA in Potato spindle tuber viroid infected tomato plants. The 3' RLM RACE developed in this study has the potential to validate the miRNA and vd-sRNA mediated cleavage of mRNAs at its 3' untranslated region (3' UTR). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Activity-based in vitro selection of T4 DNA ligase

    International Nuclear Information System (INIS)

    Takahashi, Fumio; Funabashi, Hisakage; Mie, Masayasu; Endo, Yaeta; Sawasaki, Tatsuya; Aizawa, Masuo; Kobatake, Eiry

    2005-01-01

    Recent in vitro methodologies for selection and directed evolution of proteins have concentrated not only on proteins with affinity such as single-chain antibody but also on enzymes. We developed a display technology for selection of T4 DNA ligase on ribosome because an in vitro selection method for DNA ligase had never been developed. The 3' end of mRNA encoding the gene of active or inactive T4 DNA ligase-spacer peptide fusion protein was hybridized to dsDNA fragments with cohesive ends, the substrate of T4 DNA ligase. After in vitro translation of the mRNA-dsDNA complex in a rabbit reticulocyte system, a mRNA-dsDNA-ribosome-ligase complex was produced. T4 DNA ligase enzyme displayed on a ribosome, through addition of a spacer peptide, is able to react with dsDNA in the complex. The complex expressing active ligase was biotinylated by ligation with another biotinylated dsDNA probe and selected with streptavidin-coated magnetic beads. We effectively selected active T4 DNA ligase from a small amount of protein. The gene of the active T4 DNA ligase was enriched 40 times from a mixture of active and inactive genes using this selection strategy. This ribosomal display strategy may have high potential to be useful for selection of other enzymes associated with DNA

  9. Molecular trade-offs in RNA ligases affected the modular emergence of complex ribozymes at the origin of life

    Science.gov (United States)

    Weinberg, Marc S.; Michod, Richard E.

    2017-01-01

    In the RNA world hypothesis complex, self-replicating ribozymes were essential. For the emergence of an RNA world, less is known about the early processes that accounted for the formation of complex, long catalysts from small passively formed molecules. The functional role of small sequences has not been fully explored and, here, a possible role for smaller ligases is demonstrated. An established RNA polymerase model, the R18, was truncated from the 3′ end to generate smaller molecules. All the molecules were investigated for self-ligation functions with a set of oligonucleotide substrates without predesigned base pairing. The smallest molecule that exhibited self-ligation activity was a 40-nucleotide RNA. It also demonstrated the greatest functional flexibility as it was more general in the kinds of substrates it ligated to itself although its catalytic efficiency was the lowest. The largest ribozyme (R18) ligated substrates more selectively and with greatest efficiency. With increase in size and predicted structural stability, self-ligation efficiency improved, while functional flexibility decreased. These findings reveal that molecular size could have increased from the activity of small ligases joining oligonucleotides to their own end. In addition, there is a size-associated molecular-level trade-off that could have impacted the evolution of RNA-based life. PMID:28989747

  10. Molecular trade-offs in RNA ligases affected the modular emergence of complex ribozymes at the origin of life

    Science.gov (United States)

    Dhar, Nisha; Weinberg, Marc S.; Michod, Richard E.; Durand, Pierre M.

    2017-09-01

    In the RNA world hypothesis complex, self-replicating ribozymes were essential. For the emergence of an RNA world, less is known about the early processes that accounted for the formation of complex, long catalysts from small passively formed molecules. The functional role of small sequences has not been fully explored and, here, a possible role for smaller ligases is demonstrated. An established RNA polymerase model, the R18, was truncated from the 3' end to generate smaller molecules. All the molecules were investigated for self-ligation functions with a set of oligonucleotide substrates without predesigned base pairing. The smallest molecule that exhibited self-ligation activity was a 40-nucleotide RNA. It also demonstrated the greatest functional flexibility as it was more general in the kinds of substrates it ligated to itself although its catalytic efficiency was the lowest. The largest ribozyme (R18) ligated substrates more selectively and with greatest efficiency. With increase in size and predicted structural stability, self-ligation efficiency improved, while functional flexibility decreased. These findings reveal that molecular size could have increased from the activity of small ligases joining oligonucleotides to their own end. In addition, there is a size-associated molecular-level trade-off that could have impacted the evolution of RNA-based life.

  11. Generation and Development of RNA Ligase Ribozymes with Modular Architecture Through “Design and Selection”

    Directory of Open Access Journals (Sweden)

    Yuki Fujita

    2010-08-01

    Full Text Available In vitro selection with long random RNA libraries has been used as a powerful method to generate novel functional RNAs, although it often requires laborious structural analysis of isolated RNA molecules. Rational RNA design is an attractive alternative to avoid this laborious step, but rational design of catalytic modules is still a challenging task. A hybrid strategy of in vitro selection and rational design has been proposed. With this strategy termed “design and selection,” new ribozymes can be generated through installation of catalytic modules onto RNA scaffolds with defined 3D structures. This approach, the concept of which was inspired by the modular architecture of naturally occurring ribozymes, allows prediction of the overall architectures of the resulting ribozymes, and the structural modularity of the resulting ribozymes allows modification of their structures and functions. In this review, we summarize the design, generation, properties, and engineering of four classes of ligase ribozyme generated by design and selection.

  12. [Mechanism of reaction catalyzed by RNA-ligase from bacteriophage T4].

    Science.gov (United States)

    Zagrebel'nyĭ, S N; Zernov, Iu P

    1987-01-01

    The dissociation constants of the complexes of RNA-ligase with acceptors, donors and the adenylylated donor A(5')ppAp have been determined on the basis of the inhibition of ATP-pyrophosphate exchange reaction. The dissociation constants of the complexes of the enzyme with "poor" acceptors (oligouridilates) have been shown to be slightly different from those with "good" acceptors (oligoadenylates). The dependence of the reaction velocity of the formation of ligation products on the concentration of acceptors (pA)4, (pU)4 and the adenylylated donor A(5)ppAp has been studied. On the basis of the data obtained the conclusion about the random addition mechanism has been drawn. The reaction takes place in the steady-state conditions in the case of (pA)4 and in the equilibrium conditions--in the case of (pU)4.

  13. Identification of factors required for m6 A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI.

    Science.gov (United States)

    Růžička, Kamil; Zhang, Mi; Campilho, Ana; Bodi, Zsuzsanna; Kashif, Muhammad; Saleh, Mária; Eeckhout, Dominique; El-Showk, Sedeer; Li, Hongying; Zhong, Silin; De Jaeger, Geert; Mongan, Nigel P; Hejátko, Jan; Helariutta, Ykä; Fray, Rupert G

    2017-07-01

    N6-adenosine methylation (m 6 A) of mRNA is an essential process in most eukaryotes, but its role and the status of factors accompanying this modification are still poorly understood. Using combined methods of genetics, proteomics and RNA biochemistry, we identified a core set of mRNA m 6 A writer proteins in Arabidopsis thaliana. The components required for m 6 A in Arabidopsis included MTA, MTB, FIP37, VIRILIZER and the E3 ubiquitin ligase HAKAI. Downregulation of these proteins led to reduced relative m 6 A levels and shared pleiotropic phenotypes, which included aberrant vascular formation in the root, indicating that correct m 6 A methylation plays a role in developmental decisions during pattern formation. The conservation of these proteins amongst eukaryotes and the demonstration of a role in writing m 6 A for the E3 ubiquitin ligase HAKAI is likely to be of considerable relevance beyond the plant sciences. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Recovery of avirulent, thermostable Newcastle disease virus strain NDV4-C from cloned cDNA and stable expression of an inserted foreign gene

    NARCIS (Netherlands)

    Zhang, X.; Liu, H.; Liu, P.; Peeters, B.P.H.; Zhao, C.; Kong, X.

    2013-01-01

    A reverse genetics system for thermostable Newcastle disease virus (NDV) is not currently available. In this study, we developed a reverse genetics system for the avirulent and thermostable NDV4-C strain. Successful recovery of NDV4-C was achieved by using either T7 RNA polymerase or cellular RNA

  15. Thermostating highly confined fluids.

    Science.gov (United States)

    Bernardi, Stefano; Todd, B D; Searles, Debra J

    2010-06-28

    In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.

  16. Tyr51: Key Determinant of the Low Thermostability of the Colwellia psychrerythraea Cold-Shock Protein.

    Science.gov (United States)

    Lee, Yeongjoon; Kwak, Chulhee; Jeong, Ki-Woong; Durai, Prasannavenkatesh; Ryu, Kyoung-Seok; Kim, Eun-Hee; Cheong, Chaejoon; Ahn, Hee-Chul; Kim, Hak Jun; Kim, Yangmee

    2018-05-18

    Cold-shock proteins (Csps) are expressed at lower-than-optimum temperatures, and they function as RNA chaperones; however, no structural studies on psychrophilic Csps have been reported. Here, we aimed to investigate the structure and dynamics of the Csp of psychrophile Colwellia psychrerythraea 34H, ( Cp-Csp). Although Cp-Csp shares sequence homology, common folding patterns, and motifs, including a five β-stranded barrel, with its thermophilic counterparts, its thermostability (37 °C) was markedly lower than those of other Csps. Cp-Csp binds heptathymidine with an affinity of 10 -7 M, thereby increasing its thermostability to 50 °C. Nuclear magnetic resonance spectroscopic analysis of the Cp-Csp structure and backbone dynamics revealed a flexible structure with only one salt bridge and 10 residues in the hydrophobic cavity. Notably, Cp-Csp contains Tyr51 instead of the conserved Phe in the hydrophobic core, and its phenolic hydroxyl group projects toward the surface. The Y51F mutation increased the stability of hydrophobic packing and may have allowed for the formation of a K3-E21 salt bridge, thereby increasing its thermostability to 43 °C. Cp-Csp exhibited conformational exchanges in its ribonucleoprotein motifs 1 and 2 (754 and 642 s -1 ), and heptathymidine binding markedly decreased these motions. Cp-Csp lacks salt bridges and has longer flexible loops and a less compact hydrophobic cavity resulting from Tyr51 compared to mesophilic and thermophilic Csps. These might explain the low thermostability of Cp-Csp. The conformational flexibility of Cp-Csp facilitates its accommodation of nucleic acids at low temperatures in polar oceans and its function as an RNA chaperone for cold adaptation.

  17. Domain structure of a NHEJ DNA repair ligase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Pitcher, Robert S; Tonkin, Louise M; Green, Andrew J; Doherty, Aidan J

    2005-08-19

    A prokaryotic non-homologous end-joining (NHEJ) system for the repair of DNA double-strand breaks (DSBs), composed of a Ku homodimer (Mt-Ku) and a multidomain multifunctional ATP-dependent DNA ligase (Mt-Lig), has been described recently in Mycobacterium tuberculosis. Mt-Lig exhibits polymerase and nuclease activity in addition to DNA ligation activity. These functions were ascribed to putative polymerase, nuclease and ligase domains that together constitute a monomeric protein. Here, the separate polymerase, nuclease and ligase domains of Mt-Lig were cloned individually, over-expressed and the soluble proteins purified to homogeneity. The polymerase domain demonstrated DNA-dependent RNA primase activity, catalysing the synthesis of unprimed oligoribonucleotides on single-stranded DNA templates. The polymerase domain can also extend DNA in a template-dependent manner. This activity was eliminated when the catalytic aspartate residues were replaced with alanine. The ligase domain catalysed the sealing of nicked double-stranded DNA designed to mimic a DSB, consistent with the role of Mt-Lig in NHEJ. Deletion of the active-site lysine residue prevented the formation of an adenylated ligase complex and consequently thwarted ligation. The nuclease domain did not function independently as a 3'-5' exonuclease. DNA-binding assays revealed that both the polymerase and ligase domains bind DNA in vitro, the latter with considerably higher affinity. Mt-Ku directly stimulated the polymerase and nuclease activities of Mt-Lig. The polymerase domain bound Mt-Ku in vitro, suggesting it may recruit Mt-Lig to Ku-bound DNA in vivo. Consistent with these data, Mt-Ku stimulated the primer extension activity of the polymerase domain, suggestive of a functional interaction relevant to NHEJ-mediated DSB repair processes.

  18. RNA versatility, flexibility, and thermostability for practice in RNA nanotechnology and biomedical applications.

    Science.gov (United States)

    Haque, Farzin; Pi, Fengmei; Zhao, Zhengyi; Gu, Shanqing; Hu, Haibo; Yu, Hang; Guo, Peixuan

    2018-01-01

    In recent years, RNA has attracted widespread attention as a unique biomaterial with distinct biophysical properties for designing sophisticated architectures in the nanometer scale. RNA is much more versatile in structure and function with higher thermodynamic stability compared to its nucleic acid counterpart DNA. Larger RNA molecules can be viewed as a modular structure built from a combination of many 'Lego' building blocks connected via different linker sequences. By exploiting the diversity of RNA motifs and flexibility of structure, varieties of RNA architectures can be fabricated with precise control of shape, size, and stoichiometry. Many structural motifs have been discovered and characterized over the years and the crystal structures of many of these motifs are available for nanoparticle construction. For example, using the flexibility and versatility of RNA structure, RNA triangles, squares, pentagons, and hexagons can be constructed from phi29 pRNA three-way-junction (3WJ) building block. This review will focus on 2D RNA triangles, squares, and hexamers; 3D and 4D structures built from basic RNA building blocks; and their prospective applications in vivo as imaging or therapeutic agents via specific delivery and targeting. Methods for intracellular cloning and expression of RNA molecules and the in vivo assembly of RNA nanoparticles will also be reviewed. WIREs RNA 2018, 9:e1452. doi: 10.1002/wrna.1452 This article is categorized under: RNA Methods > RNA Nanotechnology RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs. © 2017 Wiley Periodicals, Inc.

  19. The impact of making vaccines thermostable in Niger's vaccine supply chain.

    Science.gov (United States)

    Lee, Bruce Y; Cakouros, Brigid E; Assi, Tina-Marie; Connor, Diana L; Welling, Joel; Kone, Souleymane; Djibo, Ali; Wateska, Angela R; Pierre, Lionel; Brown, Shawn T

    2012-08-17

    Determine the effects on the vaccine cold chain of making different types of World Health Organization (WHO) Expanded Program on Immunizations (EPI) vaccines thermostable. Utilizing a detailed computational, discrete-event simulation model of the Niger vaccine supply chain, we simulated the impact of making different combinations of the six current EPI vaccines thermostable. Making any EPI vaccine thermostable relieved existing supply chain bottlenecks (especially at the lowest levels), increased vaccine availability of all EPI vaccines, and decreased cold storage and transport capacity utilization. By far, the most substantial impact came from making the pentavalent vaccine thermostable, increasing its own vaccine availability from 87% to 97% and the vaccine availabilities of all other remaining non-thermostable EPI vaccines to over 93%. By contrast, making each of the other vaccines thermostable had considerably less effect on the remaining vaccines, failing to increase the vaccine availabilities of other vaccines to more than 89%. Making tetanus toxoid vaccine along with the pentavalent thermostable further increased the vaccine availability of all EPI vaccines by at least 1-2%. Our study shows the potential benefits of making any of Niger's EPI vaccines thermostable and therefore supports further development of thermostable vaccines. Eliminating the need for refrigerators and freezers should not necessarily be the only benefit and goal of vaccine thermostability. Rather, making even a single vaccine (or some subset of the vaccines) thermostable could free up significant cold storage space for other vaccines, and thereby help alleviate supply chain bottlenecks that occur throughout the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. RNA damage in biological conflicts and the diversity of responding RNA repair systems

    Science.gov (United States)

    Burroughs, A. Maxwell; Aravind, L.

    2016-01-01

    RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins. PMID:27536007

  1. Functional and structural insights revealed by molecular dynamics simulations of an essential RNA editing ligase in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Rommie E Amaro

    2007-11-01

    Full Text Available RNA editing ligase 1 (TbREL1 is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design. In this work, two 20 ns atomistic molecular dynamics (MD simulations are employed to investigate the dynamics of TbREL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between TbREL1 and the ATP substrate are investigated and discussed in the context of TbREL1's function. Differences in local and global motion upon ATP binding suggest that two peripheral loops, unique to the trypanosomes, may be involved in interdomain signaling events. Notably, a significant structural rearrangement of the enzyme's active site occurs during the apo simulations, opening an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors directed against this protozoan parasite. Finally, ensemble averaged electrostatics calculations over the MD simulations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions and recommendations, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme.

  2. Thermostable enzymes as biocatalysts in the biofuel industry.

    Science.gov (United States)

    Yeoman, Carl J; Han, Yejun; Dodd, Dylan; Schroeder, Charles M; Mackie, Roderick I; Cann, Isaac K O

    2010-01-01

    Lignocellulose is the most abundant carbohydrate source in nature and represents an ideal renewable energy source. Thermostable enzymes that hydrolyze lignocellulose to its component sugars have significant advantages for improving the conversion rate of biomass over their mesophilic counterparts. We review here the recent literature on the development and use of thermostable enzymes for the depolymerization of lignocellulosic feedstocks for biofuel production. Furthermore, we discuss the protein structure, mechanisms of thermostability, and specific strategies that can be used to improve the thermal stability of lignocellulosic biocatalysts. Copyright 2010 Elsevier Inc. All rights reserved.

  3. The Impact of Making Vaccines Thermostable in Niger’s Vaccine Supply Chain

    Science.gov (United States)

    Lee, Bruce Y.; Cakouros, Brigid E.; Assi, Tina-Marie; Connor, Diana L.; Welling, Joel; Kone, Souleymane; Djibo, Ali; Wateska, Angela R.; Pierre, Lionel; Brown, Shawn T.

    2012-01-01

    Objective Determine the effects on the vaccine cold chain of making different types of World Health Organization (WHO) Expanded Program on Immunizations (EPI) vaccines thermostable. Methods Utilizing a detailed computational, discrete-event simulation model of the Niger vaccine supply chain, we simulated the impact of making different combinations of the six current EPI vaccines thermostable. Findings Making any EPI vaccine thermostable relieved existing supply chain bottlenecks (especially at the lowest levels), increased vaccine availability of all EPI vaccines, and decreased cold storage and transport capacity utilization. By far, the most substantial impact came from making the pentavalent vaccine thermostable, increasing its own vaccine availability from 87% to 97% and the vaccine availabilities of all other remaining non-thermostable EPI vaccines to over 93%. By contrast, making each of the other vaccines thermostable had considerably less effect on the remaining vaccines, failing to increase the vaccine availabilities of other vaccines to more than 89%. Making tetanus toxoid vaccine along with the pentavalent thermostable further increased the vaccine availability of all EPI vaccines by at least 1–2%. Conclusion Our study shows the potential benefits of making any of Niger’s EPI vaccines thermostable and therefore supports further development of thermostable vaccines. Eliminating the need for refrigerators and freezers should not necessarily be the only benefit and goal of vaccine thermostability. Rather, making even a single vaccine (or some subset of the vaccines) thermostable could free up significant cold storage space for other vaccines, and thereby help alleviate supply chain bottlenecks that occur throughout the world. PMID:22789507

  4. DNA ligase C1 mediates the LigD-independent nonhomologous end-joining pathway of Mycobacterium smegmatis.

    Science.gov (United States)

    Bhattarai, Hitesh; Gupta, Richa; Glickman, Michael S

    2014-10-01

    Nonhomologous end joining (NHEJ) is a recently described bacterial DNA double-strand break (DSB) repair pathway that has been best characterized for mycobacteria. NHEJ can religate transformed linear plasmids, repair ionizing radiation (IR)-induced DSBs in nonreplicating cells, and seal I-SceI-induced chromosomal DSBs. The core components of the mycobacterial NHEJ machinery are the DNA end binding protein Ku and the polyfunctional DNA ligase LigD. LigD has three autonomous enzymatic modules: ATP-dependent DNA ligase (LIG), DNA/RNA polymerase (POL), and 3' phosphoesterase (PE). Although genetic ablation of ku or ligD abolishes NHEJ and sensitizes nonreplicating cells to ionizing radiation, selective ablation of the ligase activity of LigD in vivo only mildly impairs NHEJ of linearized plasmids, indicating that an additional DNA ligase can support NHEJ. Additionally, the in vivo role of the POL and PE domains in NHEJ is unclear. Here we define a LigD ligase-independent NHEJ pathway in Mycobacterium smegmatis that requires the ATP-dependent DNA ligase LigC1 and the POL domain of LigD. Mycobacterium tuberculosis LigC can also support this backup NHEJ pathway. We also demonstrate that, although dispensable for efficient plasmid NHEJ, the activities of the POL and PE domains are required for repair of IR-induced DSBs in nonreplicating cells. These findings define the genetic requirements for a LigD-independent NHEJ pathway in mycobacteria and demonstrate that all enzymatic functions of the LigD protein participate in NHEJ in vivo. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Functional analysis of thermostable proteins involved in carbohydrate metabolism

    NARCIS (Netherlands)

    Akerboom, A.P.

    2007-01-01

    Thermostable proteins can resist temperature stress whilst keeping their integrity and functionality. In many cases, thermostable proteins originate from hyperthermophilic microorganisms that thrive in extreme environments. These systems are generally located close to geothermal (volcanic) activity,

  6. Comparative analysis of the end-joining activity of several DNA ligases.

    Directory of Open Access Journals (Sweden)

    Robert J Bauer

    Full Text Available DNA ligases catalyze the repair of phosphate backbone breaks in DNA, acting with highest activity on breaks in one strand of duplex DNA. Some DNA ligases have also been observed to ligate two DNA fragments with short complementary overhangs or blunt-ended termini. In this study, several wild-type DNA ligases (phage T3, T4, and T7 DNA ligases, Paramecium bursaria chlorella virus 1 (PBCV1 DNA ligase, human DNA ligase 3, and Escherichia coli DNA ligase were tested for their ability to ligate DNA fragments with several difficult to ligate end structures (blunt-ended termini, 3'- and 5'- single base overhangs, and 5'-two base overhangs. This analysis revealed that T4 DNA ligase, the most common enzyme utilized for in vitro ligation, had its greatest activity on blunt- and 2-base overhangs, and poorest on 5'-single base overhangs. Other ligases had different substrate specificity: T3 DNA ligase ligated only blunt ends well; PBCV1 DNA ligase joined 3'-single base overhangs and 2-base overhangs effectively with little blunt or 5'- single base overhang activity; and human ligase 3 had highest activity on blunt ends and 5'-single base overhangs. There is no correlation of activity among ligases on blunt DNA ends with their activity on single base overhangs. In addition, DNA binding domains (Sso7d, hLig3 zinc finger, and T4 DNA ligase N-terminal domain were fused to PBCV1 DNA ligase to explore whether modified binding to DNA would lead to greater activity on these difficult to ligate substrates. These engineered ligases showed both an increased binding affinity for DNA and increased activity, but did not alter the relative substrate preferences of PBCV1 DNA ligase, indicating active site structure plays a role in determining substrate preference.

  7. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks

    Science.gov (United States)

    Schär, Primo; Herrmann, Gernot; Daly, Graham; Lindahl, Tomas

    1997-01-01

    Eukaryotic DNA ligases are ATP-dependent DNA strand-joining enzymes that participate in DNA replication, repair, and recombination. Whereas mammalian cells contain several different DNA ligases, encoded by at least three distinct genes, only one DNA ligase has been detected previously in either budding yeast or fission yeast. Here, we describe a newly identified nonessential Saccharomyces cerevisiae gene that encodes a DNA ligase distinct from the CDC9 gene product. This DNA ligase shares significant amino acid sequence homology with human DNA ligase IV; accordingly, we designate the yeast gene LIG4. Recombinant LIG4 protein forms a covalent enzyme-AMP complex and can join a DNA single-strand break in a DNA/RNA hybrid duplex, the preferred substrate in vitro. Disruption of the LIG4 gene causes only marginally increased cellular sensitivity to several DNA damaging agents, and does not further sensitize cdc9 or rad52 mutant cells. In contrast, lig4 mutant cells have a 1000-fold reduced capacity for correct recircularization of linearized plasmids by illegitimate end-joining after transformation. Moreover, homozygous lig4 mutant diploids sporulate less efficiently than isogenic wild-type cells, and show retarded progression through meiotic prophase I. Spore viability is normal, but lig4 mutants appear to produce a higher proportion of tetrads with only three viable spores. The mutant phenotypes are consistent with functions of LIG4 in an illegitimate DNA end-joining pathway and ensuring efficient meiosis. PMID:9271115

  8. Engineering Thermostable Microbial Xylanases Toward its Industrial Applications.

    Science.gov (United States)

    Kumar, Vishal; Dangi, Arun Kumar; Shukla, Pratyoosh

    2018-03-01

    Xylanases are one of the important hydrolytic enzymes which hydrolyze the β-1, 4 xylosidic linkage of the backbone of the xylan polymeric chain which consists of xylose subunits. Xylanases are mainly found in plant cell walls and are produced by several kinds of microorganisms such as fungi, bacteria, yeast, and some protozoans. The fungi are considered as most potent xylanase producers than that of yeast and bacteria. There is a broad series of industrial applications for the thermostable xylanase as an industrial enzyme. Thermostable xylanases have been used in a number of industries such as paper and pulp industry, biofuel industry, food and feed industry, textile industry, etc. The present review explores xylanase-substrate interactions using gene-editing tools toward the comprehension in improvement in industrial stability of xylanases. The various protein-engineering and metabolic-engineering methods have also been explored to improve operational stability of xylanase. Thermostable xylanases have also been used for improvement in animal feed nutritional value. Furthermore, they have been used directly in bakery and breweries, including a major use in paper and pulp industry as a biobleaching agent. This present review envisages some of such applications of thermostable xylanases for their bioengineering.

  9. Structure of the Aeropyrum pernix L7Ae multifunctional protein and insight into its extreme thermostability

    International Nuclear Information System (INIS)

    Bhuiya, Mohammad Wadud; Suryadi, Jimmy; Zhou, Zholi; Brown, Bernard Andrew II

    2013-01-01

    The crystal structure of A. pernix L7Ae is reported, providing insight into the extreme thermostability of this protein. Archaeal ribosomal protein L7Ae is a multifunctional RNA-binding protein that directs post-transcriptional modification of archaeal RNAs. The L7Ae protein from Aeropyrum pernix (Ap L7Ae), a member of the Crenarchaea, was found to have an extremely high melting temperature (>383 K). The crystal structure of Ap L7Ae has been determined to a resolution of 1.56 Å. The structure of Ap L7Ae was compared with the structures of two homologs: hyperthermophilic Methanocaldococcus jannaschii L7Ae and the mesophilic counterpart mammalian 15.5 kD protein. The primary stabilizing feature in the Ap L7Ae protein appears to be the large number of ion pairs and extensive ion-pair network that connects secondary-structural elements. To our knowledge, Ap L7Ae is among the most thermostable single-domain monomeric proteins presently observed

  10. Prediction of Protein Thermostability by an Efficient Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Jalal Rezaeenour

    2016-10-01

    Full Text Available Introduction: Manipulation of protein stability is important for understanding the principles that govern protein thermostability, both in basic research and industrial applications. Various data mining techniques exist for prediction of thermostable proteins. Furthermore, ANN methods have attracted significant attention for prediction of thermostability, because they constitute an appropriate approach to mapping the non-linear input-output relationships and massive parallel computing. Method: An Extreme Learning Machine (ELM was applied to estimate thermal behavior of 1289 proteins. In the proposed algorithm, the parameters of ELM were optimized using a Genetic Algorithm (GA, which tuned a set of input variables, hidden layer biases, and input weights, to and enhance the prediction performance. The method was executed on a set of amino acids, yielding a total of 613 protein features. A number of feature selection algorithms were used to build subsets of the features. A total of 1289 protein samples and 613 protein features were calculated from UniProt database to understand features contributing to the enzymes’ thermostability and find out the main features that influence this valuable characteristic. Results:At the primary structure level, Gln, Glu and polar were the features that mostly contributed to protein thermostability. At the secondary structure level, Helix_S, Coil, and charged_Coil were the most important features affecting protein thermostability. These results suggest that the thermostability of proteins is mainly associated with primary structural features of the protein. According to the results, the influence of primary structure on the thermostabilty of a protein was more important than that of the secondary structure. It is shown that prediction accuracy of ELM (mean square error can improve dramatically using GA with error rates RMSE=0.004 and MAPE=0.1003. Conclusion: The proposed approach for forecasting problem

  11. Thermostable Carbonic Anhydrases in Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Anna Di Fiore

    2015-07-01

    Full Text Available Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques, represents an interesting possibility. In this review we will provide an extensive description of the thermostable carbonic anhydrases so far reported and the main processes in which these enzymes have found an application.

  12. Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers.

    Science.gov (United States)

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A; Widhalm, Joshua R; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M; Cooper, Bruce R; D'Auria, John C; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-05-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway.

  13. Prebiotic Factors Influencing the Activity of a Ligase Ribozyme

    Directory of Open Access Journals (Sweden)

    Fabrizio Anella

    2017-04-01

    Full Text Available An RNA-lipid origin of life scenario provides a plausible route for compartmentalized replication of an informational polymer and subsequent division of the container. However, a full narrative to form such RNA protocells implies that catalytic RNA molecules, called ribozymes, can operate in the presence of self-assembled vesicles composed of prebiotically relevant constituents, such as fatty acids. Hereby, we subjected a newly engineered truncated variant of the L1 ligase ribozyme, named tL1, to various environmental conditions that may have prevailed on the early Earth with the objective to find a set of control parameters enabling both tL1-catalyzed ligation and formation of stable myristoleic acid (MA vesicles. The separate and concurrent effects of temperature, concentrations of Mg2+, MA, polyethylene glycol and various solutes were investigated. The most favorable condition tested consists of 100 mM NaCl, 1 mM Mg2+, 5 mM MA, and 4 °C temperature, whereas the addition of Mg2+-chelating solutes, such as citrate, tRNAs, aspartic acid, and nucleoside triphosphates severely inhibits the reaction. These results further solidify the RNA-lipid world hypothesis and stress the importance of using a systems chemistry approach whereby a wide range of prebiotic factors interfacing with ribozymes are considered.

  14. Thermostable cellulases, and mutants thereof, capable of hydrolyzing cellulose in ionic liquid

    Science.gov (United States)

    Sapra, Rajat; Datta, Supratim; Chen, Zhiwei; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2016-04-26

    The present invention provides for a composition comprising an ionic liquid and a thermostable cellulose, and a method of hydrolyzing a cellulose, comprising: (a) providing a composition comprising a solution comprising an ionic liquid and a cellulose, and (b) introducing a thermostable cellulase to the solution, such that the cellulose is hydrolyzed by the cellulase. The present invention also provides for a Thermatoga maritima thermostable cellulase mutant with increased cellulase activity.

  15. Characterization of Mycobacterium smegmatis PolD2 and PolD1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D.

    Science.gov (United States)

    Zhu, Hui; Bhattarai, Hitesh; Yan, Han-Guang; Shuman, Stewart; Glickman, Michael S

    2012-12-21

    Mycobacteria exploit nonhomologous end-joining (NHEJ) to repair DNA double-strand breaks. The core NHEJ machinery comprises the homodimeric DNA end-binding protein Ku and DNA ligase D (LigD), a modular enzyme composed of a C-terminal ATP-dependent ligase domain (LIG), a central 3'-phosphoesterase domain (PE), and an N-terminal polymerase domain (POL). LigD POL is proficient at adding templated and nontemplated deoxynucleotides and ribonucleotides to DNA ends in vitro and is the catalyst in vivo of unfaithful NHEJ events involving nontemplated single-nucleotide additions to blunt DSB ends. Here, we identify two mycobacterial proteins, PolD1 and PolD2, as stand-alone homologues of the LigD POL domain. Biochemical characterization of PolD1 and PolD2 shows that they resemble LigD POL in their monomeric quaternary structures, their ability to add templated and nontemplated nucleotides to primer-templates and blunt ends, and their preference for rNTPs versus dNTPs. Deletion of polD1, polD2, or both from a Mycobacterium smegmatis strain carrying an inactivating mutation in LigD POL failed to reveal a role for PolD1 or PolD2 in templated nucleotide additions during NHEJ of 5'-overhang DSBs or in clastogen resistance. Whereas our results document the existence and characteristics of new stand-alone members of the LigD POL family of RNA/DNA polymerases, they imply that other polymerases can perform fill-in synthesis during mycobacterial NHEJ.

  16. Purification and Characterization of a Thermostable Lipase from Geobacillus thermodenitrificans IBRL-nra

    Directory of Open Access Journals (Sweden)

    Anuradha Balan

    2012-01-01

    Full Text Available Thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was purified and characterized. The production of thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was carried out in a shake-flask system at 65°C in cultivation medium containing; glucose 1.0% (w/v; yeast extract 1.25% (w/v; NaCl 0.45% (w/v olive oil 0.1% (v/v with agitation of 200 rpm for 24 hours. The extracted extracellular crude thermostable lipase was purified to homogeneity by using ultrafiltration, Heparin-affinity chromatography, and Sephadex G-100 gel-filtration chromatography by 34 times with a final yield of 9%. The molecular weight of the purified enzyme was estimated to be 30 kDa after SDS-PAGE analysis. The optimal temperature for thermostable lipase was 65°C and it retained its initial activity for 3 hours. Thermostable lipase activity was highest at pH 7.0 and stable for 16 hours at this pH at 65°C. Thermostable lipase showed elevated activity when pretreated with BaCl2, CaCl2, and KCl with 112%, 108%, and 106%, respectively. Lipase hydrolyzed tripalmitin (C16 and olive oil with optimal activity (100% compared to other substrates.

  17. Differential recruitment of DNA Ligase I and III to DNA repair sites

    Science.gov (United States)

    Mortusewicz, Oliver; Rothbauer, Ulrich; Cardoso, M. Cristina; Leonhardt, Heinrich

    2006-01-01

    DNA ligation is an essential step in DNA replication, repair and recombination. Mammalian cells contain three DNA Ligases that are not interchangeable although they use the same catalytic reaction mechanism. To compare the recruitment of the three eukaryotic DNA Ligases to repair sites in vivo we introduced DNA lesions in human cells by laser microirradiation. Time lapse microscopy of fluorescently tagged proteins showed that DNA Ligase III accumulated at microirradiated sites before DNA Ligase I, whereas we could detect only a faint accumulation of DNA Ligase IV. Recruitment of DNA Ligase I and III to repair sites was cell cycle independent. Mutational analysis and binding studies revealed that DNA Ligase I was recruited to DNA repair sites by interaction with PCNA while DNA Ligase III was recruited via its BRCT domain mediated interaction with XRCC1. Selective recruitment of specialized DNA Ligases may have evolved to accommodate the particular requirements of different repair pathways and may thus enhance efficiency of DNA repair. PMID:16855289

  18. Contribution of CoA Ligases to Benzenoid Biosynthesis in Petunia Flowers[W

    Science.gov (United States)

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A.; Widhalm, Joshua R.; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M.; Cooper, Bruce R.; D’Auria, John C.; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-01-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway. PMID:22649270

  19. Thermostability of biological systems: fundamentals, challenges, and quantification.

    Science.gov (United States)

    He, Xiaoming

    2011-01-01

    This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems.

  20. Template-directed ligation of tethered mononucleotides by t4 DNA ligase for kinase ribozyme selection.

    Directory of Open Access Journals (Sweden)

    David G Nickens

    Full Text Available BACKGROUND: In vitro selection of kinase ribozymes for small molecule metabolites, such as free nucleosides, will require partition systems that discriminate active from inactive RNA species. While nucleic acid catalysis of phosphoryl transfer is well established for phosphorylation of 5' or 2' OH of oligonucleotide substrates, phosphorylation of diffusible small molecules has not been demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: This study demonstrates the ability of T4 DNA ligase to capture RNA strands in which a tethered monodeoxynucleoside has acquired a 5' phosphate. The ligation reaction therefore mimics the partition step of a selection for nucleoside kinase (deoxyribozymes. Ligation with tethered substrates was considerably slower than with nicked, fully duplex DNA, even though the deoxynucleotides at the ligation junction were Watson-Crick base paired in the tethered substrate. Ligation increased markedly when the bridging template strand contained unpaired spacer nucleotides across from the flexible tether, according to the trends: A(2>A(1>A(3>A(4>A(0>A(6>A(8>A(10 and T(2>T(3>T(4>T(6 approximately T(1>T(8>T(10. Bridging T's generally gave higher yield of ligated product than bridging A's. ATP concentrations above 33 microM accumulated adenylated intermediate and decreased yields of the gap-sealed product, likely due to re-adenylation of dissociated enzyme. Under optimized conditions, T4 DNA ligase efficiently (>90% joined a correctly paired, or TratioG wobble-paired, substrate on the 3' side of the ligation junction while discriminating approximately 100-fold against most mispaired substrates. Tethered dC and dG gave the highest ligation rates and yields, followed by tethered deoxyinosine (dI and dT, with the slowest reactions for tethered dA. The same kinetic trends were observed in ligase-mediated capture in complex reaction mixtures with multiple substrates. The "universal" analog 5-nitroindole (dNI did not support ligation when

  1. SUMO-targeted ubiquitin ligases.

    Science.gov (United States)

    Sriramachandran, Annie M; Dohmen, R Jürgen

    2014-01-01

    Covalent posttranslational modification with SUMO (small ubiquitin-related modifier) modulates functions of a wide range of proteins in eukaryotic cells. Sumoylation affects the activity, interaction properties, subcellular localization and the stability of its substrate proteins. The recent discovery of a novel class of ubiquitin ligases (E3), termed ULS (E3-S) or STUbL, that recognize sumoylated proteins, links SUMO modification to the ubiquitin/proteasome system. Here we review recent insights into the properties and function of these ligases and their roles in regulating sumoylated proteins. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf. © 2013. Published by Elsevier B.V. All rights reserved.

  2. Seryl-tRNA Synthetases in Translation and Beyond

    Directory of Open Access Journals (Sweden)

    Marko Močibob

    2016-06-01

    Full Text Available For a long time seryl-tRNA synthetases (SerRSs stood as an archetypal, canonical aminoacyl-tRNA synthetases (aaRS, exhibiting only basic tRNA aminoacylation activity and with no moonlighting functions beyond protein biosynthesis. The picture has changed substantially in recent years after the discovery that SerRSs play an important role in antibiotic production and resistance and act as a regulatory factor in vascular development, as well as after the discovery of mitochondrial morphogenesis factor homologous to SerRS in insects. In this review we summarize the recent research results from our laboratory, which advance the understanding of seryl-tRNA synthetases and further paint the dynamic picture of unexpected SerRS activities. SerRS from archaeon Methanothermobacter thermautotrophicus was shown to interact with the large ribosomal subunit and it was postulated to contribute to a more efficient translation by the"tRNA channeling" hypothesis. Discovery of the atypical SerRS in a small number of methanogenic archaea led to the discovery of a new family of enzymes in numerous bacteria - amino acid:[carrier protein] ligases (aa:CP ligases. These SerRS homologues resigned tRNA aminoacylation activity, and instead adopted carrier proteins as the acceptors of activated amino acids. The crystal structure of the aa:CP ligase complex with the carrier protein revealed that the interactions between two macromolecules are incomparable to tRNA binding by the aaRS and consequently represent a true evolutionary invention. Kinetic investigations of SerRSs and the accuracy of amino acid selection revealed that SerRSs possess pre-transfer proofreading activity, challenging the widely accepted presumption that hydrolytic proofreading activity must reside in an additional, separate editing domain, not present in SerRSs. Finally, the plant tRNA serylation system is discussed, which is particularly interesting due to the fact that protein biosynthesis takes place

  3. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2017-03-01

    Full Text Available The cyclic GMP-AMP synthase (cGAS, upon cytosolic DNA stimulation, catalyzes the formation of the second messenger 2'3'-cGAMP, which then binds to stimulator of interferon genes (STING and activates downstream signaling. It remains to be elucidated how the cGAS enzymatic activity is modulated dynamically. Here, we reported that the ER ubiquitin ligase RNF185 interacted with cGAS during HSV-1 infection. Ectopic-expression or knockdown of RNF185 respectively enhanced or impaired the IRF3-responsive gene expression. Mechanistically, RNF185 specifically catalyzed the K27-linked poly-ubiquitination of cGAS, which promoted its enzymatic activity. Additionally, Systemic Lupus Erythematosus (SLE patients displayed elevated expression of RNF185 mRNA. Collectively, this study uncovers RNF185 as the first E3 ubiquitin ligase of cGAS, shedding light on the regulation of cGAS activity in innate immune responses.

  4. Efficient construction of an inverted minimal H1 promoter driven siRNA expression cassette: facilitation of promoter and siRNA sequence exchange.

    Directory of Open Access Journals (Sweden)

    Hoorig Nassanian

    2007-08-01

    Full Text Available RNA interference (RNAi, mediated by small interfering RNA (siRNA, is an effective method used to silence gene expression at the post-transcriptional level. Upon introduction into target cells, siRNAs incorporate into the RNA-induced silencing complex (RISC. The antisense strand of the siRNA duplex then "guides" the RISC to the homologous mRNA, leading to target degradation and gene silencing. In recent years, various vector-based siRNA expression systems have been developed which utilize opposing polymerase III promoters to independently drive expression of the sense and antisense strands of the siRNA duplex from the same template.We show here the use of a ligase chain reaction (LCR to develop a new vector system called pInv-H1 in which a DNA sequence encoding a specific siRNA is placed between two inverted minimal human H1 promoters (approximately 100 bp each. Expression of functional siRNAs from this construct has led to efficient silencing of both reporter and endogenous genes. Furthermore, the inverted H1 promoter-siRNA expression cassette was used to generate a retrovirus vector capable of transducing and silencing expression of the targeted protein by>80% in target cells.The unique design of this construct allows for the efficient exchange of siRNA sequences by the directional cloning of short oligonucleotides via asymmetric restriction sites. This provides a convenient way to test the functionality of different siRNA sequences. Delivery of the siRNA cassette by retroviral transduction suggests that a single copy of the siRNA expression cassette efficiently knocks down gene expression at the protein level. We note that this vector system can potentially be used to generate a random siRNA library. The flexibility of the ligase chain reaction suggests that additional control elements can easily be introduced into this siRNA expression cassette.

  5. Purification and Characterization of Thermostable Cellulase from ...

    African Journals Online (AJOL)

    Available online at http://www.tjpr.org ... Methods: Molecular community structure of the newly selected thermophilic bacterial ... Keywords: Thermostable cellulase, Sugarcane bagasse, Purification, Characterization, Hot spring ... Currently, one.

  6. Thermostability in rubredoxin and its relationship to mechanical rigidity

    Science.gov (United States)

    Rader, A. J.

    2010-03-01

    The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors.

  7. Thermostability in rubredoxin and its relationship to mechanical rigidity

    International Nuclear Information System (INIS)

    Rader, A J

    2010-01-01

    The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors

  8. A thermostable messenger RNA based vaccine against rabies.

    Science.gov (United States)

    Stitz, Lothar; Vogel, Annette; Schnee, Margit; Voss, Daniel; Rauch, Susanne; Mutzke, Thorsten; Ketterer, Thomas; Kramps, Thomas; Petsch, Benjamin

    2017-12-01

    Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine's immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine.

  9. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2009-04-01

    Full Text Available Abstract Background Many researchers have reported on the optimization of protease production; nevertheless, only a few have reported on the optimization of the production of organic solvent-tolerant proteases. Ironically, none has reported on thermostable organic solvent-tolerant protease to date. The aim of this study was to isolate the thermostable organic solvent-tolerant protease and identify the culture conditions which support its production. The bacteria of genus Bacillus are active producers of extra-cellular proteases, and the thermostability of enzyme production by Bacillus species has been well-studied by a number of researchers. In the present study, the Bacillus subtilis strain Rand was isolated from the contaminated soil found in Port Dickson, Malaysia. Results A thermostable organic solvent-tolerant protease producer had been identified as Bacillus subtilis strain Rand, based on the 16S rRNA analysis conducted, as well as the morphological characteristics and biochemical properties. The production of the thermostable organic solvent-tolerant protease was optimized by varying various physical culture conditions. Inoculation with 5.0% (v/v of (AB600 = 0.5 inoculum size, in a culture medium (pH 7.0 and incubated for 24 h at 37°C with 200 rpm shaking, was the best culture condition which resulted in the maximum growth and production of protease (444.7 U/ml; 4042.4 U/mg. The Rand protease was not only stable in the presence of organic solvents, but it also exhibited a higher activity than in the absence of organic solvent, except for pyridine which inhibited the protease activity. The enzyme retained 100, 99 and 80% of its initial activity, after the heat treatment for 30 min at 50, 55, and 60°C, respectively. Conclusion Strain Rand has been found to be able to secrete extra-cellular thermostable organic solvent-tolerant protease into the culture medium. The protease exhibited a remarkable stability towards temperature and organic

  10. Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw

    Directory of Open Access Journals (Sweden)

    Siika-aho Matti

    2011-01-01

    Full Text Available Abstract Background Thermostable enzymes have several benefits in lignocellulose processing. In particular, they potentially allow the use of increased substrate concentrations (because the substrate viscosity decreases as the temperature increases, resulting in improved product yields and reduced capital and processing costs. A short pre-hydrolysis step at an elevated temperature using thermostable enzymes aimed at rapid liquefaction of the feedstock is seen as an attractive way to overcome the technical problems (such as poor mixing and mass transfer properties connected with high initial solid loadings in the lignocellulose to ethanol process. Results The capability of novel thermostable enzymes to reduce the viscosity of high-solid biomass suspensions using a real-time viscometric measurement method was investigated. Heterologously expressed enzymes from various thermophilic organisms were compared for their ability to liquefy the lignocellulosic substrate, hydrothermally pretreated wheat straw. Once the best enzymes were identified, the optimal temperatures for these enzymes to decrease substrate viscosity were compared. The combined hydrolytic properties of the thermostable preparations were tested in hydrolysis experiments. The studied mixtures were primarily designed to have good liquefaction potential, and therefore contained an enhanced proportion of the key liquefying enzyme, EGII/Cel5A. Conclusions Endoglucanases were shown to have a superior ability to rapidly reduce the viscosity of the 15% (w/w; dry matter hydrothermally pretreated wheat straw. Based on temperature profiling studies, Thermoascus aurantiacus EGII/Cel5A was the most promising enzyme for biomass liquefaction. Even though they were not optimized for saccharification, many of the thermostable enzyme mixtures had superior hydrolytic properties compared with the commercial reference enzymes at 55°C.

  11. Thermophilic growth and enzymatic thermostability are polyphyletic traits within Chaetomiaceae.

    Science.gov (United States)

    van den Brink, Joost; Facun, Kryss; de Vries, Michel; Stielow, J Benjamin

    2015-12-01

    Thermophilic fungi have the potential to produce industrial-relevant thermostable enzymes, in particular for the degradation of plant biomass. Sordariales is one of the few fungal orders containing several thermophilic taxa, of which many have been associated with the production of thermostable enzymes. The evolutionary affiliation of Sordariales fungi, especially between thermophiles and non-thermophilic relatives, is however poorly understood. Phylogenetic analysis within the current study was based on sequence data, derived from a traditional Sanger and highly multiplexed targeted next generation sequencing approach of 45 isolates. The inferred phylogeny and detailed growth analysis rendered the trait 'thermophily' as polyphyletic within Chaetomiaceae (Sordariales, Sordariomycetes), and characteristic to: Myceliophthora spp., Thielavia terrestris, Chaetomium thermophilum, and Mycothermus thermophilus. Compared to mesophiles, the isolates within thermophilic taxa produced enzyme mixtures with the highest thermostability of known cellulase activities. Temperature profiles of the enzyme activities correlated strongly with the optimal growth temperatures of the isolates but not with their phylogenetic relationships. This strong correlation between growth and enzyme characteristics indicated that detailed analysis of growth does give predictive information on enzyme physiology. The variation in growth and enzyme characteristics reveals these fungi as an excellent platform to better understand fungal thermophily and enzyme thermostability. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. Nuclear TRIM25 Specifically Targets Influenza Virus Ribonucleoproteins to Block the Onset of RNA Chain Elongation.

    Science.gov (United States)

    Meyerson, Nicholas R; Zhou, Ligang; Guo, Yusong R; Zhao, Chen; Tao, Yizhi J; Krug, Robert M; Sawyer, Sara L

    2017-11-08

    TRIM25 is an E3 ubiquitin ligase that activates RIG-I to promote the antiviral interferon response. The NS1 protein from all strains of influenza A virus binds TRIM25, although not all virus strains block the interferon response, suggesting alternative mechanisms for TRIM25 action. Here we present a nuclear role for TRIM25 in specifically restricting influenza A virus replication. TRIM25 inhibits viral RNA synthesis through a direct mechanism that is independent of its ubiquitin ligase activity and the interferon pathway. This activity can be inhibited by the viral NS1 protein. TRIM25 inhibition of viral RNA synthesis results from its binding to viral ribonucleoproteins (vRNPs), the structures containing individual viral RNA segments, the viral polymerase, and multiple viral nucleoproteins. TRIM25 binding does not inhibit initiation of capped-RNA-primed viral mRNA synthesis by the viral polymerase. Rather, the onset of RNA chain elongation is inhibited because TRIM25 prohibits the movement of RNA into the polymerase complex. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia; Jørgensen, Henning

    2013-01-01

    the influence of temperature and ethanol on enzyme activity and stability in the distillation step, where most enzymes are inactivated due to high temperatures. Two enzyme mixtures, a mesophilic and a thermostable mixture, were exposed to typical process conditions [temperatures from 55 to 65 °C and up to 5...... % ethanol (w/v)] followed by specific enzyme activity analyses and SDS-PAGE. The thermostable and mesophilic mixture remained active at up to 65 and 55 °C, respectively. When the enzyme mixtures reached their maximum temperature limit, ethanol had a remarkable influence on enzyme activity, e.g., the more...... ethanol, the faster the inactivation. The reason could be the hydrophobic interaction of ethanol on the tertiary structure of the enzyme protein. The thermostable mixture was more tolerant to temperature and ethanol and could therefore be a potential candidate for recycling after distillation....

  14. C-terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin

    International Nuclear Information System (INIS)

    Liu, Sicheng; Liu, Xunyue; Kamdar, Radhika Pankaj; Wanotayan, Rujira; Sharma, Mukesh Kumar; Adachi, Noritaka; Matsumoto, Yoshihisa

    2013-01-01

    Highlights: •Chromatin binding of XRCC4 is dependent on the presence of DNA ligase IV. •C-terminal region of DNA ligase IV alone can recruit itself and XRCC4 to chromatin. •Two BRCT domains of DNA ligase IV are essential for the chromatin binding of XRCC4. -- Abstract: DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ

  15. Optimization of medium composition for thermostable protease ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... Optimization of the fermentation medium for maximization of thermostable neutral protease production by Bacillus sp. ..... Each contour curve represented an infinite number of combinations of two ..... Production in sea-water of.

  16. Exogenous cellulases of thermophilic micromycetes. Pt. 2. Thermostability of enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kvesitadze, G; Gogilashvili, L; Svanidze, R; Buachidze, T; Chirgadze, L; Nizharadze, D

    1986-01-01

    The ability of a large number of higher fungi to form extracellular cellulases is investigated. Some representatives of these fungi grow at 40-50/sup 0/C, and form extracellular cellulases exceeding cellulases of mesophilic fungi in thermostability. It is shown that cellulases of higher thermophilic fungi differ by their thermostability. The temperature optimum of cellulase action of higher fungi occurs within 60-62/sup 0/C.

  17. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  18. Footprinting of Chlorella virus DNA ligase bound at a nick in duplex DNA.

    Science.gov (United States)

    Odell, M; Shuman, S

    1999-05-14

    The 298-amino acid ATP-dependent DNA ligase of Chlorella virus PBCV-1 is the smallest eukaryotic DNA ligase known. The enzyme has intrinsic specificity for binding to nicked duplex DNA. To delineate the ligase-DNA interface, we have footprinted the enzyme binding site on DNA and the DNA binding site on ligase. The size of the exonuclease III footprint of ligase bound a single nick in duplex DNA is 19-21 nucleotides. The footprint is asymmetric, extending 8-9 nucleotides on the 3'-OH side of the nick and 11-12 nucleotides on the 5'-phosphate side. The 5'-phosphate moiety is essential for the binding of Chlorella virus ligase to nicked DNA. Here we show that the 3'-OH moiety is not required for nick recognition. The Chlorella virus ligase binds to a nicked ligand containing 2',3'-dideoxy and 5'-phosphate termini, but cannot catalyze adenylation of the 5'-end. Hence, the 3'-OH is important for step 2 chemistry even though it is not itself chemically transformed during DNA-adenylate formation. A 2'-OH cannot substitute for the essential 3'-OH in adenylation at a nick or even in strand closure at a preadenylated nick. The protein side of the ligase-DNA interface was probed by limited proteolysis of ligase with trypsin and chymotrypsin in the presence and absence of nicked DNA. Protease accessible sites are clustered within a short segment from amino acids 210-225 located distal to conserved motif V. The ligase is protected from proteolysis by nicked DNA. Protease cleavage of the native enzyme prior to DNA addition results in loss of DNA binding. These results suggest a bipartite domain structure in which the interdomain segment either comprises part of the DNA binding site or undergoes a conformational change upon DNA binding. The domain structure of Chlorella virus ligase inferred from the solution experiments is consistent with the structure of T7 DNA ligase determined by x-ray crystallography.

  19. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes

    KAUST Repository

    Sevcenco, Ana-Maria

    2015-03-13

    Oxo-anion binding properties of the thermostable enzyme ferritin from Pyrococcus furiosus were characterized with radiography. Radioisotopes 32P and 76As present as oxoanions were used to measure the extent and the rate of their absorption by the ferritin. Thermostable ferritin proved to be an excellent system for rapid phosphate and arsenate removal from aqueous solutions down to residual concentrations at the picomolar level. These very low concentrations make thermostable ferritin a potential tool to considerably mitigate industrial biofouling by phosphate limitation or to remove arsenate from drinking water.

  20. Deep Sequencing Insights in Therapeutic shRNA Processing and siRNA Target Cleavage Precision.

    Science.gov (United States)

    Denise, Hubert; Moschos, Sterghios A; Sidders, Benjamin; Burden, Frances; Perkins, Hannah; Carter, Nikki; Stroud, Tim; Kennedy, Michael; Fancy, Sally-Ann; Lapthorn, Cris; Lavender, Helen; Kinloch, Ross; Suhy, David; Corbau, Romu

    2014-02-04

    TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

  1. Thermostable crude endoglucanase produced by Aspergillus ...

    African Journals Online (AJOL)

    Cellulases are used in many industries worldwide and there is an ever increasing need to isolate, produce or develop thermostable cellulases. Manipulation of fermentation techniques in order to obtain desirable product(s) can be one line of action. In this study Aspergillus fumigatus was grown on chopped wheat straw in a ...

  2. Comparison of the thermostability of cellulases from various thermophilic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Wojtczak, G; Breuil, C; Yamada, J; Saddler, J N

    1987-10-01

    The cellulase activities of six thermophilic fungi were compared. Although the thermophilic fungi grew at relatively high temperatures (> 45/sup 0/C) the optimum temperatures for assaying the various cellulase activities were only slightly higher than the optimum temperatures for the mesophilic fungi, Trichoderma harzianum. Over prolonged incubation (> 24 h) the thermophilic strains demonstrated a higher hydrolytic potential as a result of the greater thermostability of the cellulase components. Although the extracellular cellulase activities had similar pH and temperature optima, in some cases the thermostability of the extracellular components were considerably lower.

  3. E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma

    Directory of Open Access Journals (Sweden)

    Kristina Bielskienė

    2015-01-01

    E3 ligases are of interest as drug targets for their ability to regulate proteins stability and functions. Compared to the general proteasome inhibitor bortezomib, which blocks the entire protein degradation, drugs that target a particular E3 ligase are expected to have better selectivity with less associated toxicity. Components of different E3 ligases complexes (FBW7, MDM2, RBX1/ROC1, RBX2/ROC2, cullins and many others are known as oncogenes or tumor suppressors in melanomagenesis. These proteins participate in regulation of different cellular pathways and such important proteins in cancer development as p53 and Notch. In this review we summarized published data on the role of known E3 ligases in the development of melanoma and discuss the inhibitors of E3 ligases as a novel approach for the treatment of malignant melanomas.

  4. EFFECTS OF CHANGING THE INTERACTION BETWEEN SUBDOMAINS ON THE THERMOSTABILITY OF BACILLUS NEUTRAL PROTEASES

    NARCIS (Netherlands)

    EIJSINK, VGH; VRIEND, G; VANDERVINNE, B; HAZES, B; VANDENBURG, B; VENEMA, G

    1992-01-01

    Variants of the thermolabile neutral protease (Npr) of B. subtilis (Npr-sub) and the thermostable neutral protease of B. stearothermophilus (Npr-ste) were produced by means of site-directed mutagenesis and the effects of the mutations on thermostability were determined. Mutations were designed to

  5. Thermostability in endoglucanases is fold-specific

    Science.gov (United States)

    2011-01-01

    Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy) database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient. PMID:21291533

  6. Thermostability in endoglucanases is fold-specific

    Directory of Open Access Journals (Sweden)

    Wolt Jeffrey D

    2011-02-01

    Full Text Available Abstract Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient.

  7. Virtual screening for potential inhibitors of bacterial MurC and MurD ligases.

    Science.gov (United States)

    Tomašić, Tihomir; Kovač, Andreja; Klebe, Gerhard; Blanot, Didier; Gobec, Stanislav; Kikelj, Danijel; Mašič, Lucija Peterlin

    2012-03-01

    Mur ligases are bacterial enzymes involved in the cytoplasmic steps of peptidoglycan biosynthesis and are viable targets for antibacterial drug discovery. We have performed virtual screening for potential ATP-competitive inhibitors targeting MurC and MurD ligases, using a protocol of consecutive hierarchical filters. Selected compounds were evaluated for inhibition of MurC and MurD ligases, and weak inhibitors possessing dual inhibitory activity have been identified. These compounds represent new scaffolds for further optimisation towards multiple Mur ligase inhibitors with improved inhibitory potency.

  8. Purification and Characterization of Thermostable Cellulase from ...

    African Journals Online (AJOL)

    The thermostable CMCase was purified with ion-exchange and gel filtration chromatography. Results: ... Conclusion: Due to its high temperature stability, the purified XM70-CMCase may be useful for industrial application such as biofuel, animal feed industry, paper industry and clarification of fruit juices. Keywords: ...

  9. The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling.

    Science.gov (United States)

    Miao, Min; Niu, Xiangli; Kud, Joanna; Du, Xinran; Avila, Julian; Devarenne, Timothy P; Kuhl, Joseph C; Liu, Yongsheng; Xiao, Fangming

    2016-07-01

    We recently identified a defense-related tomato (Solanum lycopersicum) NAC (NAM, ATAF1,2, CUC2) transcription factor, NAC1, that is subjected to ubiquitin-proteasome system-dependent degradation in plant cells. In this study, we identified a tomato ubiquitin ligase (termed SEVEN IN ABSENTIA3; SINA3) that ubiquitinates NAC1, promoting its degradation. We conducted coimmunoprecipitation and bimolecular fluorescence complementation to determine that SINA3 specifically interacts with the NAC1 transcription factor in the nucleus. Moreover, we found that SINA3 ubiquitinates NAC1 in vitro and promotes NAC1 degradation via polyubiquitination in vivo, indicating that SINA3 is a ubiquitin ligase that ubiquitinates NAC1, promoting its degradation. Our real-time PCR analysis indicated that, in contrast to our previous finding that NAC1 mRNA abundance increases upon Pseudomonas infection, the SINA3 mRNA abundance decreases in response to Pseudomonas infection. Moreover, using Agrobacterium-mediated transient expression, we found that overexpression of SINA3 interferes with the hypersensitive response cell death triggered by multiple plant resistance proteins. These results suggest that SINA3 ubiquitinates a defense-related NAC transcription factor for degradation and plays a negative role in defense signaling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Characterization of thermostable cellulase produced by Bacillus strains isolated from solid waste of carrageenan

    Science.gov (United States)

    Listyaningrum, N. P.; Sutrisno, A.; Wardani, A. K.

    2018-03-01

    Cellulase-producing bacteria was isolated from solid waste of carrageenan and identified as Bacillus licheniformis C55 by 16S rRNA sequencing. The optimum condition for cellulase production was obtained at pH and temperature of 8.0 and 50°C, respectively in a medium containing glucose as carbon source and 1.0% carboxymethyl cellulose (CMC) to stimulate the cellulase production. Most remarkably, the enzyme retained its relative activity over 50% after incubation at 50°C for 90 minutes. Substrate specificity suggested that the enzyme is an endoglucanase. The molecular mass of Bacillus licheniformis C55 crude cellulase was found about 18 kDa by SDS-PAGE analysis. This thermostable enzyme would facilitate development of more efficient and cost-effective forms of the process to convert lignocellulosic biomass into high-value products.

