WorldWideScience

Sample records for thermospheric model based

  1. Thermospheric tides simulated by the national center for atmospheric research thermosphere-ionosphere general circulation model at equinox

    International Nuclear Information System (INIS)

    Fesen, C.G.; Roble, R.G.; Ridley, E.C.

    1993-01-01

    The authors use the National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM) to model tides and dynamics in the thermosphere. This model incorporates the latest advances in the thermosphere general circulation model. Model results emphasized the 70 degree W longitude region to overlap a series of incoherent radar scatter installations. Data and the model are available on data bases. The results of this theoretical modeling are compared with available data, and with prediction of more empirical models. In general there is broad agreement within the comparisons

  2. Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data

    Science.gov (United States)

    Hedin, A. E.; Spencer, N. W.; Killeen, T. L.

    1988-01-01

    Thermospheric wind data obtained from the Atmosphere Explorer E and Dynamics Explorer 2 satellites have been used to generate an empirical wind model for the upper thermosphere, analogous to the MSIS model for temperature and density, using a limited set of vector spherical harmonics. The model is limited to above approximately 220 km where the data coverage is best and wind variations with height are reduced by viscosity. The data base is not adequate to detect solar cycle (F10.7) effects at this time but does include magnetic activity effects. Mid- and low-latitude data are reproduced quite well by the model and compare favorably with published ground-based results. The polar vortices are present, but not to full detail.

  3. Modeling the Thermosphere as a Driven-Dissipative Thermodynamic System

    Science.gov (United States)

    2013-03-01

    8 Figure 2: Illustration of the geocentric solar magnetospheric coordinate system............15 Figure 3: Diagram of the...to test new methods of modeling the thermospheric environment. Thermosphere as a Driven-Dissipative Thermodynamic System One approach for modeling... approach uses empirical coupling and relaxation constants to model the 4 input of energy to the thermosphere from the solar wind during

  4. Theoretical model simulations for the global Thermospheric Mapping Study (TMS) periods

    Science.gov (United States)

    Rees, D.; Fuller-Rowell, T. J.

    Theoretical and semiempirical models of the solar UV/EUV and of the geomagnetic driving forces affecting the terrestrial mesosphere and thermosphere have been used to generate a series of representative numerical time-dependent and global models of the thermosphere, for the range of solar and geoamgnetic activity levels which occurred during the three Thermospheric Mapping Study periods. The simulations obtained from these numerical models are compared with observations, and with the results of semiempirical models of the thermosphere. The theoretical models provide a record of the magnitude of the major driving forces which affected the thermosphere during the study periods, and a baseline against which the actual observed structure and dynamics can be compared.

  5. Developments of STIM, the Saturn Thermosphere Ionosphere Model

    Science.gov (United States)

    Aylward, A. D.; Smith, C. G.; Miller, S.; Millward, G.

    2005-05-01

    The STIM (Saturn Thermosphere Ionosphere Model) model is a joint venture betwen University College London, Imperial College London, Boston University and the University of Arizona to develop a 3-d global circulation model of the Saturnian system - the primary aim being to use this as a tool for interpretation and testing of Cassini data. After initial work producing a basic thermosphere model (Muller-Wodarg et al 2005), examining issues to do with the ionosphere (Moore et al 2005) and examining auroral heating effects (Smith et al 2005), a global coupled ionosphere-plasmasphere has been added to the model. At low latitudes the model calculates ion densities on closed flux tubes passing through the ring plane. At high latitudes it performs self-consistent calculations of Joule heating and ion drag based on the calculated thermospheric and ionospheric parameters. The plasmasphere is complicated for Saturn by the strength of the centrifugal force which can dominate the forces in the outer flux tubes. Studies initially used H+ and H3+ as the principle ions but for the future it will be necessary to look at the consequences of the rings supplying OH or oxygen from ring ice particles. The high-latitude morphology is being refined as Cassini data constrains it. Long-term plans for the STIM development will be discussed.

  6. High Resolution Modeling of the Thermospheric Response to Energy Inputs During the RENU-2 Rocket Flight

    Science.gov (United States)

    Walterscheid, R. L.; Brinkman, D. G.; Clemmons, J. H.; Hecht, J. H.; Lessard, M.; Fritz, B.; Hysell, D. L.; Clausen, L. B. N.; Moen, J.; Oksavik, K.; Yeoman, T. K.

    2017-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. The Rocket Experiment for Neutral Upwelling -2 (RENU-2) launched from Andoya, Norway at 0745UT on 13 December 2015 into the ionosphere-thermosphere beneath the magnetic cusp. It made measurements of the energy inputs (e.g., precipitating particles, electric fields) and the thermospheric response to these energy inputs (e.g., neutral density and temperature, neutral winds). Complementary ground based measurements were made. In this study, we use a high resolution two-dimensional time-dependent non hydrostatic nonlinear dynamical model driven by rocket and ground based measurements of the energy inputs to simulate the thermospheric response during the RENU-2 flight. Model simulations will be compared to the corresponding measurements of the thermosphere to see what they reveal about thermospheric structure and the nature of magnetosphere-ionosphere-thermosphere coupling in the cusp. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grants: NNX16AH46G and NNX13AJ93G. This research was also supported by The Aerospace Corporation's Technical Investment program

  7. Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy input: OpenGGCM-CTIM results

    Directory of Open Access Journals (Sweden)

    Connor Hyunju Kim

    2016-01-01

    Full Text Available The magnetosphere is a major source of energy for the Earth’s ionosphere and thermosphere (IT system. Current IT models drive the upper atmosphere using empirically calculated magnetospheric energy input. Thus, they do not sufficiently capture the storm-time dynamics, particularly at high latitudes. To improve the prediction capability of IT models, a physics-based magnetospheric input is necessary. Here, we use the Open Global General Circulation Model (OpenGGCM coupled with the Coupled Thermosphere Ionosphere Model (CTIM. OpenGGCM calculates a three-dimensional global magnetosphere and a two-dimensional high-latitude ionosphere by solving resistive magnetohydrodynamic (MHD equations with solar wind input. CTIM calculates a global thermosphere and a high-latitude ionosphere in three dimensions using realistic magnetospheric inputs from the OpenGGCM. We investigate whether the coupled model improves the storm-time IT responses by simulating a geomagnetic storm that is preceded by a strong solar wind pressure front on August 24, 2005. We compare the OpenGGCM-CTIM results with low-earth-orbit satellite observations and with the model results of Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe. CTIPe is an up-to-date version of CTIM that incorporates more IT dynamics such as a low-latitude ionosphere and a plasmasphere, but uses empirical magnetospheric input. OpenGGCM-CTIM reproduces localized neutral density peaks at ~ 400 km altitude in the high-latitude dayside regions in agreement with in situ observations during the pressure shock and the early phase of the storm. Although CTIPe is in some sense a much superior model than CTIM, it misses these localized enhancements. Unlike the CTIPe empirical input models, OpenGGCM-CTIM more faithfully produces localized increases of both auroral precipitation and ionospheric electric fields near the high-latitude dayside region after the pressure shock and after the storm onset

  8. Formation mechanisms of neutral Fe layers in the thermosphere at Antarctica studied with a thermosphere-ionosphere Fe/Fe+ (TIFe) model

    Science.gov (United States)

    Chu, Xinzhao; Yu, Zhibin

    2017-06-01

    With a thermosphere-ionosphere Fe/Fe+ (TIFe) model developed from first principles at the University of Colorado, we present the first quantitative investigation of formation mechanisms of thermospheric Fe layers observed by lidar in Antarctica. These recently discovered neutral metal layers in the thermosphere between 100 and 200 km provide unique tracers for studies of fundamental processes in the space-atmosphere interaction region. The TIFe model formulates and expands the TIFe theory originally proposed by Chu et al. that the thermospheric Fe layers are produced through the neutralization of converged Fe+ layers. Through testing mechanisms and reproducing the 28 May 2011 event at McMurdo, we conceive the lifecycle of meteoric metals via deposition, transport, chemistry, and wave dynamics for thermospheric Fe layers with gravity wave signatures. While the meteor injection of iron species is negligible above 120 km, the polar electric field transports metallic ions Fe+ upward from their main deposition region into the E-F regions, providing the major source of Fe+ (and accordingly Fe) in the thermosphere. Atmospheric wave-induced vertical shears of vertical and horizontal winds converge Fe+ to form dense Fe+ layers. Direct electron-Fe+ recombination is the major channel to neutralize Fe+ layers to form Fe above 120 km. Fe layer shapes are determined by multiple factors of neutral winds, electric field, and aurora activity. Gravity-wave-induced vertical wind plays a key role in forming gravity-wave-shaped Fe layers. Aurora particle precipitation enhances Fe+ neutralization by increasing electron density while accelerating Fe loss via charge transfer with enhanced NO+ and O2+ densities.Plain Language SummaryThe discoveries of neutral metal layers reaching near 200 km in the thermosphere have significant scientific merit because such discoveries challenge the current understandings of upper atmospheric composition, chemistry, dynamics, electrodynamics, and

  9. The global thermospheric mapping study

    International Nuclear Information System (INIS)

    Oliver, W.L.; Salah, J.E.

    1988-01-01

    The Global Thermospheric Mapping Study (GTMS) is a multitechnique experimental pilot study of the Earth's thermosphere designed to map simultaneously its spatial and temporal morphology. This paper provides the background for the study and presents the analysis techniques employed at Millstone Hill and results to date on thermospheric structure and dynamics. The first latitudinal-temporal maps of exospheric temperature obtained from the incoherent scatter radar chain at 70W meridian are presented for the two solstice periods, revealing substantial seasonal differences between them. The observed structure shows a relatively depressed temperature at high latitude in summer in contrast to the mass spectrometer/incoherent scatter 1983 [MSIS-83] empirical model, which shows a maximum temperature at polar latitudes. The MSIS-83 model predictions are in good agreement with the observed latitudinal-temporal structure in winter. Comparison with the numerical predictions made for the June 26-28, 1984 period with the National Center for Atmospheric Research thermospheric general circulation model shows reasonable agreement in the latitudinal gradient but the observations indicate a cooler thermosphere by several hundred degrees. Neutral winds at mid-latitudes are presented showing the expected strong southward winds at night, which are found to be consistent with the temperature gradients observed in the latitudinal maps. There is good agreement in the June winds between the available numerical model calculations and the observations. Work performed elsewhere on the GTMS data base is summarized for completeness

  10. Simulations of the September 1987 lower thermospheric tides with the National Center for Atmospheric Research thermosphere-ionosphere general circulation model

    International Nuclear Information System (INIS)

    Fesen, C.G.; Roble, R.G.

    1991-01-01

    The National Center for Atmospheric Research thermosphere-ionosphere general circulation model (TIGCM) was used to simulate incoherent scatter radar observations of the lower thermosphere tides during the first Lower Thermosphere Coupling Study (LTCS) campaign, September 21-26, 1987. The TIGCM utilized time-varying histories of the model input fields obtained from the World Data Center for the LTCS period. These model inputs included solar flux, total hemispheric power, solar wind data from which the cross-polar-cap potential was derived, and geomagnetic K p index. Calculations were made for the semidiurnal ion temperatures and horizontal neutral winds at locations representative of Arecibo, Millstone Hill, and Sondrestrom. The diurnal tides at Sondrestrom were also simulated. Tidal inputs to the TIGCM lower boundary were obtained from the middle atmosphere model of Forbes and Vial (1989). The TIGCM tidal structures are in fair general agreement with the observations. The amplitudes tended to be better simulated than the phases, and the mid- and high-latitude locations are simulated better than the low-latitude thermosphere. This may indicate a need to incorporate coupling of the neutral atmosphere and ionosphere with the E region dynamo in the equatorial region to obtain a better representation of low-latitude thermospheric tides. The model simulations were used to investigate the daily variability of the tides due to the geomagnetic activity occurring during this period. In general, the ion temperatures were predicted to be affected more than the winds, and the diurnal components more than the semidiurnal. The effects are typically largest at high latitudes and higher altitudes, but discernible differences were produced at low latitudes

  11. Southern Hemisphere Upper Thermospheric Wind Climatology

    Science.gov (United States)

    Dhadly, M. S.; Emmert, J. T.; Drob, D. P.

    2017-12-01

    This study is focused on the poorly understood large-scale upper thermospheric wind dynamics in the southern polar cap, auroral, and mid latitudes. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. Using data from current observational facilities, it is unfeasible to construct a synoptic picture of the Southern Hemisphere upper thermospheric winds. However, enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis of winds as function of season, magnetic latitude, and magnetic local time. We use long-term data from nine ground-based stations located at different southern high latitudes and three space-based instruments. These diverse data sets possess different geometries and different spatial and solar coverage. The major challenge of the effort is to combine these disparate sources of data into a coherent picture while overcoming the sampling limitations and biases among the datasets. Our preliminary analyses show mutual biases present among some of them. We first address the biases among various data sets and then combine them in a coherent way to construct maps of neutral winds for various seasons. We then validate the fitted climatology against the observational data and compare with corresponding fits of 25 years of simulated winds from the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. This study provides critical insight into magnetosphere-ionosphere-thermosphere coupling and sets a necessary benchmark for validating new observations and tuning first-principles models.

  12. Variations of thermospheric composition according to AE-C data and CTIP modelling

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    2004-01-01

    Full Text Available Data from the Atmospheric Explorer C satellite, taken at middle and low latitudes in 1975-1978, are used to study latitudinal and month-by-month variations of thermospheric composition. The parameter used is the "compositional Ρ-parameter", related to the neutral atomic oxygen/molecular nitrogen concentration ratio. The midlatitude data show strong winter maxima of the atomic/molecular ratio, which account for the "seasonal anomaly" of the ionospheric F2-layer. When the AE-C data are compared with the empirical MSIS model and the computational CTIP ionosphere-thermosphere model, broadly similar features are found, but the AE-C data give a more molecular thermosphere than do the models, especially CTIP. In particular, CTIP badly overestimates the winter/summer change of composition, more so in the south than in the north. The semiannual variations at the equator and in southern latitudes, shown by CTIP and MSIS, appear more weakly in the AE-C data. Magnetic activity produces a more molecular thermosphere at high latitudes, and at mid-latitudes in summer. Key words. Atmospheric composition and structure (thermosphere – composition and chemistry

  13. Variations of thermospheric composition according to AE-C data and CTIP modelling

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    2004-01-01

    Full Text Available Data from the Atmospheric Explorer C satellite, taken at middle and low latitudes in 1975-1978, are used to study latitudinal and month-by-month variations of thermospheric composition. The parameter used is the "compositional Ρ-parameter", related to the neutral atomic oxygen/molecular nitrogen concentration ratio. The midlatitude data show strong winter maxima of the atomic/molecular ratio, which account for the "seasonal anomaly" of the ionospheric F2-layer. When the AE-C data are compared with the empirical MSIS model and the computational CTIP ionosphere-thermosphere model, broadly similar features are found, but the AE-C data give a more molecular thermosphere than do the models, especially CTIP. In particular, CTIP badly overestimates the winter/summer change of composition, more so in the south than in the north. The semiannual variations at the equator and in southern latitudes, shown by CTIP and MSIS, appear more weakly in the AE-C data. Magnetic activity produces a more molecular thermosphere at high latitudes, and at mid-latitudes in summer.

    Key words. Atmospheric composition and structure (thermosphere – composition and chemistry

  14. A comparison of quiet time thermospheric winds between FPIs and models

    Science.gov (United States)

    Jiang, G.; Xu, J.; Wang, W.; Yuan, W.; Zhang, S.; Yu, T.; Zhang, X.; Huang, C.; Liu, W.; Li, Q.

    2017-12-01

    Abstract:The Fabry-Perot Interferometer (FPI) instruments installed at Xinglong, (geog.: 40.2oN, 117.4oE; geom.: 35oN), Kelan (geog.: 38.7oN, 111.6oE; geom.: 34oN) and Millstone Hill (geog.: 42.6oN, 71.5oW; geom.: 52oN) started to measure the thermosphere neutral winds near 250 km since April 2010, March 2010 and November 2011, respectively. In this work, the joined comparison of FPI observed winds and two models during geomagnetic quiet time are processed for the study of mid-latitudinal thermosphere. The years of FPI wind data we use are from 2010 to 2014. The two models we use are NCAR TIE-GCM (Thermosphere-Ionosphere-Electrodynamics General Circulation Model of National Center for Atmospheric Research) and HWM07 (Horizontal Wind Model, version 2007). The real solar and geomagnetic conditions were applied to the models.

  15. Global empirical wind model for the upper mesosphere/lower thermosphere. I. Prevailing wind

    Directory of Open Access Journals (Sweden)

    Y. I. Portnyagin

    Full Text Available An updated empirical climatic zonally averaged prevailing wind model for the upper mesosphere/lower thermosphere (70-110 km, extending from 80°N to 80°S is presented. The model is constructed from the fitting of monthly mean winds from meteor radar and MF radar measurements at more than 40 stations, well distributed over the globe. The height-latitude contour plots of monthly mean zonal and meridional winds for all months of the year, and of annual mean wind, amplitudes and phases of annual and semiannual harmonics of wind variations are analyzed to reveal the main features of the seasonal variation of the global wind structures in the Northern and Southern Hemispheres. Some results of comparison between the ground-based wind models and the space-based models are presented. It is shown that, with the exception of annual mean systematic bias between the zonal winds provided by the ground-based and space-based models, a good agreement between the models is observed. The possible origin of this bias is discussed.

    Key words: Meteorology and Atmospheric dynamics (general circulation; middle atmosphere dynamics; thermospheric dynamics

  16. A 3-D Chemistry Transport Model for Titan's Thermosphere

    Science.gov (United States)

    Doege, M. C.; Marsh, D. R.; Brasseur, G. P.; Mueller-Wodarg, I.; Tokano, T.; Newman, C. E.

    2008-12-01

    MOZART-2 (Horowitz et al., 2003) has been adapted to investigate seasonal and diurnal differences in neutral composition in Titan's atmosphere between the surface and 1,200 km altitude. The chemical scheme with 64 solution species and 383 reactions is based on a simplified version of the Lavvas et al. (2008) scheme, without haze production. Wind and temperature fields were taken from the Cologne GCM (Tokano, 2007) or TitanWRF (Richardson et al., 2007) for the troposphere and stratosphere, and from the London TGCM (Mueller-Wodarg, 2000) for the thermosphere. Pronounced hemispheric concentration gradients develop in the thermosphere, and a strong diurnal cycle in composition is found, similar to the findings of Mueller-Wodarg (2003) for methane. Sensitivity experiments with different strengths of thermospheric circulation to account for uncertainty about the wind fields in that region are presented.

  17. The Michigan Titan Thermospheric General Circulation Model (TTGCM)

    Science.gov (United States)

    Bell, J. M.; Bougher, S. W.; de Lahaye, V.; Waite, J. H.

    2005-12-01

    The Cassini flybys of Titan since late October, 2004 have provided data critical to better understanding its chemical and thermal structures. With this in mind, a 3-D TGCM of Titan's atmosphere from 600km to the exobase (~1450km) has been developed. This paper presents the first results from the partially operational code. Currently, the TTGCM includes static background chemistry (Lebonnois et al 2001, Vervack et al 2004) coupled with thermal conduction routines. The thermosphere remains dominated by solar EUV forcing and HCN rotational cooling, which is calculated by a full line-by-line radiative transfer routine along the lines of Yelle (1991) and Mueller-Wodarg (2000, 2002). In addition, an approximate treatment of magnetospheric heating is explored. This paper illustrates the model's capabilities as well as some initial results from the Titan Thermospheric General Circulation model that will be compared with both the Cassini INMS data and the model of Mueller-Wodarg (2000,2002).

  18. Thermospheric Density and Composition: an Integrated Research Approach

    Science.gov (United States)

    Richmond, A. D.; Akmaev, R.; Anderson, P. C.; Crowley, G.; Drob, D. P.; Lummerzheim, D.; Solomon, S. C.; Tobiska, W.

    2006-12-01

    The thermosphere, at altitudes of approximately 90-500 km, affects human technological systems through the drag it exerts on low-Earth-orbit spacecraft and debris, and through its influence on the embedded ionosphere, affecting radio-wave transmissions, and, consequently, communications and geolocation. We have formed a team under the NASA Living With a Star Targeted Research and Technology program to carry out an integrated research program on the focused science topic of thermospheric density and composition. Our goal is to improve scientific understanding of the thermosphere-ionosphere system, leading to improved first-principles models that accurately specify the variations of thermospheric density and composition with latitude, longitude, local time, solar flux, season, magnetic activity level, and orientation of the interplanetary magnetic field. We are developing improved quantitative models of solar and magnetospheric inputs to the thermosphere and improved physical parameterizations in the first-principles global models; we are analyzing thermospheric responses to solar and magnetospheric inputs on time scales from minutes to the length of the solar cycle; and we are developing an improved empirical model of thermospheric winds. These research products will be made available to the scientific community. This work is helping to clarify critical problem areas in thermospheric physics for planned NASA missions like the Ionosphere-Thermosphere Storm Probes, Geospace Electrodynamics Connections, and the Global-scale Observation of the Limb and Disk.

  19. Theoretical and Empirical Descriptions of Thermospheric Density

    Science.gov (United States)

    Solomon, S. C.; Qian, L.

    2004-12-01

    The longest-term and most accurate overall description the density of the upper thermosphere is provided by analysis of change in the ephemeris of Earth-orbiting satellites. Empirical models of the thermosphere developed in part from these measurements can do a reasonable job of describing thermospheric properties on a climatological basis, but the promise of first-principles global general circulation models of the coupled thermosphere/ionosphere system is that a true high-resolution, predictive capability may ultimately be developed for thermospheric density. However, several issues are encountered when attempting to tune such models so that they accurately represent absolute densities as a function of altitude, and their changes on solar-rotational and solar-cycle time scales. Among these are the crucial ones of getting the heating rates (from both solar and auroral sources) right, getting the cooling rates right, and establishing the appropriate boundary conditions. However, there are several ancillary issues as well, such as the problem of registering a pressure-coordinate model onto an altitude scale, and dealing with possible departures from hydrostatic equilibrium in empirical models. Thus, tuning a theoretical model to match empirical climatology may be difficult, even in the absence of high temporal or spatial variation of the energy sources. We will discuss some of the challenges involved, and show comparisons of simulations using the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) to empirical model estimates of neutral thermosphere density and temperature. We will also show some recent simulations using measured solar irradiance from the TIMED/SEE instrument as input to the TIE-GCM.

  20. Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field

    Science.gov (United States)

    Liu, R.; Lühr, H.; Doornbos, E.; Ma, S.-Y.

    2010-09-01

    With the help of four years (2002-2005) of CHAMP accelerometer data we have investigated the dependence of low and mid latitude thermospheric density on the merging electric field, Em, during major magnetic storms. Altogether 30 intensive storm events (Dstmineffect in order to obtain good results for magnetic storms of all activity levels. The memory effect of the thermosphere is accounted for by a weighted integration of Em over the past 3 h. In addition, a lag time of the mass density response to solar wind input of 0 to 4.5 h depending on latitude and local time is considered. A linear model using the preconditioned color: #000;">Em as main controlling parameter for predicting mass density changes during magnetic storms is developed: ρ=0.5 color: #000;">Em + ρamb, where ρamb is based on the mean density during the quiet day before the storm. We show that this simple relation predicts all storm-induced mass density variations at CHAMP altitude fairly well especially if orbital averages are considered.

  1. MENTAT: A New Magnetic Meridional Neutral Wind Model for Earth's Thermosphere

    Science.gov (United States)

    Dandenault, P. B.

    2017-12-01

    We present a new model of thermosphere winds in the F region obtained from variations in the altitude of the peak density of the ionosphere (hmF2). The new Magnetic mEridional NeuTrAl Thermospheric (MENTAT) wind model produces magnetic-meridional neutral winds as a function of year, day of year, solar local time, solar flux, geographic latitude, and geographic longitude. The winds compare well with Fabry-Pérot Interferometer (FPI) wind observations and are shown to provide accurate specifications in regions outside of the observational database such as the midnight collapse of hmF2 at Arecibo, Puerto Rico. The model winds are shown to exhibit the expected seasonal, diurnal, and hourly behavior based on geophysical conditions. The magnetic meridional winds are similar to those from the well-known HWM14 model but there are important differences. For example, Townsville, Australia has a strong midnight collapse similar to that at Arecibo, but winds from HWM14 do not reproduce it. Also, the winds from hmF2 exhibit a moderate solar cycle dependence under certain conditions, whereas, HWM14 has no solar activity dependence. For more information, please visit http://www.mentatwinds.net/.

  2. Thermospheric dynamics during the March 22, 1979, magnetic storm 1. Model simulations

    International Nuclear Information System (INIS)

    Roble, R.G.; Forbes, J.M.; Marcos, F.A.

    1987-01-01

    The physical processes involved in the transfer of energy from the solar wind to the magnetosphere and its release associated with substorms on March 22, 1979, have been studied in detail by the Coordinated Data Analysis Workshop 6 (CDAW 6). The information derived from the CDAW 6 study, as well as other information obtained from magnetospheric modeling, is used to prescribe the time-dependent variations of the parameterizations for the auroral and magnetospheric convection models that are incorporated within the National Center for Atmospheric Research thermospheric general circulation model (TGCM). The period preceding the magnetic storm (March 21) was geomagnetically quiet, and the TGCM was run until a diurnally reproducible pattern was obtained. The time variations of auroral particle precipitation and enhanced magnetospheric convection on March 22 caused a considerable disturbance in the high-latitude circulation, temperature, and composition during the storm period that began at about 1055 UT. Large- and medium-scale disturbances were launched during the event that propagated to equatorial latitudes. The thermospheric response in the northern hemisphere was larger than that generated in the southern hemisphere, because the auroral oval and magnetospheric convection pattenr in the northern hemisphere were in sunlight during the storm period whereas they were in darkness in the southern hemisphere. The storm response was also different in the upper and the lower thermosphere. In the upper thermosphere the winds generally followed the two-cell pattern of magnetospheric convecton with a lag of only 1/2 to 1 hour. In the lower thermosphere there was a pronounced asymmetry between the circulation cells on the dawnside and on the duskside of the polar cap

  3. Vertical circulation and thermospheric composition: a modelling study

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    1999-06-01

    Full Text Available The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N2] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produces regions of large [O/N2] ratio. Because the thermospheric circulation is influenced by the high-latitude energy inputs, which are related to the geometry of the Earth's magnetic field, the latitude of the downwelling regions varies with longitude. The downwelling regions give rise to large F2-layer electron densities when they are sunlit, but not when they are in darkness, with implications for the distribution of seasonal and semiannual variations of the F2-layer. It is also found that the vertical distributions of O and N2 may depart appreciably from diffusive equilibrium at heights up to about 160 km, especially in the summer hemisphere where there is strong upwelling. Atmospheric composition and structure (thermosphere · composition and chemistry · Ionosphere (ionosphere · atmosphere interactions

  4. Thermospheric dynamics - A system theory approach

    Science.gov (United States)

    Codrescu, M.; Forbes, J. M.; Roble, R. G.

    1990-01-01

    A system theory approach to thermospheric modeling is developed, based upon a linearization method which is capable of preserving nonlinear features of a dynamical system. The method is tested using a large, nonlinear, time-varying system, namely the thermospheric general circulation model (TGCM) of the National Center for Atmospheric Research. In the linearized version an equivalent system, defined for one of the desired TGCM output variables, is characterized by a set of response functions that is constructed from corresponding quasi-steady state and unit sample response functions. The linearized version of the system runs on a personal computer and produces an approximation of the desired TGCM output field height profile at a given geographic location.

  5. Magnetosphere - Ionosphere - Thermosphere (MIT) Coupling at Jupiter

    Science.gov (United States)

    Yates, J. N.; Ray, L. C.; Achilleos, N.

    2017-12-01

    Jupiter's upper atmospheric temperature is considerably higher than that predicted by Solar Extreme Ultraviolet (EUV) heating alone. Simulations incorporating magnetosphere-ionosphere coupling effects into general circulation models have, to date, struggled to reproduce the observed atmospheric temperatures under simplifying assumptions such as azimuthal symmetry and a spin-aligned dipole magnetic field. Here we present the development of a full three-dimensional thermosphere model coupled in both hemispheres to an axisymmetric magnetosphere model. This new coupled model is based on the two-dimensional MIT model presented in Yates et al., 2014. This coupled model is a critical step towards to the development of a fully coupled 3D MIT model. We discuss and compare the resulting thermospheric flows, energy balance and MI coupling currents to those presented in previous 2D MIT models.

  6. Coupled rotational dynamics of Jupiter's thermosphere and magnetosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2009-01-01

    Full Text Available We describe an axisymmetric model of the coupled rotational dynamics of the thermosphere and magnetosphere of Jupiter that incorporates self-consistent physical descriptions of angular momentum transfer in both systems. The thermospheric component of the model is a numerical general circulation model. The middle magnetosphere is described by a simple physical model of angular momentum transfer that incorporates self-consistently the effects of variations in the ionospheric conductivity. The outer magnetosphere is described by a model that assumes the existence of a Dungey cycle type interaction with the solar wind, producing at the planet a largely stagnant plasma flow poleward of the main auroral oval. We neglect any decoupling between the plasma flows in the magnetosphere and ionosphere due to the formation of parallel electric fields in the magnetosphere. The model shows that the principle mechanism by which angular momentum is supplied to the polar thermosphere is meridional advection and that mean-field Joule heating and ion drag at high latitudes are not responsible for the high thermospheric temperatures at low latitudes on Jupiter. The rotational dynamics of the magnetosphere at radial distances beyond ~30 RJ in the equatorial plane are qualitatively unaffected by including the detailed dynamics of the thermosphere, but within this radial distance the rotation of the magnetosphere is very sensitive to the rotation velocity of the thermosphere and the value of the Pedersen conductivity. In particular, the thermosphere connected to the inner magnetosphere is found to super-corotate, such that true Pedersen conductivities smaller than previously predicted are required to enforce the observed rotation of the magnetosphere within ~30 RJ. We find that increasing the Joule heating at high latitudes by adding a component due to rapidly fluctuating electric fields is unable to explain the high equatorial temperatures. Adding a component of Joule

  7. Zonally averaged chemical-dynamical model of the lower thermosphere

    International Nuclear Information System (INIS)

    Kasting, J.F.; Roble, R.G.

    1981-01-01

    A zonally averaged numerical model of the thermosphere is used to examine the coupling between neutral composition, including N 2 , O 2 and O, temperature, and winds at solstice for solar minimum conditions. The meridional circulation forced by solar heating results in a summer-to-winter flow, with a winter enhancement in atomic oxygen density that is a factor of about 1.8 greater than the summer hemisphere at 160 km. The O 2 and N 2 variations are associated with a latitudinal gradient in total number density, which is required to achieve pressure balance in the presence of large zonal jets. Latitudinal profiles OI (5577A) green line emission intensity are calculated by using both Chapman and Barth mechanisms. Composition of the lower thermosphere is shown to be strongly influenced by circulation patterns initiated in the stratosphere and lower mesosphere, below the lower boundary used in the model

  8. Vertical circulation and thermospheric composition: a modelling study

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    Full Text Available The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N2] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produces regions of large [O/N2] ratio. Because the thermospheric circulation is influenced by the high-latitude energy inputs, which are related to the geometry of the Earth's magnetic field, the latitude of the downwelling regions varies with longitude. The downwelling regions give rise to large F2-layer electron densities when they are sunlit, but not when they are in darkness, with implications for the distribution of seasonal and semiannual variations of the F2-layer. It is also found that the vertical distributions of O and N2 may depart appreciably from diffusive equilibrium at heights up to about 160 km, especially in the summer hemisphere where there is strong upwelling.

    Atmospheric composition and structure (thermosphere · composition and chemistry · Ionosphere (ionosphere · atmosphere interactions

  9. Solar Cycle Variation of Upper Thermospheric Temperature Over King Sejong Station, Antarctica

    Science.gov (United States)

    Chung, Jong-Kyun; Won, Young-In; Kim, Yong-Ha; Lee, Bang-Yong; Kim, Jhoon

    2000-12-01

    A ground Fabry-Perot interferometer has been used to measure atomic oxygen nightglow (OI 630.0 nm) from the thermosphere (about 250 km) at King Sejong station (KSS, geographic: 62.22oS, 301.25oE; geomagnetic: 50.65oS, 7.51oE), Antarctica. While numerous studies of the thermosphere have been performed on high latitude using ground-based Fabry-Perot interferometers, the thermospheric measurements in the Southern Hemisphere are relatively new and sparse. Therefore, the nightglow measurements at KSS play an important role in extending the thermospheric studies to the Southern Hemisphere. In this study, we investigated the effects of the geomagnetic and solar activities on the thermospheric neutral temperatures that have been observed at KSS in 1989 and 1997. The measured average temperatures are 1400 K in 1989 and 800 K in 1997, reflecting the influence of the solar activity. The measurements were compared with empirical models, MSIS-86 and semi-empirical model, VSH.

  10. Solar Cycle Variation of Upper Thermospheric Temperature Over King Sejong Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    2000-12-01

    Full Text Available A ground Fabry-Perot interferometer has been used to measure atomic oxygen nightglow (OI 630.0 nm from the thermosphere (about 250 km at King Sejong station (KSS, geographic: 62.22oS, 301.25oE; geomagnetic: 50.65oS, 7.51oE, Antarctica. While numerous studies of the thermosphere have been performed on high latitude using ground-based Fabry-Perot interferometers, the thermospheric measurements in the Southern Hemisphere are relatively new and sparse. Therefore, the nightglow measurements at KSS play an important role in extending the thermospheric studies to the Southern Hemisphere. In this study, we investigated the effects of the geomagnetic and solar activities on the thermospheric neutral temperatures that have been observed at KSS in 1989 and 1997. The measured average temperatures are 1400 K in 1989 and 800 K in 1997, reflecting the influence of the solar activity. The measurements were compared with empirical models, MSIS-86 and semi-empirical model, VSH.

  11. Updated Results from the Michigan Titan Thermospheric General Circulation Model (TTGCM)

    Science.gov (United States)

    Bell, J. M.; Bougher, S. W.; de Lahaye, V.; Waite, J. H.; Ridley, A.

    2006-05-01

    This paper presents updated results from the Michigan Titan Thermospheric General Circulation Model (TTGCM) that was recently unveiled in operational form (Bell et al 2005 Spring AGU). Since then, we have incorporated a suite of chemical reactions for the major neutral constituents in Titan's upper atmosphere (N2, CH4). Additionally, some selected minor neutral constituents and major ionic species are also supported in the framework. At this time, HCN, which remains one of the critical thermally active species in the upper atmosphere, remains specified at all altitudes, utilizing profiles derived from recent Cassini-Huygen's measurements. In addition to these improvements, a parallel effort is underway to develop a non-hydrostatic Titan Thermospheric General Circulation Model for further comparisons. In this work, we emphasize the impacts of self-consistent chemistry on the results of the updated TTGCM relative to its frozen chemistry predecessor. Meanwhile, the thermosphere's thermodynamics remains determined by the interplay of solar EUV forcing and HCN rotational cooling, which is calculated by a full line- by-line radiative transfer routine along the lines of Yelle (1991) and Mueller-Wodarg (2000, 2002). In addition to these primary drivers, a treatment of magnetospheric heating is further tested. The model's results will be compared with both the Cassini INMS data and the model of Mueller-Wodarg (2000,2002).

  12. Comparison of high-latitude thermospheric meridionalwinds II: combined FPI, radar and model Climatologies

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4°N, 20.4°E has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM (Hedin et al., 1988 and the numerical Coupled Thermosphere and Ionosphere Model (CTIM are compared to the measured behaviour at Kiruna, as a single site example. The empirical International Reference Ionosphere (IRI model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using Fabry-Perot Interferometers (FPI, together with 2 separate techniques applied to the European Incoherent Scatter radar (EISCAT database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics

  13. Comparison of high-latitude thermospheric meridionalwinds II: combined FPI, radar and model Climatologies

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4°N, 20.4°E has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM (Hedin et al., 1988 and the numerical Coupled Thermosphere and Ionosphere Model (CTIM are compared to the measured behaviour at Kiruna, as a single site example. The empirical International Reference Ionosphere (IRI model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using Fabry-Perot Interferometers (FPI, together with 2 separate techniques applied to the European Incoherent Scatter radar (EISCAT database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes. Key words. Meteorology and atmospheric dynamics (thermospheric dynamics

  14. Evidence of the Lower Thermospheric Winter-to-Summer Circulation

    Science.gov (United States)

    Qian, L.; Burns, A. G.; Yue, J.

    2017-12-01

    Numerical studies showed that the lower thermospheric winter-to-summer circulation is driven by wave dissipation, and it plays a significant role in trace gas distributions in the mesosphere and lower thermosphere (MLT), and in the composition of the thermosphere. Direct observations of this circulation are difficult. However, it leaves clear signatures in tracer distributions. Recent analysis of CO2 observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite showed dynamically driven dense isolines of CO2 at summer high latitudes. We conduct modeling and observational studies to understand the CO2 distribution and circulation patterns in the MLT. We found that there exists maximum vertical gradient of CO2 at summer high latitudes, driven by the convergence of the upwelling of the mesospheric circulation and the downwelling of the lower thermospheric circulation; this maximum vertical gradient of CO2 is located at a higher altitude in the winter hemisphere, driven by the convergence of the upwelling of the lower thermospheric circulation and the downwelling of the solar-driven thermospheric circulation. Based on SABER CO2 distribution, the bottom of the lower thermospheric circulation is located between 95 km and 100 km, and it has a vertical extent of 10 km. Analysis of the SABER CO2 and temperature at summer high latitudes showed that the bottom of this circulation is consistently higher than the mesopause height by 10 km; and its location does not change much between solar maximum and solar minimum.

  15. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    1998-06-01

    Full Text Available We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E. It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter-86.

  16. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    Science.gov (United States)

    Chung, Jong-Kyun; Won, Young-In; Lee, Bang Yong; Kim, Jhoon

    1998-06-01

    We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km) using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E) but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E). It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics) and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter)-86.

  17. Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field

    Directory of Open Access Journals (Sweden)

    R. Liu

    2010-09-01

    Full Text Available With the help of four years (2002–2005 of CHAMP accelerometer data we have investigated the dependence of low and mid latitude thermospheric density on the merging electric field, Em, during major magnetic storms. Altogether 30 intensive storm events (Dstmin<−100 nT are chosen for a statistical study. In order to achieve a good correlation Em is preconditioned. Contrary to general opinion, Em has to be applied without saturation effect in order to obtain good results for magnetic storms of all activity levels. The memory effect of the thermosphere is accounted for by a weighted integration of Em over the past 3 h. In addition, a lag time of the mass density response to solar wind input of 0 to 4.5 h depending on latitude and local time is considered. A linear model using the preconditioned Em as main controlling parameter for predicting mass density changes during magnetic storms is developed: ρ=0.5 Em + ρamb, where ρamb is based on the mean density during the quiet day before the storm. We show that this simple relation predicts all storm-induced mass density variations at CHAMP altitude fairly well especially if orbital averages are considered.

  18. A search for thermospheric composition perturbations due to vertical winds

    Science.gov (United States)

    Krynicki, Matthew P.

    The thermosphere is generally in hydrostatic equilibrium, with winds blowing horizontally along stratified constant-pressure surfaces, driven by the dayside-to-nightside pressure gradient. A marked change in this paradigm resulted after Spencer et al. [1976] reported vertical wind measurements of 80 m·s-1 from analyses of AE-C satellite data. It is now established that the thermosphere routinely supports large-magnitude (˜30-150 m·s-1) vertical winds at auroral latitudes. These vertical winds represent significant departure from hydrostatic and diffusive equilibrium, altering locally---and potentially globally---the thermosphere's and ionosphere's composition, chemistry, thermodynamics and energy budget. Because of their localized nature, large-magnitude vertical wind effects are not entirely known. This thesis presents ground-based Fabry-Perot Spectrometer OI(630.0)-nm observations of upper-thermospheric vertical winds obtained at Inuvik, NT, Canada and Poker Flat, AK. The wind measurements are compared with vertical displacement estimates at ˜104 km2 horizontal spatial scales determined from a new modification to the electron transport code of Lummerzheim and Lilensten [1994] as applied to FUV-wavelength observations by POLAR spacecraft's Ultraviolet Imager [Torr et al. , 1995]. The modification, referred to as the column shift, simulates vertical wind effects such as neutral transport and disruption of diffusive equilibrium by vertically displacing the Hedin [1991] MSIS-90 [O2]/[N2] and [O]/([N2]+[O2]) mixing ratios and subsequently redistributing the O, O2, and N 2 densities used in the transport code. Column shift estimates are inferred from comparisons of UVI OI(135.6)-nm auroral observations to their corresponding modeled emission. The modeled OI(135.6)-nm brightness is determined from the modeled thermospheric response to electron precipitation and estimations of the energy flux and characteristic energy of the precipitation, which are inferred from UVI

  19. Some characteristics of midlatitude F layer storms generated by thermosphere-plasmasphere coupling processes

    International Nuclear Information System (INIS)

    Miller, N.J.

    1983-01-01

    In this dissertation, calculations are interpreted that have been made to describe stormtime variations in equinoctial dayside plasma parameters when the variations are primarily caused by processes dependent upon collisional coupling between the thermosphere and the plasmasphere. The calculations are made with a computer model formed by linking two theoretical models: a pre-existing thermospheric model that describes dayside variations in thermospheric parameters during stormtime heating of the thermosphere; a plasmaspheric model which was developed to describe dayside plasmaspheric variations caused by the thermospheric variations described by the thermospheric model and by variations in a magnetospheric electric field. Both portions of the computerized storm model solve partial differential equations describing conservation of species, momentum, and energy by replacing dependent variables with expansions in time series. The thermospheric portion of the storm model solves for variations in gas temperature, horizontal wind velocity, and densities of atomic oxygen and molecular nitrogen while the plasmaspheric portion of the storm model solves for variations in ion densities of oxygen and hydrogen, ion fluxes and electrons, and heat fluxes through ions and electrons. Other calculations that have been used to describe variations in thermospheric and plasmaspheric parameters are summarized and the advantages and limitations of the model calculations used to obtain results presented in this dissertation are noted

  20. Thermospheric storms and related ionospheric effects

    International Nuclear Information System (INIS)

    Chandra, S.; Spencer, N.W.

    1976-01-01

    A comparative study of thermospheric storms for the equinox and winter conditions is presented based on the neutral composition measurements from the Aeros-A Nate (Neutral Atmosphere Temperature Experiment) experiment. The main features of the two storms as inferred from the changes in N 2 , Ar, He, and O are described, and their implications to current theories of thermospheric storms are discussed. On the basis of the study of the F region critical frequency measured from a chain of ground-based ionospheric stations during the two storm periods, the general characteristics of the ionospheric storms and the traveling ionospheric disturbances are described. It is suggested that the positive and negative phases of ionospheric storms are the various manifestations of thermospheric storms

  1. Origins of the Thermosphere-Ionosphere Semiannual Oscillation: Reformulating the "Thermospheric Spoon" Mechanism

    Science.gov (United States)

    Jones, M.; Emmert, J. T.; Drob, D. P.; Picone, J. M.; Meier, R. R.

    2018-01-01

    We demonstrate how Earth's obliquity generates the global thermosphere-ionosphere (T-I) semiannual oscillation (SAO) in mass density and electron density primarily through seasonally varying large-scale advection of neutral thermospheric constituents, sometimes referred to as the "thermospheric spoon" mechanism (TSM). The National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) is used to isolate the TSM forcing of this prominent intraannual variation (IAV) and to elucidate the contributions of other processes to the T-I SAO. An ˜30% SAO in globally averaged mass density (relative to its global annual average) at 400 km is reproduced in the TIME-GCM in the absence of seasonally varying eddy diffusion, tropospheric tidal forcing, and gravity wave breaking. Artificially, decreasing the tilt of Earth's rotation axis with respect to the ecliptic plane to 11.75° reduces seasonal variations in insolation and weakens interhemispheric pressure differences at the solstices, thereby damping the global-scale, interhemispheric transport of atomic oxygen (O) and molecular nitrogen in the thermosphere and reducing the simulated global mass density SAO amplitude to ˜10%. Simulated T-I IAVs in mass density and electron density have equinoctial maxima at all latitudes near the F2 region peak; this phasing and its latitude dependence agree well with empirically inferred climatologies. When tropospheric tides and gravity waves are included, simulated IAV amplitudes and their latitudinal dependence also agree well with empirically inferred climatologies. Simulated meridional and vertical transport of O due to the TSM couples to the upper mesospheric circulation, which also contributes to the T-I SAO through O chemistry.

  2. Ensemble Assimilation Using Three First-Principles Thermospheric Models as a Tool for 72-hour Density and Satellite Drag Forecasts

    Science.gov (United States)

    Hunton, D.; Pilinski, M.; Crowley, G.; Azeem, I.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.; Codrescu, M.

    2014-12-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by variability in the density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. As the population of satellites in Earth orbit grows, higher space-weather prediction accuracy is required for critical missions, such as accurate catalog maintenance, collision avoidance for manned and unmanned space flight, reentry prediction, satellite lifetime prediction, defining on-board fuel requirements, and satellite attitude dynamics. We describe ongoing work to build a comprehensive nowcast and forecast system for neutral density, winds, temperature, composition, and satellite drag. This modeling tool will be called the Atmospheric Density Assimilation Model (ADAM). It will be based on three state-of-the-art coupled models of the thermosphere-ionosphere running in real-time, using assimilative techniques to produce a thermospheric nowcast. It will also produce, in realtime, 72-hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition. We will review the requirements for the ADAM system, the underlying full-physics models, the plethora of input options available to drive the models, a feasibility study showing the performance of first-principles models as it pertains to satellite-drag operational needs, and review challenges in designing an assimilative space-weather prediction model. The performance of the ensemble assimilative model is expected to exceed the performance of current empirical and assimilative density models.

  3. Vertical circulation and thermospheric composition: a modelling study

    OpenAIRE

    H. Rishbeth; I. C. F. Müller-Wodarg; I. C. F. Müller-Wodarg

    1999-01-01

    The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N2] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produc...

  4. Lower thermosphere coupling study: Comparison of observations with predictions of the University College London-Sheffield thermosphere-ionosphere model

    International Nuclear Information System (INIS)

    Fuller-Rowell, T.J.; Rees, D.; Parish, H.F.; Virdi, T.S.; Williams, P.J.S.; Johnson, R.M.

    1991-01-01

    During the first Lower Thermosphere Coupling Study (LTCS), September 21-25 1987, data were recorded from the incoherent scatter radar sites at EISCAT, Millstone Hill, Sondrestrom, and Arecibo. These experimental facilities measured ionospheric parameters (Ne, Te, Ti, and plasma velocity) in the E and the F regions which have been used to determine the E region neutral wind and infer the neutral temperature in the height range 100-150 km. Propagating tides are clearly visible in some of the parameters, and the latitude structure and phase variations with height indicate the presence of at least the (2,2) and (2,4) global tidal Hough modes. The influence of geomagnetic forcing is also clearly present at high latitudes. The University College London-Sheffield University three-dimensional coupled thermosphere-ionosphere model has been used to simulate this period of observation, by imposing tidal forcing at the lower boundary and magnetospheric forcing at high latitudes, in an attempt to interpret and understand the experimental data. Model simulations are able to predict where the signature of a particular tidal mode is likely to be observed in the respective responses of the temperature and wind structure. The numerical simulations predict the range of observed tidal amplitudes at mid and high latitudes, provided the tidal forcing functions imposed near the lower boundary of the model are larger (400 m geopotential height variation) than those inferred from linear tidal models

  5. Extension of the MSIS thermosphere model into the middle and lower atmosphere

    International Nuclear Information System (INIS)

    Hedin, A.E.

    1991-01-01

    The MSIS-86 empirical model has been revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating temperature and density profiles representative of the climatological average for various geophysical conditions. Tabulations from the Handbook for MAP 16 are the primary guide for the lower atmosphere and are supplemented by historical rocket and incoherent scatter data in the upper mesosphere and lower thermosphere. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, and simplified local time and longitude variations. While month to month details cannot be completely represented, lower atmosphere temperature data are fit to an overall standard deviation of 3 K and pressure to 2%. Comparison with rocket and other data indicates that the model represents current knowledge of the climatological average reasonably well, although there is some conflict as to details near the mesopause

  6. A statistical survey of heat input parameters into the cusp thermosphere

    Science.gov (United States)

    Moen, J. I.; Skjaeveland, A.; Carlson, H. C.

    2017-12-01

    Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.

  7. Global excitation of wave phenomena in a dissipative multiconstituent medium. I - Transfer function of the earth's thermosphere. II - Impulsive perturbations in the earth's thermosphere

    Science.gov (United States)

    Mayr, H. G.; Harris, I.; Herrero, F. A.; Varosi, F.

    1984-01-01

    A transfer function approach is taken in constructing a spectral model of the acoustic-gravity wave response in a multiconstituent thermosphere. The model is then applied to describing the thermospheric response to various sources around the globe. Zonal spherical harmonics serve to model the horizontal variations in propagating waves which, when integrated with respect to height, generate a transfer function for a vertical source distribution in the thermosphere. Four wave components are characterized as resonance phenomena and are associated with magnetic activity and ionospheric disturbances. The waves are either trapped or propagate, the latter becoming significant when possessing frequencies above 3 cycles/day. The energy input is distributed by thermospheric winds. The disturbances decay slowly, mainly due to heat conduction and diffusion. Gravity waves appear abruptly and are connected to a sudden switching on or off of a source. Turn off of a source coincides with a reversal of the local atmospheric circulation.

  8. Comparison of high-latitude thermospheric meridional winds II: combined FPI, radar and model climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.M.; Aruliah, A.; Mueller-Wodarg, I.C.F.; Aylward, A. [Atmospheric Physics Lab., Univ. Coll. London, London (United Kingdom)

    2004-07-01

    The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4 N, 20.4 E) has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM) (Hedin et al., 1988) and the numerical coupled thermosphere and ionosphere model (CTIM) are compared to the measured behaviour at kiruna, as a single site example. The empirical International Reference Ionosphere (IRI) model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using fabry-perot interferometers (FPI), together with 2 separate techniques applied to the European incoherent scatter radar (EISCAT) database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR) derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes. (orig.)