  11. Modeling bias and variation in the stochastic processes of small RNA sequencing.

    Science.gov (United States)

    Argyropoulos, Christos; Etheridge, Alton; Sakhanenko, Nikita; Galas, David

    2017-06-20

    The use of RNA-seq as the preferred method for the discovery and validation of small RNA biomarkers has been hindered by high quantitative variability and biased sequence counts. In this paper we develop a statistical model for sequence counts that accounts for ligase bias and stochastic variation in sequence counts. This model implies a linear quadratic relation between the mean and variance of sequence counts. Using a large number of sequencing datasets, we demonstrate how one can use the generalized additive models for location, scale and shape (GAMLSS) distributional regression framework to calculate and apply empirical correction factors for ligase bias. Bias correction could remove more than 40% of the bias for miRNAs. Empirical bias correction factors appear to be nearly constant over at least one and up to four orders of magnitude of total RNA input and independent of sample composition. Using synthetic mixes of known composition, we show that the GAMLSS approach can analyze differential expression with greater accuracy, higher sensitivity and specificity than six existing algorithms (DESeq2, edgeR, EBSeq, limma, DSS, voom) for the analysis of small RNA-seq data. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Evaluating the value proposition for improving vaccine thermostability to increase vaccine impact in low and middle-income countries.

    Science.gov (United States)

    Karp, Christopher L; Lans, Deborah; Esparza, José; Edson, Eleanore B; Owen, Katey E; Wilson, Christopher B; Heaton, Penny M; Levine, Orin S; Rao, Raja

    2015-07-09

    The need to keep vaccines cold in the face of high ambient temperatures and unreliable access to electricity is a challenge that limits vaccine coverage in low and middle-income countries (LMICs). Greater vaccine thermostability is generally touted as the obvious solution. Despite conventional wisdom, comprehensive analysis of the value proposition for increasing vaccine thermostability has been lacking. Further, while significant investments have been made in increasing vaccine thermostability in recent years, no vaccine products have been commercialized as a result. We analyzed the value proposition for increasing vaccine thermostability, grounding the analysis in specific vaccine use cases (e.g., use in routine immunization [RI] programs, or in campaigns) and in the broader context of cold chain technology and country level supply chain system design. The results were often surprising. For example, cold chain costs actually represent a relatively small fraction of total vaccine delivery system costs. Further, there are critical, vaccine use case-specific temporal thresholds that need to be overcome for significant benefits to be reaped from increasing vaccine thermostability. We present a number of recommendations deriving from this analysis that suggest a rational path toward unlocking the value (maximizing coverage, minimizing total system costs) of increased vaccine thermostability, including: (1) the full range of thermostability of existing vaccines should be defined and included in their labels; (2) for new vaccines, thermostability goals should be addressed up-front at the level of the target product profile; (3) improving cold chain infrastructure and supply chain system design is likely to have the largest impact on total system costs and coverage in the short term-and will influence the degree of thermostability required in the future; (4) in the long term, there remains value in monitoring the emergence of disruptive technologies that could remove the

  13. Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis.

    Science.gov (United States)

    Enyeart, Peter J; Mohr, Georg; Ellington, Andrew D; Lambowitz, Alan M

    2014-01-13

    Mobile group II introns are bacterial retrotransposons that combine the activities of an autocatalytic intron RNA (a ribozyme) and an intron-encoded reverse transcriptase to insert site-specifically into DNA. They recognize DNA target sites largely by base pairing of sequences within the intron RNA and achieve high DNA target specificity by using the ribozyme active site to couple correct base pairing to RNA-catalyzed intron integration. Algorithms have been developed to program the DNA target site specificity of several mobile group II introns, allowing them to be made into 'targetrons.' Targetrons function for gene targeting in a wide variety of bacteria and typically integrate at efficiencies high enough to be screened easily by colony PCR, without the need for selectable markers. Targetrons have found wide application in microbiological research, enabling gene targeting and genetic engineering of bacteria that had been intractable to other methods. Recently, a thermostable targetron has been developed for use in bacterial thermophiles, and new methods have been developed for using targetrons to position recombinase recognition sites, enabling large-scale genome-editing operations, such as deletions, inversions, insertions, and 'cut-and-pastes' (that is, translocation of large DNA segments), in a wide range of bacteria at high efficiency. Using targetrons in eukaryotes presents challenges due to the difficulties of nuclear localization and sub-optimal magnesium concentrations, although supplementation with magnesium can increase integration efficiency, and directed evolution is being employed to overcome these barriers. Finally, spurred by new methods for expressing group II intron reverse transcriptases that yield large amounts of highly active protein, thermostable group II intron reverse transcriptases from bacterial thermophiles are being used as research tools for a variety of applications, including qRT-PCR and next-generation RNA sequencing (RNA-seq). The

  14. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  15. Exercise induced upregulation of glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modifier subunit gene expression in Thoroughbred horses

    Directory of Open Access Journals (Sweden)

    Jeong-Woong Park

    2017-05-01

    Full Text Available Objective This study was performed to reveal the molecular structure and expression patterns of horse glutamate-cysteine ligase catalytic subunit (GCLC and glutamate-cysteine ligase modifier subunit (GCLM genes whose products form glutamate cysteine ligase, which were identified as differentially expressed genes in the previous study. Methods We performed bioinformatics analyses, and gene expression assay with quantitative polymerase chain reaction (qPCR for horse GCLC and GCLM genes in muscle and blood leukocytes of Thoroughbred horses Results Expression of GCLC showed the same pattern in both blood and muscle tissues after exercise. Expression of GCLC increased in the muscle and blood of Thoroughbreds, suggesting a tissue-specific regulatory mechanism for the expression of GCLC. In addition, expression of the GCLM gene increased after exercise in both the blood and muscle of Thoroughbreds. Conclusion We established the expression patterns of GCLC and GCLM in the skeletal muscle and blood of Thoroughbred horses in response to exercise. Further study is now warranted to uncover the functional importance of these genes in exercise and recovery in racehorses.

  16. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family.

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.

  17. Production of thermostable and organic solvent-tolerant alkaline ...

    African Journals Online (AJOL)

    An alkaliphilic bacterium producing organic solvent-tolerant and thermostable alkaline protease was isolated from poultry litter site and identified as Bacillus coagulans PSB-07. Protease production under different submerged fermentation conditions were investigated with the aim of optimizing yield of enzyme. B. coagulans ...

  18. Structural characterization of the thermostable Bradyrhizobium japonicumD-sorbitol dehydrogenase.

    Science.gov (United States)

    Fredslund, Folmer; Otten, Harm; Gemperlein, Sabrina; Poulsen, Jens Christian N; Carius, Yvonne; Kohring, Gert Wieland; Lo Leggio, Leila

    2016-11-01

    Bradyrhizobium japonicum sorbitol dehydrogenase is NADH-dependent and is active at elevated temperatures. The best substrate is D-glucitol (a synonym for D-sorbitol), although L-glucitol is also accepted, giving it particular potential in industrial applications. Crystallization led to a hexagonal crystal form, with crystals diffracting to 2.9 Å resolution. In attempts to phase the data, a molecular-replacement solution based upon PDB entry 4nbu (33% identical in sequence to the target) was found. The solution contained one molecule in the asymmetric unit, but a tetramer similar to that found in other short-chain dehydrogenases, including the search model, could be reconstructed by applying crystallographic symmetry operations. The active site contains electron density consistent with D-glucitol and phosphate, but there was not clear evidence for the binding of NADH. In a search for the features that determine the thermostability of the enzyme, the T m for the orthologue from Rhodobacter sphaeroides, for which the structure was already known, was also determined, and this enzyme proved to be considerably less thermostable. A continuous β-sheet is formed between two monomers in the tetramer of the B. japonicum enzyme, a feature not generally shared by short-chain dehydrogenases, and which may contribute to thermostability, as may an increased Pro/Gly ratio.

  19. A novel non-thermostable deuterolysin from Aspergillus oryzae.

    Science.gov (United States)

    Maeda, Hiroshi; Katase, Toru; Sakai, Daisuke; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Abe, Keietsu; Yamagata, Youhei

    2016-09-01

    Three putative deuterolysin (EC 3.4.24.29) genes (deuA, deuB, and deuC) were found in the Aspergillus oryzae genome database ( http://www.bio.nite.go.jp/dogan/project/view/AO ). One of these genes, deuA, was corresponding to NpII gene, previously reported. DeuA and DeuB were overexpressed by recombinant A. oryzae and were purified. The degradation profiles against protein substrates of both enzymes were similar, but DeuB showed wider substrate specificity against peptidyl MCA-substrates compared with DeuA. Enzymatic profiles of DeuB except for thermostability also resembled those of DeuA. DeuB was inactivated by heat treatment above 80° C, different from thermostable DeuA. Transcription analysis in wild type A. oryzae showed only deuB was expressed in liquid culture, and the addition of the proteinous substrate upregulated the transcription. Furthermore, the NaNO3 addition seems to eliminate the effect of proteinous substrate for the transcription of deuB.

  20. Structure of a thermostable serralysin from Serratia sp. FS14 at 1.1 Å resolution.

    Science.gov (United States)

    Wu, Dongxia; Ran, Tinting; Wang, Weiwu; Xu, Dongqing

    2016-01-01

    Serralysin is a well studied metalloprotease, and typical serralysins are not thermostable. The serralysin isolated from Serratia sp. FS14 was found to be thermostable, and in order to reveal the mechanism responsible for its thermostability, the crystal structure of serralysin from Serratia sp. FS14 was solved to a crystallographic R factor of 0.1619 at 1.10 Å resolution. Similar to its homologues, it mainly consists of two domains: an N-terminal catalytic domain and a `parallel β-roll' C-terminal domain. Comparative studies show that the shape of the catalytic active-site cavity is more open owing to the 189-198 loop, with a short 310-helix protruding further from the molecular surface, and that the β-sheets comprising the `parallel β-roll' are longer than those in its homologues. The formation of hydrogen bonds from one of the nonconserved residues (Asn200) to Lys27 may contribute to the thermostability.

  1. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  2. Thermostable Alginate degrading enzymes and their methods of use

    NARCIS (Netherlands)

    Hreggvidsson, Gudmundur Oli; Jonsson, Oskar W.J.; Bjornsdottir, Bryndis; Fridjonsson, Hedinn O; Altenbuchner, Josef; Watzlawick, Hildegard; Dobruchowska, Justyna; Kamerling, Johannis

    2015-01-01

    The present invention relates to the identification, production and use of thermostable alginate lyase enzymes that can be used to partially degrade alginate to yield oligosaccharides or to give complete degradation of alginate to yield (unsaturated) mono-uronates.

  3. Downregulation of Smurf2, a tumor-suppressive ubiquitin ligase, in triple-negative breast cancers: Involvement of the RB-microRNA axis

    International Nuclear Information System (INIS)

    Liu, Xianpeng; Gu, Xin; Sun, Limin; Flowers, Ashley B; Rademaker, Alfred W; Zhou, Yiran; Kiyokawa, Hiroaki

    2014-01-01

    The HECT family ubiquitin ligase Smurf2 regulates cell polarity, migration, division, differentiation and death, by targeting diverse substrates that are critical for receptor signaling, cytoskeleton, chromatin remodeling and transcription. Recent studies suggest that Smurf2 functions as a tumor suppressor in mice. However, no inactivating mutation of SMURF2 has been reported in human, and information about Smurf2 expression in human cancer remains limited or complicated. Here we demonstrate that Smurf2 expression is downregulated in human breast cancer tissues, especially of the triple-negative subtype, and address the mechanism of Smurf2 downregulation in triple-negative breast cancer cells. Human breast cancer tissues (47 samples expressing estrogen receptor (ER) and 43 samples with triple-negative status) were examined by immunohistochemistry for the expression of Smurf2. Ten widely-studied human breast cancer cell lines were examined for the expression of Smurf2. Furthermore, microRNA-mediated regulation of Smurf2 was investigated in triple-negative cancer cell lines. Immunohistochemical analysis showed that benign mammary epithelial cells expressed high levels of Smurf2, so did cells in ductal carcinomas in situ. In contrast, invasive ductal carcinomas showed focal or diffuse decrease in Smurf2 expression, which was observed more frequently in triple-negative tumors than in ER-positive tumors. Consistently, human triple-negative breast cancer cell lines such as BT549, MDA-MB-436, DU-4475 and MDA-MB-468 cells showed significantly lower expression of Smurf2 protein, compared to ER + or HER2+ cell lines. Studies using quantitative PCR and specific microRNA inhibitors indicated that increased expression of miR-15a, miR-15b, miR-16 and miR-128 was involved in Smurf2 downregulation in those triple-negative cancer cell lines, which have mutations in the retinoblastoma (RB) gene. Forced expression of RB increased levels of Smurf2 protein with concomitant decreases in

  4. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection.

    Directory of Open Access Journals (Sweden)

    Smita Srivastava

    2008-05-01

    Full Text Available Vpx is a small virion-associated adaptor protein encoded by viruses of the HIV-2/SIVsm lineage of primate lentiviruses that enables these viruses to transduce monocyte-derived cells. This probably reflects the ability of Vpx to overcome an as yet uncharacterized block to an early event in the virus life cycle in these cells, but the underlying mechanism has remained elusive. Using biochemical and proteomic approaches, we have found that Vpx protein of the pathogenic SIVmac 239 strain associates with a ternary protein complex comprising DDB1 and VprBP subunits of Cullin 4-based E3 ubiquitin ligase, and DDA1, which has been implicated in the regulation of E3 catalytic activity, and that Vpx participates in the Cullin 4 E3 complex comprising VprBP. We further demonstrate that the ability of SIVmac as well as HIV-2 Vpx to interact with VprBP and its associated Cullin 4 complex is required for efficient reverse transcription of SIVmac RNA genome in primary macrophages. Strikingly, macrophages in which VprBP levels are depleted by RNA interference resist SIVmac infection. Thus, our observations reveal that Vpx interacts with both catalytic and regulatory components of the ubiquitin proteasome system and demonstrate that these interactions are critical for Vpx ability to enable efficient SIVmac replication in primary macrophages. Furthermore, they identify VprBP/DCAF1 substrate receptor for Cullin 4 E3 ubiquitin ligase and its associated protein complex as immediate downstream effector of Vpx for this function. Together, our findings suggest a model in which Vpx usurps VprBP-associated Cullin 4 ubiquitin ligase to enable efficient reverse transcription and thereby overcome a block to lentivirus replication in monocyte-derived cells, and thus provide novel insights into the underlying molecular mechanism.

  5. Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Aditya eBhalla

    2015-06-01

    Full Text Available AbstractEfficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylo-oligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temperatures. Geobacillus sp. strain WSUCF1 produced thermostable xylanase activity (crude xylanase cocktail when grown on xylan or various inexpensive untreated and pretreated lignocellulosic biomasses such as prairie cord grass and corn stover. The optimum pH and temperature for the crude xylanase cocktail were 6.5 and 70ºC, respectively. The WSUCF1 crude xylanase was found to be highly thermostable with half-lives of 18 and 12 days at 60 and 70ºC, respectively. At 70ºC, rates of xylan hydrolysis were also found to be better with the WSUCF1 secretome than those with commercial enzymes, i.e., for WSUCF1 crude xylanase, CellicHTec2, and AccelleraseXY, the percent xylan conversions were 68.9, 49.4, and 28.92, respectively. To the best of our knowledge, WSUCF1 crude xylanase cocktail is among the most thermostable xylanases produced by thermophilic Geobacillus spp. and other thermophilic microbes (optimum growth temperature ≤70ºC. High thermostability, activity over wide range of temperatures, and better xylan hydrolysis than commercial enzymes make WSUCF1 crude xylanase suitable for thermophilic lignocellulose bioconversion processes.

  6. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    Directory of Open Access Journals (Sweden)

    Wouter Boomsma

    2016-02-01

    Full Text Available The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work

  7. DNA ligase III is involved in a DNA-PK independent pathway of NHEJ in human cells

    International Nuclear Information System (INIS)

    Wang, H.; Perrault, A.R.; Qin, W.; Wang, H.; Iliakis, G.

    2003-01-01

    Full text: Double strand breaks (DSB) induced by ionizing radiation (IR) and other cytotoxic agents in the genome of higher eukaryotes are thought to be repaired either by homologous recombination repair (HRR), or non-homologous endjoining (NHEJ). We previously reported the operation of two components of NHEJ in vivo: a DNA-PK dependent component that operates with fast kinetics (D-NHEJ), and a DNA-PK independent component that acts as a backup (basic or B-NHEJ) and operates with kinetics an order of magnitude slower. To gain further insight into the mechanisms of B-NHEJ, we investigated DNA endjoining in extracts 180BR, a human cell line deficient in DNA ligase IV, using an in vitro plasmid-based DNA endjoining assay. An anti DNA ligase III antibody inhibited almost completely DNA endjoining activity in these extracts. On the other hand, an anti DNA ligase I antibody had no measurable effect in DNA endjoining activity. Immunodepletion of DNA ligase III from 180BR cell extracts abolished the DNA endjoining activity, which could be restored by addition of purified human DNA ligase IIIb. Full-length DNA ligase III bound to double stranded DNA and stimulated DNA endjoining in both intermolecular and intramolecular ligation. Furthermore, fractionation of HeLa cell extracts demonstrated the presence of an activity stimulating the function of DNA ligase III. Based on these observations we propose that DNA ligase III is the ligase operating in B-NHEJ

  8. Thermostable Subunit Vaccines for Pulmonary Delivery: How Close Are We?

    DEFF Research Database (Denmark)

    Foged, Camilla

    2016-01-01

    , such as influenza, tuberculosis, and Ebola, for which no good universal vaccines exist. At least two pharmaceutical improvements are expected to help filling this gap: i) The development of thermostable vaccine dosage forms, and ii) the full exploitation of the adjuvant technology for subunit vaccines to potentiate...... strong immune responses. This review highlights the status and recent advances in formulation and pulmonary delivery of thermostable human subunit vaccines. Such vaccines are very appealing from compliance, distribution and immunological point of view: Being non-invasive, inhalable vaccines are self...... immunity. Here, I review state of the art and perspectives in formulation design and processing methods for powder-based subunit vaccines intended for pulmonary administration, and present dry powder inhaler technologies suitable for translating these vaccines into clinical trials....

  9. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    Science.gov (United States)

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Approaches for improving thermostability characteristics in cellulases.

    Science.gov (United States)

    Anbar, Michael; Bayer, Edward A

    2012-01-01

    Many efforts have been invested to reduce the cost of biofuel production to substitute renewable sources of energy for fossil-based fuels. At the forefront of these efforts are the initiatives to convert plant-derived cellulosic material to biofuels. Although significant improvements have been achieved recently in cellulase engineering in both efficiency and cost reduction, complete degradation of lignocellulosic material still requires very long periods of time and high enzyme loads. Thermostable cellulases offer many advantages in the bioconversion process, which include increase in specific activity, higher levels of stability, inhibition of microbial growth, increase in mass transfer rate due to lower fluid viscosity, and greater flexibility in the bioprocess. Besides rational design methods, which require deep understanding of protein structure-function relationship, two of the major methods for improvement in specific cellulase properties are directed evolution and knowledge-based library design based on multiple sequence alignments. In this chapter, we provide protocols for constructing and screening of improved thermostable cellulases. Modifications of these protocols may also be used for screening for other improved properties of cellulases such as pH tolerance, high salt, and more. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Engineering increased thermostability in the GH-10 endo-1,4-ß-xylanase from Thermoascus aurantiacus CBMAI 756

    Science.gov (United States)

    The GH10 endo-xylanase from Thermoascus aurantiacus CBMAI 756 (XynA) is industrially attractive due to its considerable thermostability and high specific activity. Considering the possibility of a further improvement in thermostability, eleven mutants were created in the present study via site-direc...

  12. Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy

    Directory of Open Access Journals (Sweden)

    Zhang Hui

    2007-02-01

    Full Text Available Abstract Recent investigation of Cullin 4 (CUL4 has ushered this class of multiprotein ubiquitin E3 ligases to center stage as critical regulators of diverse processes including cell cycle regulation, developmental patterning, DNA replication, DNA damage and repair, and epigenetic control of gene expression. CUL4 associates with DNA Damage Binding protein 1 (DDB1 to assemble an ubiquitin E3 ligase that targets protein substrates for ubiquitin-dependent proteolysis. CUL4 ligase activity is also regulated by the covalent attachment of the ubiquitin-like protein NEDD8 to CUL4, or neddylation, and the COP9 signalosome complex (CSN that removes this important modification. Recently, multiple WD40-repeat proteins (WDR were found to interact with DDB1 and serve as the substrate-recognition subunits of the CUL4-DDB1 ubiquitin ligase. As more than 150–300 WDR proteins exist in the human genome, these findings impact a wide array of biological processes through CUL4 ligase-mediated proteolysis. Here, we review the recent progress in understanding the mechanism of CUL4 ubiquitin E3 ligase and discuss the architecture of CUL4-assembled E3 ubiquitin ligase complexes by comparison to CUL1-based E3s (SCF. Then, we will review several examples to highlight the critical roles of CUL4 ubiquitin ligase in genome stability, cell cycle regulation, and histone lysine methylation. Together, these studies provide insights into the mechanism of this novel ubiquitin ligase in the regulation of important biological processes.

  13. Enhanced Thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress.

    Science.gov (United States)

    Kurek, Itzhak; Chang, Thom Kai; Bertain, Sean M; Madrigal, Alfredo; Liu, Lu; Lassner, Michael W; Zhu, Genhai

    2007-10-01

    Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under elevated temperatures, we used gene shuffling technology to generate several Arabidopsis thaliana RCA1 (short isoform) variants exhibiting improved thermostability. Wild-type RCA1 and selected thermostable RCA1 variants were introduced into an Arabidopsis RCA deletion (Deltarca) line. In a long-term growth test at either constant 26 degrees C or daily 4-h 30 degrees C exposure, the transgenic lines with the thermostable RCA1 variants exhibited higher photosynthetic rates, improved development patterns, higher biomass, and increased seed yields compared with the lines expressing wild-type RCA1 and a slight improvement compared with untransformed Arabidopsis plants. These results provide clear evidence that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions.

  14. A Large Complement of the Predicted Arabidopsis ARM Repeat Proteins Are Members of the U-Box E3 Ubiquitin Ligase Family1[w

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406

  15. Expression of Acidothermus cellulolyticus thermostable cellulases in tobacco and rice plants

    Directory of Open Access Journals (Sweden)

    Xiran Jiang

    2017-01-01

    Full Text Available The production of cellulases in plants is an economical method for the conversion of lignocellulosic biomass into fuels. Herein we report the expressions of two thermostable Acidothermus cellulolyticus cellulases, endo-1,4-β-D-glucanase (E1 and exoglucanase (Gux1, in tobacco and rice. To evaluate the expression of these recombinant cellulases, we expressed the full-length E1, the catalytic domains of E1 (E1cd and Gux1 (Gux1cd, as well as an E1–Gux1cd fusion enzyme in various subcellular compartments. In the case of tobacco, transgenic plants that expressed apoplast-localized E1 showed the highest level of activity, about three times higher than those that expressed the cytosolic E1. In the case of rice, the level of cellulase-specific activity in the transgenic plants ranged from 11 to 20 nmol 4-methylumbelliferone min−1 mg−1 total soluble protein. The recombinant cellulases exhibited good thermostability below 70 °C. Furthermore, transgenic rice leaves that were stored at room temperature for a month lost about 20% of the initial cellulase activity. Taken together, the results suggested that heterologous expression of thermostable cellulases in plants may be a viable option for biomass conversion.

  16. Fingerprinting of near-homogeneous DNA ligase I and II from human cells. Similarity of their AMP-binding domains.

    Science.gov (United States)

    Yang, S W; Becker, F F; Chan, J Y

    1990-10-25

    DNA ligases play obligatory roles during replication, repair, and recombination. Multiple forms of DNA ligase have been reported in mammalian cells including DNA ligase I, the high molecular mass species which functions during replication, and DNA ligase II, the low molecular mass species which is associated with repair. In addition, alterations in DNA ligase activities have been reported in acute lymphocytic leukemia cells, Bloom's syndrome cells, and cells undergoing differentiation and development. To better distinguish the biochemical and molecular properties of the various DNA ligases from human cells, we have developed a method of purifying multiple species of DNA ligase from HeLa cells by chromatography through DEAE-Bio-Gel, CM-Bio-Gel, hydroxylapatite, Sephacryl S-300, Mono P, and DNA-cellulose. DNA-cellulose chromatography of the partially purified enzymes resolved multiple species of DNA ligase after labeling the enzyme with [alpha-32P]ATP to form the ligase-[32P]AMP adduct. The early eluting enzyme activity (0.25 M NaCl) contained a major 67-kDa-labeled protein, while the late eluting activity (0.48 M NaCl) contained two major labeled proteins of 90 and 78 kDa. Neutralization experiments with antiligase I antibodies indicated that the early and late eluting activity peaks were DNA ligase II and I, respectively. The three major ligase-[32P]AMP polypeptides (90, 78, and 67 kDa) were subsequently purified to near homogeneity by elution from preparative sodium dodecyl sulfate-polyacrylamide gels. All three polypeptides retained DNA ligase activities after gel elution and renaturation. To further reveal the relationship between these enzymes, partial digestion by V8-protease was performed. All three purified polypeptides gave rise to a common 22-kDa-labeled fragment for their AMP-binding domains, indicating that the catalytic sites of ligase I and II are quite similar, if not identical. Similar findings were obtained from the two-dimensional gel

  17. Sculpting ion channel functional expression with engineered ubiquitin ligases

    Science.gov (United States)

    Kanner, Scott A; Morgenstern, Travis

    2017-01-01

    The functional repertoire of surface ion channels is sustained by dynamic processes of trafficking, sorting, and degradation. Dysregulation of these processes underlies diverse ion channelopathies including cardiac arrhythmias and cystic fibrosis. Ubiquitination powerfully regulates multiple steps in the channel lifecycle, yet basic mechanistic understanding is confounded by promiscuity among E3 ligase/substrate interactions and ubiquitin code complexity. Here we targeted the catalytic domain of E3 ligase, CHIP, to YFP-tagged KCNQ1 ± KCNE1 subunits with a GFP-nanobody to selectively manipulate this channel complex in heterologous cells and adult rat cardiomyocytes. Engineered CHIP enhanced KCNQ1 ubiquitination, eliminated KCNQ1 surface-density, and abolished reconstituted K+ currents without affecting protein expression. A chemo-genetic variation enabling chemical control of ubiquitination revealed KCNQ1 surface-density declined with a ~ 3.5 hr t1/2 by impaired forward trafficking. The results illustrate utility of engineered E3 ligases to elucidate mechanisms underlying ubiquitin regulation of membrane proteins, and to achieve effective post-translational functional knockdown of ion channels. PMID:29256394

  18. ATP- and NAD+-dependent DNA ligases share an essential function in the halophilic archaeon Haloferax volcanii

    DEFF Research Database (Denmark)

    Zhao, A.; Gray, F. C; MacNeill, S. A.

    2006-01-01

    DNA ligases join the ends of DNA molecules during replication, repair and recombination. ATP-dependent ligases are found predominantly in the eukarya and archaea whereas NAD+-dependent DNA ligases are found only in the eubacteria and in entomopoxviruses. Using the genetically tractable halophile....... volcanii also encodes an NAD+-dependent DNA ligase family member, LigN, the first such enzyme to be identified in the archaea, and present phylogenetic analysis indicating that the gene encoding this protein has been acquired by lateral gene transfer (LGT) from eubacteria. As with LigA, we show that Lig...

  19. Site-saturation mutagenesis of Glomerella cingulata cutinase gene for enhanced enzyme thermostability

    Science.gov (United States)

    Hanapi, Wan Nurhidayah Wan; Iuan-Sheau, Chin; Mahadi, Nor Muhammad; Murad, Abdul Munir Abdul; Bakar, Farah Diba Abu

    2015-09-01

    Cutinase is an important biocatalyst for various industrial applications. This enzyme which has dual functionality comparable to esterases and lipases, is efficient in the hydrolysis of soluble esters and emulsified triacylglycerols. Naturally-occurring enzymes usually have disadvantages when applied in non-natural catalysis due to Glomerella cingulata cutinase enzyme thermostability. It is postulated that by increasing the rigidity at certain amino acid positions showing high mobility based on the three-dimensional structure of G. cingulata cutinase, the improvement in thermostability will be achieved. The amino acid N82 of G. cingulata cutinase was selected based on its high B-factor value determined via the B-FITTER program. Megaprimer PCR was employed to introduce mutations at the chosen site by randomization using NNK degenerate primers. About 300 transformants were selected for screening of positive cutinase variants. The N82_V14 cutinase variant was observed to be more thermostable at an almost 2-fold increase when exposed at 50°C for 1 hr as compared to the wild-type enzyme. This study may provide valuable information regarding thermal stability of cutinases denaturation at high temperatures.

  20. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Directory of Open Access Journals (Sweden)

    Scott Cukras

    Full Text Available Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  1. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Science.gov (United States)

    Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon

    2014-01-01

    Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  2. Sets of RNA repeated tags and hybridization-sensitive fluorescent probes for distinct images of RNA in a living cell.

    Directory of Open Access Journals (Sweden)

    Takeshi Kubota

    Full Text Available BACKGROUND: Imaging the behavior of RNA in a living cell is a powerful means for understanding RNA functions and acquiring spatiotemporal information in a single cell. For more distinct RNA imaging in a living cell, a more effective chemical method to fluorescently label RNA is now required. In addition, development of the technology labeling with different colors for different RNA would make it easier to analyze plural RNA strands expressing in a cell. METHODOLOGY/PRINCIPAL FINDINGS: Tag technology for RNA imaging in a living cell has been developed based on the unique chemical functions of exciton-controlled hybridization-sensitive oligonucleotide (ECHO probes. Repetitions of selected 18-nucleotide RNA tags were incorporated into the mRNA 3'-UTR. Pairs with complementary ECHO probes exhibited hybridization-sensitive fluorescence emission for the mRNA expressed in a living cell. The mRNA in a nucleus was detected clearly as fluorescent puncta, and the images of the expression of two mRNAs were obtained independently and simultaneously with two orthogonal tag-probe pairs. CONCLUSIONS/SIGNIFICANCE: A compact and repeated label has been developed for RNA imaging in a living cell, based on the photochemistry of ECHO probes. The pairs of an 18-nt RNA tag and the complementary ECHO probes are highly thermostable, sequence-specifically emissive, and orthogonal to each other. The nucleotide length necessary for one tag sequence is much shorter compared with conventional tag technologies, resulting in easy preparation of the tag sequences with a larger number of repeats for more distinct RNA imaging.

  3. Molecular Dynamics Approach in Designing Thermostable Aspergillus niger Xylanase

    Science.gov (United States)

    Malau, N. D.; Sianturi, M.

    2017-03-01

    Molecular dynamics methods we have applied as a tool in designing thermostable Aspergillus niger Xylanase, by examining Root Mean Square Deviation (RMSD) and The Stability of the Secondary Structure of enzymes structure at its optimum temperature and compare with its high temperature behavior. As RMSD represents structural fluctuation at a particular temperature, a better understanding of this factor will suggest approaches to bioengineer these enzymes to enhance their thermostability. In this work molecular dynamic simulations of Aspergillus niger xylanase (ANX) have been carried at 400K (optimum catalytic temperature) for 2.5 ns and 500K (ANX reported inactive temperature) for 2.5 ns. Analysis have shown that the Root Mean Square Deviation (RMSD) significant increase at higher temperatures compared at optimum temperature and some of the secondary structures of ANX that have been damaged at high temperature. Structural analysis revealed that the fluctuations of the α-helix and β-sheet regions are larger at higher temperatures compared to the fluctuations at optimum temperature.

  4. Development of a thermostable microneedle patch for influenza vaccination

    Science.gov (United States)

    Mistilis, Matthew; Bommarius, Andreas S; Prausnitz, Mark R.

    2017-01-01

    The goal of this study is to develop thermostable microneedle patch formulations for influenza vaccine that can be partially or completely removed from the cold chain. During vaccine drying associated with microneedle patch manufacturing, ammonium acetate and HEPES buffer salts stabilized influenza vaccine, surfactants had little effect during drying, drying temperature had weak effects on vaccine stability, and drying on polydimethylsiloxane led to increased stability compared to drying on stainless steel. A number of excipients, mostly polysaccharides and some amino acids, further stabilized the influenza vaccine during drying. Over longer time scales of storage, combinations of stabilizers preserved the most vaccine activity. Finally, dissolving microneedle patches formulated with arginine and calcium heptagluconate had no significant activity loss for all three strains of seasonal influenza vaccine during storage at room temperature for six months. We conclude that appropriately formulated microneedle patches can exhibit remarkable thermostability that could enable storage and distribution of influenza vaccine outside the cold chain. PMID:25448542

  5. Improvement in the thermostability of chitosanase from Bacillus ehimensis by introducing artificial disulfide bonds.

    Science.gov (United States)

    Sheng, Jun; Ji, Xiaofeng; Zheng, Yuan; Wang, Zhipeng; Sun, Mi

    2016-10-01

    To determine the effects of artificial disulfide bridges on the thermostability and catalytic efficiency of chitosanase EAG1. Five artificial disulfide bridges were designed based on the structural information derived from the three-dimensional (3-D) model of chitosanase EAG1. Two beneficial mutants (G113C/D116C, A207C-L286C) were located in the flexible surface loop region, whereas the similar substitutions introduced in α-helices regions had a negligible effect. Mut5, the most active mutant, had a longer half-life at 50 °C (from 10.5 to 69.3 min) and a 200 % higher catalytic efficiency (K cat/K m) than that of the original EAG1. The contribution of disulfide bridges to enzyme thermostability is mainly dependent on its location within the polypeptide chain. Strategical placement of a disulfide bridge in flexible regions provides a rigid support and creation of a protected microenvironment, which is effective in improving enzyme's thermostability and catalytic efficiency.

  6. The ligase chain reaction as a primary screening tool for the detection of culture positive tuberculosis.

    LENUS (Irish Health Repository)

    O'Connor, T M

    2012-02-03

    BACKGROUND: The ligase chain reaction Mycobacterium tuberculosis assay uses ligase chain reaction technology to detect tuberculous DNA sequences in clinical specimens. A study was undertaken to determine its sensitivity and specificity as a primary screening tool for the detection of culture positive tuberculosis. METHODS: The study was conducted on 2420 clinical specimens (sputum, bronchoalveolar lavage fluid, pleural fluid, urine) submitted for primary screening for Mycobacterium tuberculosis to a regional medical microbiology laboratory. Specimens were tested in parallel with smear, ligase chain reaction, and culture. RESULTS: Thirty nine patients had specimens testing positive by the ligase chain reaction assay. Thirty two patients had newly diagnosed tuberculosis, one had a tuberculosis relapse, three had tuberculosis (on antituberculous therapy when tested), and three had healed tuberculosis. In the newly diagnosed group specimens were smear positive in 21 cases (66%), ligase chain reaction positive in 30 cases (94%), and culture positive in 32 cases (100%). Using a positive culture to diagnose active tuberculosis, the ligase chain reaction assay had a sensitivity of 93.9%, a specificity of 99.8%, a positive predictive value of 83.8%, and a negative predictive value of 99.9%. CONCLUSIONS: This study is the largest clinical trial to date to report the efficacy of the ligase chain reaction as a primary screening tool to detect Mycobacterium tuberculosis infection. The authors conclude that ligase chain reaction is a useful primary screening test for tuberculosis, offering speed and discrimination in the early stages of diagnosis and complementing traditional smear and culture techniques.

  7. Enhanced Thermostability of Arabidopsis Rubisco Activase Improves Photosynthesis and Growth Rates under Moderate Heat Stress[OA

    Science.gov (United States)

    Kurek, Itzhak; Chang, Thom Kai; Bertain, Sean M.; Madrigal, Alfredo; Liu, Lu; Lassner, Michael W.; Zhu, Genhai

    2007-01-01

    Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under elevated temperatures, we used gene shuffling technology to generate several Arabidopsis thaliana RCA1 (short isoform) variants exhibiting improved thermostability. Wild-type RCA1 and selected thermostable RCA1 variants were introduced into an Arabidopsis RCA deletion (Δrca) line. In a long-term growth test at either constant 26°C or daily 4-h 30°C exposure, the transgenic lines with the thermostable RCA1 variants exhibited higher photosynthetic rates, improved development patterns, higher biomass, and increased seed yields compared with the lines expressing wild-type RCA1 and a slight improvement compared with untransformed Arabidopsis plants. These results provide clear evidence that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions. PMID:17933901

  8. A comparative molecular dynamics study on thermostability of human and chicken prion proteins

    International Nuclear Information System (INIS)

    Ji, Hong-Fang; Zhang, Hong-Yu

    2007-01-01

    To compare the thermostabilities of human and chicken normal cellular prion proteins (HuPrP C and CkPrP C ), molecular dynamics (MD) simulations were performed for both proteins at an ensemble level (10 parallel simulations at 400 K and 5 parallel simulations at 300 K as a control). It is found that the thermostability of HuPrP C is comparable with that of CkPrP C , which implicates that the non-occurrence of prion diseases in non-mammals cannot be completely attributed to the thermodynamic properties of non-mammalian PrP C

  9. Thermostable cellulase from a thermomonospora gene

    Science.gov (United States)

    Wilson, D.B.; Walker, L.P.; Zhang, S.

    1997-10-14

    The invention relates to a gene isolated from Thermomonospora fusca, wherein the gene encodes a thermostable cellulase. Disclosed is the nucleotide sequence of the T. fusca gene; and nucleic acid molecules comprising the gene, or a fragment of the gene, that can be used to recombinantly express the cellulase or a catalytically active polypeptide thereof, respectively. The isolated and purified recombinant cellulase or catalytically active polypeptide may be used to hydrolyze substrate either by itself; or in combination with other cellulases, with the resultant combination having unexpected hydrolytic activity. 3 figs.

  10. FireProt: web server for automated design of thermostable proteins

    Science.gov (United States)

    Musil, Milos; Stourac, Jan; Brezovsky, Jan; Prokop, Zbynek; Zendulka, Jaroslav; Martinek, Tomas

    2017-01-01

    Abstract There is a continuous interest in increasing proteins stability to enhance their usability in numerous biomedical and biotechnological applications. A number of in silico tools for the prediction of the effect of mutations on protein stability have been developed recently. However, only single-point mutations with a small effect on protein stability are typically predicted with the existing tools and have to be followed by laborious protein expression, purification, and characterization. Here, we present FireProt, a web server for the automated design of multiple-point thermostable mutant proteins that combines structural and evolutionary information in its calculation core. FireProt utilizes sixteen tools and three protein engineering strategies for making reliable protein designs. The server is complemented with interactive, easy-to-use interface that allows users to directly analyze and optionally modify designed thermostable mutants. FireProt is freely available at http://loschmidt.chemi.muni.cz/fireprot. PMID:28449074

  11. Natural separation of the acyl-CoA ligase reaction results in a non-adenylating enzyme.

    Science.gov (United States)

    Wang, Nan; Rudolf, Jeffrey D; Dong, Liao-Bin; Osipiuk, Jerzy; Hatzos-Skintges, Catherine; Endres, Michael; Chang, Chin-Yuan; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2018-06-04

    Acyl-coenzyme A (CoA) ligases catalyze the activation of carboxylic acids via a two-step reaction of adenylation followed by thioesterification. Here, we report the discovery of a non-adenylating acyl-CoA ligase PtmA2 and the functional separation of an acyl-CoA ligase reaction. Both PtmA1 and PtmA2, two acyl-CoA ligases from the biosynthetic pathway of platensimycin and platencin, are necessary for the two steps of CoA activation. Gene inactivation of ptmA1 and ptmA2 resulted in the accumulation of free acid and adenylate intermediates, respectively. Enzymatic and structural characterization of PtmA2 confirmed its ability to only catalyze thioesterification. Structural characterization of PtmA2 revealed it binds both free acid and adenylate substrates and undergoes the established mechanism of domain alternation. Finally, site-directed mutagenesis restored both the adenylation and complete CoA activation reactions. This study challenges the currently accepted paradigm of adenylating enzymes and inspires future investigations on functionally separated acyl-CoA ligases and their ramifications in biology.

  12. Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats.

    Science.gov (United States)

    Zhang, Songyun; Li, Hongyan; Zhang, Lihui; Li, Jie; Wang, Ruiying; Wang, Mian

    2017-02-15

    Increasing evidence demonstrates an association between diabetes and hippocampal neuron damage. This study aimed to determine the effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits (GCLM and GCLC) in the hippocampus of streptozotocin-induced type 1 diabetes mellitus (T1DM) rats. At 12weeks after streptozotocin injection, T1DM rats were randomly divided into 4 groups (n=15 each group) to receive no treatment (T1DM), saline (T1DM+saline), alpha-lipoic acid (T1DM+alpha-lipoic acid), and troxerutin (T1DM+troxerutin), respectively, for 6weeks. Meanwhile, 10 control animals (NC group) were assessed in parallel. Learning performance was evaluated by the Morris water maze. After treatment, hippocampi were collected for pathological examination by hematoxylin and eosin (H&E) staining. Next, hippocampal superoxide dismutase (SOD) activity, and malondialdehyde (MDA) and glutathione (GSH) levels were assessed. Finally, glutamate cysteine ligase catalytic (GCLC) and glutamate cysteine ligase modifier (GCLM) subunit mRNA and protein levels were quantified by reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. Compared with T1DM and T1DM+saline groups, escape latency was overtly reduced in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. Significantly increased GCLM and GCLC mRNA levels, GCLC protein amounts, SOD activity, and GSH levels, and reduced MDA amounts were observed in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. In T1DM and T1DM+saline groups, H&E staining showed less pyramidal cells in the hippocampus, with disorganized layers, karyopyknosis, decreased endochylema, and cavitation, effects relieved in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. Troxerutin alleviates oxidative stress and promotes learning in streptozotocin-induced T1DM rats, a process involving GCLC expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes.

    Science.gov (United States)

    Stojković, Vanja; Chu, Tongyue; Therizols, Gabriel; Weinberg, David E; Fujimori, Danica Galonić

    2018-06-13

    Although present across bacteria, the large family of radical SAM RNA methylating enzymes is largely uncharacterized. Escherichia coli RlmN, the founding member of the family, methylates an adenosine in 23S rRNA and several tRNAs to yield 2-methyladenosine (m 2 A). However, varied RNA substrate specificity among RlmN enzymes, combined with the ability of certain family members to generate 8-methyladenosine (m 8 A), makes functional predictions across this family challenging. Here, we present a method for unbiased substrate identification that exploits highly efficient, mechanism-based cross-linking between the enzyme and its RNA substrates. Additionally, by determining that the thermostable group II intron reverse transcriptase introduces mismatches at the site of the cross-link, we have identified the precise positions of RNA modification using mismatch profiling. These results illustrate the capability of our method to define enzyme-substrate pairs and determine modification sites of the largely uncharacterized radical SAM RNA methylating enzyme family.

  14. 'THERMOST' for analysing thermo-structural behaviour of LWR fuel rods under PCI conditions

    International Nuclear Information System (INIS)

    Nuno, H.; Ogawa, S.; Kobayashi, H.

    1983-01-01

    As a method for evaluating fuel rod performance under power ramping or load following operations, the combined FROST/ THERMOST system has been developed and brought into practical use. FROST was presented at the IAEA Blackpool Meeting in 1978, and THERMOST is the subject of this paper. The major purpose of THERMOST is to analyse very detailed thermal and structural fuel behaviour in a rather localised part of the fuel rod whereas FROST deals with whole rod general performance. The code handles two-dimensional thermal and structural analyses simultaneously by using a finite element method, in axial section or in lateral section. It consists of a fundamental FEM system of generalised constitution, and a surrounding subroutine system which characterises fuel behaviour, such as temperature distribution, thermal expansion, elastoplasticity, creep, cracking, swelling, growth, etc. Thermal analysis is handled by heat conduction and heat transfer element (six kinds), and structural analysis by axisymmetric ring and lateral plane element (six kinds). Boundary problems such as contact, friction and cracking are treated by gap and crack elements. A sample calculation of PCI performance on a PWR fuel rod under ramping conditions is presented with some in-pile test data. (author)

  15. In Vitro Characterization of Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface Loop.

    Science.gov (United States)

    Shivhare, Devendra; Mueller-Cajar, Oliver

    2017-07-01

    To maintain metabolic flux through the Calvin-Benson-Bassham cycle in higher plants, dead-end inhibited complexes of Rubisco must constantly be engaged and remodeled by the molecular chaperone Rubisco activase (Rca). In C3 plants, the thermolability of Rca is responsible for the deactivation of Rubisco and reduction of photosynthesis at moderately elevated temperatures. We reasoned that crassulacean acid metabolism (CAM) plants must possess thermostable Rca to support Calvin-Benson-Bassham cycle flux during the day when stomata are closed. A comparative biochemical characterization of rice ( Oryza sativa ) and Agave tequilana Rca isoforms demonstrated that the CAM Rca isoforms are approximately10°C more thermostable than the C3 isoforms. Agave Rca also possessed a much higher in vitro biochemical activity, even at low assay temperatures. Mixtures of rice and agave Rca form functional hetero-oligomers in vitro, but only the rice isoforms denature at nonpermissive temperatures. The high thermostability and activity of agave Rca mapped to the N-terminal 244 residues. A Glu-217-Gln amino acid substitution was found to confer high Rca activity to rice Rca Further mutational analysis suggested that Glu-217 restricts the flexibility of the α4-β4 surface loop that interacts with Rubisco via Lys-216. CAM plants thus promise to be a source of highly functional, thermostable Rca candidates for thermal fortification of crop photosynthesis. Careful characterization of their properties will likely reveal further protein-protein interaction motifs to enrich our mechanistic model of Rca function. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Potential and utilization of thermophiles and thermostable enzymes in biorefining

    Directory of Open Access Journals (Sweden)

    Karlsson Eva

    2007-03-01

    Full Text Available Abstract In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.

  17. BRCA1 Is a Histone-H2A-Specific Ubiquitin Ligase

    Directory of Open Access Journals (Sweden)

    Reinhard Kalb

    2014-08-01

    Full Text Available The RING domain proteins BRCA1 and BARD1 comprise a heterodimeric ubiquitin (E3 ligase that is required for the accumulation of ubiquitin conjugates at sites of DNA damage and for silencing at DNA satellite repeat regions. Despite its links to chromatin, the substrate and underlying function of the BRCA1/BARD1 ubiquitin ligase remain unclear. Here, we show that BRCA1/BARD1 specifically ubiquitylates histone H2A in its C-terminal tail on lysines 127 and 129 in vitro and in vivo. The specificity for K127-129 is acquired only when H2A is within a nucleosomal context. Moreover, site-specific targeting of the BRCA1/BARD1 RING domains to chromatin is sufficient for H2Aub foci formation in vivo. Our data establish BRCA1/BARD1 as a histone-H2A-specific E3 ligase, helping to explain its localization and activities on chromatin in cells.

  18. Repair of potentially lethal damage by introduction of T4 DNA ligase in eucaryotic cells

    International Nuclear Information System (INIS)

    Durante, M.; Grossi, G.F.; Napolitano, M.; Gialanella, G.

    1991-01-01

    The bacterial enzyme PvuII, which generates blunt-ended DNA double-strand breaks, and T4 DNA ligase, which seals adjacent DNA fragments in coupling to ATP cleavage, were introduced in mouse C3H10T1/2 fibroblasts using osmolytic shock of pinocytic vesicles. Cells were then assayed for their clonogenic ability. In agreement with previous studies by others, the authors found that PvuII restriction endonuclease simulates ionizing radiation effects by causing a dose-dependent loss of reproductive capacity. They show that concomitant treatment with DNA ligase considerably increases cell survival. Survival curves were shown to be dependent on ligase enzyme dose and on ATP concentration in the hypertonic medium. They conclude that T4 DNA ligase is able to repair some potentially lethal damage produced by restriction endonucleases in eucaryotic cells. (author)

  19. Origin and diversification of TRIM ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Ignacio Marín

    Full Text Available Most proteins of the TRIM family (also known as RBCC family are ubiquitin ligases that share a peculiar protein structure, characterized by including an N-terminal RING finger domain closely followed by one or two B-boxes. Additional protein domains found at their C termini have been used to classify TRIM proteins into classes. TRIMs are involved in multiple cellular processes and many of them are essential components of the innate immunity system of animal species. In humans, it has been shown that mutations in several TRIM-encoding genes lead to diverse genetic diseases and contribute to several types of cancer. They had been hitherto detected only in animals. In this work, by comprehensively analyzing the available diversity of TRIM and TRIM-like protein sequences and evaluating their evolutionary patterns, an improved classification of the TRIM family is obtained. Members of one of the TRIM subfamilies defined, called Subfamily A, turn to be present not only in animals, but also in many other eukaryotes, such as fungi, apusozoans, alveolates, excavates and plants. The rest of subfamilies are animal-specific and several of them originated only recently. Subfamily A proteins are characterized by containing a MATH domain, suggesting a potential evolutionary connection between TRIM proteins and a different type of ubiquitin ligases, known as TRAFs, which contain quite similar MATH domains. These results indicate that the TRIM family emerged much earlier than so far thought and contribute to our understanding of its origin and diversification. The structural and evolutionary links with the TRAF family of ubiquitin ligases can be experimentally explored to determine whether functional connections also exist.

  20. Purification, crystallization and preliminary crystallographic analysis of biotin protein ligase from Staphylococcus aureus

    International Nuclear Information System (INIS)

    Pendini, Nicole R.; Polyak, Steve W.; Booker, Grant W.; Wallace, John C.; Wilce, Matthew C. J.

    2008-01-01

    The biotin protein ligase from S. aureus has been overexpressed in E. coli, purified, crystallized by the hanging-drop vapour-diffusion method and analysed using X-ray diffraction. Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 Å resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P4 2 2 1 2, with unit-cell parameters a = b = 93.665, c = 131.95

  1. Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2015-05-01

    Full Text Available In biofuel production from lignocellulose, low thermostability and product inhibition strongly restrict the enzyme activities and production process. Application of multiple thermostable glycoside hydrolases, forming an enzyme cocktail, can result in a synergistic action and therefore improve production efficiency and reduce operational costs. Therefore, increasing enzyme thermostabilities and compatibility are important for the biofuel industry. In this study, we reported the screening, cloning and biochemical characterization of four novel thermostable lignocellulose hydrolases from a metagenomic library of a long-term dry thermophilic methanogenic digester community, which were highly compatible with optimal conditions and specific activities. The optimal temperatures of the four enzymes, β-xylosidase, xylanase, β-glucosidase, and cellulase ranged from 60°C to 75°C, and over 80% residual activities were observed after 2 h incubation at 50°C. Mixtures of these hydrolases retained high residual synergistic activities after incubation with cellulose, xylan, and steam-exploded corncob at 50°C for 72 h. In addition, about 55% dry weight of steam-exploded corncob was hydrolyzed to glucose and xylose by the synergistic action of the four enzymes at 50°C for 48 h. This work suggested that since different enzymes from a same ecosystem could be more compatible, screening enzymes from a long-term enriching community could be a favorable strategy.

  2. Rational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis.

    Directory of Open Access Journals (Sweden)

    Chengtuo Niu

    Full Text Available 1,3-1,4-β-glucanase is an important biocatalyst in brewing industry and animal feed industry, while its low thermostability often reduces its application performance. In this study, the thermostability of a mesophilic β-glucanase from Bacillus terquilensis was enhanced by rational design and engineering of disulfide bonds in the protein structure. Protein spatial configuration was analyzed to pre-exclude the residues pairs which negatively conflicted with the protein structure and ensure the contact of catalytic center. The changes in protein overall and local flexibility among the wild-type enzyme and the designated mutants were predicted to select the potential disulfide bonds for enhancement of thermostability. Two residue pairs (N31C-T187C and P102C-N125C were chosen as engineering targets and both of them were proved to significantly enhance the protein thermostability. After combinational mutagenesis, the double mutant N31C-T187C/P102C-N125C showed a 48.3% increase in half-life value at 60°C and a 4.1°C rise in melting temperature (Tm compared to wild-type enzyme. The catalytic property of N31C-T187C/P102C-N125C mutant was similar to that of wild-type enzyme. Interestingly, the optimal pH of double mutant was shifted from pH6.5 to pH6.0, which could also increase its industrial application. By comparison with mutants with single-Cys substitutions, the introduction of disulfide bonds and the induced new hydrogen bonds were proved to result in both local and overall rigidification and should be responsible for the improved thermostability. Therefore, the introduction of disulfide bonds for thermostability improvement could be rationally and highly-effectively designed by combination with spatial configuration analysis and molecular dynamics simulation.

  3. Screening of strains with the high activity and thermostability nattokinase by {sup 60}Co γ-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shuying, Li; Ying, Nie; Huan, Du; Xuanming, Tang [Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing (China); Zhonglin, Zhao [College of Sciences, Henan Agricultural University, Zhengzhou (China); Xin, Ma [Agricultural Information Institute, Chinese Academic of Agricultural Sciences, Beijing (China); Yan, Li [School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou (China)

    2013-06-15

    In this study, Bacillus natto was irradiated by {sup 60}Co γ-ray, and activity was determined by Casein plate method in order to get high activity and thermostability strains. 60 strains with high activity were obtained through irradiation by 800 Gy {sup 60}Co γ-ray. In this dose, the positive mutation rate was 45%. Then 60 strains was treated by different tempreture and 11 strains showed thermostability at 65℃. (authors)

  4. Screening of strains with the high activity and thermostability nattokinase by "6"0Co γ-ray irradiation

    International Nuclear Information System (INIS)

    Li Shuying; Nie Ying; Du Huan; Tang Xuanming; Zhao Zhonglin; Ma Xin; Li Yan

    2013-01-01

    In this study, Bacillus natto was irradiated by "6"0Co γ-ray, and activity was determined by Casein plate method in order to get high activity and thermostability strains. 60 strains with high activity were obtained through irradiation by 800 Gy "6"0Co γ-ray. In this dose, the positive mutation rate was 45%. Then 60 strains was treated by different tempreture and 11 strains showed thermostability at 65℃. (authors)

  5. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yong-Zhi; Sheng, Yu [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Li, Lan-Fen [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Tang, De-Wei [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liu, Xiang-Yu [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Zhao, Xiaojun, E-mail: zhaoxj@scu.edu.cn [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liang, Yu-He, E-mail: zhaoxj@scu.edu.cn; Su, Xiao-Dong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China)

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  6. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    International Nuclear Information System (INIS)

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He; Su, Xiao-Dong

    2007-01-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni 2+ -chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit

  7. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  8. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    Science.gov (United States)

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  9. Simple methods for the 3' biotinylation of RNA.

    Science.gov (United States)

    Moritz, Bodo; Wahle, Elmar

    2014-03-01

    Biotinylation of RNA allows its tight coupling to streptavidin and is thus useful for many types of experiments, e.g., pull-downs. Here we describe three simple techniques for biotinylating the 3' ends of RNA molecules generated by chemical or enzymatic synthesis. First, extension with either the Schizosaccharomyces pombe noncanonical poly(A) polymerase Cid1 or Escherichia coli poly(A) polymerase and N6-biotin-ATP is simple, efficient, and generally applicable independently of the 3'-end sequences of the RNA molecule to be labeled. However, depending on the enzyme and the reaction conditions, several or many biotinylated nucleotides are incorporated. Second, conditions are reported under which splint-dependent ligation by T4 DNA ligase can be used to join biotinylated and, presumably, other chemically modified DNA oligonucleotides to RNA 3' ends even if these are heterogeneous as is typical for products of enzymatic synthesis. Third, we describe the use of 29 DNA polymerase for a template-directed fill-in reaction that uses biotin-dUTP and, thanks to the enzyme's proofreading activity, can cope with more extended 3' heterogeneities.

  10. KF-1 ubiquitin ligase: an anxiety suppressor

    Directory of Open Access Journals (Sweden)

    Tamotsu Hashimoto-Gotoh

    2009-05-01

    Full Text Available Anxiety is an instinct that may have developed to promote adaptive survival by evading unnecessary danger. However, excessive anxiety is disruptive and can be a basic disorder of other psychiatric diseases such as depression. The KF-1, a ubiquitin ligase located to the endoplasmic reticulum (ER, may prevent excessive anxiety; kf-1−/− mice exhibit selectively elevated anxiety-like behavior against light or heights. Thus, KF-1 may degrade some target proteins, responsible for promoting anxiety, through the ER-associated degradation pathway, similar to Parkin in Parkinson's disease (PD. Parkin, another ER-ubiquitin ligase, prevents the degeneration of dopaminergic neurons by degrading the target proteins responsible for PD. Molecular phylogenetic studies have revealed that the prototype of kf-1 appeared in the very early phase of animal evolution but was lost, unlike parkin, in the lineage leading up to Drosophila. Therefore, kf-1−/− mice, be a powerful tool for elucidating the molecular mechanisms involved in emotional regulation, and for screening novel anxiolytic/antidepressant compounds.

  11. Water isotope effect on the thermostability of a polio viral RNA hairpin: A metadynamics study

    Science.gov (United States)

    Pathak, Arup K.; Bandyopadhyay, Tusar

    2017-04-01

    Oral polio vaccine is considered to be the most thermolabile of all the common childhood vaccines. Despite heavy water (D2O) having been known for a long time to stabilise attenuated viral RNA against thermodegradation, the molecular underpinnings of its mechanism of action are still lacking. Whereas, understanding the basis of D2O action is an important step that might reform the way other thermolabile drugs are stored and could possibly minimize the cold chain problem. Here using a combination of parallel tempering and well-tempered metadynamics simulation in light water (H2O) and in D2O, we have fully described the free energy surface associated with the folding/unfolding of a RNA hairpin containing a non-canonical basepair motif, which is conserved within the 3'-untranslated region of poliovirus-like enteroviruses. Simulations reveal that in heavy water (D2O) there is a considerable increase of the stability of the folded basin as monitored through an intramolecular hydrogen bond (HB), size, shape, and flexibility of RNA structures. This translates into a higher melting temperature in D2O by 41 K when compared with light water (H2O). We have explored the hydration dynamics of the RNA, hydration shell around the RNA surface, and spatial dependence of RNA-solvent collective HB dynamics in the two water systems. Simulation in heavy water clearly showed that D2O strengthens the HB network in the solvent, lengthens inter-residue water-bridge lifetime, and weakens dynamical coupling of the hairpin to its solvation environment, which enhances the rigidity of solvent exposed sites of the native configurations. The results might suggest that like other added osmoprotectants, D2O can act as a thermostabilizer when used as a solvent.

  12. The biology of Mur ligases as an antibacterial target.

    Science.gov (United States)

    Kouidmi, Imène; Levesque, Roger C; Paradis-Bleau, Catherine

    2014-10-01

    With antibiotic resistance mechanisms increasing in diversity and spreading among bacterial pathogens, the development of new classes of antibacterial agents against judiciously chosen targets is a high-priority task. The biochemical pathway for peptidoglycan biosynthesis is one of the best sources of antibacterial targets. Within this pathway are the Mur ligases, described in this review as highly suitable targets for the development of new classes of antibacterial agents. The amide ligases MurC, MurD, MurE and MurF function with the same catalytic mechanism and share conserved amino acid regions and structural features that can conceivably be exploited for the design of inhibitors that simultaneously target more than one enzyme. This would provide multi-target antibacterial weapons with minimized likelihood of target-mediated resistance development. © 2014 John Wiley & Sons Ltd.

  13. Problems of increasing of thermostability of highly permeable Ni-Zn ferrites and relative materials for telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Gonchar, A. E-mail: letyuk@mail.ru; Andreev, V.; Letyuk, L.; Shishkanov, A.; Maiorov, V

    2003-01-01

    The work considers ways of increasing of thermostability of ferrites of the basic systems NiO-ZnO-Fe{sub 2}O{sub 3} and MgO-ZnO-Fe{sub 2}O{sub 3} and relative materials for telecommunication. Sufficient results in increasing of the thermostability were achieved by doping Cu ions and controlling rejection of Fe{sub 2}O{sub 3} content from equimolar composition. These results allow to increase the Curie temperature to 130-140 deg. C for Ni-Zn ferrites with initial permeability 2000.

  14. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.

    Science.gov (United States)

    Chen, Ana; Li, Yamei; Nie, Jianqi; McNeil, Brian; Jeffrey, Laura; Yang, Yankun; Bai, Zhonghu

    2015-10-01

    Thermostability has been considered as a requirement in the starch processing industry to maintain high catalytic activity of pullulanase under high temperatures. Four data driven rational design methods (B-FITTER, proline theory, PoPMuSiC-2.1, and sequence consensus approach) were adopted to identify the key residue potential links with thermostability, and 39 residues of Bacillus acidopullulyticus pullulanase were chosen as mutagenesis targets. Single mutagenesis followed by combined mutagenesis resulted in the best mutant E518I-S662R-Q706P, which exhibited an 11-fold half-life improvement at 60 °C and a 9.5 °C increase in Tm. The optimum temperature of the mutant increased from 60 to 65 °C. Fluorescence spectroscopy results demonstrated that the tertiary structure of the mutant enzyme was more compact than that of the wild-type (WT) enzyme. Structural change analysis revealed that the increase in thermostability was most probably caused by a combination of lower stability free-energy and higher hydrophobicity of E518I, more hydrogen bonds of S662R, and higher rigidity of Q706P compared with the WT. The findings demonstrated the effectiveness of combined data-driven rational design approaches in engineering an industrial enzyme to improve thermostability. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Isolation and molecular characterization of thermostable phytase from Bacillus subtilis (BSPhyARRMK33).

    Science.gov (United States)

    Reddy, Chinreddy Subramanyam; Achary, V Mohan Murali; Manna, Mrinalini; Singh, Jitender; Kaul, Tanushri; Reddy, Malireddy K

    2015-03-01

    The thermostable phytase gene was isolated from Bacillus subtilis ARRMK33 (BsPhyARRMK33). The gene has an ORF of 1152 bp and that encodes a protein of 383 amino acids. Sequence analysis showed high homology with Bacillus sp. phytase proteins, but no similarity was found with other phytases. SDS-PAGE analysis exhibited a predicted molecular mass of 42 kDa. Homology modeling of BsPhyARRMK33 protein based on Bacillus amyloliquefaciens crystal structure disclosed its β-propeller structure. BsPhyARRMK33 recombinant plasmid in pET-28a(+) was expressed in Rosetta gami B DE3 cells and the maximum phytase activity 15.3 U mg(-1) obtained. The enzyme exhibits high thermostability at various temperatures and broad pH ranges. The recombinant protein retained 74% of its original activity after incubation at 95 °C for 10 min. In the presence of Ca(2+), the recombinant phytase activity was maximal where as it was inhibited by EDTA. The optimal pH and temperature for the recombinant phytase activity is achieved at 7.0 and 55 °C, respectively. Thermostable nature and wide range of pH are promising features of recombinant BsPhyARRMK33 protein that may be employed as an efficient alternative to commercially known phytases and thereby alleviate environmental eutrophication.

  16. Functional Dissection of the DNA Interface of the Nucleotidyltransferase Domain of Chlorella Virus DNA Ligase*

    Science.gov (United States)

    Samai, Poulami; Shuman, Stewart

    2011-01-01

    Chlorella virus DNA ligase (ChVLig) has pluripotent biological activity and an intrinsic nick-sensing function. ChVLig consists of three structural modules that envelop nicked DNA as a C-shaped protein clamp: a nucleotidyltransferase (NTase) domain and an OB domain (these two are common to all DNA ligases) as well as a distinctive β-hairpin latch module. The NTase domain, which performs the chemical steps of ligation, binds the major groove flanking the nick and the minor groove on the 3′-OH side of the nick. Here we performed a structure-guided mutational analysis of the NTase domain, surveying the effects of 35 mutations in 19 residues on ChVLig activity in vivo and in vitro, including biochemical tests of the composite nick sealing reaction and of the three component steps of the ligation pathway (ligase adenylylation, DNA adenylylation, and phosphodiester synthesis). The results highlight (i) key contacts by Thr-84 and Lys-173 to the template DNA strand phosphates at the outer margins of the DNA ligase footprint; (ii) essential contacts of Ser-41, Arg-42, Met-83, and Phe-75 with the 3′-OH strand at the nick; (iii) Arg-176 phosphate contacts at the nick and with ATP during ligase adenylylation; (iv) the role of Phe-44 in forming the protein clamp around the nicked DNA substrate; and (v) the importance of adenine-binding residue Phe-98 in all three steps of ligation. Kinetic analysis of single-turnover nick sealing by ChVLig-AMP underscored the importance of Phe-75-mediated distortion of the nick 3′-OH nucleoside in the catalysis of DNA 5′-adenylylation (step 2) and phosphodiester synthesis (step 3). Induced fit of the nicked DNA into a distorted conformation when bound within the ligase clamp may account for the nick-sensing capacity of ChVLig. PMID:21335605

  17. Functional dissection of the DNA interface of the nucleotidyltransferase domain of chlorella virus DNA ligase.

    Science.gov (United States)

    Samai, Poulami; Shuman, Stewart

    2011-04-15

    Chlorella virus DNA ligase (ChVLig) has pluripotent biological activity and an intrinsic nick-sensing function. ChVLig consists of three structural modules that envelop nicked DNA as a C-shaped protein clamp: a nucleotidyltransferase (NTase) domain and an OB domain (these two are common to all DNA ligases) as well as a distinctive β-hairpin latch module. The NTase domain, which performs the chemical steps of ligation, binds the major groove flanking the nick and the minor groove on the 3'-OH side of the nick. Here we performed a structure-guided mutational analysis of the NTase domain, surveying the effects of 35 mutations in 19 residues on ChVLig activity in vivo and in vitro, including biochemical tests of the composite nick sealing reaction and of the three component steps of the ligation pathway (ligase adenylylation, DNA adenylylation, and phosphodiester synthesis). The results highlight (i) key contacts by Thr-84 and Lys-173 to the template DNA strand phosphates at the outer margins of the DNA ligase footprint; (ii) essential contacts of Ser-41, Arg-42, Met-83, and Phe-75 with the 3'-OH strand at the nick; (iii) Arg-176 phosphate contacts at the nick and with ATP during ligase adenylylation; (iv) the role of Phe-44 in forming the protein clamp around the nicked DNA substrate; and (v) the importance of adenine-binding residue Phe-98 in all three steps of ligation. Kinetic analysis of single-turnover nick sealing by ChVLig-AMP underscored the importance of Phe-75-mediated distortion of the nick 3'-OH nucleoside in the catalysis of DNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3). Induced fit of the nicked DNA into a distorted conformation when bound within the ligase clamp may account for the nick-sensing capacity of ChVLig.

  18. Bag1 Co-chaperone Promotes TRC8 E3 Ligase-dependent Degradation of Misfolded Human Ether a Go-Go-related Gene (hERG) Potassium Channels.

    Science.gov (United States)

    Hantouche, Christine; Williamson, Brittany; Valinsky, William C; Solomon, Joshua; Shrier, Alvin; Young, Jason C

    2017-02-10

    Cardiac long QT syndrome type 2 is caused by mutations in the human ether a go-go-related gene (hERG) potassium channel, many of which cause misfolding and degradation at the endoplasmic reticulum instead of normal trafficking to the cell surface. The Hsc70/Hsp70 chaperones assist the folding of the hERG cytosolic domains. Here, we demonstrate that the Hsp70 nucleotide exchange factor Bag1 promotes hERG degradation by the ubiquitin-proteasome system at the endoplasmic reticulum to regulate hERG levels and channel activity. Dissociation of hERG complexes containing Hsp70 and the E3 ubiquitin ligase CHIP requires the interaction of Bag1 with Hsp70, but this does not involve the Bag1 ubiquitin-like domain. The interaction with Bag1 then shifts hERG degradation to the membrane-anchored E3 ligase TRC8 and its E2-conjugating enzyme Ube2g2, as determined by siRNA screening. TRC8 interacts through the transmembrane region with hERG and decreases hERG functional expression. TRC8 also mediates degradation of the misfolded hERG-G601S disease mutant, but pharmacological stabilization of the mutant structure prevents degradation. Our results identify TRC8 as a previously unknown Hsp70-independent quality control E3 ligase for hERG. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Enzymatic Amplification of DNA/RNA Hybrid Molecular Beacon Signaling in Nucleic Acid Detection

    OpenAIRE

    Jacroux, Thomas; Rieck, Daniel C.; Cui, Rong; Ouyang, Yexin; Dong, Wen-Ji

    2012-01-01

    A rapid assay operable under isothermal or non-isothermal conditions is described wherein the sensitivity of a typical molecular beacon (MB) system is improved by utilizing thermostable RNase H to enzymatically cleave an MB comprised of a DNA stem and RNA loop (R/D-MB). Upon hybridization of the R/D-MB to target DNA, there was a modest increase in fluorescence intensity (~5.7x above background) due to an opening of the probe and concomitant reduction in the Förster resonance energy transfer e...

  20. Thermostability promotes the cooperative function of split adenylate kinases.

    Science.gov (United States)

    Nguyen, Peter Q; Liu, Shirley; Thompson, Jeremy C; Silberg, Jonathan J

    2008-05-01

    Proteins can often be cleaved to create inactive polypeptides that associate into functional complexes through non-covalent interactions, but little is known about what influences the cooperative function of the ensuing protein fragments. Here, we examine whether protein thermostability affects protein fragment complementation by characterizing the function of split adenylate kinases from the mesophile Bacillus subtilis (AKBs) and the hyperthermophile Thermotoga neapolitana (AKTn). Complementation studies revealed that the split AKTn supported the growth of Escherichia coli with a temperature-sensitive AK, but not the fragmented AKBs. However, weak complementation occurred when the AKBs fragments were fused to polypeptides that strongly associate, and this was enhanced by a Q16L mutation that thermostabilizes the full-length protein. To examine how the split AK homologs differ in structure and function, their catalytic activity, zinc content, and circular dichroism spectra were characterized. The reconstituted AKTn had higher levels of zinc, greater secondary structure, and >10(3)-fold more activity than the AKBs pair, albeit 17-fold less active than full-length AKTn. These findings provide evidence that the design of protein fragments that cooperatively function can be improved by choosing proteins with the greatest thermostability for bisection, and they suggest that this arises because hyperthermophilic protein fragments exhibit greater residual structure compared to their mesophilic counterparts.

  1. In Vitro Characterization of Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface Loop1[OPEN

    Science.gov (United States)

    Shivhare, Devendra

    2017-01-01

    To maintain metabolic flux through the Calvin-Benson-Bassham cycle in higher plants, dead-end inhibited complexes of Rubisco must constantly be engaged and remodeled by the molecular chaperone Rubisco activase (Rca). In C3 plants, the thermolability of Rca is responsible for the deactivation of Rubisco and reduction of photosynthesis at moderately elevated temperatures. We reasoned that crassulacean acid metabolism (CAM) plants must possess thermostable Rca to support Calvin-Benson-Bassham cycle flux during the day when stomata are closed. A comparative biochemical characterization of rice (Oryza sativa) and Agave tequilana Rca isoforms demonstrated that the CAM Rca isoforms are approximately10°C more thermostable than the C3 isoforms. Agave Rca also possessed a much higher in vitro biochemical activity, even at low assay temperatures. Mixtures of rice and agave Rca form functional hetero-oligomers in vitro, but only the rice isoforms denature at nonpermissive temperatures. The high thermostability and activity of agave Rca mapped to the N-terminal 244 residues. A Glu-217-Gln amino acid substitution was found to confer high Rca activity to rice Rca. Further mutational analysis suggested that Glu-217 restricts the flexibility of the α4-β4 surface loop that interacts with Rubisco via Lys-216. CAM plants thus promise to be a source of highly functional, thermostable Rca candidates for thermal fortification of crop photosynthesis. Careful characterization of their properties will likely reveal further protein-protein interaction motifs to enrich our mechanistic model of Rca function. PMID:28546437

  2. A Family of Salmonella Virulence Factors Functions as a Distinct Class of Autoregulated E3 Ubiquitin Ligases

    Energy Technology Data Exchange (ETDEWEB)

    Quezada, C.; Hicks, S; Galan, J; Stebbins, C

    2009-01-01

    Processes as diverse as receptor binding and signaling, cytoskeletal dynamics, and programmed cell death are manipulated by mimics of host proteins encoded by pathogenic bacteria. We show here that the Salmonella virulence factor SspH2 belongs to a growing class of bacterial effector proteins that harness and subvert the eukaryotic ubiquitination pathway. This virulence protein possesses ubiquitination activity that depends on a conserved cysteine residue. A crystal structure of SspH2 reveals a canonical leucine-rich repeat (LRR) domain that interacts with a unique E{sub 3} ligase [which we have termed NEL for Novel E{sub 3} Ligase] C-terminal fold unrelated to previously observed HECT or RING-finger E{sub 3} ligases. Moreover, the LRR domain sequesters the catalytic cysteine residue contained in the NEL domain, and we suggest a mechanism for activation of the ligase requiring a substantial conformational change to release the catalytic domain for function. We also show that the N-terminal domain targets SspH2 to the apical plasma membrane of polarized epithelial cells and propose a model whereby binding of the LRR to proteins at the target site releases the ligase domain for site-specific function.

  3. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  4. Enzimas termoestáveis: fontes, produção e aplicação industrial Thermostable enzymes: sources, production and industrial applications

    Directory of Open Access Journals (Sweden)

    Eleni Gomes

    2007-02-01

    Full Text Available REVIEW: Living organisms encountered in hostile environments that are characterized by extreme temperatures rely on novel molecular mechanisms to enhance the thermal stability of their proteins, nucleic acids, lipids and cell membranes. Proteins isolated from thermophilic organisms usually exhibit higher intrinsic thermal stabilities than their counterparts isolated from mesophilic organisms. Although the molecular basis of protein thermostability is only partially understood, structural studies have suggested that the factors that may contribute to enhance protein thermostability mainly include hydrophobic packing, enhanced secondary structure propensity, helix dipole stabilization, absence of residues sensitive to oxidation or deamination, and increased electrostatic interactions. Thermostable enzymes such as amylases, xylanases and pectinases isolated from thermophilic organisms are potentially of interest in the optimization of industrial processes due to their enhanced stability. In the present review, an attempt is made to delineate the structural factors that increase enzyme thermostability and to document the research results in the production of these enzymes.

  5. SAG/ROC-SCFβ-TrCP E3 Ubiquitin Ligase Promotes Pro-Caspase-3 Degradation as a Mechanism of Apoptosis Protection

    Directory of Open Access Journals (Sweden)

    Mingjia Tan

    2006-12-01

    Full Text Available Skp1-cullin-F-box protein (SCF is a multicomponent E3 ubiquitin (Ub ligase that ubiquitinates a number of important biologic molecules such as p27, β-catenin, and lκB for proteasomal degradation, thus regulating cell proliferation and survival. One SCF component, SAG/ROC2/Rbx2/Hrt2, a RING finger protein, was first identified as a redox-inducible protein, which, when overexpressed, inhibited apoptosis both in vitro and in vivo. We report here that sensitive to apoptosis gene (SAG, as well as its family member ROC1/Rbxi, bound to the proinactive form of caspase-3 (pro-caspase-3. Binding was likely mediated through F-box protein, β-transducin repeat-containing protein (β-TrCP, which binds to the first 38 amino acids of pro-caspase-3. Importantly, β-TrCP1 expression significantly shortened the protein half-life of pro-caspase-3, whereas expression of a dominant-negative β-TrCP1 mutant with the F-box domain deleted extended it. An in vitro ubiquitination assay showed that SAG/ROC-SCF -Trcp promoted ubiquitination of pro-caspase-3. Furthermore, endogenous levels of pro-caspase-3 were decreased by overexpression of SAG/ROC-SCFβ-TrCP E3 Ub ligases, but increased on siRNA silencing of SAG, regulator of cullin-1 (ROC1, or β-TrCPs, leading to increased apoptosis by etoposide and TNF-related apoptosis-inducing ligand through increased activation of caspase-3. Thus, pro-caspase-3 appears to be a substrate of SAG/ROC-SCFβ-TrCP E3 Ub ligase, which protects cells from apoptosis through increased apoptosis threshold by reducing the basal level of pro-caspase-3.

  6. Useful halophilic, thermostable and ionic liquids tolerant cellulases

    Science.gov (United States)

    Zhang, Tao; Datta, Supratim; Simmons, Blake A.; Rubin, Edward M.

    2016-06-28

    The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.

  7. Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system.

    Science.gov (United States)

    Katano, Yuta; Li, Tongyang; Baba, Misato; Nakamura, Miyo; Ito, Masaaki; Kojima, Kenji; Takita, Teisuke; Yasukawa, Kiyoshi

    2017-12-01

    We attempted to increase the thermostability of Moloney murine leukemia virus (MMLV) reverse transcriptase (RT). The eight-site saturation mutagenesis libraries corresponding to Ala70-Arg469 in the whole MMLV RT (Thr24-Leu671), in each of which 1 out of 50 amino acid residues was replaced with other amino acid residue, were constructed. Seven-hundred and sixty eight MMLV RT clones were expressed using a cell-free protein expression system, and their thermostabilities were assessed by the temperature of thermal treatment at which they retained cDNA synthesis activity. One clone D200C was selected as the most thermostable variant. The highest temperature of thermal treatment at which D200C exhibited cDNA synthesis activity was 57ºC, which was higher than for WT (53ºC). Our results suggest that a combination of site saturation mutagenesis library and cell-free protein expression system might be useful for generation of thermostable MMLV RT in a short period of time for expression and selection.

  8. Apicoplast lipoic acid protein ligase B is not essential for Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Svenja Günther

    2007-12-01

    Full Text Available Lipoic acid (LA is an essential cofactor of alpha-keto acid dehydrogenase complexes (KADHs and the glycine cleavage system. In Plasmodium, LA is attached to the KADHs by organelle-specific lipoylation pathways. Biosynthesis of LA exclusively occurs in the apicoplast, comprising octanoyl-[acyl carrier protein]: protein N-octanoyltransferase (LipB and LA synthase. Salvage of LA is mitochondrial and scavenged LA is ligated to the KADHs by LA protein ligase 1 (LplA1. Both pathways are entirely independent, suggesting that both are likely to be essential for parasite survival. However, disruption of the LipB gene did not negatively affect parasite growth despite a drastic loss of LA (>90%. Surprisingly, the sole, apicoplast-located pyruvate dehydrogenase still showed lipoylation, suggesting that an alternative lipoylation pathway exists in this organelle. We provide evidence that this residual lipoylation is attributable to the dual targeted, functional lipoate protein ligase 2 (LplA2. Localisation studies show that LplA2 is present in both mitochondrion and apicoplast suggesting redundancy between the lipoic acid protein ligases in the erythrocytic stages of P. falciparum.

  9. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase.

    Science.gov (United States)

    Mudhasani, Rajini; Tran, Julie P; Retterer, Cary; Kota, Krishna P; Whitehouse, Chris A; Bavari, Sina

    2016-02-01

    Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)(FBXW11) E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCF(FBXW11) E3 ligase. We further show that disrupting the assembly of the SCF(FBXW11-NSs) E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCF(FBXW11-NSs) E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCF(FBXW11) complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.

  10. Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair.

    Science.gov (United States)

    Qing, Taiping; He, Xiaoxiao; He, Dinggeng; Ye, Xiaosheng; Shangguan, Jingfang; Liu, Jinquan; Yuan, Baoyin; Wang, Kemin

    2017-08-15

    DNA repair processes are responsible for maintaining genome stability. Ligase and polynucleotide kinase (PNK) have important roles in ligase-mediated DNA repair. The development of analytical methods to monitor these enzymes involved in DNA repair pathways is of great interest in biochemistry and biotechnology. In this work, we reported a new strategy for label-free monitoring PNK and ligase activity by using dumbbell-shaped DNA templated copper nanoparticles (CuNPs). In the presence of PNK and ligase, the dumbbell-shaped DNA probe (DP) was locked and could resist the digestion of exonucleases and then served as an efficient template for synthesizing fluorescent CuNPs. However, in the absence of ligase or PNK, the nicked DP could be digested by exonucleases and failed to template fluorescent CuNPs. Therefore, the fluorescence changes of CuNPs could be used to evaluate these enzymes activity. Under the optimal conditions, highly sensitive detection of ligase activity of about 1U/mL and PNK activity down to 0.05U/mL is achieved. To challenge the practical application capability of this strategy, the detection of analyte in dilute cells extracts was also investigated and showed similar linear relationships. In addition to ligase and PNK, this sensing strategy was also extended to the detection of phosphatase, which illustrates the versatility of this strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05

    Directory of Open Access Journals (Sweden)

    Nur Syazwani Mohtar

    2016-12-01

    Full Text Available The glycogen branching enzyme (EC 2.4.1.18, which catalyses the formation of α-1,6-glycosidic branch points in glycogen structure, is often used to enhance the nutritional value and quality of food and beverages. In order to be applicable in industries, enzymes that are stable and active at high temperature are much desired. Using genome mining, the nucleotide sequence of the branching enzyme gene (glgB was extracted from the Geobacillus mahadia Geo-05 genome sequence provided by the Malaysia Genome Institute. The size of the gene is 2013 bp, and the theoretical molecular weight of the protein is 78.43 kDa. The gene sequence was then used to predict the thermostability, function and the three dimensional structure of the enzyme. The gene was cloned and overexpressed in E. coli to verify the predicted result experimentally. The purified enzyme was used to study the effect of temperature and pH on enzyme activity and stability, and the inhibitory effect by metal ion on enzyme activity. This thermostable glycogen branching enzyme was found to be most active at 55 °C, and the half-life at 60 °C and 70 °C was 24 h and 5 h, respectively. From this research, a thermostable glycogen branching enzyme was successfully isolated from Geobacillus mahadia Geo-05 by genome mining together with molecular biology technique.

  12. Membrane-localized ubiquitin ligase ATL15 functions in sugar-responsive growth regulation in Arabidopsis.

    Science.gov (United States)

    Aoyama, Shoki; Terada, Saki; Sanagi, Miho; Hasegawa, Yoko; Lu, Yu; Morita, Yoshie; Chiba, Yukako; Sato, Takeo; Yamaguchi, Junji

    2017-09-09

    Ubiquitin ligases play important roles in regulating various cellular processes by modulating the protein function of specific ubiquitination targets. The Arabidopsis Tóxicos en Levadura (ATL) family is a group of plant-specific RING-type ubiquitin ligases that localize to membranes via their N-terminal transmembrane-like domains. To date, 91 ATL isoforms have been identified in the Arabidopsis genome, with several ATLs reported to be involved in regulating plant responses to environmental stresses. However, the functions of most ATLs remain unknown. This study, involving transcriptome database analysis, identifies ATL15 as a sugar responsive ATL gene in Arabidopsis. ATL15 expression was rapidly down-regulated in the presence of sugar. The ATL15 protein showed ubiquitin ligase activity in vitro and localized to plasma membrane and endomembrane compartments. Further genetic analyses demonstrated that the atl15 knockout mutants are insensitive to high glucose concentrations, whereas ATL15 overexpression depresses plant growth. In addition, endogenous glucose and starch amounts were reciprocally affected in the atl15 knockout mutants and the ATL15 overexpressors. These results suggest that ATL15 protein plays a significant role as a membrane-localized ubiquitin ligase that regulates sugar-responsive plant growth in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Protein thermostability prediction within homologous families using temperature-dependent statistical potentials.

    Directory of Open Access Journals (Sweden)

    Fabrizio Pucci

    Full Text Available The ability to rationally modify targeted physical and biological features of a protein of interest holds promise in numerous academic and industrial applications and paves the way towards de novo protein design. In particular, bioprocesses that utilize the remarkable properties of enzymes would often benefit from mutants that remain active at temperatures that are either higher or lower than the physiological temperature, while maintaining the biological activity. Many in silico methods have been developed in recent years for predicting the thermodynamic stability of mutant proteins, but very few have focused on thermostability. To bridge this gap, we developed an algorithm for predicting the best descriptor of thermostability, namely the melting temperature Tm, from the protein's sequence and structure. Our method is applicable when the Tm of proteins homologous to the target protein are known. It is based on the design of several temperature-dependent statistical potentials, derived from datasets consisting of either mesostable or thermostable proteins. Linear combinations of these potentials have been shown to yield an estimation of the protein folding free energies at low and high temperatures, and the difference of these energies, a prediction of the melting temperature. This particular construction, that distinguishes between the interactions that contribute more than others to the stability at high temperatures and those that are more stabilizing at low T, gives better performances compared to the standard approach based on T-independent potentials which predict the thermal resistance from the thermodynamic stability. Our method has been tested on 45 proteins of known Tm that belong to 11 homologous families. The standard deviation between experimental and predicted Tm's is equal to 13.6°C in cross validation, and decreases to 8.3°C if the 6 worst predicted proteins are excluded. Possible extensions of our approach are discussed.

  14. Crystallization and preliminary X-ray characterization of two thermostable DNA nucleases

    International Nuclear Information System (INIS)

    Kuettner, E. Bartholomeus; Pfeifer, Sven; Keim, Antje; Greiner-Stöffele, Thomas; Sträter, Norbert

    2006-01-01

    Two thermostable DNA nucleases from archaea were crystallized in different space groups; the crystals were suitable for X-ray analysis. Temperature-tolerant organisms are an important source to enhance the stability of enzymes used in biotechnological processes. The DNA-cleaving enzyme exonuclease III from Escherichia coli is used in several applications in gene technology. A thermostable variant could expand the applicability of the enzyme in these methods. Two homologous nucleases from Archaeoglobus fulgidus (ExoAf) and Methanothermobacter thermoautrophicus (ExoMt) were studied for this purpose. Both enzymes were crystallized in different space groups using (poly)ethylene glycols, 2,4-methyl pentandiol, dioxane, ethanol or 2-propanol as precipitants. The addition of a 10-mer DNA oligonucleotide was important to obtain monoclinic crystals of ExoAf and ExoMt that diffracted to resolutions better than 2 Å using synchrotron radiation. The crystal structures of the homologous proteins can serve as templates for genetic engineering of the E. coli exonuclease III and will aid in understanding the different catalytic properties of the enzymes

  15. Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage.

    Science.gov (United States)

    Takagi, Yuichiro; Masuda, Claudio A; Chang, Wei-Hau; Komori, Hirofumi; Wang, Dong; Hunter, Tony; Joazeiro, Claudio A P; Kornberg, Roger D

    2005-04-15

    Core transcription factor (TF) IIH purified from yeast possesses an E3 ubiquitin (Ub) ligase activity, which resides, at least in part, in a RING finger (RNF) domain of the Ssl1 subunit. Yeast strains mutated in the Ssl1 RNF domain are sensitive to ultraviolet (UV) light and to methyl methanesulfonate (MMS). This increased sensitivity to DNA-damaging agents does not reflect a deficiency in nucleotide excision repair. Rather, it correlates with reduced transcriptional induction of genes involved in DNA repair, suggesting that the E3 Ub ligase activity of TFIIH mediates the transcriptional response to DNA damage.

  16. First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus.

    Science.gov (United States)

    Skouri-Gargouri, Houda; Gargouri, Ali

    2008-11-01

    A novel antifungal peptide produced by an indigenous fungal strain (VR) of Aspergillus clavatus was purified. The antifungal peptide was enriched in the supernatant after heat treatment at 70 degrees C. The thermostable character was exploited in the first purification step, as purified peptide was obtained after ultrafiltration and reverse phase-HPLC on C18 column application. The purified peptide named "AcAFP" for A. clavatus antifungal peptide, has molecular mass of 5773Da determined by MALDI-ToF spectrometry. The N-terminal sequence showed a notable identity to the limited family of antifungal peptides produced by ascomycetes fungi. The AcAFP activity remains intact even after heat treatment at 100 degrees C for 1h confirming its thermostability. It exhibits a strong inhibitory activity against mycelial growth of several serious human and plant pathogenic fungi: Fusariuym oxysporum, Fusarium solani, Aspergillus niger, Botrytis cinerea, Alternaria solani, whereas AcAFP did not affect yeast and bacterial growth.

  17. Structural characterization of Staphylococcus aureus biotin protein ligase and interaction partners: An antibiotic target

    OpenAIRE

    Pendini, Nicole R; Yap, Min Y; Polyak, Steven W; Cowieson, Nathan P; Abell, Andrew; Booker, Grant W; Wallace, John C; Wilce, Jacqueline A; Wilce, Matthew C J

    2013-01-01

    The essential metabolic enzyme biotin protein ligase (BPL) is a potential target for the development of new antibiotics required to combat drug-resistant pathogens. Staphylococcus aureus BPL (SaBPL) is a bifunctional protein, possessing both biotin ligase and transcription repressor activities. This positions BPL as a key regulator of several important metabolic pathways. Here, we report the structural analysis of both holo- and apo-forms of SaBPL using X-ray crystallography. We also present ...

  18. SYVN1, an ERAD E3 Ubiquitin Ligase, Is Involved in GABAAα1 Degradation Associated with Methamphetamine-Induced Conditioned Place Preference

    Directory of Open Access Journals (Sweden)

    Dong-Liang Jiao

    2017-10-01

    Full Text Available Abuse of methamphetamine (METH, a powerful addictive amphetamine-type stimulants (ATS, is becoming a global public health problem. The gamma-aminobutyric acid (GABAergic system plays a critical role in METH use disorders. By using rat METH conditioned place preference (CPP model, we previously demonstrated that METH-associated rewarding memory formation was associated with the reduction of GABAAα1 expression in the dorsal straitum (Dstr, however, the underlying mechanism was unclear. In the present study, we found that METH-induced CPP formation was accompanied by a significant increase in the expression of Synovial apoptosis inhibitor 1 (SYVN1, an endoplasmic reticulum (ER-associated degradation (ERAD E3 ubiquitin ligase, in the Dstr. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in both primary cultured neurons and rodent Dstr. Inhibition of proteasomal activity by MG132 and Lactacystin significantly increased GABAAα1 protein levels. We further found that SYVN1 knockdown increased GABAAα1 in the intra-ER, but not in the extra-ER. Accordingly, endoplasmic reticulum stress (ERS-associated Glucose-regulated protein 78 (GRP78 and C/EBP homologous protein (CHOP increased. Thus, this study revealed that SYVN1, as the ERAD E3 ubiquitin ligase, was associated with Dstr GABAAα1 degradation induced by METH conditioned pairing.

  19. Thermostability enhancement of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus by site-directed mutagenesis

    Science.gov (United States)

    Cellobiose 2-epimerase from the thermophile Caldicellulosiruptor saccharolyticus (CsCE) catalyzes the isomerization of lactose into lactulose, a non-digestible disaccharide widely used in food and pharmaceutical industries. Semi-rational approaches were applied to enhance the thermostability of CsCE...

  20. A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates.

    Science.gov (United States)

    Zhu, Hong; Reynolds, L Bruce; Menassa, Rima

    2017-06-19

    Alpha amylase hydrolyzes α-bonds of polysaccharides such as starch and produces malto-oligosaccharides. Its starch saccharification applications make it an essential enzyme in the textile, food and brewing industries. Commercially available α-amylase is mostly produced from Bacillus or Aspergillus. A hyper-thermostable and Ca 2++ independent α-amylase from Pyrococcus furiosus (PFA) expressed in E.coli forms insoluble inclusion bodies and thus is not feasible for industrial applications. We expressed PFA in Nicotiana tabacum and found that plant-produced PFA forms functional aggregates with an accumulation level up to 3.4 g/kg FW (fresh weight) in field conditions. The aggregates are functional without requiring refolding and therefore have potential to be applied as homogenized plant tissue without extraction or purification. PFA can also be extracted from plant tissue upon dissolution in a mild reducing buffer containing SDS. Like the enzyme produced in P. furiosus and in E. coli, plant produced PFA preserves hyper-thermophilicity and hyper-thermostability and has a long shelf life when stored in lyophilized leaf tissue. With tobacco's large biomass and high yield, hyper-thermostable α-amylase was produced at a scale of 42 kg per hectare. Tobacco may be a suitable bioreactor for industrial production of active hyperthermostable alpha amylase.

  1. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    Science.gov (United States)

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  2. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.

    Science.gov (United States)

    Zubradt, Meghan; Gupta, Paromita; Persad, Sitara; Lambowitz, Alan M; Weissman, Jonathan S; Rouskin, Silvi

    2017-01-01

    Coupling of structure-specific in vivo chemical modification to next-generation sequencing is transforming RNA secondary structure studies in living cells. The dominant strategy for detecting in vivo chemical modifications uses reverse transcriptase truncation products, which introduce biases and necessitate population-average assessments of RNA structure. Here we present dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), which encodes DMS modifications as mismatches using a thermostable group II intron reverse transcriptase. DMS-MaPseq yields a high signal-to-noise ratio, can report multiple structural features per molecule, and allows both genome-wide studies and focused in vivo investigations of even low-abundance RNAs. We apply DMS-MaPseq for the first analysis of RNA structure within an animal tissue and to identify a functional structure involved in noncanonical translation initiation. Additionally, we use DMS-MaPseq to compare the in vivo structure of pre-mRNAs with their mature isoforms. These applications illustrate DMS-MaPseq's capacity to dramatically expand in vivo analysis of RNA structure.

  3. The E3 Ubiquitin Ligase TRIM40 Attenuates Antiviral Immune Responses by Targeting MDA5 and RIG-I

    Directory of Open Access Journals (Sweden)

    Chunyuan Zhao

    2017-11-01

    Full Text Available Retinoic acid-inducible gene-I (RIG-I-like receptors (RLRs, including melanoma differentiation-associated gene 5 (MDA5 and RIG-I, are crucial for host recognition of non-self RNAs, especially viral RNA. Thus, the expression and activation of RLRs play fundamental roles in eliminating the invading RNA viruses and maintaining immune homeostasis. However, how RLR expression is tightly regulated remains to be further investigated. In this study, we identified a major histocompatibility complex (MHC-encoded gene, tripartite interaction motif 40 (TRIM40, as a suppressor of RLR signaling by directly targeting MDA5 and RIG-I. TRIM40 binds to MDA5 and RIG-I and promotes their K27- and K48-linked polyubiquitination via its E3 ligase activity, leading to their proteasomal degradation. TRIM40 deficiency enhances RLR-triggered signaling. Consequently, TRIM40 deficiency greatly enhances antiviral immune responses and decreases viral replication in vivo. Thus, we demonstrate that TRIM40 limits RLR-triggered innate activation, suggesting TRIM40 as a potential therapeutic target for the control of viral infection.

  4. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1

    DEFF Research Database (Denmark)

    Carrozzo, Rosalba; Verrigni, Daniela; Rasmussen, Magnhild

    2016-01-01

    BACKGROUND: The encephalomyopathic mtDNA depletion syndrome with methylmalonic aciduria is associated with deficiency of succinate-CoA ligase, caused by mutations in SUCLA2 or SUCLG1. We report here 25 new patients with succinate-CoA ligase deficiency, and review the clinical and molecular findings...... deficiency of complexes I and IV, but normal histological and biochemical findings in muscle did not preclude a diagnosis of succinate-CoA ligase deficiency. In five patients, the urinary excretion of methylmalonic acid was only marginally elevated, whereas elevated plasma methylmalonic acid was consistently...

  5. The BRCA1 Ubiquitin ligase function sets a new trend for remodelling in DNA repair.

    Science.gov (United States)

    Densham, Ruth M; Morris, Joanna R

    2017-03-04

    The protein product of the breast and ovarian cancer gene, BRCA1, is part of an obligate heterodimer with BARD1. Together these RING bearing proteins act as an E3 ubiquitin ligase. Several functions have been attributed to BRCA1 that contribute to genome integrity but which of these, if any, require this enzymatic function was unclear. Here we review recent studies clarifying the role of BRCA1 E3 ubiquitin ligase in DNA repair. Perhaps the most surprising finding is the narrow range of BRCA1 functions this activity relates to. Remarkably ligase activity promotes chromatin remodelling and 53BP1 positioning through the remodeller SMARCAD1, but the activity is dispensable for the cellular survival in response to cisplatin or replication stressing agents. Implications for therapy response and tumor susceptibility are discussed.

  6. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes

    KAUST Repository

    Sevcenco, Ana-Maria; Paravidino, Monica; Vrouwenvelder, Johannes S.; Wolterbeek, Hubert Th.; van Loosdrecht, Mark C.M.; Hagen, Wilfred R.

    2015-01-01

    Oxo-anion binding properties of the thermostable enzyme ferritin from Pyrococcus furiosus were characterized with radiography. Radioisotopes 32P and 76As present as oxoanions were used to measure the extent and the rate of their absorption

  7. Not so monofunctional-a case of thermostable Thermobifida fusca catalase with peroxidase activity

    NARCIS (Netherlands)

    Lončar, Nikola; Fraaije, Marco W

    Thermobifida fusca is a mesothermophilic organism known for its ability to degrade plant biomass and other organics, and it was demonstrated that it represents a rich resource of genes encoding for potent enzymes for biocatalysis. The thermostable catalase from T. fusca has been cloned and

  8. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.

    Science.gov (United States)

    Peters-Wendisch, P; Stansen, K C; Götker, S; Wendisch, V F

    2012-03-01

    Corynebacterium glutamicum is a biotin auxotrophic Gram-positive bacterium that is used for large-scale production of amino acids, especially of L-glutamate and L-lysine. It is known that biotin limitation triggers L-glutamate production and that L-lysine production can be increased by enhancing the activity of pyruvate carboxylase, one of two biotin-dependent proteins of C. glutamicum. The gene cg0814 (accession number YP_225000) has been annotated to code for putative biotin protein ligase BirA, but the protein has not yet been characterized. A discontinuous enzyme assay of biotin protein ligase activity was established using a 105aa peptide corresponding to the carboxyterminus of the biotin carboxylase/biotin carboxyl carrier protein subunit AccBC of the acetyl CoA carboxylase from C. glutamicum as acceptor substrate. Biotinylation of this biotin acceptor peptide was revealed with crude extracts of a strain overexpressing the birA gene and was shown to be ATP dependent. Thus, birA from C. glutamicum codes for a functional biotin protein ligase (EC 6.3.4.15). The gene birA from C. glutamicum was overexpressed and the transcriptome was compared with the control strain revealing no significant gene expression changes of the bio-genes. However, biotin protein ligase overproduction increased the level of the biotin-containing protein pyruvate carboxylase and entailed a significant growth advantage in glucose minimal medium. Moreover, birA overexpression resulted in a twofold higher L-lysine yield on glucose as compared with the control strain.

  9. Thermostability of bovine submaxillary mucin (BSM) in bulk solution and at a sliding interface

    DEFF Research Database (Denmark)

    Madsen, Jan Busk; Pakkanen, Kirsi I.; Lee, Seunghwan

    2014-01-01

    Thermostability of bovine submaxillary mucin (BSM) was studied in terms of its structure, hydrodynamic size, surface adsorption, and lubricating properties in the temperature range of 5-85°C. The overall random coil structure of BSM showed a gradual loosening with increasing temperature as charac......Thermostability of bovine submaxillary mucin (BSM) was studied in terms of its structure, hydrodynamic size, surface adsorption, and lubricating properties in the temperature range of 5-85°C. The overall random coil structure of BSM showed a gradual loosening with increasing temperature...... as characterized by circular dichroism (CD) spectroscopy, but this change was fully reversible upon lowering temperature. Extended heating up to 120min at 80°C did not make any appreciable changes in the structure of BSM when it was cooled to room temperature. The hydrodynamic size of BSM, as studied by dynamic...

  10. Purification, crystallization and preliminary crystallographic analysis of biotin protein ligase from Staphylococcus aureus.

    Science.gov (United States)

    Pendini, Nicole R; Polyak, Steve W; Booker, Grant W; Wallace, John C; Wilce, Matthew C J

    2008-06-01

    Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 A resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P4(2)2(1)2, with unit-cell parameters a = b = 93.665, c = 131.95.

  11. Processing of nuclear viroids in vivo: an interplay between RNA conformations.

    Directory of Open Access Journals (Sweden)

    María-Eugenia Gas

    2007-11-01

    Full Text Available Replication of viroids, small non-protein-coding plant pathogenic RNAs, entails reiterative transcription of their incoming single-stranded circular genomes, to which the (+ polarity is arbitrarily assigned, cleavage of the oligomeric strands of one or both polarities to unit-length, and ligation to circular RNAs. While cleavage in chloroplastic viroids (family Avsunviroidae is mediated by hammerhead ribozymes, where and how cleavage of oligomeric (+ RNAs of nuclear viroids (family Pospiviroidae occurs in vivo remains controversial. Previous in vitro data indicated that a hairpin capped by a GAAA tetraloop is the RNA motif directing cleavage and a loop E motif ligation. Here we have re-examined this question in vivo, taking advantage of earlier findings showing that dimeric viroid (+ RNAs of the family Pospiviroidae transgenically expressed in Arabidopsis thaliana are processed correctly. Using this methodology, we have mapped the processing site of three members of this family at equivalent positions of the hairpin I/double-stranded structure that the upper strand and flanking nucleotides of the central conserved region (CCR can form. More specifically, from the effects of 16 mutations on Citrus exocortis viroid expressed transgenically in A. thaliana, we conclude that the substrate for in vivo cleavage is the conserved double-stranded structure, with hairpin I potentially facilitating the adoption of this structure, whereas ligation is determined by loop E and flanking nucleotides of the two CCR strands. These results have deep implications on the underlying mechanism of both processing reactions, which are most likely catalyzed by enzymes different from those generally assumed: cleavage by a member of the RNase III family, and ligation by an RNA ligase distinct from the only one characterized so far in plants, thus predicting the existence of at least a second plant RNA ligase.

  12. Improving the thermostability by introduction of arginines on the surface of α-L-rhamnosidase (r-Rha1) from Aspergillus niger.

    Science.gov (United States)

    Li, Lijun; Liao, Hui; Yang, Yan; Gong, Jianye; Liu, Jianan; Jiang, Zedong; Zhu, Yanbing; Xiao, Anfeng; Ni, Hui

    2018-06-01

    To improve the thermostability of α-L-rhamnosidase (r-Rha1), an enzyme previously identified from Aspergillus niger JMU-TS528, multiple arginine (Arg) residues were introduced into the r-Rha1 sequence to replace several lysine (Lys) residues that located on the surface of the folded r-Rha1. Hinted by in silico analysis, five surface Lys residues (K134, K228, K406, K440, K573) were targeted to produce a list of 5 single-residue mutants and 4 multiple-residue mutants using site-directed mutagenesis. Among these mutants, a double Lys to Arg mutant, i.e. K406R/K573R, showed the best thermostability improvement. The half-life of this mutant's enzyme activity increased 3 h at 60 °C, 23 min at 65 °C, and 3.5 min at 70 °C, when compared with the wild type. The simulated protein structure based interaction analysis and molecular dynamics calculation indicate that the thermostability improvement of the mutant K406R-K573R was possibly due to the extra hydrogen bonds, the additional cation-π interactions, and the relatively compact conformation. With the enhanced thermostability, the α-L-rhamnosidase mutant, K406R-K573R, has potentially broadened the r-Rha1 applications in food processing industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Synthesis of 4-thiouridine, 6-thioinosine, and 6-thioguanosine 3',5'-O-bisphosphates as donor molecules for RNA ligation and their application to the synthesis of photoactivatable TMG-capped U1 snRNA fragments.

    Science.gov (United States)

    Kadokura, M; Wada, T; Seio, K; Sekine, M

    2000-08-25

    4-Thiouridine, 6-thioguanosine, and 6-thioinosine 3',5'-bisphosphates (9, 20, and 28) were synthesized in good yields by considerably improved methods. In the former two compounds, uridine and 2-N-phenylacetylguanosine were converted via transient O-trimethylsilylation to the corresponding 4- and 6-O-benzenesulfonyl intermediates (2 and 13), which, in turn, were allowed to react with 2-cyanoethanethiol in the presence of N-methylpyrrolidine to give 4-thiouridine (3) and 2-N-phenylacetyl-6-thioguanosine derivatives (14), respectively. In situ dimethoxytritylation of these thionucleoside derivatives gave the 5'-masked products 4 and 15 in high overall yields from 1 and 11. 6-S-(2-Cyanoethyl)-5'-O-(4,4'-dimethoxytrityl)-6-thioinosine (23) was synthesized via substitution of the 5'-O-tritylated 6-chloropurine riboside derivative 22 with 2-cyanoethanethiol. These S-(2-cyanoethyl)thionucleosides were converted to the 2'-O-(tert-butyldimethylsilyl)ribonucleoside 3'-phosphoramidite derivatives 7, 18, and 26 or 3',5'-bisphosphate derivatives 8, 19, and 27. Treatment of 8, 19, and 27 with DBU gave thionucleoside 3',5'-bisphosphate derivatives 9, 20, and 28, which were found to be substrates of T4 RNA ligase. These thionucleoside 3',5'-bisphosphates were examined as donors for ligation with m3(2,2,7) G5'pppAmUmA, i.e., the 5'-terminal tetranucleotide fragment of U1 snRNA, The 4-thiouridine 3',5'-bisphosphate derivative 9 was found to serve as the most active substrate of T4 RNA ligase with a reaction efficiency of 96%.

  14. CHARACTERIZATION OF A NEW BACILLUS-STEAROTHERMOPHILUS ISOLATE - A HIGHLY THERMOSTABLE ALPHA-AMYLASE-PRODUCING STRAIN

    NARCIS (Netherlands)

    WIND, RD; BUITELAAR, RM; EGGINK, G; HUIZING, HJ; DIJKHUIZEN, L

    A novel strain of Bacillus stearothermophilus was isolated from samples of a potato-processing industry. Compared to known alpha-amylases from other B. stearothermophilus strains, the isolate was found to produce a highly thermostable alpha-amylase. The half-time of inactivation of this

  15. Thermostable Cellulases: Why & How?

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [Royal DSM, San Francisco, CA (United States)

    2010-03-24

    These are a set of slides from the conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  16. Thermostable Cellulases: Why & How?

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Incorporated, San Francisco, CA (United States)

    2010-04-19

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  17. Ubiquitin ligase RNF123 mediates degradation of heterochromatin protein 1α and β in lamin A/C knock-down cells.

    Directory of Open Access Journals (Sweden)

    Pankaj Chaturvedi

    Full Text Available The nuclear lamina is a key determinant of nuclear architecture, integrity and functionality in metazoan nuclei. Mutations in the human lamin A gene lead to highly debilitating genetic diseases termed as laminopathies. Expression of lamin A mutations or reduction in levels of endogenous A-type lamins leads to nuclear defects such as abnormal nuclear morphology and disorganization of heterochromatin. This is accompanied by increased proteasomal degradation of certain nuclear proteins such as emerin, nesprin-1α, retinoblastoma protein and heterochromatin protein 1 (HP1. However, the pathways of proteasomal degradation have not been well characterized.To investigate the mechanisms underlying the degradation of HP1 proteins upon lamin misexpression, we analyzed the effects of shRNA-mediated knock-down of lamins A and C in HeLa cells. Cells with reduced levels of expression of lamins A and C exhibited proteasomal degradation of HP1α and HP1β but not HP1γ. Since specific ubiquitin ligases are upregulated in lamin A/C knock-down cells, further studies were carried out with one of these ligases, RNF123, which has a putative HP1-binding motif. Ectopic expression of GFP-tagged RNF123 directly resulted in degradation of HP1α and HP1β. Mutational analysis showed that the canonical HP1-binding pentapeptide motif PXVXL in the N-terminus of RNF123 was required for binding to HP1 proteins and targeting them for degradation. The role of endogenous RNF123 in the degradation of HP1 isoforms was confirmed by RNF123 RNAi experiments. Furthermore, FRAP analysis suggested that HP1β was displaced from chromatin in laminopathic cells.Our data support a role for RNF123 ubiquitin ligase in the degradation of HP1α and HP1β upon lamin A/C knock-down. Hence lamin misexpression can cause degradation of mislocalized proteins involved in key nuclear processes by induction of specific components of the ubiquitin-proteasome system.

  18. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.

    Science.gov (United States)

    Mohammadi, Mohsen; Sepehrizadeh, Zargham; Ebrahim-Habibi, Azadeh; Shahverdi, Ahmad Reza; Faramarzi, Mohammad Ali; Setayesh, Neda

    2016-11-01

    Lipases as significant biocatalysts had been widely employed to catalyze various chemical reactions such as ester hydrolysis, ester synthesis, and transesterification. Improving the activity and thermostability of enzymes is desirable for industrial applications. The lipase of Serratia marcescens belonging to family I.3 lipase has a very important pharmaceutical application in production of chiral precursors. In the present study, to achieve improved lipase activity and thermostability, using computational predictions of protein, four mutant lipases of SML (MutG2P, MutG59P, Mut H279K and MutL613WA614P) were constructed by site-directed mutagenesis. The recombinant mutant proteins were over-expressed in E. coli and purified by affinity chromatography on the Ni-NTA system. Circular dichroism spectroscopy, differential scanning calorimetry and kinetic parameters (Km and kcat) were determined. Our results have shown that the secondary structure of all lipases was approximately similar to one another. The MutG2P and MutG59P were more stable than wild type by approximately 2.3 and 2.9 in T 1/2 , respectively. The catalytic efficiency (kcat/Km) of MutH279K was enhanced by 2-fold as compared with the wild type (p<0.05). These results indicate that using protein modeling program and creating mutation, can enhance lipase activity and/or thermostability of SML and it also could be used for improving other properties of enzyme to the desired requirements as well as further mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Plasmid containing a DNA ligase gene from Haemophilus influenzae

    International Nuclear Information System (INIS)

    McCarthy, D.; Griffin, K.; Setlow, J.K.

    1984-01-01

    A ligase gene from Haemophilus influenzae was cloned into the shuttle vector pDM2. Although the plasmid did not affect X-ray sensitivity, it caused an increase in UV sensitivity of the wild-type but not excision-defective H. influenzae and a decrease in UV sensitivity of the rec-1 mutant. 14 references, 2 figures

  20. Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties

    Directory of Open Access Journals (Sweden)

    Koh Eunhee

    2007-07-01

    Full Text Available Abstract Background EstE1 is a hyperthermophilic esterase belonging to the hormone-sensitive lipase family and was originally isolated by functional screening of a metagenomic library constructed from a thermal environmental sample. Dimers and oligomers may have been evolutionally selected in thermophiles because intersubunit interactions can confer thermostability on the proteins. The molecular mechanisms of thermostabilization of this extremely thermostable esterase are not well understood due to the lack of structural information. Results Here we report for the first time the 2.1-Å resolution crystal structure of EstE1. The three-dimensional structure of EstE1 exhibits a classic α/β hydrolase fold with a central parallel-stranded beta sheet surrounded by alpha helices on both sides. The residues Ser154, Asp251, and His281 form the catalytic triad motif commonly found in other α/β hydrolases. EstE1 exists as a dimer that is formed by hydrophobic interactions and salt bridges. Circular dichroism spectroscopy and heat inactivation kinetic analysis of EstE1 mutants, which were generated by structure-based site-directed mutagenesis of amino acid residues participating in EstE1 dimerization, revealed that hydrophobic interactions through Val274 and Phe276 on the β8 strand of each monomer play a major role in the dimerization of EstE1. In contrast, the intermolecular salt bridges contribute less significantly to the dimerization and thermostability of EstE1. Conclusion Our results suggest that intermolecular hydrophobic interactions are essential for the hyperthermostability of EstE1. The molecular mechanism that allows EstE1 to endure high temperature will provide guideline for rational design of a thermostable esterase/lipase using the lipolytic enzymes showing structural similarity to EstE1.

  1. Implication of SUMO E3 ligases in nucleotide excision repair.

    Science.gov (United States)

    Tsuge, Maasa; Kaneoka, Hidenori; Masuda, Yusuke; Ito, Hiroki; Miyake, Katsuhide; Iijima, Shinji

    2015-08-01

    Post-translational modifications alter protein function to mediate complex hierarchical regulatory processes that are crucial to eukaryotic cellular function. The small ubiquitin-like modifier (SUMO) is an important post-translational modification that affects transcriptional regulation, nuclear localization, and the maintenance of genome stability. Nucleotide excision repair (NER) is a very versatile DNA repair system that is essential for protection against ultraviolet (UV) irradiation. The deficiencies in NER function remarkably increase the risk of skin cancer. Recent studies have shown that several NER factors are SUMOylated, which influences repair efficiency. However, how SUMOylation modulates NER has not yet been elucidated. In the present study, we performed RNAi knockdown of SUMO E3 ligases and found that, in addition to PIASy, the polycomb protein Pc2 affected the repair of cyclobutane pyrimidine dimers. PIAS1 affected both the removal of 6-4 pyrimidine pyrimidone photoproducts and cyclobutane pyrimidine dimers, whereas other SUMO E3 ligases did not affect the removal of either UV lesion.

  2. Escape from Telomere-Driven Crisis Is DNA Ligase III Dependent

    Directory of Open Access Journals (Sweden)

    Rhiannon E. Jones

    2014-08-01

    Full Text Available Short dysfunctional telomeres are capable of fusion, generating dicentric chromosomes and initiating breakage-fusion-bridge cycles. Cells that escape the ensuing cellular crisis exhibit large-scale genomic rearrangements that drive clonal evolution and malignant progression. We demonstrate that there is an absolute requirement for fully functional DNA ligase III (LIG3, but not ligase IV (LIG4, to facilitate the escape from a telomere-driven crisis. LIG3- and LIG4-dependent alternative (A and classical (C nonhomologous end-joining (NHEJ pathways were capable of mediating the fusion of short dysfunctional telomeres, both displaying characteristic patterns of microhomology and deletion. Cells that failed to escape crisis exhibited increased proportions of C-NHEJ-mediated interchromosomal fusions, whereas those that escaped displayed increased proportions of intrachromosomal fusions. We propose that the balance between inter- and intrachromosomal telomere fusions dictates the ability of human cells to escape crisis and is influenced by the relative activities of A- and C-NHEJ at short dysfunctional telomeres.

  3. Engineering of pectinolytic enzymes for enhanced thermostability

    DEFF Research Database (Denmark)

    Larsen, Dorte Møller

    Conversion of waste materials into valuable compounds is promising concerning transformation of byproduct streams such as sugar beet and potato pulp. In order to obtain those compounds with reduced energy consumption, carbohydrate active enzymes can be used as catalysts. Sugar beet and potato pulp...... consist of pectin that can be converted into beneficial polymeric and oligomeric carbohydrates requiring enzymes such as pectin lyases, rhamnogalacturonan I (RGI) lyases, polygalacturonases and galactanases. Enzymatic conversion of such pectinaceous biomasses at high temperatures is advantageous...... as it gives rise to lower substrate viscosity, easier mixing, higher substrate solubility and lowers the risk of contamination. The overall objective of this thesis was to discover enzymes for degradation of RGI structures in pectin and further engineer for enhanced thermostability. The hypotheses were...

  4. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    Science.gov (United States)

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  5. RavN is a member of a previously unrecognized group of Legionella pneumophila E3 ubiquitin ligases

    Science.gov (United States)

    Lin, Yi-Han; Evans, Timothy R.; Doms, Alexandra G.; Beauchene, Nicole A.; Hierro, Aitor

    2018-01-01

    The eukaryotic ubiquitylation machinery catalyzes the covalent attachment of the small protein modifier ubiquitin to cellular target proteins in order to alter their fate. Microbial pathogens exploit this post-translational modification process by encoding molecular mimics of E3 ubiquitin ligases, eukaryotic enzymes that catalyze the final step in the ubiquitylation cascade. Here, we show that the Legionella pneumophila effector protein RavN belongs to a growing class of bacterial proteins that mimic host cell E3 ligases to exploit the ubiquitylation pathway. The E3 ligase activity of RavN was located within its N-terminal region and was dependent upon interaction with a defined subset of E2 ubiquitin-conjugating enzymes. The crystal structure of the N-terminal region of RavN revealed a U-box-like motif that was only remotely similar to other U-box domains, indicating that RavN is an E3 ligase relic that has undergone significant evolutionary alteration. Substitution of residues within the predicted E2 binding interface rendered RavN inactive, indicating that, despite significant structural changes, the mode of E2 recognition has remained conserved. Using hidden Markov model-based secondary structure analyses, we identified and experimentally validated four additional L. pneumophila effectors that were not previously recognized to possess E3 ligase activity, including Lpg2452/SdcB, a new paralog of SidC. Our study provides strong evidence that L. pneumophila is dedicating a considerable fraction of its effector arsenal to the manipulation of the host ubiquitylation pathway. PMID:29415051

  6. Engineering of an Extremely Thermostable Alpha/Beta Barrel Scaffold to Serve as a High Affinity Molecular Recognition Element for Use in Sensor Applications

    Science.gov (United States)

    2015-12-23

    Molecular Recognition Element For Use in Sensor Applications Report Title The overall goal of the project was to evolve a highly thermostable enzyme ( alcohol ...SECURITY CLASSIFICATION OF: The overall goal of the project was to evolve a highly thermostable enzyme ( alcohol dehydrogenase D (AdhD) from Pyrococcus...furiosus) to bind an explosive molecule, RDX. The enzyme naturally catalyzes the nicotinamide cofactor-dependent oxidation or reduction of alcohols

  7. The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism

    Science.gov (United States)

    Feng, Youjun; Chin, Chui-Yoke; Chakravartty, Vandana; Gao, Rongsui; Crispell, Emily K.

    2015-01-01

    ABSTRACT The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well as an N-terminal DNA-binding regulatory domain, similar to the prototypical BirA protein in E. coli. However, the second ligase, which we name BplA, lacks the N-terminal DNA binding motif. It has been unclear why a bacterium would encode these two disparate biotin protein ligases, since F. novicida contains only a single biotinylated protein. In vivo complementation and enzyme assays demonstrated that BirA and BplA are both functional biotin protein ligases, but BplA is a much more efficient enzyme. BirA, but not BplA, regulated transcription of the biotin synthetic operon. Expression of bplA (but not birA) increased significantly during F. novicida infection of macrophages. BplA (but not BirA) was required for bacterial replication within macrophages as well as in mice. These data demonstrate that F. novicida has evolved two distinct enzymes with specific roles; BplA possesses the major ligase activity, whereas BirA acts to regulate and thereby likely prevent wasteful synthesis of biotin. During infection BplA seems primarily employed to maximize the efficiency of biotin utilization without limiting the expression of biotin biosynthetic genes, representing a novel adaptation strategy that may also be used by other intracellular pathogens. PMID:26060274

  8. Resolution Mechanism and Characterization of an Ammonium Chloride-Tolerant, High-Thermostable, and Salt-Tolerant Phenylalanine Dehydrogenase from Bacillus halodurans.

    Science.gov (United States)

    Jiang, Wei; Wang, Ya-Li; Fang, Bai-Shan

    2018-05-09

    As phenylalanine dehydrogenase (PheDH) plays an important role in the synthesis of chiral drug intermediates and detection of phenylketonuria, it is significant to obtain a PheDH with specific and high activity. Here, a PheDH gene, pdh, encoding a novel BhPheDH with 61.0% similarity to the known PheDH from Microbacterium sp., was obtained. The BhPheDH showed optimal activity at 60 °C and pH 7.0, and it showed better stability in hot environment (40-70 °C) than the PheDH from Nocardia sp. And its activity and thermostability could be significantly increased by sodium salt. After incubation for 2 h in 3 M NaCl at 60 °C, the residual activity of the BhPheDH was found to be 1.8-fold higher than that of the control group (without NaCl). The BhPheDH could tolerate high concentration of ammonium chloride and its activity could be also enhanced by the high concentration of ammonium salts. These characteristics indicate that the BhPheDH possesses better thermostability, ammonium chloride tolerance, halophilic mechanism, and high salt activation. The mechanism of thermostability and high salt tolerance of the BhPheDH was analyzed by molecular dynamics simulation. These results provide useful information about the enzyme with high-temperature activity, thermostability, halophilic mechanism, tolerance to high concentration of ammonium chloride, higher salt activation and enantio-selectivity, and the application of molecular dynamics simulation in analyzing the mechanism of these distinctive characteristics.

  9. Role of deoxyribonucleic acid polymerases and deoxyribonucleic acid ligase in x-ray-induced repair synthesis in toluene-treated Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1976-01-01

    Toluene-treated Escherichia coli mutants have been used to study the roles of deoxyribonucleic acid (DNA) polymerases I, II, and III, and of DNA ligase in repair synthesis and strand rejoining following X-irradiation. In cells possessing all three DNA polymerases, both a greater amount of repair synthesis (''exaggerated'' repair synthesis) and failure of ligation are observed when DNA ligase activity is inhibited. In a mutant lacking the polymerizing activity of DNA polymerase I, exaggerated repair synthesis is not observed, and strand rejoining does not occur even if DNA ligase is fully activated. In a mutant possessing the polymerizing activity of DNA polymerase I but lacking its 5' → 3' exonuclease activity, exaggerated repair synthesis is minimal. After irradiation, DNA polymerases II and III are capable of carrying out an adenosine 5'-triphosphate-dependent repair synthesis, but rejoining of strand breaks does not occur and exaggerated synthesis is not seen whether DNA ligase is active or not. These results suggest that DNA polymerase I and DNA ligase act together to limit repair synthesis after X irradiation and that both are necessary in toluene-treated cells for strand rejoining. DNA polymerases II and III apparently cannot complete chain elongation and gap filling, and therefore repair carried out by these enzymes does not respond to ligase action

  10. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    The influence of ligand binding and conformation state on the thermostability of hexameric zinc-insulin was studied by differential scanning calorimetry (DSC). The insulin hexamer exists in equilibrium between the forms T6, T3R3, and R6. Phenolic ligands induce and stabilize the T3R3- and R6-stat...