  9. An Exospheric Temperature Model Based On CHAMP Observations and TIEGCM Simulations

    Science.gov (United States)

    Ruan, Haibing; Lei, Jiuhou; Dou, Xiankang; Liu, Siqing; Aa, Ercha

    2018-02-01

    In this work, thermospheric densities from the accelerometer measurement on board the CHAMP satellite during 2002-2009 and the simulations from the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) are employed to develop an empirical exospheric temperature model (ETM). The two-dimensional basis functions of the ETM are first provided from the principal component analysis of the TIEGCM simulations. Based on the exospheric temperatures derived from CHAMP thermospheric densities, a global distribution of the exospheric temperatures is reconstructed. A parameterization is conducted for each basis function amplitude as a function of solar-geophysical and seasonal conditions. Thus, the ETM can be utilized to model the thermospheric temperature and mass density under a specified condition. Our results showed that the averaged standard deviation of the ETM is generally less than 10% than approximately 30% in the MSIS model. Besides, the ETM reproduces the global thermospheric evolutions including the equatorial thermosphere anomaly.

  10. Comparison of high-latitude thermospheric meridionalwinds I: optical and radar experimental comparisons

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available Thermospheric neutral winds at Kiruna, Sweden (67.4°N, 20.4°E are compared using both direct optical Fabry-Perot Interferometer (FPI measurements and those derived from European incoherent scatter radar (EISCAT measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974 and the Meridional Wind Model (MWM (Miller et al., 1997 application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the Coupled Thermosphere and Ionosphere (CTIM numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3 techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical Horizontal Wind Model (HWM, though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics, Ionosphere (ionosphere-atmosphere interactions, auroral ionosphere

  11. Comparison of high-latitude thermospheric meridionalwinds I: optical and radar experimental comparisons

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available Thermospheric neutral winds at Kiruna, Sweden (67.4°N, 20.4°E are compared using both direct optical Fabry-Perot Interferometer (FPI measurements and those derived from European incoherent scatter radar (EISCAT measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974 and the Meridional Wind Model (MWM (Miller et al., 1997 application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the Coupled Thermosphere and Ionosphere (CTIM numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3 techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical Horizontal Wind Model (HWM, though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations. Key words. Meteorology and atmospheric dynamics (thermospheric dynamics, Ionosphere (ionosphere-atmosphere interactions, auroral ionosphere

  12. Substorm-related thermospheric density and wind disturbances derived from CHAMP observations

    Directory of Open Access Journals (Sweden)

    P. Ritter

    2010-06-01

    Full Text Available The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermospheric response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at an average speed of 650 m/s to lower latitudes, and 3–4 h later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the travelling atmospheric disturbance (TAD is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed (Δvy<20 m/s by substorms.

  13. Numerical modeling study of the momentum deposition of small amplitude gravity waves in the thermosphere

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Space Weather; Henan Normal Univ., Xinxiang (China). College of Mathematics and Information Science; Xu, J. [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Space Weather; Yue, J. [National Center for Atmospheric Research, Boulder, CO (United States). High Altitude Observatory; Hampton Univ., VA (United States). Atmospheric and Planetary Sciences; Vadas, S.L. [North West Research Associates, Inc., Boulder, CO (United States)

    2013-03-01

    We study the momentum deposition in the thermosphere from the dissipation of small amplitude gravity waves (GWs) within a wave packet using a fully nonlinear two-dimensional compressible numerical model. The model solves the nonlinear propagation and dissipation of a GW packet from the stratosphere into the thermosphere with realistic molecular viscosity and thermal diffusivity for various Prandtl numbers. The numerical simulations are performed for GW packets with initial vertical wavelengths ({lambda}{sub z}) ranging from 5 to 50 km. We show that {lambda}{sub z} decreases in time as a GW packet dissipates in the thermosphere, in agreement with the ray trace results of Vadas and Fritts (2005) (VF05). We also find good agreement for the peak height of the momentum flux (z{sub diss}) between our simulations and VF05 for GWs with initial {lambda}{sub z} {<=} 2{pi}H in an isothermal, windless background, where H is the density scale height.We also confirm that z{sub diss} increases with increasing Prandtl number. We include eddy diffusion in the model, and find that the momentum deposition occurs at lower altitudes and has two separate peaks for GW packets with small initial {lambda}{sub z}. We also simulate GW packets in a non-isothermal atmosphere. The net {lambda}{sub z} profile is a competition between its decrease from viscosity and its increase from the increasing background temperature. We find that the wave packet disperses more in the non-isothermal atmosphere, and causes changes to the momentum flux and {lambda}{sub z} spectra at both early and late times for GW packets with initial {lambda}{sub z} {>=} 10 km. These effects are caused by the increase in T in the thermosphere, and the decrease in T near the mesopause. (orig.)

  14. Modeling of Thermospheric Neutral Density Variations in Response to Geomagnetic Forcing using GRACE Accelerometer Data

    Science.gov (United States)

    Calabia, A.; Matsuo, T.; Jin, S.

    2017-12-01

    The upper atmospheric expansion refers to an increase in the temperature and density of Earth's thermosphere due to increased geomagnetic and space weather activities, producing anomalous atmospheric drag on LEO spacecraft. Increased drag decelerates satellites, moving their orbit closer to Earth, decreasing the lifespan of satellites, and making satellite orbit determination difficult. In this study, thermospheric neutral density variations due to geomagnetic forcing are investigated from 10 years (2003-2013) of GRACE's accelerometer-based estimates. In order to isolate the variations produced by geomagnetic forcing, 99.8% of the total variability has been modeled and removed through the parameterization of annual, LST, and solar-flux variations included in the primary Empirical Orthogonal Functions. The residual disturbances of neutral density variations have been investigated further in order to unravel their relationship to several geomagnetic indices and space weather activity indicators. Stronger fluctuations have been found in the southern polar cap, following the dipole-tilt angle variations. While the parameterization of the residual disturbances in terms of Dst index results in the best fit to training data, the use of merging electric field as a predictor leads to the best forecasting performance. An important finding is that modeling of neutral density variations in response geomagnetic forcing can be improved by accounting for the latitude-dependent delay. Our data-driven modeling results are further compared to modeling with TIEGCM.

  15. Venus O2 visible and IR nightglow: Implications for lower thermosphere dynamics and chemistry

    Science.gov (United States)

    Bougher, S. W.; Borucki, W. J.

    1994-01-01

    The National Center for Atmospheric Research thermospheric general circulation model for the Venus thermosphere is modified to examine two observed night airglow features, both of which serve as sensitive tracers of the thermospheric circulation. New O2 nightglow data from the Pioneer Venus Orbiter (PVO) star tracker (O2 Herzberg II at 400-800 nm) and ground-based telescopes (O2 IR at 1.27 microns) yield additional model constraints for estimating Venus winds over 100-130 km. Atomic oxygen, produced by dayside CO2 photolysis peaking near 110 km, and transported to the nightside by the global wind system, is partially destroyed through three-body recombination, yielding the O2 Herzberg II visible nightglow. This emission is very sensitive to horizontal winds at altitudes between 100 and 130 km. Other trace species catalytic reactions also contribute to the production of the very strong nightside infrared (1.27 microns) emission. This paper examines the dynamical and chemical implications of these new data using the Venus thermospheric general circulation model (VTGCM) as an analysis tool. Three-dimensional calculations are presented for both solar maximum and solar medium conditions, corresponding to early PVO (1979-1981) and PVO entry (mid-1992) time periods. Very distinct periods are identified in which zonal winds are alternately weak and strong in the Venus lower thermosphere. VTGCM sensitivity studies are conducted to assess the impacts of potential changes in thermospheric zonal and day-to-night winds, and eddy diffusion on the corresponding nightglow intensities. It appears that cyclostrophic balance extends above 80 km periodically, owing to a reversal of the upper mesosphere latitudinal temperature gradient, and thereby producing strong zonal winds and correspondingly modified O2 nightglow distributions that are observed.

  16. The Response of the Thermosphere and Ionosphere to Magnetospheric Forcing

    Science.gov (United States)

    Rees, D.; Fuller-Rowell, T. J.

    1989-06-01

    model and the Sheffield University ionospheric model. This has produced a self-consistent coupled thermospheric--ionospheric model, which has become a valuable diagnostic tool for examining thermospheric--ionospheric interactions in the polar regions. In particular, it is possible to examine the effects of induced winds, ion transport, and the seasonal and diurnal U.T. variations of solar heating and photoionization within the polar regions. Polar and high-latitude plasma density structure at F-region altitudes can be seen to be strongly controlled by U.T., and by season, even for constant solar and geomagnetic activity. In the winter, the F-region polar plasma density is generally dominated by the effects of transport of plasma from the dayside (sunlit cusp). In the summer polar region, however, an increase in the proportion of molecular to atomic species, created by the global seasonal circulation and augmented by the geomagnetic forcing, controls the plasma composition and generally depresses plasma densities at all U.Ts. A number of these complex effects can be seen in data obtained from ground-based radars, Fabry--Perot interferometers and in the combined DE data-sets. Several of these observations will be used, in combination with simulations using the UCL--Sheffield coupled model, to illustrate the major features of large-scale thermosphere--ionosphere interactions in response to geomagnetic forcing. The past decade has seen a major improvement in the quality and quantity of experimental data available to study the thermosphere and ionosphere and their response to magnetospheric forcing. Earlier, large measured changes of individual parameters were difficult to place in a global or large-scale perspective. However, a clear picture of the distinction between the solar and geomagnetic forcing processes has emerged from the combined data-sets available from spacecraft such as the Dynamics Explorers, and from ground-based radar and optical observations of the polar

  17. Remote Sensing the Thermosphere's State Using Emissions From Carbon Dioxide and Nitric Oxide

    Science.gov (United States)

    Weimer, D. R.; Mlynczak, M. G.; Doornbos, E.

    2017-12-01

    Measurements of emissions from nitric oxide and carbon dioxide in the thermosphere have strong correlations with properties that are very useful to the determination of thermospheric densities. We have compared emissions measured with the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite with neutral density measurements from the Challenging Mini-satellite Payload (CHAMP), the Gravity Recovery and Climate Experiment (GRACE), the Ocean Circulation Explorer (GOCE), and the three Swarm satellites, spanning a time period of over 15 years. It has been found that nitric oxide emissions match changes in the exospheric temperatures that have been derived from the densities through use of the Naval Reasearch Laboratory Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRLMSISE-00) thermosphere model. Similarly, our results indicate that the carbon dioxide emissions have annual and semiannual oscillations that correlate with changes in the amount of oxygen in the thermosphere, also determined by use of the NRLMSISE-00 model. These annual and semi-annual variations are found to have irregular amplitudes and phases, which make them very difficult to accurately predict. Prediction of exospheric temperatures through the use of geomagnetic indices also tends to be inexact. Therefore, it would be possible and very useful to use measurements of the thermosphere's infrared emissions for real-time tracking of the thermosphere's state, so that more accurate calculations of the density may be obtained.

  18. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    OpenAIRE

    Jong-Kyun Chung; Young-In Won; Bang Yong Lee; Jhoon Kim

    1998-01-01

    We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km) using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E) but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E). It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both sola...

  19. Polar heating in Saturn's thermosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-10-01

    Full Text Available A 3-D numerical global circulation model of the Kronian thermosphere has been used to investigate the influence of polar heating. The distributions of temperature and winds resulting from a general heat source in the polar regions are described. We show that both the total energy input and its vertical distribution are important to the resulting thermal structure. We find that the form of the topside heating profile is particularly important in determining exospheric temperatures. We compare our results to exospheric temperatures from Voyager occultation measurements (Smith et al., 1983; Festou and Atreya, 1982 and auroral H3+ temperatures from ground-based spectroscopic observations (e.g. Miller et al., 2000. We find that a polar heat source is consistent with both the Smith et al. determination of T∞~400 K at ~30° N and auroral temperatures. The required heat source is also consistent with recent estimates of the Joule heating rate at Saturn (Cowley et al., 2004. However, our results show that a polar heat source can probably not explain the Festou and Atreya determination of T∞~800 K at ~4° N and the auroral temperatures simultaneously. Keywords. Ionosphere (Planetary ionosphere – Magnetospherica physics (Planetary magnetospheres – Meterology and atmospheric dynamics (Thermospheric dynamics

  20. Comparison of high-latitude thermospheric meridional winds I: optical and radar experimental comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.M.; Mueller-Wodarg, I.C.F.; Aruliah, A.; Aylward, A. [Atmospheric Physics Lab., Univ. Coll. London, London (United Kingdom)

    2004-07-01

    Thermospheric neutral winds at Kiruna, Sweden (67.4 N, 20.4 E) are compared using both direct optical fabry-perot interferometer (FPI) measurements and those derived from European incoherent scatter radar (EISCAT) measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974) and the meridional wind model (MWM) (Miller et al., 1997) application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the coupled thermosphere and ionosphere (CTIM) numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3 techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical horizontal wind model (HWM), though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations. (orig.)

  1. Stratospheric warming influence on the mesosphere/lower thermosphere as seen by the extended CMAM

    Directory of Open Access Journals (Sweden)

    M. G. Shepherd

    2014-06-01

    Full Text Available The response of the upper mesosphere/lower thermosphere region to major sudden stratospheric warming (SSW is examined employing temperature, winds, NOX and CO constituents from the extended Canadian Middle Atmosphere Model (CMAM with continuous incremental nudging below 10 hPa (~ 30 km. The model results considered cover high latitudes (60–85° N from 10 to 150 km height for the December–March period of 2003/2004, 2005/2006 and 2008/2009, when some of the strongest SSWs in recent years were observed. NOX and CO are used as proxies for examining transport. Comparisons with ACE-FTS (Atmospheric Chemistry Experiment–Fourier Transform Spectrometer satellite observations show that the model represents well the dynamics of the upper mesosphere/lower thermosphere region, the coupling of the stratosphere–mesosphere, and the NOX and CO transport. New information is obtained on the upper mesosphere/lower thermosphere up to 150 km showing that the NOX volume mixing ratio in the 2003/2004 winter was very perturbed indicating transport from the lower atmosphere and intense mixing with large NOX influx from the thermosphere compared to 2006 and 2009. These results, together with those from other models and observations, clearly show the impact of stratospheric warmings on the thermosphere.

  2. Equinoctial transitions in the ionosphere and thermosphere

    Directory of Open Access Journals (Sweden)

    A. V. Mikhailov

    2001-07-01

    Full Text Available Equinoctial summer/winter transitions in the parameters of the F2-region are analyzed using ground-based ionosonde and incoherent scatter observations. Average transition from one type of diurnal NmF2 variation to another takes 20–25 days, but cases of very fast (6–10 days transitions are observed as well. Strong day-time NmF2 deviations of both signs from the monthly median, not related to geomagnetic activity, are revealed for the transition periods. Both longitudinal and latitudinal variations take place for the amplitude of such quiet time NmF2 deviations. The summer-type diurnal NmF2 variation during the transition period is characterized by decreased atomic oxygen concentration [O] and a small equatorward thermospheric wind compared to winter-type days with strong poleward wind and increased [O]. Molecular N2 and O2 concentrations remain practically unchanged in such day-to-day transitions. The main cause of the F2-layer variations during the transition periods is the change of atomic oxygen abundance in the thermosphere related to changes of global thermospheric circulation. A possible relationship with an equinoctial transition of atomic oxygen at the E-region heights is discussed.Key words. Atmospheric composition and structure (thermosphere – composition and chemistry – Ionosphere (ionosphere- atmosphere interactions; ionospheric disturbances

  3. The thermospheric effects of a rapid polar cap expansion

    Directory of Open Access Journals (Sweden)

    D. W. Idenden

    Full Text Available In a previous publication we used results from a coupled thermosphere-ionosphere-plasmasphere model to illustrate a new mechanism for the formation of a large-scale patch of ionisation arising from a rapid polar cap expansion. Here we describe the thermospheric response to that polar cap expansion, and to the ionospheric structure produced. The response is dominated by the energy and momentum input at the dayside throat during the expansion phase itself. These inputs give rise to a large-scale travelling atmospheric disturbance (TAD that propagates both antisunward across the polar cap and equatorward at speeds much greater than both the ion drifts and the neutral winds. We concentrate only on the initially poleward travelling disturbance. The disturbance is manifested in the neutral temperature and wind fields, the height of the pressure level surfaces and in the neutral density at fixed heights. The thermospheric effects caused by the ionospheric structure produced during the expansion are hard to discern due to the dominating effects of the TAD.

    Key words. Ionosphere (ionosphere · atmosphere interaction; modeling and forecasting; plasma convection.

  4. Temporal Variability of Atomic Hydrogen From the Mesopause to the Upper Thermosphere

    Science.gov (United States)

    Qian, Liying; Burns, Alan G.; Solomon, Stan S.; Smith, Anne K.; McInerney, Joseph M.; Hunt, Linda A.; Marsh, Daniel R.; Liu, Hanli; Mlynczak, Martin G.; Vitt, Francis M.

    2018-01-01

    We investigate atomic hydrogen (H) variability from the mesopause to the upper thermosphere, on time scales of solar cycle, seasonal, and diurnal, using measurements made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite, and simulations by the National Center for Atmospheric Research Whole Atmosphere Community Climate Model-eXtended (WACCM-X). In the mesopause region (85 to 95 km), the seasonal and solar cycle variations of H simulated by WACCM-X are consistent with those from SABER observations: H density is higher in summer than in winter, and slightly higher at solar minimum than at solar maximum. However, mesopause region H density from the Mass-Spectrometer-Incoherent-Scatter (National Research Laboratory Mass-Spectrometer-Incoherent-Scatter 00 (NRLMSISE-00)) empirical model has reversed seasonal variation compared to WACCM-X and SABER. From the mesopause to the upper thermosphere, H density simulated by WACCM-X switches its solar cycle variation twice, and seasonal dependence once, and these changes of solar cycle and seasonal variability occur in the lower thermosphere ( 95 to 130 km), whereas H from NRLMSISE-00 does not change solar cycle and seasonal dependence from the mesopause through the thermosphere. In the upper thermosphere (above 150 km), H density simulated by WACCM-X is higher at solar minimum than at solar maximum, higher in winter than in summer, and also higher during nighttime than daytime. The amplitudes of these variations are on the order of factors of 10, 2, and 2, respectively. This is consistent with NRLMSISE-00.

  5. Data-driven Inference and Investigation of Thermosphere Dynamics and Variations

    Science.gov (United States)

    Mehta, P. M.; Linares, R.

    2017-12-01

    This paper presents a methodology for data-driven inference and investigation of thermosphere dynamics and variations. The approach uses data-driven modal analysis to extract the most energetic modes of variations for neutral thermospheric species using proper orthogonal decomposition, where the time-independent modes or basis represent the dynamics and the time-depedent coefficients or amplitudes represent the model parameters. The data-driven modal analysis approach combined with sparse, discrete observations is used to infer amplitues for the dynamic modes and to calibrate the energy content of the system. In this work, two different data-types, namely the number density measurements from TIMED/GUVI and the mass density measurements from CHAMP/GRACE are simultaneously ingested for an accurate and self-consistent specification of the thermosphere. The assimilation process is achieved with a non-linear least squares solver and allows estimation/tuning of the model parameters or amplitudes rather than the driver. In this work, we use the Naval Research Lab's MSIS model to derive the most energetic modes for six different species, He, O, N2, O2, H, and N. We examine the dominant drivers of variations for helium in MSIS and observe that seasonal latitudinal variation accounts for about 80% of the dynamic energy with a strong preference of helium for the winter hemisphere. We also observe enhanced helium presence near the poles at GRACE altitudes during periods of low solar activity (Feb 2007) as previously deduced. We will also examine the storm-time response of helium derived from observations. The results are expected to be useful in tuning/calibration of the physics-based models.

  6. Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field

    NARCIS (Netherlands)

    Liu, R.; Lühr, H.; Doornbos, E.; Ma, S.Y.

    2010-01-01

    With the help of four years (2002–2005) of CHAMP accelerometer data we have investigated the dependence of low and mid latitude thermospheric density on the merging electric field, Em, during major magnetic storms. Altogether 30 intensive storm events (Dstmin

  7. A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT general circulation model

    Directory of Open Access Journals (Sweden)

    M. J. Harris

    2002-02-01

    Full Text Available A new coupled middle atmosphere and thermosphere general circulation model has been developed, and some first results are presented. An investigation into the effects of the diurnal tide upon the mean composition, dynamics and energetics was carried out for equinox conditions. Previous studies have shown that tides deplete mean atomic oxygen in the upper mesosphere-lower thermosphere due to an increased recombination in the tidal displaced air parcels. The model runs presented suggest that the mean residual circulation associated with the tidal dissipation also plays an important role. Stronger lower boundary tidal forcing was seen to increase the equatorial local diurnal maximum of atomic oxygen and the associated 0(1S 557.7 nm green line volume emission rates. The changes in the mean background temperature structure were found to correspond to changes in the mean circulation and exothermic chemical heating.Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry Meterology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  8. Ionosphere-thermosphere energy budgets for the ICME storms of March 2013 and 2015 estimated with GITM and observational proxies

    Science.gov (United States)

    Verkhoglyadova, O. P.; Meng, X.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Lu, G.

    2017-09-01

    The ionosphere-thermosphere (IT) energy partitioning for the interplanetary coronal mass ejection (ICME) storms of 16-19 March 2013 and 2015 is estimated with the Global Ionosphere-Thermosphere Model (GITM), empirical models and proxies derived from in situ measurements. We focus on auroral heating, Joule heating, and thermospheric cooling. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are used to drive GITM from above. Thermospheric nitric oxide and carbon dioxide cooling emission powers and fluxes are estimated from TIMED/SABER measurements. Assimilative mapping of ionospheric electrodynamics (AMIE) estimations of hemispheric power and Joule heating are presented, based on data from global magnetometers, the AMPERE magnetic field data, SSUSI auroral images, and the SuperDARN radar network. Modeled Joule heating and auroral heating of the IT system are mostly controlled by external driving in the March 2013 and 2015 storms, while NO cooling persists into the storm recovery phase. The total heating in the model is about 1000 GW to 3000 GW. Additionally, we intercompare contributions in selected energy channels for five coronal mass ejection-type storms modeled with GITM. Modeled auroral heating shows reasonable agreement with AMIE hemispheric power and is higher than other observational proxies. Joule heating and infrared cooling are likely underestimated in GITM. We discuss challenges and discrepancies in estimating and global modeling of the IT energy partitioning, especially Joule heating, during geomagnetic storms.

  9. Seasonal Dependence of Geomagnetic Active-Time Northern High-Latitude Upper Thermospheric Winds

    Science.gov (United States)

    Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Doornbos, Eelco; Shepherd, Gordon G.; Makela, Jonathan J.; Wu, Qian; Nieciejewski, Richard J.; Ridley, Aaron J.

    2018-01-01

    This study is focused on improving the poorly understood seasonal dependence of northern high-latitude F region thermospheric winds under active geomagnetic conditions. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. With current observational facilities, it is infeasible to construct a synoptic picture of thermospheric winds, but enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis. We use long-term data from eight ground-based and two space-based instruments to derive climatological wind patterns as a function of magnetic local time, magnetic latitude, and season. These diverse data sets possess different geometries and different spatial and solar activity coverage. The major challenge is to combine these disparate data sets into a coherent picture while overcoming the sampling limitations and biases among them. In our previous study (focused on quiet time winds), we found bias in the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) cross-track winds. Here we empirically quantify the GOCE bias and use it as a correction profile for removing apparent bias before empirical wind formulation. The assimilated wind patterns exhibit all major characteristics of high-latitude neutral circulation. The latitudinal extent of duskside circulation expands almost 10∘ from winter to summer. The dawnside circulation subsides from winter to summer. Disturbance winds derived from geomagnetic active and quiet winds show strong seasonal and latitudinal variability. Comparisons between wind patterns derived here and Disturbance Wind Model (DWM07) (which have no seasonal dependence) suggest that DWM07 is skewed toward summertime conditions.

  10. Jupiter Thermospheric General Circulation Model (JTGCM): Global Structure and Dynamics Driven by Auroral and Joule Heating

    Science.gov (United States)

    Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.

    2005-01-01

    A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.

  11. Low latitude ionosphere-thermosphere dynamics studies with inosonde chain in Southeast Asia

    Directory of Open Access Journals (Sweden)

    T. Maruyama

    2007-07-01

    Full Text Available An ionosonde network consisting of a meridional chain and an equatorial pair was established in the Southeast Asian area. Three of four ionosondes are along the magnetic meridian of 100° E; two are close to the magnetic conjugate points in Northern Thailand and West Sumatra, Indonesia, and the other is near the magnetic equator in the Malay Peninsula, Thailand. The fourth ionosonde is also near the magnetic equator in Vietnam but separated by about 6.3° towards east from the meridional chain. For a preliminary data analysis, nighttime ionospheric height variations at the three stations of the meridional chain were examined. The results demonstrate that the coordination of the network has a great potential for studying ionosphere/thermosphere dynamics. Through the assistance of model calculations, thermospheric neutral winds were inferred and compared with the HWM93 empirical thermospheric wind model. Higher-order wind variations that are not represented in the empirical model were found.

  12. Resistive Heating in Saturn's Thermosphere

    Science.gov (United States)

    Vriesema, Jess W.; Koskinen, Tommi; Yelle, Roger V.

    2016-10-01

    The thermospheres of the jovian planets are several times hotter than solar heating alone can account for. On Saturn, resistive heating appears sufficient to explain these temperatures in auroral regions, but the particular mechanism(s) responsible for heating the lower latitudes remains unclear. Smith et al. (2005) suggested that electrodynamics of the equatorial region—particularly resistive heating caused by strong electrojet currents—might explain the observed temperatures at low latitudes. Müller-Wodarg et al. (2006) found that their circulation model could reproduce low-latitude temperatures only when they included resistive heating at the poles and applied a uniform, generic heating source globally. Smith et al. (2007) concluded that heating at the poles leads to meridional circulation that cools low latitudes and argued that in-situ heating is required to explain the temperatures at low latitudes.Resistive heating at low latitudes, arising from enhanced current generation driven by thermospheric winds, is a potentially important in-situ heating mechanism. Ion drag caused by low-latitude electrodynamics can modify global circulation and meridional transport of energy. We present an axisymmetric, steady-state formulation of wind-driven electrodynamics to investigate these possibilities throughout Saturn's thermosphere. At present, we assume a dipole magnetic field and neglect any contributions from the magnetosphere. We use ion mixing ratios from the model of Kim et al. (2014) and the observed temperature-pressure profile from Koskinen et al. (2015) to calculate the generalized conductivity tensor as described by Koskinen et al. (2014). Our model solves the coupled equations for charge continuity and Ohm's law with tensor conductivity while enforcing zero current across the boundaries. The resulting partial differential equation is solved for the current density throughout the domain and used to calculate the net resistive heating rate. We demonstrate

  13. Coupled storm-time magnetosphere-ionosphere-thermosphere simulations including microscopic ionospheric turbulence

    Science.gov (United States)

    Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.

    2017-12-01

    During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the

  14. The Mars thermosphere. 2. General circulation with coupled dynamics and composition

    International Nuclear Information System (INIS)

    Bougher, S.W.; Roble, R.G.; Ridley, E.C.; Dickinson, R.E.

    1990-01-01

    The National Center for Atmospheric Research thermospheric general circulation model (TGCM) for the Earth's thermosphere has been modified to examine the three-dimensional structure and circulation of the upper mesosphere and thermosphere of Mars (MTGCM). The computational framework and major processes unique to a CO 2 thermosphere are similar to those utilized in a recent Venus TGCM. Solar EUV, UV, and IR heating alone combine to drive the Martian winds above ∼100 km. An equinox version of the code is used to examine the Mars global dynamics and structure for two specific observational periods spanning a range of solar activity: Viking 1 (July 1976) and Mariner 6-7 (August-September 1969). The MTGCM is then modified to predict the state of the Mars thermosphere for various combinations of solar and orbital conditions. Calculations show that no nightside cryosphere of the type observed on Venus is obtained on the Mars nightside. Instead, planetary rotation significantly modifies the winds and the day-to-night contrast in densities and temperatures, giving a diurnal behavior similar to the Earth under quiet solar conditions. Maximum exospheric temperatures are calculated near 1,500 LT (≤ 305 K), with minimum values at 0500 LT (≤ 175 K). The global temperature distribution is strongly modified by nightside adiabatic heating (subsidence) and dayside cooling (upwelling). The global winds also affect vertical density distributions; vertical eddy diffusion much weaker than used in previous one-dimensional models is required to maintain observed Viking profiles. A solar cycle variation in dayside exospheric temperatures of ∼195-305 K is simulated by the Viking and Mariner runs

  15. Evidence of the Lower Thermospheric Winter-to-Summer Circulation From SABER CO2 Observations

    Science.gov (United States)

    Qian, Liying; Burns, Alan; Yue, Jia

    2017-10-01

    Numerical studies have shown that there is a lower thermospheric winter-to-summer circulation that is driven by wave dissipation and that it plays a significant role in trace gas distributions in the mesosphere and lower thermosphere, and in the composition of the thermosphere. However, the characteristics of this circulation are poorly known. Direct observations of it are difficult, but it leaves clear signatures in tracer distributions. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite has obtained CO2 concentration from 2002 to present. This data set, combined with simulations by the Whole Atmosphere Community Climate Model, provides an unprecedented opportunity to infer the morphology of this circulation in both the summer and winter hemispheres. Our study show that there exists a maximum vertical gradient of CO2 at summer high latitudes, driven by the convergence of the upwelling of the mesospheric circulation and the downwelling of the lower thermospheric circulation; in the winter hemisphere, the maximum vertical gradient of CO2 is located at a higher altitude, driven by the convergence of the upwelling of the lower thermospheric circulation and the downwelling of the solar-driven thermospheric circulation; the bottom of the lower thermospheric circulation is located between 95 km and 100 km, and it has a vertical extent of 10 km. Analysis of the SABER CO2 and temperature at summer high latitudes showed that the bottom of this circulation is consistently higher than the mesopause height by 10 km.

  16. A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT general circulation model

    Directory of Open Access Journals (Sweden)

    M. J. Harris

    Full Text Available A new coupled middle atmosphere and thermosphere general circulation model has been developed, and some first results are presented. An investigation into the effects of the diurnal tide upon the mean composition, dynamics and energetics was carried out for equinox conditions. Previous studies have shown that tides deplete mean atomic oxygen in the upper mesosphere-lower thermosphere due to an increased recombination in the tidal displaced air parcels. The model runs presented suggest that the mean residual circulation associated with the tidal dissipation also plays an important role. Stronger lower boundary tidal forcing was seen to increase the equatorial local diurnal maximum of atomic oxygen and the associated 0(1S 557.7 nm green line volume emission rates. The changes in the mean background temperature structure were found to correspond to changes in the mean circulation and exothermic chemical heating.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry Meterology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  17. A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm

    International Nuclear Information System (INIS)

    Burns, A.G.; Killeen, T.L.; Roble, R.G.

    1991-01-01

    The compositional response of the neutral thermosphere to an impulsive geomagnetic storm has been investigated using a numerical simulation made with the National Center for Atmospheric Research thermospheric general circulation model (NCAR-TGCM). Calculated time-dependent changes in neutral thermospheric composition have been studied, together with detailed neutral parcel trajectories and other diagnostic information from the model, to gain a greater understanding of the physical mechanisms responsible for composition variability during geomagnetic storms and, in particular, to investigate the causes of the positive and negative ionospheric storm effects. The following principal results were obtained from this study. (1) Calculated perturbations in thermospheric composition following the onset of an impulsive geomagnetic storm were found to be in good qualitative agreement with the previous experimental statistical study of storm time thermospheric morphology by Proelss. (2) During the initial (onset) phase of the simulated storm, upward vertical winds occurred in the auroral zone and downward winds occurred in the central magnetic polar cap. (3) The largest perturbations in mass mixing ratio of nitrogen at F region altitudes were found to be associated with parcels of neutral gas that travelled through the cusp region and with parcels that were trapped within the auroral zone for a long time. (4) Storm time enhancements in Ψ N 2 were found to occur in the midnight and early morning sectors both within and equatorward of the auroral zone, and these were determined to be associated with the advective effects of the large antisunward polar cap neutral winds

  18. How does the predicted geomagnetic main field variation alter the thermosphere-ionosphere storm-time response?

    Science.gov (United States)

    Maute, A. I.; Lu, G.; Richmond, A. D.

    2017-12-01

    Earth's magnetic main field plays an important role in the thermosphere-ionosphere (TI) system, as well as its coupling to Earth's magnetosphere. The ionosphere consists of a weakly ionized plasma strongly influenced by the main field and embedded in the thermosphere. Therefore, ion-neutral coupling and ionospheric electrodynamics can influence the plasma distribution and neutral dynamics. There are strong longitude variations of the TI storm response. At high latitude magnetosphere-ionosphere coupling is organized by the geomagnetic main field, leading in general to stronger northern middle latitude storm time response in the American sector due to the geomagnetic dipole location. In addition, the weak geomagnetic main field in the American sector leads to larger local ExB drift and can alter the plasma densities. During geomagnetic storms the intense energy input into the high latitude region is redistributed globally, leading to thermospheric heating, wind circulation changes and alterations of the ionospheric electrodynamics. The storm time changes are measurable in the plasma density, ion drift, temperature, neutral composition, and other parameters. All these changes depend, to some degree, on the geomagnetic main field which changes on decadal time scales. In this study, we employ a forecast model of the geomagnetic main field based on data assimilation and geodynamo modeling [Aubert et al., 2015]. The main field model predicts that in 50 years the South Atlantic Anomaly is further weakened by 2 mT and drifts westward by approximately 10o. The dipole axis moves northward and westward by 2o and 6o, respectively. Simulating the March 2015 geomagnetic storm with the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM) driven by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE), we evaluate the thermosphere-ionosphere response using the geomagnetic main field of 2015, 2065, and 2115. We compare the TI response for 2015 with

  19. Thermospheric Extension of the Quasi 6-day Wave Observed by the TIMED Satellite

    Science.gov (United States)

    Gan, Q.; Oberheide, J.

    2017-12-01

    The quasi 6-day wave is one of the most prevailing planetary waves in the mesosphere and lower thermosphere (MLT) region. Its peak amplitude can attain 20-30 m/s in low-latitude zonal winds at around equinoxes. Consequently, it is anticipated that the 6-day wave can induce not only significantly dynamic effects (via wave-mean flow and wave-wave interactions) in the MLT, but also have significant impacts on the Thermosphere and Ionosphere (T-I). The understanding of the 6-day wave impact on the T-I system has been advanced a lot due to the recent development of whole atmosphere models and new satellite observations. Three pathways were widely proposed to explain the upward coupling due to the 6-day wave: E-region dynamo modulation, dissipation and nonlinear interaction with thermal tides. The current work aims to show a comprehensive pattern of the 6-day wave from the mesosphere up to the thermosphere/ionosphere in neutral fields (temperature, 3-D winds and density) and plasma drifts. To achieve this goal, we carry out the 6-day wave diagnostics by two different means. Firstly, the output of a one-year WACCM+DART run with data assimilation is analyzed to show the global structure of the 6-day wave in the MLT, followed by E-P flux diagnostics to elucidate the 6-day wave source and wave-mean flow interactions. Secondly, we produce observation-based 6-day wave patterns throughout the whole thermosphere by constraining modeled (TIME-GCM) 6-day wave patterns with observed 6-day wave patterns from SABER and TIDI in the MLT region. This allows us to fill the 110-400 km gap between remote sensing and in-situ satellites, and to obtain more realistic 6-day wave plasma drift patterns.

  20. Contributions of the Higher Vibrational Levels of Nitric Oxide to the Radiative Cooling of the Thermosphere

    Science.gov (United States)

    Venkataramani, K.; Yonker, J. D.; Bailey, S. M.

    2014-12-01

    The 5.3μm emission from the vibrational levels of nitric oxide (NO) and the 15μm emission from CO2 are known to be the dominant sources of cooling in the thermosphere above 100 km. The 5.3μm emission is primarily produced by the radiative de-excitation of NO from its first vibrational level, which in turn is mainly populated by the collisions of NO with atomic oxygen. However, the reaction of atomic nitrogen (N(4S) and N(2D)) with O2 yields vibrationally excited NO with v>1, resulting in a radiative cascade which produces more than one 5.3μm photon per vibrationally excited NO molecule. This chemiluminescence is approximately 20% in magnitude of the emission produced by thermal collisions. These additional sources of the 5.3μm emission are introduced into a one dimensional photochemical model and the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) to assess their variability with latitude and solar activity, and to also understand their effect on the thermospheric energy budget. The results from the models are compared with data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment on-board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, which has been making measurements of the infrared radiative response of the mesosphere and thermosphere to solar inputs since 2002.

  1. Properties of the mesosphere and thermosphere and comparison with CIRA 72

    Science.gov (United States)

    Champion, K. S. W.

    Exospheric temperatures of several reference atmosphere are reviewed and a recommendation is made for the exospheric temperature of a proposed mean CIRA. One of the deficiencies of CIRA 72 and other present thermospheric models is the representation of density changes with geomagnetic activity. This deficiency is illustrated with samples of data. The data show the effects of geomagnetic activity, particle precipitation, a solar proton event, and gravity waves. An empirical model developed from the unique AFGL satellite density data bank using multiple linear regression is reviewed. The present model is for low to moderate solar flux and quiet geomagnetic conditions, but it is planned to extend the model to active conditions. Good progress has been made since CIRA 72 was specified in our knowledge and understanding of the properties of the lower thermosphere, although there are still some unresolved problems. The biggest progress has been made in the theory of tidal effects and of particulate energy deposition and of electrojet heating. On the other hand, it is still not possible to define adequately the systematic variations of the lower boundary conditions of thermospheric models. This is due to lack of knowledge of the systematic variations of the structure properties in the 100 to 120 km altitude region and inadequate information on the mesospheric turbulence profile and variations in the turbopause altitude.

  2. Polar heating in Saturn's thermosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-10-01

    Full Text Available A 3-D numerical global circulation model of the Kronian thermosphere has been used to investigate the influence of polar heating. The distributions of temperature and winds resulting from a general heat source in the polar regions are described. We show that both the total energy input and its vertical distribution are important to the resulting thermal structure. We find that the form of the topside heating profile is particularly important in determining exospheric temperatures. We compare our results to exospheric temperatures from Voyager occultation measurements (Smith et al., 1983; Festou and Atreya, 1982 and auroral H3+ temperatures from ground-based spectroscopic observations (e.g. Miller et al., 2000. We find that a polar heat source is consistent with both the Smith et al. determination of T~400 K at ~30° N and auroral temperatures. The required heat source is also consistent with recent estimates of the Joule heating rate at Saturn (Cowley et al., 2004. However, our results show that a polar heat source can probably not explain the Festou and Atreya determination of T~800 K at ~4° N and the auroral temperatures simultaneously.

    Keywords. Ionosphere (Planetary ionosphere – Magnetospherica physics (Planetary magnetospheres – Meterology and atmospheric dynamics (Thermospheric dynamics

  3. Particle precipitaion into the thermosphere (invited review)

    International Nuclear Information System (INIS)

    Reiff, P.H.

    1986-01-01

    A review of research on particle precipitation into the thermosphere is presented. Particle precipitation plays an important role in thermospheric dynamics, often being both the most important ionization source and the most important heat source, comparable to Joule heating rates in the auroral zones and typically exceeding solar ultraviolet as an ionization mechanism in the nightside auroral zones and winter polar caps. Rees (1963) has shown that, roughly speaking, one electron-ion pair is produced by each 35 eV of incident electron energy flux; thus, over half of the incident electron energy flux goes into heating rather than into ionization. Precipitating ions also can produce ionization, also requiring roughly 35 eV per pair; however, since ion energy fluxes are typically much weaker than electron fluxes, they have often been neglected. The particle precipitation into the thermosphere is both an important ionization source and an important heat source; since the globally integrated value can vary over more than a factor of ten, and the instantaneous local rate can vary over nearly three orders of magnitude global, maps of precipitation rates are extremely important for predicting thermospheric weather

  4. Combining low- to high-resolution transit spectroscopy of HD 189733b. Linking the troposphere and the thermosphere of a hot gas giant

    Science.gov (United States)

    Pino, Lorenzo; Ehrenreich, David; Wyttenbach, Aurélien; Bourrier, Vincent; Nascimbeni, Valerio; Heng, Kevin; Grimm, Simon; Lovis, Christophe; Malik, Matej; Pepe, Francesco; Piotto, Giampaolo

    2018-04-01

    Space-borne low- to medium-resolution (ℛ 102-103) and ground-based high-resolution spectrographs (ℛ 105) are commonly used to obtain optical and near infrared transmission spectra of exoplanetary atmospheres. In this wavelength range, space-borne observations detect the broadest spectral features (alkali doublets, molecular bands, scattering, etc.), while high-resolution, ground-based observations probe the sharpest features (cores of the alkali lines, molecular lines). The two techniques differ by several aspects. (1) The line spread function of ground-based observations is 103 times narrower than for space-borne observations; (2) Space-borne transmission spectra probe up to the base of thermosphere (P ≳ 10-6 bar), while ground-based observations can reach lower pressures (down to 10-11 bar) thanks to their high resolution; (3) Space-borne observations directly yield the transit depth of the planet, while ground-based observations can only measure differences in the apparent size of the planet at different wavelengths. These differences make it challenging to combine both techniques. Here, we develop a robust method to compare theoretical models with observations at different resolutions. We introduce πη, a line-by-line 1D radiative transfer code to compute theoretical transmission spectra over a broad wavelength range at very high resolution (ℛ 106, or Δλ 0.01 Å). An hybrid forward modeling/retrieval optimization scheme is devised to deal with the large computational resources required by modeling a broad wavelength range 0.3-2 μm at high resolution. We apply our technique to HD 189733b. In this planet, HST observations reveal a flattened spectrum due to scattering by aerosols, while high-resolution ground-based HARPS observations reveal sharp features corresponding to the cores of sodium lines. We reconcile these apparent contrasting results by building models that reproduce simultaneously both data sets, from the troposphere to the thermosphere

  5. Nature of the Venus thermosphere derived from satellite drag measurements (solicited paper)

    Science.gov (United States)

    Keating, G.; Theriot, M.; Bougher, S.

    2008-09-01

    atmosphere rises on the dayside producing adiabatic cooling and drops on the nightside producing some adiabatic heating. (See figure 1). The thermosphere was discovered from drag measurements to respond to the near 27-day period of the rotating Sun, for which regions of maximum solar activity reappear every 27 days. The increased euv emission from active regions increased temperatures and thermospheric density, (See Figure 2). Fig. 2 Exospheric Temperatures Compared to 10.7cm Solar Index Second diurnal survey (12/5/79 - 3/6/80) Pioneer Venus Orbiter measurements (OAD) 11 day running means [2] Estimates were also made of the response to the 11- year Solar Cycle by combining the Pioneer Venus and Magellan data. Dayside exospheric temperatures changed about 80K over the solar cycle, [8]. Earlier estimates of temperature change gave 70K based on Lyman alpha measurements. The responses to solar variability were much weaker than on Earth due apparently to the much stronger O/CO2 cooling on Venus which tended to act as a thermostat on thermospheric temperatures. Another discovery from drag measurements was the 4 to 5 day oscillation of the Venus thermosphere [3], (See figure 3). These oscillations are interpreted as resulting from the 4-day super-rotation of the atmosphere near the cloud tops. Other indications of the super-rotation of the thermosphere come from displacement of the helium bulge and atomic hydrogen bulge from midnight to near 4AM. Fig. 3 Four to Five Day Oscillations in Thermospheric Densities Magellan 1992. During 2008, the Venus Express periapsis will be dropped from 250km down to approximately 180km to allow drag measurements to be made in the North Polar Region, [9]. Drag measurements above 200km have already been obtained from both Pioneer Venus and Magellan so measurements near 180km should be accurate. In 2009, the periapsis may be decreased to a lower altitude allowing accelerometer measurements to be obtained of drag as a function of altitude, to determine

  6. A Study on the Ionosphere and Thermosphere Interaction Based on NCAR-TIEGCM: Dependence of the Interplanetary Magnetic Field (IMF on the Momentum Forcing in the High-Latitude Lower Thermosphere

    Directory of Open Access Journals (Sweden)

    Young-Sil Kwak

    2005-06-01

    Full Text Available To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM. Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude lower thermosphere( 0.8 |bar{B}_z| or negative(B_y 0.3125 |bar{B}_y| or negative(B_z 125 km the primary forces that determine the variations of the neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF bar{B}_y-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-125 km for negative IMF-bar{B}_y condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-bar{B}_y condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-bar{B}_z the ion drag force tends to generate a

  7. Modeling the solar cycle change in nitric oxide in the thermosphere and upper mesosphere

    International Nuclear Information System (INIS)

    Fuller-Rowell, T.J.

    1993-01-01

    Measurements from the Solar Mesosphere Explorer (SME) satellite have shown that low-latitude nitric oxide densities at 110 km decrease by about a factor of 8 from January 1982 to April 1985. This time period corresponds to the descending phase of the last solar cycle where the monthly smoothed sunspot number decreased from more than 150 to less than 25. In addition, nitric oxide was observed to vary by a factor of 2 over a solar rotation, during high solar activity. A one-dimensional, globally averaged model of the thermosphere and upper mesosphere has been used to study the height distribution of nitric oxide (NO) and its response to changes in the solar extreme ultraviolet radiation (EUV) through the solar cycle and over a solar rotation. The primary source of nitric oxide is the reaction of excited atomic nitrogen, N( 2 D), with molecular oxygen. The atomic nitrogen is created by a number of ion-neutral reactions and by direct dissociation of molecular nitrogen by photons and photoelectrons. The occurrence of the peak nitric oxide density at or below 115 km is a direct consequence of ionization and dissociation of molecular nitrogen by photoelectrons, which are produced by the solar flux below 30.0 nm (XUV). Nitric oxide is shown to vary over the solar cycle by a factor of 7 at low latitudes in the lower thermosphere E region, due to the estimated change in the solar EUV flux, in good agreement with the SME satellite observations. The NO density is shown to be strongly dependent on the temperature profile in the lower thermosphere and accounts for the difference between the current model and previous work. Wavelengths less than 1.8 nm have little impact on the NO profile. A factor of 3 change in solar flux below 5.0 nm at high solar activity produced a factor of 2 change in the peak NO density, consistent with SME observations over a solar rotation; this change also lowered the peak to 100 km, consistent with rocket data. 52 refs., 10 figs., 5 tabs

  8. Density variations in the lower thermosphere. Scientific report No. 2

    International Nuclear Information System (INIS)

    Johnson, W.F.

    1974-01-01

    Accelerometer derived thermospheric density data from the LOGACS and SPADES satellites are processed to yield the equivalent density variation at 150 and 160 km respectively. Definite latitudinal and longitudinal variations are found which conflict with Jacchia's 1971 model. Time-latitude analyses are presented of density at a single altitude. The density response to a great geomagnetic storm is nearly the same from 25 0 S to 85 0 N except that a density trough forms just equatorward of the auroral oval. Gravity waves are observed during the storm. The structure and dynamics of the lower thermosphere are far more complex than previous studies indicate. (20 figures, 11 tables, 74 references) (U.S.)

  9. Optical sensors for mapping temperature and winds in the thermosphere from a CubeSat platform

    Science.gov (United States)

    Sullivan, Stephanie Whalen

    The thermosphere is the region between approximately 80 km and 320 or more km above the earth's surface. While many people consider this elevation to be space rather than atmosphere, there is a small quantity of gasses in this region. The behavior of these gasses influences the orbits of satellites, including the International Space Station, causes space weather events, and influences the weather closer to the surface of the earth. Due to the location and characteristics of the thermosphere, even basic properties such as temperature are very difficult to measure. High spatial and temporal resolution data on temperatures and winds in the thermosphere are needed by both the space weather and earth climate modeling communities. To address this need, Space Dynamics Laboratory (SDL) started the Profiling Oxygen Emissions of the Thermosphere (POET) program. POET consists of a series of sensors designed to fly on sounding rockets, CubeSats, or larger platforms, such as IridiumNEXT SensorPODS. While each sensor design is different, they all use characteristics of oxygen optical emissions to measure space weather properties. The POET program builds upon the work of the RAIDS, Odin, and UARS programs. Our intention is to dramatically reduce the costs of building, launching, and operating spectrometers in space, thus allowing for more sensors to be in operation. Continuous long-term data from multiple sensors is necessary to understand the underlying physics required to accurately model and predict weather in the thermosphere. While previous spectrometers have been built to measure winds and temperatures in the thermosphere, they have all been large and expensive. The POET sensors use new focal plane technology and optical designs to overcome these obstacles. This thesis focuses on the testing and calibration of the two POET sensors: the Oxygen Profiling of the Atmospheric Limb (OPAL) temperature sensor and the Split-field Etalon Doppler Imager (SEDI) wind sensor.

  10. SAPS effects on thermospheric winds during the 17 March 2013 storm

    Science.gov (United States)

    Sheng, C.; Lu, G.; Wang, W.; Doornbos, E.; Talaat, E. R.

    2017-12-01

    Strong subauroral polarization streams (SAPS) were observed by DMSP satellites during the main phase of the 17 March 2013 geomagnetic storm. Both DMSP F18 and GOCE satellites sampled at 19 MLT during this period, providing near-simultaneous measurements of ion drifts and neutral winds near dusk. The fortuitous satellite conjunction allows us to directly examine the SAPS effects on thermospheric winds. In addition, two sets of model runs were carried out for this event: (1) the standard TIEGCM run with high-latitude forcing; (2) the SAPS-TIEGCM run by incoporating an empirical model of SAPS in the subauroral zone. The difference between these two runs represents the influence of SAPS forcing. In particular, we examine ion-neutral coupling at subauroral latitudes through detailed forcing term analysis to determine how the SAPS-related strong westward ion drifts alter thermospheric winds.

  11. Impact of high-latitude energy input on the mid- and low-latitude ionosphere and thermosphere

    Science.gov (United States)

    Lu, G.; Sheng, C.

    2017-12-01

    High-latitude energy input has a profound impact on the ionosphere and thermosphere especially during geomagnetic storms. Intense auroral particle precipitation ionizes neutral gases and modifies ionospheric conductivity; collisions between neutrals and fast-moving ions accelerate the neutral winds and produce Joule frictional heating; and the excess Joule and particle heating causes atmospheric upwelling and changes neutral composition due to the rising of the heavier, molecular-rich air. In addition, impulsive Joule heating launches large-scale gravity waves that propagate equatorward toward middle and low latitudes and even into the opposite hemisphere, altering the mean global circulation of the thermosphere. Furthermore, high-latitude electric field can also directly penetrate to lower latitudes under rapidly changing external conditions, causing prompt ionospheric variations in the mid- and low-latitude regions. To study the effects of high-latitude energy input, we apply the different convection and auroral precipitation patterns based on both empirical models and the AMIE outputs. We investigate how the mid- and low-latitude regions respond to the different specifications of high-latitude energy input. The main purpose of the study is to delineate the various dynamical, electrodynamical, and chemical processes and to determine their relative importance in the resulting ionospheric and thermospheric properties at mid and low latitudes.