  11. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure

    DEFF Research Database (Denmark)

    Luijsterburg, Martijn S; Acs, Klara; Ackermann, Leena

    2012-01-01

    The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensation....... Our data show that CHD4, the catalytic subunit of the NuRD complex, interacts with RNF8 and is essential for RNF8-mediated chromatin unfolding. The chromatin remodelling activity of CHD4 promotes efficient ubiquitin conjugation and assembly of RNF168 and BRCA1 at DNA double-strand breaks....... Interestingly, RNF8-mediated recruitment of CHD4 and subsequent chromatin remodelling were independent of the ubiquitin-ligase activity of RNF8, but involved a non-canonical interaction with the forkhead-associated (FHA) domain. Our study reveals a new mechanism of chromatin remodelling-assisted ubiquitylation...

  12. Understanding thermostability and pH dependent properties of proteins

    DEFF Research Database (Denmark)

    Galberg, Pernille

    The work performed in this thesis is part of a larger project (“Computational design of stable enzymes”) involving several research teams, which aimed to improve PROPKA (http://propka.ki.ku.dk) and to provide the scientific community with a computational protocol and associated PROPKA program......, which could be used for predicting mutations with expectation of increased thermostability at a certain pH value or a shifted pH activity optimum. The ability of a Bacillus circulans xylanase (BCX) mutant (N35D/A115E) to induce a decrease in pH activity optimum was evaluated by a pH dependent xylanase...

  13. Extreme growth failure is a common presentation of ligase IV deficiency

    NARCIS (Netherlands)

    Murray, J.E.; Bicknell, L.S.; Yigit, G.; Duker, A.L.; Kogelenberg, M. van; Haghayegh, S.; Wieczorek, D.; Kayserili, H.; Albert, M.H.; Wise, C.A.; Brandon, J.; Kleefstra, T.; Warris, A.; Flier, M. van der; Bamforth, J.S.; Doonanco, K.; Ades, L.; Ma, A.; Field, M.; Johnson, D.; Shackley, F.; Firth, H.; Woods, C.G.; Nurnberg, P.; Gatti, R.A.; Hurles, M.; Bober, M.B.; Wollnik, B.; Jackson, A.P.

    2014-01-01

    Ligase IV syndrome is a rare differential diagnosis for Nijmegen breakage syndrome owing to a shared predisposition to lympho-reticular malignancies, significant microcephaly, and radiation hypersensitivity. Only 16 cases with mutations in LIG4 have been described to date with phenotypes varying

  14. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development.

    Science.gov (United States)

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K; Menssen, Ruth; Wolf, Dieter H; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.

  15. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development.

    Directory of Open Access Journals (Sweden)

    Thorsten Pfirrmann

    Full Text Available In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.

  16. E3 Ubiquitin Ligase c-cbl Inhibits Microglia Activation After Chronic Constriction Injury.

    Science.gov (United States)

    Xue, Pengfei; Liu, Xiaojuan; Shen, Yiming; Ju, Yuanyuan; Lu, Xiongsong; Zhang, Jinlong; Xu, Guanhua; Sun, Yuyu; Chen, Jiajia; Gu, Haiyan; Cui, Zhiming; Bao, Guofeng

    2018-06-22

    E3 ubiquitin ligase c-Caritas B cell lymphoma (c-cbl) is associated with negative regulation of receptor tyrosine kinases, signal transduction of antigens and cytokine receptors, and immune response. However, the expression and function of c-cbl in the regulation of neuropathic pain after chronic constriction injury (CCI) are unknown. In rat CCI model, c-cbl inhibited the activation of spinal cord microglia and the release of pro-inflammatory factors including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), which alleviated mechanical and heat pain through down-regulating extracellular signal-regulated kinase (ERK) pathway. Additionally, exogenous TNF-α inhibited c-cbl protein level vice versa. In the primary microglia transfected with c-cbl siRNA, when treated with TNF-α or TNF-α inhibitor, the corresponding secretion of IL-1β and IL-6 did not change. In summary, CCI down-regulated c-cbl expression and induced the activation of microglia, then activated microglia released inflammatory factors via ERK signaling to cause pain. Our data might supply a novel molecular target for the therapy of CCI-induced neuropathic pain.

  17. A critical role for noncoding 5S rRNA in regulating Mdmx stability.

    Science.gov (United States)

    Li, Muyang; Gu, Wei

    2011-09-16

    Both p53 and Mdmx are ubiquitinated and degraded by the same E3 ligase Mdm2; interestingly, however, while p53 is rapidly degraded by Mdm2, Mdmx is a stable protein in most cancer cells. Thus, the mechanism by which Mdmx is degraded by Mdm2 needs further elucidation. Here, we identified the noncoding 5S rRNA as a major component of Mdmx-associated complexes from human cells. We show that 5S rRNA acts as a natural inhibitor of Mdmx degradation by Mdm2. RNAi-mediated knockdown of endogenous 5S rRNA, while not affecting p53 levels, significantly induces Mdmx degradation and, subsequently, activates p53-dependent growth arrest. Notably, 5S rRNA binds the RING domain of Mdmx and blocks its ubiquitination by Mdm2, whereas Mdm2-mediated p53 ubiquitination remains intact. These results provide insights into the differential effects on p53 and Mdmx by Mdm2 in vivo and reveal a critical role for noncoding 5S rRNA in modulating the p53-Mdmx axis. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Probing ligand binding modes of Mycobacterium tuberculosis MurC ligase by molecular modeling, dynamics simulation and docking.

    Science.gov (United States)

    Anuradha, C M; Mulakayala, Chaitanya; Babajan, Banaganapalli; Naveen, M; Rajasekhar, Chikati; Kumar, Chitta Suresh

    2010-01-01

    Multi drug resistance capacity for Mycobacterium tuberculosis (MDR-Mtb) demands the profound need for developing new anti-tuberculosis drugs. The present work is on Mtb-MurC ligase, which is an enzyme involved in biosynthesis of peptidoglycan, a component of Mtb cell wall. In this paper the 3-D structure of Mtb-MurC has been constructed using the templates 1GQQ and 1P31. Structural refinement and energy minimization of the predicted Mtb-MurC ligase model has been carried out by molecular dynamics. The streochemical check failures in the energy minimized model have been evaluated through Procheck, Whatif ProSA, and Verify 3D. Further torsion angles for the side chains of amino acid residues of the developed model were determined using Predictor. Docking analysis of Mtb-MurC model with ligands and natural substrates enabled us to identify specific residues viz. Gly125, Lys126, Arg331, and Arg332, within the Mtb-MurC binding pocket to play an important role in ligand and substrate binding affinity and selectivity. The availability of Mtb-MurC ligase built model, together with insights gained from docking analysis will promote the rational design of potent and selective Mtb-MurC ligase inhibitors as antituberculosis therapeutics.

  19. Novel inhibitor of DNA ligase IV with a promising cancer therapeutic ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 39; Issue 3. Novel inhibitor of DNA ligase IV with a promising cancer therapeutic potential. Ashwin Kotnis Rita Mulherkar. Clipboards Volume 39 Issue 3 June 2014 pp 339-340. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Biochemical characterisation of LigN, an NAD+-dependent DNA ligase from the halophilic euryarchaeon Haloferax volcanii that displays maximal in vitro activity at high salt concentrations

    DEFF Research Database (Denmark)

    Poidevin, L.; MacNeill, S. A.

    2006-01-01

    Background DNA ligases are required for DNA strand joining in all forms of cellular life. NAD+-dependent DNA ligases are found primarily in eubacteria but also in some eukaryotic viruses, bacteriophage and archaea. Among the archaeal NAD+-dependent DNA ligases is the LigN enzyme of the halophilic...

  1. Multiple regions of Harvey sarcoma virus RNA can dimerize in vitro.

    Science.gov (United States)

    Feng, Y X; Fu, W; Winter, A J; Levin, J G; Rein, A

    1995-04-01

    Retroviruses contain a dimeric RNA consisting of two identical molecules of plus-strand genomic RNA. The structure of the linkage between the two monomers is not known, but they are believed to be joined near their 5' ends. Darlix and coworkers have reported that transcripts of retroviral RNA sequences can dimerize spontaneously in vitro (see, for example, E. Bieth, C. Gabus, and J. L. Darlix, Nucleic Acids Res. 18:119-127, 1990). As one approach to identification of sequences which might participate in the linkage, we have mapped sequences derived from the 5' 378 bases of Harvey sarcoma virus (HaSV) RNA which can dimerize in vitro. We found that at least three distinct regions, consisting of nucleotides 37 to 229, 205 to 272, and 271 to 378, can form these dimers. Two of these regions contain nucleotides 205 to 226; computer analysis suggests that this region can form a stem-loop with an inverted repeat in the loop. We propose that this hypothetical structure is involved in dimer formation by these two transcripts. We also compared the thermal stabilities of each of these dimers with that of HaSV viral RNA. Dimers of nucleotides 37 to 229 and 205 to 272 both exhibited melting temperatures near that of viral RNA, while dimers of nucleotides 271 to 378 are quite unstable. We also found that dimers of nucleotides 37 to 378 formed at 37 degrees C are less thermostable than dimers of the same RNA formed at 55 degrees C. It seems possible that bases from all of these regions participate in the dimer linkage present in viral RNA.

  2. A novel engineered interchain disulfide bond in the constant region enhances the thermostability of adalimumab Fab.

    Science.gov (United States)

    Nakamura, Hitomi; Oda-Ueda, Naoko; Ueda, Tadashi; Ohkuri, Takatoshi

    2018-01-01

    We constructed a system for expressing the Fab of the therapeutic human monoclonal antibody adalimumab at a yield of 20 mg/L in the methylotrophic yeast Pichia pastoris. To examine the contribution of interchain disulfide bonds to conformational stability, we prepared adalimumab Fab from which the interchain disulfide bond at the C-terminal region at both the CH 1 and CL domains was deleted by substitution of Cys with Ala (Fab ΔSS ). DSC measurements showed that the Tm values of Fab ΔSS were approximately 5 °C lower than those of wild-type Fab, suggesting that the interchain disulfide bond contributes to conformational thermostability. Using computer simulations, we designed a novel interchain disulfide bond outside the C-terminal region to increase the stability of Fab ΔSS . The resulting Fab (mutSS Fab ΔSS ) had the mutations H:V177C and L:Q160C in Fab ΔSS , confirming the formation of the disulfide bond between CH 1 and CL. The thermostability of mutSS Fab ΔSS was approximately 5 °C higher than that of Fab ΔSS . Therefore, the introduction of the designed interchain disulfide bond enhanced the thermostability of Fab ΔSS and mitigated the destabilization caused by partial reduction of the interchain disulfide bond at the C-terminal region, which occurs in site-specific modification such as PEGylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. MOLECULAR CLONING AND CHARACTERIZATION OF NOVEL THERMOSTABLE LIPASE FROM SHEWANELLA PUTREFACIENS AND USING ENZYMATIC BIODIESEL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Fahri Akbas

    2015-02-01

    Full Text Available A novel thermostable lipase from Shewanella putrefaciens was identified, expressed in Escherichia coli, characterized and used in biodiesel production. Enzyme characterization was carried out by enzyme assay, SDS-PAGE and other biochemical reactions. The recombinant lipase was found to have a molecular mass of 29 kDa and exhibited lipase activity when Tween 80 was used as the substrate. The purified enzyme showed maximum activity at pH 5.0 and at 80°C. The recombinant lipase was used for the transesterification of canola oil and waste oil. The enzyme retains 50% of its activity at 90°C for 30 minutes. It is also able to retain 20% of its activity even at 100 °C for 20 minutes. These properties of the obtained new recombinant thermostable lipase make it promising as a biocatalyst for industrial processes.

  4. An optimized formulation of a thermostable spray dried virus-like particles vaccine against human papillomavirus

    Science.gov (United States)

    Saboo, Sugandha; Tumban, Ebenezer; Peabody, Julianne; Wafula, Denis; Peabody, David S.; Chackerian, Bryce; Muttil, Pavan

    2016-01-01

    Existing vaccines against human papillomavirus (HPV) require continuous cold-chain storage. Previously, we developed a bacteriophage virus-like particle (VLP) based vaccine for Human Papillomavirus (HPV) infection, which elicits broadly neutralizing antibodies against diverse HPV types. Here, we formulated these VLPs into a thermostable dry powder using a multi-component excipient system and by optimizing the spray drying parameters using a half-factorial design approach. Dry powder VLPs were stable after spray drying and after long-term storage at elevated temperatures. Immunization of mice with a single dose of reconstituted dry powder VLPs that were stored at 37°C for more than a year elicited high anti-L2 IgG antibody titers. Spray dried thermostable, broadly protective L2 bacteriophage VLPs vaccine could be accessible to remote regions of the world (where ~84% of cervical cancer patients reside) by eliminating the cold-chain requirement during transportation and storage. PMID:27019231

  5. Crystallization and preliminary X-ray diffraction studies of the precursor protein of a thermostable variant of papain

    International Nuclear Information System (INIS)

    Roy, Sumana; Choudhury, Debi; Chakrabarti, Chandana; Biswas, Sampa; Dattagupta, J. K.

    2011-01-01

    The crystallization of the precursor of a thermostable variant of papain and the collection of diffraction data to 2.6 Å resolution are reported. The crystallization of a recombinant thermostable variant of pro-papain has been carried out. The mutant pro-enzyme was expressed in Escherichia coli as inclusion bodies, refolded, purified and crystallized. The crystals belonged to space group P2 1 , with unit-cell parameters a = 42.9, b = 74.8, c = 116.5 Å, β = 93.0°, and diffracted to 2.6 Å resolution using synchrotron radiation. Assuming the presence of two molecules in the asymmetric unit, the calculated Matthews coefficient is 2.28 Å 3 Da −1 , corresponding to a solvent content of 46%. Initial attempts to solve the structure using molecular-replacement techniques were successful

  6. Effect of chemical stabilizers on the thermostability and infectivity of a representative panel of freeze dried viruses.

    Directory of Open Access Journals (Sweden)

    Boris Pastorino

    Full Text Available As a partner of the European Virus Archive (EVA FP7 project, our laboratory maintains a large collection of freeze-dried viruses. The distribution of these viruses to academic researchers, public health organizations and industry is one major aim of the EVA consortium. It is known that lyophilization requires appropriate stabilizers to prevent inactivation of the virus. However, few studies have investigated the influence of different stabilizers and lyophilization protocols on the thermostability of different viruses. In order to identify optimal lyophilization conditions that will deliver maximum retention of viral infectivity titre, different stabilizer formulations containing trehalose, sorbitol, sucrose or foetal bovine serum were evaluated for their efficacy in stabilizing a representative panel of freeze dried viruses at different storage temperatures (-20°C, +4°C and +20°C for one week, the two latter mimicking suboptimal shipping conditions. The Tissue Culture Infectious Dose 50% (TCID50 assay was used to compare the titres of infectious virus. The results obtained using four relevant and model viruses (enveloped/non enveloped RNA/DNA viruses still serve to improve the freeze drying conditions needed for the development and the distribution of a large virus collection.

  7. Cytoplasmic expression of a thermostable invertase from Thermotoga maritima in Lactococcus lactis.

    Science.gov (United States)

    Pek, Han Bin; Lim, Pei Yu; Liu, Chengcheng; Lee, Dong-Yup; Bi, Xuezhi; Wong, Fong Tian; Ow, Dave Siak-Wei

    2017-05-01

    To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis. The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively. Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.

  8. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Martínez, Enrique; Cawkwell, Marc J; Voter, Arthur F; Niklasson, Anders M N

    2015-04-21

    Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. The thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.

  9. Identification of Arabidopsis MYB56 as a novel substrate for CRL3(BPM) E3 ligases.

    Science.gov (United States)

    Chen, Liyuan; Bernhardt, Anne; Lee, JooHyun; Hellmann, Hanjo

    2015-02-01

    Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in living cells. A key regulatory system for protein stability is given by the ubiquitin proteasome pathway, which uses E3 ligases to mark specific proteins for degradation. In this work, MYB56 is identified as a novel target of a CULLIN3 (CUL3)-based E3 ligase. Its stability depends on the presence of MATH-BTB/POZ (BPM) proteins, which function as substrate adaptors to the E3 ligase. Genetic studies have indicated that MYB56 is a negative regulator of flowering, while BPMs positively affect this developmental program. The interaction between BPMs and MYB56 occurs at the promoter of FLOWERING LOCUS T (FT), a key regulator in initiating flowering in Arabidopsis, and results in instability of MYB56. Overall the work establishes MYB transcription factors as substrates of BPM proteins, and provides novel information on components that participate in controlling flowering time in plants. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  10. Bilirubin oxidase-like proteins from Podospora anserina: promising thermostable enzymes for application in transformation of plant biomass.

    Science.gov (United States)

    Xie, Ning; Ruprich-Robert, Gwenaël; Silar, Philippe; Chapeland-Leclerc, Florence

    2015-03-01

    Plant biomass degradation by fungi is a critical step for production of biofuels, and laccases are common ligninolytic enzymes envisioned for ligninolysis. Bilirubin oxidases (BODs)-like are related to laccases, but their roles during lignocellulose degradation have not yet been fully investigated. The two BODs of the ascomycete fungus Podospora anserina were characterized by targeted gene deletions. Enzymatic assay revealed that the bod1(Δ) and bod2(Δ) mutants lost partly a thermostable laccase activity. A triple mutant inactivated for bod1, bod2 and mco, a previously investigated multicopper oxidase gene distantly related to laccases, had no thermostable laccase activity. The pattern of fruiting body production in the bod1(Δ) bod2(Δ) double mutant was changed. The bod1(Δ) and bod2(Δ) mutants were reduced in their ability to grow on ligneous and cellulosic materials. Furthermore, bod1(Δ) and bod2(Δ) mutants were defective towards resistance to phenolic substrates and H2 O2 , which may also impact lignocellulose breakdown. Double and triple mutants were more affected than single mutants, evidencing redundancy of function among BODs and mco. Overall, the data show that bod1, bod2 and mco code for non-canonical thermostable laccases that participate in the degradation of lignocellulose. Thanks to their thermal stability, these enzymes may be more promising candidate for biotechnological application than canonical laccases. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Enhancement of thermo-stability and product tolerance of Pseudomonas putida nitrile hydratase by fusing with self-assembling peptide.

    Science.gov (United States)

    Liu, Yi; Cui, Wenjing; Liu, Zhongmei; Cui, Youtian; Xia, Yuanyuan; Kobayashi, Michihiko; Zhou, Zhemin

    2014-09-01

    Self-assembling amphipathic peptides (SAPs) are the peptides that can spontaneously assemble into ordered nanostructures. It has been reported that the attachment of SAPs to the N- or C-terminus of an enzyme can benefit the thermo-stability of the enzyme. Here, we discovered that the thermo-stability and product tolerance of nitrile hydratase (NHase) were enhanced by fusing with two of the SAPs (EAK16 and ELK16). When the ELK16 was fused to the N-terminus of β-subunit, the resultant NHase (SAP-NHase-2) became an active inclusion body; EAK16 fused NHase in the N-terminus of β-subunit (SAP-NHase-1) and ELK16 fused NHase in the C-terminus of β-subunit (SAP-NHase-10) did not affect NHase solubility. Compared with the deactivation of the wild-type NHase after 30 min incubation at 50°C, SAP-NHase-1, SAP-NHase-2 and SAP-NHase-10 retained 45%, 30% and 50% activity; after treatment in the buffer containing 10% acrylamide, the wild-type retained 30% activity, while SAP-NHase-1, SAP-NHase-2 and SAP-NHase-10 retained 52%, 42% and 55% activity. These SAP-NHases with enhanced thermo-stability and product tolerance would be helpful for further industrial applications of the NHase. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Protein features as determinants of wild-type glycoside hydrolase thermostability

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus; Kiemer, Lars; Nielsen, Morten

    2017-01-01

    -silico methods guiding the discovery process would be of high value. To develop such an in-silico method and provide the data foundation of it, we determined the melting temperatures of 602 fungal glycoside hydrolases from the families GH5, 6, 7, 10, 11, 43 and AA9 (formerly GH61). We, then used sequence...... and homology modeled structure information of these enzymes to develop the ThermoP melting temperature prediction method. Futhermore, in the context of thermostability, we determined the relative importance of 160 molecular features, such as amino acid frequencies and spatial interactions, and exemplified...

  13. INCREASING THE THERMOSTABILITY OF THE NEUTRAL PROTEINASE OF BACILLUS-STEAROTHERMOPHILUS BY IMPROVEMENT OF INTERNAL HYDROGEN-BONDING

    NARCIS (Netherlands)

    EIJSINK, VGH; VRIEND, G; VANDERZEE, [No Value; VANDENBURG, B; VENEMA, G

    1992-01-01

    In an attempt to increase the thermostability of the neutral proteinase of Bacillus stearothermophilus the buried Ala-170 was replaced by serine. Molecular-dynamics simulations showed that Ser-170 stabilizes the enzyme by formation of an internal hydrogen bond. In addition, the hydroxy group of

  14. Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B

    NARCIS (Netherlands)

    Winter, Remko T.; Heuts, Dominic P. H. M.; Rijpkema, Egon M. A.; van Bloois, Edwin; Wijma, Hein J.; Fraaije, Marco W.

    We describe the discovery, isolation and characterization of a highly thermostable alditol oxidase from Acidothermus cellulolyticus 11B. This protein was identified by searching the genomes of known thermophiles for enzymes homologous to Streptomyces coelicolor A3(2) alditol oxidase (AldO). A gene

  15. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Penas, Clara; Ramachandran, Vimal [John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL (United States); Ayad, Nagi George, E-mail: nayad@med.miami.edu [John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL (United States); Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL (United States)

    2012-01-09

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.

  16. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    International Nuclear Information System (INIS)

    Penas, Clara; Ramachandran, Vimal; Ayad, Nagi George

    2012-01-01

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.

  17. RMND5 from Xenopus laevis Is an E3 Ubiquitin-Ligase and Functions in Early Embryonic Forebrain Development

    OpenAIRE

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K.; Menssen, Ruth; Wolf, Dieter H.; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of t...

  18. Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis.

    Science.gov (United States)

    Hesampour, Ardeshir; Siadat, Seyed Ehsan Ranaei; Malboobi, Mohammad Ali; Mohandesi, Nooshin; Arab, Seyed Shahriar; Ghahremanpour, Mohammad Mehdi

    2015-03-01

    Phytase efficiently catalyzes the hydrolysis of phytate to phosphate; it can be utilized as an animal supplement to provide animals their nutrient requirements for phosphate and to mitigate environmental pollution caused by unutilized feed phosphate. Owing to animal feed being commonly pelleted at 70 to 90 °C, phytase with a sufficiently high thermal stability is desirable. Based on the crystal structure of PhyA and bioinformatics analysis at variant heat treatments, 12 single and multiple mutants were introduced by site-directed mutagenesis in order to improve phytase thermostability. Mutated constructs were expressed in Pichia pastoris. The manipulated phytases were purified; their biochemical and kinetic investigation revealed that while the thermostability of six mutants was improved, P9 (T314S Q315R V62N) and P12 (S205N S206A T151A T314S Q315R) showed the highest heat stability (P phytase to be used as an animal feed supplement.

  19. Molecular characterization of a novel thermostable laccase PPLCC2 from the brown rot fungus Postia placenta MAD-698-R

    Directory of Open Access Journals (Sweden)

    Hongde An

    2015-11-01

    Conclusions: This is the first identified thermo activated and thermostable laccase in brown rot fungi. This investigation will contribute to understanding the roles played by laccases in brown rot fungi.

  20. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    Energy Technology Data Exchange (ETDEWEB)

    Lemak, Alexander; Yee, Adelinda [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada); Bezsonova, Irina, E-mail: bezsonova@uchc.edu [University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology (United States); Dhe-Paganon, Sirano, E-mail: sirano.dhepaganon@utoronto.ca [University of Toronto, Structural Genomics Consortium (Canada); Arrowsmith, Cheryl H., E-mail: carrow@uhnresearch.ca [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada)

    2011-09-15

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X{sub 4}-Cys-X{sub 4}-Cys-X{sub 28}-Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two {alpha}-helicies.

  1. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    International Nuclear Information System (INIS)

    Lemak, Alexander; Yee, Adelinda; Bezsonova, Irina; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.

    2011-01-01

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X 4 -Cys-X 4 -Cys-X 28 -Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two α-helicies.

  2. Molecular Dynamics Simulation of Barnase: Contribution of Noncovalent Intramolecular Interaction to Thermostability

    Directory of Open Access Journals (Sweden)

    Zhiguo Chen

    2013-01-01

    Full Text Available Bacillus amyloliquefaciens ribonuclease Barnase (RNase Ba is a 12 kD (kilodalton small extracellular ribonuclease. It has broad application prospects in agriculture, clinical medicine, pharmaceutical, and so forth. In this work, the thermal stability of Barnase has been studied using molecular dynamics simulation at different temperatures. The present study focuses on the contribution of noncovalent intramolecular interaction to protein stability and how they affect the thermal stability of the enzyme. Profiles of root mean square deviation and root mean square fluctuation identify thermostable and thermosensitive regions of Barnase. Analyses of trajectories in terms of secondary structure content, intramolecular hydrogen bonds and salt bridge interactions indicate distinct differences in different temperature simulations. In the simulations, Four three-member salt bridge networks (Asp8-Arg110-Asp12, Arg83-Asp75-Arg87, Lys66-Asp93-Arg69, and Asp54-Lys27-Glu73 have been identified as critical salt bridges for thermostability which are maintained stably at higher temperature enhancing stability of three hydrophobic cores. The study may help enlighten our knowledge of protein structural properties, noncovalent interactions which can stabilize secondary peptide structures or promote folding, and also help understand their actions better. Such an understanding is required for designing efficient enzymes with characteristics for particular applications at desired working temperatures.

  3. Engineering and introduction of de novo disulphide bridges in organophosphorus hydrolase enzyme for thermostability improvement.

    Science.gov (United States)

    Farnoosh, Gholamreza; Khajeh, Khosro; Latifi, Ali Mohammad; Aghamollaei, Hossein

    2016-12-01

    The organophosphorus hydrolase (OPH) has been used to degrade organophosphorus chemicals, as one of the most frequently used decontamination methods. Under chemical and thermal denaturing conditions, the enzyme has been shown to unfold. To utilize this enzyme in various applications, the thermal stability is of importance. The engineering of de novo disulphide bridges has been explored as a means to increase the thermal stability of enzymes in the rational method of protein engineering. In this study, Disulphide by Design software, homology modelling and molecular dynamics simulations were used to select appropriate amino acid pairs for the introduction of disulphide bridge to improve protein thermostability. The thermostability of the wild-type and three selected mutant enzymes were evaluated by half-life, delta G inactivation (ΔGi) and structural studies (fluorescence and far-UV CD analysis). Data analysis showed that half-life of A204C/T234C and T128C/E153C mutants were increased up to 4 and 24 min, respectively; however, for the G74C/A78C mutant, the half-life was decreased up to 9 min. For the T128C/E124C mutant, both thermal stability and Catalytic efficiency (kcat) were also increased. The half-life and ΔGi results were correlated to the obtained information from structural studies by circular dichroism (CD) spectrometry and extrinsic fluorescence experiments; as rigidity increased in A204C/T2234C and T128C/E153C mutants, half-life and ΔGi also increased. For G74C/A78C mutant, these parameters decreased due to its higher flexibility. The results were submitted a strong evidence for the possibility to improve the thermostability of OPH enzyme by introducing a disulphide bridge after bioinformatics design, even though this design would not be always successful.

  4. Identification of Ideal Multi-targeting Bioactive Compounds Against Mur Ligases of Enterobacter aerogenes and Its Binding Mechanism in Comparison with Chemical Inhibitors.

    Science.gov (United States)

    Chakkyarath, Vijina; Natarajan, Jeyakumar

    2017-10-31

    Enterobacter aerogenes have been reported as important opportunistic and multi-resistant bacterial pathogens for humans during the last three decades in hospital wards. The emergence of drug-resistant E. aerogenes demands the need for developing new drugs. Peptidoglycan is an important component of the cell wall of bacteria and the peptidoglycan biochemical pathway is considered as the best source of antibacterial targets. Within this pathway, four Mur ligases MurC, MurD, MurE, and MurF are responsible for the successive additions of L-alanine and suitable targets for developing novel antibacterial drugs. As an inference from this fact, we modeled the three-dimensional structure of above Mur ligases using best template structures available in PDB and analyzed its common binding features. Structural refinement and energy minimization of the predicted Mur ligases models is also being done using molecular dynamics studies. The models of Mur ligases were further investigated for in silico docking studies using bioactive plant compounds from the literature. Interestingly, these results indicate that four plant compounds Isojuripidine, Atroviolacegenin, Porrigenin B, and Nummularogenin showing better docking results in terms of binding energy and number of hydrogen bonds. All these four compounds are spirostan-based compounds with differences in side chains and the amino acid such as ASN, LYS, THR, HIS, ARG (polar) and PHE, GLY, VAL, ALA, MET (non-polar) playing active role in binding site of all four Mur ligases. Overall, in the predicted model, the four plant compounds with its binding features could pave way to design novel multi-targeted antibacterial plant-based bioactive compounds specific to Mur ligases for the treatment of Enterobacter infections.

  5. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Boomsma, Wouter Krogh; Nielsen, Sofie Vincents; Lindorff-Larsen, Kresten

    2016-01-01

    conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology...

  6. Thermostable 𝜶-Amylase Activity from Thermophilic Bacteria Isolated from Bora Hot Spring, Central Sulawesi

    Science.gov (United States)

    Gazali, F. M.; Suwastika, I. N.

    2018-03-01

    α-Amylase is one of the most important enzyme in biotechnology field, especially in industrial application. Thermostability of α-Amylase produced by thermophilic bacteria improves industrial process of starch degradation in starch industry. The present study were concerned to the characterization of α-Amylase activity from indigenous thermophilic bacteria isolated from Bora hot spring, Central Sulawesi. There were 18 isolates which had successfully isolated from 90°C sediment samples of Bora hot spring and 13 of them showed amylolytic activity. The α-Amylase activity was measured qualitatively at starch agar and quantitatively based on DNS (3,5-Dinitrosalicylic acid) methods, using maltose as standard solution. Two isolates (out of 13 amylolytic bacteria), BR 002 and BR 015 showed amylolytic index of 0.8 mm and 0.5 mm respectively, after being incubated at 55°C in the 0.002% Starch Agar Medium. The α-Amylase activity was further characterized quantitatively which includes the optimum condition of pH and temperature of α-Amylase crude enzyme from each isolate. To our knowledge, this is the first report on isolation and characterization of a thermostable α-Amylase from thermophilic bacteria isolated from Central Sulawesi particularly from Bora hot spring.

  7. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    Directory of Open Access Journals (Sweden)

    Tina Y Liu

    Full Text Available CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus Type III-A Csm complex (TthCsm with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  8. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    Science.gov (United States)

    Liu, Tina Y; Iavarone, Anthony T; Doudna, Jennifer A

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  9. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity.

    Science.gov (United States)

    Rosebrock, Tracy R; Zeng, Lirong; Brady, Jennifer J; Abramovitch, Robert B; Xiao, Fangming; Martin, Gregory B

    2007-07-19

    Many bacterial pathogens of plants and animals use a type III secretion system to deliver diverse virulence-associated 'effector' proteins into the host cell. The mechanisms by which these effectors act are mostly unknown; however, they often promote disease by suppressing host immunity. One type III effector, AvrPtoB, expressed by the plant pathogen Pseudomonas syringae pv. tomato, has a carboxy-terminal domain that is an E3 ubiquitin ligase. Deletion of this domain allows an amino-terminal region of AvrPtoB (AvrPtoB(1-387)) to be detected by certain tomato varieties leading to immunity-associated programmed cell death. Here we show that a host kinase, Fen, physically interacts with AvrPtoB(1-387 )and is responsible for activating the plant immune response. The AvrPtoB E3 ligase specifically ubiquitinates Fen and promotes its degradation in a proteasome-dependent manner. This degradation leads to disease susceptibility in Fen-expressing tomato lines. Various wild species of tomato were found to exhibit immunity in response to AvrPtoB(1-387 )and not to full-length AvrPtoB. Thus, by acquiring an E3 ligase domain, AvrPtoB has thwarted a highly conserved host resistance mechanism.

  10. Soy Glycinin Contains a Functional Inhibitory Sequence against Muscle-Atrophy-Associated Ubiquitin Ligase Cbl-b

    Directory of Open Access Journals (Sweden)

    Tomoki Abe

    2013-01-01

    Full Text Available Background. Unloading stress induces skeletal muscle atrophy. We have reported that Cbl-b ubiquitin ligase is a master regulator of unloading-associated muscle atrophy. The present study was designed to elucidate whether dietary soy glycinin protein prevents denervation-mediated muscle atrophy, based on the presence of inhibitory peptides against Cbl-b ubiquitin ligase in soy glycinin protein. Methods. Mice were fed either 20% casein diet, 20% soy protein isolate diet, 10% glycinin diet containing 10% casein, or 20% glycinin diet. One week later, the right sciatic nerve was cut. The wet weight, cross sectional area (CSA, IGF-1 signaling, and atrogene expression in hindlimb muscles were examined at 1, 3, 3.5, or 4 days after denervation. Results. 20% soy glycinin diet significantly prevented denervation-induced decreases in muscle wet weight and myofiber CSA. Furthermore, dietary soy protein inhibited denervation-induced ubiquitination and degradation of IRS-1 in tibialis anterior muscle. Dietary soy glycinin partially suppressed the denervation-mediated expression of atrogenes, such as MAFbx/atrogin-1 and MuRF-1, through the protection of IGF-1 signaling estimated by phosphorylation of Akt-1. Conclusions. Soy glycinin contains a functional inhibitory sequence against muscle-atrophy-associated ubiquitin ligase Cbl-b. Dietary soy glycinin protein significantly prevented muscle atrophy after denervation in mice.

  11. Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    Science.gov (United States)

    Deva, Taru; Baker, Edward N; Squire, Christopher J; Smith, Clyde A

    2006-12-01

    The bacterial cell wall provides essential protection from the external environment and confers strength and rigidity to counteract internal osmotic pressure. Without this layer the cell would be easily ruptured and it is for this reason that biosynthetic pathways leading to the formation of peptidoglycan have for many years been a prime target for effective antibiotics. Central to this pathway are four similar ligase enzymes which add peptide groups to glycan moieties. As part of a program to better understand the structure-function relationships in these four enzymes, the crystal structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC) has been determined to 2.6 A resolution. The structure was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and refined to a crystallographic R factor of 0.212 (R(free) = 0.259). The enzyme has a modular multi-domain structure very similar to those of other members of the mur family of ATP-dependent amide-bond ligases. Detailed comparison of these four enzymes shows that considerable conformational changes are possible. These changes, together with the recruitment of two different N-terminal domains, allow this family of enzymes to bind a substrate which is identical at one end and at the other has the growing peptide tail which will ultimately become part of the rigid bacterial cell wall. Comparison of the E. coli and Haemophilus influenzae structures and analysis of the sequences of known MurC enzymes indicate the presence of a ;dimerization' motif in almost 50% of the MurC enzymes and points to a highly conserved loop in domain 3 that may play a key role in amino-acid ligand specificity.

  12. Identification of Arabidopsis MYB56 as a novel substrate for CRL3BPM E3 ligases.

    Science.gov (United States)

    Chen, Liyuan; Bernhardt, Anne; Lee, JooHyun; Hellmann, Hanjo

    2014-10-24

    Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in living cells. A key regulatory system for protein stability is given by the ubiquitin proteasome pathway, which uses E3 ligases to mark specific proteins for degradation. In this work MYB56 is identified as a novel target of a CULLIN3 (CUL3)-based E3 ligase. Its stability depends on the presence of MATH-BTB/POZ (BPM) proteins, which function as substrate adaptors to the E3 ligase. Genetic studies pointed out that MYB56 is a negative regulator of flowering, while BPMs positively affect this developmental program. The interaction between BPMs and MYB56 occurs at the promoter of FLOWERING LOCUS T (FT), a key regulator in initiating flowering in Arabidopsis, and results in instability of MYB56. Overall the work establishes MYB transcription factors as substrates of BPM proteins, and provides novel information on components that participate in controlling the flowering time point in plants. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  13. Development of thermostable Peste des Petits Ruminants (PPR) virus vaccine and assessment of molecular changes in the F gene

    International Nuclear Information System (INIS)

    Palaniswami, K.S.; Thangavelu, A.; Velmurugan, R.

    2005-01-01

    Two Indian PPRV isolates were subjected to thermal hardening procedures to increase the proportion of temperature-resistant virions. Initial infectivity loss was compensated by titre increases on subsequent cell passages at 37 deg C. The immunogenicity of 'thermostable' viruses was assessed by virulent PPRV challenge and for safety by host animal inoculation and antibodies assessment. Vaccine viruses were not found using PCR on ocular and nasal swabs, although virus nucleic acid and antigens were demonstrated in spleen and lymph nodes by FAT and PCR. One vaccine strain (MIB187(T)) giving 100% protection (tested on only a few animals) was freeze dried and the minimum protective dose calculated. Changes in the virus genome after thermo-adaptation were examined using RT-PCR to amplify portions of the F gene, and three base changes were observed in the thermostable PPR strain (compared with the F gene sequence of the Nigerian PPRV strain). At room temperature, the titre and potency of the thermo-adapted vaccine remained constant up to one month at the10 5.5 TCID 50 level, and was 10 4.5 TCID 50 /100 μl after two months. Field trials with over 40 000 doses of the thermostable vaccine under various environmental conditions have given serum neutralization titres exceeding 2 3 and are assumed protective. (author)

  14. Design and Testing of a Thermostable Platform for Multimerization of Single Domain Antibodies

    Science.gov (United States)

    2012-08-01

    H.J. Properties , production, and applications of camelid single domain antibody fragments. Appl. Microbiol. Biot. 2007, 77, 13‒22. 2. Goldman...Conway, J.; Sherwood, L.J.; Fech, M.; Vo, B.; Liu, J.L.; Hayhurst, A. Thermostable llama single domain antibodies for detection of Botulinum A...antiparallel coiled-coil inserted. J. Mol. Bio. 2001, 306, 25‒35. 9. Liu, J.L.; Anderson, G.P.; Goldman, E.R. Isolation of anti- toxin single domain

  15. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase.

    Science.gov (United States)

    Muruganandam, Gopinath; Raasakka, Arne; Myllykoski, Matti; Kursula, Inari; Kursula, Petri

    2017-05-16

    Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.

  16. Structure and catalytic activation of the TRIM23 RING E3 ubiquitin ligase: DAWIDZIAK et al.

    Energy Technology Data Exchange (ETDEWEB)

    Dawidziak, Daria M. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia; Sanchez, Jacint G. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia; Wagner, Jonathan M. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia; Ganser-Pornillos, Barbie K. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia; Pornillos, Owen [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia

    2017-07-24

    Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled-coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher-order oligomerization of the basal coiled-coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.

  17. Staphylococcus aureus DNA ligase: characterization of its kinetics of catalysis and development of a high-throughput screening compatible chemiluminescent hybridization protection assay.

    Science.gov (United States)

    Gul, Sheraz; Brown, Richard; May, Earl; Mazzulla, Marie; Smyth, Martin G; Berry, Colin; Morby, Andrew; Powell, David J

    2004-11-01

    DNA ligases are key enzymes involved in the repair and replication of DNA. Prokaryotic DNA ligases uniquely use NAD+ as the adenylate donor during catalysis, whereas eukaryotic enzymes use ATP. This difference in substrate specificity makes the bacterial enzymes potential targets for therapeutic intervention. We have developed a homogeneous chemiluminescence-based hybridization protection assay for Staphylococcus aureus DNA ligase that uses novel acridinium ester technology and demonstrate that it is an alternative to the commonly used radiometric assays for ligases. The assay has been used to determine a number of kinetic constants for S. aureus DNA ligase catalysis. These included the K(m) values for NAD+ (2.75+/-0.1 microM) and the acridinium-ester-labelled DNA substrate (2.5+/-0.2 nM). A study of the pH-dependencies of kcat, K(m) and kcat/K(m) has revealed values of kinetically influential ionizations within the enzyme-substrate complexes (kcat) and free enzyme (kcat/K(m)). In each case, the curves were shown to be composed of one kinetically influential ionization, for k(cat), pK(a)=6.6+/-0.1 and kcat/K(m), pK(a)=7.1+/-0.1. Inhibition characteristics of the enzyme against two Escherichia coli DNA ligase inhibitors have also been determined with IC50 values for these being 3.30+/-0.86 microM for doxorubicin and 1.40+/-0.07 microM for chloroquine diphosphate. The assay has also been successfully miniaturized to a sufficiently low volume to allow it to be utilized in a high-throughput screen (384-well format; 20 microl reaction volume), enabling the assay to be used in screening campaigns against libraries of compounds to discover leads for further drug development.

  18. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    Science.gov (United States)

    Penas, Clara; Ramachandran, Vimal; Ayad, Nagi George

    2011-01-01

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy. PMID:22655255

  19. Virus-like particle nanoreactors: programmed en capsulation of the thermostable CelB glycosidase inside the P22 capsid

    NARCIS (Netherlands)

    Patterson, D.P.; Schwarz, B.; El-Boubbou, K.; Oost, van der J.; Prevelige, P.E.; Douglas, T.

    2012-01-01

    Self-assembling biological systems hold great potential for the synthetic construction of new active soft nanomaterials. Here we demonstrate the hierarchical bottom-up assembly of bacteriophage P22 virus-like particles (VLPs) that encapsulate the thermostable CelB glycosidase creating catalytically

  20. TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I.

    Science.gov (United States)

    van den Boomen, Dick J H; Timms, Richard T; Grice, Guinevere L; Stagg, Helen R; Skødt, Karsten; Dougan, Gordon; Nathan, James A; Lehner, Paul J

    2014-08-05

    The US11 gene product of human cytomegalovirus promotes viral immune evasion by hijacking the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. US11 initiates dislocation of newly translocated MHC I from the ER to the cytosol for proteasome-mediated degradation. Despite the critical role for ubiquitin in this degradation pathway, the responsible E3 ligase is unknown. In a forward genetic screen for host ERAD components hijacked by US11 in near-haploid KBM7 cells, we identified TMEM129, an uncharacterized polytopic membrane protein. TMEM129 is essential and rate-limiting for US11-mediated MHC-I degradation and acts as a novel ER resident E3 ubiquitin ligase. TMEM129 contains an unusual cysteine-only RING with intrinsic E3 ligase activity and is recruited to US11 via Derlin-1. Together with its E2 conjugase Ube2J2, TMEM129 is responsible for the ubiquitination, dislocation, and subsequent degradation of US11-associated MHC-I. US11 engages two degradation pathways: a Derlin-1/TMEM129-dependent pathway required for MHC-I degradation and a SEL1L/HRD1-dependent pathway required for "free" US11 degradation. Our data show that TMEM129 is a novel ERAD E3 ligase and the central component of a novel mammalian ERAD complex.

  1. Merkel cell polyomavirus small T antigen induces genome instability by E3 ubiquitin ligase targeting.

    Science.gov (United States)

    Kwun, H J; Wendzicki, J A; Shuda, Y; Moore, P S; Chang, Y

    2017-12-07

    The formation of a bipolar mitotic spindle is an essential process for the equal segregation of duplicated DNA into two daughter cells during mitosis. As a result of deregulated cellular signaling pathways, cancer cells often suffer a loss of genome integrity that might etiologically contribute to carcinogenesis. Merkel cell polyomavirus (MCV) small T (sT) oncoprotein induces centrosome overduplication, aneuploidy, chromosome breakage and the formation of micronuclei by targeting cellular ligases through a sT domain that also inhibits MCV large T oncoprotein turnover. These results provide important insight as to how centrosome number and chromosomal stability can be affected by the E3 ligase targeting capacity of viral oncoproteins such as MCV sT, which may contribute to Merkel cell carcinogenesis.

  2. Enzyme engineering through evolution: thermostable recombinant group II intron reverse transcriptases provide new tools for RNA research and biotechnology.

    Science.gov (United States)

    Collins, Kathleen; Nilsen, Timothy W

    2013-08-01

    Current investigation of RNA transcriptomes relies heavily on the use of retroviral reverse transcriptases. It is well known that these enzymes have many limitations because of their intrinsic properties. This commentary highlights the recent biochemical characterization of a new family of reverse transcriptases, those encoded by group II intron retrohoming elements. The novel properties of these enzymes endow them with the potential to revolutionize how we approach RNA analyses.

  3. Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium.

    Science.gov (United States)

    Liu, Feng; Wang, Xiao; Su, Mengying; Yu, Mengyuan; Zhang, Shengchun; Lai, Jianbin; Yang, Chengwei; Wang, Yaqin

    2015-09-17

    SUMOylation is an important post-translational modification of eukaryotic proteins that involves the reversible conjugation of a small ubiquitin-related modifier (SUMO) polypeptide to its specific protein substrates, thereby regulating numerous complex cellular processes. The PIAS (protein inhibitor of activated signal transducers and activators of transcription [STAT]) and SIZ (scaffold attachment factor A/B/acinus/PIAS [SAP] and MIZ) proteins are SUMO E3 ligases that modulate SUMO conjugation. The characteristic features and SUMOylation mechanisms of SIZ1 protein in monocotyledon are poorly understood. Here, we examined the functions of a homolog of Arabidopsis SIZ1, a functional SIZ/PIAS-type SUMO E3 ligase from Dendrobium. In Dendrobium, the predicted DnSIZ1 protein has domains that are highly conserved among SIZ/PIAS-type proteins. DnSIZ1 is widely expressed in Dendrobium organs and has a up-regulated trend by treatment with cold, high temperature and wounding. The DnSIZ1 protein localizes to the nucleus and shows SUMO E3 ligase activity when expressed in an Escherichia coli reconstitution system. Moreover, ectopic expression of DnSIZ1 in the Arabidopsis siz1-2 mutant partially complements several phenotypes and results in enhanced levels of SUMO conjugates in plants exposed to heat shock conditions. We observed that DnSIZ1 acts as a negative regulator of flowering transition which may be via a vernalization-induced pathway. In addition, ABA-hypersensitivity of siz1-2 seed germination can be partially suppressed by DnSIZ1. Our results suggest that DnSIZ1 is a functional homolog of the Arabidopsis SIZ1 with SUMO E3 ligase activity and may play an important role in the regulation of Dendrobium stress responses, flowering and development.

  4. APC/C-mediated degradation of dsRNA-binding protein 4 (DRB4 involved in RNA silencing.

    Directory of Open Access Journals (Sweden)

    Katia Marrocco

    Full Text Available Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome is a master ubiquitin protein ligase (E3 that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized.In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA. This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2 of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed.Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular-protein concentrations and homeostasis of DRB4.

  5. Thermo-stable carbon nanotube-TiO_2 nanocompsite as electron highways in dye-sensitized solar cell produced by bio-nano-process

    International Nuclear Information System (INIS)

    Inoue, Ippei; Yasueda, Hisashi; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro

    2015-01-01

    We produced a thermostable TiO_2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor–liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO_2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO_2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO_2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO_2 photoelectrodes. (paper)

  6. The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication.

    Science.gov (United States)

    Batisse, Julien; Guerrero, Santiago; Bernacchi, Serena; Sleiman, Dona; Gabus, Caroline; Darlix, Jean-Luc; Marquet, Roland; Tisné, Carine; Paillart, Jean-Christophe

    2012-11-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA).

    Science.gov (United States)

    Wang, Li Kai; Zhu, Hui; Shuman, Stewart

    2009-03-27

    NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria, where they are essential for growth and present attractive targets for antimicrobial drug discovery. LigA has a distinctive modular structure in which a nucleotidyltransferase catalytic domain is flanked by an upstream NMN-binding module and by downstream OB-fold, zinc finger, helix-hairpin-helix, and BRCT domains. Here we conducted a structure-function analysis of the nucleotidyltransferase domain of Escherichia coli LigA, guided by the crystal structure of the LigA-DNA-adenylate intermediate. We tested the effects of 29 alanine and conservative mutations at 15 amino acids on ligase activity in vitro and in vivo. We thereby identified essential functional groups that coordinate the reactive phosphates (Arg(136)), contact the AMP adenine (Lys(290)), engage the phosphodiester backbone flanking the nick (Arg(218), Arg(308), Arg(97) plus Arg(101)), or stabilize the active domain fold (Arg(171)). Finer analysis of the mutational effects revealed step-specific functions for Arg(136), which is essential for the reaction of LigA with NAD(+) to form the covalent ligase-AMP intermediate (step 1) and for the transfer of AMP to the nick 5'-PO(4) to form the DNA-adenylate intermediate (step 2) but is dispensable for phosphodiester formation at a preadenylylated nick (step 3).

  8. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    Science.gov (United States)

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  9. Enzymatic liquefaction of agarose above the sol-gel transition temperature using a thermostable endo-type β-agarase, Aga16B.

    Science.gov (United States)

    Kim, Jung Hyun; Yun, Eun Ju; Seo, Nari; Yu, Sora; Kim, Dong Hyun; Cho, Kyung Mun; An, Hyun Joo; Kim, Jae-Han; Choi, In-Geol; Kim, Kyoung Heon

    2017-02-01

    The main carbohydrate of red macroalgae is agarose, a heterogeneous polysaccharide composed of D-galactose and 3,6-anhydro-L-galactose. When saccharifying agarose by enzymes, the unique physical properties of agarose, namely the sol-gel transition and the near-insolubility of agarose in water, limit the accessibility of agarose to the enzymes. Due to the lower accessibility of agarose to enzymes in the gel state than to the sol state, it is important to prevent the sol-gel transition by performing the enzymatic liquefaction of agarose at a temperature higher than the sol-gel transition temperature of agarose. In this study, a thermostable endo-type β-agarase, Aga16B, originating from Saccharophagus degradans 2-40 T , was characterized and introduced in the liquefaction process. Aga16B was thermostable up to 50 °C and depolymerized agarose mainly into neoagarooligosaccharides with degrees of polymerization 4 and 6. Aga16B was applied to enzymatic liquefaction of agarose at 45 °C, which was above the sol-gel transition temperature of 1 % (w/v) agarose (∼35 °C) when cooling agarose. This is the first systematic demonstration of enzymatic liquefaction of agarose, enabled by determining the sol-gel temperature of agarose under specific conditions and by characterizing the thermostability of an endo-type β-agarase.

  10. HSV-1 ICP0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Mirna Perusina Lanfranca

    2014-05-01

    Full Text Available The herpes simplex virus type 1 (HSV-1 encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0, is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0’s E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10, SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0’s capacity to impair the activation of interferon (innate regulatory mediators that include IFI16 (IFN γ-inducible protein 16, MyD88 (myeloid differentiation factor 88, and Mal (MyD88 adaptor-like protein. We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B inflammatory signaling pathway. Finally, ICP0’s paradoxical relationship with USP7 (ubiquitin specific protease 7 and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.

  11. Simultaneous sequencing of coding and noncoding RNA reveals a human transcriptome dominated by a small number of highly expressed noncoding genes.

    Science.gov (United States)

    Boivin, Vincent; Deschamps-Francoeur, Gabrielle; Couture, Sonia; Nottingham, Ryan M; Bouchard-Bourelle, Philia; Lambowitz, Alan M; Scott, Michelle S; Abou-Elela, Sherif

    2018-07-01

    Comparing the abundance of one RNA molecule to another is crucial for understanding cellular functions but most sequencing techniques can target only specific subsets of RNA. In this study, we used a new fragmented ribodepleted TGIRT sequencing method that uses a thermostable group II intron reverse transcriptase (TGIRT) to generate a portrait of the human transcriptome depicting the quantitative relationship of all classes of nonribosomal RNA longer than 60 nt. Comparison between different sequencing methods indicated that FRT is more accurate in ranking both mRNA and noncoding RNA than viral reverse transcriptase-based sequencing methods, even those that specifically target these species. Measurements of RNA abundance in different cell lines using this method correlate with biochemical estimates, confirming tRNA as the most abundant nonribosomal RNA biotype. However, the single most abundant transcript is 7SL RNA, a component of the signal recognition particle. S tructured n on c oding RNAs (sncRNAs) associated with the same biological process are expressed at similar levels, with the exception of RNAs with multiple functions like U1 snRNA. In general, sncRNAs forming RNPs are hundreds to thousands of times more abundant than their mRNA counterparts. Surprisingly, only 50 sncRNA genes produce half of the non-rRNA transcripts detected in two different cell lines. Together the results indicate that the human transcriptome is dominated by a small number of highly expressed sncRNAs specializing in functions related to translation and splicing. © 2018 Boivin et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. The ''THERMOST'' for analysing thermo-structural behaviour of LWR fuel rod under PCI conditions

    International Nuclear Information System (INIS)

    Nuno, H.; Ogawa, S.; Kobayashi, H.

    1983-01-01

    As one of the methods for evaluating the fuel rod performances under power ramping or load following operations, the combined ''FROST'' and ''THERMOST'' system has been developed and being brought into practical use. The former had already been presented at Blackpool Meeting in 1978, and the latter is going to be presented in this paper. The major purpose of the THERMOST is to analyse very detailed thermal and structural fuel behaviours in a rather localized part of fuel rod whereas the FROST deals with whole-rod-wide general performances. The code handles 2-dimensional thermal and structural analyses simultaneously by using finite element method, in axial section wide or in lateral section wide. It consists of a fundamental FEM system of generalized constitution and its surrounding subroutine system which characterizes fuel behaviours such as temperature distribution, thermal expansion, elastoplasticity, creep, cracking, swelling, growth, etc. Thermal analysis is handled by heat conduction and heat transfer elements (6 kinds) and structural analysis by axisymmetric ring and lateral plane elements (6 kinds). Boundary problems such as contact, friction and cracking are treated by gap and crack elements. A sample calculation of PCI performance on a PWR fuel rod under ramping condition is presented with some inpile test data. (author)

  13. Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis

    DEFF Research Database (Denmark)

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    lactams under ambient conditions. In this study, we demonstrated production of these chemicals using ORF26, an acyl-CoA ligase involved in the biosynthesis of ECO-02301 in Streptomyces aizunensis. This enzyme has a broad substrate spectrum and can cyclize 4-aminobutyric acid into γ-butyrolactam, 5...

  14. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants.

    Science.gov (United States)

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum; Hong, Jeong Soo; Oh, Tae Rin; Kim, Woo Taek; Yang, Seong Wook

    2017-08-01

    Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants. [BMB Reports 2017; 50(8): 393-400].

  15. Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible Degrader of the LDLR (IDOL)

    NARCIS (Netherlands)

    Sorrentino, Vincenzo; Scheer, Lilith; Santos, Ana; Reits, Eric; Bleijlevens, Boris; Zelcer, Noam

    2011-01-01

    We recently identified the liver X receptor-regulated E3 ubiquitin ligase inducible degrader of the LDL receptor (IDOL) as a modulator of lipoprotein metabolism. Acting as an E3 ubiquitin ligase, IDOL triggers ubiquitination and subsequent degradation of the low density lipoprotein receptor (LDLR).

  16. Siah1/2 Ubiquitin Ligases in ER Stress Signaling in Melanoma

    Science.gov (United States)

    2016-12-01

    enriched (and downregulated) upon Siah2 KD (Fig 4). RNAseq to identify genes and pathways that are deregulated in the Siah2 KD melanomas, led us...June 2016), Signgene Symposium (Berlin, Germany ; Sept. 2016), European Society for Pigment Cell Research (Milano, Italy; Sept. 2016), Centre National...Flaherty KT, Ronai ZA. Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation

  17. Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants.

    Directory of Open Access Journals (Sweden)

    Katarzyna Jarmoszewicz

    Full Text Available Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking.

  18. DNA synthesis and degradation in UV-irradiated toluene treated cells of E. coli K12: the role of polynucleotide ligase

    International Nuclear Information System (INIS)

    Strike, P.

    1977-01-01

    Toluene treated cells have been used to study the processes of DNA synthesis and DNA degradation in ultra-violet irradiated Escherichia coli K12. Synthesis and degradation are both shown to occur extensively if polynucleotide ligase is inhibited, and to occur to a much lesser extent if ligase activity is optimal. Extensive UV-induced DNA synthesis in toluene-treated cells requires ATP for the initial incision step, and DNA polymerase I. Extensive degradation also depends on the early ATP-dependent incision step, and the subsequent degradation shows a partial requirement for ATP. Curtailment of degradation by ligase requires DNA polymerase activity, but is not dependent upon DNA polymerase I. Apparently this process can be carried out with equal facility by either DNA polymerase II or polymerase III. These observations suggest that extensive DNA polymerase I-dependent repair synthesis and extensive DNA degradation are facets of two divergent pathways of excision repair, both of which depend upon the early uvrABC determined ATP-dependent incision step. (orig.) [de

  19. Methods of hydrolyzing a cellulose using halophilic, thermostable and ionic liquids tolerant cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Datta, Supratim; Simmons, Blake A.; Rubin, Edward M.

    2018-01-09

    The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.

  20. Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach

    Directory of Open Access Journals (Sweden)

    Fan Xinjiong

    2012-03-01

    Full Text Available Abstract Background Pyrethroid pesticides are broad-spectrum pest control agents in agricultural production. Both agricultural and residential usage is continuing to grow, leading to the development of insecticide resistance in the pest and toxic effects on a number of nontarget organisms. Thus, it is necessary to hunt suitable enzymes including hydrolases for degrading pesticide residues, which is an efficient "green" solution to biodegrade polluting chemicals. Although many pyrethroid esterases have consistently been purified and characterized from various resources including metagenomes and organisms, the thermostable pyrethroid esterases have not been reported up to the present. Results In this study, we identified a novel pyrethroid-hydrolyzing enzyme Sys410 belonging to familyV esterases/lipases with activity-based functional screening from Turban Basin metagenomic library. Sys410 contained 280 amino acids with a predicted molecular mass (Mr of 30.8 kDa and was overexpressed in Escherichia coli BL21 (DE3 in soluble form. The optimum pH and temperature of the recombinant Sys410 were 6.5 and 55°C, respectively. The enzyme was stable in the pH range of 4.5-8.5 and at temperatures below 50°C. The activity of Sys410 decreased a little when stored at 4°C for 10 weeks, and the residual activity reached 94.1%. Even after incubation at 25°C for 10 weeks, it kept 68.3% of its activity. The recombinant Sys410 could hydrolyze a wide range of ρ-nitrophenyl esters, but its best substrate is ρ-nitrophenyl acetate with the highest activity (772.9 U/mg. The enzyme efficiently degraded cyhalothrin, cypermethrin, sumicidin, and deltamethrin under assay conditions of 37°C for 15 min, with exceeding 95% hydrolysis rate. Conclusion This is the first report to construct metagenomic libraries from Turban Basin to obtain the thermostable pyrethroid-hydrolyzing enzyme. The recombinant Sys410 with broad substrate specificities and high activity was the most

  1. Toward the virtual screening of potential drugs in the homology modeled NAD+ dependent DNA ligase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Singh, Vijai; Somvanshi, Pallavi

    2010-02-01

    DNA ligase is an important enzyme and it plays vital role in the replication and repair; also catalyzes nick joining between adjacent bases of DNA. The NAD(+) dependent DNA ligase is selectively present in eubacteria and few viruses; but missing in humans. Homology modeling was used to generate 3-D structure of NAD(+) dependent DNA ligase (LigA) of Mycobacterium tuberculosis using the known template (PDB: 2OWO). Furthermore, the stereochemical quality and torsion angle of 3-D structure was validated. Numerous effective drugs were selected and the active amino acid residue in LigA was targeted and virtual screening through molecular docking was done. In this analysis, four drugs Chloroquine, Hydroxychloroquine, Putrienscine and Adriamycin were found more potent in inhibition of M. tuberculosis through the robust binding affinity between protein-drug interactions in comparison with the other studied drugs. A phylogenetic tree was constructed and it was observed that homology of LigA in M. tuberculosis resembled with other Mycobacterium species. The conserved active amino acids of LigA may be useful to target these drugs. These findings could be used as the starting point of a rational design of novel antibacterial drugs and its analogs.

  2. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress

    DEFF Research Database (Denmark)

    Hoffmann, Saskia; Smedegaard, Stine; Nakamura, Kyosuke

    2016-01-01

    ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced...

  3. Aurora Kinase A Promotes AR Degradation via the E3 Ligase CHIP.

    Science.gov (United States)

    Sarkar, Sukumar; Brautigan, David L; Larner, James M

    2017-08-01

    Reducing the levels of the androgen receptor (AR) is one of the most viable approaches to combat castration-resistant prostate cancer. Previously, we observed that proteasomal-dependent degradation of AR in response to 2-methoxyestradiol (2-ME) depends primarily on the E3 ligase C-terminus of HSP70-interacting protein (STUB1/CHIP). Here, 2-ME stimulation activates CHIP by phosphorylation via Aurora kinase A (AURKA). Aurora A kinase inhibitors and RNAi knockdown of Aurora A transcript selectively blocked CHIP phosphorylation and AR degradation. Aurora A kinase is activated by 2-ME in the S-phase as well as during mitosis, and phosphorylates CHIP at S273. Prostate cancer cells expressing an S273A mutant of CHIP have attenuated AR degradation upon 2-ME treatment compared with cells expressing wild-type CHIP, supporting the idea that CHIP phosphorylation by Aurora A activates its E3 ligase activity for the AR. These results reveal a novel 2-ME→Aurora A→CHIP→AR pathway that promotes AR degradation via the proteasome that may offer novel therapeutic opportunities for prostate cancer. Mol Cancer Res; 15(8); 1063-72. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1.

    Science.gov (United States)

    Rodrigues, Elizabeth M; Scudder, Samantha L; Goo, Marisa S; Patrick, Gentry N

    2016-02-03

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. Copyright © 2016 the authors 0270-6474/16/361590-06$15.00/0.

  5. Structural characterization of Staphylococcus aureus biotin protein ligase and interaction partners: an antibiotic target.

    Science.gov (United States)

    Pendini, Nicole R; Yap, Min Y; Traore, D A K; Polyak, Steven W; Cowieson, Nathan P; Abell, Andrew; Booker, Grant W; Wallace, John C; Wilce, Jacqueline A; Wilce, Matthew C J

    2013-06-01

    The essential metabolic enzyme biotin protein ligase (BPL) is a potential target for the development of new antibiotics required to combat drug-resistant pathogens. Staphylococcus aureus BPL (SaBPL) is a bifunctional protein, possessing both biotin ligase and transcription repressor activities. This positions BPL as a key regulator of several important metabolic pathways. Here, we report the structural analysis of both holo- and apo-forms of SaBPL using X-ray crystallography. We also present small-angle X-ray scattering data of SaBPL in complex with its biotin-carboxyl carrier protein substrate as well as the SaBPL:DNA complex that underlies repression. This has revealed the molecular basis of ligand (biotinyl-5'-AMP) binding and conformational changes associated with catalysis and repressor function. These data provide new information to better understand the bifunctional activities of SaBPL and to inform future strategies for antibiotic discovery. © 2013 The Protein Society.

  6. Neuromuscular regulation in zebrafish by a large AAA+ ATPase/ubiquitin ligase, mysterin/RNF213

    Science.gov (United States)

    Kotani, Yuri; Morito, Daisuke; Yamazaki, Satoru; Ogino, Kazutoyo; Kawakami, Koichi; Takashima, Seiji; Hirata, Hiromi; Nagata, Kazuhiro

    2015-01-01

    Mysterin (also known as RNF213) is a huge intracellular protein with two AAA+ ATPase modules and a RING finger ubiquitin ligase domain. Mysterin was originally isolated as a significant risk factor for the cryptogenic cerebrovascular disorder moyamoya disease, and was found to be involved in physiological angiogenesis in zebrafish. However, the function and the physiological significance of mysterin in other than blood vessels remain largely unknown, although mysterin is ubiquitously expressed in animal tissues. In this study, we performed antisense-mediated suppression of a mysterin orthologue in zebrafish larvae and revealed that mysterin-deficient larvae showed significant reduction in fast myofibrils and immature projection of primary motoneurons, leading to severe motor deficits. Fast muscle-specific restoration of mysterin expression cancelled these phenotypes, and interestingly both AAA+ ATPase and ubiquitin ligase activities of mysterin were indispensable for proper fast muscle formation, demonstrating an essential role of mysterin and its enzymatic activities in the neuromuscular regulation in zebrafish. PMID:26530008

  7. Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki; Rhee, David Y.; Connelly, Michele; Sviderskiy, Vladislav O.; Bhasin, Deepak; Chen, Yizhe; Ong, Su-Sien; Chai, Sergio C.; Goktug, Asli N.; Huang, Guochang; Monda, Julie K.; Low, Jonathan; Kim, Ho Shin; Paulo, Joao A.; Cannon, Joe R.; Shelat, Anang A.; Chen, Taosheng; Kelsall, Ian R.; Alpi, Arno F.; Pagala, Vishwajeeth; Wang, Xusheng; Peng, Junmin; Singh , Bhuvanesh; Harper, J. Wade; Schulman, Brenda A.; Guy, R. Kip (MSKCC); (Dundee); (SJCH); (Harvard-Med); (MXPL)

    2017-06-05

    N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.

  8. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding.

    Directory of Open Access Journals (Sweden)

    Chi-Ho Chan

    Full Text Available Most thermophilic proteins tend to have more salt bridges, and achieve higher thermostability by up-shifting and broadening their protein stability curves. While the stabilizing effect of salt-bridge has been extensively studied, experimental data on how salt-bridge influences protein stability curves are scarce. Here, we used double mutant cycles to determine the temperature-dependency of the pair-wise interaction energy and the contribution of salt-bridges to ΔC(p in a thermophilic ribosomal protein L30e. Our results showed that the pair-wise interaction energies for the salt-bridges E6/R92 and E62/K46 were stabilizing and insensitive to temperature changes from 298 to 348 K. On the other hand, the pair-wise interaction energies between the control long-range ion-pair of E90/R92 were negligible. The ΔC(p of all single and double mutants were determined by Gibbs-Helmholtz and Kirchhoff analyses. We showed that the two stabilizing salt-bridges contributed to a reduction of ΔC(p by 0.8-1.0 kJ mol⁻¹ K⁻¹. Taken together, our results suggest that the extra salt-bridges found in thermophilic proteins enhance the thermostability of proteins by reducing ΔC(p, leading to the up-shifting and broadening of the protein stability curves.

  9. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design.

    Science.gov (United States)

    Wu, Tzu-Hui; Chen, Chun-Chi; Cheng, Ya-Shan; Ko, Tzu-Ping; Lin, Cheng-Yen; Lai, Hui-Lin; Huang, Ting-Yung; Liu, Je-Ruei; Guo, Rey-Ting

    2014-04-10

    Escherichia coli phytase (EcAppA) which hydrolyzes phytate has been widely applied in the feed industry, but the need to improve the enzyme activity and thermostability remains. Here, we conduct rational design with two strategies to enhance the EcAppA performance. First, residues near the substrate binding pocket of EcAppA were modified according to the consensus sequence of two highly active Citrobacter phytases. One out of the eleven mutants, V89T, exhibited 17.5% increase in catalytic activity, which might be a result of stabilized protein folding. Second, the EcAppA glycosylation pattern was modified in accordance with the Citrobacter phytases. An N-glycosylation motif near the substrate binding site was disrupted to remove spatial hindrance for phytate entry and product departure. The de-glycosylated mutants showed 9.6% increase in specific activity. On the other hand, the EcAppA mutants that adopt N-glycosylation motifs from CbAppA showed improved thermostability that three mutants carrying single N-glycosylation motif exhibited 5.6-9.5% residual activity after treatment at 80°C (1.8% for wild type). Furthermore, the mutant carrying all three glycosylation motifs exhibited 27% residual activity. In conclusion, a successful rational design was performed to obtain several useful EcAppA mutants with better properties for further applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573.

    Science.gov (United States)

    Boukhris, Ines; Farhat-Khemakhem, Ameny; Blibech, Monia; Bouchaala, Kameleddine; Chouayekh, Hichem

    2015-09-01

    The extracellular phytase produced by the Bacillus amyloliquefaciens US573 strain, isolated from geothermal soil located in Southern Tunisia was purified and characterized. This calcium-dependent and bile-stable enzyme (PHY US573) was optimally active at pH 7.5 and 70 °C. It showed a good stability at pH ranging from 4 to 10, and especially, an exceptional thermostability as it recovered 50 and 62% of activity after heating for 10 min at 100 and 90 °C, respectively. In addition, PHY US573 was found to be extremely salt-tolerant since it preserved 80 and 95% of activity in the presence of 20 g/l of NaCl and LiCl, respectively. The gene corresponding to PHY US573 was cloned. It encodes a 383 amino acids polypeptide exhibiting 99% identity with the highly thermostable phytases from Bacillus sp. MD2 and B. amyloliquefaciens DS11 (3 and 5 residues difference, respectively), suggesting the existence of common molecular determinants responsible for their remarkable heat stability. Overall, our findings illustrated that in addition to its high potential for application in feed industry, the salt tolerance of the PHY US573 phytase, may represent an exciting new avenue for improvement of phosphorus-use efficiency of salt-tolerant plants in soils with high salt and phytate content. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Identification of thermostable β-xylosidase activities produced by Aspergillus brasiliensis and Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Mads; Lauritzen, Henrik Klitgaard; Frisvad, Jens Christian

    2007-01-01

    Twenty Aspergillus strains were evaluated for production of extracellular cellulolytic and xylanolytic activities. Aspergillus brasiliensis, A. niger and A. japonicus produced the highest xylanase activities with the A. brasiliensis and A. niger strains producing thermostable beta......-xylosidases. The beta-xylosidase activities of the A. brasiliensis and A. niger strains had similar temperature and pH optima at 75 degrees C and pH 5 and retained 62% and 99%, respectively, of these activities over 1 h at 60 degrees C. At 75 degrees C, these values were 38 and 44%, respectively. Whereas A. niger...

  12. Structure-function analysis of the OB and latch domains of chlorella virus DNA ligase.

    Science.gov (United States)

    Samai, Poulami; Shuman, Stewart

    2011-06-24

    Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5'-phosphate nucleotide and the 3'-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps.

  13. Structure-Function Analysis of the OB and Latch Domains of Chlorella Virus DNA Ligase*

    Science.gov (United States)

    Samai, Poulami; Shuman, Stewart

    2011-01-01

    Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5′-phosphate nucleotide and the 3′-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps. PMID:21527793

  14. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes.

    Science.gov (United States)

    Bhalla, Aditya; Bansal, Namita; Kumar, Sudhir; Bischoff, Kenneth M; Sani, Rajesh K

    2013-01-01

    Second-generation feedstock, especially nonfood lignocellulosic biomass is a potential source for biofuel production. Cost-intensive physical, chemical, biological pretreatment operations and slow enzymatic hydrolysis make the overall process of lignocellulosic conversion into biofuels less economical than available fossil fuels. Lignocellulose conversions carried out at ≤ 50 °C have several limitations. Therefore, this review focuses on the importance of thermophilic bacteria and thermostable enzymes to overcome the limitations of existing lignocellulosic biomass conversion processes. The influence of high temperatures on various existing lignocellulose conversion processes and those that are under development, including separate hydrolysis and fermentation, simultaneous saccharification and fermentation, and extremophilic consolidated bioprocess are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling.

    Science.gov (United States)

    Schumacher, Dominik; Lemke, Oliver; Helma, Jonas; Gerszonowicz, Lena; Waller, Verena; Stoschek, Tina; Durkin, Patrick M; Budisa, Nediljko; Leonhardt, Heinrich; Keller, Bettina G; Hackenberger, Christian P R

    2017-05-01

    The broad substrate tolerance of tubulin tyrosine ligase is the basic rationale behind its wide applicability for chemoenzymatic protein functionalization. In this context, we report that the wild-type enzyme enables ligation of various unnatural amino acids that are substantially bigger than and structurally unrelated to the natural substrate, tyrosine, without the need for extensive protein engineering. This unusual substrate flexibility is due to the fact that the enzyme's catalytic pocket forms an extended cavity during ligation, as confirmed by docking experiments and all-atom molecular dynamics simulations. This feature enabled one-step C-terminal biotinylation and fluorescent coumarin labeling of various functional proteins as demonstrated with ubiquitin, an antigen binding nanobody, and the apoptosis marker Annexin V. Its broad substrate tolerance establishes tubulin tyrosine ligase as a powerful tool for in vitro enzyme-mediated protein modification with single functional amino acids in a specific structural context.

  16. Expression of Mycobacterium tuberculosis Ku and Ligase D in Escherichia coli results in RecA and RecB-independent DNA end-joining at regions of microhomology.

    Science.gov (United States)

    Malyarchuk, Svitlana; Wright, Douglas; Castore, Reneau; Klepper, Emily; Weiss, Bernard; Doherty, Aidan J; Harrison, Lynn

    2007-10-01

    Unlike Escherichia coli, Mycobacterium tuberculosis (Mt) expresses a Ku-like protein and an ATP-dependent DNA ligase that can perform non-homologous end-joining (NHEJ). We have expressed the Mt-Ku and Mt-Ligase D in E. coli using an arabinose-inducible promoter and expression vectors that integrate into specific sites in the E. coli chromosome. E. coli strains have been generated that express the Mt-Ku and Mt-Ligase D on a genetic background that is wild-type for repair, or deficient in either the RecA or RecB protein. Transformation of these strains with linearized plasmid DNA containing a 2bp overhang has demonstrated that expression of both the Mt-Ku and Mt-Ligase D is required for DNA end-joining and that loss of RecA does not prevent this double-strand break repair. Analysis of the re-joined plasmid has shown that repair is predominantly inaccurate and results in the deletion of sequences. Loss of RecB did not prevent the formation of large deletions, but did increase the amount of end-joining. Sequencing the junctions has revealed that the majority of the ligations occurred at regions of microhomology (1-4bps), eliminating one copy of the homologous sequence at the junction. The Mt-Ku and Mt-Ligase D can therefore function in E. coli to re-circularize linear plasmid.

  17. Improved thermostability and enzyme activity of a recombinant phyA mutant phytase from Aspergillus niger N25 by directed evolution and site-directed mutagenesis.

    Science.gov (United States)

    Tang, Zizhong; Jin, Weiqiong; Sun, Rong; Liao, Yan; Zhen, Tianrun; Chen, Hui; Wu, Qi; Gou, Lin; Li, Chenlei

    2018-01-01

    We previously constructed three recombinant phyA mutant strains (PP-NP m -8, PP-NP ep -6A and I44E/T252R-PhyA), showing improved catalytic efficiency or thermostability of Aspergillus niger N25 phytase, by error-prone PCR or site-directed mutagenesis. In this study, directed evolution and site-directed mutagenesis were further applied to improve the modified phytase properties. After one-round error-prone PCR for phytase gene of PP-NP ep -6A, a single transformant, T195L/Q368E/F376Y, was obtained with the significant improvements in catalytic efficiency and thermostability. The phytase gene of T195L/Q368E/F376Y, combined with the previous mutant phytase genes of PP-NP ep -6A, PP-NP m -8 and I44E/T252R-PhyA, was then sequentially modified by DNA shuffling. Three genetically engineered strains with desirable properties were then obtained, namedQ172R, Q172R/K432R andQ368E/K432R. Among them, Q172R/K432R showed the highest thermostability with the longest half-life and the greatest remaining phytase activity after heat treatment, while Q368E/K432R showed the highest catalytic activity. Five substitutions (Q172R, T195L, Q368E, F376Y, K432R) identified from random mutagenesis were added sequentially to the phytase gene of PP-NP ep -6A to investigate how the mutant sites influence the properties of phytase. Characterization and structural analysis demonstrated that these mutations could produce cumulative or synergistic improvements in thermostability or catalytic efficiency of phytase. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate.

    Science.gov (United States)

    Nandakumar, Jayakrishnan; Nair, Pravin A; Shuman, Stewart

    2007-04-27

    NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria and essential for growth. Their distinctive substrate specificity and domain organization vis-a-vis human ATP-dependent ligases make them outstanding targets for anti-infective drug discovery. We report here the 2.3 A crystal structure of Escherichia coli LigA bound to an adenylylated nick, which captures LigA in a state poised for strand closure and reveals the basis for nick recognition. LigA envelopes the DNA within a protein clamp. Large protein domain movements and remodeling of the active site orchestrate progression through the three chemical steps of the ligation reaction. The structure inspires a strategy for inhibitor design.

  19. Highly Efficient Thermostable DSM Cellulases: Why & How?

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Inc., San Francisco, CA (United States)

    2011-04-26

    These are the slides from this presentation. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  20. Staphylococcus aureus β-Toxin Mutants Are Defective in Biofilm Ligase and Sphingomyelinase Activity, and Causation of Infective Endocarditis and Sepsis.

    Science.gov (United States)

    Herrera, Alfa; Vu, Bao G; Stach, Christopher S; Merriman, Joseph A; Horswill, Alexander R; Salgado-Pabón, Wilmara; Schlievert, Patrick M

    2016-05-03

    β-Toxin is an important virulence factor of Staphylococcus aureus, contributing to colonization and development of disease [Salgado-Pabon, W., et al. (2014) J. Infect. Dis. 210, 784-792; Huseby, M. J., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 14407-14412; Katayama, Y., et al. (2013) J. Bacteriol. 195, 1194-1203]. This cytotoxin has two distinct mechanisms of action: sphingomyelinase activity and DNA biofilm ligase activity. However, the distinct mechanism that is most important for its role in infective endocarditis is unknown. We characterized the active site of β-toxin DNA biofilm ligase activity by examining deficiencies in site-directed mutants through in vitro DNA precipitation and biofilm formation assays. Possible conformational changes in mutant structure compared to that of wild-type toxin were assessed preliminarily by trypsin digestion analysis, retention of sphingomyelinase activity, and predicted structures based on the native toxin structure. We addressed the contribution of each mechanism of action to producing infective endocarditis and sepsis in vivo in a rabbit model. The H289N β-toxin mutant, lacking sphingomyelinase activity, exhibited lower sepsis lethality and infective endocarditis vegetation formation compared to those of the wild-type toxin. β-Toxin mutants with disrupted biofilm ligase activity did not exhibit decreased sepsis lethality but were deficient in infective endocarditis vegetation formation compared to the wild-type protein. Our study begins to characterize the DNA biofilm ligase active site of β-toxin and suggests β-toxin functions importantly in infective endocarditis through both of its mechanisms of action.

  1. The β-catenin E3 ubiquitin ligase SIAH-1 is regulated by CSN5/JAB1 in CRC cells.

    Science.gov (United States)

    Jumpertz, Sandra; Hennes, Thomas; Asare, Yaw; Vervoorts, Jörg; Bernhagen, Jürgen; Schütz, Anke K

    2014-09-01

    COP9 signalosome subunit 5 (CSN5) plays a decisive role in cellular processes such as cell cycle regulation and apoptosis via promoting protein degradation, gene transcription, and nuclear export. CSN5 regulates cullin-RING-E3 ligase (CRL) activity through its deNEDDylase function. It is overexpressed in several tumor entities, but its role in colorectal cancer (CRC) is poorly understood. Wnt/β-catenin signaling is aberrant in most CRC cells, resulting in increased levels of oncogenic β-catenin and thus tumor progression. Under physiological conditions, β-catenin levels are tightly regulated by continuous proteasomal degradation. We recently showed that knockdown of CSN5 in model and CRC cells results in decreased (phospho)-β-catenin levels. Reduced β-catenin levels were associated with an attenuated proliferation rate of different CRC cell types after CSN5 knockdown. The canonical Wnt pathway involves degradation of β-catenin by a β-TrCP1-containing E3 ligase, but is mostly non-functional in CRC cells. We thus hypothesized that alternative β-catenin degradation mediated by SIAH-1 (seven in absentia homolog-1), is responsible for the effect of CSN5 on β-catenin signaling in CRC cells. We found that SIAH-1 plays an essential role in β-catenin degradation in HCT116 CRC cells and that CSN5 affects β-catenin target gene expression in these cells. Of note, CSN5 affected SIAH-1 mRNA and SIAH-1 protein levels. Moreover, β-catenin and SIAH-1 form protein complexes with CSN5 in HCT116 cells. Lastly, we demonstrate that CSN5 promotes SIAH-1 degradation in HCT116 and SW480 cells and that this is associated with its deNEDDylase activity. In conclusion, we have identified a CSN5/β-catenin/SIAH-1 interaction network that might control β-catenin degradation in CRC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Cloning, purification and characterization of a thermostable β-galactosidase from Bacillus licheniformis strain KG9.

    Science.gov (United States)

    Matpan Bekler, F; Stougaard, P; Güven, K; Gül Güven, R; Acer, Ö

    2015-06-28

    A thermo— and alkalitolerant Bacillus licheniformis KG9 isolated from Taşlıdere hot water spring in Batman/Turkey was found to produce a thermostable β—galactosidase. Phylogenetic analysis showed that the 16S rRNA gene from B. licheniformis strain KG9 was 99.9% identical to that of the genome sequenced B. licheniformis strain DSM 13. Analysis of the B. licheniformis DSM 13 genomic sequence revealed four putative β—galactosidase genes. PCR primers based on the genome sequence of strain DSM 13 were used to isolate the corresponding β—galactosidase genes from B. licheniformis strain KG9. The calculated molecular weights of the β—galactosidases I, II, III, and IV using sequencing data were 30, 79, 74, and 79 kDa, respectively. The genes were inserted into an expression vector and recombinant β—galactosidase was produced in Escherichia coli. Of the four β—galactosidase genes identified in strain KG9, three of them were expressed as active, intracellular enzymes in E. coli. One of the recombinant enzymes, β—galactosidase III, was purified and characterized. Optimal temperature and pH was determined to be at 60 ºC and pH 6.0, respectively. Km was determined to be 1.3 mM and 13.3 mM with oNPG (ortho—nitrophenyl—β—D—galactopyranoside) and lactose as substrates, respectively, and Vmax was measured to 1.96 μmol/min and 1.55 μmol/min with oNPG and lactose, respectively.

  3. The ubiquitin ligase ASB4 promotes trophoblast differentiation through the degradation of ID2.

    Directory of Open Access Journals (Sweden)

    W H Davin Townley-Tilson

    Full Text Available Vascularization of the placenta is a critical developmental process that ensures fetal viability. Although the vascular health of the placenta affects both maternal and fetal well being, relatively little is known about the early stages of placental vascular development. The ubiquitin ligase Ankyrin repeat, SOCS box-containing 4 (ASB4 promotes embryonic stem cell differentiation to vascular lineages and is highly expressed early in placental development. The transcriptional regulator Inhibitor of DNA binding 2 (ID2 negatively regulates vascular differentiation during development and is a target of many ubiquitin ligases. Due to their overlapping spatiotemporal expression pattern in the placenta and contrasting effects on vascular differentiation, we investigated whether ASB4 regulates ID2 through its ligase activity in the placenta and whether this activity mediates vascular differentiation. In mouse placentas, ASB4 expression is restricted to a subset of cells that express both stem cell and endothelial markers. Placentas that lack Asb4 display immature vascular patterning and retain expression of placental progenitor markers, including ID2 expression. Using JAR placental cells, we determined that ASB4 ubiquitinates and represses ID2 expression in a proteasome-dependent fashion. Expression of ASB4 in JAR cells and primary isolated trophoblast stem cells promotes the expression of differentiation markers. In functional endothelial co-culture assays, JAR cells ectopically expressing ASB4 increased endothelial cell turnover and stabilized endothelial tube formation, both of which are hallmarks of vascular differentiation within the placenta. Co-transfection of a degradation-resistant Id2 mutant with Asb4 inhibits both differentiation and functional responses. Lastly, deletion of Asb4 in mice induces a pathology that phenocopies human pre-eclampsia, including hypertension and proteinuria in late-stage pregnant females. These results indicate that

  4. SUMO E3 ligase Mms21 prevents spontaneous DNA damage induced genome rearrangements.

    Directory of Open Access Journals (Sweden)

    Jason Liang

    2018-03-01

    Full Text Available Mms21, a subunit of the Smc5/6 complex, possesses an E3 ligase activity for the Small Ubiquitin-like MOdifier (SUMO. Here we show that the mms21-CH mutation, which inactivates Mms21 ligase activity, causes increased accumulation of gross chromosomal rearrangements (GCRs selected in the dGCR assay. These dGCRs are formed by non-allelic homologous recombination between divergent DNA sequences mediated by Rad52-, Rrm3- and Pol32-dependent break-induced replication. Combining mms21-CH with sgs1Δ caused a synergistic increase in GCRs rates, indicating the distinct roles of Mms21 and Sgs1 in suppressing GCRs. The mms21-CH mutation also caused increased rates of accumulating uGCRs mediated by breakpoints in unique sequences as revealed by whole genome sequencing. Consistent with the accumulation of endogenous DNA lesions, mms21-CH mutants accumulate increased levels of spontaneous Rad52 and Ddc2 foci and had a hyper-activated DNA damage checkpoint. Together, these findings support that Mms21 prevents the accumulation of spontaneous DNA lesions that cause diverse GCRs.

  5. A conserved role for the ARC1 E3 ligase in Brassicaceae self-incompatibility

    Directory of Open Access Journals (Sweden)

    Daphne eGoring

    2014-05-01

    Full Text Available Ubiquitination plays essential roles in the regulation of many processes in plants including pollen rejection in self-incompatible species. In the Brassicaceae (mustard family, self-incompatibility drives the rejection of self-pollen by preventing pollen hydration following pollen contact with the stigmatic surface. Self-pollen is recognized by a ligand-receptor pair: the pollen S-locus Cysteine Rich/S-locus Protein 11 (SCR/SP11 ligand and the pistil S Receptor Kinase (SRK. Following self-pollen contact, the SCR/SP11 ligand on the pollen surface binds to SRK on the pistil surface, and the SRK-activated signaling pathway is initiated. This pathway includes the ARM Repeat Containing 1 (ARC1 protein, a member of the Plant U-box (PUB family of E3 ubiquitin ligases. ARC1 is a functional E3 ligase and is required downstream of SRK for the self-incompatibility response. This mini review highlights our recent progress in establishing ARC1’s conserved role in self-pollen rejection in Brassica and Arabidopsis species and discusses future research directions in this field.

  6. Consistent mutational paths predict eukaryotic thermostability

    Directory of Open Access Journals (Sweden)

    van Noort Vera

    2013-01-01

    Full Text Available Abstract Background Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1, we could also characterise the molecular consequences of some of these mutations. Conclusions The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.

  7. Crystallization and X-ray structure analysis of a thermostable penicillin G acylase from Alcaligenes faecalis

    International Nuclear Information System (INIS)

    Varshney, Nishant Kumar; Suresh Kumar, R.; Ignatova, Zoya; Prabhune, Asmita; Pundle, Archana; Dodson, Eleanor; Suresh, C. G.

    2012-01-01

    A thermostable penicillin G acylase from A. faecalis has been crystallized in two space groups: C222 1 and P4 1 2 1 2. X-ray diffraction data were collected to 3.3 and 3.5 Å resolution, respectively. The enzyme penicillin G acylase (EC 3.5.1.11) catalyzes amide-bond cleavage in benzylpenicillin (penicillin G) to yield 6-aminopenicillanic acid, an intermediate chemical used in the production of semisynthetic penicillins. A thermostable penicillin G acylase from Alcaligenes faecalis (AfPGA) has been crystallized using the hanging-drop vapour-diffusion method in two different space groups: C222 1 , with unit-cell parameters a = 72.9, b = 86.0, c = 260.2 Å, and P4 1 2 1 2, with unit-cell parameters a = b = 85.6, c = 298.8 Å. Data were collected at 293 K and the structure was determined using the molecular-replacement method. Like other penicillin acylases, AfPGA belongs to the N-terminal nucleophilic hydrolase superfamily, has undergone post-translational processing and has a serine as the N-terminal residue of the β-chain. A disulfide bridge has been identified in the structure that was not found in the other two known penicillin G acylase structures. The presence of the disulfide bridge is perceived to be one factor that confers higher stability to this enzyme

  8. Thermostable Alcohol Dehydrogenase from Thermococcus kodakarensis KOD1 for Enantioselective Bioconversion of Aromatic Secondary Alcohols

    Science.gov (United States)

    Wu, Xi; Zhang, Chong; Orita, Izumi; Imanaka, Tadayuki

    2013-01-01

    A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent Km values for the cofactors NAD(P)+ and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O–20% 2-propanol and H2O–50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols. PMID:23354700

  9. Purification and biochemical characterization of Mur ligases from Staphylococcus aureus.

    Science.gov (United States)

    Patin, Delphine; Boniface, Audrey; Kovač, Andreja; Hervé, Mireille; Dementin, Sébastien; Barreteau, Hélène; Mengin-Lecreulx, Dominique; Blanot, Didier

    2010-12-01

    The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His(6)-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted L-Ala, L-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for L-Ala. S. aureus MurE was very specific for L-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and L-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (L-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and L-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  10. LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Ali Zhang

    2015-10-01

    Full Text Available Understanding the mechanisms of androgen receptor (AR activation in the milieu of low androgen is critical to effective treatment of castration-resistant prostate cancer (CRPC. Here, we report HOTAIR as an androgen-repressed lncRNA, and, as such, it is markedly upregulated following androgen deprivation therapies and in CRPC. We further demonstrate a distinct mode of lncRNA-mediated gene regulation, wherein HOTAIR binds to the AR protein to block its interaction with the E3 ubiquitin ligase MDM2, thereby preventing AR ubiquitination and protein degradation. Consequently, HOTAIR expression is sufficient to induce androgen-independent AR activation and drive the AR-mediated transcriptional program in the absence of androgen. Functionally, HOTAIR overexpression increases, whereas HOTAIR knockdown decreases, prostate cancer cell growth and invasion. Taken together, our results provide compelling evidence of lncRNAs as drivers of androgen-independent AR activity and CRPC progression, and they support the potential of lncRNAs as therapeutic targets.

  11. Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane

    Directory of Open Access Journals (Sweden)

    Yolanda Bautista

    2017-12-01

    Full Text Available A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR analysis of the volatiles.

  12. Levels of the ubiquitin ligase substrate adaptor MEL-26 are inversely correlated with MEI-1/katanin microtubule-severing activity during both meiosis and mitosis.

    Science.gov (United States)

    Johnson, Jacque-Lynne F A; Lu, Chenggang; Raharjo, Eko; McNally, Karen; McNally, Francis J; Mains, Paul E

    2009-06-15

    The MEI-1/MEI-2 microtubule-severing complex, katanin, is required for oocyte meiotic spindle formation and function in C. elegans, but the microtubule-severing activity must be quickly downregulated so that it does not interfere with formation of the first mitotic spindle. Post-meiotic MEI-1 inactivation is accomplished by two parallel protein degradation pathways, one of which requires MEL-26, the substrate-specific adaptor that recruits MEI-1 to a CUL-3 based ubiquitin ligase. Here we address the question of how MEL-26 mediated MEI-1 degradation is triggered only after the completion of MEI-1's meiotic function. We find that MEL-26 is present only at low levels until the completion of meiosis, after which protein levels increase substantially, likely increasing the post-meiotic degradation of MEI-1. During meiosis, MEL-26 levels are kept low by the action of another type of ubiquitin ligase, which contains CUL-2. However, we find that the low levels of meiotic MEL-26 have a subtle function, acting to moderate MEI-1 activity during meiosis. We also show that MEI-1 is the only essential target for MEL-26, and possibly for the E3 ubiquitin ligase CUL-3, but the upstream ubiquitin ligase activating enzyme RFL-1 has additional essential targets.

  13. AcEST: BP921473 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 0DLK3|B0DLK3_LACBS Predicted protein OS=Laccaria bicolor (st... 36 1.1 tr|A6GPV3|A6GPV3_9BURK Glutamate--tRNA ligase OS=Limnobacter...ry: 185 SHKNLAETGM*GSIS 229 SH +L +T G I+ Sbjct: 340 SHTSLPDTFFQGRIT 354 >tr|A6GPV3|A6GPV3_9BURK Glutamate--tRNA ligase OS=Limnobacte

  14. Accessory factors of cytoplasmic viral RNA sensors required for antiviral innate immune response

    Directory of Open Access Journals (Sweden)

    Hiroyuki eOshiumi

    2016-05-01

    Full Text Available Type I interferon (IFN induces many antiviral factors in host cells. RIG-I-like receptors (RLRs are cytoplasmic viral RNA sensors that trigger the signal to induce the innate immune response that includes type I IFN production. RIG-I and MDA5 are RLRs that form nucleoprotein filaments along viral double-stranded RNA, resulting in the activation of MAVS adaptor molecule. The MAVS protein forms a prion-like aggregation structure, leading to type I IFN production. RIG-I and MDA5 undergo post-translational modification. TRIM25 and Riplet ubiquitin ligases deliver a K63-linked polyubiquitin moiety to the RIG-I N-terminal caspase activation and recruitment domains (CARDs and C-terminal region; the polyubiquitin chain then stabilizes the two-CARD tetramer structure required for MAVS assembly. MDA5 activation is regulated by phosphorylation. RIOK3 is a protein kinase that phosphorylates the MDA5 protein in a steady state, and PP1α/γ dephosphorylate this protein, resulting in its activation. RIG-I and MDA5 require cytoplasmic RNA helicases for their efficient activation. LGP2, another RLR, is an RNA helicase involved in RLR signaling. This protein does not possess N-terminal CARDs and thus cannot trigger downstream signaling by itself. Recent studies have revealed that this protein modulates MDA5 filament formation, resulting in enhanced type I IFN production. Several other cytoplasmic RNA helicases are involved in RLR signaling. DDX3, DHX29, DHX36, and DDX60 RNA helicases have been reported to be involved in RLR-mediated type I IFN production after viral infection. However, the underlying mechanism is largely unknown. Future studies are required to reveal the role of RNA helicases in the RLR signaling pathway.

  15. Enzymatic synthesis of tRNA-peptide conjugates and spectroscopic studies of fluorine-modified RNA

    International Nuclear Information System (INIS)

    Graber, D.

    2010-01-01

    possess the naturally occurring nucleoside modifications. Hence, an alternative process for access to 5'-fragments containing these modifications was needed. Starting from wild-type tRNA, a DNA-enzyme mediated position-specific cleavage at the desired cleavage site was elaborated. For quantitative cleavage, the introduction of repeated temperature cycles was inevitable. Dephosphorylation of the so obtained 2',3'-cyclophosphate cleavage products had to be performed prior to ligating the wild-type 5'-fragment by T4 RNA ligase to the chimeric 3'-fragment yielding the fully modified tRNA-peptide conjugate. The broad applicability of that approach was demonstrated by successful ligation of various tRNA, and tRNA from different species. In the second part of this thesis fluorinated nucleic acids were applied to 19F NMR spectroscopic investigations. One subproject concerned fluorinated nucleic acids for probing secondary structures. For that reason, a 2,4-difluorotoluyl-ribofuranose phosphoramidite was synthesized and site-specifically incorporated into oligonucleotides. As a proof of principle, the differentiation between monomolecular and bimolecular melting transitions was demonstrated by monitoring the temperature dependent alterations in the chemical shift signatures. It was also shown that oligonucleotides of self-complementary sequences - which simultaneously adopt different secondary structures - can be analyzed in terms of quantification of the coexisting populations. Moreover, melting temperatures determined by 19F NMR spectroscopy were in excellent accordance with those found using traditional UV-techniques. In another subproject, the interaction of tRNA pseudouridine synthase (TruB) with its TΨC loop tRNA substrate was studied using 19F NMR spectroscopy. So far, published contributions have focused on 5-fluorouridine substrate/enzyme reactions which were expected to result in a stable covalently linked RNA-enzyme complex. However, the enzyme was capable of

  16. Mur Ligase Inhibitors as Anti-bacterials: A Comprehensive Review.

    Science.gov (United States)

    Sangshetti, Jaiprakash N; Joshi, Suyog S; Patil, Rajendra H; Moloney, Mark G; Shinde, Devanand B

    2017-01-01

    Exploring a new target for antibacterial drug discovery has gained much attention because of the emergence of Multidrug Resistance (MDR) strains of bacteria. To overcome this problem the development of novel antibacterial was considered as highest priority task and was one of the biggest challenge since multiple factors were involved. The bacterial peptidoglycan biosynthetic pathway has been well documented in the last few years and has been found to be imperative source for the development of novel antibacterial agents with high target specificity as they are essential for bacterial survival and have no homologs in humans. We have therefore reviewed the process of peptidoglycan biosynthesis which involves various steps like formation of UDP-Nacetylglucosamine (GlcNAc), UDP-N-acetylmuramic acid (MurNAc) and lipid intermediates (Lipid I and Lipid II) which are controlled by various enzymes like GlmS, GlmM, GlmU enzyme, followed by Mur Ligases (MurAMurF) and finally by MraY and MurG respectively. These four amide ligases MurC-MurF can be used as the source for the development of novel multi-target antibacterial agents as they shared and conserved amino acid regions, catalytic mechanisms and structural features. This review begins with the need for novel antibacterial agents and challenges in their development even after the development of bacterial genomic studies. An overview of the peptidoglycan monomer formation, as a source of disparity in this process is presented, followed by detailed discussion of structural and functional aspects of all Mur enzymes and different chemical classes of their inhibitors along with their SAR studies and inhibitory potential. This review finally emphasizes on different patents and novel Mur inhibitors in the development phase. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. High sensitive RNA detection by one-step RT-PCR using the genetically engineered variant of DNA polymerase with reverse transcriptase activity from hyperthermophilies.

    Science.gov (United States)

    Okano, Hiroyuki; Baba, Misato; Kawato, Katsuhiro; Hidese, Ryota; Yanagihara, Itaru; Kojima, Kenji; Takita, Teisuke; Fujiwara, Shinsuke; Yasukawa, Kiyoshi

    2018-03-01

    One-step RT-PCR has not been widely used even though some thermostable DNA polymerases with reverse transcriptase (RT) activity were developed from bacterial and archaeal polymerases, which is owing to low cDNA synthesis activity from RNA. In the present study, we developed highly-sensitive one-step RT-PCR using the single variant of family A DNA polymerase with RT activity, K4pol L329A (L329A), from the hyperthermophilic bacterium Thermotoga petrophila K4 or the 16-tuple variant of family B DNA polymerase with RT activity, RTX, from the hyperthermophilic archaeon Thermococcus kodakarensis. Optimization of reaction condition revealed that the activities for cDNA synthesis and PCR of K4pol L329A and RTX were highly affected by the concentrations of MgCl 2 and Mn(OCOCH 3 ) 2 as well as those of K4pol L329A or RTX. Under the optimized condition, 300 copies/μl of target RNA in 10 μl reaction volumes were successfully detected by the one-step RT-PCR with K4pol L329A or RTX, which was almost equally sensitive enough compared with the current RT-PCR condition using retroviral RT and thermostable DNA polymerase. Considering that K4pol L329A and RTX are stable even at 90-100°C, our results suggest that the one-step RT-PCR with K4pol L329A or RTX is more advantageous than the current one. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Mutagenic repair of double-stranded DNA breaks in vaccinia virus genomes requires cellular DNA ligase IV activity in the cytosol.

    Science.gov (United States)

    Luteijn, Rutger David; Drexler, Ingo; Smith, Geoffrey L; Lebbink, Robert Jan; Wiertz, Emmanuel J H J

    2018-04-20

    Poxviruses comprise a group of large dsDNA viruses that include members relevant to human and animal health, such as variola virus, monkeypox virus, cowpox virus and vaccinia virus (VACV). Poxviruses are remarkable for their unique replication cycle, which is restricted to the cytoplasm of infected cells. The independence from the host nucleus requires poxviruses to encode most of the enzymes involved in DNA replication, transcription and processing. Here, we use the CRISPR/Cas9 genome engineering system to induce DNA damage to VACV (strain Western Reserve) genomes. We show that targeting CRISPR/Cas9 to essential viral genes limits virus replication efficiently. Although VACV is a strictly cytoplasmic pathogen, we observed extensive viral genome editing at the target site; this is reminiscent of a non-homologous end-joining DNA repair mechanism. This pathway was not dependent on the viral DNA ligase, but critically involved the cellular DNA ligase IV. Our data show that DNA ligase IV can act outside of the nucleus to allow repair of dsDNA breaks in poxvirus genomes. This pathway might contribute to the introduction of mutations within the genome of poxviruses and may thereby promote the evolution of these viruses.

  19. Glycine in the conserved motif III modulates the thermostability and oxidative stress resistance of peptide deformylase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Narayanan, Sai Shyam; Sokkar, Pandian; Ramachandran, Murugesan; Nampoothiri, Kesavan Madhavan

    2011-07-01

    Peptide deformylase (PDF) catalyses the removal of the N-formyl group from the nascent polypeptide during protein maturation. The PDF of Mycobacterium tuberculosis H37Rv (MtbPDF), overexpressed and purified from Escherichia coli, was characterized as an iron-containing enzyme with stability towards H(2) O(2) and moderate thermostability. Substitution of two conserved residues (G49 and L107) from MtbPDF with the corresponding residues found in human PDF affected its deformylase activity. Among characterized PDFs, glycine (G151) in motif III instead of conserved aspartate is characteristic of M. tuberculosis. Although the G151D mutation in MtbPDF increased its deformylase activity and thermostability, it also affected enzyme stability towards H(2) O(2) . Molecular dynamics and docking results confirmed improved substrate binding and catalysis for the G151D mutant and the study provides another possible molecular basis for the stability of MtbPDF against oxidizing agents. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli NAD+-dependent DNA ligase (LigA).

    Science.gov (United States)

    Zhu, Hui; Shuman, Stewart

    2005-04-01

    NAD+-dependent DNA ligase (LigA) is essential for bacterial growth and a potential target for antimicrobial drug discovery. Here we queried the role of 14 conserved amino acids of Escherichia coli LigA by alanine scanning and thereby identified five new residues within the nucleotidyltransferase domain as being essential for LigA function in vitro and in vivo. Structure activity relationships were determined by conservative mutagenesis for the Glu-173, Arg-200, Arg-208, and Arg-277 side chains, as well as four other essential side chains that had been identified previously (Lys-115, Asp-117, Asp-285, and Lys-314). In addition, we identified Lys-290 as important for LigA activity. Reference to the structure of Enterococcus faecalis LigA allowed us to discriminate three classes of essential/important side chains that: (i) contact NAD+ directly (Lys-115, Glu-173, Lys-290, and Lys-314); (ii) comprise the interface between the NMN-binding domain (domain Ia) and the nucleotidyltransferase domain or comprise part of a nick-binding site on the surface of the nucleotidyltransferase domain (Arg-200 and Arg-208); or (iii) stabilize the active site fold of the nucleotidyltransferase domain (Arg-277). Analysis of mutational effects on the isolated ligase adenylylation and phosphodiester formation reactions revealed different functions for essential side chains at different steps of the DNA ligase pathway, consistent with the proposal that the active site is serially remodeled as the reaction proceeds.

  1. The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress.

    Directory of Open Access Journals (Sweden)

    Raymond Buser

    2016-02-01

    Full Text Available Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4, but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101(Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101(Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1's replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS complex at stalled forks.

  2. Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene

    DEFF Research Database (Denmark)

    Tosic, Mirjana; Ott, Jurg; Barral, Sandra

    2006-01-01

    Oxidative stress could be involved in the pathophysiology of schizophrenia, a major psychiatric disorder. Glutathione (GSH), a redox regulator, is decreased in patients' cerebrospinal fluid and prefrontal cortex. The gene of the key GSH-synthesizing enzyme, glutamate cysteine ligase modifier (GCLM......) subunit, is strongly associated with schizophrenia in two case-control studies and in one family study. GCLM gene expression is decreased in patients' fibroblasts. Thus, GSH metabolism dysfunction is proposed as one of the vulnerability factors for schizophrenia....

  3. Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene

    DEFF Research Database (Denmark)

    Tosic, Mirjana; Ott, Jurg; Barral, Sandra

    2006-01-01

    Oxidative stress could be involved in the pathophysiology of schizophrenia, a major psychiatric disorder. Glutathione (GSH), a redox regulator, is decreased in patients' cerebrospinal fluid and prefrontal cortex. The gene of the key GSH-synthesizing enzyme, glutamate cysteine ligase modifier (GCL......) subunit, is strongly associated with schizophrenia in two case-control studies and in one family study. GCLM gene expression is decreased in patients' fibroblasts. Thus, GSH metabolism dysfunction is proposed as one of the vulnerability factors for schizophrenia....

  4. Characterization of a cold-active esterase from Serratia sp. and improvement of thermostability by directed evolution.

    Science.gov (United States)

    Jiang, Huang; Zhang, Shaowei; Gao, Haofeng; Hu, Nan

    2016-01-22

    In recent years, cold-active esterases have received increased attention due to their attractive properties for some industrial applications such as high catalytic activity at low temperatures. An esterase-encoding gene (estS, 909 bp) from Serratia sp. was identified, cloned and expressed in Escherichia coli DE3 (BL21). The estS encoded a protein (EstS) of 302 amino acids with a predicted molecular weight of 32.5 kDa. It showed the highest activity at 10 °C and pH 8.5. EstS was cold active and retained ~92 % of its original activity at 0 °C. Thermal inactivation analysis showed that the T1/2 value of EstS was 50 min at 50 °C (residual activity 41.23 %) after 1 h incubation. EstS is also quite stable in high salt conditions and displayed better catalytic activity in the presence of 4 M NaCl. To improve the thermo-stability of EstS, variants of estS gene were created by error-prone PCR. A mutant 1-D5 (A43V, R116W, D147N) that showed higher thermo-stability than its wild type predecessor was selected. 1-D5 showed enhanced T1/2 of 70 min at 50 °C and retained 63.29 % of activity after incubation at 50 °C for 60 min, which were about 22 % higher than the wild type (WT). CD spectrum showed that the secondary structure of WT and 1-D5 are more or less similar, but an increase in β-sheets was recorded, which enhanced the thermostability of mutant protein. EstS was a novel cold-active and salt-tolerant esterase and half-life of mutant 1-D5 was enhanced by 1.4 times compared with WT. The features of EstS are interesting and can be exploited for commercial applications. The results have also provided useful information about the structure and function of Est protein.

  5. Furan-based benzene mono- and dicarboxylic acid derivatives as multiple inhibitors of the bacterial Mur ligases (MurC-MurF): experimental and computational characterization

    Science.gov (United States)

    Perdih, Andrej; Hrast, Martina; Pureber, Kaja; Barreteau, Hélène; Grdadolnik, Simona Golič; Kocjan, Darko; Gobec, Stanislav; Solmajer, Tom; Wolber, Gerhard

    2015-06-01

    Bacterial resistance to the available antibiotic agents underlines an urgent need for the discovery of novel antibacterial agents. Members of the bacterial Mur ligase family MurC-MurF involved in the intracellular stages of the bacterial peptidoglycan biosynthesis have recently emerged as a collection of attractive targets for novel antibacterial drug design. In this study, we have first extended the knowledge of the class of furan-based benzene-1,3-dicarboxylic acid derivatives by first showing a multiple MurC-MurF ligase inhibition for representatives of the extended series of this class. Steady-state kinetics studies on the MurD enzyme were performed for compound 1, suggesting a competitive inhibition with respect to ATP. To the best of our knowledge, compound 1 represents the first ATP-competitive MurD inhibitor reported to date with concurrent multiple inhibition of all four Mur ligases (MurC-MurF). Subsequent molecular dynamic (MD) simulations coupled with interaction energy calculations were performed for two alternative in silico models of compound 1 in the UMA/ d-Glu- and ATP-binding sites of MurD, identifying binding in the ATP-binding site as energetically more favorable in comparison to the UMA/ d-Glu-binding site, which was in agreement with steady-state kinetic data. In the final stage, based on the obtained MD data novel furan-based benzene monocarboxylic acid derivatives 8- 11, exhibiting multiple Mur ligase (MurC-MurF) inhibition with predominantly superior ligase inhibition over the original series, were discovered and for compound 10 it was shown to possess promising antibacterial activity against S. aureus. These compounds represent novel leads that could by further optimization pave the way to novel antibacterial agents.

  6. An SCFFBXO28 E3 Ligase Protects Pancreatic β-Cells from Apoptosis

    Directory of Open Access Journals (Sweden)

    Kanaka Durga Devi Gorrepati

    2018-03-01

    Full Text Available Loss of pancreatic β-cell function and/or mass is a central hallmark of all forms of diabetes but its molecular basis is incompletely understood. β-cell apoptosis contributes to the reduced β-cell mass in diabetes. Therefore, the identification of important signaling molecules that promote β-cell survival in diabetes could lead to a promising therapeutic intervention to block β-cell decline during development and progression of diabetes. In the present study, we identified F-box protein 28 (FBXO28, a substrate-recruiting component of the Skp1-Cul1-F-box (SCF ligase complex, as a regulator of pancreatic β-cell survival. FBXO28 was down-regulated in β-cells and in isolated human islets under diabetic conditions. Consistently, genetic silencing of FBXO28 impaired β-cell survival, and restoration of FBXO28 protected β-cells from the harmful effects of the diabetic milieu. Although FBXO28 expression positively correlated with β-cell transcription factor NEUROD1 and FBXO28 depletion also reduced insulin mRNA expression, neither FBXO28 overexpression nor depletion had any significant impact on insulin content, glucose-stimulated insulin secretion (GSIS or on other genes involved in glucose sensing and metabolism or on important β-cell transcription factors in isolated human islets. Consistently, FBXO28 overexpression did not further alter insulin content and GSIS in freshly isolated islets from patients with type 2 diabetes (T2D. Our data show that FBXO28 improves pancreatic β-cell survival under diabetogenic conditions without affecting insulin secretion, and its restoration may be a novel therapeutic tool to promote β-cell survival in diabetes.

  7. Evaluations on power ramp data of PWR fuels by FROST and THERMOST codes

    International Nuclear Information System (INIS)

    Murai, K.; Ogawa, S.; Nuno, H.; Kondo, Y.

    1987-01-01

    An evaluation is presented of power ramp data of Mitsubishi's PWR fuel rods tested in R-2, Studsvik, which was analysed by FROST and THERMOST codes. The analyses give good predictions for measured diameter changes and on-power rod elongations. The work indicates that FROST is capable of analysing both radial and axial pellet-cladding mechanism interaction (PCMI) appropriately, and that predicted states of PCMI (i.e. stress and strain which cannot be measured directly) are considered to be reliable. The ramp data used in the present analyses were obtained in two joint programmes with five Japanese PWR utilities (KEPCO, KYEPCO, SEPCO, HEPCO, and JAPCO). (UK)

  8. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    Directory of Open Access Journals (Sweden)

    Giuseppe Fiume

    2016-11-01

    Full Text Available The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03% of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7% and 698 downregulated (54.3% RNAs. In K562 cells, 1959 (3.1% of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7% and 906 downregulated (46.3%. Only 137 transcripts (0.22% were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  9. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells.

    Science.gov (United States)

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-11-07

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK -shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK -shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  10. Directed Evolution of Recombinant C-Terminal Truncated Staphylococcus epidermidis Lipase AT2 for the Enhancement of Thermostability

    Directory of Open Access Journals (Sweden)

    Jiivittha Veno

    2017-11-01

    Full Text Available In the industrial processes, lipases are expected to operate at temperatures above 45 °C and could retain activity in organic solvents. Hence, a C-terminal truncated lipase from Staphylococcus epidermis AT2 (rT-M386 was engineered by directed evolution. A mutant with glycine-to-cysteine substitution (G210C demonstrated a remarkable improvement of thermostability, whereby the mutation enhanced the activity five-fold when compared to the rT-M386 at 50 °C. The rT-M386 and G210C lipases were purified concurrently using GST-affinity chromatography. The biochemical and biophysical properties of both enzymes were investigated. The G210C lipase showed a higher optimum temperature (45 °C and displayed a more prolonged half-life in the range of 40–60 °C as compared to rT-M386. Both lipases exhibited optimal activity and stability at pH 8. The G210C showed the highest stability in the presence of polar organic solvents at 50 °C compared to the rT-M386. Denatured protein analysis presented a significant change in the molecular ellipticity value above 60 °C, which verified the experimental result on the temperature and thermostability profile of G210C.

  11. Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus tokodaii.

    Science.gov (United States)

    Cheng, Kun; Zhang, Fei; Sun, Fangfang; Chen, Hongge; Percival Zhang, Y-H

    2015-08-20

    Biobattery, a kind of enzymatic fuel cells, can convert organic compounds (e.g., glucose, starch) to electricity in a closed system without moving parts. Inspired by natural starch metabolism catalyzed by starch phosphorylase, isoamylase is essential to debranch alpha-1,6-glycosidic bonds of starch, yielding linear amylodextrin - the best fuel for sugar-powered biobattery. However, there is no thermostable isoamylase stable enough for simultaneous starch gelatinization and enzymatic hydrolysis, different from the case of thermostable alpha-amylase. A putative isoamylase gene was mined from megagenomic database. The open reading frame ST0928 from a hyperthermophilic archaeron Sulfolobus tokodaii was cloned and expressed in E. coli. The recombinant protein was easily purified by heat precipitation at 80 (o)C for 30 min. This enzyme was characterized and required Mg(2+) as an activator. This enzyme was the most stable isoamylase reported with a half lifetime of 200 min at 90 (o)C in the presence of 0.5 mM MgCl2, suitable for simultaneous starch gelatinization and isoamylase hydrolysis. The cuvett-based air-breathing biobattery powered by isoamylase-treated starch exhibited nearly doubled power outputs than that powered by the same concentration starch solution, suggesting more glucose 1-phosphate generated.

  12. Functional Characterization of the Apple RING E3 Ligase MdMIEL1 in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jianping AN

    2017-03-01

    Full Text Available E3 ubiquitin ligases are involved in various physiological processes, and they play pivotal roles in growth and development. In this study, we identified a previously unknown gene in the apple fruit (Malus × domestica and named it MdMIEL1. The MdMIEL1 gene encoded a protein that contained a zinc-finger domain at its N-terminus and a RING-finger motif at its C-terminus. To investigate MdMIEL1 functions, we generated transgenic Arabidopsis lines expressing the MdMIEL1 gene under the control of the Cauliflower mosaic virus 35S promoter. Interestingly, ectopic expression of MdMIEL1 in Arabidopsis produced multiple phenotypes, including early germination, early flowering and a lateral root number increase relative to wild-type plants. Further analysis indicated that MdMIEL1 regulated lateral root initiation by increasing auxin accumulation in the roots. In a word, these results suggest that, MdMIEL1 as a novel RING-finger ubiquitin ligase influences plant growth and development, and highlight that MdMIEL1 regulates lateral root growth.

  13. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution.

    Science.gov (United States)

    Shivange, Amol V; Roccatano, Danilo; Schwaneberg, Ulrich

    2016-01-01

    Bacterial phytases have attracted industrial interest as animal feed supplement due to their high activity and sufficient thermostability (required for feed pelleting). We devised an approach named KeySIDE,  an iterative Key-residues interrogation of the wild type with Substitutions Identified in Directed Evolution for improving Yersinia mollaretii phytase (Ymphytase) thermostability by combining key beneficial substitutions and elucidating their individual roles. Directed evolution yielded in a discovery of nine positions in Ymphytase and combined iteratively to identify key positions. The "best" combination (M6: T77K, Q154H, G187S, and K289Q) resulted in significantly improved thermal resistance; the residual activity improved from 35 % (wild type) to 89 % (M6) at 58 °C and 20-min incubation. Melting temperature increased by 3 °C in M6 without a loss of specific activity. Molecular dynamics simulation studies revealed reduced flexibility in the loops located next to helices (B, F, and K) which possess substitutions (Helix-B: T77K, Helix-F: G187S, and Helix-K: K289E/Q). Reduced flexibility in the loops might be caused by strengthened hydrogen bonding network (e.g., G187S and K289E/K289Q) and a salt bridge (T77K). Our results demonstrate a promising approach to design phytases in food research, and we hope that the KeySIDE might become an attractive approach for understanding of structure-function relationships of enzymes.

  14. Effects of cryoprotectants on the structure and thermostability of the human carbonic anhydrase II–acetazolamide complex

    International Nuclear Information System (INIS)

    Aggarwal, Mayank; Boone, Christopher D.; Kondeti, Bhargav; Tu, Chingkuang; Silverman, David N.; McKenna, Robert

    2013-01-01

    Here, a case study of the effects of cryoprotectants on the kinetics of carbonic anhydrase II (CA II) and its inhibition by the clinically used inhibitor acetazolamide (AZM) is presented. Protein X-ray crystallography has seen a progressive shift from data collection at cool/room temperature (277–298 K) to data collection at cryotemperature (100 K) because of its ease of crystal preparation and the lessening of the detrimental effects of radiation-induced crystal damage, with 20–25%(v/v) glycerol (GOL) being the preferred choice of cryoprotectant. Here, a case study of the effects of cryoprotectants on the kinetics of carbonic anhydrase II (CA II) and its inhibition by the clinically used inhibitor acetazolamide (AZM) is presented. Comparative studies of crystal structure, kinetics, inhibition and thermostability were performed on CA II and its complex with AZM in the presence of either GOL or sucrose. These results suggest that even though the cryoprotectant GOL was previously shown to be directly bound in the active site and to interact with AZM, it affects neither the thermostability of CA II nor the binding of AZM in the crystal structure or in solution. However, addition of GOL does affect the kinetics of CA II, presumably as it displaces the water proton-transfer network in the active site

  15. Effects of cryoprotectants on the structure and thermostability of the human carbonic anhydrase II–acetazolamide complex

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mayank; Boone, Christopher D.; Kondeti, Bhargav; Tu, Chingkuang; Silverman, David N.; McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, FL 32610 (United States)

    2013-05-01

    Here, a case study of the effects of cryoprotectants on the kinetics of carbonic anhydrase II (CA II) and its inhibition by the clinically used inhibitor acetazolamide (AZM) is presented. Protein X-ray crystallography has seen a progressive shift from data collection at cool/room temperature (277–298 K) to data collection at cryotemperature (100 K) because of its ease of crystal preparation and the lessening of the detrimental effects of radiation-induced crystal damage, with 20–25%(v/v) glycerol (GOL) being the preferred choice of cryoprotectant. Here, a case study of the effects of cryoprotectants on the kinetics of carbonic anhydrase II (CA II) and its inhibition by the clinically used inhibitor acetazolamide (AZM) is presented. Comparative studies of crystal structure, kinetics, inhibition and thermostability were performed on CA II and its complex with AZM in the presence of either GOL or sucrose. These results suggest that even though the cryoprotectant GOL was previously shown to be directly bound in the active site and to interact with AZM, it affects neither the thermostability of CA II nor the binding of AZM in the crystal structure or in solution. However, addition of GOL does affect the kinetics of CA II, presumably as it displaces the water proton-transfer network in the active site.

  16. An ATP-dependent ligase with substrate flexibility involved in assembly of the peptidyl nucleoside antibiotic polyoxin

    Science.gov (United States)

    Polyoxin (POL) is an unusual nucleoside antibiotic, in which peptidyl moiety and nucleoside skeleton are linked by an amide bond. However, their biosynthesis remains poorly understood. Here, we report the deciphering of PolG as an ATP-dependent ligase responsible for the assembly of POL. A polG muta...

  17. Break-induced ATR and Ddb1-Cul4(Cdt)² ubiquitin ligase-dependent nucleotide synthesis promotes homologous recombination repair in fission yeast

    DEFF Research Database (Denmark)

    Moss, Jennifer; Tinline-Purvis, Helen; Walker, Carol A

    2010-01-01

    Nucleotide synthesis is a universal response to DNA damage, but how this response facilitates DNA repair and cell survival is unclear. Here we establish a role for DNA damage-induced nucleotide synthesis in homologous recombination (HR) repair in fission yeast. Using a genetic screen, we found...... the Ddb1-Cul4(Cdt)² ubiquitin ligase complex and ribonucleotide reductase (RNR) to be required for HR repair of a DNA double-strand break (DSB). The Ddb1-Cul4(Cdt)² ubiquitin ligase complex is required for degradation of Spd1, an inhibitor of RNR in fission yeast. Accordingly, deleting spd1(+) suppressed...

  18. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, K. [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Bhardwaj, Amit [International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067 (India); Ghosh, Amit [Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036 (India); Reddy, V. S. [International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067 (India); Ramakumar, S., E-mail: ramak@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Bioinformatics Centre, Indian Institute of Science, Bangalore 560 012 (India)

    2005-08-01

    A family 10 alkali-thermostable xylanase from Bacillus sp. NG-27 has been crystallized. A diffraction data set has been collected to 2.2 Å resolution. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of β-1,4-glycosidic linkages within xylan, a major hemicellulose component in the biosphere. The extracellular endoxylanase (XylnA) from the alkalophilic Bacillus sp. strain NG-27 belongs to family 10 of the glycoside hydrolases. It is active at 343 K and pH 8.4. Moreover, it has attractive features from the point of view of utilization in the paper pulp, animal feed and baking industries since it is an alkali-thermostable protein. In this study, XylnA was purified from the native host source and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 174.5, b = 54.7, c = 131.5 Å, β = 131.2°, and diffract to better than 2.2 Å resolution.

  19. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27

    International Nuclear Information System (INIS)

    Manikandan, K.; Bhardwaj, Amit; Ghosh, Amit; Reddy, V. S.; Ramakumar, S.