  12. Wavelength Dependence of Solar Flare Irradiation and its Influence on the Thermosphere

    Science.gov (United States)

    Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Qian, L.; Solomon, S.; Chamberlin, P.

    2012-01-01

    The wavelength dependence of solar flare enhancement is one of the important factors determining how the Thermosphere-Ionosphere (T-I) system response to flares. To investigate the wavelength dependence of solar flare, the Flare Irradiance Spectral Model (FISM) has been run for 34 X-class flares. The results show that the percentage increases of solar irradiance at flare peak comparing to pre-flare condition have a clear wavelength dependence. In the wavelength range between 0 - 195 nm, it can vary from 1% to 10000%. The solar irradiance enhancement is largest ( 1000%) in the XUV range (0 - 25 nm), and is about 100% in EUV range (25 - 120 nm). The influence of different wavebands on the T-I system during the October 28th, 2003 flare (X17.2-class) has also been examined using the latest version of National Center for Atmospheric Research (NCAR) Thermosphere- Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). While the globally integrated solar energy deposition is largest in the 0 - 14 nm waveband, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for 25 - 105 nm waveband. The effect of 122 - 195 nm is small in magnitude, but it decays slowly.

  13. Effects of a mid-latitude solar eclipse on the thermosphere and ionosphere: a modelling study

    OpenAIRE

    Müller-Wodarg, I. C. F.; Aylward, A. D.; Lockwood, Mike

    1998-01-01

    A modelling study is presented which investigates in-situ generated changes of the thermosphere and ionosphere during a solar eclipse. Neutral temperatures are expected to drop by up to 40 degrees K at 240 km height in the totality footprint, with neutral winds of up to 26 m/s responding to the change of pressure. Both temperatures and winds are found to respond with a time lag of 30 min after the passing of the Moon's shadow. A gravity wave is generated in the neutral atmosphere and propagat...

  14. Tidal signatures of the thermospheric mass density and zonal wind at midlatitude: CHAMP and GRACE observations

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2015-02-01

    Full Text Available By using the accelerometer measurements from CHAMP and GRACE satellites, the tidal signatures of the thermospheric mass density and zonal wind at midlatitudes have been analyzed in this study. The results show that the mass density and zonal wind at southern midlatitudes are dominated by a longitudinal wave-1 pattern. The most prominent tidal components in mass density and zonal wind are the diurnal tides D0 and DW2 and the semidiurnal tides SW1 and SW3. This is consistent with the tidal signatures in the F region electron density at midlatitudes as reported by Xiong and Lühr (2014. These same tidal components are observed both in the thermospheric and ionospheric quantities, supporting a mechanism that the non-migrating tides in the upper atmosphere are excited in situ by ion–neutral interactions at midlatitudes, consistent with the modeling results of Jones Jr. et al. (2013. We regard the thermospheric dynamics as the main driver for the electron density tidal structures. An example is the in-phase variation of D0 between electron density and mass density in both hemispheres. Further research including coupled atmospheric models is probably needed for explaining the similarities and differences between thermospheric and ionospheric tidal signals at midlatitudes.

  15. Seasonal Transport in Mars' Mesosphere-Thermosphere revealed by Nitric Oxide nightglow

    Science.gov (United States)

    Royer, E. M.; Stiepen, A.; Schneider, N. M.; Jain, S.; Milby, Z.; Deighan, J.; Gonzalez-Galindo, F.; Bougher, S. W.; Gerard, J. C. M. C.; Stevens, M. H.; Evans, J. S.; Stewart, I. F.; Chaffin, M.; McClintock, B.; Clarke, J. T.; Montmessin, F.; Holsclaw, G.; Lefèvre, F.; Forget, F.; Lo, D.; Hubert, B. A.; Jakosky, B. M.

    2017-12-01

    We analyze the ultraviolet nightglow in the atmosphere of Mars through the Nitric Oxide (NO) δ and γ band emissions observed by the Imaging Ultraviolet Spectrograph (IUVS, McClintock et al., 2015) when the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is at apoapsis and periapsis. On the dayside thermosphere of Mars, solar extreme ultraviolet radiation dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried by the day-to-night hemispheric transport. They descend in the nightside mesosphere, where they can radiatively recombine to form NO(C2Π). The excited molecules rapidly relax by emitting UV photons in the δ and γ bands. These emissions are thus indicators of the N and O atom fluxes transported from the dayside to Mars' nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017). A large dataset of nightside disk images and vertical limb scans during southern winter, fall equinox and southern summer conditions have been accumulated since the beginning of the mission. We will present a discussion regarding the variability of the brightness and altitude of the emission with season, geographical position (longitude) and local time and possible interpretation for local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves structuring the emission longitudinally and indicating a wave-3 structure in Mars' nightside mesosphere. Quantitative comparison with calculations from the LMD-MGCM (Laboratoire de Météorologie Dynamique-Mars Global Climate Model) show that the model globally reproduces the trends of the NO nightglow emission and its seasonal variation but also indicates large discrepancies (up to a factor 50 fainter in the model) suggesting that the predicted transport is too efficient toward the night winter pole

  16. Solar cycle variability of nonmigrating tides in the infrared cooling of the thermosphere

    Science.gov (United States)

    Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Marsh, D. R.

    2017-12-01

    Nitric Oxide (NO) at 5.3 μm and Carbon dioxide (CO2) at 15 μm are the major infrared emissions responsible for the radiative cooling of the thermosphere. We study the impact of two important diurnal nonmigrating tides, the DE2 and DE3, on NO and CO2 infrared emissions over a complete solar cycle (2002-2013) by (i) analyzing NO and CO2 cooling rate data from SABER and (ii) photochemical modeling using dynamical tides from a thermospheric empirical tidal model, CTMT. Both observed and modeled results show that the NO cooling rate amplitudes for DE2 and DE3 exhibit strong solar cycle dependence. NO 5.3 μm cooling rate tides are relatively unimportant for the infrared energy budget during solar minimum but important during solar maximum. On the other hand DE2 and DE3 in CO2 show comparatively small variability over a solar cycle. CO2 15 μm cooling rate tides remain, to a large extent, constant between solar minimum and maximum. This different responses by NO and CO2 emissions to the DE2 and DE3 during a solar cycle comes form the fact that the collisional reaction rate for NO is highly sensitive to the temperature comparative to that for CO2. Moreover, the solar cycle variability of these nonmigrating tides in thermospheric infrared emissions shows a clear QBO signals substantiating the impact of tropospheric weather system on the energy budget of the thermosphere. The relative contribution from the individual tidal drivers; temperature, density and advection to the observed DE2 and DE3 tides does not vary much over the course of the solar cycle, and this is true for both NO and CO2 emissions.

  17. Thermospheric winds in the auroral oval: observations of small scale structures and rapid fluctuations by a Doppler imaging system

    International Nuclear Information System (INIS)

    Batten, S.; Rees, D.

    1990-01-01

    At high geomagnetic latitudes, thermospheric wind flows are dramatically affected by the combined effects of magnetospheric ion convection and Joule and particle heating. Thermospheric winds have been observed by ground based and space-borne Fabry-Perot interferometers (FPIs). Short period, localized wind fluctuations have always been difficult to resolve with a conventional FPI, due to the limited time and spatial resolution. However, the highest quality wind data obtained by these instruments from the middle and upper thermosphere have implied that thermospheric winds may respond to the combination of strong local ion drag forcing and heating within the auroral oval and polar cap, with spatial scale sizes of 50-500 km, and with time scales as short as 10-30 min. Since the 1982/1983 winter, a prototype Doppler Imaging System (DIS) has been operated at Kiruna (67.84 0 N, 20.42 0 E). This instrument maps thermospheric wind flows over a region some 500 km in diameter centred on Kiruna and has observed many interesting features in the thermospheric wind fields. In particular, strong local wind gradients, rapid wind reversals and small scale structures are regularly observed, particularly during geomagnetically disturbed nights. (author)

  18. Understanding the Effects of Lower Boundary Conditions and Eddy Diffusion on the Ionosphere-Thermosphere System

    Science.gov (United States)

    Malhotra, G.; Ridley, A. J.; Marsh, D. R.; Wu, C.; Paxton, L. J.

    2017-12-01

    The exchange of energy between lower atmospheric regions with the ionosphere-thermosphere (IT) system is not well understood. A number of studies have observed day-to-day and seasonal variabilities in the difference between data and model output of various IT parameters. It is widely speculated that the forcing from the lower atmosphere, variability in weather systems and gravity waves that propagate upward from troposphere into the upper mesosphere and lower thermosphere (MLT) may be responsible for these spatial and temporal variations in the IT region, but their exact nature is unknown. These variabilities can be interpreted in two ways: variations in state (density, temperature, wind) of the upper mesosphere or spatial and temporal changes in the small-scale mixing, or Eddy diffusion that is parameterized within the model.In this study, firstly, we analyze the sensitivity of the thermospheric and ionospheric states - neutral densities, O/N2, total electron content (TEC), peak electron density, and peak electron height - to various lower boundary conditions in the Global Ionosphere Thermosphere Model (GITM). We use WACCM-X and GSWM to drive the lower atmospheric boundary in GITM at 100 km, and compare the results with the current MSIS-driven version of GITM, analyzing which of these simulations match the measurements from GOCE, GUVI, CHAMP, and GPS-derived TEC best. Secondly, we analyze the effect of eddy diffusion in the IT system. The turbulence due to eddy mixing cannot be directly measured and it is a challenge to completely characterize its linear and non-linear effects from other influences, since the eddy diffusion both influences the composition through direct mixing and the temperature structure due to turbulent conduction changes. In this study we input latitudinal and seasonal profiles of eddy diffusion into GITM and then analyze the changes in the thermospheric and ionospheric parameters. These profiles will be derived from both WACC-X simulations

  19. LATTICE: The Lower ATmosphere-Thermosphere-Ionosphere Coupling Experiment

    Science.gov (United States)

    Mlynczak, M. G.; Yee, J. H.

    2017-12-01

    We present the Lower Atmosphere-Thermosphere-Ionosphere Coupling Experiment (LATTICE), which is a candidate mission for proposal to a future NASA Announcement of Opportunity. LATTICE will make the first consistent measurements of global kinetic temperature from the tropopause up to at least 160 km, along with global vector winds from 100 to 160 km at all local times. LATTICE thus provides, for the first time, a consistent picture of the coupling of the terrestrial lower atmosphere to the thermosphere-ionosphere system, which is a major scientific goal outlined in the 2012 Heliophysics Decadal Survey. The core instruments on LATTICE are the Terahertz Limb Sounder (TLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry-II (SABER-II) instrument. The TLS instrument measures the 147 µm (2.04 THz) fine structure line of atomic oxygen. From these measurements TLS will provide kinetic temperature, atomic oxygen density, and vector wind from 100 to at least 160 km altitude. SABER-II is an infrared radiometer and is optically identical to the legacy SABER instrument on the current TIMED satellite. SABER-II is half the mass, half the power, and one-third the volume of the legacy instrument, and expects the same radiometric performance. SABER-II will again measure kinetic temperature from 15 to 110 km and will make measurements of key parameters in the thermosphere-ionosphere system including NO+, the green line and red line emissions, as well as continuing legacy measurements of ozone, water vapor, atomic oxygen, and atomic hydrogen in the mesosphere and lower thermosphere. We will describe the LATTICE mission in detail including other potential instruments for diagnosing thermospheric composition and high latitude energy inputs, and for measuring solar ultraviolet irradiance.

  20. Seasonal effects in the ionosphere-thermosphere response to the precipitation and field-aligned current variations in the cusp region

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    from DE-2 data for IMF By < 0 but for the Northern (winter Hemisphere there is a disagreement at high latitudes in the afternoon sector of the cusp region. At the same time, the model results for this sector agree with other DE-2 data and with the ground-based FPI data. All ionospheric and thermospheric disturbances in the second variant of the calculations are more intensive in the winter cusp region in comparison with the summer one and this seasonal difference is larger than in the first variant of the calculations, especially in the electron density and all temperature variations. The means that the seasonal effects in the cusp region are stronger in the thermospheric and ionospheric responses to the FAC variations than to the precipitation disturbances.

    Key words. Ionosphere (ionosphere · atmosphere interactions; ionosphere · magnetosphere interactions; ionospheric disturbances.

  1. Nonlinear Acoustic Waves Generated by Surface Disturbances and Their Effects on Lower Thermospheric Composition

    Science.gov (United States)

    Pineyro, B.; Snively, J. B.

    2017-12-01

    Recent 1D and 2D nonlinear atmospheric models have provided important insight into acoustic waves generated by seismic events, which may steepen into shocks or saw-tooth trains while also dissipating strongly in the thermosphere [e.g., Chum et al., JGR, 121, 2016; Zettergren et al., JGR, 122, 2017]. Although they have yield results that agree with with observations of ionospheric perturbations, dynamical models for the diffusive and stratified lower thermosphere [e.g., Snively and Pasko, JGR, 113, 2008] often use single gas approximations with height-dependent physical properties (e.g. mean molecular weight, specific heats) that do not vary with time (fixed composition). This approximation is simpler and less computationally expensive than a true multi-fluid model, yet captures the important physical transition between molecular and atomic gases in the lower thermosphere. Models with time-dependent composition and properties have been shown to outperform commonly used models with fixed properties; these time-dependent effects have been included in a one-gas model by adding an advection equation for the molecular weight, finding closer agreement to a true binary-gas model [Walterscheid and Hickey, JGR, 106, 2001 and JGR, 117, 2012]. Here, a one-dimensional nonlinear mass fraction approach to multi-constituent gas modeling, motivated by the results of Walterscheid and Hickey [2001, 2012], is presented. The finite volume method of Bale et al. [SIAM JSC, 24, 2002] is implemented in Clawpack [http://www.clawpack.org; LeVeque, 2002] with a Riemann Solver to solve the Euler Equations including multiple species, defined by their mass fractions, as they undergo advection. Viscous dissipation and thermal conduction are applied via a fractional step method. The model is validated with shock tube problems for two species, and then applied to investigate propagating nonlinear acoustic waves from ground to thermosphere, such as following the 2011 Tohoku Earthquake [e

  2. Analysis of Wind Vorticity and Divergence in the High-latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field (IMF

    Directory of Open Access Journals (Sweden)

    Young-Sil Kwak

    2008-12-01

    Full Text Available To better understand the physical processes that control the high-latitude lower thermospheric dynamics, we analyze the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions. For this study the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEG CM is used. The analysis of the large-scale vorticity and divergence provides basic understanding flow configurations to help elucidate the momentum sources that ultimately determine the total wind field in the lower polar thermosphere and provides insight into the relative strengths of the different sources of momentum responsible for driving winds. The mean neutral wind pattern in the high-latitude lower thermosphere is dominated by rotational flow, imparted primarily through the ion drag force, rather than by divergent flow, imparted primarily through Joule and solar heating. The difference vorticity, obtained by subtracting values with zero IMF from those with non-zero IMF, in the high-latitude lower thermosphere is much larger than the difference divergence for all IMF conditions, indicating that a larger response of the thermospheric wind system to enhancement in the momentum input generating the rotational motion with elevated IMF than the corresponding energy input generating the divergent motion. the difference vorticity in the high-latitude lower thermosphere depends on the direction of the IMF. The difference vorticity for negative and positive B_y shows positive and negative, respectively, at higher magnetic latitudes than -70°. For negative B_z, the difference vorticities have positive in the dusk sector and negative in the dawn sector. The difference vorticities for positive B_z have opposite sign. Negative IMF B_z has a stronger effect on the vorticity than does positive B_z.

  3. An Observational and Modelling Study of Auroral Upwelling in the Thermosphere

    Science.gov (United States)

    2016-05-05

    finding by Lühr et al. [2004] of a near doubling of the thermospheric density over the geomagnetic cusp region. This was a localised and persistent...throughout the height region 150-200km. From 21:50-21:50 UT there appears to be a reversal to northward followed by a predominantly southward flow until the... Geomagnetic , Seasonal and Solar Cycle Dependence at High Latitudes, J.Atmos.Terr.Physics, 57, 597-609, 1995 (special issue on vertical winds) Aruliah

  4. An Observational and Modeling Study of Auroral Upwelling in the Thermosphere

    Science.gov (United States)

    2016-04-28

    finding by Lühr et al. [2004] of a near doubling of the thermospheric density over the geomagnetic cusp region. This was a localised and persistent...throughout the height region 150-200km. From 21:50-21:50 UT there appears to be a reversal to northward followed by a predominantly southward flow until the... Geomagnetic , Seasonal and Solar Cycle Dependence at High Latitudes, J.Atmos.Terr.Physics, 57, 597-609, 1995 (special issue on vertical winds) Aruliah

  5. Resistive Heating and Ion Drag in Saturn's Thermosphere

    Science.gov (United States)

    Vriesema, Jess William; Koskinen, Tommi; Yelle, Roger V.

    2017-10-01

    One of the most puzzling observations of the jovian planets is that the thermospheres of Jupiter, Saturn, Uranus and Neptune are all several times hotter than solar heating can account for (Strobel and Smith 1973; Yelle and Miller 2004; Muller-Wodarg et al. 2006). On Saturn, resistive heating appears sufficient to explain these temperatures in auroral regions, but the particular mechanism(s) responsible for heating the lower latitudes remains unclear. The most commonly proposed heating mechanisms are breaking gravity waves and auroral heating at the poles followed by redistribution of energy to mid-and low latitudes. Both of these energy sources are potentially important but also come with significant problems. Wave heating would have to be continuous and global to produce consistently elevated temperatures and the strong Coriolis forces coupled with polar ion drag appear to hinder redistribution of auroral energy (see Strobel et al. 2016 for review). Here we explore an alternative: wind-driven electrodynamics that can alter circulation and produce substantial heating outside of the auroral region. Smith (2013) showed this in-situ mechanism to be potentially significant in Jupiter’s thermosphere. We present new results from an axisymmetric, steady-state model that calculates resistive (Joule) heating rates through rigorous solutions of the electrodynamic equations for the coupled neutral atmosphere and ionosphere of Saturn. At present, we assume a dipole magnetic field and neglect any contributions from the magnetosphere. We use ion mixing ratios from the model of Kim et al. (2014) and the observed temperature-pressure profile from Koskinen et al. (2015) to calculate the generalized conductivity tensor as described by Koskinen et al. (2014). We calculate the current density under the assumption that it has no divergence and use it to calculate the resistive heating rates and ion drag. Our results suggest that resistive heating and ion drag at low latitudes likely

  6. A theoretical and empirical study of the response of the high latitude thermosphere to the sense of the 'Y' component of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Rees, D.; Fuller-Rowell, T.J.; Gordon, R.

    1986-01-01

    The strength and direction of the Interplanetary Magnetic Field (IMF) controls the transfer of solar wind momentum and energy to the high latitude thermosphere in a direct fashion. The sense of ''Y'' component of the IMF (BY) creates a significant asymmetry of the magnetospheric convection pattern as mapped onto the high latitude thermosphere and ionosphere. The resulting response of the polar thermospheric winds during periods when BY is either positive or negative is quite distinct, with pronounced changes in the relative strength of thermospheric winds in the dusk-dawn parts of the polar cap and in the dawn part of the auroral oval. In a study of four periods when there was a clear signature of BY, observed by the ISEE-3 satellite, with observations of polar winds and electric fields from the Dynamics Explorer-2 satellite and with wind observations by a ground-based Fabry-Perot interferometer located in Kiruna, Northern Sweden, it is possible to explain features of the high latitude thermospheric circulation using three dimensional global models including BY dependent, asymmetric, polar convection fields. Anomalously zonal wind velocities are often observed, for BY positive and when BY is negative. These are matched by the observation of strong anti-sunward polar-cap wind jets from the DE-2 satellite, on the dusk side with BY negative, and on the dawn side with BY positive. (author)

  7. Solar tides in the equatorial upper thermosphere: A comparison between AE-E data and the TIGCM for solstice, solar minimum conditions

    International Nuclear Information System (INIS)

    Burrage, M.D.; Storz, M.F.; Abreu, V.J.; Fesen, C.G.; Roble, R.G.

    1991-01-01

    Equatorial thermospheric tidal temperatures and densities inferred from Atmosphere Explorer E (AE-E) mass spectrometer data are compared with theoretical predictions from the National Center for Atmospheric Research Thermosphere/Ionisphere General Circulation Model (TIGCM) for solar minimum, solstice conditions. The thermospheric diurnal and semidiurnal tides are excited in situ by solar heating and by ion-neutral momentum coupling. Semidiurnal tides are also generated by upward propagating waves excited by heating in the lower atmosphere. The model calculations include all of these sources. The TIGCM reproduces the gross tidal features observed by the satellite, including the midnight temperature anomaly, and the diurnal phases are in good agreement for the densities of atomic oxygen and molecular nitrogen. However, for the neutral temperature, the predicted phases are 1-2 hours earlier than observed. In addition, the diurnal temperature and density amplitudes predicted by the model are considerably weaker than indicated by the AE-E measurements. The semidiurnal variations found in the observations agree well with the model for December solstice but not for June. The present results indicate that upward propagating tides from the lower atmosphere are responsible for at least half of the amplitude of the semidiurnal tide in the upper thermosphere

  8. Estimating the mass density in the thermosphere with the CYGNSS mission.

    Science.gov (United States)

    Bussy-Virat, C.; Ridley, A. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December 2016, is a constellation of eight satellites orbiting the Earth at 510 km. Its goal is to improve our understanding of rapid hurricane wind intensification. Each CYGNSS satellite uses GPS signals that are reflected off of the ocean's surface to measure the wind. The GPS can also be used to specify the orbit of the satellites quite precisely. The motion of satellites in low Earth orbit are greatly influenced by the neutral density of the surrounding atmosphere through drag. Modeling the neutral density in the upper atmosphere is a major challenge as it involves a comprehensive understanding of the complex coupling between the thermosphere and the ionosphere, the magnetosphere, and the Sun. This is why thermospheric models (such as NRLMSIS, Jacchia-Bowman, HASDM, GITM, or TIEGCM) can only approximate it with a limited accuracy, which decreases during strong geomagnetic events. Because atmospheric drag directly depends on the thermospheric density, it can be estimated applying filtering methods to the trajectories of the CYGNSS observatories. The CYGNSS mission can provide unique results since the constellation of eight satellites enables multiple measurements of the same region at close intervals ( 10 minutes), which can be used to detect short time scale features. Moreover, the CYGNSS spacecraft can be pitched from a low to high drag attitude configuration, which can be used in the filtering methods to improve the accuracy of the atmospheric density estimation. The methodology and the results of this approach applied to the CYGNSS mission will be presented.

  9. Multi-event study of high-latitude thermospheric wind variations at substorm onset with a Fabry-Perot interferometer at Tromsoe, Norway

    Science.gov (United States)

    Xu, H.; Shiokawa, K.; Oyama, S. I.; Otsuka, Y.

    2017-12-01

    observed wind changes at the onset of substorms based on the mechanisms of thermospheric diurnal tides, arc-induced electric field and Joule heating caused by the auroral activities that were identified by the cross sections of all-sky images, as well as the IMF-associated plasma convection model.

  10. A comparison of the consequences of thermospheric inertia on Saturn and Earth

    Science.gov (United States)

    Spain, T.; Achilleos, N.; Aruliah, A. L.

    2008-09-01

    ABSTRACT The ionosphere should react near-instantaneously to magnetospheric control via electric fields and particle precipitation. The neutral gas of the thermosphere becomes stirred up through collisions and momentum transfer with the ionospheric plasma, although with a time lag in response because of its much larger population mass [1]. The thermosphere thus responds to magnetospheric drivers with a modulating influence owing to its inertia. This study investigates the effect of thermospheric inertia on the energy drawn from the magnetosphere and redistributed as Joule heating and acceleration of the neutral gas. The decay of ionospheric currents and consequent magnetic perturbations are also studied. The UCL Saturn model [2] and CTIP Earth [3] model will each be used for 2 simulations: the first a steadystate 'quiet' simulation and the second including the representation of a geomagnetic storm lasting for an extended period that is then turned off. For each planet, comparisons will be made between these two simulations for the period immediately following the storm, when the electric field and particle precipitation drivers of the 'storm' simulations have returned to values in accordance with the 'quiet' models. The differences between the steady state and previously active simulations will be purely due to thermospheric inertia [4]. It is anticipated that the response of the Gas Giant will be very different from the Earth due to differences in the size, rotational speed, flow timescales [5] [6] and composition of the respective planetary environments. References [1] Schunk, R. W., 1987, Physica Scripta, T18, pp. 256- 275, doi: 10.1088/0031-8949/1987/T18/026. [2] Smith, C. G. A. and Aylward, A. D. and Millward, G. H. and Miller, S. and Moore, L. E., 2007, Nature, 445 (7126), pp. 399-401. [3] Millward, G. H. and Moffett, R. J. and Quegan, S. and Fuller-Rowell, T. J., 1996, in The STEP Handbook of Ionospheric Models, R.W. Schunk ed., Utah State University. [4

  11. Equatorial thermospheric wind changes during the solar cycle: Measurements at Arequipa, Peru, from 1983 to 1990

    International Nuclear Information System (INIS)

    Biondi, M.A.; Meriwether, J.W. Jr.; Fejer, B.G.; Gonzalez, S.A.; Hallenbeck, D.C.

    1991-01-01

    Fabry-Perot interferometer measurements of Doppler shifts in the nightglow 630-nm emission line have been used to determine near-equatorial thermospheric wind velocities at Arequipa, Peru, over ∼ 2/3 of a solar cycle. Monthly-average nocturnal variations in the meridional and zonal wind components were calculated from the nightly data to remove short term (day-to-day) variability, facilitating display of seasonal changes in the wind patterns, as well as any additional changes introduced by the progression of the solar cycle. The measured seasonal variations in the wind patterns are more pronounced than the solar cycle variations and are more readily understandable in terms of the expected, underlying forcing and damping processes. For most of the years, at the winter solstice, there is a weak (≤ 100 m/s) transequatorial flow from the summer to the winter hemisphere in the early and the late night, with essentially zero velocities in between. At the equinoxes, an early-night poleward (southward) flow at solar minimum (1986) is replaced by an equatorward (northward) flow at solar maximum (1989-1990). The zonal flows are predominantly eastward throughout the night, except for the solar minimum equinoxes, where brief westward flows appear in the early and the late night. The peak eastward velocities increase toward solar maximum; at the winter solstice, they are ∼ 100-130 m/s in 1983, 1984 and 1986, reaching ∼ 200 m/s in 1988, 1989 and 1990. The present equatorial thermospheric wind determinations agree in some respects with the satellite-data-based horizontal wind model IIWM-87 and the vector spherical harmonic form of the thermospheric general circulation model

  12. Characterizing the Meso-scale Plasma Flows in Earth's Coupled Magnetosphere-Ionosphere-Thermosphere System

    Science.gov (United States)

    Gabrielse, C.; Nishimura, T.; Lyons, L. R.; Gallardo-Lacourt, B.; Deng, Y.; McWilliams, K. A.; Ruohoniemi, J. M.

    2017-12-01

    NASA's Heliophysics Decadal Survey put forth several imperative, Key Science Goals. The second goal communicates the urgent need to "Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs...over a range of spatial and temporal scales." Sun-Earth connections (called Space Weather) have strong societal impacts because extreme events can disturb radio communications and satellite operations. The field's current modeling capabilities of such Space Weather phenomena include large-scale, global responses of the Earth's upper atmosphere to various inputs from the Sun, but the meso-scale ( 50-500 km) structures that are much more dynamic and powerful in the coupled system remain uncharacterized. Their influences are thus far poorly understood. We aim to quantify such structures, particularly auroral flows and streamers, in order to create an empirical model of their size, location, speed, and orientation based on activity level (AL index), season, solar cycle (F10.7), interplanetary magnetic field (IMF) inputs, etc. We present a statistical study of meso-scale flow channels in the nightside auroral oval and polar cap using SuperDARN. These results are used to inform global models such as the Global Ionosphere Thermosphere Model (GITM) in order to evaluate the role of meso-scale disturbances on the fully coupled magnetosphere-ionosphere-thermosphere system. Measuring the ionospheric footpoint of magnetospheric fast flows, our analysis technique from the ground also provides a 2D picture of flows and their characteristics during different activity levels that spacecraft alone cannot.

  13. The global distribution of thermospheric odd nitrogen for solstice conditions during solar cycle minimum

    Science.gov (United States)

    Gerard, J.-C.; Roble, R. G.; Rusch, D. W.; Stewart, A. I.

    1984-01-01

    A two-dimensional model of odd nitrogen in the thermosphere and upper mesosphere is described. The global distributions of nitric oxide and atomic nitrogen are calculated for the solstice period for quiet and moderate magnetic activity during the solar minimum period. The effect of thermospheric transport by winds is investigated along with the importance of particle-induced ionization in the auroral zones. The results are compared with rocket and satellite measurements, and the sensitivity of the model to eddy diffusion and neutral winds is investigated. Downward fluxes of NO into the mesosphere are given, and their importance for stratospheric ozone is discussed. The results show that the summer-to-winter pole meridional circulation transports both NO and N(S-4) across the solar terminator into the polar night region where there is a downward vertical transport toward the mesosphere. The model shows that odd nitrogen densities at high winter latitudes are entirely controlled by particle precipitation and transport processes.

  14. Magnetosphere-thermosphere coupling: An experiment in interactive modeling

    International Nuclear Information System (INIS)

    Forbes, J.M.; Harel, M.

    1989-01-01

    The Rice convection model (RCM) is utilized to investigate the electrodynamic coupling between the inner magnetosphere and the thermosphere including the effects of EUV- and convection-driven neutral winds under quasi-equilibrium conditions. A unique aspect of the study is that the convection-driven winds are included self-consistently and interactively; that is, a steady state wind parameterization is written analytically in terms of the electrostatic potential, which is in turn included in a closed-loop calculation for the electric potential itself. Simulations are performed from 1,400 UT to 1,600 UT during the CDAW-6 interval on March 22, 1979, when the cross-cap electric potential attains values of order 140-180 kV. During the early phases of the disturbance when the normal shielding from high latitudes breaks down, the neutral winds do not modify appreciably the disturbance electric fields at middle and low latitudes. As the system approaches a quasi-equilibrium state, the neutral winds play a much more significant role. The convection driven component of the neutral wind similarly acts to reduce the southward field in the noon sector, but gives rise to an enhancement in the dusk sector field extending to middle latitudes. The parameterized Pedersen effective winds are of order 300 ms -1 and reflect the familiar two-cell pattern with antisunward flow over the polar cap and return flows in the dawn and dusk sectors. These amplitudes and similarity with the ion drift motions reflect the relatively large contributions to the Pedersen effective winds originating in the upper E region and lower F region of the ionosphere. Possibilities for introducing further sophistication into the wind parameterization are discussed, as well as ramifications of the present study on the possible merging of the RCM with the NCAR TGCM to attain a higher degree of self-consistency and reality in modelling efforts

  15. Global effect of auroral particle and Joule heating in the undisturbed thermosphere

    Science.gov (United States)

    Hinton, B. B.

    1978-01-01

    From the compositional variations observed with the neutral atmosphere composition experiment on OGO 6 and a simplified model of thermospheric dynamics, global average values of non-EUV heating are deduced. These are 0.19-0.25 mW/sq m for quiet days and 0.44-0.58 mW/sq m for ordinary days.

  16. Evidence for Solar Cycle Influence on the Infrared Energy Budget and Radiative Cooling of the Thermosphere

    Science.gov (United States)

    Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.

    2007-01-01

    We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.

  17. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Monolithic Interferometer Design and Test

    Science.gov (United States)

    Harlander, John M.; Englert, Christoph R.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Zastera, Vaz; Bach, Bernhard W.; Mende, Stephen B.

    2017-10-01

    The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI.

  18. Lower thermospheric neutral densities determined from Soendre Stroemfjord incoherent scatter radar during LTCS 1

    International Nuclear Information System (INIS)

    Reese, K.W.; Johnson, R.M.; Killeen, T.L.

    1991-01-01

    Ion-neutral collision frequencies determined from measurements obtained by the incoherent scatter radar located at Soendre Stroemfjord, Greenland, have been used to derive lower thermospheric neutral densities during the first Lower Thermosphere Coupling Study (LTCS 1), September 21-26, 1987. Periods of Joule and particle heating which might disturb the E region thermal equilibrium were systematically eliminated. The mean profile of neutral density for the period is in good agreement with the mass spectrometer incoherent scatter 1986 (MSIS-86) model between 92 and 104 km. A tendency to overestimate collision frequencies above 105 km may arise from range-smearing effects. The results of a tidal analysis performed on the neutral density between 92 and 109 km show that the amplitudes of the diurnal and semidiurnal components of the tides are approximately equivalent. The observations are generally in better agreement with the MSIS-86 predictions than with the thermosphere-ionosphere general circulation model (TIGCM) simulation of the LTCS 1 interval. The observed phase of the diurnal component is approximately constant with height above 98 km and is in close agreement with the MSIS-86 model phases; however, the TIGCM diurnal phases are shifted by 6-8 hours to later local times. The phase of the semidiurnal tide is in good agreement with predictions of the MSIS-86 model and the TIGCM simulation of this interval, except near 98 km. The observed semidiurnal phase is also consistent with previous high-latitude results (Kirkwood, 1986). The relative amplitude of the observed semidiurnal oscillation is up to 15% larger than that previously observed at the European Incoherent Scatter facility but is consistent with the amplitudes presented in an earlier study of Millstone Hill measurements (Salah, 1974)

  19. Electric field effects on ionospheric and thermospheric parameters above the EISCAT station for summer conditions

    Directory of Open Access Journals (Sweden)

    V. V. Klimenko

    1998-10-01

    Full Text Available Numerical calculations of the thermospheric and ionospheric parameters above EISCAT are presented for quiet geomagnetic conditions in summer. The Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP was used. The numerical results were obtained both with a self-consistent calculation of the electric fields of magnetospheric and dynamo-action origin and with the magnetospheric electric fields only. It was found that the dynamo-electric field has some effect on the ionospheric convection pattern during quiet geomagnetic conditions. It has a marked effect mainly on the zonal neutral wind component above EISCAT (±20 m/s at 140 km altitude. We have studied the effects of various field-aligned current (FAC distributions on thermosphere/ionosphere parameters and we show that a qualitative agreement can be obtained with region-I and -II FAC zones at 75° and 65° geomagnetic latitude, respectively. The maximum FAC intensities have been assumed at 03–21 MLT for both regions with peak values of 2.5×10–7 A m–2 (region I and 1.25×10–7 A m–2 (region II. These results are in agreement with statistical potential distribution and FAC models constructed by use of EISCAT data. The lack of decreased electron density in the night-time sector as observed by the EISCAT radar was found to be due to the spatial distribution of ionospheric convection resulting from electric fields of magnetospheric origin.Key words. Electric fields and currents · Ionosphere- atmosphere interactions · Modelling and forecasting

  20. Thermospheric mass density model error variance as a function of time scale

    Science.gov (United States)

    Emmert, J. T.; Sutton, E. K.

    2017-12-01

    In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).

  1. Improving Discoverability Between the Magnetosphere and Ionosphere/Thermosphere Domains

    Science.gov (United States)

    Schaefer, R. K.; Morrison, D.; Potter, M.; Barnes, R. J.; Talaat, E. R.; Sarris, T.

    2016-12-01

    With the advent of the NASA Magnetospheric Multiscale Mission and the Van Allen Probes we have space missions that probe the Earth's magnetosphere and radiation belts. These missions fly at far distances from the Earth in contrast to the larger number of near-Earth satellites. Both of the satellites make in situ measurements. Energetic particles flow along magnetic field lines from these measurement locations down to the ionosphere/thermosphere region. Discovering other data that may be used with these satellites is a difficult and complicated process. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for the Virtual Ionosphere Thermosphere Mesosphere Observatory (VITMO). The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements for a number of magnetic field models and geophysical conditions. These services run in real-time when the user queries for data and allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists. Each service on their own provides a useful new capability for virtual observatories; operating together they will provide a powerful new search tool. The ephemerides service is being built using the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit (http://naif.jpl.nasa.gov) allowing them to be extended to support any Earth orbiting satellite with the addition of the appropriate SPICE kernels. The overlap calculator uses techniques borrowed from computer graphics to identify overlapping measurements in space and time. The calculator will allow a user defined uncertainty to be selected to allow "near misses" to be found. The magnetic field

  2. Global Ionospheric and Thermospheric Effects of the June 2015 Geomagnetic Disturbances : Multi-Instrumental Observations and Modeling

    NARCIS (Netherlands)

    Astafyeva, E; Zakharenkova, I; Huba, J. D.; Doornbos, E.N.; van den IJssel, J.A.A.

    2017-01-01

    By using data from multiple instruments, we investigate ionospheric/thermospheric behavior during the period from 21 to 23 June 2015, when three interplanetary shocks (IS) of different intensities arrived at Earth. The first IS was registered at 16:45 UT on 21 June and caused ~50 nT increase in

  3. Radar observations of high-latitude lower-thermospheric and upper-mesospheric winds and their response to geomagnetic activity

    International Nuclear Information System (INIS)

    Johnson, R.M.

    1987-01-01

    Observations made by the Chatanika, Alaska, incoherent scatter radar during the summer months of 1976 to 1081 are analyzed to obtain high resolution lower-thermospheric neutral winds. Average winds and their tidal components are presented and compared to previous observational and model results. Upper-mesospheric neutral-wind observations obtained by the Poke Flat, Alaska Mesosphere-Stratosphere-Troposphere (MST) radar during the summer months of 1980 to 1982 are investigated statistically for evidence of variations due to geomagnetic activity. Observation of upper-mesospheric neutral winds made during two energetic Solar Proton Events (SPEs) by the Poker Flat, MST radar are presented. These results allow the low-altitude limits of magnetospheric coupling to the neutral atmosphere to be determined. Lower-thermospheric neutral winds are coupled to the ion convection driven by typical magnetospheric forcing above about 100 km. Coupling to lower atmospheric levels does not occur except during intervals of extreme disturbance of the magnetosphere-ionosphere-thermosphere system which are also accompanied by dramatically increased ionization in the high-latitude mesosphere, such as SPEs

  4. Venus thermosphere and exosphere - First satellite drag measurements of an extraterrestrial atmosphere

    Science.gov (United States)

    Keating, G. M.; Tolson, R. H.; Hinson, E. W.

    1979-01-01

    Atmospheric drag measurements obtained from the study of the orbital decay of Pioneer Venus I indicate that atomic oxygen predominates in the Venus atmosphere above 160 kilometers. Drag measurements give evidence that conditions characteristic of a planetary thermosphere disappear near sundown, with inferred exospheric temperatures sharply dropping from approximately 300 K to less than 150 K. Observed densities are generally lower than given by theoretical models.

  5. Lower thermosphere (80-100 km) dynamics response to solar and geomagnetic activity: Overview

    International Nuclear Information System (INIS)

    Kazimirovsky, E.S.

    1989-01-01

    The variations of solar and geomagnetic activity may affect the thermosphere circulation via plasma heating and electric fields, especially at high latitudes. The possibility exists that the energy involved in auroral and magnetic storms can produce significant changes of mesosphere and lower thermosphere wind systems. A study of global radar measurements of winds at 80 to 100 km region revealed the short term effects (correlation between wind field and geomagnetic storms) and long term variations over a solar cycle. It seems likely that the correlation results from a modification of planetary waves and tides propagated from below, thus altering the dynamical regime of the thermosphere. Sometimes the long term behavior points rather to a climatic variation with the internal atmospheric cause than to a direct solar control

  6. Non-thermal distribution of O(1D) atoms in the night-time thermosphere

    Science.gov (United States)

    Yee, Jeng-Hwa

    1988-01-01

    The 6300 A O(1D-3P) emission has been used for many years to remotely monitor the thermospheric temperature from the Doppler width of its line profile. The O(1D) atoms in the nighttime thermosphere are initially produced by the dissociative recombination of O2(+) ions with kinetic energy much greater than the thermal energy of the ambient neutrals. The validity of the technique to monitor neutral ambient temperature by measuring O(1D) 6300 A emission depends on the degree of thermalization of the O(1D) atoms. The object of this study is to calculate the velocity distribution of the O(1D) atoms and to examine the effect of nonthermal distribution on the nighttime thermospheric neutral temperature determined.

  7. Equatorial thermospheric winds: New results using data from a network of three Fabry-Perot interferometers located in central Peru

    Science.gov (United States)

    Meriwether, J. W.; Dominquez, L. N.; Milla, M. A.; Chau, J. L.; Makela, J. J.; Fisher, D.

    2013-12-01

    A new observing strategy aimed at improving our understanding of the properties of the equatorial thermosphere wind field, such as the vorticity and divergence, has been developed to generate maps of the thermospheric wind field. Estimates of the neutral wind are obtained from measurements of the Doppler shift of the thermospheric 630.0-nm emission obtained from a sequence of eight evenly spaced azimuthal directions for each of the three Fabry-Perot interferometer (FPI) observatories located in central Peru (Jicamarca, Nazca, and Arequipa). Measurements towards the zenith and a frequency-stabilized laser reference are also included in each sequence, which takes ~25 minutes to complete. Six of the off-zenith observing directions from the Nazca FPI observatory are used to make common volume (CV) measurements, where two of the FPIs observe the same thermospheric volume with a centroid height of ~250 km at orthogonal angles. These CV positions are located ~225 km north and south of the Nazca FPI observatory. The data obtained during a coordinated observation of the two FPIs observing the same CV location are used to compute estimates of the zonal (u) and meridional (v) wind components. The set of Doppler shifts measured by the three FPIs during a single sequence is used to produce a map of the neutral wind field for that period of time. The construction of this map is based upon the use of a first-order polynomial expansion of the neutral wind field relative to the site coordinates of each FPI location. This expansion includes the first-order gradients of u and v with respect to the zonal (x) and meridional (y) directions. Computation of the best fit in a linear least squares sense of the model expansion parameters to the Doppler shift data for all three sites determines the values of these gradient parameters. Results obtained for mid-winter 2013 show the anti-cyclonic circulation expected near the terminator generated by the day-to-night pressure gradient. Sequences

  8. Electric field effects on ionospheric and thermospheric parameters above the EISCAT station for summer conditions

    Directory of Open Access Journals (Sweden)

    V. V. Klimenko

    Full Text Available Numerical calculations of the thermospheric and ionospheric parameters above EISCAT are presented for quiet geomagnetic conditions in summer. The Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP was used. The numerical results were obtained both with a self-consistent calculation of the electric fields of magnetospheric and dynamo-action origin and with the magnetospheric electric fields only. It was found that the dynamo-electric field has some effect on the ionospheric convection pattern during quiet geomagnetic conditions. It has a marked effect mainly on the zonal neutral wind component above EISCAT (±20 m/s at 140 km altitude. We have studied the effects of various field-aligned current (FAC distributions on thermosphere/ionosphere parameters and we show that a qualitative agreement can be obtained with region-I and -II FAC zones at 75° and 65° geomagnetic latitude, respectively. The maximum FAC intensities have been assumed at 03–21 MLT for both regions with peak values of 2.5×10–7 A m–2 (region I and 1.25×10–7 A m–2 (region II. These results are in agreement with statistical potential distribution and FAC models constructed by use of EISCAT data. The lack of decreased electron density in the night-time sector as observed by the EISCAT radar was found to be due to the spatial distribution of ionospheric convection resulting from electric fields of magnetospheric origin.

    Key words. Electric fields and currents · Ionosphere- atmosphere interactions · Modelling and forecasting

  9. Silicon Chemistry in the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Plane, John M. C.; Gomez-Martin, Juan Carlos; Feng, Wuhu; Janches, Diego

    2016-01-01

    Silicon is one of the most abundant elements in cosmic dust, and meteoric ablation injects a significant amount of Si into the atmosphere above 80 km. In this study, a new model for silicon chemistry in the mesosphere lower thermosphere is described, based on recent laboratory kinetic studies of Si, SiO,SiO2, and S(exp +). Electronic structure calculations and statistical rate theory are used to show that the likely fate of SiO2 is a two-step hydration to silicic acid (Si(OH)4), which then polymerizes with metal oxides and hydroxides to form meteoric smoke particles. This chemistry is then incorporated into a whole atmosphere chemistry-climate model. The vertical profiles of Si+ and the Si(exp +)Fe(exp +) ratio are shown to be in good agreement with rocket-borne mass spectrometric measurements between 90 and 110 km. Si(exp +) has consistently been observed to be the major meteoric ion around 110 km; this implies that the relative injection rate of Si from meteoric ablation, compared to metals such as Fe and Mg, is significantly larger than expected based on the irrelative chondritic abundances. Finally, the global abundances of SiO and Si(OH)4 show clear evidence of the seasonal meteoric input function, which is much less pronounced in the case of other meteoric species.

  10. Initial daytime and nighttime SOFDI observations of thermospheric winds from Fabry-Perot Doppler shift measurements of the 630-nm OI line-shape profile

    Directory of Open Access Journals (Sweden)

    A. J. Gerrard

    2011-09-01

    Full Text Available In this paper we present both night and day thermospheric wind observations made with the Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI, a novel triple-etalon Fabry-Perot interferometer (FPI designed to make 24-h measurements of thermospheric winds from OI 630-nm emission. These results were obtained from the northeastern United States and from under the magnetic equator at Huancayo, Peru and demonstrate the current instrument capability for measurements of Doppler shifts for either night or day. We found the uncertainties in the measurements agree with expected values based upon forward modeling calculations; nighttime wind components having an uncertainty of ~20-m s−1 at 30-min resolution and daytime wind components having an uncertainty of ~70-m s−1 at 20-min resolution. The nighttime uncertainties are typically larger than those seen with traditional single-etalon FPIs, which occur at the cost of being able to achieve daytime measurements. The thermospheric wind measurements from Huancayo replicate recently reported CHAMP zonal winds and are in disagreement with current empirical wind climatologies. In addition, we discuss the incorporation of how multiple point heads in the SOFDI instrument will allow for unique studies of gravity wave activity in future measurements.

  11. Reassessment of the thermospheric response to geomagnetic activity at low latitudes

    International Nuclear Information System (INIS)

    Berger, C.; Barlier, F.; Ill, M.

    1988-01-01

    The present study takes advantage of measurements made at low latitudes by the Cactus accelerometer. From such measurements the response of several thermospheric parameters to geomagnetic activity can be simultaneously and reliably retrieved: total density, density scale height, vertical density scale height gradient, temperature, O/N 2 ratio and mean molecular mass. On investigation their behaviour exhibits a diurnal variation, some features of which have not been described, especially in the case of strong geomagnetic storms. In particular, the night scale height response appears to be stronger than the day one while its vertical gradients increase by day and slightly decrease at night. The temperature increase is higher by day while the O/N 2 ratio decreases by day, and increases at night at constant pressure level as well as at fixed height. By day, significant vertical temperature gradients are also found. These results as well as others are analysed in the light of existing theories and compared to the predictions of existing thermospheric models. Strong meridional winds at night, heat transport through thermal conductivity as well as wave dissipation during the day might be factors helping to account for such a behaviour

  12. Tidal winds from the mesosphere, lower thermosphere global radar network during the second LTCS campaign: December 1988

    International Nuclear Information System (INIS)

    Manson, A.H.; Meek, C.E.; Avery, S.K.; Fraser, G.J.; Vincent, R.A.; Phillips, A.; Clark, R.R.; Schminder, R.; Kurschner, D.; Kazimirovsky, E.S.

    1991-01-01

    Winds and tides were measured by nine MLT (mesophere, lower thermosphere) radars with locations between 70 degree N and 78 degree S, including an equatorial station at Christmas Island, 2 degree N (Avery et al., 1990). The mean winds were eastward (westward) in the northern (southern) hemisphere mesophere, consistent with midwinter circulations. For the 12-hour (semidiurnal) tide, observations and the model of Forbes and Vial (1989) were in generally good agreement: in both cases northward components were closer to being in phase in the two hemispheres, and winter wavelengths were shorter than those of the midlatitude summer. Major differences were large (small) amplitudes at 70 degree N for model(observations); and poor agreement of equatorial tidal profiles. For the 24-hour (diurnal tide), the radar observations and model of Forbes and Hagan (1988) were in useful agreement in the summer hemisphere. However, the short (long) wavelengths at mid (high) latitudes of the model's winter hemisphere were not observed during LTCS (lower Thermosphere Coupling Study) 2, nor in climatologies for December. Suggestions as to the reason for this disparity are presented

  13. Solar rotation effects on the thermospheres of Mars and Earth.

    Science.gov (United States)

    Forbes, Jeffrey M; Bruinsma, Sean; Lemoine, Frank G

    2006-06-02

    The responses of Earth's and Mars' thermospheres to the quasi-periodic (27-day) variation of solar flux due to solar rotation were measured contemporaneously, revealing that this response is twice as large for Earth as for Mars. Per typical 20-unit change in 10.7-centimeter radio flux (used as a proxy for extreme ultraviolet flux) reaching each planet, we found temperature changes of 42.0 +/- 8.0 kelvin and 19.2 +/- 3.6 kelvin for Earth and Mars, respectively. Existing data for Venus indicate values of 3.6 +/- 0.6 kelvin. Our observational result constrains comparative planetary thermosphere simulations and may help resolve existing uncertainties in thermal balance processes, particularly CO2 cooling.

  14. Southern hemisphere observations of a long-term decrease in F region altitude and thermospheric wind providing possible evidence for global thermospheric cooling

    Science.gov (United States)

    Jarvis, M. J.; Jenkins, B.; Rodgers, G. A.

    1998-09-01

    F region peak heights, derived from ionospheric scaled parameters through 38-year data series from both Argentine Islands (65°S, 64°W) and Port Stanley (52°S, 58°W) have been analyzed for signatures of secular change. Long-term changes in altitude, which vary with month and time of day, were found at both sites. The results can be interpreted either as a constant decrease in altitude combined with a decreasing thermospheric wind effect or as a constant decrease in altitude which is altitude-dependent. Both interpretations leave inconsistencies when the results from the two sites are compared. The estimated long-term decrease in altitude is of a similar order of magnitude to that which has been predicted to result in the thermosphere from anthropogenic change related to greenhouse gases. Other possibilities should not, however, be ruled out.

  15. In situ measurements of hydrogen concentration and flux between 160 and 300 km in the thermosphere

    International Nuclear Information System (INIS)

    Breig, E.L.; Hanson, W.B.; Hoffman, J.H.; Kayser, D.C.

    1976-01-01

    Thermospheric concentrations of neutral atomic hydrogen near and below the F peak are directly related to H + , O + and atomic oxygen concentrations through the charge exchange equilibrium that is established between hydrogen and oxygen at these altitudes. This chemical relationship, together with in situ measurements of ionospheric and neutral atmospheric concentrations by instrumentation on board the Atmosphere Explorer C satellite, is utilized to investigate properties of neutral hydrogen at altitudes below 200 km where vertical diffusion strongly affects the hydrogen distribution. Data are discussed for a set of satellite orbits during quiet geomagnetic and solar conditions in February 1974; the resultant altitude variation of the derived hydrogen concentrations applies specifically to early afternoon at low 10 5 atoms/cm 3 is observed for these conditions at 300 km. At lower altitudes the concentration profiles are interpreted in terms of vertical hydrogen flow. The resultant daytime flux in the thermosphere is estimated to be (3.2 +- 1.0) x 10 8 atoms/cm 2 s. The present observations thus support theoretical estimates and model calculations of large hydrogen flow upward from the region below 100 km. They also support the concept of daytime thermospheric loss process of greater magnitude than the traditional evaporative escape mechanism

  16. High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2007-06-01

    Full Text Available Recent advances in the performance of CCD detectors have enabled a high time resolution study of the high latitude upper thermosphere with Fabry-Perot Interferometers (FPIs to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesosphere-lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere.

  17. The Effect of Sub-Auroral Polarization Streams (SAPS) on Ionosphere and Thermosphere during 2015 St. Patrick's Day storm: Global Ionosphere-Thermosphere Model (GITM) Simulations

    Science.gov (United States)

    Guo, J.; Deng, Y.; Zhang, D.; Lu, Y.; Sheng, C.

    2017-12-01

    Sub-Auroral Polarization Streams (SAPS) are incorporated into the non-hydrostatic Global Ionosphere-Thermosphere Model (GITM), revealing the complex effects on neutral dynamics and ion-neutral coupling processes. The intense westward ion stream could enhance the neutral zonal wind within the SAPS channel. Through neutral dynamics the neutrals then divide into two streams, one turns poleward and the other turns equatorward, forming a two-cell pattern in the SAPS-changed wind. The significant Joule heating induced by SAPS also leads to traveling atmospheric disturbances (TAD) accompanied by traveling ionospheric disturbances (TID), increasing the total electron content (TEC) by 2-8 TECu in the mid-latitude ionosphere. We investigate the potential causes of the reported poleward wind surge during the St. Patrick's Day storm in 2015. It is confirmed that Coriolis force on the westward zonal wind can contribute the poleward wind during post-SAPS interval. In addition, the simulations imply that the sudden decrease of heating rate within auroral oval could result in a TAD propagating equatorward, which could also be responsible for the sudden poleward wind surge. This study highlights the complicated effects of SAPS on ion-neutral coupling and neutral dynamics.

  18. Effect of geomagnetic storms on the daytime low-latitude thermospheric wave dynamics

    Science.gov (United States)

    Karan, Deepak K.; Pallamraju, Duggirala

    2018-05-01

    The equatorial- and low-latitude thermospheric dynamics is affected by both equatorial electrodynamics and neutral wave dynamics, the relative variation of which is dependent on the prevalent background conditions, which in turn has a seasonal dependence. Depending on the ambient thermospheric conditions, varying effects of the geomagnetic disturbances on the equatorial- and low-latitude thermosphere are observed. To investigate the effect of these disturbances on the equatorial- and low-latitude neutral wave dynamics, daytime airglow emission intensities at OI 557.7 nm, OI 630.0 nm, and OI 777.4 nm are used. These emissions from over a large field-of-view (FOV∼1000) have been obtained using a high resolution slit spectrograph, MISE (Multiwavelength Imaging Spectrograph using Echelle grating), from a low-latitude location, Hyderabad (17.50N, 78.40E; 8.90N MLAT), in India. Variations of the dayglow emission intensities are investigated during three geomagnetic disturbance events that occurred in different seasons. It is seen that the neutral dayglow emission intensities at all the three wavelengths showed different type of variations with the disturbance storm time (Dst) index in different seasons. Even though the dayglow emission intensities over low-latitude regions are sensitive to the variation in the equatorial electric fields, during periods of geomagnetic disturbances, especially in solstices, these are dependent on thermospheric O/N2 values. This shows the dominance of neutral dynamics over electrodynamics in the low-latitude upper atmosphere during geomagnetic disturbances. Further, spectral analyses have been carried out to obtain the zonal scale sizes in the gravity wave regime and their diurnal distributions are compared for geomagnetic quiet and disturbed days. Broadly, the zonal scales seem to be breaking into various scale sizes on days of geomagnetic disturbances when compared to those on quiet days. This contrast in the diurnal distribution of the

  19. Infrasonic attenuation in the upper mesosphere-lower thermosphere: a comparison between Navier-Stokes and Burnett predictions.

    Science.gov (United States)

    Akintunde, Akinjide; Petculescu, Andi

    2014-10-01

    This paper presents the results of a pilot study comparing the use of continuum and non-continuum fluid dynamics to predict infrasound attenuation in the rarefied lower thermosphere. The continuum approach is embodied by the Navier-Stokes equations, while the non-continuum method is implemented via the Burnett equations [Proc. London Math. Soc. 39, 385-430 (1935); 40, 382-435 (1936)]. In the Burnett framework, the coupling between stress tensor and heat flux affects the dispersion equation, leading to an attenuation coefficient smaller than its Navier-Stokes counterpart by amounts of order 0.1 dB/km at 0.1 Hz, 10 dB/km at 1 Hz, and 100 dB/km at 10 Hz. It has been observed that many measured thermospheric arrivals are stronger than current predictions based on continuum mechanics. In this context, the consistently smaller Burnett-based absorption is cautiously encouraging.

  20. The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm

    International Nuclear Information System (INIS)

    Deng, W.; Killeen, T.L.; Burns, A.G.; Roble, R.G.; Slavin, J.A.; Wharton, L.E.

    1993-01-01

    The authors extend previous work with a National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM), to study dynamo effects in the high latitude thermosphere. Ionospheric convection can drive neutral currents in much the same pattern by means of ion drag reactions. It has been observed that ion currents established during magnetic storms can induce neutral currents which persist for hours after the end of the storm. Model results have shown that such currents can account for up to 80 percent of the Hall currents in the period immediately following storms. Here this previous work is extended and compared with experimental observations. The authors simulate time dependent Hall currents, field-aligned currents, and electrical power fluxes coupling the magnetosphere and ionosphere. They discuss their results in terms of a loaded magnetosphere, which accounts for the fact that the neutral currents can also induce currents and electric fields in the ionosphere

  1. Methodological possibilities for using the electron and ion energy balance in thermospheric complex measurements

    International Nuclear Information System (INIS)

    Serafimov, K.B.; Serafimova, M.K.

    1991-01-01

    Combination of ground based measurements for determination of basic thermospheric characteristics is proposed . An expression for the energy transport between components of space plasma is also derived and discussed within the framework of the presented methodology which could be devided into the folowing major sections: 1) application of ionosonde, absorption measurements, TEC-measurements using Faradey radiation or the differential Doppler effect; 2) ground-based airglow measurements; 3) airglow and palsma satelite measurements. 9 refs

  2. Thermosphere as a sink of magnetospheric energy - a review of recent observations of dynamics

    International Nuclear Information System (INIS)

    Killeen, T.L.

    1985-01-01

    It is pointed out that the past few years have seen an unprecedented influx of new experimental information on the dynamics of the neutral upper atmosphere of the earth. Vector wind measurements provide new information for studies of the thermospheric response to magnetospheric forcing. This response occurs through the medium of convecting ionospheric ions set into motion by electric fields of magnetospheric origin. The ultimate sink for much of the energy and momentum coming from the magnetosphere is the neutral thermosphere whose dynamics have, in the past, received far less attention than their ionospheric counterpart because of basic experimental limitations. In this paper, a review is provided of the progress made in the last few years on the basis of the Dynamics Explorer neutral wind observations, taking into account the coupling between the magnetosphere and the thermosphere via the ionosphere. 26 references

  3. MIPAS observations of longitudinal oscillations in the mesosphere and the lower thermosphere: climatology of odd-parity daily frequency modes

    Directory of Open Access Journals (Sweden)

    M. García-Comas

    2016-09-01

    Full Text Available MIPAS global Sun-synchronous observations are almost fixed in local time. Subtraction of the descending and ascending node measurements at each longitude only includes the longitudinal oscillations with odd daily frequencies nodd from the Sun's perspective at 10:00. Contributions from the background atmosphere, daily-invariant zonal oscillations and tidal modes with even-parity daily frequencies vanish. We have determined longitudinal oscillations in MIPAS temperature with nodd and wavenumber k = 0–4 from the stratosphere to 150 km from April 2007 to March 2012. To our knowledge, this is the first time zonal oscillations in temperature have been derived pole to pole in this altitude range from a single instrument. The major findings are the detection of (1 migrating tides at northern and southern high latitudes; (2 significant k = 1 activity at extratropical and high latitudes, particularly in the Southern Hemisphere; (3 k = 3 and k = 4 eastward-propagating waves that penetrate the lower thermosphere with a significantly larger vertical wavelength than in the mesosphere; and (4 a migrating tide quasi-biennial oscillation in the stratosphere, mesosphere and lower thermosphere. MIPAS global measurements of longitudinal oscillations are useful for testing tide modeling in the mesosphere and lower thermosphere region and as a lower boundary for models extending higher up in the atmosphere.

  4. Study of gravity waves propagation in the thermosphere of Mars based on MAVEN/NGIMS density measurements

    Science.gov (United States)

    Vals, M.

    2017-09-01

    We use MAVEN/NGIMS CO2 density measurements to analyse gravity waves in the thermosphere of Mars. In particular the seasonal/latitudinal variability of their amplitude is studied and interpreted. Key background parameters controlling the activity of gravity waves are analysed with the help of the Mars Climate Database (MCD). Gravity waves activity presents a good anti-correlation to the temperature variability retrieved from the MCD. An analysis at pressure levels is ongoing.

  5. Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux

    Science.gov (United States)

    Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.

    2007-01-01

    We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.

  6. Scalar and Vector Spherical Harmonics for Assimilation of Global Datasets in the Ionosphere and Thermosphere

    Science.gov (United States)

    Miladinovich, D.; Datta-Barua, S.; Bust, G. S.; Ramirez, U.

    2017-12-01

    Understanding physical processes during storm time in the ionosphere-thermosphere (IT) system is limited, in part, due to the inability to obtain accurate estimates of IT states on a global scale. One reason for this inability is the sparsity of spatially distributed high quality data sets. Data assimilation is showing promise toward enabling global estimates by blending high quality observational data sets with established climate models. We are continuing development of an algorithm called Estimating Model Parameters for Ionospheric Reverse Engineering (EMPIRE) to enable assimilation of global datasets for storm time estimates of IT drivers. EMPIRE is a data assimilation algorithm that uses a Kalman filtering routine to ingest model and observational data. The EMPIRE algorithm is based on spherical harmonics which provide a spherically symmetric, smooth, continuous, and orthonormal set of basis functions suitable for a spherical domain such as Earth's IT region (200-600 km altitude). Once the basis function coefficients are determined, the newly fitted function represents the disagreement between observational measurements and models. We apply spherical harmonics to study the March 17, 2015 storm. Data sources include Fabry-Perot interferometer neutral wind measurements and global Ionospheric Data Assimilation 4 Dimensional (IDA4D) assimilated total electron content (TEC). Models include Weimer 2000 electric potential, International Geomagnetic Reference Field (IGRF) magnetic field, and Horizontal Wind Model 2014 (HWM14) neutral winds. We present the EMPIRE assimilation results of Earth's electric potential and thermospheric winds. We also compare EMPIRE storm time E cross B ion drift estimates to measured drifts produced from the Super Dual Auroral Radar Network (SuperDARN) and Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) measurement datasets. The analysis from these results will enable the generation of globally assimilated

  7. Auroral zone thermospheric dynamics using Fabry-Perot interferometric measurements of the O1 15867 K emission

    International Nuclear Information System (INIS)

    Sica, R.J.

    1985-01-01

    Forty-four nights of thermospheric neutral wind and temperature measurements were obtained from College, Alaska (65 0 invariant latitude) during solar maximum using a ground-based Fabry-Perot interferometer. When averaged by increasing geomagnetic activity, the wind exhibits two main features. First, the general flow pattern poleward and westward in the evening, changing to southward and eastward in the morning, persists with increasing activity. The flow velocity increases and the change in direction occurs earlier in magnetic local time as the geomagnetic activity increases. Second, as the activity increases, the meridional wind pattern shifts equatorward with the auroral oval. Consequently, the low geomagnetic activity average wind pattern in the north is similar to the moderate activity average pattern in the south. The average thermospheric temperature is governed by the geomagnetic activity and by the previous day's 10.7 cm solar flux. The increase in temperature with solar flux is about the same as with auroral activity (approx. = 225 0 K). The dynamical behavior on individual nights highlights the importance of local auroral substorms, which can cause large deviations from both global models and the observed averages. Coupling between the E and F regions is inferred by comparing the bulk motion of the optical aurora and the observed wind. Westward-drifting auroral forms accompany the westward evening zonal wind

  8. Vorticity and divergence in the high-latitude upper thermosphere

    International Nuclear Information System (INIS)

    Thayer, J.P.; Killeen, T.L.

    1991-01-01

    Measurements made from the Dynamics Explorer-2 satellite in November 1981 through January 1982 and November 1982 through January 1983 have been analyzed to determine the divergence and vertical component of vorticity of the high-latitude neutral wind field in the upper thermosphere for quiet (kp≤6) geomagnetic conditions and for both northern (winter) and southern (summer) hemispheres in the polar thermosphere and provides insight into the relative strengths of the different sources of momentum and energy responsible for driving the winds. The principal findings from this work include the following: The mean neutral wind pattern is dominated by rotational flow rather than by divergent flow, with a typical vorticity: divergence ratio of ∼ 2:1 for active conditions and ∼ 4:1 for quiet conditions. Comparison of the divergence and vorticity patterns for quiet and active conditions indicates that the divergent component of the neutral flow intensifies more significantly with increasing geomagnetic activity than does the rotational component

  9. Optical measurements of winds in the lower thermosphere

    International Nuclear Information System (INIS)

    Wiens, R.H.; Shepherd, G.G.; Gault, W.A.; Kosteniuk, P.R.

    1988-01-01

    WAMDII, the wide-angle Michelson Doppler imaging interferometer, was used to measure the neutral wind in the lower thermosphere by the Doppler shift of the O I 557-nm line. Observations were made at Saskatoon (60.5 degree N invariant) around the spring equinox of 1985 with WAMDII coupled to an all-sky lens. With dopplergrams averaged over 3 to 30 min, no evidence was found for persistent highly localized winds on either of the two nights studied, one viewing only aurora and one viewing only airglow. The nocturnal variation was determined for both nights using average horizontal wind for the whole all-sky image. The pattern for the auroral case shows winds parallel to the aurora orientation in the evening but substantial crosswinds near midnight. High latitude general circulation models seem to represent this case better than local auroral generation models. The airglow case showed eastward winds in the morning sector

  10. On the origin of ionospheric sublayers in the lower thermosphere

    Energy Technology Data Exchange (ETDEWEB)

    Shirke, J S; Sridharan, R

    1979-11-01

    Some properties are examined of ionospheric sublayers usually two in number originating at sunrise in the lower thermosphere. The formation of the sublayers is found to be nearly global in nature though they are quickly transported upward over the dip-equatorial region as a result of vertical drifts existing there. The ionization associated with the layers once formed appears to remain constant for over several hours while the ambient ionization exhibits a solar zenith angle dependence. The sublayers at equatorial and low latitudes are often found capable of yielding echoes of radio waves transmitted from ground of frequencies much larger than corresponding to the ambient plasma density. This is shown to be due to generation of gradient type instabilities in these sublayers. The generation of the sublayers themselves is shown to be consistent with the concept of ionization at sunrise of neutral constituents deposited overnight from micrometeorites in the lower thermosphere.

  11. Thermospheric neutral densities derived from Swarm accelerometer and GPS data

    DEFF Research Database (Denmark)

    Doornbos, Eelco; Encarnacao, Joao; van den IJss, Jose

    Over the past years, a lot of effort has been put into characterising and correcting the various disturbance signals that were found in the accelerometer data provided by the Swarm satellites. This effort was first and foremost aimed at the Swarm C along-track axis data, which seems to be the least...... affected and most promising data for scientific use. The goal to make the Swarm C accelerometer along-track axis data ready for further processing into level 2 thermosphere density data has now been accomplished, with the help of information on the satellite motion from the GPS tracking as well...... approach, affects the possibility of determining densities from the accelerometer measurements of the Swarm A and B satellites. We also investigate the possibility of determining crosswind speeds from Swarm data.In the meantime, we have investigated the possibility of deriving thermosphere neutral density...

  12. A modeling study of the thermosphere-ionosphere interactions during the boreal winter and spring 2015-2016: Tidal and planetary-scale waves effect on the ionospheric structure.

    Science.gov (United States)

    Sassi, F.; McDonald, S. E.; McCormack, J. P.; Tate, J.; Liu, H.; Kuhl, D.

    2017-12-01

    The 2015-2016 boreal winter and spring is a dynamically very interesting time in the lower atmosphere: a minor high latitude stratospheric warming occurred in February 2016; an interrupted descent of the QBO was found in the tropical stratosphere; and a large warm ENSO took place in the tropical Pacific Ocean. The stratospheric warming, the QBO and ENSO are known to affect in different ways the meteorology of the upper atmosphere in different ways: low latitude solar tides and high latitude planetary-scale waves have potentially important implications on the structure of the ionosphere. In this study, we use global atmospheric analyses from a high-altitude version of the High-Altitude Navy Global Environmental Model (HA-NAVGEM) to constrain the meteorology of numerical simulations of the Specified Dynamics Whole Atmosphere Community Climate Model, extended version (SD-WACCM-X). We describe the large-scale behavior of tropical tides and mid-latitude planetary waves that emerge in the lower thermosphere. The effect on the ionosphere is captured by numerical simulations of the Navy Highly Integrated Thermosphere Ionosphere Demonstration System (Navy-HITIDES) that uses the meteorology generated by SD-WACCM-X to drive ionospheric simulations during this time period. We will analyze the impact of various dynamical fields on the zonal behavior of the ionosphere by selectively filtering the relevant dynamical modes.

  13. 3-Dimensional numerical simulations of the dynamics of the Venusian mesosphere and thermosphere

    Science.gov (United States)

    Tingle, S.; Mueller-Wodarg, I. C.

    2009-12-01

    We present the first results from a new 3-dimensional numerical simulation of the steady state dynamics of the Venusian mesosphere and thermosphere (60-300 km). We have adapted the dynamical core of the Titan thermosphere global circulation model (GCM) [1] to a steady state background atmosphere. Our background atmosphere is derived from a hydrostatic combination of the VTS3 [2] and Venus International Reference Atmosphere (VIRA) [3] empirical models, which are otherwise discontinuous at their 100 km interface. We use 4th order polynomials to link the VTS3 and VIRA thermal profiles and employ hydrostatic balance to derive a consistent density profile. We also present comparisons of our background atmosphere to data from the ESA Venus Express Mission. The thermal structure of the Venusian mesosphere is relatively well documented; however, direct measurements of wind speeds are limited. Venus’ slow rotation results in a negligible Coriolis force. This suggests that the zonal circulation should arise from cyclostrophic balance; where the equatorward component of the centrifugal force balances poleward meridional pressure gradients [4]. The sparseness of direct and in-situ measurements has resulted in the application of cyclostrophic balance to measured thermal profiles to derive wind speeds [5] [6] [7] [8]. However, cyclostrophic balance is only strictly valid at mid latitudes (˜ ± 30-75°) and its applicability to the Venusian mesosphere has not been conclusively demonstrated. Our simulations, by solving the full Navier-Stokes momentum equation, will enable us assess the validity of cyclostrophic balance as a description of mesospheric dynamics. This work is part of an ongoing project to develop the first GCM to encompass the atmosphere from the cloud tops into the thermosphere. When complete, this model will enable self-consistent calculations of the dynamics, energy and composition of the atmosphere. It will thus provide a framework to address many of the

  14. The effect of energetic electron precipitation on the nitric oxide density in the lower thermosphere

    International Nuclear Information System (INIS)

    Saetre, Camilla

    2006-12-01

    The objective of this thesis has been the study of the chemical effects of the electron precipitation in the upper atmosphere, and mainly the increase of thermospheric nitric oxide (NO). NO plays an important role in the temperature balance for the mesosphere and thermosphere.In this project auroral electron precipitation data, derived from the Polar Ionospheric X-ray Imaging Experiment (PIXIE) and the Ultraviolet Imager (UVI) on board the Polar satellite, have been used together with NO density measurements from the Student Nitric Oxide Explorer (SNOE)

  15. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    Science.gov (United States)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  16. Local recurrence after microwave thermosphere ablation of malignant liver tumors: results of a surgical series.

    Science.gov (United States)

    Takahashi, Hideo; Kahramangil, Bora; Berber, Eren

    2018-04-01

    Microwave thermosphere ablation is a new treatment modality that creates spherical ablation zones using a single antenna. This study aims to analyze local recurrence associated with this new treatment modality in patients with malignant liver tumors. This is a prospective clinical study of patients who underwent microwave thermosphere ablation of malignant liver tumors between September 2014 and March 2017. Clinical, operative, and oncologic parameters were analyzed using Kaplan-Meier survival and Cox proportional hazards model. One hundred patients underwent 301 ablations. Ablations were performed laparoscopically in 87 and open in 13 patients. Pathology included neuroendocrine liver metastasis (n = 115), colorectal liver metastasis (n = 100), hepatocellular cancer (n = 21), and other tumor types (n = 65). Ninety-day morbidity was 7% with one not procedure-related mortality. Median follow-up was 16 months with 65% of patients completing at least 12 months of follow-up. The rate of local tumor recurrence rate per lesion was 6.6% (20/301). Local tumor, new hepatic, and extrahepatic recurrences were detected in 15%, 40%, and 40% of patients, respectively. Local recurrence rate per pathology was 12% for both colorectal liver metastasis (12/100) and other metastatic tumors (8/65). No local recurrence was observed to date in the neuroendocrine liver metastasis and in the limited number of patients with hepatocellular cancers. Tumor size >3 cm and tumor type were independent predictors of local recurrence. This is the first study to analyze local recurrence after microwave thermosphere ablation of malignant liver tumors. Short-term local tumor control rate compares favorably with that reported for radiofrequency and other microwave technologies in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A study of space shuttle plumes in the lower thermosphere

    Science.gov (United States)

    Meier, R. R.; Stevens, Michael H.; Plane, John M. C.; Emmert, J. T.; Crowley, G.; Azeem, I.; Paxton, L. J.; Christensen, A. B.

    2011-12-01

    During the space shuttle main engine burn, some 350 t of water vapor are deposited at between 100 and 115 km. Subsequent photodissociation of water produces large plumes of atomic hydrogen that can expand rapidly and extend for thousands of kilometers. From 2002 to 2007, the Global Ultraviolet Imager (GUVI) on NASA's Thermosphere Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite imaged many of these hydrogen plumes at Lyman α (121.567 nm) while viewing in the nadir. The images reveal rapid plume expansion and occasional very fast transport to both north and south polar regions. Some plumes persist for up to 6 d. Near-simultaneous direct detections of water vapor were made with the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument, also on TIMED. We compare the spreading of the hydrogen plume with a two-dimensional model that includes photodissociation as well as both vertical and horizontal diffusion. Molecular diffusion appears to be sufficient to account for the horizontal expansion, although wind shears and turbulent mixing may also contribute. We compare the bulk motion of the observed plumes with wind climatologies derived from satellite observations. The plumes can move much faster than predictions of wind climatologies. But dynamical processes not contained in wind climatologies, such as the quasi-two-day wave, can account for at least some of the high speed observations. The plume phenomena raise a number of important questions about lower thermospheric and mesospheric processes, ranging from dynamics and chemistry to polar mesospheric cloud formation and climatology.

  18. Determination of the thermospheric neutral wind from incoherent scatter radar measurements

    International Nuclear Information System (INIS)

    Haeggstroem, I.; Murdin, J.; Rees, D.

    1984-11-01

    Measurements made by the EISCAT UHF incoherent scatter radar are used to derive thermospheric winds. The derived wind is compared to Fabry-Perot interferometer measurements of the neutral wind made simultaneously. The uncertainties in the radar derived wind are discussed. (author)

  19. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration

    Science.gov (United States)

    Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.

    2017-10-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

  20. Multi-Instrument Investigation of Ionospheric Flow Channels and Their Impact on the Ionosphere and Thermosphere during Geomagnetic Storms

    Science.gov (United States)

    2017-12-29

    AFRL-AFOSR-JP-TR-2018-0009 Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during...SUBTITLE Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during geomagnetic storms 5a...Experiment) and GOCE (Gravity field and steady- state Ocean Circulation Explorer) satellite data. We also created a series of computer algorithms to

  1. The effects of nitric oxide cooling and the photodissociation of molecular oxygen on the thermosphere/ionosphere system over the Argentine Islands

    Directory of Open Access Journals (Sweden)

    G. D. Wells

    1997-03-01

    Full Text Available In the past the global, fully coupled, time-dependent mathematical model of the Earth's thermosphere/ionosphere/plasmasphere (CTIP has been unable to reproduce accurately observed values of the maximum plasma frequency, foF2, at extreme geophysical locations such as the Argentine Islands during the summer solstice where the ionosphere remains in sunlight throughout the day. This is probably because the seasonal dependence of thermospheric cooling by 5.3 µm nitric oxide has been neglected and the photodissociation of O2 and heating rate calculations have been over-simplified. Now we have included an up-to-date calculation of the solar EUV and UV thermospheric heating rate, coupled with a new calculation of a diurnally varying O2 photodissociation rate, in the model. Seasonally dependent 5.3 µm nitric oxide cooling is also included. With these important improvements, it is found that model values of foF2 are in substantially better agreement with observation. The height of the F2-peak is reduced throughout the day, but remains within acceptable limits of values derived from observation, except at around 0600 h LT. We also carry out two studies of the sensitivity of the upper atmosphere to changes in the magnitude of nitric oxide cooling and photodissociation rates. We find that hmF2 increases with increased heating, whilst foF2 falls. The converse is true for an increase in the cooling rate. Similarly increasing the photodissociation rate increases both hmF2 and foF2. These changes are explained in terms of changes in the neutral temperature, composition and neutral wind.

  2. Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities

    DEFF Research Database (Denmark)

    Siemes, Christian; da Encarnacao, Joao de Teixeira; Doornbos, Eelco

    2016-01-01

    The Swarm satellites were launched on November 22, 2013, and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers do not only provide the position and time for the magnetic field measurements, but are also used for determining non-gravitational forces like...... in the acceleration measurements of Swarm B. We show the results of each processing stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set......., the most prominent being slow temperature-induced bias variations and sudden bias changes. In this paper, we describe the new, improved four-stage processing that is applied for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first...... stage, the sudden bias changes in the acceleration measurements are manually removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction...

  3. Retrieval of nitric oxide in the mesosphere and lower thermosphere from SCIAMACHY limb spectra

    Directory of Open Access Journals (Sweden)

    S. Bender

    2013-09-01

    Full Text Available We use the ultra-violet (UV spectra in the range 230–300 nm from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY to retrieve the nitric oxide (NO number densities from atmospheric emissions in the gamma-bands in the mesosphere and lower thermosphere. Using 3-D ray tracing, a 2-D retrieval grid, and regularisation with respect to altitude and latitude, we retrieve a whole semi-orbit simultaneously for the altitude range from 60 to 160 km. We present details of the retrieval algorithm, first results, and initial comparisons to data from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. Our results agree on average well with MIPAS data and are in line with previously published measurements from other instruments. For the time of available measurements in 2008–2011, we achieve a vertical resolution of 5–10 km in the altitude range 70–140 km and a horizontal resolution of about 9° from 60° S–60° N. With this we have independent measurements of the NO densities in the mesosphere and lower thermosphere with approximately global coverage. This data can be further used to validate climate models or as input for them.

  4. SCANDI – an all-sky Doppler imager for studies of thermospheric spatial structure

    Directory of Open Access Journals (Sweden)

    A. L. Aruliah

    2010-02-01

    Full Text Available A new all-sky Fabry-Perot Interferometer called the Scanning Doppler Imager (SCANDI was built and installed at Longyearbyen in December 2006. Observations have been made of the Doppler shifts and Doppler broadening of the 630 nm airglow and aurora, from which upper thermospheric winds and temperatures are calculated. SCANDI allows measurements over a field-of-view (FOV with a horizontal radius of nearly 600 km for observations at an altitude of 250 km using a time resolution of 8 min. The instrument provides the ability to observe thermospheric spatial structure within a FOV which overlaps that of the EISCAT Svalbard radar and CUTLASS SuperDARN radars. Coordinating with these instruments provides an important opportunity for studying ion-neutral coupling. The all-sky image is divided into several sectors to provide a horizontal spatial resolution of between 100–300 km. This is a powerful extension in observational capability but requires careful calibration and data analysis, as described here. Two observation modes were used: a fixed and a scanning etalon gap. SCANDI results are corroborated using the Longyearbyen single look direction FPI, and ESR measurements of the ion temperatures. The data show thermospheric temperature gradients of a few Kelvins per kilometre, and a great deal of meso-scale variability on spatial scales of several tens of kilometres.

  5. Geomagnetically conjugate observation of plasma bubbles and thermospheric neutral winds at low latitudes

    Science.gov (United States)

    Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Nishioka, M.; Kubota, M.; Tsugawa, T.; Nagatsuma, T.; Komonjinda, S.; Yatini, C. Y.

    2015-03-01

    This is the first paper that reports simultaneous observations of zonal drift of plasma bubbles and the thermospheric neutral winds at geomagnetically conjugate points in both hemispheres. The plasma bubbles were observed in the 630 nm nighttime airglow images taken by using highly sensitive all-sky airglow imagers at Kototabang, Indonesia (geomagnetic latitude (MLAT): 10.0°S), and Chiang Mai, Thailand (MLAT: 8.9°N), which are nearly geomagnetically conjugate stations, for 7 h from 13 to 20 UT (from 20 to 03 LT) on 5 April 2011. The bubbles continuously propagated eastward with velocities of 100-125 m/s. The 630 nm images at Chiang Mai and those mapped to the conjugate point of Kototabang fit very well, which indicates that the observed plasma bubbles were geomagnetically connected. The eastward thermospheric neutral winds measured by two Fabry-Perot interferometers were 70-130 m/s at Kototabang and 50-90 m/s at Chiang Mai. We compared the observed plasma bubble drift velocity with the velocity calculated from the observed neutral winds and the model conductivity, to investigate the F region dynamo contribution to the bubble drift velocity. The estimated drift velocities were 60-90% of the observed velocities of the plasma bubbles, suggesting that most of the plasma bubble velocity can be explained by the F region dynamo effect.

  6. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  7. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  8. Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    S. Müller

    2009-05-01

    Full Text Available We have studied the dependence of the thermospheric mass density at equatorial latitudes on the influence of various drivers. This statistical study is based on CHAMP accelerometer measurements. Our aim is to delineate the influences of the different contributions. For the isolation of the effects we make use of a dedicated data selection procedure and/or removal of disturbing effects. In a first step all readings are normalised to an altitude of 400 km. For the investigation of the solar influences only magnetically quiet days (Ap≤15 are considered. The dependence on solar flux can well be described by a linear relation within the flux range F10.7=80–240. The slope is twice as steep on the day side as on the night side. The air density exhibits clear annual and semi-annual variations with maxima at the equinoxes and a pronounced minimum around June solstice. The thermosphere maintains during quiet days a day to night mass density ratio very close to 2, which is independent of solar flux level or season. The magnetospheric input causing thermospheric density enhancement can well be parameterised by the am activity index. The low latitude density responds with a delay to changes of the index by about 3 h on the dayside and 4–5 h on the night side. The magnetospheric forcing causes an additive contribution to the quiet-time density, which is linearly correlated with the am index. The slopes of density increases are the same on the day and night sides. We present quantitative expressions for all the dependences. Our results suggest that all the studied forcing terms can be treated as linear combinations of the respective contribution.

  9. Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT) region

    OpenAIRE

    X. Liu; X. Liu; J. Xu; H.-L. Liu; J. Yue; W. Yuan

    2014-01-01

    Using a fully nonlinear two-dimensional (2-D) numerical model, we simulated gravity waves (GWs) breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT). An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's app...

  10. Characterizing the Upper Atmosphere of Titan using the Titan Global Ionosphere- Thermosphere Model: Nitrogen and Methane.

    Science.gov (United States)

    Bell, J. M.; Waite, J. H.; Bar-Nun, A.; Bougher, S. W.; Ridley, A. J.; Magee, B.

    2008-12-01

    Recently, a great deal of effort has been put forth to explain the Cassini Ion-Neutral Mass Spectrometer (Waite et al [2004]) in-situ measurements of Titan's upper atmosphere (e.g. Muller-Wodarg [2008], Strobel [2008], Yelle et al [2008]). Currently, the community seems to agree that large amounts of CH4 are escaping from Titan's upper atmosphere at a rate of roughly 2.0 x 1027 molecules of CH4/s (3.33 x 1028 amu/s), representing a significant mass source to the Kronian Magnetosphere. However, such large escape fluxes from Titan are currently not corroborated by measurements onboard the Cassini Spacecraft. Thus, we posit another potential scenario: Aerosol depletion of atmospheric methane. Using the three-dimensional Titan Global Ionosphere-Thermosphere Model (T-GITM) (Bell et al [2008]), we explore the possible removal mechanisms of atmospheric gaseous constituents by these aerosols. Titan simulations are directly compared against Cassini Ion-Neutral Mass Spectrometer in-situ densities of N2 and CH4. From this work, we can then compare and contrast this aerosol depletion scenario against the currently posited hydrodynamic escape scenario, illustrating the merits and shortcomings of both.

  11. Thermospheric response observed over Fritz peak, Colorado, during two large geomagnetic storms near solar cycle maximum

    International Nuclear Information System (INIS)

    Hernandez, G.; Roble, R.G.; Ridley, E.C.; Allen, J.H.

    1982-01-01

    Nightime thermospheric winds and temperatures have been measured over Fritz Peak Observatory, Colorado (39.9 0 N, 105.5 0 W), with a high resolution Fabry-Perot spectrometer. The winds and temperatures are obtained from the Doppler shifts and line profiles of the (O 1) 15,867K (630 nm) line emission. Measurements made during two large geomagnetic storm periods near solar cycle maximum reveal a thermospheric response to the heat and momentum sources associated with these storms that is more complex than the ones measured near solar cycle minimum. In the earlier measurements made during solar cycle minimum, the winds to the north of Fritz Peak Observatory had an enhanced equatorward component and the winds to the south were also equatorward, usually with smaller velocities. The winds measured to the east and west of the observatory both had an enhanced westward wind component. For the two large storms near the present solar cycle maximum period converging winds are observed in each of the cardinal directions from Fritz Peak Observatory. These converging winds with speeds of hundreds of meters per second last for several hours. The measured neutral gas temperature in each of the directions also increases several hundred degrees Kelvin. Numerical experiments done with the NCAR thermospheric general circulation model (TGCM) suggest that the winds to the east and north of the station are driven by high-latitude heating and enhanced westward ion drag associated with magnetospheric convection. The cause of the enhanced poleward and eastward winds measured to the south and west of Fritz Peak Observatory, respectively, is not known. During geomagnetic quiet conditions the circulation is typically from the soutwest toward the northeast in the evening hours

  12. The variability of Joule heating, and its effects on the ionosphere and thermosphere

    Directory of Open Access Journals (Sweden)

    A. S. Rodger

    2001-07-01

    Full Text Available A considerable fraction of the solar wind energy that crosses the magnetopause ends up in the high-latitude thermosphere-ionosphere system as a result of Joule heating, the consequences of which are very significant and global in nature. Often Joule heating calculations use hourly averages of the electric field, rather than the time-varying electric field. This leads to an underestimation of the heating. In this paper, we determine the magnitude of the underestimation of Joule heating by analysing electric field data from the EISCAT Incoherent Scatter Radar, situated at the 67° E magnetic latitude. We find that the underestimation, using hourly-averaged electric field values, is normally ~20%, with an upper value of about 65%. We find that these values are insensitive to changes in solar flux, magnetic activity and magnetic local time, implying that the electric field fluctuations are linear related to the amplitude of the electric field. Assuming that these changes are representative of the entire auroral oval, we then use a coupled ionosphere-thermosphere model to calculate the local changes these underestimations in the heating rate cause to the neutral temperature, mean molecular mass and meridional wind. The changes in each parameter are of the order of a few percent but they result in a reduction in the peak F-region concentration of ~20% in the summer hemisphere at high latitudes, and about half of this level in the winter hemisphere. We suggest that these calculations could be used to add corrections to modelled values of Joule heating.Key words. Ionosphere (eletric fields and currents; ionospheric disturbances; polar ionosphere

  13. Secondary gravity waves from momentum deposition in the stratosphere, mesosphere, thermosphere and ionosphere

    Science.gov (United States)

    Vadas, S.

    2017-12-01

    In this paper, we investigate the generation, propagation and effectsof secondary gravity waves (GWs) from momentum deposition in the stratosphere, mesosphere, thermosphere and ionosphere in high-resolution GW-resolving models and in TEC/lidar/redline data. We show that secondary GWs generated from the dissipation of orographic GWs at McMurdo Station in Antarctica play a dominant role in the wave activity over McMurdo in the wintertime mesosphere. These secondary GWs are created in the stratosphere, and have been identified in models and data via their telltale "fishbone" appearance in z-t plots. We also show that secondary GWs from the dissipation of GWs excited by deep convectiongenerate concentric rings in the F-region ionosphere. These model results and data point to the importance of secondary GWs from momentumdeposition in the Earth's atmosphere and ionosphere.

  14. The State of the Thermosphere in 2017 as Observed by SABER

    Science.gov (United States)

    Hunt, L. A.; Mlynczak, M. G.; Marshall, B. T.; Russell, J. M., III

    2017-12-01

    Infrared radiative cooling of the thermosphere by carbon dioxide (CO2, 15 μm) and by nitric oxide (NO, 5.3 μm) has been observed for nearly 16 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. SABER has documented dramatic variability in the radiative cooling on timescales ranging from days to the nominal 11-year solar cycle, providing important information about the radiation budget in the upper atmosphere. The effects of Solar Cycle 24 are clearly evident in the infrared radiative cooling of the thermosphere as observed by SABER. The peak NO cooling in SC24 is about one-third less than the maximum seen in SC23 since the beginning of the SABER record in January 2002, while the SC24 CO2 peak is nearly 95% of that in SC23. SC24 has been weakening throughout all of 2017 as measured by the F10.7 index and the sunspot number. Despite this, the radiative cooling by NO and CO2 has not yet reached the low levels of the prior minimum in 2008-2009. This is due to continuing elevated levels of geomagnetic activity as clearly shown by the Ap index. During the years preceding the prior solar minimum, harmonics of the solar rotation period were evident in time series of the NO and CO2 power, and were associated with high speed solar wind streams emanating from coronal holes roughly evenly spaced in solar longitude. Despite a number of large, Earth-facing coronal holes in 2017, periodic features have not yet been observed in spectral/Fourier analysis of the SABER radiative cooling time series. Additional comparisons between solar cycles and with other solar and geomagnetic indicators will also be shown.

  15. A study of the terrestrial thermosphere by remote sensing of OI dayglow in the far and extreme ultraviolet

    International Nuclear Information System (INIS)

    Cotton, D.M.

    1991-01-01

    The upper region of the Earth's atmosphere, the thermosphere, is a key part of the coupled solar-terrestrial system. An important method of obtaining information in the this region is through analysis of radiation excited through the interactions of the thermosphere with solar ionizing, extreme and far ultraviolet radiation. This dissertation presents one such study by the remote sensing of OI in the far and extreme ultraviolet dayglow. The research program included the development construction, and flight of a sounding rocket spectrometer to test this current understanding of the excitation and transport mechanisms of the OI 1356, 1304, 1027, and 989 angstrom emissions. This data set was analyzed using current electron and radiative transport models with the purpose of checking the viability of OI remote sensing; that is, whether existing models and input parameters are adequate to predict these detailed measurements. From discrepancies between modeled and measured emissions, inferences about these input parameters were made. Among other things, the data supports a 40% optically thick cascade contribution to the 1304 angstrom emission. From upper lying states corresponding to 1040, 1027 and 989 angstrom about half of this cascade has been accounted for in this study. There is also evidence that the Lyman β airglow from the geo-corona contributes a significant proportion (30-50%) to the OI 1027 angstrom feature. Furthermore, the photoelectron contribution to the 1027 angstrom feature appears to be underestimated in the current models by a factor of 20

  16. Simultaneous mesosphere-thermosphere-ionosphere parameter measurements over Gadanki (13.5°N, 79.2°E): First results

    Science.gov (United States)

    Taori, A.; Dashora, N.; Raghunath, K.; Russell, J. M., III; Mlynczak, Martin G.

    2011-07-01

    We report first simultaneous airglow, lidar, and total electron content measurements in the mesosphere-thermosphere-ionosphere system behavior from Gadanki (13.5°N, 79.2°E). The observed variability in mesospheric temperatures and 630 nm thermospheric emission intensity shows large variations from one night to another with clear upward propagating waves at mesospheric altitudes. The deduced mesospheric temperatures compare well with Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER)-derived temperatures, while the variability agrees well with lidar temperatures (on the night of simultaneous observations). The 630.0 nm thermospheric emission intensity and GPS-total electron content data exhibit occurrence of plasma depletions on the nights of 22-23 October and 22-23 May 2009, while no depletions are noted on the nearby nights of 23-24 October and 21-22 May 2009. These first simultaneous data reveal strong gravity-wave growth at upper mesospheric altitudes on the nights when plasma depletions were noted.

  17. The neutral thermosphere at Arecibo during geomagnetic storms

    International Nuclear Information System (INIS)

    Burnside, R.G.; Tepley, C.A.; Sulzer, M.P.; Fuller-Rowell, T.J.; Torr, D.G.; Roble, R.G.

    1991-01-01

    Over the past five years, simultaneous incoherent scatter and optical observations have been obtained at Arecibo, Puerto Rico, during two major geomagnetic storms. The first storm the authors examine occurred during the World Day campaign of 12-16 January 1988, where on 14 January 1988, Kp values greater than 7 were recorded. An ion-energy balance calculation shows that atomic oxygen densities at a fixed height on 14 January 1988 were about twice as large as they were on the quiet days in this period. Simultaneous radar and Fabry-Perot interferometer observations were used to infer nightime O densities on 14-15 January 1988 that were about twice as large as on adjacent quiet nights. On this night, unusually high westward ion velocities were observed at Arecibo. The Fabry-Perot measurements show that the normal eastward flow of the neutral wind was reversed on this night. The second storm they examine occured on the night of 13-14 July 1985, when Kp values reached only 4+, but the ionosphere and thermosphere responded in a similar manner as they did in January 1988. On the nights of both 13-14 July 1985 and 14-15 January 1988, the electron densities observed at Arecibo were significantly higher than they were on nearby geomagnetically quiet nights. These results indicate that major storm effects in thermospheric winds and composition propagate to low latitudes and have a pronounced effect on the ionospheric structure over Arecibo

  18. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 2. High-latitude circulation and interplanetary magnetic field dependence

    DEFF Research Database (Denmark)

    Emmert, J.T.; Hernandez, G.; Jarvis, M.J.

    2006-01-01

    We analyze upper thermospheric (similar to 250 km) nighttime horizontal neutral wind patterns, during geomagnetically quiet (Kp S), Halley (76 degrees S, 27 degrees W), Millstone Hill (43 degrees N, 72 degrees W), Sondre...

  19. New results on equatorial thermospheric winds and the midnight temperature maximum

    Directory of Open Access Journals (Sweden)

    J. Meriwether

    2008-03-01

    Full Text Available Optical observations of thermospheric winds and temperatures determined with high resolution measurements of Doppler shifts and Doppler widths of the OI 630-nm equatorial nightglow emission have been made with improved accuracy at Arequipa, Peru (16.4° S, 71.4° W with an imaging Fabry-Perot interferometer. An observing procedure previously used at Arecibo Observatory was applied to achieve increased spatial and temporal sampling of the thermospheric wind and temperature with the selection of eight azimuthal directions, equally spaced from 0 to 360°, at a zenith angle of 60°. By assuming the equivalence of longitude and local time, the data obtained using this technique is analyzed to determine the mean neutral wind speeds and mean horizontal gradients of the wind field in the zonal and meridional directions. The new temperature measurements obtained with the improved instrumental accuracy clearly show the midnight temperature maximum (MTM peak with amplitudes of 25 to 200 K in all directions observed for most nights. The horizontal wind field maps calculated from the mean winds and gradients show the MTM peak is always preceded by an equatorward wind surge lasting 1–2 h. The results also show for winter events a meridional wind abatement seen after the MTM peak. On one occasion, near the September equinox, a reversal was observed during the poleward transit of the MTM over Arequipa. Analysis inferring vertical winds from the observed convergence yielded inconsistent results, calling into question the validity of this calculation for the MTM structure at equatorial latitudes during solar minimum. Comparison of the observations with the predictions of the NCAR general circulation model indicates that the model fails to reproduce the observed amplitude by a factor of 5 or more. This is attributed in part to the lack of adequate spatial resolution in the model as the MTM phenomenon takes place within a scale of 300–500 km and ~45 min in

  20. Numerical simulations of thermospheric dynamics: divergence as a proxy for vertical winds

    Directory of Open Access Journals (Sweden)

    S. L. Cooper

    2009-06-01

    Full Text Available A local scale, time dependent three-dimensional model of the neutral thermosphere was used to test the applicability of two previously published empirical relations between thermospheric vertical wind and velocity divergence, i.e., those due to Burnside et al. (1981 and Brekke (1997. The model self-consistently solves for vertical winds driven by heat and momentum deposited into the neutral atmosphere by high latitude ion convection. The Brekke condition accurately mimicked the overall "shape" of the three-dimensional model vertical wind field although, as written, it consistently overestimated the vertical wind magnitude by a factor of approximately 5/3, for the heating scenarios that we considered. This same general behavior was observed regardless of whether the forcing was static or rapidly changing with time. We discuss the likely reason for the Brekke condition overestimating the magnitude of our vertical winds, and suggest an alternative condition that should better describe vertical winds that are driven by local heating. The applicability of the Burnside condition was, by contrast, quite variable. During static heating, both the magnitude and the sign of the model vertical winds were predicted reliably at heights above those of maximum energy and momentum deposition per unit mass. However, below the thermal forcing, the Burnside condition predicted vertical winds of the wrong sign. It also introduced significant artefacts into the predicted vertical wind field when the forcing changed suddenly with time. If these results are of general applicability (which seems likely, given the way these relations are derived then the Burnside condition could usually be used safely at altitudes above hmF2. But it should be avoided below this height at all times, and even at high altitudes during periods of dynamic forcing. While the Brekke condition (or our modified version of it could likely be used in all circumstances

  1. The possible effect of solar soft X rays on thermospheric nitric oxide

    International Nuclear Information System (INIS)

    Siskind, D.E.; Barth, C.A.; Cleary, D.D.

    1990-01-01

    A rocket measurement of thermospheric nitric oxide (NO) is used to evaluate the production of odd nitrogen by solar soft X rays (18-50 angstrom). The rocket observation was performed over White Sands Missile Range on November 9, 1981, at 1500 LT for solar maximum conditions (F10.7 = 233). The peak observed NO density was 6.3 x 10 7 cm -3 at 102 km. A photochemical model which included soft X rays was used for comparison with the data. The soft X rays create photoelectrons which lead to enhanced ionization of N 2 and thus increased odd nitrogen production. A good fit to the data was achieved using a soft X ray flux of 0.75 erg cm -2 s -1

  2. Horizontal and vertical winds and temperatures in the equatorial thermosphere: measurements from Natal, Brazil during August-September 1982

    International Nuclear Information System (INIS)

    Biondi, M.A.

    1985-01-01

    Fabry-Perot interferometer measurements of Doppler shifts and widths of the 630.0 nm nightglow line have been used to determine the neutral winds and temperatures in the equatorial thermosphere over Natal, Brazil during August-September 1982. During this period, in the early night (2130 U.T.) the average value of the horizontal wind vector was 95 m s -1 at 100 0 azimuth, and the temperature varied from a low of 950 K during geomagnetically quiet conditions to a high of approx. 1400 K during a storm (6 September). The meridional winds were small, -1 , and the eastward zonal winds reached a maximum value 1-3 h after sunset, in qualitative agreement with TGCM predictions. On 26 August, an observed persistent convergence in the horizontal meridional flow was accompanied by a downward vertical velocity and an increase in the thermospheric temperature measured overhead. Oscillations with periods of 40-45 min in both the zonal and vertical wind velocities were observed during the geomagnetic storm of 6 September, suggesting gravity wave modulation of the equatorial thermospheric flow. (author)

  3. Superstorms of November 2003 and 2004: the role of solar wind driving in the ionosphere-thermosphere dynamics

    Science.gov (United States)

    Verkhoglyadova, O. P.; Komjathy, A.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Paxton, L. J.

    2017-12-01

    We revisit three complex superstorms of 19-20 November 2003, 7-8 November 2004 and 9-11 November 2004 to analyze ionosphere-thermosphere (IT) effects driven by different solar wind structures. We distinguish structures associated with ICMEs and their upstream sheaths. The efficiencies of the solar wind-magnetosphere connection throughout the storms are estimated by coupling functions. The daytime IT responses to the complex driving are characterized by combining measurements of characteristic IT parameters. We focus on low- and middle-latitude TEC, global thermospheric infrared nitric oxide emission, composition ratio and locations of the auroral boundary obtained from multiple satellite platforms and ground-based measurements (GPS, TIMED/SABER, TIMED/GUVI, DMSP/SSUSI). A variety of metrics are utilized to examine IT phenomena at 1 hour time scales. It is well-known that the November storm periods featured TEC responses that did not fit a typical pattern. The role of direct driving of IT dynamics by solar wind structures and the role of IT pre-conditioning in these storms are examined to explain the complex unusual ionospheric responses. We identify IT feedback effects that can be important for long-lasting strong storms.

  4. Τhe observational and empirical thermospheric CO2 and NO power do not exhibit power-law behavior; an indication of their reliability

    Science.gov (United States)

    Varotsos, C. A.; Efstathiou, M. N.