    2005-01-01

    A family 10 alkali-thermostable xylanase from Bacillus sp. NG-27 has been crystallized. A diffraction data set has been collected to 2.2 Å resolution. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of β-1,4-glycosidic linkages within xylan, a major hemicellulose component in the biosphere. The extracellular endoxylanase (XylnA) from the alkalophilic Bacillus sp. strain NG-27 belongs to family 10 of the glycoside hydrolases. It is active at 343 K and pH 8.4. Moreover, it has attractive features from the point of view of utilization in the paper pulp, animal feed and baking industries since it is an alkali-thermostable protein. In this study, XylnA was purified from the native host source and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 174.5, b = 54.7, c = 131.5 Å, β = 131.2°, and diffract to better than 2.2 Å resolution

  20. Xenobiotic/medium chain fatty acid: CoA ligase - a critical review on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin.

    Science.gov (United States)

    van der Sluis, Rencia; Erasmus, Elardus

    2016-10-01

    Activation of fatty acids by the acyl-CoA synthetases (ACSs) is the vital first step in fatty acid metabolism. The enzymatic and physiological characterization of the human xenobiotic/medium chain fatty acid: CoA ligases (ACSMs) has been severely neglected even though xenobiotics, such as benzoate and salicylate, are detoxified through this pathway. This review will focus on the nomenclature and substrate specificity of the human ACSM ligases; the biochemical and enzymatic characterization of ACSM1 and ACSM2B; the high sequence homology of the ACSM2 genes (ACSM2A and ACSM2B) as well as what is currently known regarding disease association studies. Several discrepancies exist in the current literature that should be taken note of. For example, the single nucleotide polymorphisms (SNPs) reported to be associated with aspirin metabolism and multiple risk factors of metabolic syndrome are incorrect. Kinetic data on the substrate specificity of the human ACSM ligases are non-existent and currently no data exist on the influence of SNPs on the enzyme activity of these ligases. One of the biggest obstacles currently in the field is that glycine conjugation is continuously studied as a one-step process, which means that key regulatory factors of the two individual steps remain unknown.

  1. Thermostability of Multidomain Proteins: Elongation Factors EF-Tu from Escherichia coli and Bacillus stearothermophilus and Their Chimeric Forms

    Czech Academy of Sciences Publication Activity Database

    Šanderová, Hana; Hůlková, Marta; Maloň, Petr; Kepková, M.; Jonák, Jiří

    2004-01-01

    Roč. 13, č. 1 (2004), s. 89-99 ISSN 0961-8368 R&D Projects: GA AV ČR IPP1050128; GA ČR GA204/98/0863; GA ČR GA303/02/0689 Institutional research plan: CEZ:AV0Z4055905; CEZ:AV0Z5052915 Keywords : elongation factor EF-Tu, thermostability, chimeric protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.116, year: 2004

  2. Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase.

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Mann, Florian A; Pichler, Garwin; Natale, Francesco; Krause, Eberhard; Cardoso, M Cristina; Hackenberger, Christian P R; Leonhardt, Heinrich

    2015-11-09

    A novel chemoenzymatic approach for simple and fast site-specific protein labeling is reported. Recombinant tubulin tyrosine ligase (TTL) was repurposed to attach various unnatural tyrosine derivatives as small bioorthogonal handles to proteins containing a short tubulin-derived recognition sequence (Tub-tag). This novel strategy enables a broad range of high-yielding and fast chemoselective C-terminal protein modifications on isolated proteins or in cell lysates for applications in biochemistry, cell biology, and beyond, as demonstrated by the site-specific labeling of nanobodies, GFP, and ubiquitin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thermostability and photophysical properties of mixed-ligand carboxylate/benzimidazole Zn(II)-coordination polymers

    International Nuclear Information System (INIS)

    Barros, Bráulio Silva; Chojnacki, Jaroslaw; Macêdo Soares, Antonia Alice; Kulesza, Joanna; Lourenço da Luz, Leonis; Júnior, Severino Alves

    2015-01-01

    The reaction between Zn(NO 3 ) 2 ·6H 2 O or Zn(CH 3 COO) 2 ·2H 2 O and isophthalic acid (1,3-H 2 bdc) in the presence of benzimidazole (Hbzim) in dimethylformamide (DMF)/ethanol (EtOH)/H 2 O solvent mixture at room temperature yielded two structurally different coordination polymers: [Zn 2 (1,3-bdc) 2 (Hbzim) 2 ] (1) and [Zn 2 (1,3-bdc)(bzim) 2 ] (2). (1) is a 2D-layered framework with a molecule of benzimidazole coordinated to the Zn center, whereas (2) is a 3D framework with benzimidazolate species acting as a co-ligand and bridging two Zn(II) ions. Reactions performed at 90 °C led to the formation of coordination polymers structurally similar to (2), independently of the Zn(II) source used. In the absence of benzimidazole, the reaction between ZnAc 2 .2H 2 O and 1,3-H 2 bdc at 90 °C resulted in the formation of (3), a 3D coordination polymer Zn(HCOO) 3 (Me 2 NH 2 + ). It was observed that the thermostability and the photophysical properties of (1) and (2) are strongly dependent on the coordination modes and packing of benzimidazole in the solid state. These materials present photoluminescence in the wide range of the spectrum, from UV to IR. A full understanding of a physical process occurring in these intriguing systems, including complete energy level diagrams with possible transitions were provided. - Graphical abstract: Display Omitted - Highlights: • Structurally different Zn(II)-coordination polymers were prepared. • The formation of frameworks was counter anion and temperature dependent. • Photoluminescence in the wide range of the spectrum, from UV to IR was observed. • Thermostability and luminescence depended on bzim packing in the structure

  4. Phylogenetic analysis of the SINA/SIAH ubiquitin E3 ligase family in Metazoa.

    Science.gov (United States)

    Pepper, Ian J; Van Sciver, Robert E; Tang, Amy H

    2017-08-07

    The RAS signaling pathway is a pivotal developmental pathway that controls many fundamental biological processes including cell proliferation, differentiation, movement and apoptosis. Drosophila Seven-IN-Absentia (SINA) is a ubiquitin E3 ligase that is the most downstream signaling "gatekeeper" whose biological activity is essential for proper RAS signal transduction. Vertebrate SINA homologs (SIAHs) share a high degree of amino acid identity with that of Drosophila SINA. SINA/SIAH is the most conserved signaling component in the canonical EGFR/RAS/RAF/MAPK signal transduction pathway. Vertebrate SIAH1, 2, and 3 are the three orthologs to invertebrate SINA protein. SINA and SIAH1 orthologs are found in all major taxa of metazoans. These proteins have four conserved functional domains, known as RING (Really Interesting New Gene), SZF (SIAH-type zinc finger), SBS (substrate binding site) and DIMER (Dimerization). In addition to the siah1 gene, most vertebrates encode two additional siah genes (siah2 and siah3) in their genomes. Vertebrate SIAH2 has a highly divergent and extended N-terminal sequence, while its RING, SZF, SBS and DIMER domains maintain high amino acid identity/similarity to that of SIAH1. But unlike vertebrate SIAH1 and SIAH2, SIAH3 lacks a functional RING domain, suggesting that SIAH3 may be an inactive E3 ligase. The SIAH3 subtree exhibits a high degree of amino acid divergence when compared to the SIAH1 and SIAH2 subtrees. We find that SIAH1 and SIAH2 are expressed in all human epithelial cell lines examined thus far, while SIAH3 is only expressed in a limited subset of cancer cell lines. Through phylogenetic analyses of metazoan SINA and SIAH E3 ligases, we identified many invariant and divergent amino acid residues, as well as the evolutionarily conserved functional motifs in this medically relevant gene family. Our phylomedicinal study of this unique metazoan SINA/SIAH protein family has provided invaluable evolution-based support towards future

  5. Regulation of Plant Microprocessor Function in Shaping microRNA Landscape

    Directory of Open Access Journals (Sweden)

    Jakub Dolata

    2018-06-01

    Full Text Available MicroRNAs are small molecules (∼21 nucleotides long that are key regulators of gene expression. They originate from long stem–loop RNAs as a product of cleavage by a protein complex called Microprocessor. The core components of the plant Microprocessor are the RNase type III enzyme Dicer-Like 1 (DCL1, the zinc finger protein Serrate (SE, and the double-stranded RNA binding protein Hyponastic Leaves 1 (HYL1. Microprocessor assembly and its processing of microRNA precursors have been reported to occur in discrete nuclear bodies called Dicing bodies. The accessibility of and modifications to Microprocessor components affect microRNA levels and may have dramatic consequences in plant development. Currently, numerous lines of evidence indicate that plant Microprocessor activity is tightly regulated. The cellular localization of HYL1 is dependent on a specific KETCH1 importin, and the E3 ubiquitin ligase COP1 indirectly protects HYL1 from degradation in a light-dependent manner. Furthermore, proper localization of HYL1 in Dicing bodies is regulated by MOS2. On the other hand, the Dicing body localization of DCL1 is regulated by NOT2b, which also interacts with SE in the nucleus. Post-translational modifications are substantial factors that contribute to protein functional diversity and provide a fine-tuning system for the regulation of protein activity. The phosphorylation status of HYL1 is crucial for its activity/stability and is a result of the interplay between kinases (MPK3 and SnRK2 and phosphatases (CPL1 and PP4. Additionally, MPK3 and SnRK2 are known to phosphorylate SE. Several other proteins (e.g., TGH, CDF2, SIC, and RCF3 that interact with Microprocessor have been found to influence its RNA-binding and processing activities. In this minireview, recent findings on the various modes of Microprocessor activity regulation are discussed.

  6. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70.

    Science.gov (United States)

    Boboila, Cristian; Jankovic, Mila; Yan, Catherine T; Wang, Jing H; Wesemann, Duane R; Zhang, Tingting; Fazeli, Alex; Feldman, Lauren; Nussenzweig, Andre; Nussenzweig, Michel; Alt, Frederick W

    2010-02-16

    Class switch recombination (CSR) in B lymphocytes is initiated by introduction of multiple DNA double-strand breaks (DSBs) into switch (S) regions that flank immunoglobulin heavy chain (IgH) constant region exons. CSR is completed by joining a DSB in the donor S mu to a DSB in a downstream acceptor S region (e.g., S gamma1) by end-joining. In normal cells, many CSR junctions are mediated by classical nonhomologous end-joining (C-NHEJ), which employs the Ku70/80 complex for DSB recognition and XRCC4/DNA ligase 4 for ligation. Alternative end-joining (A-EJ) mediates CSR, at reduced levels, in the absence of C-NHEJ, even in combined absence of Ku70 and ligase 4, demonstrating an A-EJ pathway totally distinct from C-NHEJ. Multiple DSBs are introduced into S mu during CSR, with some being rejoined or joined to each other to generate internal switch deletions (ISDs). In addition, S-region DSBs can be joined to other chromosomes to generate translocations, the level of which is increased by absence of a single C-NHEJ component (e.g., XRCC4). We asked whether ISD and S-region translocations occur in the complete absence of C-NHEJ (e.g., in Ku70/ligase 4 double-deficient B cells). We found, unexpectedly, that B-cell activation for CSR generates substantial ISD in both S mu and S gamma1 and that ISD in both is greatly increased by the absence of C-NHEJ. IgH chromosomal translocations to the c-myc oncogene also are augmented in the combined absence of Ku70 and ligase 4. We discuss the implications of these findings for A-EJ in normal and abnormal DSB repair.

  7. MXD1 localizes in the nucleolus, binds UBF and impairs rRNA synthesis.

    Science.gov (United States)

    Lafita-Navarro, Maria Del Carmen; Blanco, Rosa; Mata-Garrido, Jorge; Liaño-Pons, Judit; Tapia, Olga; García-Gutiérrez, Lucía; García-Alegría, Eva; Berciano, María T; Lafarga, Miguel; León, Javier

    2016-10-25

    MXD1 is a protein that interacts with MAX, to form a repressive transcription factor. MXD1-MAX binds E-boxes. MXD1-MAX antagonizes the transcriptional activity of the MYC oncoprotein in most models. It has been reported that MYC overexpression leads to augmented RNA synthesis and ribosome biogenesis, which is a relevant activity in MYC-mediated tumorigenesis. Here we describe that MXD1, but not MYC or MNT, localizes to the nucleolus in a wide array of cell lines derived from different tissues (carcinoma, leukemia) as well as in embryonic stem cells. MXD1 also localizes in the nucleolus of primary tissue cells as neurons and Sertoli cells. The nucleolar localization of MXD1 was confirmed by co-localization with UBF. Co-immunoprecipitation experiments showed that MXD1 interacted with UBF and proximity ligase assays revealed that this interaction takes place in the nucleolus. Furthermore, chromatin immunoprecipitation assays showed that MXD1 was bound in the transcribed rDNA chromatin, where it co-localizes with UBF, but also in the ribosomal intergenic regions. The MXD1 involvement in rRNA synthesis was also suggested by the nucleolar segregation upon rRNA synthesis inhibition by actinomycin D. Silencing of MXD1 with siRNAs resulted in increased synthesis of pre-rRNA while enforced MXD1 expression reduces it. The results suggest a new role for MXD1, which is the control of ribosome biogenesis. This new MXD1 function would be important to curb MYC activity in tumor cells.

  8. Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes).

    Science.gov (United States)

    Leong, Sze Ying; Oey, Indrawati

    2014-03-01

    The objective of this research was to study the enzyme kinetics and thermostability of endogenous ascorbic acid oxidase (AAO) in carrot purée (Daucus carota cv. Nantes) after being treated with pulsed electric field (PEF) processing. Various PEF treatments using electric field strength between 0.2 and 1.2kV/cm and pulsed electrical energy between 1 and 520kJ/kg were conducted. The enzyme kinetics and the kinetics of AAO thermal inactivation (55-70°C) were described using Michaelis-Menten model and first order reaction model, respectively. Overall, the estimated Vmax and KM values were situated in the same order of magnitude as the untreated carrot purée after being exposed to pulsed electrical energy between 1 and 400kJ/kg, but slightly changed at pulsed electrical energy above 500kJ/kg. However, AAO presented different thermostability depending on the electric field strength applied. After PEF treatment at the electric field strength between 0.2 and 0.5kV/cm, AAO became thermolabile (i.e. increase in inactivation rate (k value) at reference temperature) but the temperature dependence of k value (Ea value) for AAO inactivation in carrot purée decreased, indicating that the changes in k values were less temperature dependent. It is obvious that PEF treatment affects the temperature stability of endogenous AAO. The changes in enzyme kinetics and thermostability of AAO in carrot purée could be related to the resulting carrot purée composition, alteration in intracellular environment and the effective concentration of AAO released after being subjected to PEF treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Yu

    Full Text Available The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for "interfacial activation" is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the "Disulfide by Design" algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t(1/2 value at 60°C and a 7°C increase of T(m compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k(cat and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.

  10. Purification, crystallization and preliminary crystallographic analysis of a multiple cofactor-dependent DNA ligase from Sulfophobococcus zilligii

    International Nuclear Information System (INIS)

    Supangat, Supangat; An, Young Jun; Sun, Younguk; Kwon, Suk-Tae; Cha, Sun-Shin

    2010-01-01

    A recombinant multiple cofactor-dependent DNA ligase from S. zilligii has been purified and crystallized. X-ray diffraction data were collected to 2.9 Å resolution and the crystals belonged to space group P1. A recombinant DNA ligase from Sulfophobococcus zilligii that shows multiple cofactor specificity (ATP, ADP and GTP) was expressed in Escherichia coli and purified under reducing conditions. Crystals were obtained by the microbatch crystallization method at 295 K in a drop containing 1 µl protein solution (10 mg ml −1 ) and an equal volume of mother liquor [0.1 M HEPES pH 7.5, 10%(w/v) polyethylene glycol 10 000]. A data set was collected to 2.9 Å resolution using synchrotron radiation. The crystals belonged to space group P1, with unit-cell parameters a = 63.7, b = 77.1, c = 77.8 Å, α = 83.4, β = 82.4, γ = 74.6°. Assuming the presence of two molecules in the unit cell, the solvent content was estimated to be about 53.4%

  11. Preparation of lactose-free pasteurized milk with a recombinant thermostable β-glucosidase from Pyrococcus furiosus

    Science.gov (United States)

    2013-01-01

    Background Lactose intolerance is a common health concern causing gastrointestinal symptoms and avoidance of dairy products by afflicted individuals. Since milk is a primary source of calcium and vitamin D, lactose intolerant individuals often obtain insufficient amounts of these nutrients which may lead to adverse health outcomes. Production of lactose-free milk can provide a solution to this problem, although it requires use of lactase from microbial sources and increases potential for contamination. Use of thermostable lactase enzymes can overcome this issue by functioning under pasteurization conditions. Results A thermostable β-glucosidase gene from Pyrococcus furiosus was cloned in frame with the Saccharomyces cerecisiae a-factor secretory signal and expressed in Pichia pastoris strain X-33. The recombinant enzyme was purified by a one-step method of weak anion exchange chromatography. The optimum temperature and pH for this β-glucosidase activity was 100°C and pH 6.0, respectively. The enzyme activity was not significantly inhibited by Ca2+. We tested the additive amount, hydrolysis time, and the influence of glucose on the enzyme during pasteurization and found that the enzyme possessed a high level of lactose hydrolysis in milk that was not obviously influenced by glucose. Conclusions The thermostablity of this recombinant β-glucosidase, combined with its neutral pH activity and favorable temperature activity optima, suggest that this enzyme is an ideal candidate for the hydrolysis of lactose in milk, and it would be suitable for application in low-lactose milk production during pasteurization. PMID:24053641

  12. Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity.

    Science.gov (United States)

    McCoy, Andrea J; Maurelli, Anthony T

    2005-07-01

    Recent characterization of chlamydial genes encoding functional peptidoglycan (PG)-synthesis proteins suggests that the Chlamydiaceae possess the ability to synthesize PG yet biochemical evidence for the synthesis of PG has yet to be demonstrated. The presence of D-amino acids in PG is a hallmark of bacteria. Chlamydiaceae do not appear to encode amino acid racemases however, a D-alanyl-D-alanine (D-Ala-D-Ala) ligase homologue (Ddl) is encoded in the genome. Thus, we undertook a genetics-based approach to demonstrate and characterize the D-Ala-D-Ala ligase activity of chlamydial Ddl, a protein encoded as a fusion with MurC. The full-length murC-ddl fusion gene from Chlamydia trachomatis serovar L2 was cloned and placed under the control of the arabinose-inducible ara promoter and transformed into a D-Ala-D-Ala ligase auxotroph of Escherichia coli possessing deletions of both the ddlA and ddlB genes. Viability of the E. coliDeltaddlADeltaddlB mutant in the absence of exogenous D-Ala-D-Ala dipeptide became dependent on the expression of the chlamydial murC-ddl thus demonstrating functional ligase activity. Domain mapping of the full-length fusion protein and site-directed mutagenesis of the MurC domain revealed that the structure of the full fusion protein but not MurC enzymatic activity was required for ligase activity in vivo. Recombinant MurC-Ddl exhibited substrate specificity for D-Ala. Chlamydia growth is inhibited by D-cycloserine (DCS) and in vitro analysis provided evidence for the chlamydial MurC-Ddl as the target for DCS sensitivity. In vivo sensitivity to DCS could be reversed by addition of exogenous D-Ala and D-Ala-D-Ala. Together, these findings further support our hypothesis that PG is synthesized by members of the Chlamydiaceae family and suggest that D-amino acids, specifically D-Ala, are present in chlamydial PG.

  13. The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells.

    Science.gov (United States)

    Shao, Genbao; Wang, Ranran; Sun, Aiqin; Wei, Jing; Peng, Ke; Dai, Qian; Yang, Wannian; Lin, Qiong

    2018-02-19

    EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4

  14. Crystallization and preliminary X-ray crystallographic analysis of highly thermostable L2 lipase from the newly isolated Bacillus sp. L2

    International Nuclear Information System (INIS)

    Shariff, Fairolniza Mohd; Rahman, Raja Noor Zaliha Raja Abd.; Ali, Mohd Shukuri Mohamad; Chor, Adam Leow Thean; Basri, Mahiran; Salleh, Abu Bakar

    2010-01-01

    Thermostable recombinant L2 lipase from thermophilic Bacillus sp. L2 has been crystallized by using counter-diffusion method and diffracted to 2.7 Å resolution. The crystal belongs to the primitive orthorhombic space group P2 1 2 1 2 1 with unit-cell parameters a = 87.44, b = 94.90, c = 126.46 Å. Purified thermostable recombinant L2 lipase from Bacillus sp. L2 was crystallized by the counter-diffusion method using 20% PEG 6000, 50 mM MES pH 6.5 and 50 mM NaCl as precipitant. X-ray diffraction data were collected to 2.7 Å resolution using an in-house Bruker X8 PROTEUM single-crystal diffractometer system. The crystal belonged to the primitive orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 87.44, b = 94.90, c = 126.46 Å. The asymmetric unit contained one single molecule of protein, with a Matthews coefficient (V M ) of 2.85 Å 3 Da −1 and a solvent content of 57%

  15. Shutdown of interferon signaling by a viral-hijacked E3 ubiquitin ligase

    Directory of Open Access Journals (Sweden)

    Kaitlin A. Davis

    2017-11-01

    Full Text Available Viruses manipulate cellular processes to create an environment favorable to replication. For most viruses, this includes subverting the expression of interferon (IFN, a signaling molecule that can stimulate production of a vast array of antiviral gene products. Rotavirus, a segmented double-stranded RNA virus that causes acute gastroenteritis in infants and young children, inhibits IFN expression through its nonstructural protein NSP1. This viral protein stifles IFN expression by inducing the degradation of host factors that are necessary for upregulating the activity of IFN genes. In the case of nearly all human and porcine rotavirus strains, NSP1 induces the ubiquitination-dependent proteasomal degradation of β-transducin repeat containing protein (β-TrCP, a host factor that plays an essential role in activating the IFN-transcription factor, NF-κB. Key to the process is the presence of a decoy sequence (degron at the C-terminus of NSP1 that causes β-TrCP to mistakenly bind NSP1 instead of its natural target, inhibitor-of-κB (IκB. In a recent report published by Davis et al [2017; mBio 8(4: e01213-17], we describe molecular requirements that govern NSP1 recognition of β-TrCP, including an essential degron phosphorylation event, and the step-wise incorporation of NSP1 into hijacked cullin-RING E3 ligases (CRLs that ubiquitinate and tag β-TrCP for degradation. Notably, although β-TrCP is chiefly recognized for its role as a master regulator of NF-κB signaling and IFN expression, β-TrCP also controls the stability of checkpoint proteins implicated in numerous other cellular pathways with antiviral activities, including autophagy and apoptosis. Thus, the impact of NSP1 on creating an intracellular environment favorable to virus replication may extend well beyond the IFN signaling pathway.

  16. Post-translationally modified muscle-specific ubiquitin ligases as circulating biomarkers in experimental cancer cachexia

    Science.gov (United States)

    Mota, Roberto; Rodríguez, Jessica E; Bonetto, Andrea; O’Connell, Thomas M; Asher, Scott A; Parry, Traci L; Lockyer, Pamela; McCudden, Christopher R; Couch, Marion E; Willis, Monte S

    2017-01-01

    Cancer cachexia is a severe wasting syndrome characterized by the progressive loss of lean body mass and systemic inflammation. Up to 80% of cancer patients experience cachexia, with 20-30% of cancer-related deaths directly linked to cachexia. Despite efforts to identify early cachexia and cancer relapse, clinically useful markers are lacking. Recently, we identified the role of muscle-specific ubiquitin ligases Atrogin-1 (MAFbx, FBXO32) and Muscle Ring Finger-1 in the pathogenesis of cardiac atrophy and hypertrophy. We hypothesized that during cachexia, the Atrogin-1 and MuRF1 ubiquitin ligases are released from muscle and migrate to the circulation where they could be detected and serve as a cachexia biomarker. To test this, we induced cachexia in mice using the C26 adenocarcinoma cells or vehicle (control). Body weight, tumor volume, and food consumption were measured from inoculation until ~day 14 to document cachexia. Western blot analysis of serum identified the presence of Atrogin-1 and MuRF1 with unique post-translational modifications consistent with mono- and poly- ubiquitination of Atrogin-1 and MuRF1 found only in cachectic serum. These findings suggest that both increased Atrogin-1 and the presence of unique post-translational modifications may serve as a surrogate marker specific for cachexia. PMID:28979816

  17. Staphylococcal β-Toxin Modulates Human Aortic Endothelial Cell and Platelet Function through Sphingomyelinase and Biofilm Ligase Activities

    Directory of Open Access Journals (Sweden)

    Alfa Herrera

    2017-03-01

    Full Text Available Staphylococcus aureus causes many infections, such as skin and soft tissue, pneumonia, osteomyelitis, and infective endocarditis (IE. IE is an endovascular infection of native and prosthetic valves and the lining of the heart; it is characterized by the formation of cauliflower-like “vegetations” composed of fibrin, platelets, other host factors, bacteria, and bacterial products. β-Toxin is an S. aureus virulence factor that contributes to the microorganism’s ability to cause IE. This cytolysin has two enzymatic activities: sphingomyelinase (SMase and biofilm ligase. Although both activities have functions in a rabbit model of IE, the mechanism(s by which β-toxin directly affects human cells and is involved in the infectious process has not been elucidated. Here, we compared the in vitro effects of purified recombinant wild-type β-toxin, SMase-deficient β-toxin (H289N, and biofilm ligase-deficient β-toxin (H162A and/or D163A on human aortic endothelial cells (HAECs and platelets. β-Toxin was cytotoxic to HAECs and inhibited the production of interleukin 8 (IL-8 from these cells by both SMase and biofilm ligase activities. β-Toxin altered HAEC surface expression of CD40 and vascular cell adhesion molecule 1 (VCAM-1. HAECs treated with β-toxin displayed granular membrane morphology not seen in treatment with the SMase-deficient mutant. The altered morphology resulted in two possibly separable activities, cell rounding and redistribution of cell membranes into granules, which were not the result of endosome production from the Golgi apparatus or lysosomes. β-Toxin directly aggregated rabbit platelets via SMase activity.

  18. Homology modeling, molecular dynamics and inhibitor binding study on MurD ligase of Mycobacterium tuberculosis.

    Science.gov (United States)

    Arvind, Akanksha; Kumar, Vivek; Saravanan, Parameswaran; Mohan, C Gopi

    2012-09-01

    The cell wall of mycobacterium offers well validated targets which can be exploited for discovery of new lead compounds. MurC-MurF ligases catalyze a series of irreversible steps in the biosynthesis of peptidoglycan precursor, i.e. MurD catalyzes the ligation of D-glutamate to the nucleotide precursor UMA. The three dimensional structure of Mtb-MurD is not known and was predicted by us for the first time using comparative homology modeling technique. The accuracy and stability of the predicted Mtb-MurD structure was validated using Procheck and molecular dynamics simulation. Key interactions in Mtb-MurD were studied using docking analysis of available transition state inhibitors of E.coli-MurD. The docking analysis revealed that analogues of both L and D forms of glutamic acid have similar interaction profiles with Mtb-MurD. Further, residues His192, Arg382, Ser463, and Tyr470 are proposed to be important for inhibitor-(Mtb-MurD) interactions. We also identified few pharmacophoric features essential for Mtb-MurD ligase inhibitory activity and which can further been utilized for the discovery of putative antitubercular chemotherapy.

  19. The MIEL1 E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Stems.

    Science.gov (United States)

    Lee, Hong Gil; Kim, Juyoung; Suh, Mi Chung; Seo, Pil Joon

    2017-07-01

    Cuticular wax is an important hydrophobic layer that covers the plant aerial surface. Cuticular wax biosynthesis is shaped by multiple layers of regulation. In particular, a pair of R2R3-type MYB transcription factors, MYB96 and MYB30, are known to be the main participants in cuticular wax accumulation. Here, we report that the MYB30-INTERACTING E3 LIGASE 1 (MIEL1) E3 ubiquitin ligase controls the protein stability of the two MYB transcription factors and thereby wax biosynthesis in Arabidopsis. MIEL1-deficient miel1 mutants exhibit increased wax accumulation in stems, with up-regulation of wax biosynthetic genes targeted by MYB96 and MYB30. Genetic analysis reveals that wax accumulation of the miel1 mutant is compromised by myb96 or myb30 mutation, but MYB96 is mainly epistatic to MIEL1, playing a predominant role in cuticular wax deposition. These observations indicate that the MIEL1-MYB96 module is important for balanced cuticular wax biosynthesis in developing inflorescence stems. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis.

    Science.gov (United States)

    Shah, Meera; Stebbins, John L; Dewing, Antimone; Qi, Jianfei; Pellecchia, Maurizio; Ronai, Ze'ev A

    2009-12-01

    The E3 ubiquitin ligase Siah2 has been implicated in the regulation of the hypoxia response, as well as in the control of Ras, JNK/p38/NF-kappaB signaling pathways. Both Ras/mitogen-activated protein kinase (MAPK) and hypoxia pathways are important for melanoma development and progression, pointing to the possible use of Siah2 as target for treatment of this tumor type. In the present study, we have established a high-throughput electro-chemiluninescent-based assay in order to screen and identify inhibitors of Siah2 ubiquitin ligase activity. Of 1840 compounds screened, we identified and characterized menadione (MEN) as a specific inhibitor of Siah2 ligase activity. MEN attenuated Siah2 self-ubiquitination, and increased expression of its substrates PHD3 and Sprouty2, with concomitant decrease in levels of HIF-1alpha and pERK, the respective downstream effectors. MEN treatment no longer affected PHD3 or Sprouty2 in Siah-KO cells, pointing to its Siah-dependent effects. Further, MEN inhibition of Siah2 was not attenuated by free radical scavenger, suggesting it is ROS-independent. Significantly, growth of xenograft melanoma tumors was inhibited following the administration of MEN or its derivative. These findings reveal an efficient platform for the identification of Siah inhibitors while identifying and characterizing MEN as Siah inhibitor that attenuates hypoxia and MAPK signaling, and inhibits melanoma tumorigenesis.

  1. Haploid genetic screens identify an essential role for PLP2 in the downregulation of novel plasma membrane targets by viral E3 ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Richard T Timms

    Full Text Available The Kaposi's sarcoma-associated herpesvirus gene products K3 and K5 are viral ubiquitin E3 ligases which downregulate MHC-I and additional cell surface immunoreceptors. To identify novel cellular genes required for K5 function we performed a forward genetic screen in near-haploid human KBM7 cells. The screen identified proteolipid protein 2 (PLP2, a MARVEL domain protein of unknown function, as essential for K5 activity. Genetic loss of PLP2 traps the viral ligase in the endoplasmic reticulum, where it is unable to ubiquitinate and degrade its substrates. Subsequent analysis of the plasma membrane proteome of K5-expressing KBM7 cells in the presence and absence of PLP2 revealed a wide range of novel K5 targets, all of which required PLP2 for their K5-mediated downregulation. This work ascribes a critical function to PLP2 for viral ligase activity and underlines the power of non-lethal haploid genetic screens in human cells to identify the genes involved in pathogen manipulation of the host immune system.

  2. Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations

    DEFF Research Database (Denmark)

    Kacso, Gergely; Ravasz, Dora; Doczi, Judit

    2016-01-01

    Succinate-CoA ligase (SUCL) is a heterodimer enzyme composed of Suclg1 α-subunit and a substrate-specific Sucla2 or Suclg2 β-subunit yielding ATP or GTP, respectively. In humans, the deficiency of this enzyme leads to encephalomyopathy with or without methylmalonyl aciduria, in addition to result...

  3. The E3 ligase UBR5 regulates gastric cancer cell growth by destabilizing the tumor suppressor GKN1

    International Nuclear Information System (INIS)

    Yang, Min; Jiang, Nan; Cao, Qi-wei; Ma, Mao-qiang; Sun, Qing

    2016-01-01

    Gastric cancer is the most common digestive malignant tumor worldwide and the underlying mechanisms are not fully understood. The E3 ligase UBR5 (also known as EDD1) is essentially involved in diverse types of cancer. Here we aimed to study the functions of UBR5 in human gastric cancer. We first analyzed the mRNA and protein levels of UBR5 in human gastric cancer tissues and the results showed that UBR5 was markedly increased in gastric cancer tissues compared with normal gastric mucosa or matched non-cancer gastric tissues. The relationship between UBR5 and survival of gastric cancer patients was analyzed and we found that high UBR5 expression was associated with poor overall and disease-free survival. We further tried to investigate the effects of UBR5 on gastric cancer cell growth in vitro and in vivo. Therefore, we knocked down UBR5 with lentivirus-mediated shRNA and found that UBR5 knockdown repressed in vitro proliferation and colony formation of gastric cancer cells AGS, MG803 and MNK1. In vivo xenograft experiment also demonstrated that UBR5 knockdown inhibited AGS growth. Finally, we explored the mechanism by which UBR5 contributed to the growth of gastric cancer cells. We found that UBR5 bound the tumor suppressor gastrokine 1 (GKN1) and increased its ubiquitination to reduce the protein stability of GKN1. GKN1 knockdown with lentivirus-mediated shRNA increased the in vitro colony formation and in vivo growth of AGS cells, and UBR5 knockdown was unable to affect the colony formation and in vivo growth of AGS cells when GKN1 was knocked down, indicating that GKN1 contributed to the effects of UBR5 in human gastric cancer cells. Taken together, UBR5 plays an essential role in gastric cancer and may be a potential diagnosis and treatment target for gastric cancer. - Highlights: • UBR5 expression is up-regulated in human gastric cancer. • UBR5 overexpression predicts poor survival. • UBR5 regulates gastric cancer growth in vitro and in vivo.

  4. Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase

    DEFF Research Database (Denmark)

    Zadjali, Fahad; Pike, Ashley C W; Vesterlund, Mattias

    2011-01-01

    to substrate residue position pY+6 and envelopes the c-KIT phosphopeptide with a large BG loop insertion that contributes significantly to substrate interaction. We demonstrate that SOCS6 has ubiquitin ligase activity toward c-KIT and regulates c-KIT protein turnover in cells. Our data support a role of SOCS6...

  5. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.

    Science.gov (United States)

    Baalmann, Mathis; Best, Marcel; Wombacher, Richard

    2018-01-01

    Here, we describe a two-step protocol for selective protein labeling based on enzyme-mediated peptide labeling utilizing lipoic acid ligase (LplA) and bioorthogonal chemistry. The method can be applied to purified proteins, protein in cell lysates, as well as living cells. In a first step a W37V mutant of the lipoic acid ligase (LplA W37V ) from Escherichia coli is utilized to ligate a synthetic chemical handle site-specifically to a lysine residue in a 13 amino acid peptide motif-a short sequence that can be genetically expressed as a fusion with any protein of interest. In a second step, a molecular probe can be attached to the chemical handle in a bioorthogonal Diels-Alder reaction with inverse electron demand (DA inv ). This method is a complementary approach to protein labeling using genetic code expansion and circumvents larger protein tags while maintaining label specificity, providing experimental flexibility and straightforwardness.

  6. The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7.

    Science.gov (United States)

    Tron, Adriana E; Arai, Takehiro; Duda, David M; Kuwabara, Hiroshi; Olszewski, Jennifer L; Fujiwara, Yuko; Bahamon, Brittany N; Signoretti, Sabina; Schulman, Brenda A; DeCaprio, James A

    2012-04-13

    Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins, including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here, we show that Glomulin (Glmn), a protein found mutated in the vascular disorder glomuvenous malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues, and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity, indicating that Glmn modulates the E3 activity of CRL1(Fbw7). These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Draft genome sequence of a thermostable, alkaliphilic α-amylase and protease producing Bacillus amyloliquefaciens strain KCP2.

    Science.gov (United States)

    Prajapati, Vimalkumar S; Ray, Sanket; Narayan, Jitendra; Joshi, Chaitanya C; Patel, Kamlesh C; Trivedi, Ujjval B; Patel, R M

    2017-12-01

    Bacillus amyloliquefaciens strain KCP2 was isolated from municipal food waste samples collected in Vallabh Vidyanagar, Gujarat, India. Strain KCP2 is noteworthy due to its ability to produce a thermostable, alkaliphilic α-amylase and a protease. These enzymes have importance in several industrial processes including bread making, brewing, starch processing, pharmacy, and textile industries. Whole genome sequencing of strain KCP2 showed that the estimated genome size was 3.9 Mb, the G + C content was 46%, and it coded for 4113 genes.

  8. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    OpenAIRE

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine.

  9. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b.

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2016-09-01

    Full Text Available Oxidative stress is unavoidable for aerobic organisms. When abiotic and biotic stresses are encountered, oxidative damage could occur in cells. To avoid this damage, defense mechanisms must be timely and efficiently modulated. While the response to oxidative stress has been extensively studied in plants, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3 as a major negative regulator of oxidative stress tolerance. PQT3, encoding an E3 ubiquitin ligase, is rapidly down-regulated by oxidative stress. PQT3 has E3 ubiquitin ligase activity in ubiquitination assay. Subsequently, we identified PRMT4b as a PQT3-interacting protein. By histone methylation, PRMT4b upregulates the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. On the other hand, PRMT4b is recognized by PQT3 for targeted degradation via 26S proteasome. Therefore, we have identified PQT3 as an E3 ligase that acts as a negative regulator of activated response to oxidative stress and found that histone modification by PRMT4b at APX1 and GPX1 loci plays an important role in oxidative stress tolerance.

  10. Expression, crystallization and preliminary X-ray crystallographic analysis of Xoo0352, d-alanine-d-alanine ligase A, from Xanthomonas oryzae pv. oryzae

    International Nuclear Information System (INIS)

    Doan, Thanh Thi Ngoc; Kim, Jin-Kwang; Kim, Hyesoon; Ahn, Yeh-Jin; Kim, Jeong-Gu; Lee, Byoung-Moo; Kang, Lin-Woo

    2008-01-01

    Xoo0352, which encodes d-alanine-d-alanine ligase A (DdlA), from X. oryzae pv. oryzae was cloned, purified and crystallized. Preliminary X-ray crystallographic analysis of DdlA crystals was performed. Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB), which is one of the most devastating diseases of rice in most rice-growing countries. d-Alanine-d-alanine ligase A (DdlA), coded by the Xoo0352 gene, was expressed, purified and crystallized. DdlA is an enzyme that is involved in d-alanine metabolism and the biosynthesis of an essential bacterial peptidoglycan precursor, in which it catalyzes the formation of d-alanyl-d-alanine from two d-alanines, and is thus an attractive antibacterial drug target against Xoo. The DdlA crystals diffracted to 2.3 Å resolution and belonged to the primitive tetragonal space group P4 3 2 1 2, with unit-cell parameters a = b = 83.0, c = 97.6 Å. There is one molecule in the asymmetric unit, with a corresponding V M of 1.88 Å 3 Da −1 and a solvent content of 34.6%. The initial structure was determined by molecular replacement using d-alanine-d-alanine ligase from Staphylococcus aureus as a template model

  11. Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle.

    Science.gov (United States)

    Borgenvik, Marcus; Apró, William; Blomstrand, Eva

    2012-03-01

    Resistance exercise and amino acids are two major factors that influence muscle protein turnover. Here, we examined the effects of resistance exercise and branched-chain amino acids (BCAA), individually and in combination, on the expression of anabolic and catabolic genes in human skeletal muscle. Seven subjects performed two sessions of unilateral leg press exercise with randomized supplementation with BCAA or flavored water. Biopsies were collected from the vastus lateralis muscle of both the resting and exercising legs before and repeatedly after exercise to determine levels of mRNA, protein phosphorylation, and amino acid concentrations. Intake of BCAA reduced (P exercising legs, respectively. The level of MuRF-1 mRNA was elevated (P exercising leg two- and threefold under the placebo and BCAA conditions, respectively, whereas MuRF-1 total protein increased by 20% (P exercising muscle. In conclusion, BCAA ingestion reduced MAFbx mRNA and prevented the exercise-induced increase in MuRF-1 total protein in both resting and exercising leg. Further-more, resistance exercise differently influenced MAFbx and MuRF-1 mRNA expression, suggesting both common and divergent regulation of these two ubiquitin ligases.

  12. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair

    DEFF Research Database (Denmark)

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott

    2014-01-01

    slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I...

  13. Chemoenzymatic Synthesis of Oligo(L-cysteine) for Use as a Thermostable Bio-Based Material.

    Science.gov (United States)

    Ma, Yinan; Sato, Ryota; Li, Zhibo; Numata, Keiji

    2016-01-01

    Oligomerization of thiol-unprotected L-cysteine ethyl ester (Cys-OEt) catalyzed by proteinase K in aqueous solution has been used to synthesize oligo(L-cysteine) (OligoCys) with a well-defined chemical structure and relatively large degree of polymerization (DP) up to 16-17 (average 8.8). By using a high concentration of Cys-OEt, 78.0% free thiol content was achieved. The thermal properties of OligoCys are stable, with no glass transition until 200 °C, and the decomposition temperature could be increased by oxidation. Chemoenzymatically synthesized OligoCys has great potential for use as a thermostable bio-based material with resistance to oxidation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dissecting the function of Cullin-RING ubiquitin ligase complex genes in planarian regeneration.

    Science.gov (United States)

    Strand, Nicholas S; Allen, John M; Ghulam, Mahjoobah; Taylor, Matthew R; Munday, Roma K; Carrillo, Melissa; Movsesyan, Artem; Zayas, Ricardo M

    2018-01-15

    The ubiquitin system plays a role in nearly every aspect of eukaryotic cell biology. The enzymes responsible for transferring ubiquitin onto specific substrates are the E3 ubiquitin ligases, a large and diverse family of proteins, for which biological roles and target substrates remain largely undefined. Studies using model organisms indicate that ubiquitin signaling mediates key steps in developmental processes and tissue regeneration. Here, we used the freshwater planarian, Schmidtea mediterranea, to investigate the role of Cullin-RING ubiquitin ligase (CRL) complexes in stem cell regulation during regeneration. We identified six S. mediterranea cullin genes, and used RNAi to uncover roles for homologs of Cullin-1, -3 and -4 in planarian regeneration. The cullin-1 RNAi phenotype included defects in blastema formation, organ regeneration, lesions, and lysis. To further investigate the function of cullin-1-mediated cellular processes in planarians, we examined genes encoding the adaptor protein Skp1 and F-box substrate-recognition proteins that are predicted to partner with Cullin-1. RNAi against skp1 resulted in phenotypes similar to cullin-1 RNAi, and an RNAi screen of the F-box genes identified 19 genes that recapitulated aspects of cullin-1 RNAi, including ones that in mammals are involved in stem cell regulation and cancer biology. Our data provides evidence that CRLs play discrete roles in regenerative processes and provide a platform to investigate how CRLs regulate stem cells in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Structure of the Siz/PIAS SUMO E3 Ligase Siz1 and Determinants Required for SUMO Modification of PCNA

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, Ali A.; Lima, Christopher D.; (SKI)

    2010-01-12

    Siz1 is a founding member of the Siz/PIAS RING family of SUMO E3 ligases. The X-ray structure of an active Siz1 ligase revealed an elongated tripartite architecture comprised of an N-terminal PINIT domain, a central zinc-containing RING-like SP-RING domain, and a C-terminal domain we term the SP-CTD. Structure-based mutational analysis and biochemical studies show that the SP-RING and SP-CTD are required for activation of the E2SUMO thioester, while the PINIT domain is essential for redirecting SUMO conjugation to the proliferating cell nuclear antigen (PCNA) at lysine 164, a nonconsensus lysine residue that is not modified by the SUMO E2 in the absence of Siz1. Mutational analysis of Siz1 and PCNA revealed surfaces on both proteins that are required for efficient SUMO modification of PCNA in vitro and in vivo.

  16. Improving the Thermostability and Optimal Temperature of a Lipase from the Hyperthermophilic Archaeon Pyrococcus furiosus by Covalent Immobilization

    Directory of Open Access Journals (Sweden)

    Roberta V. Branco

    2015-01-01

    Full Text Available A recombinant thermostable lipase (Pf2001Δ60 from the hyperthermophilic Archaeon Pyrococcus furiosus (PFUL was immobilized by hydrophobic interaction on octyl-agarose (octyl PFUL and by covalent bond on aldehyde activated-agarose in the presence of DTT at pH = 7.0 (one-point covalent attachment (glyoxyl-DTT PFUL and on glyoxyl-agarose at pH 10.2 (multipoint covalent attachment (glyoxyl PFUL. The enzyme’s properties, such as optimal temperature and pH, thermostability, and selectivity, were improved by covalent immobilization. The highest enzyme stability at 70°C for 48 h incubation was achieved for glyoxyl PFUL (around 82% of residual activity, whereas glyoxyl-DTT PFUL maintained around 69% activity, followed by octyl PFUL (27% remaining activity. Immobilization on glyoxyl-agarose improved the optimal temperature to 90°C, while the optimal temperature of octyl PFUL was 70°C. Also, very significant changes in activity with different substrates were found. In general, the covalent bond derivatives were more active than octyl PFUL. The E value also depended substantially on the derivative and the conditions used. It was observed that the reaction of glyoxyl-DTT PFUL using methyl mandelate as a substrate at pH 7 presented the best results for enantioselectivity E=22 and enantiomeric excess (ee (% = 91.

  17. Redundant function of DNA ligase 1 and 3 in alternative end-joining during immunoglobulin class switch recombination.

    Science.gov (United States)

    Masani, Shahnaz; Han, Li; Meek, Katheryn; Yu, Kefei

    2016-02-02

    Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammals and resolves the DSBs generated during both V(D)J recombination in developing lymphocytes and class switch recombination (CSR) in antigen-stimulated B cells. In contrast to the absolute requirement for NHEJ to resolve DSBs associated with V(D)J recombination, DSBs associated with CSR can be resolved in NHEJ-deficient cells (albeit at a reduced level) by a poorly defined alternative end-joining (A-EJ) pathway. Deletion of DNA ligase IV (Lig4), a core component of the NHEJ pathway, reduces CSR efficiency in a mouse B-cell line capable of robust cytokine-stimulated CSR in cell culture. Here, we report that CSR levels are not further reduced by deletion of either of the two remaining DNA ligases (Lig1 and nuclear Lig3) in Lig4(-/-) cells. We conclude that in the absence of Lig4, Lig1, and Lig3 function in a redundant manner in resolving switch region DSBs during CSR.

  18. Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis

    Science.gov (United States)

    Shah, Meera; Stebbins, John L.; Dewing, Antimone; Qi, Jianfei; Pellecchia, Maurizio; Ronai, Ze’ev A.

    2010-01-01

    Summary The E3 ubiquitin ligase Siah2 has been implicated in the regulation of the hypoxia response, as well as in the control of Ras, JNK/p38/NF-κB signaling pathways. Both Ras/mitogen-activated protein kinase (MAPK) and hypoxia pathways are important for melanoma development and progression, pointing to the possible use of Siah2 as target for treatment of this tumor type. In the present study, we have established a high-throughput electro-chemiluninescent-based assay in order to screen and identify inhibitors of Siah2 ubiquitin ligase activity. Of 1840 compounds screened, we identified and characterized menadione (MEN) as a specific inhibitor of Siah2 ligase activity. MEN attenuated Siah2 self-ubiquitination, and increased expression of its substrates PHD3 and Sprouty2, with concomitant decrease in levels of HIF-1α and pERK, the respective downstream effectors. MEN treatment no longer affected PHD3 or Sprouty2 in Siah-KO cells, pointing to its Siah-dependent effects. Further, MEN inhibition of Siah2 was not attenuated by free radical scavenger, suggesting it is ROS-independent. Significantly, growth of xenograft melanoma tumors was inhibited following the administration of MEN or its derivative. These findings reveal an efficient platform for the identification of Siah inhibitors while identifying and characterizing MEN as Siah inhibitor that attenuates hypoxia and MAPK signaling, and inhibits melanoma tumorigenesis. PMID:19712206

  19. Kinetic mechanism of human DNA ligase I reveals magnesium-dependent changes in the rate-limiting step that compromise ligation efficiency.

    Science.gov (United States)

    Taylor, Mark R; Conrad, John A; Wahl, Daniel; O'Brien, Patrick J

    2011-07-01

    DNA ligase I (LIG1) catalyzes the ligation of single-strand breaks to complete DNA replication and repair. The energy of ATP is used to form a new phosphodiester bond in DNA via a reaction mechanism that involves three distinct chemical steps: enzyme adenylylation, adenylyl transfer to DNA, and nick sealing. We used steady state and pre-steady state kinetics to characterize the minimal mechanism for DNA ligation catalyzed by human LIG1. The ATP dependence of the reaction indicates that LIG1 requires multiple Mg(2+) ions for catalysis and that an essential Mg(2+) ion binds more tightly to ATP than to the enzyme. Further dissection of the magnesium ion dependence of individual reaction steps revealed that the affinity for Mg(2+) changes along the reaction coordinate. At saturating concentrations of ATP and Mg(2+) ions, the three chemical steps occur at similar rates, and the efficiency of ligation is high. However, under conditions of limiting Mg(2+), the nick-sealing step becomes rate-limiting, and the adenylylated DNA intermediate is prematurely released into solution. Subsequent adenylylation of enzyme prevents rebinding to the adenylylated DNA intermediate comprising an Achilles' heel of LIG1. These ligase-generated 5'-adenylylated nicks constitute persistent breaks that are a threat to genomic stability if they are not repaired. The kinetic and thermodynamic framework that we have determined for LIG1 provides a starting point for understanding the mechanism and specificity of mammalian DNA ligases.

  20. Disruption of Ttll5/stamp gene (tubulin tyrosine ligase-like protein 5/SRC-1 and TIF2-associated modulatory protein gene) in male mice causes sperm malformation and infertility.

    Science.gov (United States)

    Lee, Geun-Shik; He, Yuanzheng; Dougherty, Edward J; Jimenez-Movilla, Maria; Avella, Matteo; Grullon, Sean; Sharlin, David S; Guo, Chunhua; Blackford, John A; Awasthi, Smita; Zhang, Zhenhuan; Armstrong, Stephen P; London, Edra C; Chen, Weiping; Dean, Jurrien; Simons, S Stoney

    2013-05-24

    TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamp(tm/tm)) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamp(tm/tm) sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamp(tm/tm) males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility.

  1. Disruption of Ttll5/Stamp Gene (Tubulin Tyrosine Ligase-like Protein 5/SRC-1 and TIF2-associated Modulatory Protein Gene) in Male Mice Causes Sperm Malformation and Infertility*

    Science.gov (United States)

    Lee, Geun-Shik; He, Yuanzheng; Dougherty, Edward J.; Jimenez-Movilla, Maria; Avella, Matteo; Grullon, Sean; Sharlin, David S.; Guo, Chunhua; Blackford, John A.; Awasthi, Smita; Zhang, Zhenhuan; Armstrong, Stephen P.; London, Edra C.; Chen, Weiping; Dean, Jurrien; Simons, S. Stoney

    2013-01-01

    TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamptm/tm) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamptm/tm sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamptm/tm males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility. PMID:23558686

  2. Continuous D-tagatose production by immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor.

    Science.gov (United States)

    Ryu, Se-Ah; Kim, Chang Sup; Kim, Hye-Jung; Baek, Dae Heoun; Oh, Deok-Kun

    2003-01-01

    D-Tagatose was continuously produced using thermostable L-arabinose isomerase immobilized in alginate with D-galactose solution in a packed-bed bioreactor. Bead size, L/D (length/diameter) of reactor, dilution rate, total loaded enzyme amount, and substrate concentration were found to be optimal at 0.8 mm, 520/7 mm, 0.375 h(-1), 5.65 units, and 300 g/L, respectively. Under these conditions, the bioreactor produced about 145 g/L tagatose with an average productivity of 54 g tagatose/L x h and an average conversion yield of 48% (w/w). Operational stability of the immobilized enzyme was demonstrated, with a tagatose production half-life of 24 days.

  3. E3 ubiquitin ligase gene CMPG1-V from Haynaldia villosa L. contributes to powdery mildew resistance in common wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhu, Yanfei; Li, Yingbo; Fei, Fei; Wang, Zongkuan; Wang, Wei; Cao, Aizhong; Liu, Yuan; Han, Shuang; Xing, Liping; Wang, Haiyan; Chen, Wei; Tang, Sanyuan; Huang, Xiahe; Shen, Qianhua; Xie, Qi; Wang, Xiue

    2015-10-01

    Powdery mildew is one of the most devastating wheat fungal diseases. A diploid wheat relative, Haynaldia villosa L., is highly resistant to powdery mildew, and its genetic resource of resistances, such as the Pm21 locus, is now widely used in wheat breeding. Here we report the cloning of a resistance gene from H. villosa, designated CMPG1-V, that encodes a U-box E3 ubiquitin ligase. Expression of the CMPG1-V gene was induced in the leaf and stem of H. villosa upon inoculation with Blumeria graminis f. sp. tritici (Bgt) fungus, and the presence of Pm21 is essential for its rapid induction of expression. CMPG1-V has conserved key residues for E3 ligase, and possesses E3 ligase activity in vitro and in vivo. CMPG1-V is localized in the nucleus, endoplasmic reticulum, plasma membrane and partially in trans-Golgi network/early endosome vesicles. Transgenic wheat over-expressing CMPG1-V showed improved broad-spectrum powdery mildew resistance at seedling and adult stages, associated with an increase in expression of salicylic acid-responsive genes, H2 O2 accumulation, and cell-wall protein cross-linking at the Bgt infection sites, and the expression of CMPG1-V in H. villosa was increased when treated with salicylic acid, abscisic acid and H2 O2 . These results indicate the involvement of E3 ligase in defense responses to Bgt fungus in wheat, particularly in broad-spectrum disease resistance, and suggest association of reactive oxidative species and the phytohormone pathway with CMPG1-V-mediated powdery mildew resistance. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  4. Development of soluble and immobilized biocatalysts based on a recombinant thermostable ß-fructosidase enabling complete sucrose inversion at pasteurization temperatures

    OpenAIRE

    Menéndez, Carmen; Martínez, Duniesky; Trujillo, Luis E; Ramírez, Ricardo; Sobrino, Alina; Cutiño-Ávila, Bessy V; Basabe, Liliana; del Monte-Martínez, Alberto; Pérez, Enrique R; Hernández, Lázaro

    2014-01-01

    Biocatalysts for the industrial production of invert sugar are preferred to stably operate at high sucrose concentrations and pasteurization temperatures. Thermotoga maritima ß-fructosidase (BfrA) is more thermostable and less susceptible to substrate inhibition than the current commercial invertase from Saccharomyces cerevisiae. In this research, the non-saccharolytic host Pichia pastoris was engineered for BfrA production. Fed-batch fermentation of the recombinant yeast for 72 h using cane ...

  5. Properties of a novel thermostable glucose isomerase mined from Thermus oshimai and its application to preparation of high fructose corn syrup.

    Science.gov (United States)

    Jia, Dong-Xu; Zhou, Lin; Zheng, Yu-Guo

    2017-04-01

    Glucose isomerase (GI) is used in vitro to convert d-glucose to d-fructose, which is capable of commercial producing high fructose corn syrup (HFCS). To manufacture HFCS at elevated temperature and reduce the cost of enriching syrups, novel refractory GIs from Thermoanaerobacterium xylanolyticum (TxGI), Thermus oshimai (ToGI), Geobacillus thermocatenulatus (GtGI) and Thermoanaerobacter siderophilus (TsGI) were screened via genome mining approach. The enzymatic characteristics research showed that ToGI had higher catalytic efficiency and superior thermostability toward d-glucose among the screened GIs. Its optimum temperature reached 95°C and could retain more than 80% of initial activity in the presence of 20mM Mn 2+ at 85°C for 48h. The K m and k cat /K m values for ToGI were 81.46mM and 21.77min -1 mM -1 , respectively. Furthermore, the maximum conversion yield of 400g/L d-glucose to d-fructose at 85°C was 52.16%. Considering its excellent high thermostability and ameliorable application performance, ToGI might be promising for realization of future industrial production of HFCS at elevated temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    Science.gov (United States)

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine. PMID:11073931

  7. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Min [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Zhu, Yunye [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Qiao, Maiju [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); Tang, Xiaofeng [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Zhao, Wei [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Xiao, Fangming [Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Liu, Yongsheng, E-mail: liuyongsheng1122@hfut.edu.cn [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China)

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.

  8. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    International Nuclear Information System (INIS)

    Miao, Min; Zhu, Yunye; Qiao, Maiju; Tang, Xiaofeng; Zhao, Wei; Xiao, Fangming; Liu, Yongsheng

    2014-01-01

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato

  9. Sorghum Brown midrib 2 (Bmr2) gene encodes the major 4-coumarate Coenzyme A ligase involved in lignin synthesis

    Science.gov (United States)

    Successful modification of plant cell wall composition without compromising plant integrity is dependent on being able to modify the expression of specific genes, but can be very challenging when the target genes are members of multigene families. 4-Coumarate:CoA ligase (4CL) catalyzes the formatio...

  10. Bovine pancreatic trypsin inhibitor immobilized onto sepharose as a new strategy to purify a thermostable alkaline peptidase from cobia (Rachycentron canadum) processing waste.

    Science.gov (United States)

    França, Renata Cristina da Penha; Assis, Caio Rodrigo Dias; Santos, Juliana Ferreira; Torquato, Ricardo José Soares; Tanaka, Aparecida Sadae; Hirata, Izaura Yoshico; Assis, Diego Magno; Juliano, Maria Aparecida; Cavalli, Ronaldo Olivera; Carvalho, Luiz Bezerra de; Bezerra, Ranilson Souza

    2016-10-15

    A thermostable alkaline peptidase was purified from the processing waste of cobia (Rachycentron canadum) using bovine pancreatic trypsin inhibitor (BPTI) immobilized onto Sepharose. The purified enzyme had an apparent molecular mass of 24kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. Its optimal temperature and pH were 50°C and 8.5, respectively. The enzyme was thermostable until 55°C and its activity was strongly inhibited by the classic trypsin inhibitors N-ρ-tosyl-l-lysine chloromethyl ketone (TLCK) and benzamidine. BPTI column allowed at least 15 assays without loss of efficacy. The purified enzyme was identified as a trypsin and the N-terminal amino acid sequence of this trypsin was IVGGYECTPHSQAHQVSLNSGYHFC, which was highly homologous to trypsin from cold water fish species. Using Nα-benzoyl-dl-arginine ρ-nitroanilide hydrochloride (BApNA) as substrate, the apparent km value of the purified trypsin was 0.38mM, kcat value was 3.14s(-1), and kcat/km was 8.26s(-1)mM(-1). The catalytic proficiency of the purified enzyme was 2.75×10(12)M(-1) showing higher affinity for the substrate at the transition state than other fish trypsin. The activation energy (AE) of the BApNA hydrolysis catalyzed by this enzyme was estimated to be 11.93kcalmol(-1) while the resulting rate enhancement of this reaction was found to be approximately in a range from 10(9) to 10(10)-fold evidencing its efficiency in comparison to other trypsin. This new purification strategy showed to be appropriate to obtain an alkaline peptidase from cobia processing waste with high purification degree. According with N-terminal homology and kinetic parameters, R. canadum trypsin may gathers desirable properties of psychrophilic and thermostable enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Thermostable cross-protective subunit vaccine against Brucella species.

    Science.gov (United States)

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA

    Science.gov (United States)

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    Summary Siz1 is a founding member of the Siz/PIAS RING family of SUMO E3 ligases. The x-ray structure of an active Siz1 ligase revealed an elongated tripartite architecture comprised of an N-terminal PINIT domain, a central zinc-containing RING-like SP-RING domain, and a C-terminal domain we term the SP-CTD. Structure-based mutational analysis and biochemical studies show that the SP-RING and SP-CTD are required for activation of the E2~SUMO thioester while the PINIT domain is essential for redirecting SUMO conjugation to the proliferating cell nuclear antigen (PCNA) at lysine 164, a non-consensus lysine residue that is not modified by the SUMO E2 in the absence of Siz1. Mutational analysis of Siz1 and PCNA revealed surfaces on both proteins that are required for efficient SUMO modification of PCNA in vitro and in vivo. PMID:19748360

  13. Study of the leaching of heavy metals from waste water sludge and incinerator's ash, using coupled thermostated columns and DTPA as complex agent

    International Nuclear Information System (INIS)

    Vite T, J.; Vite T, M.; Guerrero D, J.; Carreno de Leon, M.C.

    2000-01-01

    We studied the metallic composition from waste water sludge and incinerators ashes of an incinerator located in Toluca, Mexico, the qualitative studies were made using the Activation Analysis technique, and fluorescence X-ray techniques. The quantitative analysis of heavy metals in the wastes were made using Inductively coupled plasma atomic emission spectrometry (Icp-Aes). For leaching the samples, we used four coupled thermostated columns, each one had a p H of 2,5, 7 and 10. The flux of the air was of 1600 cc/min. The temperature was maintain constant in 60 Centigrade using a thermostated system. For this study we used 100 g of wastes mixed with mineral acid or sodium hydroxide to reach p H 2,5,7 and 10. We added a reducing and tensoactive agents and finally DTPA as complex agent. With this method, we obtain a better leaching efficiency using a complex agent. However the high DTPA cost, make this process expansive that is why we recommend to work with another classes of complex agents, that be cheaper to leach metals of different chemistry matrix. (Author)

  14. Probing Mechanism of Evolution of Simple Genomes

    Science.gov (United States)

    Pohorille, Andrew; Ditzler, Mark; Popovic, Milena; Wei, Chenyu

    2016-01-01

    Our overarching goal is to discover how the structure of the genotypic space of RNA polymers affects their ability to evolve. Specifically, we will address several fundamental questions that, so far, have remained largely unanswered. Was the genotypic space explored globally or only locally? Was the outcome of early evolution predictable or was it, instead, govern by chance? What was the role of neutral mutations in the evolution of increasing complex systems? As the first step, we study the problem in the example of RNA ligases. We obtain the complete, empirical fitness landscapes for short ligases and examine possible evolutionary paths for RNA molecules that are sufficiently long to preclude exhaustive search of the genotypic space.

  15. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus.

    Science.gov (United States)

    Raghunath, Pendru

    2014-01-01

    Vibrio parahaemolyticus is the leading cause of seafood borne bacterial gastroenteritis in the world, often associated with the consumption of raw or undercooked seafood. However, not all strains of V. parahaemolyticus are pathogenic. The thermostable direct hemolysin (TDH) or TDH-related hemolysin (TRH) encoded by tdh and trh genes, respectively, are considered major virulence factors in V. parahaemolyticus. However, about 10% of clinical strains do not contain tdh and/or trh. Environmental isolates of V. parahaemolyticus lacking tdh and/or trh are also highly cytotoxic to human gastrointestinal cells. Even in the absence of these hemolysins, V. parahaemolyticus remains pathogenic indicating other virulence factors exist. This mini review aims at discussing the possible roles of tdh and trh genes in clinical and environmental isolates of V. parahaemolyticus.

  16. The MurC ligase essential for peptidoglycan biosynthesis is regulated by the serine/threonine protein kinase PknA in Corynebacterium glutamicum.

    Science.gov (United States)

    Fiuza, Maria; Canova, Marc J; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A

    2008-12-26

    The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (L-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recently emerged as a major physiological mechanism of regulation in prokaryotes. Herein, the hypothesis of a phosphorylation-dependent mechanism of regulation of the MurC activity was investigated in Corynebacterium glutamicum. We showed that MurC was phosphorylated in vitro by the PknA protein kinase. An analysis of the phosphoamino acid content indicated that phosphorylation exclusively occurred on threonine residues. Six phosphoacceptor residues were identified by mass spectrometry analysis, and we confirmed that mutagenesis to alanine residues totally abolished PknA-dependent phosphorylation of MurC. In vitro and in vivo ligase activity assays showed that the catalytic activity of MurC was impaired following mutation of these threonine residues. Further in vitro assays revealed that the activity of the MurC-phosphorylated isoform was severely decreased compared with the non-phosphorylated protein. To our knowledge, this is the first demonstration of a MurC ligase phosphorylation in vitro. The finding that phosphorylation is correlated with a decrease in MurC enzymatic activity could have significant consequences in the regulation of peptidoglycan biosynthesis.

  17. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members.

    Directory of Open Access Journals (Sweden)

    Jana Kamanova

    2016-04-01

    Full Text Available Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms.

  18. Purification, crystallization and preliminary X-ray analysis of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    Science.gov (United States)

    Deva, Taru; Pryor, KellyAnn D; Leiting, Barbara; Baker, Edward N; Smith, Clyde A

    2003-08-01

    UDP-N-acetylmuramoyl:L-alanine ligase (MurC) is involved in the pathway leading from UDP-N-glucosamine to the UDP-N-acetylmuramoyl:pentapeptide unit, which is the building block for the peptidoglycan layer found in all bacterial cell walls. The pathways leading to the biosynthesis of the peptidoglycan layer are important targets for the development of novel antibiotics, since animal cells do not contain these pathways. MurC is the first of four similar ATP-dependent amide-bond ligases which share primary and tertiary structural similarities. The crystal structures of three of these have been determined by X-ray crystallography, giving insights into the binding of the carbohydrate substrate and the ATP. Diffraction-quality crystals of the enzyme MurC have been obtained in both native and selenomethionine forms and X-ray diffraction data have been collected at the Se edge at a synchrotron source. The crystals are orthorhombic, with unit-cell parameters a = 73.9, b = 93.6, c = 176.8 A, and diffraction has been observed to 2.6 A resolution.

  19. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    Science.gov (United States)

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process.

  20. Cadmium delays non-homologous end joining (NHEJ) repair via inhibition of DNA-PKcs phosphorylation and downregulation of XRCC4 and Ligase IV

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiwei; Gu, Xueyan; Zhang, Xiaoning; Kong, Jinxin [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China); Ding, Nan [Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Qi, Yongmei; Zhang, Yingmei [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China); Wang, Jufang [Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Huang, Dejun, E-mail: huangdj@lzu.edu.cn [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China)

    2015-09-15

    Highlights: • Cadmium (Cd) exposure delayed the repair of DNA damage induced by X-ray. • Cd exposure altered the phosphorylation of DNA-PKcs on Thr-2609 and Ser-2056 sites. • Cd impaired the formation of XRCC4 and Ligase IV foci, and down-regulated their protein expression. • Zinc mitigated the effects of Cd on DDR by regulating pDNA-PKcs (Thr-2609), XRCC4 and Ligase IV. - Abstract: Although studies have shown that cadmium (Cd) interfered with DNA damage repair (DDR), whether Cd could affect non-homologous end joining (NHEJ) repair remains elusive. To further understand the effect of Cd on DDR, we used X-ray irradiation of Hela cells as an in vitro model system, along with γH2AX and 53BP1 as markers for DNA damage. Results showed that X-ray significantly increased γH2AX and 53BP1 foci in Hela cells (p < 0.01), all of which are characteristic of accrued DNA damage. The number of foci declined rapidly over time (1–8 h postirradiation), indicating an initiation of NHEJ process. However, the disappearance of γH2AX and 53BP1 foci was remarkably slowed by Cd pretreatment (p < 0.01), suggesting that Cd reduced the efficiency of NHEJ. To further elucidate the mechanisms of Cd toxicity, several markers of NHEJ pathway including Ku70, DNA-PKcs, XRCC4 and Ligase IV were examined. Our data showed that Cd altered the phosphorylation of DNA-PKcs, and reduced the expression of both XRCC4 and Ligase IV in irradiated cells. These observations are indicative of the impairment of NHEJ-dependent DNA repair pathways. In addition, zinc (Zn) mitigated the effects of Cd on NHEJ, suggesting that the Cd-induced NHEJ alteration may partly result from the displacement of Zn or from an interference with the normal function of Zn-containing proteins by Cd. Our findings provide a new insight into the toxicity of Cd on NHEJ repair and its underlying mechanisms in human cells.

  1. BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation.

    Directory of Open Access Journals (Sweden)

    Beatriz Orosa

    2017-01-01

    Full Text Available Hypersensitive response programmed cell death (HR-PCD is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.

  2. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL domain effector of Rhizobium sp. strain NGR234.

    Directory of Open Access Journals (Sweden)

    Da-Wei Xin

    Full Text Available Type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS are not only virulence factors of pathogenic bacteria, but also influence symbiotic interactions between nitrogen-fixing nodule bacteria (rhizobia and leguminous host plants. In this study, we characterized NopM (nodulation outer protein M of Rhizobium sp. strain NGR234, which shows sequence similarities with novel E3 ubiquitin ligase (NEL domain effectors from the human pathogens Shigella flexneri and Salomonella enterica. NopM expressed in Escherichia coli, but not the non-functional mutant protein NopM-C338A, showed E3 ubiquitin ligase activity in vitro. In vivo, NopM, but not inactive NopM-C338A, promoted nodulation of the host plant Lablab purpureus by NGR234. When NopM was expressed in yeast, it inhibited mating pheromone signaling, a mitogen-activated protein (MAP kinase pathway. When expressed in the plant Nicotiana benthamiana, NopM inhibited one part of the plant's defense response, as shown by a reduced production of reactive oxygen species (ROS in response to the flagellin peptide flg22, whereas it stimulated another part, namely the induction of defense genes. In summary, our data indicate the potential for NopM as a functional NEL domain E3 ubiquitin ligase. Our findings that NopM dampened the flg22-induced ROS burst in N. benthamiana but promoted defense gene induction are consistent with the concept that pattern-triggered immunity is split in two separate signaling branches, one leading to ROS production and the other to defense gene induction.

  3. PUB22 and PUB23 U-BOX E3 ligases directly ubiquitinate RPN6, a 26S proteasome lid subunit, for subsequent degradation in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Cho, Seok Keun; Bae, Hansol; Ryu, Moonyoung

    2015-01-01

    and PUB23, two U-box E3 ligase homologs, tether ubiquitins to 19S proteasome regulatory particle (RP) subunit RPN6, leading to its degradation. RPN6 was identified as an interacting substrate of PUB22 by yeast two-hybrid screening, and in vitro pull-down assay confirmed that RPN6 interacts not only......Drought stress strongly affects plant growth and development, directly connected with crop yields, accordingly. However, related to the function of U-BOX E3 ligases, the underlying molecular mechanisms of desiccation stress response in plants are still largely unknown. Here we report that PUB22...

  4. E3 Ubiquitin Ligase RNF125 Activates Interleukin-36 Receptor Signaling and Contributes to Its Turnover.

    Science.gov (United States)

    Saha, Siddhartha S; Caviness, Gary; Yi, Guanghui; Raymond, Ernest L; Mbow, M Lamine; Kao, C Cheng

    2018-01-01

    Signaling by the interleukin-36 receptor (IL-36R) is linked to inflammatory diseases such as psoriasis. However, the regulation of IL-36R signaling is poorly understood. Activation of IL-36R signaling in cultured cells results in an increased polyubiquitination of the receptor subunit, IL-1Rrp2. Treatment with deubiquitinases shows that the receptor subunit of IL-36R, IL-1Rrp2, is primarily polyubiquitinated at the K63 position, which is associated with endocytic trafficking and signal transduction. A minor amount of ubiquitination is at the K48 position that is associated with protein degradation. A focused siRNA screen identified RNF125, an E3 ubiquitin ligase, to ubiquitinate IL-1Rrp2 upon activation of IL-36R signaling while not affecting the activated IL-1 receptor. Knockdown of RNF125 decreases signal transduction by the IL-36R. Overexpression of RNF125 in HEK293T cells activates IL-36R signaling and increases the ubiquitination of IL-1Rrp2 and its subsequent turnover. RNF125 can coimmunoprecipitate with the IL-36R, and it traffics with IL-1Rrp2 from the cell surface to lysosomes. Mutations of Lys568 and Lys569 in the C-terminal tail of IL-1Rrp2 decrease ubiquitination by RNF125 and increase the steady-state levels of IL-1Rrp2. These results demonstrate that RNF125 has multiple regulatory roles in the signaling, trafficking, and turnover of the IL-36R. © 2017 S. Karger AG, Basel.

  5. The ubiquitin ligase Cullin5SOCS2 regulates NDR1/STK38 stability and NF-κB transactivation

    DEFF Research Database (Denmark)

    Paul, Indranil; Batth, Tanveer S; Iglesias-Gato, Diego

    2017-01-01

    SOCS2 is a pleiotropic E3 ligase. Its deficiency is associated with gigantism and organismal lethality upon inflammatory challenge. However, mechanistic understanding of SOCS2 function is dismal due to our unawareness of its protein substrates. We performed a mass spectrometry based proteomic pro...

  6. Effect of thermostable α-amylase injection on mechanical and physiochemical properties for saccharification of extruded corn starch.

    Science.gov (United States)

    Myat, Lin; Ryu, Gi-Hyung

    2014-01-30

    In industry, a jet cooker is used to gelatinize starch by mixing the starch slurry with steam under pressure at 100-175 °C. A higher degree of starch hydrolysis in an extruder is possible with glucoamylase. Unfortunately, it is difficult to carry out liquefaction and saccharification in parallel, because the temperature of gelatinization will be too high and will inactivate glucoamylase. Since the temperature for liquefaction and saccharification is different, it is hard to change the temperature from high (required for liquefaction) to low (required for saccharification). The industrial gelatinization process is usually carried out with 30-35% (w/w) dry solids starch slurry. Conventional jet cookers cannot be used any more at high substrate concentrations owing to higher viscosity. In this study, therefore, corn starch was extruded at different melt temperatures to overcome these limitations and to produce the highest enzyme-accessible starch extrudates. Significant effects on physical properties (water solubility index, water absorption index and color) and chemical properties (reducing sugar and % increase in reducing sugar after saccharification) were achieved by addition of thermostable α-amylase at melt temperatures of 115 and 135 °C. However, there was no significant effect on % increase in reducing sugar of extruded corn starch at 95 °C. The results show the great potential of extrusion with thermostable α-amylase injection at 115 and 135 °C as an effective pretreatment for breaking down starch granules, because of the significant increase (P < 0.05) in % reducing sugar and enzyme-accessible extrudates for saccharification yield. © 2013 Society of Chemical Industry.

  7. Degradation of human Lipin-1 by BTRC E3 ubiquitin ligase.

    Science.gov (United States)

    Ishimoto, Kenji; Hayase, Ayaka; Kumagai, Fumiko; Kawai, Megumi; Okuno, Hiroko; Hino, Nobumasa; Okada, Yoshiaki; Kawamura, Takeshi; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Tachibana, Keisuke; Doi, Takefumi

    2017-06-17

    Lipin-1 has dual functions in the regulation of lipid and energy metabolism according to its subcellular localization, which is tightly controlled. However, it is unclear how Lipin-1 degradation is regulated. Here, we demonstrate that Lipin-1 is degraded through its DSGXXS motif. We show that Lipin-1 interacts with either of two E3 ubiquitin ligases, BTRC or FBXW11, and that this interaction is DSGXXS-dependent and mediates the attachment of polyubiquitin chains. Further, we demonstrate that degradation of Lipin-1 is regulated by BTRC in the cytoplasm and on membranes. These novel insights into the regulation of human Lipin-1 stability will be useful in planning further studies to elucidate its metabolic processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Biochemical characterisation of the chlamydial MurF ligase, and possible sequence of the chlamydial peptidoglycan pentapeptide stem.

    Science.gov (United States)

    Patin, Delphine; Bostock, Julieanne; Chopra, Ian; Mengin-Lecreulx, Dominique; Blanot, Didier

    2012-06-01

    Chlamydiaceae are obligate intracellular bacteria that do not synthesise detectable peptidoglycan although they possess an almost complete arsenal of genes encoding peptidoglycan biosynthetic activities. In this paper, the murF gene from Chlamydia trachomatis was shown to be capable of complementing a conditional Escherichia coli mutant impaired in UDP-MurNAc-tripeptide:D-Ala-D-Ala ligase activity. Recombinant MurF from C. trachomatis was overproduced and purified from E. coli. It exhibited ATP-dependent UDP-MurNAc-X-γ-D-Glu-meso-A(2)pm:D-Ala-D-Ala ligase activity in vitro. No significant difference of kinetic parameters was seen when X was L-Ala, L-Ser or Gly. The L-Lys-containing UDP-MurNAc-tripeptide was a poorer substrate as compared to the meso-A(2)pm-containing one. Based on the respective substrate specificities of the chlamydial MurC, MurE, MurF and Ddl enzymes, a sequence L-Ala/L-Ser/Gly-γ-D-Glu-meso-A(2)pm-D-Ala-D-Ala is expected for the chlamydial pentapeptide stem, with Gly at position 1 being less likely.

  9. Ubiquitin Ligase RNF138 Promotes Episodic Ataxia Type 2-Associated Aberrant Degradation of Human Cav2.1 (P/Q-Type) Calcium Channels.

    Science.gov (United States)

    Fu, Ssu-Ju; Jeng, Chung-Jiuan; Ma, Chia-Hao; Peng, Yi-Jheng; Lee, Chi-Ming; Fang, Ya-Ching; Lee, Yi-Ching; Tang, Sung-Chun; Hu, Meng-Chun; Tang, Chih-Yung

    2017-03-01

    Voltage-gated Ca V 2.1 channels comprise a pore-forming α 1A subunit with auxiliary α 2 δ and β subunits. Ca V 2.1 channels play an essential role in regulating synaptic signaling. Mutations in the human gene encoding the Ca V 2.1 subunit are associated with the cerebellar disease episodic ataxia type 2 (EA2). Several EA2-causing mutants exhibit impaired protein stability and exert dominant-negative suppression of Ca V 2.1 wild-type (WT) protein expression via aberrant proteasomal degradation. Here, we set out to delineate the protein degradation mechanism of human Ca V 2.1 subunit by identifying RNF138, an E3 ubiquitin ligase, as a novel Ca V 2.1-binding partner. In neurons, RNF138 and Ca V 2.1 coexist in the same protein complex and display notable subcellular colocalization at presynaptic and postsynaptic regions. Overexpression of RNF138 promotes polyubiquitination and accelerates protein turnover of Ca V 2.1. Disrupting endogenous RNF138 function with a mutant (RNF138-H36E) or shRNA infection significantly upregulates the Ca V 2.1 protein level and enhances Ca V 2.1 protein stability. Disrupting endogenous RNF138 function also effectively rescues the defective protein expression of EA2 mutants, as well as fully reversing EA2 mutant-induced excessive proteasomal degradation of Ca V 2.1 WT subunits. RNF138-H36E coexpression only partially restores the dominant-negative effect of EA2 mutants on Ca V 2.1 WT functional expression, which can be attributed to defective membrane trafficking of Ca V 2.1 WT in the presence of EA2 mutants. We propose that RNF138 plays a critical role in the homeostatic regulation of Ca V 2.1 protein level and functional expression and that RNF138 serves as the primary E3 ubiquitin ligase promoting EA2-associated aberrant degradation of human Ca V 2.1 subunits. SIGNIFICANCE STATEMENT Loss-of-function mutations in the human Ca V 2.1 subunit are linked to episodic ataxia type 2 (EA2), a dominantly inherited disease characterized by

  10. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells.

    Science.gov (United States)

    Paolino, Magdalena; Choidas, Axel; Wallner, Stephanie; Pranjic, Blanka; Uribesalgo, Iris; Loeser, Stefanie; Jamieson, Amanda M; Langdon, Wallace Y; Ikeda, Fumiyo; Fededa, Juan Pablo; Cronin, Shane J; Nitsch, Roberto; Schultz-Fademrecht, Carsten; Eickhoff, Jan; Menninger, Sascha; Unger, Anke; Torka, Robert; Gruber, Thomas; Hinterleitner, Reinhard; Baier, Gottfried; Wolf, Dominik; Ullrich, Axel; Klebl, Bert M; Penninger, Josef M

    2014-03-27

    Tumour metastasis is the primary cause of mortality in cancer patients and remains the key challenge for cancer therapy. New therapeutic approaches to block inhibitory pathways of the immune system have renewed hopes for the utility of such therapies. Here we show that genetic deletion of the E3 ubiquitin ligase Cbl-b (casitas B-lineage lymphoma-b) or targeted inactivation of its E3 ligase activity licenses natural killer (NK) cells to spontaneously reject metastatic tumours. The TAM tyrosine kinase receptors Tyro3, Axl and Mer (also known as Mertk) were identified as ubiquitylation substrates for Cbl-b. Treatment of wild-type NK cells with a newly developed small molecule TAM kinase inhibitor conferred therapeutic potential, efficiently enhancing anti-metastatic NK cell activity in vivo. Oral or intraperitoneal administration using this TAM inhibitor markedly reduced murine mammary cancer and melanoma metastases dependent on NK cells. We further report that the anticoagulant warfarin exerts anti-metastatic activity in mice via Cbl-b/TAM receptors in NK cells, providing a molecular explanation for a 50-year-old puzzle in cancer biology. This novel TAM/Cbl-b inhibitory pathway shows that it might be possible to develop a 'pill' that awakens the innate immune system to kill cancer metastases.

  11. Microbial biotin protein ligases aid in understanding holocarboxylase synthetase deficiency.

    Science.gov (United States)

    Pendini, Nicole R; Bailey, Lisa M; Booker, Grant W; Wilce, Matthew C; Wallace, John C; Polyak, Steven W

    2008-01-01

    The attachment of biotin onto the biotin-dependent enzymes is catalysed by biotin protein ligase (BPL), also known as holocarboxylase synthase HCS in mammals. Mammals contain five biotin-enzymes that participate in a number of important metabolic pathways such as fatty acid biogenesis, gluconeogenesis and amino acid catabolism. All mammalian biotin-enzymes are post-translationally biotinylated, and therefore activated, through the action of a single HCS. Substrate recognition by BPLs occurs through conserved structural cues that govern the specificity of biotinylation. Defects in biotin metabolism, including HCS, give rise to multiple carboxylase deficiency (MCD). Here we review the literature on this important enzyme. In particular, we focus on the new information that has been learned about BPL's from a number of recently published protein structures. Through molecular modelling studies insights into the structural basis of HCS deficiency in MCD are discussed.

  12. Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death.

    Directory of Open Access Journals (Sweden)

    Ludger Hauck

    Full Text Available The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1.

  13. Characterization of mutants expressing thermostable D1 and D2 polypeptides of photosystem II in the cyanobacterium Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Haraguchi, Norihisa; Kaseda, Jun; Nakayama, Yasumune; Nagahama, Kazuhiro; Ogawa, Takahira; Matsuoka, Masayoshi

    2018-06-08

    Photosystem II complex embedded in thylakoid membrane performs oxygenic photosynthesis where the reaction center D1/D2 heterodimer accommodates all components of the electron transport chain. To express thermostable D1/D2 heterodimer in a cyanobacterium Synechococcus elongatus PCC 7942, we constructed a series of mutant strains whose psbA1 and psbD1 genes encoding, respectively, the most highly expressed D1 and D2 polypeptides were replaced with those of a thermophilic strain, Thermosynechococcus vulcanus. Because the C-terminal 16 amino acid sequences of D1 polypeptides should be processed prior to maturation but diverge from each other, we also constructed the psbA1ΔC-replaced strain expressing a thermostable D1 polypeptide devoid of the C-terminal extension. The psbA1/psbD1-replaced strain showed decreased growth rate and oxygen evolution rate, suggesting inefficient photosystem II. Immunoblot analyses for thermostable D1, D2 polypeptides revealed that the heterologous D1 protein was absent in thylakoid membrane from any mutant strains with psbA1, psbA1ΔC, and psbA1/psbD1-replacements, whereas the heterologous D2 protein was present in thylakoid membrane as well as purified photosystem II complex from the psbA1/psbD1-replaced strain. In the latter strain, the compensatory expression of psbA3 and psbD2 genes was elevated. These data suggest that heterologous D2 polypeptide could be combined with the host D1 polypeptide to form chimeric D1/D2 heterodimer, whereas heterologous D1 polypeptide even without the C-terminal extension was unable to make complex with the host D2 polypeptide. Since the heterologous D1 could not be detected even in the whole cells of psbA1/psbD1-replaced strain, the rapid degradation of unprocessed or unassembled heterologous D1 was implicated. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Crystallization and preliminary X-ray analysis of a d-Ala:d-Ser ligase associated with VanG-type vancomycin resistance

    International Nuclear Information System (INIS)

    Weber, Patrick; Meziane-Cherif, Djalal; Haouz, Ahmed; Saul, Frederick A.; Courvalin, Patrice

    2009-01-01

    The VanG d-alanine:d-serine ligase was crystallized in complex with ADP and diffraction data were collected at 2.35 Å resolution. Acquired VanG-type resistance to vancomycin in Enterococcus faecalis BM4518 arises from inducible synthesis of peptidoglycan precursors ending in d-alanyl-d-serine, to which vancomycin exhibits low binding affinity. VanG, a d-alanine:d-serine ligase, catalyzes the ATP-dependent synthesis of the d-Ala-d-Ser dipeptide, which is incorporated into the peptidoglycan synthesis of VanG-type vancomycin-resistant strains. Here, the purification, crystallization and preliminary crystallographic analysis of VanG in complex with ADP are reported. The crystal belonged to space group P3 1 21, with unit-cell parameters a = b = 116.1, c = 177.2 Å, and contained two molecules in the asymmetric unit. A complete data set has been collected to 2.35 Å resolution from a single crystal under cryogenic conditions using synchrotron radiation

  15. The DNA repair capability of cdc9, the saccharomyces cerevisiae mutant defective in DNA ligase

    International Nuclear Information System (INIS)

    Johnston, L.H.

    1979-01-01

    The cell cycle mutant, cdc9, in the yeast Saccharomyces cerevisiae is defective in DNA ligase with the consequence to be deficient in the repair of DNA damaged by methyl methane sulphonate. On the other hand survival of cdc9 after irradiation by γ-rays is little different from that of the wild-type, even after a period of stress at the restrictive temperature. The mutant cdc9 is not allelic with any known rad or mms mutants. (orig./AJ) [de

  16. Synthesis and biological evaluation of N-acylhydrazones as inhibitors of MurC and MurD ligases.

    Science.gov (United States)

    Sink, Roman; Kovac, Andreja; Tomasić, Tihomir; Rupnik, Veronika; Boniface, Audrey; Bostock, Julieanne; Chopra, Ian; Blanot, Didier; Masic, Lucija Peterlin; Gobec, Stanislav; Zega, Anamarija

    2008-09-01

    The Mur ligases have an essential role in the intracellular biosynthesis of bacterial peptidoglycan, and they represent attractive targets for the design of novel antibacterials. A series of compounds with an N-acylhydrazone scaffold were synthesized and screened for inhibition of the MurC and MurD enzymes from Escherichia coli. Compounds with micromolar inhibitory activities against both MurC and MurD were identified, and some of them also showed antibacterial activity.

  17. Enzymatic conversion of D-galactose to D-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii.

    Science.gov (United States)

    Jørgensen, F; Hansen, O C; Stougaard, P

    2004-06-01

    The ability to convert D-galactose into D-tagatose was compared among a number of bacterial L-arabinose isomerases ( araA). One of the most efficient enzymes, from the anaerobic thermophilic bacterium Thermoanaerobacter mathranii, was produced heterologously in Escherichia coli and characterised. Amino acid sequence comparisons indicated that this enzyme is only distantly related to the group of previously known araA sequences in which the sequence similarity is evident. The substrate specificity and the Michaelis-Menten constants of the enzyme determined with L-arabinose, D-galactose and D-fucose also indicated that this enzyme is an unusual, versatile L-arabinose isomerase which is able to isomerise structurally related sugars. The enzyme was immobilised and used for production of D-tagatose at 65 degrees C. Starting from a 30% solution of D-galactose, the yield of D-tagatose was 42% and no sugars other than D-tagatose and D-galactose were detected. Direct conversion of lactose to D-tagatose in a single reactor was demonstrated using a thermostable beta-galactosidase together with the thermostable L-arabinose isomerase. The two enzymes were also successfully combined with a commercially available glucose isomerase for conversion of lactose into a sweetening mixture comprising lactose, glucose, galactose, fructose and tagatose.

  18. SCFβ-TrCP ubiquitin ligase-mediated processing of NF-κB p105 requires phosphorylation of its C-terminus by IκB kinase

    Science.gov (United States)

    Orian, Amir; Gonen, Hedva; Bercovich, Beatrice; Fajerman, Ifat; Eytan, Esther; Israël, Alain; Mercurio, Frank; Iwai, Kazuhiro; Schwartz, Alan L.; Ciechanover, Aaron

    2000-01-01

    Processing of the p105 precursor to form the active subunit p50 of the NF-κB transcription factor is a unique case in which the ubiquitin system is involved in limited processing rather than in complete destruction of the target substrate. A glycine-rich region along with a downstream acidic domain have been demonstrated to be essential for processing. Here we demonstrate that following IκB kinase (IκK)-mediated phosphorylation, the C-terminal domain of p105 (residues 918–934) serves as a recognition motif for the SCFβ-TrCP ubiquitin ligase. Expression of IκKβ dramatically increases processing of wild-type p105, but not of p105-Δ918–934. Dominant-negative β-TrCP inhibits IκK-dependent processing. Furthermore, the ligase and wild-type p105 but not p105-Δ918–934 associate physically following phosphorylation. In vitro, SCFβ-TrCP specifically conjugates and promotes processing of phosphorylated p105. Importantly, the TrCP recognition motif in p105 is different from that described for IκBs, β-catenin and human immunodeficiency virus type 1 Vpu. Since p105-Δ918–934 is also conjugated and processed, it appears that p105 can be recognized under different physiological conditions by two different ligases, targeting two distinct recognition motifs. PMID:10835356

  19. Homology modeling and docking analyses of M. leprae Mur ligases reveals the common binding residues for structure based drug designing to eradicate leprosy.

    Science.gov (United States)

    Shanmugam, Anusuya; Natarajan, Jeyakumar

    2012-06-01

    Multi drug resistance capacity for Mycobacterium leprae (MDR-Mle) demands the profound need for developing new anti-leprosy drugs. Since most of the drugs target a single enzyme, mutation in the active site renders the antibiotic ineffective. However, structural and mechanistic information on essential bacterial enzymes in a pathway could lead to the development of antibiotics that targets multiple enzymes. Peptidoglycan is an important component of the cell wall of M. leprae. The biosynthesis of bacterial peptidoglycan represents important targets for the development of new antibacterial drugs. Biosynthesis of peptidoglycan is a multi-step process that involves four key Mur ligase enzymes: MurC (EC:6.3.2.8), MurD (EC:6.3.2.9), MurE (EC:6.3.2.13) and MurF (EC:6.3.2.10). Hence in our work, we modeled the three-dimensional structure of the above Mur ligases using homology modeling method and analyzed its common binding features. The residues playing an important role in the catalytic activity of each of the Mur enzymes were predicted by docking these Mur ligases with their substrates and ATP. The conserved sequence motifs significant for ATP binding were predicted as the probable residues for structure based drug designing. Overall, the study was successful in listing significant and common binding residues of Mur enzymes in peptidoglycan pathway for multi targeted therapy.

  20. Field-acclimated Gossypium hirsutum cultivars exhibit genotypic and seasonal differences in photosystem II thermostability.

    Science.gov (United States)

    Snider, John L; Oosterhuis, Derrick M; Collins, Guy D; Pilon, Cristiane; Fitzsimons, Toby R

    2013-03-15

    Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD=-3.1MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5°C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20-30 days Tmax≥35°C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r(2) from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between

  1. A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122

    Science.gov (United States)

    Liang, Pengjuan; Li, Shangyong; Wang, Kun; Wang, Fang; Xing, Mengxin; Hao, Jianhua; Sun, Mi

    2018-03-01

    Serralysin inhibitors have been proposed as potent drugs against many diseases and may help to prevent further development of antibiotic-resistant pathogenic bacteria. In this study, a novel serralysin inhibitor gene, lupI, was cloned from the marine bacterium Flavobacterium sp. YS-80-122 and expressed in Escherichia coli. The deduced serralysin inhibitor, LupI, shows <40% amino acid identity to other reported serralysin inhibitors. Multiple sequence alignment and phylogenetic analysis of LupI with other serralysin inhibitors indicated that LupI was a novel type of serralysin inhibitor. The inhibitory constant for LupI towards its target metalloprotease was 0.64 μmol/L. LupI was thermostable at high temperature, in which 35.6%-90.7% of its inhibitory activity was recovered after treatment at 100°C for 1-60 min followed by incubation at 0°C. This novel inhibitor may represent a candidate drug for the treatment of serralysin-related infections.

  2. The MurC Ligase Essential for Peptidoglycan Biosynthesis Is Regulated by the Serine/Threonine Protein Kinase PknA in Corynebacterium glutamicum*

    Science.gov (United States)

    Fiuza, Maria; Canova, Marc J.; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M.; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A.

    2008-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (l-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recently emerged as a major physiological mechanism of regulation in prokaryotes. Herein, the hypothesis of a phosphorylation-dependent mechanism of regulation of the MurC activity was investigated in Corynebacterium glutamicum. We showed that MurC was phosphorylated in vitro by the PknA protein kinase. An analysis of the phosphoamino acid content indicated that phosphorylation exclusively occurred on threonine residues. Six phosphoacceptor residues were identified by mass spectrometry analysis, and we confirmed that mutagenesis to alanine residues totally abolished PknA-dependent phosphorylation of MurC. In vitro and in vivo ligase activity assays showed that the catalytic activity of MurC was impaired following mutation of these threonine residues. Further in vitro assays revealed that the activity of the MurC-phosphorylated isoform was severely decreased compared with the non-phosphorylated protein. To our knowledge, this is the first demonstration of a MurC ligase phosphorylation in vitro. The finding that phosphorylation is correlated with a decrease in MurC enzymatic activity could have significant consequences in the regulation of peptidoglycan biosynthesis. PMID:18974047

  3. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins

    Directory of Open Access Journals (Sweden)

    Rebecca Bish

    2015-07-01

    Full Text Available DDX6 (p54/RCK is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58 of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2 and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2. We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6’s multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6’s interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions

  4. Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases.

    Science.gov (United States)

    Davis, Kaitlin A; Morelli, Marco; Patton, John T

    2017-08-29

    The rotavirus nonstructural protein NSP1 repurposes cullin-RING E3 ubiquitin ligases (CRLs) to antagonize innate immune responses. By functioning as substrate adaptors of hijacked CRLs, NSP1 causes ubiquitination and proteasomal degradation of host proteins that are essential for expression of interferon (IFN) and IFN-stimulated gene products. The target of most human and porcine rotaviruses is the β-transducin repeat-containing protein (β-TrCP), a regulator of NF-κB activation. β-TrCP recognizes a phosphorylated degron (DSGΦXS) present in the inhibitor of NF-κB (IκB); phosphorylation of the IκB degron is mediated by IκB kinase (IKK). Because NSP1 contains a C-terminal IκB-like degron (ILD; DSGXS) that recruits β-TrCP, we investigated whether the NSP1 ILD is similarly activated by phosphorylation and whether this modification is required to trigger the incorporation of NSP1 into CRLs. Based on mutagenesis and phosphatase treatment studies, we found that both serine residues of the NSP1 ILD are phosphorylated, a pattern mimicking phosphorylation of IκB. A three-pronged approach using small-molecule inhibitors, small interfering RNAs, and mutagenesis demonstrated that NSP1 phosphorylation is mediated by the constitutively active casein kinase II (CKII), rather than IKK. In coimmunoprecipitation assays, we found that this modification was essential for NSP1 recruitment of β-TrCP and induced changes involving the NSP1 N-terminal RING motif that allowed formation of Cul3-NSP1 complexes. Taken together, our results indicate a highly regulated stepwise process in the formation of NSP1-Cul3 CRLs that is initiated by CKII phosphorylation of NSP1, followed by NSP1 recruitment of β-TrCP and ending with incorporation of the NSP1-β-TrCP complex into the CRL via interactions dependent on the highly conserved NSP1 RING motif. IMPORTANCE Rotavirus is a segmented double-stranded RNA virus that causes severe diarrhea in young children. A primary mechanism used by the

  5. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  6. Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations

    DEFF Research Database (Denmark)

    da Silva, Ines Isabel Cardoso Rodrigues; Jers, Carsten; Otten, Harm

    2014-01-01

    Rhamnogalacturonan I lyases (RGI lyases) (EC 4.2.2.-) catalyze cleavage of α-1,4 bonds between rhamnose and galacturonic acid in the backbone of pectins by β-elimination. In the present study, targeted improvement of the thermostability of a PL family 11 RGI lyase from Bacillus licheniformis (DSM......, were obtained due to additive stabilizing effects of single amino acid mutations (E434L, G55V, and G326E) compared to the wild type. The crystal structure of the B. licheniformis wild-type RGI lyase was also determined; the structural analysis corroborated that especially mutation of charged amino...

  7. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li; Niu, De; Hu, Zi-Liang; Kim, Dae Heon; Jin, Yin Hua; Cai, Bin; Liu, Peng; Miura, Kenji; Yun, Dae-Jin; Kim, Woe-Yeon; Lin, Rongcheng; Jin, Jing Bo

    2016-01-01

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  8. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li

    2016-04-29

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  9. The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in arabidopsis

    KAUST Repository

    Zhao, Huayan; Zhang, Huoming; Cui, Peng; Ding, Feng; Wang, Guangchao; Li, Rongjun; Jenks, Matthew A.; Lü , Shiyou; Xiong, Liming

    2014-01-01

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young

  10. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-beta-mannosidase from Aspergillus niger BK01.

    Science.gov (United States)

    Do, Bien-Cuong; Dang, Thi-Thu; Berrin, Jean-Guy; Haltrich, Dietmar; To, Kim-Anh; Sigoillot, Jean-Claude; Yamabhai, Montarop

    2009-11-13

    Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-beta-mannosidases (1,4-beta-D-mannanases) catalyze the random hydrolysis of beta-1,4-mannosidic linkages in the main chain of beta-mannans. Biodegradation of beta-mannans by the action of thermostable mannan endo-1,4-beta-mannosidase offers significant technical advantages in biotechnological industrial applications, i.e. delignification of kraft pulps or the pretreatment of lignocellulosic biomass rich in mannan for the production of second generation biofuels, as well as for applications in oil and gas well stimulation, extraction of vegetable oils and coffee beans, and the production of value-added products such as prebiotic manno-oligosaccharides (MOS). A gene encoding mannan endo-1,4-beta-mannosidase or 1,4-beta-D-mannan mannanohydrolase (E.C. 3.2.1.78), commonly termed beta-mannanase, from Aspergillus niger BK01, which belongs to glycosyl hydrolase family 5 (GH5), was cloned and successfully expressed heterologously (up to 243 microg of active recombinant protein per mL) in Pichia pastoris. The enzyme was secreted by P. pastoris and could be collected from the culture supernatant. The purified enzyme appeared glycosylated as a single band on SDS-PAGE with a molecular mass of approximately 53 kDa. The recombinant beta-mannanase is highly thermostable with a half-life time of approximately 56 h at 70 degrees C and pH 4.0. The optimal temperature (10-min assay) and pH value for activity are 80 degrees C and pH 4.5, respectively. The enzyme is not only active towards structurally different mannans but also exhibits low activity towards birchwood xylan. Apparent Km values of the enzyme for konjac glucomannan (low viscosity), locust bean gum galactomannan, carob galactomannan (low viscosity), and 1,4-beta-D-mannan (from carob) are 0.6 mg mL-1, 2.0 mg mL-1, 2.2 mg mL-1 and 1.5 mg mL-1, respectively, while the kcat values for these

  11. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  12. A conserved regulatory mechanism in bifunctional biotin protein ligases.

    Science.gov (United States)

    Wang, Jingheng; Beckett, Dorothy

    2017-08-01

    Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms. © 2017 The Protein Society.

  13. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2000-01-01

    Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccha......Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which......, in Saccharomyces cerevisiae and Drosophila spp., triggers exit from mitosis and during G(1) prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference...... transition and lowered the rate of DNA synthesis during S phase, some of the activities essential for DNA replication became markedly amplified, mainly due to a progressive increase of E2F-dependent cyclin E transcription and a rapid turnover of the p27(Kip1) cyclin-dependent kinase inhibitor. Consequently...

  14. Structurally stabilized organosilane-templated thermostable mesoporous titania.

    Science.gov (United States)

    Amoli, Vipin; Tiwari, Rashmi; Dutta, Arghya; Bhaumik, Asim; Sinha, Anil Kumar

    2014-01-13

    Structurally thermostable mesoporous anatase TiO2 (m-TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores-directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high-angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X-ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high-temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye-sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m-TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25-m-TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56%) in the P25-m-TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60%) of the device, compared to DSSCs with a monolayer of P25 as the electrode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The ubiquitin ligase SCFFBXW7α promotes GATA3 degradation.

    Science.gov (United States)

    Song, Nan; Cao, Cheng; Tang, Yiman; Bi, Liyuan; Jiang, Yong; Zhou, Yongsheng; Song, Xin; Liu, Ling; Ge, Wenshu

    2018-03-01

    GATA3 is a key transcription factor in cell fate determination and its dysregulation has been implicated in various types of malignancies. However, how the abundance and function of GATA3 are regulated remains unclear. Here, we report that GATA3 is physically associated with FBXW7α, and FBXW7α destabilizes GATA3 through assembly of a SKP1-CUL1-F-box E3 ligase complex. Importantly, we showed that FBXW7α promotes GATA3 ubiquitination and degradation in a GSK3 dependent manner. Furthermore, we demonstrated that FBXW7α inhibits breast cancer cells survival through destabilizing GATA3, and the expression level of FBXW7α is negatively correlated with that of GATA3 in breast cancer samples. This study indicated that FBXW7α is a critical negative regulator of GATA3 and revealed a pathway for the maintenance of GATA3 abundance in breast cancer cells. © 2017 Wiley Periodicals, Inc.

  16. Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes.

    Science.gov (United States)

    Annamalai, Neelamegam; Rajeswari, Mayavan Veeramuthu; Elayaraja, Sivaramasamy; Balasubramanian, Thangavel

    2013-04-15

    An extracellular thermostable, haloalkaline cellulase by bioconversion of lignocellulosic wastes from Bacillus halodurans CAS 1 was purified to homogeneity with recovery of 12.54% and purity fold 7.96 with the molecular weight of 44 kDa. The optimum temperature, pH and NaCl for enzyme activity was determined as 60°C, 9.0 and 30% and it retained 80% of activity even at 80°C, 12 and 35% respectively. The activity was greatly inhibited by EDTA, indicating that it was a metalloenzyme and significant inhibition by PMSF revealed that serine residue was essential for catalytic activity. The purified cellulase hydrolyzed CMC, cellobiose and xylan, but not avicel, cellulose and PNPG. Furthermore, the cellulase was highly stable in the presence of detergents and organic solvents such as acetone, n-hexane and acetonitrile. Thus, the purified cellulase from B. halodurans utilizing lignocellulosic biomass could be greatly useful to develop industrial processes. Published by Elsevier Ltd.

  17. High yield recombinant thermostable α-amylase production using an improved Bacillus licheniformis system

    Directory of Open Access Journals (Sweden)

    Shi Gui-Yang

    2009-10-01

    Full Text Available Abstract Background Some strains of Bacillus licheniformis have been improved by target-directed screening as well as by classical genetic manipulation and used in commercial thermostable α-amylase and alkaline protease production for over 40 years. Further improvements in production of these enzymes are desirable. Results A new strain of B. licheniformis CBBD302 carrying a recombinant plasmid pHY-amyL for Bacillus licheniformis α-amylase (BLA production was constructed. The combination of target-directed screening and genetic recombination led to an approximately 26-fold improvement of BLA production and export in B. licheniformis. Furthermore, a low-cost fermentation medium containing soybean meal and cottonseed meal for BLA production in shake-flasks and in a 15 liter bioreactor was developed and a BLA concentration of up to 17.6 mg per ml growth medium was attained. Conclusion This production level of BLA by B. licheniformis CBBD302(pHY-amyL is amongst the highest levels in Gram-positive bacteria reported so far.

  18. VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity.

    Science.gov (United States)

    Mendes, Juliano S; Santiago, André da S; Toledo, Marcelo A S; Rosselli-Murai, Luciana K; Favaro, Marianna T P; Santos, Clelton A; Horta, Maria Augusta C; Crucello, Aline; Beloti, Lilian L; Romero, Fabian; Tasic, Ljubica; de Souza, Alessandra A; de Souza, Anete P

    2015-01-01

    Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC), a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD) is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c) and nonpathogenic (XfJ1a12) strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.

  19. VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity.

    Directory of Open Access Journals (Sweden)

    Juliano S Mendes

    Full Text Available Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC, a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c and nonpathogenic (XfJ1a12 strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.

  20. Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization.

    Science.gov (United States)

    Vijayalaxmi, S; Prakash, P; Jayalakshmi, S K; Mulimani, V H; Sreeramulu, K

    2013-09-01

    The alkaliphilic Bacillus halodurans strain PPKS-2 was shown to produce extracellular extreme alkaliphilic, halotolerent, detergent, and thermostable mannanase activity. The cultural conditions for the maximum enzyme production were optimized with respect to pH, temperature, NaCl, and inexpensive agro wastes as substrates. Mannanase production was enhanced more than 4-fold in the presence of 1 % defatted copra meal and 0.5 % peptone or feather hydrolysate at pH 11 and 40 °C. Mannanase was purified to 10.3-fold with 34.6 % yield by ion exchange and gel filtration chromatography methods. Its molecular mass was estimated to be 22 kDa by SDS-PAGE. The mannanase had maximal activity at pH 11 and 70 °C. This enzyme was active over a broad range of NaCl (0-16 %) and thermostable retaining 100 % of the original activity at 70 °C for 3 h. Immobilization of whole cells proved to be effective for continuous production of mannanase. Since the strain PPKS-2 grows on cheaper agro wastes such as defatted copra meal, corn husk, jowar bagasse, and wheat bran, these can be exploited for mannanase production on an industrial scale.

  1. The Banana Fruit SINA Ubiquitin Ligase MaSINA1 Regulates the Stability of MaICE1 to be Negatively Involved in Cold Stress Response.

    Science.gov (United States)

    Fan, Zhong-Qi; Chen, Jian-Ye; Kuang, Jian-Fei; Lu, Wang-Jin; Shan, Wei

    2017-01-01

    The regulation of ICE1 protein stability is important to ensure effective cold stress response, and is extensively studied in Arabidopsis . Currently, how ICE1 stability in fruits under cold stress is controlled remains largely unknown. Here, we reported the possible involvement of a SEVEN IN ABSENTIA (SINA) ubiquitin ligase MaSINA1 from banana fruit in affecting MaICE1 stability. MaSINA1 was identified based on a yeast two-hybrid screening using MaICE1 as bait. Further yeast two-hybrid, pull-down, bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (CoIP) assays confirmed that MaSINA1 interacted with MaICE1. The expression of MaSINA1 was repressed by cold stress. Subcellular localization analysis in tobacco leaves showed that MaSINA1 was localized predominantly in the nucleus. In vitro ubiquitination assay showed that MaSINA1 possessed E3 ubiquitin ligase activity. More importantly, in vitro and semi- in vivo experiments indicated that MaSINA1 can ubiquitinate MaICE1 for the 26S proteasome-dependent degradation, and therefore suppressed the transcriptional activation of MaICE1 to MaNAC1, an important regulator of cold stress response of banana fruit. Collectively, our data reveal a mechanism in banana fruit for control of the stability of ICE1 and for the negative regulation of cold stress response by a SINA E3 ligase via the ubiquitin proteasome system.

  2. Genome mining reveals high incidence of putative lipopeptide biosynthesis NRPS/PKS clusters containing fatty acyl-AMP ligase genes inbiofilm-forming cyanobacteria

    Czech Academy of Sciences Publication Activity Database

    Galica, Tomáš; Hrouzek, P.; Mareš, Jan

    2017-01-01

    Roč. 53, č. 5 (2017), s. 985-998 ISSN 0022-3646 R&D Projects: GA ČR(CZ) GA16-09381S Institutional support: RVO:60077344 Keywords : cyanobacteria * fatty-acyl AMP ligase * genome mining * lipopeptides * microbial biofilm Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.608, year: 2016

  3. Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair

    International Nuclear Information System (INIS)

    Ouyang, Yan; Kwon, Yong Tae; An, Jee Young; Eller, Danny; Tsai, S.-C.; Diaz-Perez, Silvia; Troke, Joshua J.; Teitell, Michael A.; Marahrens, York

    2006-01-01

    The N-end rule pathway of protein degradation targets proteins with destabilizing N-terminal residues. Ubr2 is one of the E3 ubiquitin ligases of the mouse N-end rule pathway. We have previously shown that Ubr2 -/- male mice are infertile, owing to the arrest of spermatocytes between the leptotene/zygotene and pachytene of meiosis I, the failure of chromosome pairing, and subsequent apoptosis. Here, we report that mouse fibroblast cells derived from Ubr2 -/- embryos display genome instability. The frequency of chromosomal bridges and micronuclei were much higher in Ubr2 -/- fibroblasts than in +/+ controls. Metaphase chromosome spreads from Ubr2 -/- cells revealed a high incidence of spontaneous chromosomal gaps, indicating chromosomal fragility. These fragile sites were generally replicated late in S phase. Ubr2 -/- cells were hypersensitive to mitomycin C, a DNA cross-linking agent, but displayed normal sensitivity to gamma-irradiation. A reporter assay showed that Ubr2 -/- cells are significantly impaired in the homologous recombination repair of a double strand break. In contrast, Ubr2 -/- cells appeared normal in an assay for non-homologous end joining. Our results therefore unveil the role of the ubiquitin ligase Ubr2 in maintaining genome integrity and in homologous recombination repair

  4. Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Yan [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Kwon, Yong Tae [Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 (United States); An, Jee Young [Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Eller, Danny [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Tsai, S.-C. [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Diaz-Perez, Silvia [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Troke, Joshua J. [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Teitell, Michael A. [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Marahrens, York [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)]. E-mail: ymarahrens@mednet.ucla.edu

    2006-04-11

    The N-end rule pathway of protein degradation targets proteins with destabilizing N-terminal residues. Ubr2 is one of the E3 ubiquitin ligases of the mouse N-end rule pathway. We have previously shown that Ubr2{sup -/-} male mice are infertile, owing to the arrest of spermatocytes between the leptotene/zygotene and pachytene of meiosis I, the failure of chromosome pairing, and subsequent apoptosis. Here, we report that mouse fibroblast cells derived from Ubr2{sup -/-} embryos display genome instability. The frequency of chromosomal bridges and micronuclei were much higher in Ubr2{sup -/-} fibroblasts than in +/+ controls. Metaphase chromosome spreads from Ubr2{sup -/-} cells revealed a high incidence of spontaneous chromosomal gaps, indicating chromosomal fragility. These fragile sites were generally replicated late in S phase. Ubr2{sup -/-} cells were hypersensitive to mitomycin C, a DNA cross-linking agent, but displayed normal sensitivity to gamma-irradiation. A reporter assay showed that Ubr2{sup -/-} cells are significantly impaired in the homologous recombination repair of a double strand break. In contrast, Ubr2{sup -/-} cells appeared normal in an assay for non-homologous end joining. Our results therefore unveil the role of the ubiquitin ligase Ubr2 in maintaining genome integrity and in homologous recombination repair.

  5. TRIM37 defective in mulibrey nanism is a novel RING finger ubiquitin E3 ligase

    International Nuclear Information System (INIS)

    Kallijaervi, Jukka; Lahtinen, Ulla; Haemaelaeinen, Riikka; Lipsanen-Nyman, Marita; Palvimo, Jorma J.; Lehesjoki, Anna-Elina

    2005-01-01

    Mulibrey nanism is an autosomal recessive prenatal-onset growth disorder characterized by dysmorphic features, cardiomyopathy, and hepatomegaly. Mutations in TRIM37 encoding a tripartite motif (TRIM, RING-B-box-coiled-coil)-family protein underlie mulibrey nanism. We investigated the ubiquitin ligase activity predicted for the RING domain of TRIM37 by analyzing its autoubiquitination. Full-length TRIM37 and its TRIM domain were highly polyubiquitinated when co-expressed with ubiquitin. Polyubiquitination was decreased in a mutant protein with disrupted RING domain (Cys35Ser;Cys36Ser) and in the Leu76Pro mutant protein, a disease-associated missense mutation affecting the TRIM domain of TRIM37. Bacterially produced GST-TRIM domain fusion protein, but not its Cys35Ser;Cys36Ser or Leu76Pro mutants, were polyubiquitinated in cell-free conditions, implying RING-dependent modification. Ubiquitin was also identified as an interaction partner for TRIM37 in a yeast two-hybrid screen. Ectopically expressed TRIM37 rapidly formed aggregates that were ubiquitin-, proteasome subunit-, and chaperone-positive in immunofluorescence analysis, defining them as aggresomes. The Cys35Ser;Cys36Ser mutant and the Leu76Pro and Gly322Val patient mutant proteins were markedly less prone to aggregation, implying that aggresomal targeting reflects a physiological function of TRIM37. These findings suggest that TRIM37 acts as a TRIM domain-dependent E3 ubiquitin ligase and imply defective ubiquitin-dependent degradation of an as-yet-unidentified target protein in the pathogenesis of mulibrey nanism

  6. Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis

    Science.gov (United States)

    Zhang, Jinfang; Wan, Lixin; Dai, Xiangpeng; Sun, Yi; Wei, Wenyi

    2014-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that primarily governs cell cycle progression. APC/C is composed of at least 14 core subunits and recruits its substrates for ubiquitination via one of the two adaptor proteins, Cdc20 or Cdh1, in M or M/early G1 phase, respectively. Furthermore, recent studies have shed light on crucial functions for APC/C in maintaining genomic integrity, neuronal differentiation, cellular metabolism and tumorigenesis. To gain better insight into the in vivo physiological functions of APC/C in regulating various cellular processes, particularly development and tumorigenesis, a number of mouse models of APC/C core subunits, coactivators or inhibitors have been established and characterized. However, due to their essential role in cell cycle regulation, most of the germline knockout mice targeting the APC/C pathway are embryonic lethal, indicating the need for generating conditional knockout mouse models to assess the role in tumorigenesis for each APC/C signaling component in specific tissues. In this review, we will first provide a brief introduction of the ubiquitin-proteasome system (UPS) and the biochemical activities and cellular functions of the APC/C E3 ligase. We will then focus primarily on characterizing genetic mouse models used to understand the physiological roles of each APC/C signaling component in embryogenesis, cell proliferation, development and carcinogenesis. Finally, we discuss future research directions to further elucidate the physiological contributions of APC/C components during tumorigenesis and validate their potentials as a novel class of anti-cancer targets. PMID:24569229

  7. The E3 Ubiquitin Ligase IDOL Induces the Degradation of the Low Density Lipoprotein Receptor Family Members VLDLR and ApoER2

    NARCIS (Netherlands)

    Hong, Cynthia; Duit, Sarah; Jalonen, Pilvi; Out, Ruud; Scheer, Lilith; Sorrentino, Vincenzo; Boyadjian, Rima; Rodenburg, Kees C. W.; Foley, Edan; Korhonen, Laura; Lindholm, Dan; Nimpf, Johannes; van Berkel, Theo J. C.; Tontonoz, Peter; Zelcer, Noam

    2010-01-01

    We have previously identified the E3-ubiquitin ligase Inducible Degrader of the LDLR (Idol)1 as a post-translational modulator of LDLR levels. Idol is a direct target for regulation by Liver X Receptors (LXRs) and its expression is responsive to cellular sterol status independent of the

  8. Atomic Structure and Nonhomologous End-Joining Function of the Polymerase Component of Bacterial DNA Ligase D

    Energy Technology Data Exchange (ETDEWEB)

    Zhu,H.; Nandakumar, J.; Aniukwu, J.; Wang, L.; Glickman, M.; Lima, C.; Shuman, S.

    2006-01-01

    DNA ligase D (LigD) is a large polyfunctional protein that participates in a recently discovered pathway of nonhomologous end-joining in bacteria. LigD consists of an ATP-dependent ligase domain fused to a polymerase domain (Pol) and a phosphoesterase module. The Pol activity is remarkable for its dependence on manganese, its ability to perform templated and nontemplated primer extension reactions, and its preference for adding ribonucleotides to blunt DNA ends. Here we report the 1.5- Angstroms crystal structure of the Pol domain of Pseudomonas LigD and its complexes with manganese and ATP-dATP substrates, which reveal a minimized polymerase with a two-metal mechanism and a fold similar to that of archaeal DNA primase. Mutational analysis highlights the functionally relevant atomic contacts in the active site. Although distinct nucleoside conformations and contacts for ATP versus dATP are observed in the cocrystals, the functional analysis suggests that the ATP-binding mode is the productive conformation for dNMP and rNMP incorporation. We find that a mutation of Mycobacterium LigD that uniquely ablates the polymerase activity results in increased fidelity of blunt-end double-strand break repair in vivo by virtue of eliminating nucleotide insertions at the recombination junctions. Thus, LigD Pol is a direct catalyst of mutagenic nonhomologous end-joining in vivo. Our studies underscore a previously uncharacterized role for the primase-like polymerase family in DNA repair.

  9. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin

    Science.gov (United States)

    Matsuura, K; Huang, N-J; Cocce, K; Zhang, L; Kornbluth, S

    2017-01-01

    Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation by the APC/CCdh1 ubiquitin ligase. In this study, we identify the HECT (homologous to the E6-AP carboxyl terminus) family E3 ubiquitin ligase, UBR5, as a novel ubiquitin ligase for MOAP-1. We demonstrate that UBR5 interacts physically with MOAP-1, ubiquitylates MOAP-1 in vitro and inhibits MOAP-1 stability in cultured cells. In addition, we show that Dyrk2 kinase, a reported UBR5 interactor, cooperates with UBR5 in mediating MOAP-1 ubiquitylation. Importantly, we found that cisplatin-resistant ovarian cancer cell lines exhibit lower levels of MOAP-1 accumulation than their sensitive counterparts upon cisplatin treatment, consistent with the previously reported role of MOAP-1 in modulating cisplatin-induced apoptosis. Accordingly, UBR5 knockdown increased MOAP-1 expression, enhanced Bax activation and sensitized otherwise resistant cells to cisplatin-induced apoptosis. Furthermore, UBR5 expression was higher in ovarian cancers from cisplatin-resistant patients than from cisplatin-responsive patients. These results show that UBR5 downregulates proapoptotic MOAP-1 and suggest that UBR5 can confer cisplatin resistance in ovarian cancer. Thus UBR5 may be an attractive therapeutic target for ovarian cancer treatment. PMID:27721409

  10. A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation.

    Science.gov (United States)

    Zattas, Dimitrios; Berk, Jason M; Kreft, Stefan G; Hochstrasser, Mark

    2016-06-03

    Specific proteins are modified by ubiquitin at the endoplasmic reticulum (ER) and are degraded by the proteasome, a process referred to as ER-associated protein degradation. In Saccharomyces cerevisiae, two principal ER-associated protein degradation ubiquitin ligases (E3s) reside in the ER membrane, Doa10 and Hrd1. The membrane-embedded Doa10 functions in the degradation of substrates in the ER membrane, nuclear envelope, cytoplasm, and nucleoplasm. How most E3 ligases, including Doa10, recognize their protein substrates remains poorly understood. Here we describe a previously unappreciated but highly conserved C-terminal element (CTE) in Doa10; this cytosolically disposed 16-residue motif follows the final transmembrane helix. A conserved CTE asparagine residue is required for ubiquitylation and degradation of a subset of Doa10 substrates. Such selectivity suggests that the Doa10 CTE is involved in substrate discrimination and not general ligase function. Functional conservation of the CTE was investigated in the human ortholog of Doa10, MARCH6 (TEB4), by analyzing MARCH6 autoregulation of its own degradation. Mutation of the conserved Asn residue (N890A) in the MARCH6 CTE stabilized the normally short lived enzyme to the same degree as a catalytically inactivating mutation (C9A). We also report the localization of endogenous MARCH6 to the ER using epitope tagging of the genomic MARCH6 locus by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome editing. These localization and CTE analyses support the inference that MARCH6 and Doa10 are functionally similar. Moreover, our results with the yeast enzyme suggest that the CTE is involved in the recognition and/or ubiquitylation of specific protein substrates. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag.

    Directory of Open Access Journals (Sweden)

    Eric R Weiss

    2010-09-01

    Full Text Available Retroviruses engage the ESCRT pathway through late assembly (L domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA. The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release.

  12. Construction of a highly thermostable 1,3-1,4-β-glucanase by combinational mutagenesis and its potential application in the brewing industry.

    Science.gov (United States)

    Niu, Chengtuo; Zhu, Linjiang; Hill, Annie; Alex Speers, R; Li, Qi

    2017-01-01

    To improve the thermostability and catalytic property of a mesophilic 1,3-1,4-β-glucanase by combinational mutagenesis and to test its effect in congress mashing. A mutant β-glucanase (rE-BglTO) constructed by combinational mutagenesis showed a 25 °C increase in optimal temperature (to 70 °C) a 19.5 °C rise in T 50 value and a 15.6 °C increase in melting temperature compared to wild-type enzyme. Its half-life values at 60 and 70 °C were 152 and 99 min, which were 370 and 800 % higher than those of wild-type enzyme. Besides, its specific activity and k cat value were 42,734 U mg -1 and 189 s -1 while its stability under acidic conditions was also improved. In flask fermentation, the catalytic activity of rE-BglTO reached 2381 U ml -1 , which was 63 % higher than that of wild-type enzyme. The addition of rE-BglTO in congress mashing decreased the filtration time and viscosity by 21.3 and 9.6 %, respectively. The mutant β-glucanase showed high catalytic activity and thermostability which indicated that rE-BglTO is a good candidate for application in the brewing industry.