    2018-03-01

    In this paper we investigate the evolution of the energy emitted by CO2 and NO from the Earth's thermosphere on a global scale using both observational and empirically derived data. In the beginning, we analyze the daily power observations of CO2 and NO received from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) equipment on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite for the entire period 2002-2016. We then perform the same analysis on the empirical daily power emitted by CO2 and NO that were derived recently from the infrared energy budget of the thermosphere during 1947-2016. The tool used for the analysis of the observational and empirical datasets is the detrended fluctuation analysis, in order to investigate whether the power emitted by CO2 and by NO from the thermosphere exhibits power-law behavior. The results obtained from both observational and empirical data do not support the establishment of the power-law behavior. This conclusion reveals that the empirically derived data are characterized by the same intrinsic properties as those of the observational ones, thus enhancing the validity of their reliability.

  5. Climatology of GW-TIDs in the magnetic equatorial upper thermosphere over India

    Science.gov (United States)

    Manju, G.; Aswathy, R. P.

    2017-11-01

    An analysis of Gravity wave induced travelling ionospheric disturbances (GW-TIDs) in the thermosphere during high and low solar epochs is undertaken using ionosonde data at Trivandrum (8.50N, 770E). Wavelet analysis is performed on the temporal variations of foF2 and the amplitudes of waves present in two period bands of (0.5-1.5) h and (2-4) h are extracted. The real height profiles are generated at 15 min internal for the whole day (for sample days) during high and low solar activity years. The study reveals that the GW-TID activity is significantly greater for solar minimum compared to solar maximum for the period 8.5-17.5 h. Diurnally the GW-TID activity in the (2-4) h period band peaks in the post sunset hours for both high and low solar epochs. For the 0.5-1.5 h period band, the diurnal maximum in GW-TID is occurring in the post sunset hours for high solar epoch while it occurs in the morning hours around 10 h LT for low solar epoch. Seasonally the day time GW-TID activity maximizes (minimizes) for winter (vernal equinox). The post sunset time GW-TID maximizes (minimizes) either for summer/winter (vernal equinox). The other interesting observation is the anti correlation of GW-TID in upper thermosphere with solar activity for day time and the correlation of the same with solar activity in the post sunset hours. The present results for daytime are in agreement with the equatorial daytime GW-TID behaviour reported from CHAMP satellite observations. The GW-TID activity during post sunset time for equatorial region upper thermosphere has not been reported so far.

  6. Mid-latitude thermospheric wind changes during the St. Patrick's Day storm of 2015 observed by two Fabry-Perot interferometers in China

    Science.gov (United States)

    Huang, Cong; Xu, Ji-Yao; Zhang, Xiao-Xin; Liu, Dan-Dan; Yuan, Wei; Jiang, Guo-Ying

    2018-04-01

    In this work, we utilize thermospheric wind observations by the Fabry-Perot interferometers (FPI) from the Kelan (KL) station (38.7°N, 111.6°E, Magnetic Latitude: 28.9°N) and the Xinglong (XL) station (40.2°N, 117.4°E, Magnetic Latitude: 30.5°N) in central China during the St. Patrick's Day storm (from Mar. 17 to Mar. 19) of 2015 to analyze thermospheric wind disturbances and compare observations with the Horizontal Wind Model 2007 (HWM07). The results reveal that the wind measurements at KL show very similar trends to those at XL. Large enhancements are seen in both the westward and equatorward winds after the severe geomagnetic storm occurred. The westward wind speed increased to a peak value of 75 m/s and the equatorward wind enhanced to a peak value of over 100 m/s. There also exist obvious poleward disturbances in the meridional winds during Mar. 17 to Mar. 19. According to the comparison with HWM07, there exist evident wind speed and temporal differences between FPI-winds and the model outputs in this severe geomagnetic storm. The discrepancies between the observations and HWM07 imply that the empirical model should be used carefully in wind disturbance forecast during large geomagnetic storms and more investigations between measurements and numerical models are necessary in future studies.

  7. Do minor sudden stratospheric warmings in the Southern Hemisphere (SH) impact coupling between stratosphere and mesosphere-lower thermosphere (MLT) like major warmings?

    Science.gov (United States)

    Eswaraiah, S.; Kim, Yong Ha; Liu, Huixin; Ratnam, M. Venkat; Lee, Jaewook

    2017-08-01

    We have investigated the coupling between the stratosphere and mesosphere-lower thermosphere (MLT) in the Southern Hemisphere (SH) during 2010 minor sudden stratospheric warmings (SSWs). Three episodic SSWs were noticed in 2010. Mesospheric zonal winds between 82 and 92 km obtained from King Sejong Station (62.22°S, 58.78°W) meteor radar showed the significant difference from usual trend. The zonal wind reversal in the mesosphere is noticed a week before the associated SSW similar to 2002 major SSW. The mesosphere wind reversal is also noticed in "Specified Dynamics" version of Whole Atmosphere Community Climate Model (SD-WACCM) and Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) simulations. The similar zonal wind weakening/reversal in the lower thermosphere between 100 and 140 km is simulated by GAIA. Further, we observed the mesospheric cooling in consistency with SSWs using Microwave Limb Sounder data. However, the GAIA simulations showed warming between 130 and 140 km after few days of SSW. Thus, the observation and model simulation indicate for the first time that the 2010 minor SSW also affects dynamics of the MLT region over SH in a manner similar to 2002 major SSW.[Figure not available: see fulltext.

  8. The Effect of Solar Radiation on Molecular Nitrogen Emissions Originating in the Sunlit Thermosphere of Earth.

    Science.gov (United States)

    Hatfield, David Brooke

    The vibrational distribution of N_2 triplet states in the sunlit upper thermosphere of Earth is measured and modeled for the first time. A comparison is made between measured and theoretical limb column emission rates for bands originating from each upper vibrational level of C^3Pi_ u(v) and A^3Sigma_sp {u}{+}(v). The measured column emission rates for the Second Positive (2PG) bands are 3.2 (+/-0.2), 3.2 (+/-0.2) and 0.6 (+0.0,-0.4) kRayleighs for bands originating from C^3Pi_ u(0Kaplan (VK) bands originating from A^3Sigma_sp{u}{+ }(0measured 2PG intensities, but comparisons of predicted A^3Sigma_sp{u }{+}(v) column emissions to measured VK intensities are poor. Despite this discrepancy, the predicted sum of all A^3Sigma_sp {u}{+}(v) emission rates over all v compared well to the sum of measured VK intensities. This implies that the excitation rate into the N_2 triplet states is well understood, but that the cascade mechanisms are not as yet understood sufficiently to use dayglow N_2 band emissions as remote sensing probes of the sunlit thermosphere. The dayglow N_2 emissions are modeled by extending the existing auroral model to include resonance scattering of sunlight and replacing the precipitating auroral electrons with photoelectrons. The effects of solar resonance scattering on the X ^1Sigma_sp{g}{+}, A^3Sigma_sp{u }{+} and B^3Pi _ g states are presented as a function of A^3Sigma_sp{u}{+ } quenching rate. These theoretical predictions have important implications for the analysis of dayglow and auroral emissions. The effect of resonance scattering on the A^3Sigma_sp{u} {+} state is small, and will not be measurable under auroral conditions. This implies that the measured auroral vibrational population of the A^3 Sigma_sp{u}{+} state is valid for sunlit aurora. The population of B ^3Pi_ g(v = O) relative to other B^3Pi_ g(v) states is predicted to be enhanced by sunlight. A novel set of computer variables based on tree structures was created to manage the

  9. Application of the CCD Fabry-Perot Annular Summing Technique to Thermospheric O(1)D.

    Science.gov (United States)

    Coakley, Monica Marie

    1995-01-01

    This work will detail the verification of the advantages of the Fabry-Perot charge coupled device (CCD) annular summing technique, the development of the technique for analysis of daysky spectra, and the implications of the resulting spectra for neutral temperature and wind measurements in the daysky thermosphere. The daysky spectral feature of interest is the bright (1 kilo-Rayleigh) thermospheric (OI) emission at 6300 A which had been observed in the nightsky in order to determine winds and temperatures in the vicinity of the altitude of 250 km. In the daysky, the emission line sits on top of a bright Rayleigh scattered continuum background which significantly complicates the observation. With a triple etalon Fabry-Perot spectrometer, the continuum background can be reduced while maintaining high throughput and high resolution. The inclusion of a CCD camera results in significant savings in integration time over the two more standard scanning photomultiplier systems that have made the same wind and temperature measurements in the past. A comparable CCD system can experience an order of magnitude savings in integration time over a PMT system. Laboratory and field tests which address the advantages and limitations of both the Fabry-Perot CCD annular summing technique and the daysky CCD imaging are included in Chap. 2 and Chap. 3. With a sufficiently large throughput associated with the spectrometer and a CCD detector, rapid observations (~4 minute integrations) can be made. Extraction of the line width and line center from the daysky near-continuum background is complicated compared to the nightsky case, but possible. Methods of fitting the line are included in Chap. 4. The daysky O ^1D temperatures are consistent with a lower average emission height than predicted by models. The data and models are discussed in Chap. 5. Although some discrepancies exist between resulting temperatures and models, the observations indicate the potential for other direct measurements

  10. El Niño-Southern Oscillation effect on quasi-biennial oscillations of temperature diurnal tides in the mesosphere and lower thermosphere

    Science.gov (United States)

    Sun, Yang-Yi; Liu, Huixin; Miyoshi, Yasunobu; Liu, Libo; Chang, Loren C.

    2018-05-01

    In this study, we evaluate the El Niño-Southern Oscillation (ENSO) signals in the two dominant temperature diurnal tides, diurnal westward wavenumber 1 (DW1) and diurnal eastward wavenumber 3 (DE3) on the quasi-biennial oscillation (QBO) scale (18-34 months) from 50 to 100 km altitudes. The tides are derived from the 21-year (January 1996-February 2017) Ground-to-Topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) temperature simulations and 15-year (February 2002-February 2017) Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature observations. The results show that ENSO warm phases shorten the period ( 2 years) of the QBO in DW1 amplitude near the equator and DE3 amplitude at low latitudes of the Northern Hemisphere. In contrast, the QBO period lengthens ( 2.5 years) during the ENSO neutral and cold phases. Correlation analysis shows the long-lasting effect of ENSO on the tidal QBO in the mesosphere and lower thermosphere.[Figure not available: see fulltext.

  11. Response of the mesosphere-thermosphere-ionosphere system to global change - CAWSES-II contribution

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Beig, G.; Marsh, R. D.

    2014-01-01

    Roč. 1, 11 November (2014), 21/ 1-21/ 19 ISSN 2197-4284 R&D Projects: GA ČR GAP209/10/1792; GA MŠk LD12070 Institutional support: RVO:68378289 Keywords : mesosphere * thermosphere * ionosphere * long-term trends * climatic change Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.progearthplanetsci.com/content/1/1/21

  12. Coordinated observations of postmidnight irregularities and thermospheric neutral winds and temperatures at low latitudes

    Science.gov (United States)

    Dao, Tam; Otsuka, Yuichi; Shiokawa, Kazuo; Nishioka, Michi; Yamamoto, Mamoru; Buhari, Suhaila M.; Abdullah, Mardina; Husin, Asnawi

    2017-07-01

    We investigated a postmidnight field-aligned irregularity (FAI) event observed with the Equatorial Atmosphere Radar at Kototabang (0.2°S, 100.3°E, dip latitude 10.4°S) in Indonesia on the night of 9 July 2010 using a comprehensive data set of both neutral and plasma parameters. We examined the rate of total electron content change index (ROTI) obtained from GPS receivers in Southeast Asia, airglow images detected by an all-sky imager, and thermospheric neutral winds and temperatures obtained by a Fabry-Perot interferometer at Kototabang. Altitudes of the F layer (h'F) observed by ionosondes at Kototabang, Chiang Mai, and Chumphon were also surveyed. We found that the postmidnight FAIs occurred within plasma bubbles and coincided with kilometer-scale plasma density irregularities. We also observed an enhancement of the magnetically equatorward thermospheric neutral wind at the same time as the increase of h'F at low-latitude stations, but h'F at a station near the magnetic equator remained invariant. Simultaneously, a magnetically equatorward gradient of thermospheric temperature was identified at Kototabang. The convergence of equatorward neutral winds from the Northern and Southern Hemispheres could be associated with a midnight temperature maximum occurring around the magnetic equator. Equatorward neutral winds can uplift the F layer at low latitudes and increase the growth rate of Rayleigh-Taylor instabilities, causing more rapid extension of plasma bubbles. The equatorward winds in both hemispheres also intensify the eastward Pedersen current, so a large polarization electric field generated in the plasma bubble might play an important role in the generation of postmidnight FAIs.

  13. Where does the Thermospheric Ionospheric GEospheric Research (TIGER) Program go?

    Science.gov (United States)

    Schmidtke, G.; Avakyan, S. V.; Berdermann, J.; Bothmer, V.; Cessateur, G.; Ciraolo, L.; Didkovsky, L.; Dudok de Wit, T.; Eparvier, F. G.; Gottwald, A.; Haberreiter, M.; Hammer, R.; Jacobi, Ch.; Jakowski, N.; Kretzschmar, M.; Lilensten, J.; Pfeifer, M.; Radicella, S. M.; Schäfer, R.; Schmidt, W.; Solomon, S. C.; Thuillier, G.; Tobiska, W. K.; Wieman, S.; Woods, T. N.

    2015-10-01

    At the 10th Thermospheric Ionospheric GEospheric Research (TIGER/COSPAR) symposium held in Moscow in 2014 the achievements from the start of TIGER in 1998 were summarized. During that period, great progress was made in measuring, understanding, and modeling the highly variable UV-Soft X-ray (XUV) solar spectral irradiance (SSI), and its effects on the upper atmosphere. However, after more than 50 years of work the radiometric accuracy of SSI observation is still an issue and requires further improvement. Based on the extreme ultraviolet (EUV) data from the SOLAR/SolACES, and SDO/EVE instruments, we present a combined data set for the spectral range from 16.5 to 105.5 nm covering a period of 3.5 years from 2011 through mid of 2014. This data set is used in ionospheric modeling of the global Total Electron Content (TEC), and in validating EUV SSI modeling. For further investigations the period of 3.5 years is being extended to about 12 years by including data from SOHO/SEM and TIMED/SEE instruments. Similarly, UV data are used in modeling activities. After summarizing the results, concepts are proposed for future real-time SSI measurements with in-flight calibration as experienced with the ISS SOLAR payload, for the development of a space weather camera for observing and investigating space weather phenomena in real-time, and for providing data sets for SSI and climate modeling. Other planned topics are the investigation of the relationship between solar EUV/UV and visible/near-infrared emissions, the impact of X-rays on the upper atmosphere, the development of solar EUV/UV indices for different applications, and establishing a shared TIGER data system for EUV/UV SSI data distribution and real-time streaming, also taking into account the achievements of the FP7 SOLID (First European SOLar Irradiance Data Exploitation) project. For further progress it is imperative that coordinating activities in this special field of solar-terrestrial relations and solar physics is

  14. Super Dual Auroral Radar Network observations of fluctuations in the spectral distribution of near range meteor echoes in the upper mesosphere and lower thermosphere

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    2001-04-01

    Full Text Available The Doppler shifts of meteor echoes measured by the SuperDARN HF radar network have been used in several studies to observe neutral winds in the upper mesosphere and lower thermosphere region. In the absence of accurate height information for individual meteors, it has been necessary to assume a statistical mean meteor layer where the variations in altitude were not correlated to changes in the horizontal winds. Observations of spectral width distribution variations made by the radars allow an independent determination of the systematic error in the height. We have investigated the dependence of this distribution on a number of factors including the radar geometry, diurnal and seasonal cycles, variations in solar UV irradiance and geomagnetic activity. Changes in the altitude of the mean meteor layer observed at different radar ranges provide us with some insight into the structure of the upper mesosphere and the lower thermosphere within which the meteors are being ablated. An examination of the spectral widths, as measured by the CUT-LASS Finland radar, in the days preceding and following a Storm Sudden Commencement in April 1997, illustrates how the spectral properties of the observed region can be affected. The variations in the widths were consistent with model calculations of the changes to the temperature profile over this interval. Further refinements in the determination of the spectral width are outlined for future experiments.Key words. Meterology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; instruments and techniques

  15. Super Dual Auroral Radar Network observations of fluctuations in the spectral distribution of near range meteor echoes in the upper mesosphere and lower thermosphere

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    Full Text Available The Doppler shifts of meteor echoes measured by the SuperDARN HF radar network have been used in several studies to observe neutral winds in the upper mesosphere and lower thermosphere region. In the absence of accurate height information for individual meteors, it has been necessary to assume a statistical mean meteor layer where the variations in altitude were not correlated to changes in the horizontal winds. Observations of spectral width distribution variations made by the radars allow an independent determination of the systematic error in the height. We have investigated the dependence of this distribution on a number of factors including the radar geometry, diurnal and seasonal cycles, variations in solar UV irradiance and geomagnetic activity. Changes in the altitude of the mean meteor layer observed at different radar ranges provide us with some insight into the structure of the upper mesosphere and the lower thermosphere within which the meteors are being ablated. An examination of the spectral widths, as measured by the CUT-LASS Finland radar, in the days preceding and following a Storm Sudden Commencement in April 1997, illustrates how the spectral properties of the observed region can be affected. The variations in the widths were consistent with model calculations of the changes to the temperature profile over this interval. Further refinements in the determination of the spectral width are outlined for future experiments.

    Key words. Meterology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; instruments and techniques

  16. Thermosphere-ionosphere-mesosphere energetics and dynamics (TIMED). The TIMED mission and science program report of the science definition team. Volume 1: Executive summary

    Science.gov (United States)

    1991-01-01

    A Science Definition Team was established in December 1990 by the Space Physics Division, NASA, to develop a satellite program to conduct research on the energetics, dynamics, and chemistry of the mesosphere and lower thermosphere/ionosphere. This two-volume publication describes the TIMED (Thermosphere-Ionosphere-Mesosphere, Energetics and Dynamics) mission and associated science program. The report outlines the scientific objectives of the mission, the program requirements, and the approach towards meeting these requirements.

  17. A 2D-model of planetary atmospheres based on a collisional approach : application to Mars and Titan

    Science.gov (United States)

    Boqueho, V.; Blelly, P. L.; Peymirat, C.

    A 2D model of planetary atmospheres has been developed, based on a collisional approach. The multi-moment multi-species transport equations allow to study the atmospheric regions from the ground to the thermosphere and the exosphere in an only one self-consistent model. A 13-moment approximation is used: concentration, velocities, temperature, heat flows and stress tensor are then solved for each species. On Mars, we consider 8 species in the altitude - longitude plane, from surface to 450 km, the altitude above which atomic hydrogen becomes the major species. Main chemical and photodissociation processes are included, and thermal processes are considered above 80 km. On Titan, 3 species are considered in the altitude range 800 - 3000 km, and UV heating and HCN radiative cooling are accounted for. Different solar conditions have been considered, and simulations have been performed in the equatorial region. Results of the model for Mars are compared to Viking and Mariner data and to Bougher et al. [1988] model. Concerning Titan, the results are compared to Müller-Wodarg et al. [2000] model. Temperature profiles on Mars appear to be consistent with experimental data, but horizontal winds are very different from Bougher et al. [1988]. On Titan, results appear to be close to Müller-Wodarg et al. [2000] in the thermosphere; nevertheless, the change in the behavior above the exobase is as important as on Mars. The differences between models are analyzed, and contributions of a multi-moment multi-species approach in 2D are discussed.

  18. Traveling Atmospheric Disturbances (TADs) in the thermosphere inferred from accelerometer data at three altitudes

    Science.gov (United States)

    Bruinsma, Sean; Forbes, Jeffrey

    2010-05-01

    Densities derived from accelerometer measurements on the GRACE, CHAMP and Air Force/SETA satellites near 490, 390, and 220 km, respectively, are used to elucidate global-scale characteristics of traveling atmospheric disturbances. The accelerometers on the CHAMP and GRACE satellites have made it possible to accumulate near-continuous records of thermosphere density between about 320 and 490 km since May 2001, and July 2002, respectively. They have recorded the response to virtually every significant geomagnetic storm during this period. CHAMP and GRACE are in (near) polar and quasi-circular orbits, sampling 24 hr local time approximately every 4 and 5 months, respectively. These capabilities offer unique opportunities to study the temporal and latitudinal responses of the thermosphere to geomagnetic disturbances. The Air Force/SETA accelerometer data have also been processed, but the analysis is more complicated due to data gaps. Significant and unambiguous TAD activity in the observed response of the thermosphere was detected for about 25 events with CHAMP and GRACE, and less than 10 with SETA. The atmospheric variability is evaluated by de-trending the data, allowing the extraction of specific ranges in horizontal scale, and analyzing density "residuals". The scale of the perturbation is decisive for its lifetime and relative amplitude. Sometimes the disturbances represent wave-like structures propagating far from the source, and these so-called ‘TADs' were detected and described for the May 2003 storm for the first time. Some TADs traveled over the pole into the opposite hemisphere; this was found in both CHAMP and GRACE data. Most TADs propagate equatorward, but poleward propagating TADs have on occasion been detected too. The estimated speeds and amplitudes of the observed TADs, and their dependence on altitude and solar and geomagnetic activity in particular, will be presented in this poster.

  19. Partitioning of Electromagnetic Energy Inputs to the Thermosphere during Geomagnetic Disturbances

    Science.gov (United States)

    2012-06-01

    boundary of a local flux tube volume is an equipotential . Figure 4 contains maps of Poynting flux normal to a 500 km altitude surface and maps of height...as a cell quantity throughout its computational volume, we are able to generate maps of the Poynting flux, ⃗ ⃗⃗⃗⃗⃗⃗ , on altitude surfaces at...the top of the thermosphere. We used separate modules to integrate the Poynting flux over this surface to compute the total electromagnetic energy

  20. VITMO - A Powerful Tool to Improve Discovery in the Magnetospheric and Ionosphere-Thermosphere Domains

    Science.gov (United States)

    Schaefer, R. K.; Morrison, D.; Potter, M.; Stephens, G.; Barnes, R. J.; Talaat, E. R.; Sarris, T.

    2017-12-01

    With the advent of the NASA Magnetospheric Multiscale Mission and the Van Allen Probes we have space missions that probe the Earth's magnetosphere and radiation belts. These missions fly at far distances from the Earth in contrast to the larger number of near-Earth satellites. Both of the satellites make in situ measurements. Energetic particles flow along magnetic field lines from these measurement locations down to the ionosphere/thermosphere region. Discovering other data that may be used with these satellites is a difficult and complicated process. To solve this problem, we have developed a series of light-weight web services that can provide a new data search capability for the Virtual Ionosphere Thermosphere Mesosphere Observatory (VITMO). The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements for a number of magnetic field models and geophysical conditions. These services run in real-time when the user queries for data and allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field. Each service on their own provides a useful new capability for virtual observatories; operating together they provide a powerful new search tool. The ephemerides service was built using the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit (http://naif.jpl.nasa.gov/naif/index.html) allowing them to be extended to support any Earth orbiting satellite with the addition of the appropriate SPICE kernels. The overlap calculator uses techniques borrowed from computer graphics to identify overlapping measurements in space and time. The calculator will allow a user defined uncertainty

  1. Controlling of merging electric field and IMF magnitude on storm-time changes in thermospheric mass density

    NARCIS (Netherlands)

    Zhou, Y.L.; Ma, S.Y.; Liu, R.S.; Luehr, H.; Doornbos, E.

    2013-01-01

    The controls of merging electrical field, Em, and IMF (interplanetary magnetic field) magnitude, B, on the storm-time changes in upper thermospheric mass density are statistically investigated using GRACE accelerometer observations and the OMNI data of solar wind and IMF for 35 great storms during

  2. Thermospheric density and satellite drag modeling

    Science.gov (United States)

    Mehta, Piyush Mukesh

    GRACE satellites. Moving toward accurate atmospheric models and absolute densities requires physics based models for CD. Closed-form solutions of CD have been developed and exist for a handful of simple geometries (flat plate, sphere, and cylinder). However, for complex geometries, the Direct Simulation Monte Carlo (DSMC) method is an important tool for developing CD models. DSMC is computationally intensive and real-time simulations for CD are not feasible. Therefore, parameterized models for CD are required. Modeling CD for an RSO requires knowledge of the gas-surface interaction (GSI) that defines the manner in which the atmospheric particles exchange momentum and energy with the surface. The momentum and energy exchange is further influenced by likely adsorption of atomic oxygen that may partially or completely cover the surface. An important parameter that characterizes the GSI is the energy accommodation coefficient, α. An innovative and state-of-the-art technique of developing parameterized drag coefficient models is presented and validated using the GRACE satellite. The effect of gas-surface interactions on physical drag coefficients is examined. An attempt to reveal the nature of gas-surface interactions at altitudes above 500 km is made using the STELLA satellite. A model that can accurately estimate CD has the potential to: (i) reduce the sources of uncertainty in the drag model, (ii) improve density estimates by resolving time-varying biases and moving toward absolute densities, and (iii) increase data sources for density estimation by allowing for the use of a wide range of RSOs as information sources. Results from this work have the potential to significantly improve the accuracy of conjunction analysis and SSA.

  3. Ionosonde and optical determinations of thermospheric neutral winds over the Antarctic Peninsula

    Science.gov (United States)

    Foppiano, A. J.; Won, Y.-I.; Torres, X. A.; Flores, P. A.; Veloso, A. Daniel; Arriagada, M. A.

    2016-11-01

    Ionosonde observations have been made at Great Wall station (62.22°S; 58.97°W), King George Island, and at further south Vernadsky station (65.25°S; 64.27°W), Argentine Islands, for many years. For several days at the two locations the magnetic meridional component of the thermospheric neutral wind has also been derived using three different algorithms with ionosonde data input. At King Sejong station (62.22°S; 58.78°W), close to Great Wall, almost simultaneous thermospheric winds were measured with a Fabry-Perot Interferometer (FPI) during a few days in 1997. All days correspond to intervals of low solar and geomagnetic activity levels and for different seasons. Here, the geographic meridional FPI winds measured at the geographic south pointing location are compared with the magnetic meridional component of the wind derived from ionosonde observations at Vernadsky. Also, the magnetic meridian FPI winds measured using all four cardinal pointing locations are compared with the magnetic meridional component of the wind derived from ionosonde observations at Great Wall. The patterns of the diurnal variations of the magnetic meridional component of ionosonde derived winds using the three different techniques are similar in most cases. However, the amplitudes of these variations and some individual values can differ by more than 150 m/s depending on season, particularly during daytime. Comparison of the autumn FPI with the ionosonde winds for Vernadsky and Great Wall shows that they coincide within observation uncertainties. Results for other seasons are not so good. Some of the discrepancies are discussed in relation to the hour-to-hour variability of ionosonde based winds and the latitudinal gradients of ionospheric characteristics. Other discrepancies need to be further explained. Recently reported FPI mean winds for tens of days in different seasons for Palmer (64.77°S; 64.05°W), Anvers Island, are found to be particularly close to ionosonde derived mean

  4. Sporadic and Thermospheric Enhanced Sodium Layers Observed by a Lidar Chain over China

    Science.gov (United States)

    Xue, X.

    2013-12-01

    We report the statistical features of sporadic sodium layers (SSLs) and the thermospheric enhanced sodium layers (TeSLs) observed by a lidar chain located at Beijing (40.2N,116.2E), Hefei (31.8N, 117.3E), Wuhan (30.5N, 114.4E), and Haikou (19.5N, 109.1E). The average SSL occurrence rate was approximately 46.0, 12.3, 13.8, and 15.0 hr per SSL at Beijing, Hefei, Wuhan, and Haikou, respectively. However, the TeSLs occurred relatively infrequently and were more likely to appear at low and high latitudinal sites. Both the SSLs and TeSLs at four lidar sites showed evident summer enhancements and correlated well with Es (foEs>4MHz). The co-observations of SSLs at three lidar site pairs, i.e., Hefei -- Beijing, Hefei -- Wuhan and Hefei -- Beijing, indicated that a large-scale SSL extended horizontally for at least a few hundred kilometers and exhibited a tidal-induced modulation. Moreover, the SSLs were better correlated for the Hefei -- Wuhan and Hefei -- Haikou pairs than the Hefei -- Beijing pair, which suggested a difference in the dynamical/chemical process in mesosphere and lower thermosphere (MLT) between the Beijing site and the other sites.

  5. Relationships of storm-time changes in thermospheric mass density with solar wind/IMF parameters and ring current index of Sym-H

    Science.gov (United States)

    Zhou, Yunliang; Ma, S. Y.; Xiong, Chao; Luehr, Hermann

    The total air mass densities at about 500 km altitude are derived using super-STAR accelerom-eter measurements onboard GRACE satellites for 25 great magnetic storms with minimum Dst less than 100 nT during 2002 to 2006 years. Taking NRLMSISE-00 model-predicted densities without active ap index input as a reference baseline of quiet-time mass density, the storm-time changes in upper thermospheric mass densities are obtained by subtraction for all the storm events and sorted into different grids of latitude by local time sector. The relationships of the storm-time density changes with various interplanetary parameters and magnetospheric ring current index of Sym-H are statistically investigated. The parameters include Akasofu energy coupling function, the merging electric field Em, the magnitude of IMF component in the GSM y-z plane etc. as calculated from OMNI data at 1 AU. It is found that the storm-time changes in the upper thermospheric mass density have the best linear correlation with the Sym-H index in general, showing nearly zero time delay at low-latitudes and a little time ahead at high-latitudes for most cases. Unexpectedly, the magnitude of IMF component in the y-z plane, Byz, shows correlation with storm-time mass density changes better and closer than Akasofu function and even Em. And, the mass density changes lag behind Byz about 1-4 hours for most cases at low-latitudes. The correlations considered above are local time dependent, showing the lowest at dusk sectors. For the largest superstorm of November 2003, the changes in mass density are correlated very closely with Byz, Em, and Sym-H index, showing correlation coefficients averaged over all latitudes in noon sector as high as 0.93, 0.91 and 0.90 separately. The physical factors controlling the lag times between the mass density changes at mid-low-latitudes and the interplanetary parameter variations are also analyzed. The results in this study may pro-vide useful suggestions for establishing

  6. Thermospheric neutral temperatures derived from charge-exchange produced N{sub 2}{sup +} Meinel (1,0) rotational distributions

    Energy Technology Data Exchange (ETDEWEB)

    Mutiso, C.K.; Zettergren, M.D.; Hughes, J.M.; Sivjee, G.G. [Embry-Riddle Aeronautical Univ., Daytona Beach, FL (United States). Space Physics Research Lab.

    2013-06-01

    Thermalized rotational distributions of neutral and ionized N{sub 2} and O{sub 2} have long been used to determine neutral temperatures (T{sub n}) during auroral conditions. In both bright E-region (or similar 130 km) species provide an exception to this situation. In particular, the charge-exchange reaction O{sup +}({sup 2}D)+N{sub 2}(X) {yields}N{sub 2}{sup +} (A{sup 2}{Pi}{sub u}, {nu}' = 1) + O({sup 3}P) yields thermalized N{sub 2}{sup +} Meinel (1,0) emissions, which, albeit weak, can be used to derive neutral temperatures at altitudes of {proportional_to} 130 km and higher. In this work, we present N{sub 2}{sup +} Meinel (1,0) rotational temperatures and brightnesses obtained at Svalbard, Norway, during various auroral conditions. We calculate T{sub n} at thermospheric altitudes of 130-180 km from thermalized rotational populations of N{sub 2}{sup +} Meinel (1,0); these emissions are excited by soft electron (model the contributions of the respective excitation mechanisms, and compare derived brightnesses to observations. The agreement between the two is good. Emission heights obtained from optical data, modeling, and ISR data are consistent. Obtaining thermospheric T{sub n} from chargeexchange excited N{sub 2}{sup +} Meinel (1,0) emissions provides an additional means of remotely sensing the neutral atmosphere, although certain limiting conditions are necessary. These include precipitation of low-energy electrons, and a non-sunlit emitting layer. (orig.)

  7. An investigation of the solar cycle response of odd-nitrogen in the thermosphere

    Science.gov (United States)

    Rusch, David W.; Solomon, Stanley C.

    1992-01-01

    This annual report covers the first year of funding for the study of the solar cycle variations of odd-nitrogen (N((sup 2)D), N((sup 4)S), NO) in the Earth's thermosphere. The study uses the extensive data base generated by the Atmosphere Explorer (AE) satellites, and the Solar Mesosphere Explorer Satellite. The AE data are being used, for the first time, to define the solar variability effect on the odd-nitrogen species through analysis of the emissions at 520 nano-m from N((sup 2)D) and the emission from O(+)((sup 2)P). Additional AE neutral and ion density data are used to help define and quantify the physical processes controlling the variations. The results from the airglow study will be used in the next two years of this study to explain the solar cycle changes in NO measured by the Solar Mesosphere Explorer.

  8. Laparoscopic microwave thermosphere ablation of malignant liver tumors: an initial clinical evaluation.

    Science.gov (United States)

    Berber, Eren

    2016-02-01

    Microwave ablation (MWA) has been recently recognized as a technology to overcome the limitations of radiofrequency ablation. The aim of the current study was to evaluate the safety and efficacy of a new 2.45-GHz thermosphere MWA system in the treatment of malignant liver tumors. This was a prospective IRB-approved study of 18 patients with malignant liver tumors treated with MWA within a 3-month time period. Tumor sizes and response to MWA were obtained from triphasic liver CT scans done before and after MWA. The ablation zones were assessed for complete tumor response and spherical geometry. There were a total of 18 patients with an average of three tumors measuring 1.4 cm (range 0.2-4). Ablations were performed laparoscopically in all, but three patients who underwent combined liver resection. A single ablation was created in 72% and overlapping ablations in 28% of lesions. Total ablation time per patient was 15.6 ± 1.9 min. There was no morbidity or mortality. At 2-week CT scans, there was 100% tumor destruction, with no residual lesions. Roundness indices A, B and transverse were 1.1, 0.9 and 0.9, respectively, confirming the spherical nature of ablation zones. To the best of our knowledge, this is the first report of a new thermosphere MWA technology in the laparoscopic treatment of malignant liver tumors. The results demonstrate the safety of the technology, with satisfactory spherical ablation zones seen on post-procedural CT scans.

  9. Operational specification and forecasting advances for Dst, LEO thermospheric densities, and aviation radiation dose and dose rate

    Science.gov (United States)

    Tobiska, W. Kent

    Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET’s Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. In addition, an ENLIL/Rice Dst prediction out to several days has also been developed and will be described. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and

  10. Acoustic Resonance between Ground and Thermosphere

    Directory of Open Access Journals (Sweden)

    M Matsumura

    2009-04-01

    Full Text Available Ultra-low frequency acoustic waves called "acoustic gravity waves" or "infrasounds" are theoretically expected to resonate between the ground and the thermosphere. This resonance is a very important phenomenon causing the coupling of the solid Earth, neutral atmosphere, and ionospheric plasma. This acoustic resonance, however, has not been confirmed by direct observations. In this study, atmospheric perturbations on the ground and ionospheric disturbances were observed and compared with each other to confirm the existence of resonance. Atmospheric perturbations were observed with a barometer, and ionospheric disturbances were observed using the HF Doppler method. An end point of resonance is in the ionosphere, where conductivity is high and the dynamo effect occurs. Thus, geomagnetic observation is also useful, so the geomagnetic data were compared with other data. Power spectral density was calculated and averaged for each month. Peaks appeared at the theoretically expected resonance frequencies in the pressure and HF Doppler data. The frequencies of the peaks varied with the seasons. This is probably because the vertical temperature profile of the atmosphere varies with the seasons, as does the reflection height of infrasounds. These results indicate that acoustic resonance occurs frequently.

  11. Ultraviolet spectrographs for thermospheric and ionospheric remote sensing

    International Nuclear Information System (INIS)

    Dymond, K.F.; McCoy, R.P.

    1993-01-01

    The Naval Research Laboratory (NRL) has been developing far- and extreme-ultraviolet spectrographs for remote sensing the Earth's upper atmosphere and ionosphere. The first of these sensors, called the Special Sensor Ultraviolet Limb Imager (SSULI), will be flying on the Air Force's Defense Meteorological Satellite Program (DMSP) block 5D3 satellites as an operational sensor in the 1997-2010 time frame. A second sensor, called the High-resolution ionospheric and Thermospheric Spectrograph (HITS), will fly in late 1995 on the Air Force Space Test Program's Advanced Research and Global Observation Satellite (ARGOS, also known as P91-1) as part of NRL's High Resolution Airglow and Auroral Spectroscopy (HIRAAS) experiment. Both of these instruments are compact and do not draw much power and would be good candidates for small satellite applications. The instruments and their capabilities are discussed. Possible uses of these instruments in small satellite applications are also presented

  12. Comparative investigations of equatorial electrodynamics and low-to-mid latitude coupling of the thermosphere-ionosphere system

    Directory of Open Access Journals (Sweden)

    M. J. Colerico

    2006-03-01

    Full Text Available The thermospheric midnight temperature maximum (MTM is a highly variable, but persistent, large scale neutral temperature enhancement which occurs at low latitudes. Its occurrence can impact many fundamental upper atmospheric parameters such as pressure, density, neutral winds, neutral density, and F-region plasma. Although the MTM has been the focus of several investigations employing various instrumentation including photometers, satellites, and Fabry-Perot interferometers, limited knowledge exists regarding the latitude extent of its influence on the upper atmosphere. This is largely due to observational limitations which confined the collective geographic range to latitudes within ±23°. This paper investigates the MTM's latitudinal extent through all-sky imaging observations of its 6300Å airglow signature referred to by Colerico et al. (1996 as the midnight brightness wave (MBW. The combined field of view of three Southern Hemisphere imaging systems located at Arequipa, Peru, and Tucuman and El Leoncito, Argentina, for the first time extends the contiguous latitudinal range of imager observations to 8° S-39° S in the American sector. Our results highlight the propagation of MBW events through the combined fields of view past 39° S latitude, providing the first evidence that the MTM's effect on the upper atmosphere extends into mid-latitudes. The observations presented here are compared with modeled 6300Å emissions calculated using the NCAR thermosphere-ionosphere-electrodynamic general circulation model (TIEGCM in conjunction with an airglow code. We report that at this time TIEGCM is unable to simulate an MBW event due to the model's inability to reproduce an MTM of the same magnitude and occurrence time as those observed via FPI measurements made from Arequipa. This work also investigates the origins of an additional low latitude airglow feature referred to by Colerico et al. (1996 as the pre-midnight brightness wave (PMBW and

  13. Temperature and Wind Measurements in Venus Lower Thermosphere between 2007 and 2015

    Science.gov (United States)

    Krause, Pia; Sornig, Manuela; Wischnewski, Carolin; Sonnabend, Guido; Stangier, Tobias; Herrmann, Maren; Kostiuk, Theodor; Livengood, Timothy A.; Pätzold, Martin

    2016-10-01

    The structure of Venus atmosphere and its thermal and dynamical behavior was intensely studied during the past decade by groundbased and the space mission Venus Express. A comprehensive understanding of the atmosphere, however, is still missing. Direct measurements of atmospheric parameters on various time scales and at different locations across the planet are essential for better understanding and to validate global circulation models. Line-resolved spectroscopy of infrared CO2 transitions provides a powerful tool to accomplish measurements of temperature and wind speed within the neutral atmosphere, using Doppler line-broadening and Doppler shift. Temperature is the motor to drive circulation, and wind speed is the result. Measuring both provides both the basis and an empirical test for circulation models. Non-LTE emission lines at 10 µm that originate from a pressure level of 1μbar, ~110 km altitude, probe the lower thermosphere and are measurable at high spectral resolution using the infrared heterodyne spectrometers THIS (University of Cologne), HIPWAC (NASA GSFC) and MILAHI (Tohoku University).Thermal and dynamical structures on the Venus day side are retrieved using a newly developed method that considers the influence of the spectrometer field-of-view (FoV) and the dispersion of spectral properties across the FoV. New conclusions from the ground-based observing campaigns between 2007 and 2015 will be presented based on this retrieval methodology. The spatial resolution on the planetary disk is different for each campaign, depending on the apparent diameter of the planet and the diffraction-limited FoV of the telescope. Previously, a comparison of the observing campaigns was limited due to the difference in spatial resolution. The new retrieval method enables comparing observations with different observing geometry. The observations yield a large quantity of temperature and wind measurements at different positions on the planetary disk, which supports

  14. Observations of Infrared Radiative Cooling in the Thermosphere on Daily to Multiyear Timescales from the TIMED/SABER Instrument

    Science.gov (United States)

    Mlynczak, Martin G.; Hunt, Linda A.; Marshall, B. Thomas; Martin-Torres, F. Javier; Mertens, Christopher J.; Russell, James M., III; Remsberg, Ellis E.; Lopez-Puertas, Manuel; Picard, Richard; Winick, Jeremy; hide

    2009-01-01

    We present observations of the infrared radiative cooling by carbon dioxide (CO2) and nitric oxide (NO) in Earth s thermosphere. These data have been taken over a period of 7 years by the SABER instrument on the NASA TIMED satellite and are the dominant radiative cooling mechanisms for the thermosphere. From the SABER observations we derive vertical profiles of radiative cooling rates (W/cu m), radiative fluxes (W/sq m), and radiated power (W). In the period from January 2002 through January 2009 we observe a large decrease in the cooling rates, fluxes, and power consistent with the declining phase of solar cycle. The power radiated by NO during 2008 when the Sun exhibited few sunspots was nearly one order of magnitude smaller than the peak power observed shortly after the mission began. Substantial short-term variability in the infrared emissions is also observed throughout the entire mission duration. Radiative cooling rates and radiative fluxes from NO exhibit fundamentally different latitude dependence than do those from CO2, with the NO fluxes and cooling rates being largest at high latitudes and polar regions. The cooling rates are shown to be derived relatively independent of the collisional and radiative processes that drive the departure from local thermodynamic equilibrium (LTE) in the CO2 15 m and the NO 5.3 m vibration-rotation bands. The observed NO and CO2 cooling rates have been compiled into a separate dataset and represent a climate data record that is available for use in assessments of radiative cooling in upper atmosphere general circulation models.

  15. Global model of the upper atmosphere with a variable step of integration in latitude

    International Nuclear Information System (INIS)

    Namgaladze, A.A.; Martynenko, O.V.; Namgaladze, A.N.

    1996-01-01

    New version of model for the Earth thermosphere, ionosphere and protonosphere with increased spatial distribution, realized at personal computer, is developed. Numerical solution algorithm for modeling equations solution, which makes it possible to apply variable (depending on latitude) integrating pitch by latitude and to increase hereby the model latitude resolutions in the latitude zones of interest. Comparison of the model calculational results of ionosphere and thermosphere parameters, accomplished with application of different integrating pitches by geomagnetic latitude, is conducted. 10 refs.; 3 figs

  16. Storm time variation of radiative cooling of thermosphere by nitric oxide emission

    Science.gov (United States)

    Krishna, M. V. Sunil; Bag, Tikemani; Bharti, Gaurav

    2016-07-01

    The fundamental vibration-rotation band emission (Δν=1, Δ j=0,± 1) by nitric oxide (NO) at 5.3 µm is one of the most important cooling mechanisms in thermosphere. The collisional vibrational excitation of NO(ν=0) by impact with atomic oxygen is the main source of vibrationally excited nitric oxide. The variation of NO density depends on latitude, longitude and season. The present study aims to understand how the radiative flux gets influenced by the severe geomagnetic storm conditions. The variation of Nitric Oxide (NO) radiative flux exiting thermosphere is studied during the superstorm event of 7-12 November, 2004. The observations of TIMED/SABER suggest a strong anti-correlation with the O/N_2 ratio observed by GUVI during the same period. On a global scale the NO radiative flux showed an enhancement during the main phase on 8 November, 2004, whereas maximum depletion in O/N_2 is observed on 10 November, 2004. Both O/N_2 and NO radiative flux were found to propagate equatorward due to the effect of meridional wind resulting from joule and particle heating in polar region. Larger penetrations is observed in western longitude sectors. These observed variations are effectively connected to the variations in neutral densities. In the equatorial sectors, O/N_2 shows enhancement but almost no variation in radiative flux is observed. The possible reasons for the observed variations in NO radiative emission and O/N_2 ratios are discussed in the light of equator ward increase in the densities and prompt penetration.

  17. Thermospheric neutral wind profile in moonlit midnight by Lithium release experiments in Japan

    Science.gov (United States)

    Yamamoto, M. Y.; Watanabe, S.; Abe, T.; Kakinami, Y.; Habu, H.; Yamamoto, M.

    2015-12-01

    Neutral wind profiles were observed in lower thermosphere at about between 90 km and 130 km altitude by using resonance scattering light of moonlit Lithium (Li) vapor released from sounding rockets in midnight (with almost full-moon condition) in 2013 in Japan. As a target of the Daytime Dynamo campaign, Li release experiment was operated at Wallops Flight Facility (WFF) of NASA, U.S.A. in July, 2013 (Pfaff et al., 2015, this meeting), while the same kind of rocket-ground observation campaign in midnight was carried out by using S-520-27/S-310-42 sounding rockets in Uchinoura Space Center (USC) of JAXA, Kagoshima, Japan, also in July 2013.Since imaging signal-to-noise (S/N) condition of the experiment was so severe, we conducted to apply airborne observation for imaging the faint moonlit Li tracers so as to reduce the illuminating intensity of the background skies as an order of magnitude. Two independent methods for calculating the wind profile were applied to the Lithium emission image sequences successfully obtained by the airborne imaging by special Li imagers aboard the airplanes in order to derive precise information of Li tracers motion under the condition of single observation site on a moving aircraft along its flight path at about 12 km altitude in lower stratosphere. Slight attitude-feedback motion of the aircraft's 3-axes attitude changes (rolling, yawing and pitching) was considered for obtaining precise coordinates on each snapshot. Another approach is giving a simple mathematic function for wind profile to resolve the shape displacement of the imaged Li tracers. As a result, a wind profile in moonlit thermosphere was calculated in a range up to about 150 m/s with some fluctuated parts possibly disturbed by wind shears. In the same experiment, another sounding rocket S-310-42 with a TMA canister was also launched from USC/JAXA at about 1 hour before the rocket with carrying the Lithium canisters, thus, we can derive the other 2 profiles determined by

  18. A self-consistent derivation of ion drag and Joule heating for atmospheric dynamics in the thermosphere

    Directory of Open Access Journals (Sweden)

    X. Zhu

    2005-11-01

    Full Text Available The thermosphere is subject to additional electric and magnetic forces, not important in the middle and lower atmosphere, due to its partially ionized atmosphere. The effects of charged particles on the neutral atmospheric dynamics are often parameterized by ion drag in the momentum equations and Joule heating in the energy equation. Presented in this paper are a set of more accurate parameterizations for the ion drag and Joule heating for the neutral atmosphere that are functions of the difference between bulk ion velocity and neutral wind. The parameterized expressions also depend on the magnetic field, the Pedersen and Hall conductivities, and the ratio of the ion cyclotron frequency to the ion-neutral collision frequency. The formal relationship between the electromagnetic energy, atmospheric kinetic energy, and Joule heating is illustrated through the conversion terms between these three types of energy. It is shown that there will always be an accompanying conversion of kinetic energy into Joule heating when electromagnetic energy is generated through the dynamo mechanism of the atmospheric neutral wind. Likewise, electromagnetic energy cannot be fully converted into kinetic energy without producing Joule heating in the thermosphere.

  19. Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations

    Directory of Open Access Journals (Sweden)

    T. Moffat-Griffin

    2007-11-01

    Full Text Available Simulations of the Martian upper atmosphere have been produced from a self-consistent three-dimensional numerical model of the Martian thermosphere and ionosphere, called MarTIM. It covers an altitude range of 60 km to the upper thermosphere, usually at least 250 km altitude. A radiation scheme is included that allows the main sources of energy input, EUV/UV and IR absorption by CO2 and CO, to be calculated. CO2, N2 and O are treated as the major gases in MarTIM, and are mutually diffused (though neutral chemistry is ignored. The densities of other species (the minor gases, CO, Ar, O2 and NO, are based on diffusive equilibrium above the turbopause. The ionosphere is calculated from a simple photoionisation and charge exchange routine though in this paper we will only consider the thermal and dynamic structure of the neutral atmosphere at solar minimum conditions. The semi-diurnal (2,2 migrating tide, introduced at MarTIM's lower boundary, affects the dynamics up to 130 km. The Mars Climate Database (Lewis et al., 2001 can be used as a lower boundary in MarTIM. The effect of this is to increase wind speeds in the thermosphere and to produce small-scale structures throughout the thermosphere. Temperature profiles are in good agreement with Pathfinder results. Wind velocities are slightly lower compared to analysis of MGS accelerometer data (Withers, 2003. The novel step-by-step approach of adding in new features to MarTIM has resulted in further understanding of the drivers of the Martian thermosphere.

  20. Scientific challenges in thermosphere-ionosphere forecasting – conclusions from the October 2014 NASA JPL community workshop

    Directory of Open Access Journals (Sweden)

    Mannucci Anthony J.

    2016-01-01

    Full Text Available Interest in forecasting space weather in the thermosphere and ionosphere (T-I led to a community workshop held at NASA’s Jet Propulsion Laboratory in October, 2014. The workshop focus was “Scientific Challenges in Thermosphere-Ionosphere Forecasting” to emphasize that forecasting presumes a sufficiently advanced state of scientific knowledge, yet one that is still evolving. The purpose of the workshop, and this topical issue that arose from the workshop, was to discuss research frontiers that will lead to improved space weather forecasts. Three areas are discussed in some detail in this paper: (1 the role of lower atmosphere forcing in the response of the T-I to geomagnetic disturbances; (2 the significant deposition of energy at polar latitudes during geomagnetic disturbances; and (3 recent developments in understanding the propagation of coronal mass ejections through the heliosphere and prospects for forecasting the north-south component of the interplanetary magnetic field (IMF using observations at the Lagrangian L5 point. We describe other research presented at the workshop that appears in the topical issue. The possibility of establishing a “positive feedback loop” where improved scientific knowledge leads to improved forecasts is described (Siscoe 2006, Space Weather, 4, S01003; Mannucci 2012, Space Weather, 10, S07003.

  1. Generation of the lower-thermospheric vertical wind estimated with the EISCAT KST radar at high latitudes during periods of moderate geomagnetic disturbance

    Directory of Open Access Journals (Sweden)

    S. Oyama

    2008-06-01

    Full Text Available Lower-thermospheric winds at high latitudes during moderately-disturbed geomagnetic conditions were studied using data obtained with the European Incoherent Scatter (EISCAT Kiruna-Sodankylä-Tromsø (KST ultrahigh frequency (UHF radar system on 9–10 September 2004. The antenna-beam configuration was newly designed to minimize the estimated measurement error of the vertical neutral-wind speed in the lower thermosphere. This method was also available to estimate the meridional and zonal components. The vertical neutral-wind speed at 109 km, 114 km, and 120 km heights showed large upward motions in excess of 30 m s−1 in association with an ionospheric heating event. Large downward speeds in excess of −30 m s−1 were also observed before and after the heating event. The meridional neutral-wind speed suddenly changed its direction from equatorward to poleward when the heating event began, and then returned equatorward coinciding with a decrease in the heating event. The magnetometer data from northern Scandinavia suggested that the center of the heated region was located about 80 km equatorward of Tromsø. The pressure gradient caused the lower-thermospheric wind to accelerate obliquely upward over Tromsø in the poleward direction. Acceleration of the neutral wind flowing on a vertically tilted isobar produced vertical wind speeds larger by more than two orders of magnitude than previously predicted, but still an order of magnitude smaller than observed speeds.

  2. Generation of the lower-thermospheric vertical wind estimated with the EISCAT KST radar at high latitudes during periods of moderate geomagnetic disturbance

    Directory of Open Access Journals (Sweden)

    S. Oyama

    2008-06-01

    Full Text Available Lower-thermospheric winds at high latitudes during moderately-disturbed geomagnetic conditions were studied using data obtained with the European Incoherent Scatter (EISCAT Kiruna-Sodankylä-Tromsø (KST ultrahigh frequency (UHF radar system on 9–10 September 2004. The antenna-beam configuration was newly designed to minimize the estimated measurement error of the vertical neutral-wind speed in the lower thermosphere. This method was also available to estimate the meridional and zonal components. The vertical neutral-wind speed at 109 km, 114 km, and 120 km heights showed large upward motions in excess of 30 m s−1 in association with an ionospheric heating event. Large downward speeds in excess of −30 m s−1 were also observed before and after the heating event. The meridional neutral-wind speed suddenly changed its direction from equatorward to poleward when the heating event began, and then returned equatorward coinciding with a decrease in the heating event. The magnetometer data from northern Scandinavia suggested that the center of the heated region was located about 80 km equatorward of Tromsø. The pressure gradient caused the lower-thermospheric wind to accelerate obliquely upward over Tromsø in the poleward direction. Acceleration of the neutral wind flowing on a vertically tilted isobar produced vertical wind speeds larger by more than two orders of magnitude than previously predicted, but still an order of magnitude smaller than observed speeds.

  3. Do Transient Electrodynamic Processes Support Enhanced Neutral Mass Densities in Earth's Cusp-Region Thermosphere via Divergent Upward Winds?

    Science.gov (United States)

    Conde, M.; Larsen, M. F.; Troyer, R.; Gillespie, D.; Kosch, M.

    2017-12-01

    Satellite accelerometer measurements show that Earth's thermosphere contains two substantial and permanent regions of enhanced mass density that are located at around 400 km altitude near the footprints of the north and south geomagnetic cusps. The additional mass in these regions must be supported against gravity, which requires that similarly localized perturbations must occur in one or more of the other fields (beyond mass density) that appear in the momentum conservation equation for the thermospheric neutral fluid. However more than a decade after the density enhancements were first discovered, there are still no observations of any other corresponding perturbations to terms appearing directly in this equation that would indicate what is supporting the extra mass. To date, most candidate mechanisms involve high-altitude transient electrodynamic heating (at 250 km and above) that drives upwelling and associated horizontal divergence. Indeed, there are very few viable mechanisms that don't ultimately cause substantial localized neutral wind perturbations to occur near the density anomalies. Thus, we report here on a study to search for signatures of these localized perturbations in winds, using several data sources. These are the WATS instrument that flew aboard the DE-2 spacecraft, the C-REX-1 rocket flight through the CUSP in 2014, and two ground-based Fabry-Perot instruments that are located in Antarctica at latitudes that pass under the geomagnetic cusps - i.e. at McMurdo and South Pole stations. Using these data, we will present both climatological averages and also individual case studies to illustrate what localized signatures occur (if any) in the neutral wind fields near the cusp-region density anomalies.

  4. New nighttime retrievals of O(3P) and OH densities in the mesosphere/lower thermosphere using SABER/TIMED observations

    Science.gov (United States)

    Panka, P.; Kutepov, A. A.; Kalogerakis, K. S.; Janches, D.; Feofilov, A.; Rezac, L.; Marsh, D. R.; Yigit, E.

    2017-12-01

    We present first retrievals of O(3P) and OH densities in the mesosphere/lower thermosphere (MLT) using SABER/TIMED OH 2.0 and 1.6 μm limb emission observations. Recently, Kaufmann et al. [2014] reported that current SABER O(3P) densities are on average 30% higher compared to other observations. In this study we applied new detailed non-LTE model [Panka et al. 2017] of nighttime OH(v), which accounts for the new mechanism OH(v≥5)+O(3P)→O(1D)+OH(v-5) of energy transfer recently suggested by Sharma et al. [2015] and confirmed through laboratory studies by Kalogerakis et al. [2016]. Based on this model we developed a new self-consistent two channel retrieval approach for O(3P) and OH density. Using this approach, we retrieved O(3P) densities that are 10-40% lower than current SABER O(3P), as well as total OH density which is retrieved for the first time using SABER observations. We compare our retrieveals with the results of other observations and models. As it was recently shown by Panka et al. [2017], the new mechanism of OH quenching produces a significant pumping of CO2 4.3 µm emission. We discuss the effects these new O(3P) and OH retrievals have on the nighttime CO2 density retrievals from the SABER 4.3 µm channel.

  5. Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations

    Directory of Open Access Journals (Sweden)

    T. Moffat-Griffin

    2007-11-01

    Full Text Available Simulations of the Martian upper atmosphere have been produced from a self-consistent three-dimensional numerical model of the Martian thermosphere and ionosphere, called MarTIM. It covers an altitude range of 60 km to the upper thermosphere, usually at least 250 km altitude. A radiation scheme is included that allows the main sources of energy input, EUV/UV and IR absorption by CO2 and CO, to be calculated. CO2, N2 and O are treated as the major gases in MarTIM, and are mutually diffused (though neutral chemistry is ignored. The densities of other species (the minor gases, CO, Ar, O2 and NO, are based on diffusive equilibrium above the turbopause. The ionosphere is calculated from a simple photoionisation and charge exchange routine though in this paper we will only consider the thermal and dynamic structure of the neutral atmosphere at solar minimum conditions. The semi-diurnal (2,2 migrating tide, introduced at MarTIM's lower boundary, affects the dynamics up to 130 km. The Mars Climate Database (Lewis et al., 2001 can be used as a lower boundary in MarTIM. The effect of this is to increase wind speeds in the thermosphere and to produce small-scale structures throughout the thermosphere. Temperature profiles are in good agreement with Pathfinder results. Wind velocities are slightly lower compared to analysis of MGS accelerometer data (Withers, 2003. The novel step-by-step approach of adding in new features to MarTIM has resulted in further understanding of the drivers of the Martian thermosphere.

  6. A Trade Study of Thermosphere Empirical Neutral Density Models

    Science.gov (United States)

    2014-08-01

    solar radio F10.7 proxy and magnetic activity measurements are used to calculate the baseline orbit. This approach is applied to compare the daily... approach is to calculate along-track errors for these models and compare them against the baseline error based on the “ground truth” neutral density data...n,m = Degree and order, respectively ′ = Geocentric latitude Approved for public release; distribution is unlimited. 2 λ = Geocentric

  7. Estimate of the global-scale joule heating rates in the thermosphere due to time mean currents

    International Nuclear Information System (INIS)

    Roble, R.G.; Matsushita, S.

    1975-01-01

    An estimate of the global-scale joule heating rates in the thermosphere is made based on derived global equivalent overhead electric current systems in the dynamo region during geomagnetically quiet and disturbed periods. The equivalent total electric field distribution is calculated from Ohm's law. The global-scale joule heating rates are calculated for various monthly average periods in 1965. The calculated joule heating rates maximize at high latitudes in the early evening and postmidnight sectors. During geomagnetically quiet times the daytime joule heating rates are considerably lower than heating by solar EUV radiation. However, during geomagnetically disturbed periods the estimated joule heating rates increase by an order of magnitude and can locally exceed the solar EUV heating rates. The results show that joule heating is an important and at times the dominant energy source at high latitudes. However, the global mean joule heating rates calculated near solar minimum are generally small compared to the global mean solar EUV heating rates. (auth)

  8. Resonant dissociation in N2 by electron impact: a source of heating in the thermosphere and auroras

    International Nuclear Information System (INIS)

    Spence, D.; Burrow, P.D.

    1979-01-01

    An electron impact resonant dissociation process, leading to superthermal atom production in molecular nitrogen is described. The maximum cross section for this process is found to be 2.5 x 10 -18 cm 2 at 10 eV. Measurements of scattered electrons indicate a value of -65 to -90 MeV for the electron affinity of N. The possible role of resonant dissociation as a source of heating in the thermosphere and in auroras is discussed

  9. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  10. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  11. The relationship of thermospheric density anomaly with electron temperature, small-scale FAC, and ion up-flow in the cusp region, as observed by CHAMP and DMSP satellites

    Directory of Open Access Journals (Sweden)

    G. N. Kervalishvili

    2013-03-01

    Full Text Available We present in a statistical study a comparison of thermospheric mass density enhancements (ρrel with electron temperature (Te, small-scale field-aligned currents (SSFACs, and vertical ion velocity (Vz at high latitudes around noon magnetic local time (MLT. Satellite data from CHAMP (CHAllenging Minisatellite Payload and DMSP (Defense Meteorological Satellite Program sampling the Northern Hemisphere during the years 2002–2005 are used. In a first step we investigate the distribution of the measured quantities in a magnetic latitude (MLat versus MLT frame. All considered variables exhibit prominent peak amplitudes in the cusp region. A superposed epoch analysis was performed to examine causal relationship between the quantities. The occurrence of a thermospheric relative mass density anomaly, ρrel >1.2, in the cusp region is defining an event. The location of the density peak is taken as a reference latitude (Δ MLat = 0°. Interestingly, all the considered quantities, SSFACs, Te, and Vz are co-located with the density anomaly. The amplitudes of the peaks exhibit different characters of seasonal variation. The average relative density enhancement of the more prominent density peaks considered in this study amounts to 1.33 during all seasons. As expected, SSFACs are largest in summer with average amplitudes equal to 2.56 μA m−2, decaying to 2.00 μA m−2 in winter. The event related enhancements of Te and Vz are both largest in winter (Δ Te =730 K, Vz =136 m s−1 and smallest in summer (Δ Te = 377 K, Vz = 57 m s−1. Based on the similarity of the seasonal behaviour we suggest a close relationship between these two quantities. A correlation analysis supports a linear relation with a high coefficient greater than or equal to 0.93, irrespective of season. Our preferred explanation is that dayside reconnection fuels Joule heating of the thermosphere causing air upwelling and at the same time heating of the electron gas that pulls up ions

  12. Validation of the MIPAS CO2 volume mixing ratio in the mesosphere and lower thermosphere and comparison with WACCM simulations

    Science.gov (United States)

    López-Puertas, Manuel; Funke, B.; Jurado-Navarro, Á. A.; García-Comas, M.; Gardini, A.; Boone, C. D.; Rezac, L.; Garcia, R. R.

    2017-08-01

    We present the validation of Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) CO2 daytime concentration in the mesosphere and lower thermosphere by comparing with Atmospheric Chemistry Experiment (ACE) Fourier transform spectrometer and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) data. MIPAS shows a very good agreement with ACE below 100 km with differences of ˜5%. Above 100 km, MIPAS CO2 is generally lower than ACE with differences growing from ˜5% at 100 km to 20-40% near 110-120 km. Part of this disagreement can be explained by the lack of a nonlocal thermodynamic equilibrium correction in ACE. MIPAS also agrees very well (˜5%) with SABER below 100 km. At 90-105 km, MIPAS is generally smaller than SABER by 10-30% in the polar summers. At 100-120 km, MIPAS and SABER CO2 agree within ˜10% during equinox but, for solstice, MIPAS is larger by 10-25%, except near the polar summer. Whole Atmosphere Community Climate Model (WACCM) CO2 shows the major MIPAS features. At 75-100 km, the agreement is very good (˜5%), with maximum differences of ˜10%. At 95-115 km MIPAS CO2 is larger than WACCM by 20-30% in the winter hemisphere but smaller (20-40%) in the summer. Above 95-100 km WACCM generally overestimates MIPAS CO2 by about 20-80% except in the polar summer where underestimates it by 20-40%. MIPAS CO2 favors a large eddy diffusion below 100 km and suggests that the meridional circulation of the lower thermosphere is stronger than in WACCM. The three instruments and WACCM show a clear increase of CO2 with time, more markedly at 90-100 km.

  13. The effect of breaking gravity waves on the dynamics and chemistry of the mesosphere and lower thermosphere (invited review)

    Science.gov (United States)

    Garcia, R. R.

    1986-01-01

    The influence of breaking gravity waves on the dynamics and chemical composition of the 60 to 110 km region is investigated with a two dimensional model that includes a parameterization of gravity wave momentum deposition and diffusion. The dynamical model is described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity waves. It is found that wave momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverse the zonal wind jets above about 85 km. The seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulences inferred from MST radar echoes. The large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity waves play a major role in determining the zonally-averaged dynamical and chemical structure of the 60 to 110 km region of the atmosphere.

  14. Thermospheric/ionospheric disturbances under quiet and magneto-perturbed conditions

    Science.gov (United States)

    Zakharov, Ivan G.; Mozgovaya, O. L.

    2003-04-01

    The basic mechanisms of ionospheric storms (IS) are investigated sufficiently full. Despite of it a quantitative forecast of ionospheric disturbance is not always satisfactory. One of the possible causes can be related to the insufficient account of a background ionospheric. In particualr using electron concentration Ne in the peak of F2-region and total electron content are shown, that the amplitude of a IS positive phase for similar magnetic storms can differ by ~1,5 times. Hence a cause of distinction can be variations in the thermosphere conditions, not reflected by known activity indices. For further research we used the incoherent scatter radar data of the Institute of ionosphere in height range 200-1000 km in the very quiet periods coming to the geomagnetic disturbance. A steady periodic disturbance in Ne during quiet conditions in all heights is established, which can be identified as tidal moda m=6. The amplitude of wave is ~15%, the phase changes with a height. The storm onset leads to an increase of the amplitudes approximately twice without a change in the phase. An ionospheric disturbance in very quiet conditions can lead to additional complicating an ionosphere reaction to magnetic storm.

  15. THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and temperature

    Science.gov (United States)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-07-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium (LTE) at altitudes up to 350 km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP) mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  16. Comment on “Long-term trends in thermospheric neutral temperatures and density above Millstone Hill” by W. L. Oliver et al

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan

    2015-01-01

    Roč. 120, č. 3 (2015), s. 2347-2349 ISSN 2169-9380 R&D Projects: GA ČR GAP209/10/1792; GA ČR GA15-03909S Institutional support: RVO:68378289 Keywords : ionosphere * thermosphere * long-term trends * drivers of trends Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020864/abstract

  17. Drag coefficient Variability and Thermospheric models

    Science.gov (United States)

    Moe, Kenneth

    Satellite drag coefficients depend upon a variety of factors: The shape of the satellite, its altitude, the eccentricity of its orbit, the temperature and mean molecular mass of the ambient atmosphere, and the time in the sunspot cycle. At altitudes where the mean free path of the atmospheric molecules is large compared to the dimensions of the satellite, the drag coefficients can be determined from the theory of free-molecule flow. The dependence on altitude is caused by the concentration of atomic oxygen which plays an important role by its ability to adsorb on the satellite surface and thereby affect the energy loss of molecules striking the surface. The eccentricity of the orbit determines the satellite velocity at perigee, and therefore the energy of the incident molecules relative to the energy of adsorption of atomic oxygen atoms on the surface. The temperature of the ambient atmosphere determines the extent to which the random thermal motion of the molecules influences the momentum transfer to the satellite. The time in the sunspot cycle affects the ambient temperature as well as the concentration of atomic oxygen at a particular altitude. Tables and graphs will be used to illustrate the variability of drag coefficients. Before there were any measurements of gas-surface interactions in orbit, Izakov and Cook independently made an excellent estimate that the drag coefficient of satellites of compact shape would be 2.2. That numerical value, independent of altitude, was used by Jacchia to construct his model from the early measurements of satellite drag. Consequently, there is an altitude dependent bias in the model. From the sparce orbital experiments that have been done, we know that the molecules which strike satellite surfaces rebound in a diffuse angular distribution with an energy loss given by the energy accommodation coefficient. As more evidence accumulates on the energy loss, more realistic drag coefficients are being calculated. These improved drag

  18. Dynamics of the low latitude thermosphere and ionosphere

    International Nuclear Information System (INIS)

    Burnside, R.G.

    1984-01-01

    Nighttime thermospheric neutral wind velocities were determined at Arecibo, Puerto Rico, by using a Fabry-Perot interferometer, which measures the Doppler shift of the O( 1 D) airglow emission. In summer, the winds are observed to flow toward the southeast between sunset and midnight. After midnight in summer, the meridional component of the wind usually slackens, while the zonal component may reverse. By contrast, in winter, the meridional wind is often small, and the predominant flow is eastward throughout the night. Vertical winds are inferred from the divergence of the horizontal flow. A maximum downward flow of about 5 m sπ 1 is observed near midnight in summer. Incoherent scatter radar measurements were used to calculate the O + diffusion velocity and infer the vertical profile of the meridional wind. Horizontal temperature gradients and ion-drag forces were evaluated from radar measurements. It is concluded that it may sometimes be necesary to include viscous forces to balance the meridional equation of motion for the neutral gas. Electrical conductivities of the E and F layers of the nighttime ionosphere were determined. The F layer Pedersen conductivity at the magnetically conjugate point was evaluated using ionosonde data. The F layer dynamo mechanism was found to be the source of most of the nighttime electric fields observed at Arecibo

  19. New Non-LTE Model of OH and CO2 Emission in the Mesosphere-Lower Thermosphere and its Application to Retrieving Nighttime Parameters

    Science.gov (United States)

    Panka, Peter A.

    The hydroxyl, OH, and carbon dioxide, CO2, molecules and oxygen atoms, O(3P), are important parameters that characterize the chemistry, energetics, and dynamics of the nighttime mesosphere and lower thermosphere (MLT) region. Hence, there is much interest in obtaining high quality observations of these parameters in order to study the short-term variability as well as the long-term trends in characteristics of the MLT region. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellite has been taking global, simultaneous measurements of limb infrared radiance in 10 spectral channels, including the OH 2.0 and 1.6-micron and CO2 4.3-micron emissions channels, continuously since late January 2002. These measurements can be interpreted using sophisticated non-Local Thermodynamic Equilibrium (non-LTE) models of OH and CO2 infrared emissions which can then be applied to obtain densities of these parameters (2.0 and 1.6-micron channel for O(3P)/OH and 4.3-micron channel for CO2). The latest non-LTE models of these molecules, however, do not fully represent all the dominant energy transfer mechanisms which influence their vibrational level distributions and infrared emissions. In particular, non-LTE models of CO2 4.3-micron emissions currently under-predict SABER measurements by up to 80%, and its application for the retrieval of CO2 will result in unrealistic densities. Additionally, current O(3P) retrievals from SABER OH emissions have been reported to be at least 30% higher compared to studies using other instruments. Methods to obtain OH total densities from SABER measurements have yet to be developed. Recent studies, however, have discovered a new energy transfer mechanism which influences both OH and CO2 infrared emissions, OH(v) → O(1D) → N2( v) → CO2(v3). This study focuses on the impact of this new mechanism on OH and CO2 infrared emissions

  20. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    2000-04-01

    Full Text Available Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs. The calculated zonal electric field disturbances also help to create the positive ionospheric

  1. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    Full Text Available Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs. The calculated zonal electric field disturbances also help

  2. High accuracy satellite drag model (HASDM)

    Science.gov (United States)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  3. The thermospheric auroral red line polarization: confirmation of detection and first quantitative analysis

    Directory of Open Access Journals (Sweden)

    Moen Joran

    2013-01-01

    Full Text Available The thermospheric atomic oxygen red line is among the brightest in the auroral spectrum. Previous observations in Longyearbyen, Svalbard, indicated that it may be intrinsically polarized, but a possible contamination by light pollution could not be ruled out. During the winter 2010/2011, the polarization of the red line was measured for the first time at the Polish Hornsund polar base without contamination. Two methods of data analysis are presented to compute the degree of linear polarization (DoLP and angle of linear polarization (AoLP: one is based on averaging and the other one on filtering. Results are compared and are in qualitative agreement. For solar zenith angles (SZA larger than 108° (with no contribution from Rayleigh scattering, the DoLP ranges between 2 and 7%. The AoLP is more or less aligned with the direction of the magnetic field line, in agreement with the theoretical predictions of Bommier et al. (2010. However, the AoLP values range between ±20° around this direction, depending on the auroral conditions. Correlations between the polarization parameters and the red line intensity I were considered. The DoLP decreases when I increases, confirming a trend observed during the observations in Longyearbyen. However, for small values of I, DoLP varies within a large range of values, while for large values of I, DoLP is always small. The AoLP also varies with the red line intensity, slightly rotating around the magnetic field line.

  4. Estimating Neutral Atmosphere Drivers using a Physical Model

    Science.gov (United States)

    2009-03-30

    Araujo-Pradere, M. Fedrizzi, 2007, Memory effects in the ionosphere storm response. EGU General Assembly , Vienna, Austria Codrescu, M., T.J. Fuller...Strickland, D, 2007: Application of thermospheric general circulation models for space weather operations. J. Adv. Space Res., edited by Schmidtke

  5. Characterization of blasts in medium and low thermosphere from infrasonic wave observations

    International Nuclear Information System (INIS)

    Lalande, J.M.

    2012-01-01

    The International Monitoring System (IMS) designed to monitor compliance with the Comprehensive Nuclear Test-Ban Treaty (CTBT) uses four complementary verification methods: seismic, hydro-acoustic, radionuclide and micro-barometric stations spanning the entire globe. Micro-barometric stations record continuously infrasonic waves in the frequency band 0.02-4 Hz. These waves propagate at long-ranges through atmospheric ducts resulting from the natural stratification of atmospheric properties (temperature, density, winds,...) and represent a valuable information to understand atmospheric dynamic until the lower thermosphere. In this thesis, we seek to determine the possible contribution of infra-sound observations for improving current atmospheric specifications. We describe the atmospheric media and its circulation mechanisms as well as the conventional observations used in the development of atmospheric models. A description of the interaction between infrasonic waves and the atmosphere help to understand the interest of micro-barometric measurement compared with conventional observations. To highlight this potential we develop an inverse algorithm in order to estimate atmospheric parameters from infrasonic observations. The forward problem is handled by a ray-tracing algorithm. First-order perturbation equation resulting from perturbation of atmospheric properties, and especially wind parameters, are developed and numerically validated. We then analyse the inverse problem through several numerical experiments in order to show the capabilities and limitations of our algorithm. Results show the suitability of our approach and indicate that infrasonic observations can significantly improve current atmospheric specification at the altitudes of acoustic energy refraction, i.e. around 50 km and between 100 and 120 km. (author)

  6. The dynamics in the upper atmospheres of Mars and Titan

    Science.gov (United States)

    Bell, Jared M.

    2008-06-01

    This thesis explores the dynamics of two terrestrial bodies: Mars and Titan. At Mars, the coupled Mars General Circulation Model - Mars Thermospheric General Circulation Model (MGCM-MTGCM) is employed to investigate the phenomenon known as Mars winter polar warming. At Titan, a new theoretical model, the Titan Global Ionosphere - Thermosphere Model (T-GITM), is developed, based upon previous work by Ridley et al. [2006]. Using this new model, three separate numerical studies quantify the impacts of solar cycle, seasons, and lower boundary zonal winds on the Titan thermosphere structure and dynamics. At Mars, this thesis investigates thermospheric winter polar warming through three major studies: (1) a systematic analysis of vertical dust mixing in the lower atmosphere and its impact upon the dynamics of the lower thermosphere (100-130 km), (2) an interannual investigation utilizing three years of lower atmosphere infrared (IR) dust optical depth data acquired by the Thermal Emission Spectrometer (TES) instrument on board Mars Global Surveyor (MGS), and finally (3) a brief study of the MTGCM's response to variations in upward propagating waves and tides from the lower atmosphere. Ultimately, this investigation suggests that an interhemispheric summer-to-winter Hadley circulation, originating in the lower atmosphere and extending into the upper atmosphere, is responsible for thermospheric winter polar warming [ Bell etal. , 2007]. A major branch of this thesis builds upon the previous work of Müller-Wodarg et al. [2000], Müller-Wodarg et al. [2003], M7uuml;ller-Wodarg et al. [2006], and Yelle et al. [2006] as it attempts to explain the structures in Titan's upper atmosphere, between 500-1500 km. Building also upon the recent development of GITM by Ridley et al. [2006], this thesis presents a new theoretical framework, T-GITM. This model is then employed to conduct a series of numerical experiments to quantify the impacts of the solar cycle, the season, and the

  7. Co2(nu2)-o Quenching Rate Coefficient Derived from Coincidental SABER-TIMED and Fort Collins Lidar Observations of the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, A. G.; Kutepov, A. A.; She, C.-Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.

    2012-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(nu2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3-4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, k(sub VT),and its value estimated from the atmospheric observations. In this study, we retrieve k(sub VT) in the altitude region85-105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 micron radiation. The averaged k(sub VT) value obtained in this work is 6.5 +/- 1.5 X 10(exp -12) cubic cm/s that is close to other estimates of this coefficient from the atmospheric observations.However, the retrieved k(sub VT) also shows altitude dependence and varies from 5.5 1 +/-1 10(exp -12) cubic cm/s at 90 km to 7.9 +/- 1.2 10(exp -12) cubic cm/s at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 micron radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the non-thermal oxygen atoms with CO2 molecules.

  8. Optical/Infrared Signatures for Space-Based Remote Sensing

    National Research Council Canada - National Science Library

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    ... (mesosphere and thermosphere) in terms of the structure of the underlying medium. Advances in non-LTE radiative transfer and atmospheric waves and localized excitations are detailed, as well as analysis and modeling of the databases resulting from two groundbreaking space infrared experiments, DoD MSX/SPIRIT III and NASA TIMED/SABER.

  9. Interhemispheric Asymmetry in the Mesosphere and Lower Thermosphere Observed by SABER/TIMED

    Science.gov (United States)

    Yee, J. H.

    2017-12-01

    In this paper we analyze nearly 15 years of satellite observations of temperature, airglow, and composition in the Mesosphere and Lower Thermosphere (MLT) to quantify their interhemispheric asymmetries ao one can provide quantitative links between observed asymmetries and the spatial and temporal variations of the gravity wave activity. Two processes are believed to be responsible for observed interhemispheric differences in the MLT. The first is the direct radiation effect from the eccentricity of the Earth orbit amd the other is the difference in gravity wave source distribution and filtering due to asymmetries in mean winds of the lower atmosphere. Both processes have been theoretically investigated to explain the observed asymmetry in some of the atmospheric parameters, but not self-consistently in all observed parameters together. In this paper we will show the asymmetry in the time-varying zonal-mean latitudinal structures of temperature, airglow emission rate, and composition observed by TIMED/SABER. We will quantify their interhemispheric asymmetries for different seasons under different solar activity conditions. In addition, temperature measurements will also be used to obtain temporal and spatial morphology of gravity wave potential energies. We will interpret the asymmetry in the observed fields and examine qualitatively their consistency with the two responsible processes, especially the one due to gravity wave filtering process. Our goal is to introduce and to share the spatial and temporal morphologies of all the observed fields to the modeling community so, together self-consistently, they be can be used to gain physical insights into the relative importance of various drivers responsible for the observed asymmetry, especially the role of gravity wave induced eddy drag and mixing, a critical, but least quantitatively understood process.

  10. Modeling Study of the Geospace System Response to the Solar Wind Dynamic Pressure Enhancement on 17 March 2015

    Science.gov (United States)

    Ozturk, D. S.; Zou, S.; Ridley, A. J.; Slavin, J. A.

    2018-04-01

    The global magnetosphere-ionosphere-thermosphere system is intrinsically coupled and susceptible to external drivers such as solar wind dynamic pressure enhancements. In order to understand the large-scale dynamic processes in the magnetosphere-ionosphere-thermosphere system due to the compression from the solar wind, the 17 March 2015 sudden commencement was studied in detail using global numerical models. This storm was one of the most geoeffective events of the solar cycle 24 with a minimum Dst of -222 nT. The Wind spacecraft recorded a 10-nPa increment in the solar wind dynamic pressure, while the interplanetary magnetic field BZ became further northward. The University of Michigan Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme global magnetohydrodynamic code was utilized to study the generation and propagation of perturbations associated with the compression of the magnetosphere system. In addition, the high-resolution electric potential and auroral power output from the magnetohydrodynamic model was used to drive the global ionosphere-thermosphere model to investigate the ionosphere-thermosphere system response to pressure enhancement. During the compression, the electric potentials and convection patterns in the polar ionosphere were significantly altered when the preliminary impulse and main impulse field-aligned currents moved from dayside to nightside. As a result of enhanced frictional heating, plasma and neutral temperatures increased at the locations where the flow speeds were enhanced, whereas the electron density dropped at these locations. In particular, the region between the preliminary impulse and main impulse field-aligned currents experienced the most significant heating with 1000-K ion temperature increase and 20-K neutral temperature increase within 2 min. Comparison of the simulation results with the Poker Flat Incoherent Scatter Radar observations showed reasonable agreements despite underestimated magnitudes.

  11. Vibrational-rotational temperature measurement of N2 in the lower thermosphere by the rocket experiment

    Science.gov (United States)

    Kurihara, J.; Oyama, K.; Suzuki, K.; Iwagami, N.

    The vibrational temperature (Tv), the rotational temperature (Tr) and the density of atmospheric N2 between 100 - 150 km were measured in situ by a sounding rocket S310-30, over Kagoshima, Japan at 10:30 UT on February 6, 2002. The main purpose of this rocket experiment is to study the dynamics and the thermal energy budget in the lower thermosphere. N2 was ionized using an electron gun and the emission of the 1st negative bands of N2+ was measured by a sensitive spectrometer. Tv and Tr were determined by fitting the observed spectrum for the simulated spectrum, and the number density was deduced from the intensities of the spectrum. We will report preliminary results of our measurement and discuss the observed thermal structure that indicates the effect of tides and gravity waves.

  12. Ground-based Observations and Atmospheric Modelling of Energetic Electron Precipitation Effects on Antarctic Mesospheric Chemistry

    Science.gov (United States)

    Newnham, D.; Clilverd, M. A.; Horne, R. B.; Rodger, C. J.; Seppälä, A.; Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Hendrickx, K.; Megner, L. S.; Kovacs, T.; Feng, W.; Plane, J. M. C.

    2016-12-01

    The effect of energetic electron precipitation (EEP) on the seasonal and diurnal abundances of nitric oxide (NO) and ozone in the Antarctic middle atmosphere during March 2013 to July 2014 is investigated. Geomagnetic storm activity during this period, close to solar maximum, was driven primarily by impulsive coronal mass ejections. Near-continuous ground-based atmospheric measurements have been made by a passive millimetre-wave radiometer deployed at Halley station (75°37'S, 26°14'W, L = 4.6), Antarctica. This location is directly under the region of radiation-belt EEP, at the extremity of magnetospheric substorm-driven EEP, and deep within the polar vortex during Austral winter. Superposed epoch analyses of the ground based data, together with NO observations made by the Solar Occultation For Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, show enhanced mesospheric NO following moderate geomagnetic storms (Dst ≤ -50 nT). Measurements by co-located 30 MHz riometers indicate simultaneous increases in ionisation at 75-90 km directly above Halley when Kp index ≥ 4. Direct NO production by EEP in the upper mesosphere, versus downward transport of NO from the lower thermosphere, is evaluated using a new version of the Whole Atmosphere Community Climate Model incorporating the full Sodankylä Ion Neutral Chemistry Model (WACCM SIC). Model ionization rates are derived from the Polar orbiting Operational Environmental Satellites (POES) second generation Space Environment Monitor (SEM 2) Medium Energy Proton and Electron Detector instrument (MEPED). The model data are compared with observations to quantify the impact of EEP on stratospheric and mesospheric odd nitrogen (NOx), odd hydrogen (HOx), and ozone.

  13. Hydrogen Balmer alpha intensity distributions and line profiles from multiple scattering theory using realistic geocoronal models

    Science.gov (United States)

    Anderson, D. E., Jr.; Meier, R. R.; Hodges, R. R., Jr.; Tinsley, B. A.

    1987-01-01

    The H Balmer alpha nightglow is investigated by using Monte Carlo models of asymmetric geocoronal atomic hydrogen distributions as input to a radiative transfer model of solar Lyman-beta radiation in the thermosphere and atmosphere. It is shown that it is essential to include multiple scattering of Lyman-beta radiation in the interpretation of Balmer alpha airglow data. Observations of diurnal variation in the Balmer alpha airglow showing slightly greater intensities in the morning relative to evening are consistent with theory. No evidence is found for anything other than a single sinusoidal diurnal variation of exobase density. Dramatic changes in effective temperature derived from the observed Balmer alpha line profiles are expected on the basis of changing illumination conditions in the thermosphere and exosphere as different regions of the sky are scanned.

  14. Modeling ionospheric pre-reversal enhancement and plasma bubble growth rate using data assimilation

    Science.gov (United States)

    Rajesh, P. K.; Lin, C. C. H.; Chen, C. H.; Matsuo, T.

    2017-12-01

    We report that assimilating total electron content (TEC) into a coupled thermosphere-ionosphere model by using the ensemble Kalman filter results in improved specification and forecast of eastward pre-reversal enhancement (PRE) electric field (E-field). Through data assimilation, the ionospheric plasma density, thermospheric winds, temperature and compositions are adjusted simultaneously. The improvement of dusk-side PRE E-field over the prior state is achieved primarily by intensification of eastward neutral wind. The improved E-field promotes a stronger plasma fountain and deepens the equatorial trough. As a result, the horizontal gradients of Pedersen conductivity and eastward wind are increased due to greater zonal electron density gradient and smaller ion drag at dusk, respectively. Such modifications provide preferable conditions and obtain a strengthened PRE magnitude closer to the observation. The adjustment of PRE E-field is enabled through self-consistent thermosphere and ionosphere coupling processes captured in the model. The assimilative outputs are further utilized to calculate the flux tube integrated Rayleigh-Taylor instability growth rate during March 2015 for investigation of global plasma bubble occurrence. Significant improvements in the calculated growth rates could be achieved because of the improved update of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.

  15. Technical Note: On the possibly missing mechanism of 15 μm emission in the mesosphere-lower thermosphere (MLT)

    Science.gov (United States)

    Sharma, R. D.

    2015-02-01

    Accurate knowledge of the rate as well as the mechanism of excitation of the bending mode of CO2 is necessary for reliable modeling of the mesosphere-lower thermosphere (MLT) region of the atmosphere. Assuming the excitation mechanism to be thermal collisions with atomic oxygen, the rate coefficient derived from the observed 15 μm emission by space-based experiments (kATM = 6.0 × 10-12 cm3s-1) differs from the laboratory measurements (kLAB =(1.5-2.5) × 10-12 cm3s-1) by a factor of 2-4. The general circulation models (GCMs) of Earth, Venus, and Mars have chosen to use a median value of kGCM = 3.0 × 10-12 cm3s-1 for this rate coefficient. As a first step to resolve the discrepancies between the three rate coefficients, we attempt to find the source of disagreement between the first two. It is pointed out that a large magnitude of the difference between these two rate coefficients (kx ≡ kATM - kLAB) requires that the unknown mechanism involve one or both major species: N2, O. Because of the rapidly decreasing volume mixing ratio (VMR) of CO2 with altitude, the exciting partner must be long lived and transfer energy efficiently. It is shown that thermal collisions with N2, mediated by a near-resonant rotation-to-vibration (RV) energy transfer process, while giving a reasonable rate coefficient kVR for de-excitation of the bending mode of CO2, lead to vibration-to-translation kVT rate coefficients in the terrestrial atmosphere that are 1-2 orders of magnitude larger than those observed in the laboratory. It is pointed out that the efficient near-resonant rotation-to-vibration (RV) energy transfer process has a chance of being the unknown mechanism if very high rotational levels of N2, produced by the reaction of N and NO and other collisional processes, have a super-thermal population and are long lived. Since atomic oxygen plays a critical role in the mechanisms discussed here, it suggested that its density be determined experimentally by ground- and space-based

  16. Global Coupled Model Studies of The Jovian Upper Atmosphere In Response To Electron Precipitation and Ionospheric Convection Within The Auroral Region.

    Science.gov (United States)

    Millward, G. H.; Miller, S.; Aylward, A. D.

    The Jovian Ionospheric Model (JIM) is a global three-dimensional model of Jupiter's coupled ionosphere and thermosphere, developed at University College London. Re- cently, the model has been used to investigate the atmospheric response to electron precipitation within the high-latitude auroral region. A series of simulations have been performed in which the model atmosphere is subjected to monochromatic precipitat- ing electrons of varying number flux and initial energy and, in addition, to various degrees of ionospheric convection. The auroral ionospheric conductivity which re- sults is shown to be strongly non-linear with respect to the incoming electron energy, with a maximum observed for incident particles of initial energy 60 KeV. Electrons with higher energies penetrate the thermospheric region completely, whilst electrons of lower energy (say 10 keV) produce ionisation at higher levels in the atmosphere which are less less condusive to the creation of ionospheric conductivity. Studies of the thermospheric winds with the auroral region show that zonal winds (around the auroral oval) can attain values of around 70% of the driving zonal ion velocity. Also the results show that these large neutral winds are limited in vertical extent to the region of large ionospheric conductivity, tailing off markedly at altitudes above this. The latest results from this work will be presented, and the implications for Jovian magnetospheric-ionospheric coupling will be discussed.

  17. Observations on Stratospheric-Mesospheric-Thermospheric temperatures using Indian MST radar and co-located LIDAR during Leonid Meteor Shower (LMS

    Directory of Open Access Journals (Sweden)

    R. Selvamurugan

    2002-11-01

    Full Text Available The temporal and height statistics of the occurrence of meteor trails during the Leonid meteor shower revealed the capability of the Indian MST radar to record large numbers of meteor trails. The distribution of radio meteor trails due to a Leonid meteor shower in space and time provided a unique opportunity to construct the height profiles of lower thermospheric temperatures and winds, with good time and height resolution. There was a four-fold increase in the meteor trails observed during the LMS compared to a typical non-shower day. The temperatures were found to be in excellent continuity with the temperature profiles below the radio meteor region derived from the co-located Nd-Yag LIDAR and the maximum height of the temperature profile was extended from the LIDAR to ~110 km. There are, how-ever, some significant differences between the observed profiles and the CIRA-86 model profiles. The first results on the meteor statistics and neutral temperature are presented and discussed below.  Key words. Atmospheric composition and structure (pres-sure, density, and temperature History of geophysics (at-mospheric sciences Meteorology and atmospheric dynamics (middle atmosphere dynamics

  18. SAPS simulation with GITM/UCLA-RCM coupled model

    Science.gov (United States)

    Lu, Y.; Deng, Y.; Guo, J.; Zhang, D.; Wang, C. P.; Sheng, C.

    2017-12-01

    Abstract: SAPS simulation with GITM/UCLA-RCM coupled model Author: Yang Lu, Yue Deng, Jiapeng Guo, Donghe Zhang, Chih-Ping Wang, Cheng Sheng Ion velocity in the Sub Aurora region observed by Satellites in storm time often shows a significant westward component. The high speed westward stream is distinguished with convection pattern. These kind of events are called Sub Aurora Polarization Stream (SAPS). In March 17th 2013 storm, DMSP F18 satellite observed several SAPS cases when crossing Sub Aurora region. In this study, Global Ionosphere Thermosphere Model (GITM) has been coupled to UCLA-RCM model to simulate the impact of SAPS during March 2013 event on the ionosphere/thermosphere. The particle precipitation and electric field from RCM has been used to drive GITM. The conductance calculated from GITM has feedback to RCM to make the coupling to be self-consistent. The comparison of GITM simulations with different SAPS specifications will be conducted. The neutral wind from simulation will be compared with GOCE satellite. The comparison between runs with SAPS and without SAPS will separate the effect of SAPS from others and illustrate the impact on the TIDS/TADS propagating to both poleward and equatorward directions.

  19. Multiple neutral density measurements in the lower thermosphere with cold-cathode ionization gauges

    Science.gov (United States)

    Lehmacher, G. A.; Gaulden, T. M.; Larsen, M. F.; Craven, J. D.

    2013-01-01

    Cold-cathode ionization gauges were used for rocket-borne measurements of total neutral density and temperature in the aurorally forced lower thermosphere between 90 and 200 km. A commercial gauge was adapted as a low-cost instrument with a spherical antechamber for measurements in molecular flow conditions. Three roll-stabilized payloads on different trajectories each carried two instruments for measurements near the ram flow direction along the respective upleg and downleg segments of a flight path, and six density profiles were obtained within a period of 22 min covering spatial separations up to 200 km. The density profiles were integrated below 125 km to yield temperatures. The mean temperature structure was similar for all six profiles with two mesopause minima near 110 and 101 km, however, for the downleg profiles, the upper minimum was warmer and the lower minimum was colder by 20-30 K indicating significant variability over horizontal scales of 100-200 km. The upper temperature minimum coincided with maximum horizontal winds speeds, exceeding 170 m/s.

  20. MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements

    Directory of Open Access Journals (Sweden)

    M. García-Comas

    2014-11-01

    Full Text Available We present vM21 MIPAS temperatures from the lower stratosphere to the lower thermosphere, which cover all optimized resolution measurements performed by MIPAS in the middle-atmosphere, upper-atmosphere and noctilucent-cloud modes during its lifetime, i.e., from January 2005 to April 2012. The main upgrades with respect to the previous version of MIPAS temperatures (vM11 are the update of the spectroscopic database, the use of a different climatology of atomic oxygen and carbon dioxide, and the improvement in important technical aspects of the retrieval setup (temperature gradient along the line of sight and offset regularizations, apodization accuracy. Additionally, an updated version of ESA-calibrated L1b spectra (5.02/5.06 is used. The vM21 temperatures correct the main systematic errors of the previous version because they provide on average a 1–2 K warmer stratopause and middle mesosphere, and a 6–10 K colder mesopause (except in high-latitude summers and lower thermosphere. These lead to a remarkable improvement in MIPAS comparisons with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and the two Rayleigh lidars at Mauna Loa and Table Mountain, which, with a few specific exceptions, typically exhibit differences smaller than 1 K below 50 km and than 2 K at 50–80 km in spring, autumn and winter at all latitudes, and summer at low to midlatitudes. Differences in the high-latitude summers are typically smaller than 1 K below 50 km, smaller than 2 K at 50–65 km and 5 K at 65–80 km. Differences between MIPAS and the other instruments in the mid-mesosphere are generally negative. MIPAS mesopause is within 4 K of the other instruments measurements, except in the high-latitude summers, when it is within 5–10 K, being warmer there than SABER, MLS and OSIRIS and colder than ACE-FTS and SOFIE. The agreement in the lower thermosphere is typically better than 5 K, except for high latitudes during spring and summer, when MIPAS usually exhibits larger

  1. High-Fidelity Dynamic Modeling of Spacecraft in the Continuum--Rarefied Transition Regime

    Science.gov (United States)

    Turansky, Craig P.

    The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-body dynamics. In part because of computational constraints, simpler models based upon the ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied transition regime of Earth's thermosphere where gas dynamic simulation is difficult yet wherein many spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that traditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding principles which capitalize on the availability of increasing computational methods and resources. Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method in the transition regime. The application of the direct simulation Monte Carlo method to this class of problems is examined in detail with a new code specifically designed for engineering-level rarefied aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be predicted using simpler approaches. The results of this straightforward approach to the aero-orbital coupled-field problem highlight the possibilities for future improvements in drag prediction, control system design, and atmospheric science. Furthermore, a number of challenges for future work are identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.

  2. Neutral wind measurements by Fabry-Perot interferometry in Antarctica

    International Nuclear Information System (INIS)

    Stewart, K.D.; Dudeney, J.R.; Rodger, A.S.; Smith, R.W.; Rees, D.

    1986-01-01

    A large-aperture (150 mm), spatially scanned Fabry-Perot Interferometer (FPI) has been deployed at Halley (75.5 o S, 26.8 o W; L=4.2), Antarctica. Thermospheric neutral wind measurements were made by finding the Doppler shift of the OI( 3 P 2 - 1 D 2 ) 630.0 nm emission. This has allowed the first comparison to be made between southern hemisphere ground-based thermospheric wind measurements and the predictions of a three-dimensional, time-dependent thermospheric global circulation model. Geomagnetic and geographic latitude are well separated at Halley, so we may expect a distinct contrast to the dynamic behaviour observed in the more frequently studied northern polar thermosphere. Although the initial results from the experiment are in general agreement with the model, some consistent and significant differences between the observed wind field and that predicted are evident in the morning sector. These may be related to uncertainties in mapping magnetospheric boundaries to ionospheric heights in the southern hemisphere. The intensity of the 630 nm emission has been examined with respect to the maximum plasma frequency of the Es layer using data from the Advanced Ionospheric Sounder at Halley

  3. EEJ and EIA variations during modeling substorms with different onset moments

    Science.gov (United States)

    Klimenko, V. V.; Klimenko, M. V.

    2015-11-01

    This paper presents the simulations of four modeling substorms with different moment of substorm onset at 00:00 UT, 06:00 UT, 12:00 UT, and 18:00 UT for spring equinoctial conditions in solar activity minimum. Such investigation provides opportunity to examine the longitudinal dependence of ionospheric response to geomagnetic substorms. Model runs were performed using modified Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP). We analyzed GSM TIP simulated global distributions of foF2, low latitude electric field and ionospheric currents at geomagnetic equator and their disturbances at different UT moments substorms. We considered in more detail the variations in equatorial ionization anomaly, equatorial electrojet and counter equatorial electrojet during substorms. It is shown that: (1) the effects in EIA, EEJ and CEJ strongly depend on the substorm onset moment; (2) disturbances in equatorial zonal current density during substorm has significant longitudinal dependence; (3) the observed controversy on the equatorial ionospheric electric field signature of substorms can depend on the substorm onset moments, i.e., on the longitudinal variability in parameters of the thermosphere-ionosphere system.

  4. Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2008-02-01

    Full Text Available Data from the Fabry-Perot Interferometers at KEOPS (Sweden, Sodankylä (Finland, and Svalbard (Norway, have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the waves that are present in the high latitude upper thermosphere to be determined. Comparisons were made between the different parameters: the atomic oxygen intensities, the thermospheric winds and temperatures, and for each parameter the distribution of frequencies of the waves was determined. No dependence on the number of waves on geomagnetic activity levels, or position in the solar cycle, was found. All the FPIs have had different detectors at various times, producing different time resolutions of the data, so comparisons between the different years, and between data from different sites, showed how the time resolution determines which waves are observed. In addition to the cutoff due to the Nyquist frequency, poor resolution observations significantly reduce the number of short-period waves (<1 h period that may be detected with confidence. The length of the dataset, which is usually determined by the length of the night, was the main factor influencing the number of long period waves (>5 h detected. Comparisons between the number of gravity waves detected at KEOPS and Sodankylä over all the seasons showed a similar proportion of waves to the number of nights used for both sites, as expected since the two sites are at similar latitudes and therefore locations with respect to the auroral oval, confirming this as a likely source region. Svalbard showed fewer waves with short periods than KEOPS data for a season when both had the same time resolution data

  5. Day and night models of the Venus thermosphere

    Science.gov (United States)

    Massie, S. T.; Hunten, D. M.; Sowell, D. R.

    1983-01-01

    A model atmosphere of Venus for altitudes between 100 and 178 km is presented for the dayside and nightside. Densities of CO2, CO, O, N2, He, and O2 on the dayside, for 0800 and 1600 hours local time, are obtained by simultaneous solution of continuity equations. These equations couple ionospheric and neutral chemistry and the transport processes of molecular and eddy diffusion. Photodissociation and photoionization J coefficients are presented to facilitate the incorporation of chemistry into circulation models of the Venus atmosphere. Midnight densities of CO2 CO, O, N2, He, and N are derived from integration of the continuity equations, subject to specified fluxes. The nightside densities and fluxes are consistent with the observed airglow of NO and O2(1 Delta). The homopause of Venus is located near 133 km on both the dayside and nightside.

  6. Ozone-Temperature Diurnal and Longer Term Correlations, in the Lower Thermosphere, Mesosphere and Stratosphere, Based on Measurements from SABER on TIMED

    Science.gov (United States)

    Huang, Frank T.; Mayr, Hans G.; Russell, James M., III; Mlynczak, Martin G.

    2012-01-01

    The analysis of mutual ozone-temperature variations can provide useful information on their interdependencies relative to the photochemistry and dynamics governing their behavior. Previous studies have mostly been based on satellite measurements taken at a fixed local time in the stratosphere and lower mesosphere. For these data, it is shown that the zonal mean ozone amounts and temperatures in the lower stratosphere are mostly positively correlated, while they are mostly negatively correlated in the upper stratosphere and in the lower mesosphere. The negative correlation, due to the dependence of photochemical reaction rates on temperature, indicates that ozone photochemistry is more important than dynamics in determining the ozone amounts. In this study, we provide new results by extending the analysis to include diurnal variations over 24 hrs of local time, and to larger spatial regimes, to include the upper mesosphere and lower thermosphere (MLT). The results are based on measurements by the SABER instrument on the TIMED satellite. For mean variations (i.e., averages over local time and longitude) in the MLT, our results show that there is a sharp reversal in the correlation near 80 km altitude, above which the ozone mixing ratio and temperature are mostly positively correlated, while they are mostly negatively correlated below 80 km. This is consistent with the view that above -80 km, effects due to dynamics are more important compared to photochemistry. For diurnal variations, both the ozone and temperature show phase progressions in local time, as a function of altitude and latitude. For temperature, the phase progression is as expected, as they represent migrating tides. For day time ozone, we also find regular phase progression in local time over the whole altitude range of our analysis, 25 to 105 km, at least for low latitudes. This was not previously known, although phase progressions had been noted by us and by others at lower altitudes. For diurnal

  7. FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07

    Directory of Open Access Journals (Sweden)

    W. Yuan

    2013-08-01

    Full Text Available We analyzed the nighttime horizontal neutral winds in the middle atmosphere (~ 87 and ~ 98 km and thermosphere (~ 250 km derived from a Fabry–Perot interferometer (FPI, which was installed at Xinglong station (40.2° N, 117.4° E in central China. The wind data covered the period from April 2010 to July 2012. We studied the annual, semiannual and terannual variations of the midnight winds at ~ 87 km, ~ 98 km and ~ 250 km for the first time and compared them with Horizontal Wind Model 2007 (HWM07. Our results show the following: (1 at ~ 87 km, both the observed and model zonal winds have similar phases in the annual and semiannual variations. However, the HWM07 amplitudes are much larger. (2 At ~ 98 km, the model shows strong eastward wind in the summer solstice, resulting in a large annual variation, while the observed strongest component is semiannual. The observation and model midnight meridional winds agree well. Both are equatorward throughout the year and have small amplitudes in the annual and semiannual variations. (3 There are large discrepancies between the observed and HWM07 winds at ~ 250 km. This discrepancy is largely due to the strong semiannual zonal wind in the model and the phase difference in the annual variation of the meridional wind. The FPI annual variation coincides with the results from Arecibo, which has similar geomagnetic latitude as Xinglong station. In General, the consistency of FPI winds with model winds is better at ~ 87 and ~ 98 km than that at ~ 250 km. We also studied the seasonally and monthly averaged nighttime winds. The most salient features include the following: (1 the seasonally averaged zonal winds at ~ 87 and ~ 98 km typically have small variations throughout the night. (2 The model zonal and meridional nighttime wind variations are typically much larger than those of observations at ~ 87 km and ~ 98 km. (3 At ~ 250 km, model zonal wind compares well with the observation in the winter. For spring and

  8. Thermospheric O/N2 ratio observations obtained over more than four years with the GUVI instrument in the TIMED spacecraft mission

    Science.gov (United States)

    Craven, J. D.; Christensen, A. B.; Paxton, L. J.; Strickland, D. J.