  13. IFT20 modulates ciliary PDGFRα signaling by regulating the stability of Cbl E3 ubiquitin ligases

    DEFF Research Database (Denmark)

    Schmid, Fabian Marc; Schou, Kenneth Bødtker; Vilhelm, Martin Juel

    2018-01-01

    ciliogenesis, and ciliary localization of the receptor is required for its appropriate ligand-mediated activation by PDGF-AA. However, the mechanisms regulating sorting of PDGFRα and feedback inhibition of PDGFRα signaling at the cilium are unknown. Here, we provide evidence that intraflagellar transport...... protein 20 (IFT20) interacts with E3 ubiquitin ligases c-Cbl and Cbl-b and is required for Cbl-mediated ubiquitination and internalization of PDGFRα for feedback inhibition of receptor signaling. In wild-type cells treated with PDGF-AA, c-Cbl becomes enriched in the cilium, and the receptor...

  14. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01

    Directory of Open Access Journals (Sweden)

    Sigoillot Jean-Claude

    2009-11-01

    Full Text Available Abstract Background Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-β-mannosidases (1,4-β-D-mannanases catalyze the random hydrolysis of β-1,4-mannosidic linkages in the main chain of β-mannans. Biodegradation of β-mannans by the action of thermostable mannan endo-1,4-β-mannosidase offers significant technical advantages in biotechnological industrial applications, i.e. delignification of kraft pulps or the pretreatment of lignocellulosic biomass rich in mannan for the production of second generation biofuels, as well as for applications in oil and gas well stimulation, extraction of vegetable oils and coffee beans, and the production of value-added products such as prebiotic manno-oligosaccharides (MOS. Results A gene encoding mannan endo-1,4-β-mannosidase or 1,4-β-D-mannan mannanohydrolase (E.C. 3.2.1.78, commonly termed β-mannanase, from Aspergillus niger BK01, which belongs to glycosyl hydrolase family 5 (GH5, was cloned and successfully expressed heterologously (up to 243 μg of active recombinant protein per mL in Pichia pastoris. The enzyme was secreted by P. pastoris and could be collected from the culture supernatant. The purified enzyme appeared glycosylated as a single band on SDS-PAGE with a molecular mass of approximately 53 kDa. The recombinant β-mannanase is highly thermostable with a half-life time of approximately 56 h at 70°C and pH 4.0. The optimal temperature (10-min assay and pH value for activity are 80°C and pH 4.5, respectively. The enzyme is not only active towards structurally different mannans but also exhibits low activity towards birchwood xylan. Apparent Km values of the enzyme for konjac glucomannan (low viscosity, locust bean gum galactomannan, carob galactomannan (low viscosity, and 1,4-β-D-mannan (from carob are 0.6 mg mL-1, 2.0 mg mL-1, 2.2 mg mL-1 and 1.5 mg mL-1, respectively, while the kcat values for these

  15. Characterization of Runella slithyformis HD-Pnk, a bifunctional DNA/RNA end-healing enzyme composed of an N-terminal 2',3' -phosphoesterase HD domain and a C-terminal 5' -OH polynucleotide kinase domain.

    Science.gov (United States)

    Munir, Annum; Shuman, Stewart

    2016-11-28

    5' and 3' end healing are key steps in nucleic acid break repair in which 5' -OH ends are phosphorylated by a polynucleotide kinase and 3' -PO 4 or 2',3' -cyclic-PO 4 ends are hydrolyzed by a phosphoesterase to generate the 5' -PO 4 and 3' -OH termini required for sealing by classic polynucleotide ligases. End healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2',3' -phosphoesterase HD domain and a C-terminal 5' -OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5' -OH polynucleotides (9-mers or longer) in the presence of magnesium and any NTP donor. HD-Pnk dephosphorylates RNA 2',3' -cyclic phosphate, RNA 3' -phosphate, RNA 2' -phosphate, and DNA 3' -phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper or cobalt. HD-Pnkp homologs are present in genera from eleven bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. The present study provides insights to the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnkp as the exemplar of a novel clade of dual 5' and 3' end-healing enzymes that phosphorylate 5' -OH termini and dephosphorylate 2',3' -cyclic-PO 4 , 3' -PO 4 , and 2' -PO 4 ends. The distinctive feature of HD-Pnk is its domain composition: a fusion of an N-terminal HD phosphohydrolase module to a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, domain order, and similar polypeptide size are distributed widely among genera from eleven bacterial phyla. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Multiplex quantification of 16S rDNA of predominant bacteria group within human fecal samples by polymerase chain reaction--ligase detection reaction (PCR-LDR).

    Science.gov (United States)

    Li, Kai; Chen, Bei; Zhou, Yuxun; Huang, Rui; Liang, Yinming; Wang, Qinxi; Xiao, Zhenxian; Xiao, Junhua

    2009-03-01

    A new method, based on ligase detection reaction (LDR), was developed for quantitative detection of multiplex PCR amplicons of 16S rRNA genes present in complex mixtures (specifically feces). LDR has been widely used in single nucleotide polymorphism (SNP) assay but never applied for quantification of multiplex PCR products. This method employs one pair of DNA probes, one of which is labeled with fluorescence for signal capture, complementary to the target sequence. For multiple target sequence analysis, probes were modified with different lengths of polyT at the 5' end and 3' end. Using a DNA sequencer, these ligated probes were separated and identified by size and dye color. Then, relative abundance of target DNA were normalized and quantified based on the fluorescence intensities and exterior size standards. 16S rRNA gene of three preponderant bacteria groups in human feces: Clostridium coccoides, Bacteroides and related genera, and Clostridium leptum group, were amplified and cloned into plasmid DNA so as to make standard curves. After PCR-LDR analysis, a strong linear relationship was found between the florescence intensity and the diluted plasmid DNA concentrations. Furthermore, based on this method, 100 human fecal samples were quantified for the relative abundance of the three bacterial groups. Relative abundance of C. coccoides was significantly higher in elderly people in comparison with young adults, without gender differences. Relative abundance of Bacteroides and related genera and C. leptum group were significantly higher in young and middle aged than in the elderly. Regarding the whole set of sample, C. coccoides showed the highest relative abundance, followed by decreasing groups Bacteroides and related genera, and C. leptum. These results imply that PCR-LDR can be feasible and flexible applied to large scale epidemiological studies.

  17. Burn-induced increase in atrogin-1 and MuRF-1 in skeletal muscle is glucocorticoid independent but downregulated by IGF-I.

    Science.gov (United States)

    Lang, Charles H; Huber, Danuta; Frost, Robert A

    2007-01-01

    The present study determined whether thermal injury increases the expression of the ubiquitin (Ub) E3 ligases referred to as muscle ring finger (MuRF)-1 and muscle atrophy F-box (MAFbx; aka atrogin-1), which are muscle specific and responsible for the increased protein breakdown observed in other catabolic conditions. After 48 h of burn injury (40% total body surface area full-thickness scald burn) gastrocnemius weight was reduced, and this change was associated with an increased mRNA abundance for atrogin-1 and MuRF-1 (3.1- to 8-fold, respectively). Similarly, burn increased polyUb mRNA content in the gastrocnemius twofold. In contrast, there was no burn-induced atrophy of the soleus and no significant change in atrogin-1, MuRF-1, or polyUb mRNA. Burns also did not alter E3 ligase expression in heart. Four hours after administration of the anabolic agent insulin-like growth factor (IGF)-I to burned rats, the mRNA content of atrogin-1 and polyUb in gastrocnemius had returned to control values and the elevation in MuRF-1 was reduced 50%. In contrast, leucine did not alter E3 ligase expression. In a separate study, in vivo administration of the proteasome inhibitor Velcade prevented burn-induced loss of muscle mass determined at 48 h. Finally, administration of the glucocorticoid receptor antagonist RU-486 did not prevent burn-induced atrophy of the gastrocnemius or the associated elevation in atrogin-1, MuRF-1, or polyUb. In summary, the acute muscle wasting accompanying thermal injury is associated with a glucocorticoid-independent increase in the expression of several Ub E3 ligases that can be downregulated by IGF-I.

  18. Crystallization and preliminary X-ray crystallographic analysis of EstE1, a new and thermostable esterase cloned from a metagenomic library

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Jung-Sue [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Protein Network Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of); Rhee, Jin-Kyu [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Dong-Uk [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Oh, Jong-Won [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Cho, Hyun-Soo, E-mail: hscho8@yonsei.ac.kr [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Protein Network Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2006-02-01

    Recombinant EstE1 protein with a histidine tag at the C-terminus was overexpressed in Escherichia coli strain BL21(DE3) and then purified by affinity chromatography. The protein was then crystallized at 290 K by the hanging-drop vapour-diffusion method. EstE1, a new thermostable esterase, was isolated by functional screening of a metagenomic DNA library from thermal environment samples. This enzyme showed activity towards short-chain acyl derivatives of length C4–C6 at a temperature of 303–363 K and displayed a high thermostability above 353 K. EstE1 has 64 and 57% amino-acid sequence similarity to est{sub pc}-encoded carboxylesterase from Pyrobaculum calidifontis and AFEST from Archaeoglobus fulgidus, respectively. The recombinant protein with a histidine tag at the C-terminus was overexpressed in Escherichia coli strain BL21(DE3) and then purified by affinity chromatography. The protein was crystallized at 290 K by the hanging-drop vapour-diffusion method. X-ray diffraction data were collected to 2.3 Å resolution from an EstE1 crystal; the crystal belongs to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 73.71, c = 234.23 Å. Assuming the presence of four molecules in the asymmetric unit, the Matthews coefficient V{sub M} is calculated to be 2.2 Å{sup 3} Da{sup −1} and the solvent content is 44.1%.

  19. Purification and properties of a thermostable pullulanase from Clostridium thermosulfurgenes EM1 which hydrolyses both. alpha. -1,6 and. alpha. -1,4-glycosidic linkages

    Energy Technology Data Exchange (ETDEWEB)

    Spreinat, A [Goettingen Univ. (Germany, F.R.). Inst. fuer Mikrobiologie; Antranikian, G [Technische Univ. Hamburg-Harburg, Hamburg (Germany, F. R.). Arbeitsbereich Biotechnologie 1

    1990-08-01

    A novel thermostable pullulanase, secreted by the thermophilic anaerobic bacterium Clostridium thermosulfurogenes EM1, was purified and characterized. Applying anion exchange chromatography and gel filtration the enzyme was purified 47-fold and had a specific activity of 200 units/mg. The molecular mass of this thermostable enzyme was determined to be 102 000 daltons and consisted of a single subunit. The enzyme was able to attack specifically the {alpha}-1,6-glycosidic linkages in pullulan and caused its complete hydrolysis to maltotriose. Surprisingly and unlike the enzyme from Klebsiella pneumoniae, the purified enzyme from this anaerobic thermophile exhibited, in addition to its debranching and pullulanase activity, an {alpha}-1,4 hydrolysing activity as well. By the action of this single polypeptide chain various branched and linear polysaccharides were completely converted to two major products, namely maltose and maltotriose. The K{sub m} values of this enzyme for pullulan and amylose were determined to be 1.33 mg/ml and 0.38 mg/ml, respectively. This debranching enzyme displays a temperature optimum at 60deg-65deg C and a pH optimum at 5.5-6.0. The application of this new class of pullulanase (pullulanase type II) in industry will significantly enhance the starch saccharification process. (orig.).

  20. The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function.

    Science.gov (United States)

    Wan, Lixin; Chen, Ming; Cao, Juxiang; Dai, Xiangpeng; Yin, Qing; Zhang, Jinfang; Song, Su-Jung; Lu, Ying; Liu, Jing; Inuzuka, Hiroyuki; Katon, Jesse M; Berry, Kelsey; Fung, Jacqueline; Ng, Christopher; Liu, Pengda; Song, Min Sup; Xue, Lian; Bronson, Roderick T; Kirschner, Marc W; Cui, Rutao; Pandolfi, Pier Paolo; Wei, Wenyi

    2017-04-01

    BRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APC FZR1 , APC FZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APC FZR1 , leading to elevation of a cohort of oncogenic APC FZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APC FZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis. Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APC FZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR. See related commentary by Zhang and Bollag, p. 356 This article is highlighted in the In This Issue feature, p. 339 . ©2017 American Association for Cancer Research.

  1. Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae.

    Science.gov (United States)

    Mol, Clifford D; Brooun, Alexei; Dougan, Douglas R; Hilgers, Mark T; Tari, Leslie W; Wijnands, Robert A; Knuth, Mark W; McRee, Duncan E; Swanson, Ronald V

    2003-07-01

    UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.

  2. On-Demand Production of Flow-Reactor Cartridges by 3D Printing of Thermostable Enzymes.

    Science.gov (United States)

    Maier, Manfred; Radtke, Carsten P; Hubbuch, Jürgen; Niemeyer, Christof M; Rabe, Kersten S

    2018-05-04

    The compartmentalization of chemical reactions is an essential principle of life that provides a major source of innovation for the development of novel approaches in biocatalysis. To implement spatially controlled biotransformations, rapid manufacturing methods are needed for the production of biocatalysts that can be applied in flow systems. Whereas three-dimensional (3D) printing techniques offer high-throughput manufacturing capability, they are usually not compatible with the delicate nature of enzymes, which call for physiological processing parameters. We herein demonstrate the utility of thermostable enzymes in the generation of biocatalytic agarose-based inks for a simple temperature-controlled 3D printing process. As examples we utilized an esterase and an alcohol dehydrogenase from thermophilic organisms as well as a decarboxylase that was thermostabilized by directed protein evolution. We used the resulting 3D-printed parts for a continuous, two-step sequential biotransformation in a fluidic setup. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biotin protein ligase from Candida albicans: expression, purification and development of a novel assay.

    Science.gov (United States)

    Pendini, Nicole R; Bailey, Lisa M; Booker, Grant W; Wilce, Matthew C J; Wallace, John C; Polyak, Steven W

    2008-11-15

    Biotin protein ligase (BPL) is an essential enzyme responsible for the activation of biotin-dependent enzymes through the covalent attachment of biotin. In yeast, disruption of BPL affects important metabolic pathways such as fatty acid biosynthesis and gluconeogenesis. This makes BPL an attractive drug target for new antifungal agents. Here we report the cloning, recombinant expression and purification of BPL from the fungal pathogen Candida albicans. The biotin domains of acetyl CoA carboxylase and pyruvate carboxylase were also cloned and characterised as substrates for BPL. A novel assay was established thereby allowing examination of the enzyme's properties. These findings will facilitate future structural studies as well as screening efforts to identify potential inhibitors.

  4. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function Through its E3 Ubiquitin Ligase Activity

    Directory of Open Access Journals (Sweden)

    Joo Yong Kim

    2016-08-01

    Full Text Available Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1 regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity.

  5. Construction and engineering of a thermostable self-sufficient cytochrome P450

    Energy Technology Data Exchange (ETDEWEB)

    Mandai, Takao; Fujiwara, Shinsuke [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan); Imaoka, Susumu, E-mail: imaoka@kwansei.ac.jp [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan)

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.

  6. Construction and engineering of a thermostable self-sufficient cytochrome P450

    International Nuclear Information System (INIS)

    Mandai, Takao; Fujiwara, Shinsuke; Imaoka, Susumu

    2009-01-01

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates β-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP + reductase (FNR): H 2 N-CYP175A1-Fdx-FNR-COOH (175FR) and H 2 N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V max value for β-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k m values of these enzymes were similar. 175RF retained 50% residual activity even at 80 o C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.

  7. Thermostable Bacteriocin BL8 from Bacillus licheniformis isolated from marine sediment.

    Science.gov (United States)

    Smitha, S; Bhat, S G

    2013-03-01

    To isolate and characterize bacteriocin, BL8, from the bacteria identified as Bacillus licheniformis from marine environment. One-hundred and twelve bacterial isolates from sediment and water samples collected off the coast of Cochin, India, were screened for antibacterial activity. Strain BTHT8, identified as Bacillus licheniformis, inhibited the growth of Gram-positive test organisms. The active component labelled as bacteriocin BL8 was partially purified by ammonium sulphate fractionation and was subjected to glycine SDS-PAGE. The band exhibiting antimicrobial activity was electroeluted and analysed using MALDI-TOF mass spectrometry, and the molecular mass was determined as 1.4 kDa. N-terminal amino acid sequencing of BL8 gave a 13 amino acid sequence stretch. Bacteriocin BL8 was stable even after boiling at 100 °C for 30 min and over a wide pH range of 1-12. A novel, pH-tolerant and thermostable bacteriocin BL8, active against the tested Gram-positive bacteria, was isolated from Bacillus licheniformis. This study reports a stable, low molecular weight bacteriocin from Bacillus licheniformis. This bacteriocin can be used to address two important applications: as a therapeutic agent and as a biopreservative in food processing industry. © 2012 The Society for Applied Microbiology.

  8. Geometric Simulation Approach for Grading and Assessing the Thermostability of CALBs

    Directory of Open Access Journals (Sweden)

    B. Senthilkumar

    2016-01-01

    Full Text Available Candida antarctica lipase B (CALB is a known stable and highly active enzyme used widely in biodiesel synthesis. In this work, the stability of native (4K6G and mutant (4K5Q CALB was studied through various structural parameters using conformational sampling approach. The contours of polar surface area and surface area of mutant CALB were 11357.67 Å2 and 30007.4 Å2, respectively, showing an enhanced stability compared to native CALB with a statistically significant P value of < 0.0001. Moreover, simulated thermal denaturation of CALB, a process involving dilution of hydrogen bond, significantly shielded against different intervals of energy application in mutant CALB revealing its augmentation of structural rigidity against native CALB. Finally, computational docking analysis showed an increase in the binding affinity of CALB and its substrate (triglyceride in mutant CALB with Atomic Contact Energy (ACE of −91.23 kcal/mol compared to native CALB (ACE of −70.3 kcal/mol. The computational observations proposed that the use of mutant CALB (4K5Q could serve as a best template for production of biodiesel in the future. Additionally, it can also be used as a template to identify efficient thermostable lipases through further mutations.

  9. Reconstitution of β-carotene hydroxylase activity of thermostable CYP175A1 monooxygenase

    International Nuclear Information System (INIS)

    Momoi, Kyoko; Hofmann, Ute; Schmid, Rolf D.; Urlacher, Vlada B.

    2006-01-01

    CYP175A1 is a thermostable P450 Monooxygenase from Thermus thermophilus HB27, demonstrating in vivo activity towards β-carotene. Activity of CYP175A1 was reconstituted in vitro using artificial electron transport proteins. First results were obtained in the mixture with a crude Escherichia coli cell extract at 37 o C. In this system, β-carotene was hydroxylated to β-cryptoxanthin. The result indicated the presence of electron transport enzymes among the E. coli proteins, which are suitable for CYP175A1. However, upon in vitro reconstitution of CYP175A1 activity with purified recombinant flavodoxin and flavodoxin reductase from E. coli, only very low β-cryptoxanthin production was observed. Remarkably, with another artificial electron transport system, putidaredoxin and putidaredoxin reductase from Pseudomonas putida, purified CYP175A1 enzyme hydroxylated β-carotene at 3- and also 3'-positions, resulting in β-cryptoxanthin and zeaxanthin. Under the optimal reaction conditions, the turnover rate of the enzyme reached 0.23 nmol β-cryptoxanthin produced per nmol P450 per min

  10. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans.

    Science.gov (United States)

    Wang, Julia; Jennings, Alexandra K; Kowalski, Jennifer R

    2016-01-01

    The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease.

  11. Engineering improved thermostability of the GH11 xylanase from Neocallimastix patriciarum via computational library design.

    Science.gov (United States)

    Bu, Yifan; Cui, Yinglu; Peng, Ying; Hu, Meirong; Tian, Yu'e; Tao, Yong; Wu, Bian

    2018-04-01

    Xylanases, which cleave the β-1,4-glycosidic bond between xylose residues to release xylooligosaccharides (XOS), are widely used as food additives, animal feeds, and pulp bleaching agents. However, the thermally unstable nature of xylanases would hamper their industrial application. In this study, we used in silico design in a glycoside hydrolase family (GH) 11 xylanase to stabilize the enzyme. A combination of the best mutations increased the apparent melting temperature by 14 °C and significantly enhanced thermostability and thermoactivation. The variant also showed an upward-shifted optimal temperature for catalysis without compromising its activity at low temperatures. Moreover, a 10-fold higher XOS production yield was obtained at 70 °C, which compensated the low yield obtained with the wild-type enzyme. Collectively, the variant constructed by the computational strategy can be used as an efficient biocatalyst for XOS production at industrially viable conditions.

  12. Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2′,3′-Phosphoesterase HD Domain and a C-Terminal 5′-OH Polynucleotide Kinase Domain

    Science.gov (United States)

    Munir, Annum

    2016-01-01

    ABSTRACT 5′- and 3′-end-healing reactions are key steps in nucleic acid break repair in which 5′-OH ends are phosphorylated by a polynucleotide kinase (Pnk) and 3′-PO4 or 2′,3′-cyclic-PO4 ends are hydrolyzed by a phosphoesterase to generate the 5′-PO4 and 3′-OH termini required for sealing by classic polynucleotide ligases. End-healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2′,3′-phosphoesterase HD domain and a C-terminal 5′-OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5′-OH polynucleotides (9-mers or longer) in the presence of magnesium and any nucleoside triphosphate donor. HD-Pnk dephosphorylates RNA 2′,3′-cyclic phosphate, RNA 3′-phosphate, RNA 2′-phosphate, and DNA 3′-phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper, or cobalt. HD-Pnk homologs are present in genera from 11 bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. IMPORTANCE The present study provides insights regarding the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnk as the exemplar of a novel clade of dual 5′- and 3′-end-healing enzymes that phosphorylate 5′-OH termini and dephosphorylate 2′,3′-cyclic-PO4, 3′-PO4, and 2′-PO4 ends. The distinctive feature of HD-Pnk is its domain composition, i.e., a fusion of an N-terminal HD phosphohydrolase module and a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, same domain order, and similar polypeptide sizes are distributed widely among genera from 11 bacterial phyla. PMID:27895092

  13. Fulltext PDF

    Indian Academy of Sciences (India)

    Unknown

    The fibroin promoter can stably express foreign gene in lepidopteran cells. Total RNA was extracted from the gland of silkworm, Antheraea pernyi and the transcription initiation site of fibroin gene of A. pernyi was identi- fied by RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE). The expression vector ...

  14. Genome mining reveals high incidence of putative lipopeptide biosynthesis NRPS/PKS clusters containing fatty acyl-AMP ligase genes inbiofilm-forming cyanobacteria

    Czech Academy of Sciences Publication Activity Database

    Galica, Tomáš; Hrouzek, Pavel; Mareš, Jan

    2017-01-01

    Roč. 53, č. 5 (2017), s. 985-998 ISSN 0022-3646 R&D Projects: GA ČR(CZ) GA16-09381S; GA MŠk(CZ) LO1416; GA MŠk(CZ) ED2.1.00/19.0392 Institutional support: RVO:61388971 Keywords : cyanobacteria * fatty-acyl AMP ligase * genome mining Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.608, year: 2016

  15. Effects of Calcium Ions on the Thermostability and Spectroscopic Properties of the LH1-RC Complex from a New Thermophilic Purple Bacterium Allochromatium tepidum.

    Science.gov (United States)

    Kimura, Yukihiro; Lyu, Shuwen; Okoshi, Akira; Okazaki, Koudai; Nakamura, Natsuki; Ohashi, Akira; Ohno, Takashi; Kobayashi, Manami; Imanishi, Michie; Takaichi, Shinichi; Madigan, Michael T; Wang-Otomo, Zheng-Yu

    2017-05-18

    The light harvesting-reaction center (LH1-RC) complex from a new thermophilic purple sulfur bacterium Allochromatium (Alc.) tepidum was isolated and characterized by spectroscopic and thermodynamic analyses. The purified Alc. tepidum LH1-RC complex showed a high thermostability comparable to that of another thermophilic purple sulfur bacterium Thermochromatium tepidum, and spectroscopic characteristics similar to those of a mesophilic bacterium Alc. vinosum. Approximately 4-5 Ca 2+ per LH1-RC were detected by inductively coupled plasma atomic emission spectroscopy and isothermal titration calorimetry. Upon removal of Ca 2+ , the denaturing temperature of the Alc. tepidum LH1-RC complex dropped accompanied by a blue-shift of the LH1 Q y absorption band. The effect of Ca 2+ was also observed in the resonance Raman shift of the C3-acetyl νC═O band of bacteriochlorophyll-a, indicating changes in the hydrogen-bonding interactions between the pigment and LH1 polypeptides. Thermodynamic parameters for the Ca 2+ -binding to the Alc. tepidum LH1-RC complex indicated that this reaction is predominantly driven by the largely favorable electrostatic interactions that counteract the unfavorable negative entropy change. Our data support a hypothesis that Alc. tepidum may be a transitional organism between mesophilic and thermophilic purple bacteria and that Ca 2+ is one of the major keys to the thermostability of LH1-RC complexes in purple bacteria.

  16. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin.

    Science.gov (United States)

    Lazarou, Michael; Jin, Seok Min; Kane, Lesley A; Youle, Richard J

    2012-02-14

    Mutations in the mitochondrial kinase PINK1 and the cytosolic E3 ligase Parkin can cause Parkinson's disease. Damaged mitochondria accumulate PINK1 on the outer membrane where, dependent on kinase activity, it recruits and activates Parkin to induce mitophagy, potentially maintaining organelle fidelity. How PINK1 recruits Parkin is unknown. We show that endogenous PINK1 forms a 700 kDa complex with the translocase of the outer membrane (TOM) selectively on depolarized mitochondria whereas PINK1 ectopically targeted to the outer membrane retains association with TOM on polarized mitochondria. Inducibly targeting PINK1 to peroxisomes or lysosomes, which lack a TOM complex, recruits Parkin and activates ubiquitin ligase activity on the respective organelles. Once there, Parkin induces organelle selective autophagy of peroxisomes but not lysosomes. We propose that the association of PINK1 with the TOM complex allows rapid reimport of PINK1 to rescue repolarized mitochondria from mitophagy, and discount mitochondrial-specific factors for Parkin translocation and activation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hiraku Takada

    Full Text Available Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon, within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons

  18. The RNA gene information: retroelement-microRNA entangling as the RNA quantum code.

    Science.gov (United States)

    Fujii, Yoichi Robertus

    2013-01-01

    MicroRNA (miRNA) and retroelements may be a master of regulator in our life, which are evolutionally involved in the origin of species. To support the Darwinism from the aspect of molecular evolution process, it has tremendously been interested in the molecular information of naive RNA. The RNA wave model 2000 consists of four concepts that have altered from original idea of the miRNA genes for crosstalk among embryonic stem cells, their niche cells, and retroelements as a carrier vesicle of the RNA genes. (1) the miRNA gene as a mobile genetic element induces transcriptional and posttranscriptional silencing via networking-processes (no hierarchical architecture); (2) the RNA information supplied by the miRNA genes expands to intracellular, intercellular, intraorgan, interorgan, intraspecies, and interspecies under the cycle of life into the global environment; (3) the mobile miRNAs can self-proliferate; and (4) cells contain two types information as resident and genomic miRNAs. Based on RNA wave, we have developed an interest in investigation of the transformation from RNA information to quantum bits as physicochemical characters of RNA with the measurement of RNA electron spin. When it would have been given that the fundamental bases for the acquired characters in genetics can be controlled by RNA gene information, it may be available to apply for challenging against RNA gene diseases, such as stress-induced diseases.

  19. Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase.

    Directory of Open Access Journals (Sweden)

    Xi-Juan Liu

    2017-07-01

    Full Text Available Congenital human cytomegalovirus (HCMV infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs. As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1 is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1 is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase.

  20. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.

    Directory of Open Access Journals (Sweden)

    Daniel W Summers

    Full Text Available Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP. The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.

  1. Characterization of d-boroAla as a Novel Broad Spectrum Antibacterial Agent Targeting d-Ala-d-Ala Ligase

    OpenAIRE

    Putty, Sandeep; Rai, Aman; Jamindar, Darshan; Pagano, Paul; Quinn, Cheryl L.; Mima, Takehiko; Schweizer, Herbert P.; Gutheil, William G.

    2011-01-01

    d-boroAla was previously characterized as an inhibitor of bacterial alanine racemase and d-Ala-d-Ala ligase enzymes [Duncan, K., et al Biochemistry 1989, 28:3541–9]. In the present study, d-boroAla was identified and characterized as an antibacterial agent. d-boroAla has activity against both Gram-positive and Gram-negative organisms, with MICs down to 8 µg/mL. A structure-function study on the alkyl side chain (NH2-CHR-B(OR’)2) revealed that d-boroAla is the most effective agent in a series ...

  2. Hijacking of the host SCF ubiquitin ligase machinery by plant pathogens

    Directory of Open Access Journals (Sweden)

    Shimpei eMagori

    2011-11-01

    Full Text Available The SCF (SKP1-CUL1-F-box protein ubiquitin ligase complex mediates polyubiquitination of proteins targeted for degradation, thereby controlling a plethora of biological processes in eukaryotic cells. Although this ubiquitination machinery is found and functional only in eukaryotes, many non-eukaryotic pathogens also encode F-box proteins, the critical subunits of the SCF complex. Increasing evidence indicates that such non-eukaryotic F-box proteins play an essential role in subverting or exploiting the host ubiquitin/proteasome system for efficient pathogen infection. A recent bioinformatic analysis has identified more than 70 F-box proteins in 22 different bacterial species, suggesting that use of pathogen-encoded F-box effectors in the host cell may be a widespread infection strategy. In this review, we focus on plant pathogen-encoded F-box effectors, such as VirF of Agrobacterium tumefaciens, GALAs of Ralstonia solanacearum, and P0 of Poleroviruses, and discuss the molecular mechanism by which plant pathogens use these factors to manipulate the host cell for their own benefit.

  3. Binding of Nickel to Testicular Glutamate–Ammonia Ligase Inhibits Its Enzymatic Activity

    Science.gov (United States)

    SUN, YINGBIAO; OU, YOUNG; CHENG, MIN; RUAN, YIBING; VAN DER HOORN, FRANS A.

    2016-01-01

    SUMMARY Exposure to nickel has been shown to cause damage to the testis in several animal models. It is not known if the testis expresses protein(s) that can bind nickel. To test this, we used a nickel-binding assay to isolate testicular nickel-binding proteins. We identified glutamate–ammonia ligase (GLUL) as a prominent nickel-binding protein by mass spectrometry. Protein analysis and reverse transcriptase polymerase chain reaction showed that GLUL is expressed in the testis, predominantly in interstitial cells. We determined that GLUL has a higher affinity for nickel than for its regular co-factor manganese. We produced an enzymatically active, recombinant GLUL protein. Upon binding, nickel interferes with the manganese-catalyzed enzymatic activity of recombinant GLUL protein. We also determined that GLUL activity in testes of animals exposed to nickel sulfate is reduced. Our results identify testicular GLUL as the first testicular protein shown to be affected by nickel exposure. PMID:21254280

  4. Carbohydrate-Based Ice Recrystallization Inhibitors Increase Infectivity and Thermostability of Viral Vectors

    Science.gov (United States)

    Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.

    2014-07-01

    The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL-1 during 40 days, and HSV-1, 2.7 Log10 PFU mL-1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL-1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors.

  5. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Science.gov (United States)

    Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri

    2015-11-01

    There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  6. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Directory of Open Access Journals (Sweden)

    David Bednar

    2015-11-01

    Full Text Available There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  7. Not so monofunctional--a case of thermostable Thermobifida fusca catalase with peroxidase activity.

    Science.gov (United States)

    Lončar, Nikola; Fraaije, Marco W

    2015-03-01

    Thermobifida fusca is a mesothermophilic organism known for its ability to degrade plant biomass and other organics, and it was demonstrated that it represents a rich resource of genes encoding for potent enzymes for biocatalysis. The thermostable catalase from T. fusca has been cloned and overexpressed in Escherichia coli with a yield of 400 mg/L. Heat treatment of disrupted cells at 60 °C for 1 h resulted in enzyme preparation of high purity; hence, no chromatography steps are needed for large-scale production. Except for catalyzing the dismutation of hydrogen peroxide, TfuCat was also found to catalyze oxidations of phenolic compounds. The catalase activity was comparable to other described catalases while peroxidase activity was quite remarkable with a k obs of nearly 1000 s(-1) for catechol. Site directed mutagenesis was used to alter the ratio of peroxidase/catalase activity. Resistance to inhibition by classic catalase inhibitors and an apparent melting temperature of 74 °C classifies this enzyme as a robust biocatalyst. As such, it could compete with other commercially available catalases while the relatively high peroxidase activity also offers new biocatalytic possibilities.

  8. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan.

    Science.gov (United States)

    Mengin-Lecreulx, D; van Heijenoort, J; Park, J T

    1996-01-01

    A gene, mpl, encoding UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelat e ligase was recognized by its amino acid sequence homology with murC as the open reading frame yjfG present at 96 min on the Escherichia coli map. The existence of such an enzymatic activity was predicted from studies indicating that reutilization of the intact tripeptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate occurred and accounted for well over 30% of new cell wall synthesis. Murein tripeptide ligase activity could be demonstrated in crude extracts, and greatly increased activity was produced when the gene was cloned and expressed under control of the trc promoter. A null mutant totally lacked activity but was viable, showing that the enzyme is not essential for growth. PMID:8808921

  9. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner

    OpenAIRE

    David, Diana; Jagadeeshan, Sankar; Hariharan, Ramkumar; Nair, Asha Sivakumari; Pillai, Radhakrishna Madhavan

    2014-01-01

    Background Smurf2 is a member of the HECT family of E3 ubiquitin ligases that play important roles in determining the competence of cells to respond to TGF- β/BMP signaling pathway. However, besides TGF-β/BMP pathway, Smurf2 regulates a repertoire of other signaling pathways ranging from planar cell polarity during embryonic development to cell proliferation, migration, differentiation and senescence. Expression of Smurf2 is found to be dysregulated in many cancers including breast cancer. Th...

  10. iDoRNA: An Interacting Domain-based Tool for Designing RNA-RNA Interaction Systems

    Directory of Open Access Journals (Sweden)

    Jittrawan Thaiprasit

    2016-03-01

    Full Text Available RNA-RNA interactions play a crucial role in gene regulation in living organisms. They have gained increasing interest in the field of synthetic biology because of their potential applications in medicine and biotechnology. However, few novel regulators based on RNA-RNA interactions with desired structures and functions have been developed due to the challenges of developing design tools. Recently, we proposed a novel tool, called iDoDe, for designing RNA-RNA interacting sequences by first decomposing RNA structures into interacting domains and then designing each domain using a stochastic algorithm. However, iDoDe did not provide an optimal solution because it still lacks a mechanism to optimize the design. In this work, we have further developed the tool by incorporating a genetic algorithm (GA to find an RNA solution with maximized structural similarity and minimized hybridized RNA energy, and renamed the tool iDoRNA. A set of suitable parameters for the genetic algorithm were determined and found to be a weighting factor of 0.7, a crossover rate of 0.9, a mutation rate of 0.1, and the number of individuals per population set to 8. We demonstrated the performance of iDoRNA in comparison with iDoDe by using six RNA-RNA interaction models. It was found that iDoRNA could efficiently generate all models of interacting RNAs with far more accuracy and required far less computational time than iDoDe. Moreover, we compared the design performance of our tool against existing design tools using forty-four RNA-RNA interaction models. The results showed that the performance of iDoRNA is better than RiboMaker when considering the ensemble defect, the fitness score and computation time usage. However, it appears that iDoRNA is outperformed by NUPACK and RNAiFold 2.0 when considering the ensemble defect. Nevertheless, iDoRNA can still be an useful alternative tool for designing novel RNA-RNA interactions in synthetic biology research. The source code of iDoRNA

  11. Overexpression of E3 Ubiquitin Ligase Gene AdBiL Contributes to Resistance against Chilling Stress and Leaf Mold Disease in Tomato

    Directory of Open Access Journals (Sweden)

    Shuangchen Chen

    2017-06-01

    Full Text Available Ubiquitination is a common regulatory mechanism, playing a critical role in diverse cellular and developmental processes in eukaryotes. However, a few reports on the functional correlation between E3 ubiquitin ligases and reactive oxygen species (ROS or reactive nitrogen species (RNS metabolism in response to stress are currently available in plants. In the present study, the E3 ubiquitin ligase gene AdBiL (Adi3 Binding E3 Ligase was introduced into tomato line Ailsa Craig via Agrobacterium-mediated method. Transgenic lines were confirmed for integration into the tomato genome using PCR. Transcription of AdBiL in various transgenic lines was determined using real-time PCR. Evaluation of stress tolerance showed that T1 generation of transgenic tomato lines showed only mild symptoms of chilling injury as evident by higher biomass accumulation and chlorophyll content than those of non-transformed plants. Compared with wild-type plants, the contents of AsA, AsA/DHA, GSH and the activity of GaILDH, γ-GCS and GSNOR were increased, while H2O2, O2.−, MDA, NO, SNOs, and GSNO accumulations were significantly decreased in AdBiL overexpressing plants in response to chilling stress. Furthermore, transgenic tomato plants overexpressing AdBiL showed higher activities of enzymes such as G6PDH, 6PGDH, NADP-ICDH, and NADP-ME involved in pentose phosphate pathway (PPP. The transgenic tomato plants also exhibited an enhanced tolerance against the necrotrophic fungus Cladosporium fulvum. Tyrosine nitration protein was activated in the plants infected with leaf mold disease, while the inhibition could be recovered in AdBiL gene overexpressing lines. Taken together, our results revealed a possible physiological role of AdBiL in the activation of the key enzymes of AsA–GSH cycle, PPP and down-regulation of GSNO reductase, thereby reducing oxidative and nitrosative stress in plants. This study demonstrates an optimized transgenic strategy using AdBiL gene for crop

  12. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.

    Science.gov (United States)

    Yang, Guang; Yao, Hua; Mozzicafreddo, Matteo; Ballarini, Patrizia; Pucciarelli, Sandra; Miceli, Cristina

    2017-07-01

    The α-amylases are endo-acting enzymes that hydrolyze starch by randomly cleaving the 1,4-α-d-glucosidic linkages between the adjacent glucose units in a linear amylose chain. They have significant advantages in a wide range of applications, particularly in the food industry. The eukaryotic α-amylase isolated from the Antarctic ciliated protozoon Euplotes focardii ( Ef Amy) is an alkaline enzyme, different from most of the α-amylases characterized so far. Furthermore, Ef Amy has the characteristics of a psychrophilic α-amylase, such as the highest hydrolytic activity at a low temperature and high thermolability, which is the major drawback of cold-active enzymes in industrial applications. In this work, we applied site-directed mutagenesis combined with rational design to generate a cold-active Ef Amy with improved thermostability and catalytic efficiency at low temperatures. We engineered two Ef Amy mutants. In one mutant, we introduced Pro residues on the A and B domains in surface loops. In the second mutant, we changed Val residues to Thr close to the catalytic site. The aim of these substitutions was to rigidify the molecular structure of the enzyme. Furthermore, we also analyzed mutants containing these combined substitutions. Biochemical enzymatic assays of engineered versions of Ef Amy revealed that the combination of mutations at the surface loops increased the thermostability and catalytic efficiency of the enzyme. The possible mechanisms responsible for the changes in the biochemical properties are discussed by analyzing the three-dimensional structural model. IMPORTANCE Cold-adapted enzymes have high specific activity at low and moderate temperatures, a property that can be extremely useful in various applications as it implies a reduction in energy consumption during the catalyzed reaction. However, the concurrent high thermolability of cold-adapted enzymes often limits their applications in industrial processes. The α-amylase from the

  13. A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids.

    Directory of Open Access Journals (Sweden)

    Hugo Oliveira

    Full Text Available Resistance rates are increasing among several problematic Gram-negative pathogens, a fact that has encouraged the development of new antimicrobial agents. This paper characterizes a Salmonella phage endolysin (Lys68 and demonstrates its potential antimicrobial effectiveness when combined with organic acids towards Gram-negative pathogens. Biochemical characterization reveals that Lys68 is more active at pH 7.0, maintaining 76.7% of its activity when stored at 4°C for two months. Thermostability tests showed that Lys68 is only completely inactivated upon exposure to 100°C for 30 min, and circular dichroism analysis demonstrated the ability to refold into its original conformation upon thermal denaturation. It was shown that Lys68 is able to lyse a wide panel of Gram-negative bacteria (13 different species in combination with the outer membrane permeabilizers EDTA, citric and malic acid. While the EDTA/Lys68 combination only inactivated Pseudomonas strains, the use of citric or malic acid broadened Lys68 antibacterial effect to other Gram-negative pathogens (lytic activity against 9 and 11 species, respectively. Particularly against Salmonella Typhimurium LT2, the combinatory effect of malic or citric acid with Lys68 led to approximately 3 to 5 log reductions in bacterial load/CFUs after 2 hours, respectively, and was also able to reduce stationary-phase cells and bacterial biofilms by approximately 1 log. The broad killing capacity of malic/citric acid-Lys68 is explained by the destabilization and major disruptions of the cell outer membrane integrity due to the acidity caused by the organic acids and a relatively high muralytic activity of Lys68 at low pH. Lys68 demonstrates good (thermostability properties that combined with different outer membrane permeabilizers, could become useful to combat Gram-negative pathogens in agricultural, food and medical industry.

  14. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    Science.gov (United States)

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  15. Pigeon pea waste as a novel, inexpensive, substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB-99.

    Science.gov (United States)

    Johnvesly, B; Manjunath, B R; Naik, G R

    2002-03-01

    Thermoalkaliphilic Bacillus sp. JB-99 was grown in a 250 ml Erlenmeyer flask containing 50 ml medium containing (g/l) Pigeon pea waste 10; NaNO3, 5.0; K2HPO4, 5.0; MgSO4 x 2H2O, 0.2 and Na2CO3, 10.0. Incubations were carried out at 50 degrees C on a rotary incubator shaker for 15 h. A high level of extra cellular thermostable protease activity was observed after 24 h incubation. The optimum temperature and pH for activity were 70 degrees C and 11, respectively, so this enzyme showed stable activity at high temperature and under alkaline conditions.

  16. Combinatorics of RNA-RNA interaction

    DEFF Research Database (Denmark)

    Li, Thomas J X; Reidys, Christian

    2012-01-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure...... means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including...

  17. Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus*

    Science.gov (United States)

    Soares da Costa, Tatiana P.; Tieu, William; Yap, Min Y.; Pendini, Nicole R.; Polyak, Steven W.; Sejer Pedersen, Daniel; Morona, Renato; Turnidge, John D.; Wallace, John C.; Wilce, Matthew C. J.; Booker, Grant W.; Abell, Andrew D.

    2012-01-01

    There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (Ki 90 nm) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class. PMID:22437830

  18. Selective inhibition of biotin protein ligase from Staphylococcus aureus.

    Science.gov (United States)

    Soares da Costa, Tatiana P; Tieu, William; Yap, Min Y; Pendini, Nicole R; Polyak, Steven W; Sejer Pedersen, Daniel; Morona, Renato; Turnidge, John D; Wallace, John C; Wilce, Matthew C J; Booker, Grant W; Abell, Andrew D

    2012-05-18

    There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (K(i) 90 nM) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class.

  19. The MurC Ligase Essential for Peptidoglycan Biosynthesis Is Regulated by the Serine/Threonine Protein Kinase PknA in Corynebacterium glutamicum*

    OpenAIRE

    Fiuza, Maria; Canova, Marc J.; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M.; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A.

    2008-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (l-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recen...

  20. Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage.

    Science.gov (United States)

    Hu, Jian; McCall, Chad M; Ohta, Tomohiko; Xiong, Yue

    2004-10-01

    Cullins assemble a potentially large number of ubiquitin ligases by binding to the RING protein ROC1 to catalyse polyubiquitination, as well as binding to various specificity factors to recruit substrates. The Cul4A gene is amplified in human breast and liver cancers, and loss-of-function of Cul4 results in the accumulation of the replication licensing factor CDT1 in Caenorhabditis elegans embryos and ultraviolet (UV)-irradiated human cells. Here, we report that human UV-damaged DNA-binding protein DDB1 associates stoichiometrically with CUL4A in vivo, and binds to an amino-terminal region in CUL4A in a manner analogous to SKP1, SOCS and BTB binding to CUL1, CUL2 and CUL3, respectively. As with SKP1-CUL1, the DDB1-CUL4A association is negatively regulated by the cullin-associated and neddylation-dissociated protein, CAND1. Recombinant DDB1 and CDT1 bind directly to each other in vitro, and ectopically expressed DDB1 bridges CDT1 to CUL4A in vivo. Silencing DDB1 prevented UV-induced rapid CDT1 degradation in vivo and CUL4A-mediated CDT1 ubiquitination in vitro. We suggest that DDB1 targets CDT1 for ubiquitination by a CUL4A-dependent ubiquitin ligase, CDL4A(DDB1), in response to UV irradiation.

  1. Inhibitor design strategy based on an enzyme structural flexibility: a case of bacterial MurD ligase.

    Science.gov (United States)

    Perdih, Andrej; Hrast, Martina; Barreteau, Hélène; Gobec, Stanislav; Wolber, Gerhard; Solmajer, Tom

    2014-05-27

    Increasing bacterial resistance to available antibiotics stimulated the discovery of novel efficacious antibacterial agents. The biosynthesis of the bacterial peptidoglycan, where the MurD enzyme is involved in the intracellular phase of the UDP-MurNAc-pentapeptide formation, represents a collection of highly selective targets for novel antibacterial drug design. In our previous computational studies, the C-terminal domain motion of the MurD ligase was investigated using Targeted Molecular Dynamic (TMD) simulation and the Off-Path Simulation (OPS) technique. In this study, we present a drug design strategy using multiple protein structures for the identification of novel MurD ligase inhibitors. Our main focus was the ATP-binding site of the MurD enzyme. In the first stage, three MurD protein conformations were selected based on the obtained OPS/TMD data as the initial criterion. Subsequently, a two-stage virtual screening approach was utilized combining derived structure-based pharmacophores with molecular docking calculations. Selected compounds were then assayed in the established enzyme binding assays, and compound 3 from the aminothiazole class was discovered to act as a dual MurC/MurD inhibitor in the micomolar range. A steady-state kinetic study was performed on the MurD enzyme to provide further information about the mechanistic aspects of its inhibition. In the final stage, all used conformations of the MurD enzyme with compound 3 were simulated in classical molecular dynamics (MD) simulations providing atomistic insights of the experimental results. Overall, the study depicts several challenges that need to be addressed when trying to hit a flexible moving target such as the presently studied bacterial MurD enzyme and show the possibilities of how computational tools can be proficiently used at all stages of the drug discovery process.

  2. Structure and function of the first full-length murein peptide ligase (Mpl) cell wall recycling protein.

    Science.gov (United States)

    Das, Debanu; Hervé, Mireille; Feuerhelm, Julie; Farr, Carol L; Chiu, Hsiu-Ju; Elsliger, Marc-André; Knuth, Mark W; Klock, Heath E; Miller, Mitchell D; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Mengin-Lecreulx, Dominique; Wilson, Ian A

    2011-03-18

    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  3. Structure and function of the first full-length murein peptide ligase (Mpl cell wall recycling protein.

    Directory of Open Access Journals (Sweden)

    Debanu Das

    2011-03-01

    Full Text Available Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc. MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl, which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl. Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters. Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  4. Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate:amino acid ligase activity.

    Science.gov (United States)

    Hesse, Lars; Bostock, Julieanne; Dementin, Sebastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Chopra, Ian

    2003-11-01

    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):L-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:L-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (L-alanine, L-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide.

  5. Enhanced thermostability of silica-immobilized lipase from Bacillus coagulans BTS-3 and synthesis of ethyl propionate.

    Science.gov (United States)

    Kumar, Satyendra; Pahujani, Shweta; Ola, R P; Kanwar, S S; Gupta, Reena

    2006-06-01

    A lipase from the thermophilic isolate Bacillus coagulans BTS-3 was produced and purified. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The purified lipase was immobilized on silica and its binding efficiency was found to be 60%. The enzyme took 60 min to bind maximally onto the support. The pH and temperature optima of immobilized lipase were same as those of the free enzyme, i.e. 8.5 and 55 degrees C, respectively. The immobilized enzyme had shown marked thermostability on the elevated temperatures of 55, 60, 65 and 70 degrees C. The immobilized enzyme was reused for eigth cycles as it retained almost 80% of its activity. The catalytic activity of immobilized enzyme was enhanced in n-hexane and ethanol. The immobilized enzyme when used for esterification of ethanol and propionic acid showed 96% conversion in n-hexane in 12 h at 55 degrees C.

  6. The effect of different stabilizers on the thermostability of electron beam crosslinked polyethylene in hot water

    International Nuclear Information System (INIS)

    Hassanpour, S.; Khoylou, F.

    2003-01-01

    Plastic pipes owing to their flexibility, great lengths, easier handling and absence of corrosion have been used for hot-water installations. Crosslinked high-density polyethylene is one of the best materials, being used for this purpose. The useful lifetime of unstabilized polyethylene is predicted to vary from a few months in hot water (30-40 deg. C) to almost two years in cool water (0-10 deg. C). Polyethylene was mixed with different types of stabilizers, in order to increase its durability. The samples were irradiated at 100-150 kGy. The amount of gel fraction and the changes in mechanical properties were measured. Irradiated samples were immersed in hot water for 1000 h. The thermostability of the specimens and the existence of antioxidants were measured by the induction time technique using differential scanning calorimetry at different time intervals. Furthermore, the changes in chemical structure and mechanical properties of the samples during their immersion in hot water were determined

  7. Time-of-day- and light-dependent expression of ubiquitin protein ligase E3 component N-recognin 4 (UBR4 in the suprachiasmatic nucleus circadian clock.

    Directory of Open Access Journals (Sweden)

    Harrod H Ling

    Full Text Available Circadian rhythms of behavior and physiology are driven by the biological clock that operates endogenously but can also be entrained to the light-dark cycle of the environment. In mammals, the master circadian pacemaker is located in the suprachiasmatic nucleus (SCN, which is composed of individual cellular oscillators that are driven by a set of core clock genes interacting in transcriptional/translational feedback loops. Light signals can trigger molecular events in the SCN that ultimately impact on the phase of expression of core clock genes to reset the master pacemaker. While transcriptional regulation has received much attention in the field of circadian biology in the past, other mechanisms including targeted protein degradation likely contribute to the clock timing and entrainment process. In the present study, proteome-wide screens of the murine SCN led to the identification of ubiquitin protein ligase E3 component N-recognin 4 (UBR4, a novel E3 ubiquitin ligase component of the N-end rule pathway, as a time-of-day-dependent and light-inducible protein. The spatial and temporal expression pattern of UBR4 in the SCN was subsequently characterized by immunofluorescence microscopy. UBR4 is expressed across the entire rostrocaudal extent of the SCN in a time-of-day-dependent fashion. UBR4 is localized exclusively to arginine vasopressin (AVP-expressing neurons of the SCN shell. Upon photic stimulation in the early subjective night, the number of UBR4-expressing cells within the SCN increases. This study is the first to identify a novel E3 ubiquitin ligase component, UBR4, in the murine SCN and to implicate the N-end rule degradation pathway as a potential player in regulating core clock mechanisms and photic entrainment.

  8. A hybrid non-ribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL synthesizes the β-amino fatty acid lipopeptides puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum.

    Directory of Open Access Journals (Sweden)

    Jan Mareš

    Full Text Available A putative operon encoding the biosynthetic pathway for the cytotoxic cyanobacterial lipopeptides puwainphycins was identified in Cylindrospermum alatosporum. Bioinformatics analysis enabled sequential prediction of puwainaphycin biosynthesis; this process is initiated by the activation of a fatty acid residue via fatty acyl-AMP ligase and continued by a multidomain non-ribosomal peptide synthetase/polyketide synthetase. High-resolution mass spectrometry and nuclear magnetic resonance spectroscopy measurements proved the production of puwainaphycin F/G congeners differing in FA chain length formed by either 3-amino-2-hydroxy-4-methyl dodecanoic acid (4-methyl-Ahdoa or 3-amino-2-hydroxy-4-methyl tetradecanoic acid (4-methyl-Ahtea. Because only one puwainaphycin operon was recovered in the genome, we suggest that the fatty acyl-AMP ligase and one of the amino acid adenylation domains (Asn/Gln show extended substrate specificity. Our results provide the first insight into the biosynthesis of frequently occurring β-amino fatty acid lipopeptides in cyanobacteria, which may facilitate analytical assessment and development of monitoring tools for cytotoxic cyanobacterial lipopeptides.

  9. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL.

    Science.gov (United States)

    Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia

    2016-06-22

    Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML.

  10. Cbl-family ubiquitin ligases and their recruitment of CIN85 are largely dispensable for epidermal growth factor receptor endocytosis

    Science.gov (United States)

    Ahmad, Gulzar; Mohapatra, Bhopal; Schulte, Nancy A.; Nadeau, Scott; Luan, Haitao; Zutshi, Neha; Tom, Eric; Ortega-Cava, Cesar; Tu, Chun; Sanada, Masashi; Ogawa, Seishi; Toews, Myron L.; Band, Vimla; Band, Hamid

    2014-01-01

    Members of the Casitas B-Lineage Lymphoma (Cbl) family (Cbl, Cbl-b and Cbl-c) of ubiquitin ligases serve as negative regulators of receptor tyrosine kinases (RTKs). An essential role of Cbl-family protein-dependent ubiquitination for efficient ligand-induced lysosomal targeting and degradation is now well-accepted. However, a more proximal role of Cbl and Cbl-b as adapters for CIN85-endophilin recruitment to mediate ligand-induced initial internalization of RTKs is supported by some studies but refuted by others. Overexpression and/or incomplete depletion of Cbl proteins in these studies is likely to have contributed to this dichotomy. To address the role of endogenous Cbl and Cbl-b in the internalization step of RTK endocytic traffic, we established Cbl/Cbl-b double-knockout (DKO) mouse embryonic fibroblasts (MEFs) and demonstrated that these cells lack the expression of both Cbl-family members as well as endophilin A, while they express CIN85. We show that ligand-induced ubiquitination of EGFR, as a prototype RTK, was abolished in DKO MEFs, and EGFR degradation was delayed. These traits were reversed by ectopic human Cbl expression. EGFR endocytosis, assessed using the internalization of 125I-labeled or fluorescent EGF, or of EGFR itself, was largely retained in Cbl/Cbl-b DKO compared to wild type MEFs. EGFR internalization was also largely intact in Cbl/Cbl-b depleted MCF-10A human mammary epithelial cell line. Inducible shRNA-mediated knockdown of CIN85 in wild type or Cbl/Cbl-b DKO MEFs had no impact on EGFR internalization. Our findings, establish that, at physiological expression levels, Cbl, Cbl-b and CIN85 are largely dispensable for EGFR internalization. Our results support the model that Cbl-CIN85-endophilin complex is not required for efficient internalization of EGFR, a prototype RTK. PMID:25449262

  11. The E3 Ligase APC/C-Cdh1 Is Required for Associative Fear Memory and Long-Term Potentiation in the Amygdala of Adult Mice

    Science.gov (United States)

    Pick, Joseph E.; Malumbres, Marcos; Klann, Eric

    2013-01-01

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating…

  12. Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers

    Science.gov (United States)

    Feng, Li; Li, Feng; Sun, Zeguo; Wu, Tan; Shi, Xinrui; Li, Jing; Li, Xia

    2016-01-01

    Recent studies indicate that long noncoding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs) to indirectly regulate mRNAs through shared microRNAs, which represents a novel layer of RNA crosstalk and plays critical roles in the development of tumor. However, the global regulation landscape and characterization of these lncRNA related ceRNA crosstalk in cancers is still largely unknown. Here, we systematically characterized the lncRNA related ceRNA interactions across 12 major cancers and the normal physiological states by integrating multidimensional molecule profiles of more than 5000 samples. Our study suggest the large difference of ceRNA regulation between normal and tumor states and the higher similarity across similar tissue origin of tumors. The ceRNA related molecules have more conserved features in tumor networks and they play critical roles in both the normal and tumorigenesis processes. Besides, lncRNAs in the pan-cancer ceRNA network may be potential biomarkers of tumor. By exploring hub lncRNAs, we found that these conserved key lncRNAs dominate variable tumor hallmark processes across pan-cancers. Network dynamic analysis highlights the critical roles of ceRNA regulation in tumorigenesis. By analyzing conserved ceRNA interactions, we found that miRNA mediate ceRNA regulation showed different patterns across pan-cancer; while analyzing the cancer specific ceRNA interactions reveal that lncRNAs synergistically regulated tumor driver genes of cancer hallmarks. Finally, we found that ceRNA modules have the potential to predict patient survival. Overall, our study systematically dissected the lncRNA related ceRNA networks in pan-cancer that shed new light on understanding the molecular mechanism of tumorigenesis. PMID:27580177

  13. Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation

    Science.gov (United States)

    Martos, Laura; Fernández-Pardo, Álvaro; Oto, Julia; Medina, Pilar; España, Francisco; Navarro, Silvia

    2017-01-01

    microRNAs are promising biomarkers in biological fluids in several diseases. Different plasma RNA isolation protocols and carriers are available, but their efficiencies have been scarcely compared. Plasma microRNAs were isolated using a phenol and column-based procedure and a column-based procedure, in the presence or absence of two RNA carriers (yeast RNA and MS2 RNA). We evaluated the presence of PCR inhibitors and the relative abundance of certain microRNAs by qRT-PCR. Furthermore, we analyzed the association between different isolation protocols, the relative abundance of the miRNAs in the sample, the GC content and the free energy of microRNAs. In all microRNAs analyzed, the addition of yeast RNA as a carrier in the different isolation protocols used gave lower raw Cq values, indicating higher microRNA recovery. Moreover, this increase in microRNAs recovery was dependent on their own relative abundance in the sample, their GC content and the free-energy of their own most stable secondary structure. Furthermore, the normalization of microRNA levels by an endogenous microRNA is more reliable than the normalization by plasma volume, as it reduced the difference in microRNA fold abundance between the different isolation protocols evaluated. Our thorough study indicates that a standardization of pre- and analytical conditions is necessary to obtain reproducible inter-laboratory results in plasma microRNA studies. PMID:29077772

  14. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining.

    Directory of Open Access Journals (Sweden)

    Aurélie Kapusta

    2011-04-01

    Full Text Available During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs, each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs, which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5' overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ, are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi-mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5'-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3' ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a "cut-and-close" mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new

  15. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining.

    Science.gov (United States)

    Kapusta, Aurélie; Matsuda, Atsushi; Marmignon, Antoine; Ku, Michael; Silve, Aude; Meyer, Eric; Forney, James D; Malinsky, Sophie; Bétermier, Mireille

    2011-04-01

    During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5' overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi-mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5'-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3' ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a "cut-and-close" mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms

  16. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhang

    2015-01-01

    Full Text Available Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs through integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM, to identify MM subtype specific MFRMs. The constructed miRNA-mRNA regulatory networks provide modular outlook at subtype specific miRNA-mRNA interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to guide MM subtype diagnosis and treatment.

  17. Protein Interaction Screening for the Ankyrin Repeats and Suppressor of Cytokine Signaling (SOCS) Box (ASB) Family Identify Asb11 as a Novel Endoplasmic Reticulum Resident Ubiquitin Ligase

    DEFF Research Database (Denmark)

    Andresen, Christina Aaen; Smedegaard, Stine; Sylvestersen, Kathrine Beck

    2014-01-01

    The Ankyrin and SOCS (Suppressor of Cytokine Signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting with 18 members in humans, the identity of the physiological targets of the Asb protei...

  18. antaRNA: ant colony-based RNA sequence design.

    Science.gov (United States)

    Kleinkauf, Robert; Mann, Martin; Backofen, Rolf

    2015-10-01

    RNA sequence design is studied at least as long as the classical folding problem. Although for the latter the functional fold of an RNA molecule is to be found ,: inverse folding tries to identify RNA sequences that fold into a function-specific target structure. In combination with RNA-based biotechnology and synthetic biology ,: reliable RNA sequence design becomes a crucial step to generate novel biochemical components. In this article ,: the computational tool antaRNA is presented. It is capable of compiling RNA sequences for a given structure that comply in addition with an adjustable full range objective GC-content distribution ,: specific sequence constraints and additional fuzzy structure constraints. antaRNA applies ant colony optimization meta-heuristics and its superior performance is shown on a biological datasets. http://www.bioinf.uni-freiburg.de/Software/antaRNA CONTACT: backofen@informatik.uni-freiburg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  19. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond.

    Science.gov (United States)

    Michelini, Flavia; Jalihal, Ameya P; Francia, Sofia; Meers, Chance; Neeb, Zachary T; Rossiello, Francesca; Gioia, Ubaldo; Aguado, Julio; Jones-Weinert, Corey; Luke, Brian; Biamonti, Giuseppe; Nowacki, Mariusz; Storici, Francesca; Carninci, Piero; Walter, Nils G; Fagagna, Fabrizio d'Adda di

    2018-03-30

    Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.

  20. Structure of a Glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface

    Science.gov (United States)

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-01-01

    Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924