    2006-12-01

    GUVI observations of the thermospheric column density ratio, O/N2, in the sunlit hemisphere have been made continuously from about Day 50 of 2002 to the present as part of the TIMED spacecraft mission. From these observations have been created organized databases to be used in the creation of analytic models for this parameter. Undesirable attributes within the GUVI data are being eliminated; sun glint at particular solar orientations and penetrating radiation from the South Atlantic magnetic anomaly. The large-scale basic spatial structure includes variations with local time (greater values before local noon), Universal Time (modulation at high latitudes as the dayside auroral oval varies in solar zenith angle due to the offset magnetic dipole), and season (greater values in the local winter hemisphere). Superposed on this well- behaved background structure are the complex, transient perturbations of auroral substorm and geomagnetic storm driven heating events at the high latitudes. These are more difficult to analyze, but are of great interest, as changes in neutral composition, for example, drive changes in ionospheric electron density. The current state of these efforts is to be presented.

  9. LION: A dynamic computer model for the low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    J. A. Bittencourt

    2007-11-01

    Full Text Available A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and

  10. LION: A dynamic computer model for the low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    J. A. Bittencourt

    2007-11-01

    Full Text Available A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and geomagnetic equators. The model runs in a normal personal computer (PC and generates color maps illustrating the

  11. Comparison of the EIA, EETA and ETWA, received in the model GSM TIP, at the self-consistent approach and with use of the model MSIS-90

    Science.gov (United States)

    Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.

    On the basis of the Global Self-consistent model of the thermosphere ionosphere and protonosphere GSM TIP developed in WD IZMIRAN the calculations for the quiet geomagnetic conditions of the equinox in the minimum of solar activity are carried out In the calculations the new block of the computation of electric fields in the ionosphere briefly described in COSPAR2006-A-00108 was used Two variants of calculations are executed with the account only the dynamo field generated by the thermosphere winds - completely self-consistent and with use of the model MSIS-90 for the calculation of the composition and temperature of the neutral atmosphere The results of the calculations are compared among themselves The global distributions of the foF2 the latitude behavior of the N e and T e on the near-midnight meridian at two height levels 233 and 626 km the latitude-altitude sections on the near-midnight meridian of the T e and time developments on UT of zonal component of the thermosphere wind and ion temperature at height sim 300 km and foF2 and h m F2 for three longitudinal chains of stations - Brazil Pacific and Indian in a vicinity of geomagnetic equator COSPAR2006-A-00109 calculated in two variants are submitted It is shown that at the self-consistent approach the maxima of the crests of the equatorial ionization anomaly EIA in the foF2 are shifted concerning calculated with the MSIS aside later evening hours The equatorial electron temperature anomaly EETA is formed in both variants of calculations However at the

  12. Satellite observations of middle atmosphere–thermosphere vertical coupling by gravity waves

    Directory of Open Access Journals (Sweden)

    Q. T. Trinh

    2018-03-01

    Full Text Available Atmospheric gravity waves (GWs are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I system. Via vertical coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as observations. In the current study, we analyze the correlation between GW momentum fluxes observed in the middle atmosphere (30–90 km and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE and CHAllenging Minisatellite Payload (CHAMP satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above. Two coupling mechanisms are likely responsible for these positive correlations: (1 fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2 primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in observations of all instruments used in our analysis. Latitude–longitude variations in the summer midlatitudes are also found in observations of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also

  13. Satellite observations of middle atmosphere-thermosphere vertical coupling by gravity waves

    Science.gov (United States)

    Trinh, Quang Thai; Ern, Manfred; Doornbos, Eelco; Preusse, Peter; Riese, Martin

    2018-03-01

    Atmospheric gravity waves (GWs) are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I) system. Via vertical coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as observations. In the current study, we analyze the correlation between GW momentum fluxes observed in the middle atmosphere (30-90 km) and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km) and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above). Two coupling mechanisms are likely responsible for these positive correlations: (1) fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2) primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in observations of all instruments used in our analysis. Latitude-longitude variations in the summer midlatitudes are also found in observations of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also propagate up to the T

  14. Laparoscopic microwave thermosphere ablation of malignant liver tumors: An analysis of 53 cases.

    Science.gov (United States)

    Zaidi, Nisar; Okoh, Alexis; Yigitbas, Hakan; Yazici, Pinar; Ali, Noaman; Berber, Eren

    2016-02-01

    Microwave thermosphere ablation (MTA) is a new technology that is designed to create spherical zones of ablation using a single antenna. The aim of this study is to assess the results of MTA in a large series of patients. This was a prospective study assessing the use of MTA in patients with malignant liver tumors. The procedures were done mostly laparoscopically and ablation zones created were assessed for completeness of tumor response, spherical geometry and recurrence on tri-phasic CT scans done on follow-up. There were a total of 53 patients with an average of 3 tumors measuring 1.5 cm. Ablations were performed laparoscopically in all but eight patients. Morbidity was 11.3% (n = 6), and mortality zero. On postoperative scans, there was 99.3% tumor destruction. Roundness indices A, B, and transverse were 1.1, 1.0, and 0.9, respectively. At a median follow-up of 4.5 months, incomplete ablation was seen in 1 of 149 lesions treated (0.7%) and local tumor recurrence in 1 lesion (0.7%). The results of this series confirm the safety and feasibility of MTA technology. The 99.3% rate of complete tumor ablation and low rate of local recurrence at short-term follow up are promising. © 2015 Wiley Periodicals, Inc.

  15. Modeling the diurnal tide with dissipation derived from UARS/HRDI measurements

    Directory of Open Access Journals (Sweden)

    M. A. Geller

    1997-09-01

    Full Text Available This paper uses dissipation values derived from UARS/HRDI observations in a recently published diurnal-tide model. These model structures compare quite well with the UARS/HRDI observations with respect to the annual variation of the diurnal tidal amplitudes and the size of the amplitudes themselves. It is suggested that the annual variation of atmospheric dissipation in the mesosphere-lower thermosphere is a major controlling factor in determining the annual variation of the diurnal tide.

  16. Simulations of the Boreal Winter Upper Mesosphere and Lower Thermosphere With Meteorological Specifications in SD-WACCM-X

    Science.gov (United States)

    Sassi, Fabrizio; Siskind, David E.; Tate, Jennifer L.; Liu, Han-Li; Randall, Cora E.

    2018-04-01

    We investigate the benefit of high-altitude nudging in simulations of the structure and short-term variability of the upper mesosphere and lower thermosphere (UMLT) dynamical meteorology during boreal winter, specifically around the time of the January 2009 sudden stratospheric warming. We compare simulations using the Specified Dynamics, Whole Atmosphere Community Climate Model, extended version, nudged using atmospheric specifications generated by the Navy Operational Global Atmospheric Prediction System, Advanced Level Physics High Altitude. Two sets of simulations are carried out: one uses nudging over a vertical domain from 0 to 90 km; the other uses nudging over a vertical domain from 0 to 50 km. The dynamical behavior is diagnosed from ensemble mean and standard deviation of winds, temperature, and zonal accelerations due to resolved and parameterized waves. We show that the dynamical behavior of the UMLT is quite different in the two experiments, with prominent differences in the structure and variability of constituent transport. We compare the results of our numerical experiments to observations of carbon monoxide by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer to show that the high-altitude nudging is capable of reproducing with high fidelity the observed variability, and traveling planetary waves are a crucial component of the dynamics. The results of this study indicate that to capture the key physical processes that affect short-term variability (defined as the atmospheric behavior within about 10 days of a stratospheric warming) in the UMLT, specification of the atmospheric state in the stratosphere alone is not sufficient, and upper atmospheric specifications are needed.

  17. IRI related data and model services at NSSDC

    Science.gov (United States)

    Bilitza, D.; Papitashvili, N.; King, J.

    NASA's National Space Science Data Center (NSSDC) provides internet access to a large number of space physics data sets and models. We will review and explain the different products and services that might be of interest to the IRI community. Data can be obtained directly through anonymous ftp or through the SPyCAT WWW interface to a large volume of space physics data on juke-box type mass storage devices. A newly developed WWW system, the ATMOWeb, provides browse and sub-setting capabilities for selected atmospheric and thermospheric data. NSSDC maintains an archive of space physics models that includes a subset of ionospheric models. The model software can be retrieved via anonymous ftp. A selection of the most frequently requested models can be run on-line through special WWW interfaces. Currently supported models include the International Reference Ionosphere (IRI), the Mass Spectrometer and Incoherent Scatter (MSIS) atmospheric model, the International Geomagnetic Reference Field (IGRF) and the AE-8/AP-8 radiation belt models. In this article special emphasis will be given to the IRI interface and its various input/output options. Several new options and a Java-based plotting capability were recently added to the Web interface.

  18. Modeling study of the ionospheric responses to the quasi-biennial oscillations of the sun and stratosphere

    Science.gov (United States)

    Wang, Jack C.; Tsai-Lin, Rong; Chang, Loren C.; Wu, Qian; Lin, Charles C. H.; Yue, Jia

    2018-06-01

    The Quasi-biennial Oscillation (QBO) is a persistent oscillation in the zonal mean zonal winds of the low latitude middle atmosphere that is driven by breaking planetary and gravity waves with a period near two years. The atmospheric tides that dominate the dynamics of the mesosphere and lower thermosphere region (MLT, between heights of 70-120 km) are excited in the troposphere and stratosphere, and propagate through QBO-modulated zonal mean zonal wind fields. This allows the MLT tidal response to also be modulated by the QBO, with implications for ionospheric/thermospheric variability. Interannual oscillations in solar radiation can also directly drive the variations in the ionosphere with similar periodicities through the photoionization. Many studies have observed the connection between the solar activity and QBO signal in ionospheric features such as total electron content (TEC). In this research, we develop an empirical model to isolate stratospheric QBO-related tidal variability in the MLT diurnal and semidiurnal tides using values from assimilated TIMED satellite data. Migrating tidal fields corresponding to stratospheric QBO eastward and westward phases, as well as with the quasi-biennial variations in solar activity isolated by the Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) analysis from Hilbert-Huang Transform (HHT), are then used to drive the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). The numerical experiment results indicate that the ionospheric QBO is mainly driven by the solar quasi-biennial variations during the solar maximum, since the solar quasi-biennial variation amplitude is directly proportionate to the solar cycle. The ionospheric QBO in the model is sensitive to both the stratospheric QBO and solar quasi-biennial variations during the solar minimum, with solar effects still playing a stronger role.

  19. Occurrence of the dayside three-peak density structure in the F2 and the topside ionosphere

    Science.gov (United States)

    Astafyeva, Elvira; Zakharenkova, Irina; Pineau, Yann

    2016-07-01

    In this work, we discuss the occurrence of the dayside three-peak electron density structure in the ionosphere. We first use a set of ground-based and satellite-borne instruments to demonstrate the development of a large-amplitude electron density perturbation at the recovery phase of a moderate storm of 11 October 2008. The perturbation developed in the F2 and low topside ionospheric regions over the American sector; it was concentrated on the north from the equatorial ionization anomaly (EIA) but was clearly separated from it. At the F2 region height, the amplitude of the observed perturbation was comparable or even exceeded that of the EIA. Further analysis of the observational data together with the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics model simulation results showed that a particular local combination of the thermospheric wind surges provided favorable conditions for the generation of the three-peak EIA structure. We further proceed with a statistical study of occurrence of the three-peak density structure in the ionosphere in general. Based on the analysis of 7 years of the in situ data from CHAMP satellite, we found that such three-peak density structure occurs sufficiently often during geomagnetically quiet time. The third ionization peak develops in the afternoon hours in the summer hemisphere at solstice periods. Based on analysis of several quiet time events, we conclude that during geomagnetically quiet time, the prevailing summer-to-winter thermospheric circulation acts in similar manner as the storm-time enhanced thermospheric winds, playing the decisive role in generation of the third ionization peak in the daytime ionosphere.

  20. Daily estimates of the migrating tide and zonal mean temperature in the mesosphere and lower thermosphere derived from SABER data

    Science.gov (United States)

    Ortland, David A.

    2017-04-01

    Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.

  1. Lower thermospheric nitric oxide concentrations derived from WINDII observations of the green nightglow continuum at 553.1 nm

    Directory of Open Access Journals (Sweden)

    C. H. A. von Savigny

    1999-11-01

    Full Text Available Vertical profiles of nitric oxide in the altitude range 90 to 105 km are derived from 553 nm nightglow continuum measurements made with the Wind Imaging Interferometer (WINDII on the Upper Atmosphere Research Satellite (UARS. The profiles are derived under the assumption that the continuum emission is due entirely to the NO+O air afterglow reaction. Vertical profiles of the atomic oxygen density, which are required to determine the nitric oxide concentrations, are derived from coordinated WINDII measurements of the atomic oxygen OI 557.7 nm nightglow emission. Data coverage for local solar times ranging from 20 h to 04 h, and latitudes ranging from 42°S to 42°N, is achieved by zonally averaging and binning data obtained on 18 nights during a two-month period extending from mid-November 1992 until mid-January 1993. The derived nitric oxide concentrations are significantly smaller than those obtained from rocket measurements of the airglow continuum but they do compare well with model expectations and nitric oxide densities measured using the resonance fluorescence technique on the Solar Mesosphere Explorer satellite. The near-global coverage of the WINDII observations and the similarities to the nitric oxide global morphology established from other satellite measurements strongly suggests that the NO+O reaction is the major source of the continuum near 553 nm and that there is no compelling reason to invoke additional sources of continuum emission in this immediate spectral region.Key words. Atmospheric composition and structure (airglow and aurora; thermosphere – composition and chemistry; instruments and techniques

  2. Observing Equatorial Thermospheric Winds and Temperatures with a New Mapping Technique

    Science.gov (United States)

    Faivre, M. W.; Meriwether, J. W.; Sherwood, P.; Veliz, O.

    2005-12-01

    Application of the Fabry-Perot interferometer (FPI) at Arequipa, Peru (16.4S, 71.4 W) to measure the Doppler shifts and Doppler broadenings in the equatorial O(1D) 630-nm nightglow has resulted in numerous detections of a large-scale thermospheric phenomenon called the Midnight Temperature Maximum (MTM). A recent detector upgrade with a CCD camera has improved the accuracy of these measurements by a factor of 5. Temperature increases of 50 to 150K have been measured during nights in April and July, 2005, with error bars less than 10K after averaging in all directions. Moreover, the meridional wind measurements show evidence for a flow reversal from equatorward to poleward near local midnight for such events. A new observing strategy based upon the pioneering work of Burnside et al.[1981] maps the equatorial wind and temperature fields by observing in eight equally-spaced azimuth directions, each with a zenith angle of 60 degrees. Analysis of the data obtained with this technique gives the mean wind velocities in the meridional and zonal directions as well as the horizontal gradients of the wind field for these directions. Significant horizontal wind gradients are found for the meridional direction but not for the zonal direction. The zonal wind blows eastward throughout the night with a maximum speed of ~150 m/s near the middle of the night and then decreases towards zero just before dawn. In general, the fastest poleward meridional wind is observed near mid-evening. By the end of the night, the meridional flow tends to be more equatorward at speeds of about 50 m/s. Using the assumption that local time and longitude are equivalent over a period of 30 minutes, a map of the horizontal wind field vector field is constructed over a range of 12 degrees latitude centered at 16.5 S. Comparison between MTM nights and quiet nights (no MTM) revealed significant differences in the horizontal wind fields. Using the method of Fourier decomposition of the line-of-sight winds

  3. Global modelling study (GSM TIP of the ionospheric effects of excited N2, convection and heat fluxes by comparison with EISCAT and satellite data for 31 July 1990

    Directory of Open Access Journals (Sweden)

    J. Smilauer

    Full Text Available Near-earth plasma parameters were calculated using a global numerical self-consistent and time-dependent model of the thermosphere, ionosphere and protonosphere (GSM TIP. The model results are compared with experimental data of different origin, mainly EISCAT measurements and simultaneous satellite data (Ne and ion composition. Model runs with varying inputs of auroral FAC distributions, temperature of vibrationally excited nitrogen and photoelectron energy escape fluxes are used to make adjustments to the observations. The satellite data are obtained onboard Active and its subsatellite Magion-2 when they passed nearby the EISCAT station around 0325 and 1540 UT on 31 July 1990 at a height of about 2000 and 2200 km, respectively. A strong geomagnetic disturbance was observed two days before the period under study. Numerical calculations were performed with consideration of vibrationally excited nitrogen molecules for high solar-activity conditions. The results show good agreement between the incoherent-scatter radar measurements (Ne, Te, Ti and model calculations, taking into account the excited molecular nitrogen reaction rates. The comparison of model results of the thermospheric neutral wind shows finally a good agreement with the HWM93 empirical wind model.

  4. Global modelling study (GSM TIP of the ionospheric effects of excited N2, convection and heat fluxes by comparison with EISCAT and satellite data for 31 July 1990

    Directory of Open Access Journals (Sweden)

    Yu. N. Korenkov

    1996-12-01

    Full Text Available Near-earth plasma parameters were calculated using a global numerical self-consistent and time-dependent model of the thermosphere, ionosphere and protonosphere (GSM TIP. The model results are compared with experimental data of different origin, mainly EISCAT measurements and simultaneous satellite data (Ne and ion composition. Model runs with varying inputs of auroral FAC distributions, temperature of vibrationally excited nitrogen and photoelectron energy escape fluxes are used to make adjustments to the observations. The satellite data are obtained onboard Active and its subsatellite Magion-2 when they passed nearby the EISCAT station around 0325 and 1540 UT on 31 July 1990 at a height of about 2000 and 2200 km, respectively. A strong geomagnetic disturbance was observed two days before the period under study. Numerical calculations were performed with consideration of vibrationally excited nitrogen molecules for high solar-activity conditions. The results show good agreement between the incoherent-scatter radar measurements (Ne, Te, Ti and model calculations, taking into account the excited molecular nitrogen reaction rates. The comparison of model results of the thermospheric neutral wind shows finally a good agreement with the HWM93 empirical wind model.

  5. E region neutral winds in the postmidnight diffuse aurora during the atmospheric response in aurora 1 rocket campaign

    International Nuclear Information System (INIS)

    Brinkman, D.G.; Walterscheid, R.L.; Lyons, L.R.

    1995-01-01

    Measured E region neutral winds from the Atmospheric Response in Aurora (ARIA 1) rocket campaign are compared with winds predicted by a high-resolution nonhydrostatic dynamical thermosphere model. The ARIA 1 rockets were launched into the postmidnight diffuse aurora during the recovery phase of a substorm. Simulations have shown that electrodynamical coupling between the auroral ionosphere and the thermosphere was expected to be strong during active diffuse auroral conditions. This is the first time that simulations using the time history of detailed specifications of the magnitude and latitudinal variation of the auroral forcing based on measurements have been compared to simultaneous wind measurements. Model inputs included electron densities derived from ground-based airglow measurements, precipitating electron fluxes measured by the rocket, electron densities measured on the rocket, electric fields derived from magnetometer and satellite ion drift measurements, and large-scale background winds from a thermospheric general circulation model. Our model predicted a strong jet of eastward winds at E region heights. A comparison between model predicted and observed winds showed modest agreement. Above 135 km the model predicted zonal winds with the correct sense, the correct profile shape, and the correct altitude of the peak wind. However, it overpredicted the magnitude of the eastward winds by more than a factor or 2. For the meridional winds the model predicted the general sense of the winds but was unable to predict the structure or strength of the winds seen in the observations. Uncertainties in the magnitude and latitudinal structure of the electric field and in the magnitude of the background winds are the most likely sources of error contributing to the differences between model and observed winds. Between 110 and 135 km the agreement between the model and observations was poor because of a large unmodeled jetlike feature in the observed winds

  6. Mean vertical wind in the mesosphere-lower thermosphere region (80–120 km deduced from the WINDII observations on board UARS

    Directory of Open Access Journals (Sweden)

    V. Fauliot

    1997-09-01

    Full Text Available The WINDII interferometer placed on board the Upper Atmosphere Research Satellite measures temperature and wind from the O(1S green-line emission in the Earth's mesosphere and lower thermosphere. It is a remote-sensing instrument providing the horizontal wind components. In this study, the vertical winds are derived using the continuity equation. Mean wind annually averaged at equinoxes and solstices is shown. Ascendance and subsidence to the order of 1–2 cm s–1 present a seasonal occurrence at the equator and tropics. Zonal Coriolis acceleration and adiabatic heating and cooling rate associated to the mean meridional and vertical circulations are evaluated. The line emission rate measured together with the horizontal wind shows structures in altitude and latitude correlated with the meridional and vertical wind patterns. The effect of wind advection is discussed.

  7. Altitude Variation of the CO2 (V2)-O Quenching Rate Coefficient in Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilovi, Artem; Kutepov, Alexander; She, Chiao-Yao; Smith, Anne K.; Pesnell, William Dean; Goldberg, Richard A.

    2010-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (mlt), the quenching of CO2(N2) vibrational levels by collisions with oxygen atoms plays an important role. However, the k(CO2-O) values measured in the lab and retrieved from atmospheric measurements vary from 1.5 x 10(exp -12) cubic centimeters per second through 9.0 x 10(exp -12) cubic centimeters per second that requires further studying. In this work we used synergistic data from a ground based lidar and a satellite infrared radiometer to estimate K(CO2-O). We used the night- and daytime temperatures between 80 and 110 km measured by the colorado state university narrow-band sodium (Na) lidar located at fort collins, colorado (41N, 255E) as ground truth of the saber/timed nearly simultaneous (plus or minus 10 minutes) and common volume (within plus or minus 1 degree in latitude, plus or minus 2 degrees in longitude) observations. For each altitude in 80-110 km interval we estimate an "optimal" value of K(CO2-O) needed to minimize the discrepancy between the simulated 15 mm CO2 radiance and that measured by the saber/timed instrument. The K(CO2-O) obtained in this way varies in altitude from 3.5 x 10(exp -12) cubic centimeters per second at 80 km to 5.2 x 10(exp -12) cubic centimeters pers second for altitudes above 95 km. We discuss this variation of the rate constant and its impact on temperature retrievals from 15 mm radiance measurements and on the energy budget of mlt.

  8. The Flare Irradiance Spectral Model (FISM) and its Contributions to Space Weather Research, the Flare Energy Budget, and Instrument Design

    Science.gov (United States)

    Chamberlin, Phillip

    2008-01-01

    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models. The seminar will begin with a brief overview of the FISM model, and also how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM. Some current studies will then be presented that use FISM estimations of the solar VUV irradiance to quantify the contributions of the increased irradiance from flares to Earth's increased thermospheric and ionospheric densites. Initial results will also be presented from a study looking at the electron density increases in the Martian atmosphere during a solar flare. Results will also be shown quantifying the VUV contributions to the total flare energy budget for both the impulsive and gradual phases of solar flares. Lastly, an example of how FISM can be used to simplify the design of future solar VUV irradiance instruments will be discussed, using the future NOAA GOES-R Extreme Ultraviolet and X-Ray Sensors (EXIS) space weather instrument.

  9. An Intense Traveling Airglow Front in the Upper Mesosphere-Lower Thermosphere with Characteristic of a Turbulent Bore Observed over Alice Springs, Australia

    Science.gov (United States)

    Walterscheid, R. L.; Hecht, J. H.; Hickey, M. P.; Gelinas, L. J.; Vincent, R. A.; Reid, I. M.; Woithe, J.

    2010-12-01

    The Aerospace Corporation’s Nightglow Imager observed a large step-function change in airglow in the form of a traveling front in the OH and O2 airglow emissions over Alice Springs Australia on February 2, 2003. The front exhibited a stepwise increase of nearly a factor two in the OH brightness and a stepwise decrease in the O2 brightness. The change in brightness in each layer was associated with a strong leading disturbance followed by a train of weak barely visible waves. The OH airglow brightness behind the front was the brightness night for 02 at Alice Springs that we have measured in seven years of observations. The OH brightness was among the five brightest. The event was associated with a strong phase-locked two-day wave (TDW).We have analyzed the stability conditions for the upper mesosphere and lower thermosphere and found that the airglow layers were found in a region of strong ducting. The thermal structure was obtained from combining data from the SABER instrument on the TIMED satellite and the NRLMSISE-00 model. The wind profile was obtained by combining the HWM07 model and MF radar winds from Buckland Park Australia. We found that the TDW-disturbed profile was significantly more effective in supporting a high degree of ducting than a profile based only on HWM07 winds. Dramatic wall events have been interpreted as manifestations of undular bores (e.g., Smith et al. [2003]). Undular bores are nonlinear high Froude number events that must generate an ever increasing train of waves to carry the excess energy away from the bore front. Only a very weak wave train behind the initial disturbance was seen for the Alice Springs event. The form of the amplitude ordering was not typical of a nonlinear wave train. Therefore a bore interpretation requires another means of energy dissipation, namely turbulent dissipation. We suggest that a reasonable interpretation of the observed event is a turbulent bore. We are unaware of any previous event having

  10. An Overview of Modeling Middle Atmospheric Odd Nitrogen

    Science.gov (United States)

    Jackman, Charles H.; Kawa, S. Randolph; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Odd nitrogen (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, and BrONO2) constituents are important components in the control of middle atmospheric ozone. Several processes lead to the production of odd nitrogen (NO(sub y)) in the middle atmosphere (stratosphere and mesosphere) including the oxidation of nitrous oxide (N2O), lightning, downflux from the thermosphere, and energetic charged particles (e.g., galactic cosmic rays, solar proton events, and energetic electron precipitation). The dominant production mechanism of NO(sub y) in the stratosphere is N2O oxidation, although other processes contribute. Mesospheric NO(sub y) is influenced by N2O oxidation, downflux from the thermosphere, and energetic charged particles. NO(sub y) is destroyed in the middle atmosphere primarily via two processes: 1) dissociation of NO to form N and O followed by N + NO yielding N2 + O to reform even nitrogen; and 2) transport to the troposphere where HNO3 can be rapidly scavenged in water droplets and rained out of the atmosphere. There are fairly significant differences among global models that predict NO(sub y). NO(sub y) has a fairly long lifetime in the stratosphere (months to years), thus disparate transport in the models probably contributes to many of these differences. Satellite and aircraft measurement provide modeling tests of the various components of NO(sub y). Although some recent reaction rate measurements have led to improvements in model/measurement agreement, significant differences do remain. This presentation will provide an overview of several proposed sources and sinks of NO(sub y) and their regions of importance. Multi-dimensional modeling results for NO(sub y) and its components with comparisons to observations will also be presented.

  11. Imaging of structures in the high-latitude ionosphere: model comparisons

    Directory of Open Access Journals (Sweden)

    D. W. Idenden

    Full Text Available The tomographic reconstruction technique generates a two-dimensional latitude versus height electron density distribution from sets of slant total electron content measurements (TEC along ray paths between beacon satellites and ground-based radio receivers. In this note, the technique is applied to TEC values obtained from data simulated by the Sheffield/UCL/SEL Coupled Thermosphere/Ionosphere/Model (CTIM. A comparison of the resulting reconstructed image with the 'input' modelled data allows for verification of the reconstruction technique. All the features of the high-latitude ionosphere in the model data are reproduced well in the tomographic image. Reconstructed vertical TEC values follow closely the modelled values, with the F-layer maximum density (NmF2 agreeing generally within about 10%. The method has also been able successfully to reproduce underlying auroral-E ionisation over a restricted latitudinal range in part of the image. The height of the F2 peak is generally in agreement to within about the vertical image resolution (25 km.

    Key words. Ionosphere (modelling and forecasting; polar ionosphere · Radio Science (instruments and techniques

  12. Mean vertical wind in the mesosphere-lower thermosphere region (80–120 km deduced from the WINDII observations on board UARS

    Directory of Open Access Journals (Sweden)

    V. Fauliot

    Full Text Available The WINDII interferometer placed on board the Upper Atmosphere Research Satellite measures temperature and wind from the O(1S green-line emission in the Earth's mesosphere and lower thermosphere. It is a remote-sensing instrument providing the horizontal wind components. In this study, the vertical winds are derived using the continuity equation. Mean wind annually averaged at equinoxes and solstices is shown. Ascendance and subsidence to the order of 1–2 cm s–1 present a seasonal occurrence at the equator and tropics. Zonal Coriolis acceleration and adiabatic heating and cooling rate associated to the mean meridional and vertical circulations are evaluated. The line emission rate measured together with the horizontal wind shows structures in altitude and latitude correlated with the meridional and vertical wind patterns. The effect of wind advection is discussed.

  13. Effects of solar activity in the middle atmosphere dynamical regime over Eastern Siberia, USSR

    Science.gov (United States)

    Gaidukov, V. A.; Kazimirovsky, E. S.; Zhovty, E. I.; Chernigovskaya, M. A.

    1989-01-01

    Lower thermospheric (90 to 120 km) wind data was acquired by ground based spaced-receiver method (HF, LF) near Irkutsk (52 deg N, 104 deg E). There is interrelated solar and meteorological control of lower thermosphere dynamics. Some features of solar control effects on the wind parameters are discussed.

  14. Future Drag Measurements from Venus Express

    Science.gov (United States)

    Keating, Gerald; Mueller-Wodarg, Ingo; Forbes, Jeffrey M.; Yelle, Roger; Bruinsma, Sean; Withers, Paul; Lopez-Valverde, Miguel Angel; Theriot, Res. Assoc. Michael; Bougher, Stephen

    thermospheric drag effects over the last 30 years. The Venus Express drag experiments will allow a global empirical model of the thermosphere to emerge. This new model will be a substantial improvement over the Venus International Reference Atmosphere, which was based principally on near equatorial measurements. General Circulation Models (GCM's) and other models will be generated that are in fair accord with the empirical models. The experiment may help us understand, on a global scale, tides, winds, gravity waves, planetary waves and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The observed global cooling from radiative effects of 15 micron excitation of CO2 by atomic oxygen should improve our understanding of global thermospheric cooling on Earth and Mars as well.

  15. Investigation of the impact of extraterrestrial energetic particles on stratospheric nitrogen compounds and ozone on the basis of three dimensional model studies

    Energy Technology Data Exchange (ETDEWEB)

    Wieters, Nadine

    2013-06-17

    As a result of solar events like Coronal Mass Ejections (CMEs) and solar flares, highly energetic charged particles including protons and electrons can precipitate in the direction of the Earth. Having sufficient energies, these particles can penetrate down to the middle atmosphere and lead to a change in the chemical composition of the atmosphere. In particular during strong events, these charged particles induce an ionisation in the atmosphere that can reach down to the lower stratosphere. This ionisation is followed by a fast positive ion chemistry that causes a strong increase in reactive HO{sub x} (H,OH,HO{sub 2}) an NO{sub x} (N,NO,NO{sub 2}). HO{sub x} and NO{sub x} constituents eventually destroy O{sub 3} in catalytical reaction cycles. Furthermore, NO{sub x} is long-lived during polar winter and can be transported into the middle and lower stratosphere, where it can contribute to the O{sub 3} depletion. The increase in NO{sub x} in the upper and middle atmosphere due to solar events and the consequential depletion of O{sub 3} has been observed as during the Solar Proton Event (SPE) in October/November 2003 by satellite instruments. In atmospheric models, the generation of HO{sub x} and NO{sub x} can be well described by parametrisations to include in neutral models. Whereas other changes, for instance in chlorine compounds, can not be described sufficiently by this parametrisation. The purpose of this PhD thesis is, to investigate the impact of strong solar particle events on the abundance in NO{sub x} and O{sub 3} in the stratosphere and mesosphere on the basis of three-dimensional model studies. For this purpose a three-dimensional Chemistry and Transport Model (CTM) has been extended to the upper atmosphere (lower thermosphere). To include the processes in the mesosphere and lower thermosphere a new meteorological data set has been implemented to the model. To describe the ionising effect of energetic particle on the atmosphere, three

  16. Numerical modeling of the equatorial ionization anomaly (EIA), equatorial temperature and wind anomaly (ETWA) and equatorial electron temperature anomaly (EETA) on the basis of the GSM TIP

    Science.gov (United States)

    Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.

    On the basis of Global Self-consistent Model of Thermosphere Ionosphere and Protonosphere GSM TIP developed in WD IZMIRAN the calculations of the behavior of thermosphere F-region and upper ionosphere parameters at middle and low geomagnetic latitudes are carried out The calculations were carried out with use the new block of the calculation of electric fields in the ionosphere in which the decision of the three-dimensional equation describing the law of the conservation of the full current density in the ionosphere of the Earth is realized by adduction it to the two-dimensional by integration on the thickness of the current conductive layer of the ionosphere along equipotential geomagnetic field lines The calculations of the neutral atmosphere composition and temperature were executed with use of the MSIS model The quite geomagnetic conditions of the equinox were considered in the minimum of the solar activity There are presented the calculated global distributions of the critical frequency of the F2-layer of ionosphere for the different moments UT the latitudinal course of the N e and T e in the F-region and upper ionosphere in the vicinity of geomagnetic equator and unrolling on UT of the calculated velocities of zonal component of the thermospheric wind and ion temperature in the F-region of ionosphere as well as critical frequency and height of the F2-layer maximum of the ionosphere at three longitude chains of the stations Brazilian -- Fortaleza 4 0 r S 38 0 r W Jicamarca 11 9 r S 76 0 r W Cachoeira

  17. First Results From the Ionospheric Extension of WACCM-X During the Deep Solar Minimum Year of 2008

    Science.gov (United States)

    Liu, Jing; Liu, Hanli; Wang, Wenbin; Burns, Alan G.; Wu, Qian; Gan, Quan; Solomon, Stanley C.; Marsh, Daniel R.; Qian, Liying; Lu, Gang; Pedatella, Nicholas M.; McInerney, Joe M.; Russell, James M.; Schreiner, William S.

    2018-02-01

    New ionosphere and electrodynamics modules have been incorporated in the thermosphere and ionosphere eXtension of the Whole Atmosphere Community Climate Model (WACCM-X), in order to self-consistently simulate the coupled atmosphere-ionosphere system. The first specified dynamics WACCM-X v.2.0 results are compared with several data sets, and with the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM), during the deep solar minimum year. Comparisons with Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite of temperature and zonal wind in the lower thermosphere show that WACCM-X reproduces the seasonal variability of tides remarkably well, including the migrating diurnal and semidiurnal components and the nonmigrating diurnal eastward propagating zonal wavenumber 3 component. There is overall agreement between WACCM-X, TIE-GCM, and vertical drifts observed by the Communication/Navigation Outage Forecast System (C/NOFS) satellite over the magnetic equator, but apparent discrepancies also exist. Both model results are dominated by diurnal variations, while C/NOFS observed vertical plasma drifts exhibit strong temporal variations. The climatological features of ionospheric peak densities and heights (NmF2 and hmF2) from WACCM-X are in general agreement with the results derived from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) data, although the WACCM-X predicted NmF2 values are smaller, and the equatorial ionization anomaly crests are closer to the magnetic equator compared to COSMIC and ionosonde observations. This may result from the excessive mixing in the lower thermosphere due to the gravity wave parameterization. These data-model comparisons demonstrate that WACCM-X can capture the dynamic behavior of the coupled atmosphere and ionosphere in a climatological sense.

  18. Climatological lower thermosphere winds as seen by ground-based and space-based instruments

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    2004-06-01

    Full Text Available Comparisons are made between climatological dynamic fields obtained from ground-based (GB and space-based (SB instruments with a view towards identifying SB/GB intercalibration issues for TIMED and other future aeronomy satellite missions. SB measurements are made from the High Resolution Doppler Imager (HRDI instrument on the Upper Atmosphere Research Satellite (UARS. The GB data originate from meteor radars at Obninsk, (55° N, 37° E, Shigaraki (35° N, 136° E and Jakarta (6° S, 107° E and MF spaced-antenna radars at Hawaii (22° N, 160° W, Christmas I. (2° N, 158° W and Adelaide (35° S, 138° E. We focus on monthly-mean prevailing, diurnal and semidiurnal wind components at 96km, averaged over the 1991-1999 period. We perform space-based (SB analyses for 90° longitude sectors including the GB sites, as well as for the zonal mean. Taking the monthly prevailing zonal winds from these stations as a whole, on average, SB zonal winds exceed GB determinations by ~63%, whereas meridional winds are in much better agreement. The origin of this discrepancy remains unknown, and should receive high priority in initial GB/SB comparisons during the TIMED mission. We perform detailed comparisons between monthly climatologies from Jakarta and the geographically conjugate sites of Shigaraki and Adelaide, including some analyses of interannual variations. SB prevailing, diurnal and semidiurnal tides exceed those measured over Jakarta by factors, on the average, of the order of 2.0, 1.6, 1.3, respectively, for the eastward wind, although much variability exists. For the meridional component, SB/GB ratios for the diurnal and semidiurnal tide are about 1.6 and 1.7. Prevailing and tidal amplitudes at Adelaide are significantly lower than SB values, whereas similar net differences do not occur at the conjugate Northern Hemisphere location of Shigaraki. Adelaide diurnal phases lag SB phases by several hours, but excellent agreement between the two data

  19. The Design and Implementation of the Wide-Angle Michelson Interferometer to Observe Thermospheric Winds.

    Science.gov (United States)

    Ward, William Edmund

    The design and implementation of a Wide-Angle Michelson interferometer (WAMI) as a high spectral resolution device for measuring Doppler shifts and temperatures in the thermosphere is discussed in detail. A general theoretical framework is developed to describe the behavior of interferometers and is applied to the WAMI. Notions concerning the optical coupling of various surfaces within an interferometer are developed and used to investigate the effects of misalignments in the WAMI optics. In addition, these notions in combination with ideas on the polarization behavior of interferometers are used to suggest how complex multisurfaced interferometers might be developed, what features affect their behavior most strongly, and how this behavior might be controlled. Those aspects of the Michelson interferometer important to its use as a high resolution spectral device are outlined and expressions relating the physical features of the interferometer and the spectral features of the radiation passing through the instrument, to the form of the observed interference pattern are derived. The sensitivity of the WAMI to misalignments in its optical components is explored, and quantitative estimations of the effects of these misalignments made. A working WAMI with cube corners instead of plane mirrors was constructed and is described. The theoretical notions outlined above are applied to this instrument and found to account for most of its features. A general digital procedure is developed for the analysis of the observed interference fringes which permits an estimation of the amplitude, visibility and phase of the fringes. This instrument was taken to Bird, northern Manitoba as part of the ground based support for the Auroral Rocket and Image Excitation Study (ARIES) rocket campaign. Doppler shifts and linewidth variations in O(^1 D) and O(^1S) emissions in the aurora were observed during several nights and constitute the first synoptic wind measurements taken with a WAMI. The

  20. A perspective of Middle-Atmosphere Dynamics (MAD) studies at the New International Equatorial Observatory (NIEO)

    Science.gov (United States)

    Yamanaka, M. D.; Fukao, S.

    1989-01-01

    The equatorial region has attracted many MAD studies mainly based on data of limited locations and resolutions. Established at NIEO are: (1) Climatology of the equatorial middle atmosphere (all of the mean zonal flow, the meridional and/or east-west circulations and the planetary/gravity waves are described based on massive, reliable data statistics); (2) Troposphere-stratosphere coupling at the equator (the candidate location of NIEO is just at the stratospheric fountain area where the tracers and waves are pumped up into the middle atmosphere); and (3) Mesosphere-thermosphere coupling at the equator; thermospheric superrotation, which may be caused either by ion drag or by tidal breaking, is examined in detail by observations covering a wide altitude range from the mesosphere through the thermosphere.

  1. Coupled Solar Wind-Magnetosphere-Ionosphere-Thermosphere System by QFT

    Science.gov (United States)

    Chen, Shao-Guang

    I deduce the new gravitational formula from the variance in mass of QFT and GR (H05-0029-08, E15-0039 -08, E14-0032-08, D31-0054-10) in the partial differential: f (QFT) = f (GR) = delta∂ (m v)/delta∂ t = f _{P} + f _{C} , f _{P} = m delta∂ v / delta∂ t = - ( G m M /r (2) ) r / r, f _{C} = v delta∂ m / delta∂ t = - ( G mM / r (2) ) v / c (1), f (QFT) is the quasi-Casimir pressure of net virtual neutrinos nuν _{0} flux (after counteract contrary direction nuν _{0}). f (GR) is equivalent to Einstein’s equation as a new version of GR. GR can be inferred from Eq.(1) thereby from QFT, but QFT cannot be inferred from Eq.(1) or GR. f (QFT) is essential but f (GR) is phenomenological. Eq.(1) is obtained just by to absorb the essence of corpuscule collided gravitation origin ism proposed by Fatio in 1690 and 1920 Majorana’s experiment concept about gravitational shield effect again fuse with QFT. Its core content is that the gravity produced by particles collide cannot linear addition, i.e., Eq.(1) with the adding nonlinearity caused by the variable mass to replace the nonlinearity of Einstein’s equation and the nonlinear gravitation problems can be solved using the classical gradual approximation of alone f _{P} and alone f _{C}. In my paper ‘To cross the great gap between the modern physics and classic physics, China Science &Technology Overview 129 85-91(2011)’ with the measuring value of one-way velocity of light (H05-0020-08) to replace the infinity value of light speed measured by Galileo in 1607, thereby the mass m in NM will become variable m. Or else, the energy of electron in accelerator should not larger than 0.51Mev which conflict with the experimental fact. According to the variable mass and the definition of force we again get Eq.(1) from NM without hypothesis, i.e., NM is generalized in which Galileo coordinates transformation and the action at a distance will be of no effect. Eq.(1) has more reliable experimental base and generalized

  2. Mid-latitude empirical model of the height distribution of atomic oxygen in the MLT region for different solar and geophysical conditions

    Science.gov (United States)

    Semenov, A.; Shefov, N.; Fadel, Kh.

    The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.

  3. Improved Orbit Determination and Forecasts with an Assimilative Tool for Atmospheric Density and Satellite Drag Specification

    Science.gov (United States)

    Crowley, G.; Pilinski, M.; Sutton, E. K.; Codrescu, M.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.

    2016-12-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. Features of this technique include: • Satellite drag specifications with errors lower than current models • Altitude coverage up to 1000km • Background state representation using both first principles and empirical models • Assimilation of satellite drag and other datatypes • Real time capability • Ability to produce 72-hour forecasts of the atmospheric state In this paper, we will summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models including the High Accuracy Satellite Drag Model, which is currently used

  4. Theory, modeling, and integrated studies in the Arase (ERG) project

    Science.gov (United States)

    Seki, Kanako; Miyoshi, Yoshizumi; Ebihara, Yusuke; Katoh, Yuto; Amano, Takanobu; Saito, Shinji; Shoji, Masafumi; Nakamizo, Aoi; Keika, Kunihiro; Hori, Tomoaki; Nakano, Shin'ya; Watanabe, Shigeto; Kamiya, Kei; Takahashi, Naoko; Omura, Yoshiharu; Nose, Masahito; Fok, Mei-Ching; Tanaka, Takashi; Ieda, Akimasa; Yoshikawa, Akimasa

    2018-02-01

    Understanding of underlying mechanisms of drastic variations of the near-Earth space (geospace) is one of the current focuses of the magnetospheric physics. The science target of the geospace research project Exploration of energization and Radiation in Geospace (ERG) is to understand the geospace variations with a focus on the relativistic electron acceleration and loss processes. In order to achieve the goal, the ERG project consists of the three parts: the Arase (ERG) satellite, ground-based observations, and theory/modeling/integrated studies. The role of theory/modeling/integrated studies part is to promote relevant theoretical and simulation studies as well as integrated data analysis to combine different kinds of observations and modeling. Here we provide technical reports on simulation and empirical models related to the ERG project together with their roles in the integrated studies of dynamic geospace variations. The simulation and empirical models covered include the radial diffusion model of the radiation belt electrons, GEMSIS-RB and RBW models, CIMI model with global MHD simulation REPPU, GEMSIS-RC model, plasmasphere thermosphere model, self-consistent wave-particle interaction simulations (electron hybrid code and ion hybrid code), the ionospheric electric potential (GEMSIS-POT) model, and SuperDARN electric field models with data assimilation. ERG (Arase) science center tools to support integrated studies with various kinds of data are also briefly introduced.[Figure not available: see fulltext.

  5. Neural networks to predict exosphere temperature corrections

    Science.gov (United States)

    Choury, Anna; Bruinsma, Sean; Schaeffer, Philippe

    2013-10-01

    Precise orbit prediction requires a forecast of the atmospheric drag force with a high degree of accuracy. Artificial neural networks are universal approximators derived from artificial intelligence and are widely used for prediction. This paper presents a method of artificial neural networking for prediction of the thermosphere density by forecasting exospheric temperature, which will be used by the semiempirical thermosphere Drag Temperature Model (DTM) currently developed. Artificial neural network has shown to be an effective and robust forecasting model for temperature prediction. The proposed model can be used for any mission from which temperature can be deduced accurately, i.e., it does not require specific training. Although the primary goal of the study was to create a model for 1 day ahead forecast, the proposed architecture has been generalized to 2 and 3 days prediction as well. The impact of artificial neural network predictions has been quantified for the low-orbiting satellite Gravity Field and Steady-State Ocean Circulation Explorer in 2011, and an order of magnitude smaller orbit errors were found when compared with orbits propagated using the thermosphere model DTM2009.

  6. Wavelength Dependence of Solar Irradiance Enhancement During X-Class Flares and Its Influence on the Upper Atmosphere

    Science.gov (United States)

    Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Chamberlin, Phillip C.; Qian, Liying; Solomon, Stanley C.; Roble, Raymond G.; Xiao, Zuo

    2013-01-01

    The wavelength dependence of solar irradiance enhancement during flare events is one of the important factors in determining how the Thermosphere-Ionosphere (T-I) system responds to flares. To investigate the wavelength dependence of flare enhancement, the Flare Irradiance Spectral Model (FISM) was run for 61 X-class flares. The absolute and the percentage increases of solar irradiance at flare peaks, compared to pre-flare conditions, have clear wavelength dependences. The 0-14 nm irradiance increases much more (approx. 680% on average) than that in the 14-25 nm waveband (approx. 65% on average), except at 24 nm (approx. 220%). The average percentage increases for the 25-105 nm and 122-190 nm wavebands are approx. 120% and approx. 35%, respectively. The influence of 6 different wavebands (0-14 nm, 14-25 nm, 25-105 nm, 105- 120 nm, 121.56 nm, and 122-175 nm) on the thermosphere was examined for the October 28th, 2003 flare (X17-class) event by coupling FISM with the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) under geomagnetically quiet conditions (Kp=1). While the enhancement in the 0-14 nm waveband caused the largest enhancement of the globally integrated solar heating, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for the 25-105 nm waveband (EUV), which accounts for about 33 K of the total 45 K temperature enhancement, and approx. 7.4% of the total approx. 11.5% neutral density enhancement. The effect of 122-175 nm flare radiation on the thermosphere is rather small. The study also illustrates that the high-altitude thermospheric response to the flare radiation at 0-175 nm is almost a linear combination of the responses to the individual wavebands. The upper thermospheric temperature and density enhancements peaked 3-5 h after the maximum flare radiation.

  7. Modeling Density Variation in the Thermosphere

    Science.gov (United States)

    2011-04-29

    static electromagnetic fields as follows: when a volume of the ionosphere is bounded on the sides by an equipotential surface and on the bottom by the...generation of electromagnetic energy along that geomagnetic-field line. An Equipotential -Boundary Poynting-Flux (EBPF) theorem was presented for quasi

  8. First Simultaneous and Common-Volume Lidar Observations of Na and Fe Metals, Temperatures, and Vertical Winds in Antarctica

    Science.gov (United States)

    Chu, X.

    2017-12-01

    A new STAR Na Doppler lidar will be installed to Arrival Heights near McMurdo Station, Antarctica in October 2017. This new lidar will be operated next to an existing Fe Boltzmann lidar to make simultaneous and common-volume measurements of metal Na and Fe layers, neutral temperatures, and vertical winds in the mesosphere and thermosphere, up to nearly 200 km. These measurements will be used to study a variety of science topics, e.g., the meteoric metal layers, wave dynamics, polar mesospheric clouds, constituent and heat fluxes, and cosmic dust. The discoveries of thermospheric neutral Fe layers and persistent gravity waves by the Fe Boltzmann lidar observations has opened a new door to explore the space-atmosphere interactions with ground-based instruments, especially in the least understood but crucially important altitude range of 100-200 km. These neutral metal layers provide excellent tracers for modern resonance lidars to measure the neutral wind and temperature directly. Even more exciting, the neutral metal layers in the thermosphere provide a natural laboratory to test our fundamental understandings of the atmosphere-ionosphere-magnetosphere coupling and processes. This paper will report the first summer results from the simultaneous Na and Fe lidar observations from Antarctica, and highlight important discoveries made by the Fe lidar during its first seven years of campaign at McMurdo. A thermosphere-ionosphere Fe/Fe+ (TIFe) model will be introduced to explain the TIFe layers in Antarctica.

  9. Challenges in Modeling the Sun-Earth System

    Science.gov (United States)

    Spann, James

    2004-01-01

    The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales in time and space. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA Living With a Star (LWS) programs. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress. Our limited understanding of the underlying coupling physics is illustrated by the following example questions: how does the propagation of a typical CME/solar flare influence the measured properties of the solar wind at 1 AU? How does the solar wind compel the dynamic response of the Earth's magnetosphere? How is variability in the ionosphere-thermosphere system coupled to magnetospheric variations? Why do these and related important questions remain unanswered? What are the primary problems that need to be resolved to enable significant progress in comprehensive modeling of the Sun-Earth system? Which model/technique improvements are required and what new data coverage is required to enable full model advances? This poster opens the discussion for how these and other important questions can be addressed. A workshop scheduled for October 8-22, 2004 in Huntsville, Alabama, will be a forum for identifying ana exploring promising new directions and approaches for characterizing and understanding the system. To focus the discussion, the workshop will emphasize the genesis, evolution, propagation and interaction of high-speed solar wind streamers or CME/flares with geospace and the subsequent response of geospace from its outer reaches in the magnetosphere to the lower edge of the ionosphere-mesosphere-thermosphere. Particular emphasis will be placed on modeling the coupling aspects

  10. Annual and semiannual variations in the ionospheric F2-layer. I. Modelling

    Directory of Open Access Journals (Sweden)

    L. Zou

    2000-08-01

    Full Text Available Annual, seasonal and semiannual variations of F2-layer electron density (NmF2 and height (hmF2 have been compared with the coupled thermosphere-ionosphere-plasmasphere computational model (CTIP, for geomagnetically quiet conditions. Compared with results from ionosonde data from midlatitudes, CTIP reproduces quite well many observed features of NmF2, such as the dominant winter maxima at high midlatitudes in longitude sectors near the magnetic poles, the equinox maxima in sectors remote from the magnetic poles and at lower latitudes generally, and the form of the month-to-month variations at latitudes between about 60°N and 50°S. CTIP also reproduces the seasonal behaviour of NmF2 at midnight and the summer-winter changes of hmF2. Some features of the F2-layer, not reproduced by the present version of CTIP, are attributed to processes not included in the modelling. Examples are the increased prevalence of the winter maxima of noon NmF2 at higher solar activity, which may be a consequence of the increase of F2-layer loss rate in summer by vibrationally excited molecular nitrogen, and the semiannual variation in hmF2, which may be due to tidal effects. An unexpected feature of the computed distributions of NmF2 is an east-west hemisphere difference, which seems to be linked to the geomagnetic field configuration. Physical discussion is reserved to the companion paper by Rishbeth et al.Key words: Atmospheric composition and structure (thermosphere-composition and chemistry - Ionosphere (mid-latitude ionosphere; modelling and forecasting

  11. A numerical modeling study of the interaction between the tides and the circulation forced by high-latitude plasma convection

    International Nuclear Information System (INIS)

    Mikkelsen, I.S.; Larsen, M.F.

    1991-01-01

    A spectral, time-varying thermospheric general circulation model has been used to study the nonlinear interaction at high latitudes between the tides propagating into the thermosphere from below and the circulation induced by magnetospheric forcing and in situ solar heating. The model is discrete in the vertical with 27 layers spaced by half a scale height. In the horizontal, the fields are expanded in a series of spherical harmonics using a triangular truncation at wave number 31, equivalent to a homogeneous global resolution with a minimum wavelength of 1,270 km. A hypothetical uniform grid point model would require a horizontal spacing of 417 km to describe the same minimum wavelength. In the high-latitude F region the tides affect the dusk vortex of the neutral flow very little, but the dawn vortex is either suppressed or amplified dependent upon the universal time and tidal phase. In the E region neutral flow, both the dusk and dawn vortices are shifted in local time by the tides, again as a function of universal time and tidal phase. At dusk a nonlinear amplification of the sunward winds occurs for certain combination of parameters, and at dawn the winds may be completely suppressed. Below 120 km altitude the magnetospheric forcing creates a single cyclonic vortex which is also sensitive to the high-latitude tidal structure

  12. From the Sun’s atmosphere to the Earth’s atmosphere: an overview of scientific models available for space weather developments

    Directory of Open Access Journals (Sweden)

    C. Lathuillère

    Full Text Available Space weather aims at setting operational numerical tools in order to nowcast, forecast and quantify the solar activity events, the magnetosphere, ionosphere and thermosphere responses and the consequences on our technological societies. These tools can be divided in two parts. The first has a geophysical base (Sun, interplanetary medium, magnetosphere, atmosphere. The second concerns technological applications (telecommunications, spacecraft orbits, power plants .... In this paper, we aim at giving an overview of the models that belong to the first class (geophysics that might serve in the future as a basis for building global operational codes. For each model, we consider the physics underneath, the input and output parameters, and whether it is already operational, whether it may become operational in the near future, or if it is an academic research tool. Relevant references are given in order to serve as a starting point for further readings.

    Key words. Interplanetary physics (general or miscellaneous, Ionosphere (modelling and forecasting, Magnetospheric physics (general or miscellaneous

  13. From the Sun’s atmosphere to the Earth’s atmosphere: an overview of scientific models available for space weather developments

    Directory of Open Access Journals (Sweden)

    C. Lathuillère

    2002-07-01

    Full Text Available Space weather aims at setting operational numerical tools in order to nowcast, forecast and quantify the solar activity events, the magnetosphere, ionosphere and thermosphere responses and the consequences on our technological societies. These tools can be divided in two parts. The first has a geophysical base (Sun, interplanetary medium, magnetosphere, atmosphere. The second concerns technological applications (telecommunications, spacecraft orbits, power plants .... In this paper, we aim at giving an overview of the models that belong to the first class (geophysics that might serve in the future as a basis for building global operational codes. For each model, we consider the physics underneath, the input and output parameters, and whether it is already operational, whether it may become operational in the near future, or if it is an academic research tool. Relevant references are given in order to serve as a starting point for further readings.Key words. Interplanetary physics (general or miscellaneous, Ionosphere (modelling and forecasting, Magnetospheric physics (general or miscellaneous

  14. Effects of dissociative recombination on the composition of planetary atmospheres

    International Nuclear Information System (INIS)

    Fox, Jane L

    2005-01-01

    Because dissociative recombination (DR) reactions of molecular ions are often highly exothermic, in the thermospheres of the Earth and planets DR may be a source of translationally and internally excited fragments. DR is important, therefore, for thermospheric neutral heating; if the excited fragments radiate to space, however, DR may be also a source of thermospheric cooling. DR may produce metastable fragments, which may live long enough to participate in reactions that are not available to ground state species. It is rare, however, for DR to be a significant source of minor species in their ground states. An exception appears to be the DR of CO + 2 , which has recently been found to produce C + O 2 about 9% of the time by Seiersen et al.. Because of the significant rearrangement of bonds that must take place, the branching ratio for the latter channel has been assumed to be negligible, and DR of CO + 2 has been assumed to produce mainly CO + O. In order to test the effect of including the branching ratio of CO + 2 DR that produces C + O 2 on the ambient densities of thermal and escaping C in planetary thermospheres,we have we have constructed revised models of the thermospheres/ionospheres of Mars and Venus. Because of space limitations, we discuss here only the high solar activity models. For Mars, we find that DR of CO + 2 is the most important source of thermal C, but that the production rate of escaping C is not increased. There are important differences between the thermospheres of Venus and Mars, and we find that the inclusion of the C + O 2 channel in the Venus models increases the production rate of atomic carbon in the Venus thermosphere by only 10-16%. At high altitudes on Venus, C + is mostly produced by photoionization and electron-impact ionization of C, with some contribution from the charge transfer reaction, O + + C → C + + O. We compare our computed C density altitude profiles to those inferred by Paxton from Pioneer Venus Orbiter Ultraviolet

  15. Refilling the plasmasphere through the exospheric sieve

    Science.gov (United States)

    Krall, J.; Huba, J.; Emmert, J. T.

    2016-12-01

    The ability to compute plasmasphere densities is critical to many space weather concerns. The sensitivity of refilling to the solar cycle is compelling because, paradoxically, refilling rates are generally lowest when the ionosphere is strongest. In the past, this has been attributed to a dearth of exosphere H at solar maximum. While H is needed to supply H + O+ -> H+ + O charge exchange, recent work demonstrates a significant sensitivity to O [1]. Results will be based on preliminary model-data comparisons using in situ Van Allen Probe EMFISIS data and the SAMI3 ionosphere/plasmasphere code. We will assess the impact of atmospheric composition (i.e., O and H) and solar activity (e.g., F10.7) on plasmasphere refilling rates and density following magnetic storms. SAMI3 (Sami3 is Also a Model of the Ionosphere) is a first-principles ionosphere/plasmasphere model. SAMI3 includes 7 ion species (H+, He+, O+, N+, O2+, N2+, NO+), each treated as a separate fluid, with temperature equations being solved for H+, He+, O+ and e- [2]. SAMI3 uses the empirical MSIS thermosphere/exosphere model to specify O and H densities. SAMI3 includes scaling factors that can be used to tune MSIS densities to bring them in line with measurements of satellite drag. Key inputs for this data-driven modeling are the thermosphere oxygen (O) and hydrogen (H) densities, and the F10.7 proxy for solar ultraviolet irradiance. [1 ]Krall, J., J. T. Emmert, F. Sassi, S. E. McDonald, and J. D. Huba (2016), Day-to-day variability in the thermosphere and its impact on plasmasphere refilling, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA022328. [2] Huba, J. and J. Krall (2013), Modeling the plasmasphere with SAMI3, Geophys. Res. Lett., 40, 6-10, doi:10.1029/2012GL054300 Research supported by NRL base funds.

  16. Report from upper atmospheric science

    International Nuclear Information System (INIS)

    Carignan, G.R.; Roble, R.G.; Mende, S.B.; Nagy, A.F.; Hudson, R.D.

    1989-01-01

    Most of the understanding of the thermosphere resulted from the analysis of data accrued through the Atmosphere Explorer satellites, the Dynamics Explorer 2 satellite, and observations from rockets, balloons, and ground based instruments. However, new questions were posed by the data that have not yet been answered. The mesosphere and lower thermosphere have been less thoroughly studied because of the difficulty of accessibility on a global scale, and many rather fundamental characteristics of these regions are not well understood. A wide variety of measurement platforms can be used to implement various parts of a measurement strategy, but the major thrusts of the International Solar Terrestrial Physics Program would require Explorer-class missions. A remote sensing mission to explore the mesosphere and lower thermosphere and one and two Explorer-type spacecraft to enable a mission into the thermosphere itself would provide the essential components of a productive program of exploration of this important region of the upper atomsphere. Theoretical mission options are explored

  17. Infrasound Studies at the USArray (Invited)

    Science.gov (United States)

    de Groot-Hedlin, C. D.

    2013-12-01

    Many surface and atmospheric sources, both natural and anthropogenic, have generated infrasound signals that have been recorded on USArray transportable array (TA) seismometers at ranges up to thousands of kilometers. Such sources, including surface explosions, large bolides, mining events, and a space shuttle, have contributed to an understanding of infrasound propagation. We show examples of several atmospheric sources recorded at the TA. We first used USArray data to investigate infrasound signals from the space shuttle 'Atlantis'. Inclement weather in Florida forced the shuttle to land at Edwards Air Force Base in southern California on June 22, 2007, passing near three infrasound stations and several hundred seismic stations in northern Mexico, southern California, and Nevada. The high signal-to-noise ratio, broad receiver coverage, and Atlantis' positional information allowed us to test infrasound propagation modeling capabilities through the atmosphere to hundreds of kilometers range from the shuttle's path. Shadow zones and arrival times were predicted by tracing rays launched at right angles to the conical shock front surrounding the shuttle through a standard climatological model as well as a global ground to space model. Both models predict alternating regions of high and low ensonification to the NW, in line with observations. However, infrasound energy was detected tens of kilometers beyond the predicted zones of ensonification, possibly due to uncertainties in stratospheric wind speeds. The models also predict increasing waveform complexity with increasing distance, in line with observations. Several hundreds of broadband seismic stations in the U.S. Pacific Northwest recorded acoustic to seismic coupled signals from a large meteor that entered the atmosphere above northeastern Oregon on 19 February 2008. The travel times of the first arriving energy are consistent with a terminal explosion source model, suggesting that the large size of the explosion

  18. Numerical modelling of the structure of electromagnetic disturbances generated by acoustic-gravity waves

    International Nuclear Information System (INIS)

    Pogorel'tsev, A.I.; Bidlingmajer, E.R.

    1992-01-01

    A numeric model of electromagnetic field disturbances generated under the interaction of acoustic-gravitational waves with ionospheric plasma is elaborated and vertical structure of the above disturbances is calculated. The estimates shown that electromagnetic disturbances can penetrate into neutral atmosphere and can be recorded through measurements of the variation of magnetic field and electron field vertical component near the earth is surface. A conclusion is made on a feasibility of monitoring of acoustic-gravitational wave activity in the lower thermosphere through land measurements of magnetic and electric field variations

  19. Unifying Model-Based and Reactive Programming within a Model-Based Executive

    Science.gov (United States)

    Williams, Brian C.; Gupta, Vineet; Norvig, Peter (Technical Monitor)

    1999-01-01

    Real-time, model-based, deduction has recently emerged as a vital component in AI's tool box for developing highly autonomous reactive systems. Yet one of the current hurdles towards developing model-based reactive systems is the number of methods simultaneously employed, and their corresponding melange of programming and modeling languages. This paper offers an important step towards unification. We introduce RMPL, a rich modeling language that combines probabilistic, constraint-based modeling with reactive programming constructs, while offering a simple semantics in terms of hidden state Markov processes. We introduce probabilistic, hierarchical constraint automata (PHCA), which allow Markov processes to be expressed in a compact representation that preserves the modularity of RMPL programs. Finally, a model-based executive, called Reactive Burton is described that exploits this compact encoding to perform efficIent simulation, belief state update and control sequence generation.

  20. Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations

    Science.gov (United States)

    Koskinen, T. T.; Guerlet, S.

    2018-06-01

    We combine measurements from stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and limb scans observed by the Composite Infrared Spectrometer (CIRS) to create empirical atmospheric structure models for Saturn corresponding to the locations probed by the occultations. The results cover multiple locations at low to mid-latitudes between the spring of 2005 and the fall of 2015. We connect the temperature-pressure (T-P) profiles retrieved from the CIRS limb scans in the stratosphere to the T-P profiles in the thermosphere retrieved from the UVIS occultations. We calculate the altitudes corresponding to the pressure levels in each case based on our best fit composition model that includes H2, He, CH4 and upper limits on H. We match the altitude structure to the density profile in the thermosphere that is retrieved from the occultations. Our models depend on the abundance of helium and we derive a volume mixing ratio of 11 ± 2% for helium in the lower atmosphere based on a statistical analysis of the values derived for 32 different occultation locations. We also derive the mean temperature and methane profiles in the upper atmosphere and constrain their variability. Our results are consistent with enhanced heating at the polar auroral region and a dynamically active upper atmosphere.

  1. Evidence for Radiative Recombination of O+ Ions as a Significant Source of O 844.6 nm Emission Excitation

    Science.gov (United States)

    Waldrop, L.; Kerr, R. B.; Huang, Y.

    2018-04-01

    Photoelectron (PE) impact on ground-state O(3P) atoms is well known as a major source of twilight 844.6 nm emission in the midlatitude thermosphere. Knowledge of the PE flux can be used to infer thermospheric oxygen density, [O], from photometric measurements of 844.6 nm airglow, provided that PE impact is the dominant process generating the observed emission. During several spring observational campaigns at Arecibo Observatory, however, we have observed significant 844.6 nm emission throughout the night, which is unlikely to arise from PE impact excitation which requires solar illumination of either the local or geomagnetically conjugate thermosphere. Here we show that radiative recombination (RR) of O+ ions is likely responsible for the observed nighttime emission, based on model predictions of electron and O+ ion density and temperature by the Incoherent Scatter Radar Ionosphere Model. The calculated emission brightness produced by O + RR exhibits good agreement with the airglow data, in that both decay approximately monotonically throughout the night at similar rates. We conclude that the conventional assumption of a pure PE impact source is most likely to be invalid during dusk twilight, when RR-generated emission is most significant. Estimation of [O] from measurements of 844.6 nm emission demands isolation of the PE impact source via coincident estimation of the RR source, and the effective cross section for RR-generated emission is found here to be consistent with optically thin conditions.

  2. Comments on "Long-Term Variations of Exospheric Temperature Inferred From foF1 Observations: A Comparison to ISR Ti Trend Estimates" by Perrone and Mikhailov

    Science.gov (United States)

    Zhang, Shun-Rong; Holt, John M.; Erickson, Philip J.; Goncharenko, Larisa P.

    2018-05-01

    Perrone and Mikhailov (2017, https://doi.org/10.1002/2017JA024193) and Mikhailov et al. (2017, https://doi.org/10.1002/2017JA023909) have recently examined thermospheric and ionospheric long-term trends using a data set of four thermospheric parameters (Tex, [O], [N2], and [O2]) and solar EUV flux. These data were derived from one single ionospheric parameter, foF1, using a nonlinear fitting procedure involving a photochemical model for the F1 peak. The F1 peak is assumed at the transition height ht with the linear recombination for atomic oxygen ions being equal to the quadratic recombination for molecular ions. This procedure has a number of obvious problems that are not addressed or not sufficiently justified. The potentially large ambiguities and biases in derived parameters make them unsuitable for precise quantitative ionospheric and thermospheric long-term trend studies. Furthermore, we assert that Perrone and Mikhailov (2017, https://doi.org/10.1002/2017JA024193) conclusions regarding incoherent scatter radar (ISR) ion temperature analysis for long-term trend studies are incorrect and in particular are based on a misunderstanding of the nature of the incoherent scatter radar measurement process. Large ISR data sets remain a consistent and statistically robust method for determining long term secular plasma temperature trends.

  3. Geomagnetically conjugate observations of ionospheric and thermospheric variations accompanied with a midnight brightness wave at low latitudes

    Science.gov (United States)

    Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Kubota, M.; Yokoyama, T.; Nishioka, M.; Komonjinda, S.; Yatini, C. Y.

    2014-12-01

    A midnight brightness wave (MBW) is the phenomenon that the OI (630-nm) airglow enhancement propagates poleward once at local midnight. In this study, we first conducted geomagnetically conjugate observations of 630nm airglow for an MBW at conjugate stations. An airglow enhancement which is considered to be an MBW was observed in the 630-nm airglow images at Kototabang, Indonesia (geomagnetic latitude (MLAT): 10.0S) at around local midnight from 1540 to 1730 UT (from 2240 to 2430 LT) on 7 February 2011. This MBW was propagating south-southwestward, which is geomagnetically poleward, with a velocity of 290 m/s. However, similar wave was not observed in the 630-nm airglow images at Chiang Mai, Thailand (MLAT: 8.9N), which is close to being conjugate point of Kototabang. This result indicates that the MBW does not have geomagnetic conjugacy. We simultaneously observed thermospheric neutral winds observed by a co-located Fabry-Perot interferometer at Kototabang. The observed meridional winds turned from northward (geomagnetically equatorward) to southward (geomagnetically poleward) just before the MBW was observed. The bottomside ionospheric heights observed by ionosondes rapidly decreased at Kototabang and slightly increased at Chiang Mai simultaneously with the MBW passage. In the presentation, we discuss the MBW generation by the observed poleward neutral winds at Kototabang, and the cause of the coinciding small height increase at Chiang Mai by the polarization electric field inside the observed MBW at Kototabang.

  4. Physical Modeling of the Processes Responsible for the Mid-Latitude Storm Enhanced Plasma Density

    Science.gov (United States)

    Fuller-Rowell, T. J.; Maruyama, N.; Fedrizzi, M.; Codrescu, M.; Heelis, R. A.

    2016-12-01

    Certain magnetic local time sectors at mid latitudes see substantial increases in plasma density in the early phases of a geomagnetic storm. The St. Patrick's Day storms of 2013 and 2015 were no exception, both producing large increases of total electron content at mid latitudes. There are theories for the build up of the storm enhanced density (SED), but can current theoretical ionosphere-thermosphere coupled models actually reproduce the response for an actual event? Not only is it necessary for the physical model to contain the appropriate physics, they also have to be forced by the correct drivers. The SED requires mid-latitude zonal transport to provide plasma stagnation in sunlight to provide the production. The theory also requires a poleward drift perpendicular to the magnetic field to elevate the plasma out of the body of the thermosphere to regions of substantially less loss rate. It is also suggested that equatorward winds are necessary to further elevate the plasma to regions of reduced loss. However, those same winds are also likely to transport molecular nitrogen rich neutral gas equatorward, potentially canceling out the benefits of the neutral circulation. Observations of mid-latitude zonal plasma flow are first analyzed to see if this first necessary ingredient is substantiated. The drift observations are then used to tune the driver to determine if, with the appropriate electric field driver, the latest physical models can reproduce the substantial plasma build up. If it can, the simulation can also be used to assess the contribution of the equatorward meridional wind; are they an asset to the plasma build up, or does the enhanced molecular species they carry counteract their benefit.

  5. Annual and semiannual variations in the ionospheric F2-layer. I. Modelling

    Directory of Open Access Journals (Sweden)

    L. Zou

    Full Text Available Annual, seasonal and semiannual variations of F2-layer electron density (NmF2 and height (hmF2 have been compared with the coupled thermosphere-ionosphere-plasmasphere computational model (CTIP, for geomagnetically quiet conditions. Compared with results from ionosonde data from midlatitudes, CTIP reproduces quite well many observed features of NmF2, such as the dominant winter maxima at high midlatitudes in longitude sectors near the magnetic poles, the equinox maxima in sectors remote from the magnetic poles and at lower latitudes generally, and the form of the month-to-month variations at latitudes between about 60°N and 50°S. CTIP also reproduces the seasonal behaviour of NmF2 at midnight and the summer-winter changes of hmF2. Some features of the F2-layer, not reproduced by the present version of CTIP, are attributed to processes not included in the modelling. Examples are the increased prevalence of the winter maxima of noon NmF2 at higher solar activity, which may be a consequence of the increase of F2-layer loss rate in summer by vibrationally excited molecular nitrogen, and the semiannual variation in hmF2, which may be due to tidal effects. An unexpected feature of the computed distributions of NmF2 is an east-west hemisphere difference, which seems to be linked to the geomagnetic field configuration. Physical discussion is reserved to the companion paper by Rishbeth et al.

    Key words: Atmospheric composition and structure (thermosphere-composition and chemistry - Ionosphere (mid-latitude ionosphere; modelling and forecasting

  6. A Global Atmospheric Model of Meteoric Iron

    Science.gov (United States)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  7. Global Distribution and Variations of NO Infrared Radiative Flux and Its Responses to Solar Activity and Geomagnetic Activity in the Thermosphere

    Science.gov (United States)

    Tang, Chaoli; Wei, Yuanyuan; Liu, Dong; Luo, Tao; Dai, Congming; Wei, Heli

    2017-12-01

    The global distribution and variations of NO infrared radiative flux (NO-IRF) are presented during 2002-2016 in the thermosphere covering 100-280 km altitude based on Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) data set. For investigating the spatial variations of the mutual relationship between NO-IRF and solar activity, the altitude ranges from 100 km to 280 km are divided into 90 altitude bins, and the latitude regions of 83°S-83°N are divided into 16 latitude bins. By processing about 1.8E9 NO-IRF observation values from about 5E6 vertical nighttime profiles recorded in SABER data set, we obtained more than 4.1E8 samples of NO-IRF. The annual-mean values of NO-IRF are then calculated by all available NO-IRF samples within each latitude and altitude bin. Local latitudinal maxima in NO-IRF are found between 120 and 145 km altitude, and the maximum NO-IRF located at polar regions are 3 times more than that of the minimum at equatorial region. The influences of solar and geomagnetic activity on the spatial variations of NO-IRF are investigated. Both the NO-IRF and its response to solar and geomagnetic activity show nearly symmetric distribution between the two hemispheres. It is demonstrated that the observed changes in NO-IRF at altitudes between 100 and 225 km correlate well with the changes in solar activity. The NO-IRF at solar maximum is about 4 times than that at solar minimum, and the current maximum of NO-IRF in 2014 is less than 70% of the prior maximum in 2001. For the first time, the response ranges of the NO-IRF to solar and geomagnetic activity at different altitudes and latitudes are reported.

  8. Solar Cycle Variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere Region

    Science.gov (United States)

    Salinas, C. C. J.; Chang, L. C.; Liang, M. C.; Qian, L.; Yue, J.; Russell, J. M., III; Mlynczak, M. G.

    2017-12-01

    This work aims to present the solar cycle variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere region. These observations are then compared to SD-WACCM outputs of CO2 and H2O in order to understand their physical mechanisms. After which, we attempt to model their solar cycle variations using the default TIME-GCM and the TIME-GCM with MERRA reanalysis as lower-boundary conditions. Comparing the outputs of the default TIME-GCM and TIME-GCM with MERRA will give us insight into the importance of solar forcing and lower atmospheric forcing on the solar cycle variations of CO2 and H2O. The solar cycle influence in the parameters are calculated by doing a multiple linear regression with the F10.7 index. The solar cycle of SABER CO2 is reliable above 1e-2 mb and below 1e-3 mb. Preliminary results from the observations show that SABER CO2 has a stronger negative anomaly due to the solar cycle over the winter hemisphere. MLS H2O is reliable until 1e-2. Preliminary results from the observations show that MLS H2O also has a stronger negative anomaly due to the solar cycle over the winter hemisphere. Both SD-WACCM and the default TIME-GCM reproduce these stronger anomalies over the winter hemisphere. An analysis of the tendency equations in SD-WACCM and default TIME-GCM then reveal that for CO2, the stronger winter anomaly may be attributed to stronger downward transport over the winter hemisphere. For H2O, an analysis of the tendency equations in SD-WACCM reveal that the stronger winter anomaly may be attributed to both stronger downward transport and stronger photochemical loss. On the other hand, in the default TIME-GCM, the stronger winter anomaly in H2O may only be attributed to stronger downward transport. For both models, the stronger downward transport is attributed to enhanced stratospheric polar winter jet during solar maximum. Future work will determine whether setting the lower boundary conditions of TIME-GCM with MERRA will improve the match

  9. The Relationship of High-Latitude Thermospheric Wind With Ionospheric Horizontal Current, as Observed by CHAMP Satellite

    Science.gov (United States)

    Huang, Tao; Lühr, Hermann; Wang, Hui; Xiong, Chao

    2017-12-01

    The relationship between high-latitude ionospheric currents (Hall current and field-aligned current) and thermospheric wind is investigated. The 2-D patterns of horizontal wind and equivalent current in the Northern Hemisphere derived from the CHAMP satellite are considered for the first time simultaneously. The equivalent currents show strong dependences on both interplanetary magnetic field (IMF) By and Bz components. However, IMF By orientation is more important in controlling the wind velocity patterns. The duskside wind vortex as well as the antisunward wind in the morning polar cap is more evident for positive By. To better understand their spatial relation in different sectors, a systematic superposed epoch analysis is applied. Our results show that in the dusk sector, the vectors of the zonal wind and equivalent current are anticorrelated, and both of them form a vortical flow pattern for different activity levels. The currents and zonal wind are intensified with the increase of merging electric field. However, on the dawnside, where the relation is less clear, antisunward zonal winds dominate. Plasma drift seems to play a less important role for the wind than neutral forces in this sector. In the noon sector, the best anticorrelation between equivalent current and wind is observed for a positive IMF By component and it is less obvious for negative By. A clear seasonal effect with current intensities increasing from winter to summer is observed in the noon sector. Different from the currents, the zonal wind intensity shows little dependence on seasons. Our results indicate that the plasma drift and the neutral forces are of comparable influence on the zonal wind at CHAMP altitude in the noon sector.

  10. Neutral wind and density perturbations in the thermosphere created by gravity waves observed by the TIDDBIT sounder

    Science.gov (United States)

    Vadas, Sharon L.; Crowley, Geoff

    2017-06-01

    In this paper, we study the 10 traveling ionospheric disturbances (TIDs) observed at zobs˜283 km by the TIDDBIT ionospheric sounder on 30 October 2007 at 0400-0700 UT near Wallops Island, USA. These TIDs propagated northwest/northward and were previously found to be secondary gravity waves (GWs) from tropical storm Noel. An instrumented sounding rocket simultaneously measured a large neutral wind peak uH' with a similar azimuth at z ˜ 325 km. Using the measured TID amplitudes and wave vectors from the TIDDBIT system, together with ion-neutral theory, GW dissipative polarization relations and ray tracing, we determine the GW neutral horizontal wind and density perturbations as a function of altitude from 220 to 380 km. We find that there is a serious discrepancy between the GW dissipative theory and the observations unless the molecular viscosity, μ, decreases with altitude in the middle to upper thermosphere. Assuming that μ∝ρ¯q, where ρ¯ is the density, we find using GW dissipative theory that the GWs could have been observed at zobs and that one or more of the GWs could have caused the uH' wind peak at z≃325 km if q ˜ 0.67 for z≥220 km. This implies that the kinematic viscosity, ν=μ/ρ¯, increases less rapidly with altitude for z≥220 km: ν∝1/ρ¯0.33. This dependence makes sense because as ρ¯→0, the distance between molecules goes to infinity, which implies no molecular collisions and therefore no molecular viscosity μ.

  11. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    The paper demonstrates that a wide variety of event-based modeling approaches are based on special cases of the same general event concept, and that the general event concept can be used to unify the otherwise unrelated fields of information modeling and process modeling. A set of event......-based modeling approaches are analyzed and the results are used to formulate a general event concept that can be used for unifying the seemingly unrelated event concepts. Events are characterized as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms...... of information structures. The general event concept can be used to guide systems analysis and design and to improve modeling approaches....

  12. Rule-based decision making model

    International Nuclear Information System (INIS)

    Sirola, Miki

    1998-01-01

    A rule-based decision making model is designed in G2 environment. A theoretical and methodological frame for the model is composed and motivated. The rule-based decision making model is based on object-oriented modelling, knowledge engineering and decision theory. The idea of safety objective tree is utilized. Advanced rule-based methodologies are applied. A general decision making model 'decision element' is constructed. The strategy planning of the decision element is based on e.g. value theory and utility theory. A hypothetical process model is built to give input data for the decision element. The basic principle of the object model in decision making is division in tasks. Probability models are used in characterizing component availabilities. Bayes' theorem is used to recalculate the probability figures when new information is got. The model includes simple learning features to save the solution path. A decision analytic interpretation is given to the decision making process. (author)

  13. A Global Model of Meteoric Sodium

    Science.gov (United States)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  14. Introducing Model-Based System Engineering Transforming System Engineering through Model-Based Systems Engineering

    Science.gov (United States)

    2014-03-31

    Web  Presentation...Software  .....................................................  20   Figure  6.  Published   Web  Page  from  Data  Collection...the  term  Model  Based  Engineering  (MBE),  Model  Driven  Engineering  ( MDE ),  or  Model-­‐Based  Systems  

  15. Integration of Simulink Models with Component-based Software Models

    DEFF Research Database (Denmark)

    Marian, Nicolae

    2008-01-01

    Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics...... of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical...... constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems) is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI), University of Southern Denmark. Once specified, the software model has...

  16. Model-free and model-based reward prediction errors in EEG.

    Science.gov (United States)

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Geomagnetically conjugate observations of ionospheric and thermospheric variations accompanied by a midnight brightness wave at low latitudes

    Science.gov (United States)

    Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Kubota, M.; Yokoyama, T.; Nishioka, M.; Komonjinda, S.; Yatini, C. Y.

    2017-08-01

    We conducted geomagnetically conjugate observations of 630-nm airglow for a midnight brightness wave (MBW) at Kototabang, Indonesia [geomagnetic latitude (MLAT): 10.0°S], and Chiang Mai, Thailand (MLAT: 8.9°N), which are geomagnetically conjugate points at low latitudes. An airglow enhancement that was considered to be an MBW was observed in OI (630-nm) airglow images at Kototabang around local midnight from 2240 to 2430 LT on February 7, 2011. This MBW propagated south-southwestward, which is geomagnetically poleward, at a velocity of 290 m/s. However, a similar wave was not observed in the 630-nm airglow images at Chiang Mai. This is the first evidence of an MBW that does not have geomagnetic conjugacy, which also implies generation of MBW only in one side of the hemisphere from the equator. We simultaneously observed thermospheric neutral winds observed by a co-located Fabry-Perot interferometer at Kototabang. The observed meridional winds turned from northward (geomagnetically equatorward) to southward (geomagnetically poleward) just before the wave was observed. This indicates that the observed MBW was generated by the poleward winds which push ionospheric plasma down along geomagnetic field lines, thereby increasing the 630-nm airglow intensity. The bottomside ionospheric heights observed by ionosondes rapidly decreased at Kototabang and slightly increased at Chiang Mai. We suggest that the polarization electric field inside the observed MBW is projected to the northern hemisphere, causing the small height increase observed at Chiang Mai. This implies that electromagnetic coupling between hemispheres can occur even though the original disturbance is caused purely by the neutral wind.[Figure not available: see fulltext.

  18. Guide to APA-Based Models

    Science.gov (United States)

    Robins, Robert E.; Delisi, Donald P.

    2008-01-01

    In Robins and Delisi (2008), a linear decay model, a new IGE model by Sarpkaya (2006), and a series of APA-Based models were scored using data from three airports. This report is a guide to the APA-based models.

  19. Traceability in Model-Based Testing

    Directory of Open Access Journals (Sweden)

    Mathew George

    2012-11-01

    Full Text Available The growing complexities of software and the demand for shorter time to market are two important challenges that face today’s IT industry. These challenges demand the increase of both productivity and quality of software. Model-based testing is a promising technique for meeting these challenges. Traceability modeling is a key issue and challenge in model-based testing. Relationships between the different models will help to navigate from one model to another, and trace back to the respective requirements and the design model when the test fails. In this paper, we present an approach for bridging the gaps between the different models in model-based testing. We propose relation definition markup language (RDML for defining the relationships between models.

  20. Activity-based DEVS modeling

    DEFF Research Database (Denmark)

    Alshareef, Abdurrahman; Sarjoughian, Hessam S.; Zarrin, Bahram

    2018-01-01

    architecture and the UML concepts. In this paper, we further this work by grounding Activity-based DEVS modeling and developing a fully-fledged modeling engine to demonstrate applicability. We also detail the relevant aspects of the created metamodel in terms of modeling and simulation. A significant number......Use of model-driven approaches has been increasing to significantly benefit the process of building complex systems. Recently, an approach for specifying model behavior using UML activities has been devised to support the creation of DEVS models in a disciplined manner based on the model driven...... of the artifacts of the UML 2.5 activities and actions, from the vantage point of DEVS behavioral modeling, is covered in details. Their semantics are discussed to the extent of time-accurate requirements for simulation. We characterize them in correspondence with the specification of the atomic model behavior. We...

  1. Simulating the 3-D Structure of Titan's Upper Atmosphere

    Science.gov (United States)

    Bell, J. M.; Waite, H.; Westlake, J.; Magee, B.

    2009-05-01

    We present results from the 3-D Titan Global Ionosphere-Thermosphere Model (Bell et al [2009], PSS, in review). We show comparisons between simulated N2, CH4, and H2 density fields and the in-situ data from the Cassini Ion Neutral Mass Spectrometer (INMS). We describe the temperature and wind fields consistent with these density calculations. Variations with local time, longitude, and latitude will be addressed. Potential plasma heating sources can be estimated using the 1-D model of De La Haye et al [2007, 2008] and the impacts on the thermosphere of Titan can be assessed in a global sense in Titan-GITM. Lastly, we will place these findings within the context of recent work in modeling the 2-D structure of Titan's upper atmosphere (Mueller-Wodarg et al [2008]).

  2. Lévy-based growth models

    DEFF Research Database (Denmark)

    Jónsdóttir, Kristjana Ýr; Schmiegel, Jürgen; Jensen, Eva Bjørn Vedel

    2008-01-01

    In the present paper, we give a condensed review, for the nonspecialist reader, of a new modelling framework for spatio-temporal processes, based on Lévy theory. We show the potential of the approach in stochastic geometry and spatial statistics by studying Lévy-based growth modelling of planar o...... objects. The growth models considered are spatio-temporal stochastic processes on the circle. As a by product, flexible new models for space–time covariance functions on the circle are provided. An application of the Lévy-based growth models to tumour growth is discussed....

  3. Kinetic Temperature and Carbon Dioxide from Broadband Infrared Limb Emission Measurements Taken from the TIMED/SABER Instrument

    Science.gov (United States)

    Mertens, Christopher J.; Russell III, James M.; Mlynczak, Martin G.; She, Chiao-Yao; Schmidlin, Francis J.; Goldberg, Richard A.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; hide

    2008-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is one of four instruments on NASA's Thermosphere-Ionosphere-Energetics and Dynamics (TIMED) satellite. SABER measures broadband infrared limb emission and derives vertical profiles of kinetic temperature (Tk) from the lower stratosphere to approximately 120 km, and vertical profiles of carbon dioxide (CO2) volume mixing ratio (vmr) from approximately 70 km to 120 km. In this paper we report on SABER Tk/CO2 data in the mesosphere and lower thermosphere (MLT) region from the version 1.06 dataset. The continuous SABER measurements provide an excellent dataset to understand the evolution and mechanisms responsible for the global two-level structure of the mesopause altitude. SABER MLT Tk comparisons with ground-based sodium lidar and rocket falling sphere Tk measurements are generally in good agreement. However, SABER CO2 data differs significantly from TIME-GCM model simulations. Indirect CO2 validation through SABER-lidar MLT Tk comparisons and SABER-radiation transfer comparisons of nighttime 4.3 micron limb emission suggest the SABER-derived CO2 data is a better representation of the true atmospheric MLT CO2 abundance compared to model simulations of CO2 vmr.

  4. Gradient-based model calibration with proxy-model assistance

    Science.gov (United States)

    Burrows, Wesley; Doherty, John

    2016-02-01

    Use of a proxy model in gradient-based calibration and uncertainty analysis of a complex groundwater model with large run times and problematic numerical behaviour is described. The methodology is general, and can be used with models of all types. The proxy model is based on a series of analytical functions that link all model outputs used in the calibration process to all parameters requiring estimation. In enforcing history-matching constraints during the calibration and post-calibration uncertainty analysis processes, the proxy model is run for the purposes of populating the Jacobian matrix, while the original model is run when testing parameter upgrades; the latter process is readily parallelized. Use of a proxy model in this fashion dramatically reduces the computational burden of complex model calibration and uncertainty analysis. At the same time, the effect of model numerical misbehaviour on calculation of local gradients is mitigated, this allowing access to the benefits of gradient-based analysis where lack of integrity in finite-difference derivatives calculation would otherwise have impeded such access. Construction of a proxy model, and its subsequent use in calibration of a complex model, and in analysing the uncertainties of predictions made by that model, is implemented in the PEST suite.

  5. HMM-based Trust Model

    DEFF Research Database (Denmark)

    ElSalamouny, Ehab; Nielsen, Mogens; Sassone, Vladimiro

    2010-01-01

    Probabilistic trust has been adopted as an approach to taking security sensitive decisions in modern global computing environments. Existing probabilistic trust frameworks either assume fixed behaviour for the principals or incorporate the notion of ‘decay' as an ad hoc approach to cope...... with their dynamic behaviour. Using Hidden Markov Models (HMMs) for both modelling and approximating the behaviours of principals, we introduce the HMM-based trust model as a new approach to evaluating trust in systems exhibiting dynamic behaviour. This model avoids the fixed behaviour assumption which is considered...... the major limitation of existing Beta trust model. We show the consistency of the HMM-based trust model and contrast it against the well known Beta trust model with the decay principle in terms of the estimation precision....

  6. F layer positive response to a geomagnetic storm - June 1972

    International Nuclear Information System (INIS)

    Miller, N.J.; Grebowsky, J.M.; Mayr, H.G.; Harris, I.; Tulunay, Y.K.

    1979-01-01

    A circulation model of neutral thermosphere-ionosphere coupling is used to interpret in situ spacecraft measurements taken during a topside mid-latitude ionospheric storm. The data are measurements of electron density taken along the circular polar orbit of Ariel 4 at 550 km during the geomagnetically disturbed period June 17--18, 1972. We infer that collisional momentum transfer from the disturbed neutral thermosphere to the ionosphere was the dominant midday process generating the positive F layer storm phase in the summer hemisphere. In the winter hemisphere the positive storm phase drifted poleward in apparent response to magnetospheric E x B drifts. A summer F layer positive phase developed at the sudden commencement and again during the geomagnetic main phase; a winter F layer positive phase developed only during the geomagnetic main phase. The observed seasonal differences in both the onsets and the magnitudes of the positive phases are attributed to the interhemispheric asymmetry in thermospheric dynamics

  7. Base Station Performance Model

    OpenAIRE

    Walsh, Barbara; Farrell, Ronan

    2005-01-01

    At present the testing of power amplifiers within base station transmitters is limited to testing at component level as opposed to testing at the system level. While the detection of catastrophic failure is possible, that of performance degradation is not. This paper proposes a base station model with respect to transmitter output power with the aim of introducing system level monitoring of the power amplifier behaviour within the base station. Our model reflects the expe...

  8. Model based design introduction: modeling game controllers to microprocessor architectures

    Science.gov (United States)

    Jungwirth, Patrick; Badawy, Abdel-Hameed

    2017-04-01

    We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.

  9. The impact of design-based modeling instruction on seventh graders' spatial abilities and model-based argumentation

    Science.gov (United States)

    McConnell, William J.

    Due to the call of current science education reform for the integration of engineering practices within science classrooms, design-based instruction is receiving much attention in science education literature. Although some aspect of modeling is often included in well-known design-based instructional methods, it is not always a primary focus. The purpose of this study was to better understand how design-based instruction with an emphasis on scientific modeling might impact students' spatial abilities and their model-based argumentation abilities. In the following mixed-method multiple case study, seven seventh grade students attending a secular private school in the Mid-Atlantic region of the United States underwent an instructional intervention involving design-based instruction, modeling and argumentation. Through the course of a lesson involving students in exploring the interrelatedness of the environment and an animal's form and function, students created and used multiple forms of expressed models to assist them in model-based scientific argument. Pre/post data were collected through the use of The Purdue Spatial Visualization Test: Rotation, the Mental Rotation Test and interviews. Other data included a spatial activities survey, student artifacts in the form of models, notes, exit tickets, and video recordings of students throughout the intervention. Spatial abilities tests were analyzed using descriptive statistics while students' arguments were analyzed using the Instrument for the Analysis of Scientific Curricular Arguments and a behavior protocol. Models were analyzed using content analysis and interviews and all other data were coded and analyzed for emergent themes. Findings in the area of spatial abilities included increases in spatial reasoning for six out of seven participants, and an immense difference in the spatial challenges encountered by students when using CAD software instead of paper drawings to create models. Students perceived 3D printed

  10. EPR-based material modelling of soils

    Science.gov (United States)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  11. Issues in practical model-based diagnosis

    NARCIS (Netherlands)

    Bakker, R.R.; Bakker, R.R.; van den Bempt, P.C.A.; van den Bempt, P.C.A.; Mars, Nicolaas; Out, D.-J.; Out, D.J.; van Soest, D.C.; van Soes, D.C.

    1993-01-01

    The model-based diagnosis project at the University of Twente has been directed at improving the practical usefulness of model-based diagnosis. In cooperation with industrial partners, the research addressed the modeling problem and the efficiency problem in model-based reasoning. Main results of

  12. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  13. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    2000-08-01

    Full Text Available The companion paper by Zou et al. shows that the annual and semiannual variations in the peak F2-layer electron density (NmF2 at midlatitudes can be reproduced by a coupled thermosphere-ionosphere computational model (CTIP, without recourse to external influences such as the solar wind, or waves and tides originating in the lower atmosphere. The present work discusses the physics in greater detail. It shows that noon NmF2 is closely related to the ambient atomic/molecular concentration ratio, and suggests that the variations of NmF2 with geographic and magnetic longitude are largely due to the geometry of the auroral ovals. It also concludes that electric fields play no important part in the dynamics of the midlatitude thermosphere. Our modelling leads to the following picture of the global three-dimensional thermospheric circulation which, as envisaged by Duncan, is the key to explaining the F2-layer variations. At solstice, the almost continuous solar input at high summer latitudes drives a prevailing summer-to-winter wind, with upwelling at low latitudes and throughout most of the summer hemisphere, and a zone of downwelling in the winter hemisphere, just equatorward of the auroral oval. These motions affect thermospheric composition more than do the alternating day/night (up-and-down motions at equinox. As a result, the thermosphere as a whole is more molecular at solstice than at equinox. Taken in conjunction with the well-known relation of F2-layer electron density to the atomic/molecular ratio in the neutral air, this explains the F2-layer semiannual effect in NmF2 that prevails at low and middle latitudes. At higher midlatitudes, the seasonal behaviour depends on the geographic latitude of the winter downwelling zone, though the effect of the composition changes is modified by the large solar zenith angle at midwinter. The zenith angle effect is especially important in longitudes far from the magnetic poles. Here, the downwelling occurs

  14. Circulation of the polar thermosphere during geomagnetically quiet and active times as observed by Dynamics Explorer 2

    International Nuclear Information System (INIS)

    McCormac, F.G.; Killeen, T.L.; Thayer, J.P.; Hernandez, G.; Tschan, C.R.; Ponthieu, J.J.; Spencer, N.W.

    1987-01-01

    Neutral wind measurements obtained by instruments on board the Dynamics Explorer 2 (DE 2) spacecraft have been used to study the effects of geomagnetic activity on the circulation of the high-latitude neutral thermosphere for solar maximum conditions during the periods of November 1981 through January 1982 and November 1982 through January 1983. The data have been sorted and ordered according to the two geophysical indices Kp and (auroral electrojet) AE. Simple expressions have been derived which describe (1) the maximum antisunward wind speed in the geomagnetic polar cap, (2) the maximum sunward wind speeds in the dawn and dusk sectors of the auroral oval, and (3) the latitudinal extent of the polar cap antisunward neutral wind as functions of Kp and AE. The results show a positive correlation between the geomagnetic indices and the three characteristic features of the neutral circulation described above. Averaged vector wind fields in geomagnetic coordinates for Kp ≤ 2 and Kp ≥ 4 in both northern and southern hemispheres for the 6 months have been derived from the data. In doing this, a first-order invariance of the neutral wind circulation in geomagnetic coordinates as a function of universal time (UT) was assumed. The results show a two-cell circulation pattern in the northern winter hemisphere for both quiet and active geomagnetic periods. The cell sizes increase with increasing geomagnetic activity. The dusk cell is always dominant. The southern summer hemisphere averages show only the dusk circulation cell for both quiet and active geomagnetic periods. The cell sizes increase with increasing geomagnetic activity. The dusk cell is always dominant. The southern summer hemisphere averages show only the dusk circulation cell for both quiet and active geomagnetic periods. A diminution of this cell occurs for reduced levels of geomagnetic activity

  15. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  16. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2010-01-01

    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  17. Modeling the night-time CO2 4.3 μm emissions in the mesosphere/lower thermosphere

    Science.gov (United States)

    Panka, Peter; Kutepov, Alexander; Feofilov, Artem; Rezac, Ladislav; Janches, Diego

    2016-04-01

    We present a detailed non-LTE model of the night-time CO2 4.3 μm emissions in the MLT. The model accounts for various mechanisms of the non-thermal excitation of CO2 molecules and both for inter- and intra-molecular vibrational-vibrational (VV) and vibrational-translational (VT) energy exchanges. In this model, we pay a specific attention to the transfer of vibrational energy of OH(ν), produced in the chemical reaction H + O3, to the CO2(ν3) vibrational mode. With the help of this model, we simulated a set of non-LTE 4.3 μm MLT limb emissions for typical atmospheric scenarios and compared the vertical profiles of integrated radiances with the corresponding SABER/TIMED observations. The implications, which follow from this comparison, for selecting non-LTE model parameters (rate coefficients), as well as for the night-time CO2 density retrieval in the MLT are discussed.

  18. Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models.

    Directory of Open Access Journals (Sweden)

    Nikola Simidjievski

    Full Text Available Ensembles are a well established machine learning paradigm, leading to accurate and robust models, predominantly applied to predictive modeling tasks. Ensemble models comprise a finite set of diverse predictive models whose combined output is expected to yield an improved predictive performance as compared to an individual model. In this paper, we propose a new method for learning ensembles of process-based models of dynamic systems. The process-based modeling paradigm employs domain-specific knowledge to automatically learn models of dynamic systems from time-series observational data. Previous work has shown that ensembles based on sampling observational data (i.e., bagging and boosting, significantly improve predictive performance of process-based models. However, this improvement comes at the cost of a substantial increase of the computational time needed for learning. To address this problem, the paper proposes a method that aims at efficiently learning ensembles of process-based models, while maintaining their accurate long-term predictive performance. This is achieved by constructing ensembles with sampling domain-specific knowledge instead of sampling data. We apply the proposed method to and evaluate its performance on a set of problems of automated predictive modeling in three lake ecosystems using a library of process-based knowledge for modeling population dynamics. The experimental results identify the optimal design decisions regarding the learning algorithm. The results also show that the proposed ensembles yield significantly more accurate predictions of population dynamics as compared to individual process-based models. Finally, while their predictive performance is comparable to the one of ensembles obtained with the state-of-the-art methods of bagging and boosting, they are substantially more efficient.

  19. Model-based internal wave processing

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Chambers, D.H.

    1995-06-09

    A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.

  20. Integration of Simulink Models with Component-based Software Models

    Directory of Open Access Journals (Sweden)

    MARIAN, N.

    2008-06-01

    Full Text Available Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical constructs and process flow, then software code is generated. A Simulink model is a representation of the design or implementation of a physical system that satisfies a set of requirements. A software component-based system aims to organize system architecture and behavior as a means of computation, communication and constraints, using computational blocks and aggregates for both discrete and continuous behavior, different interconnection and execution disciplines for event-based and time-based controllers, and so on, to encompass the demands to more functionality, at even lower prices, and with opposite constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI, University of Southern Denmark. Once specified, the software model has to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behavior, and the transformation of the software system into the S

  1. Model-based machine learning.

    Science.gov (United States)

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  2. Event-based model diagnosis of rainfall-runoff model structures

    International Nuclear Information System (INIS)

    Stanzel, P.

    2012-01-01

    The objective of this research is a comparative evaluation of different rainfall-runoff model structures. Comparative model diagnostics facilitate the assessment of strengths and weaknesses of each model. The application of multiple models allows an analysis of simulation uncertainties arising from the selection of model structure, as compared with effects of uncertain parameters and precipitation input. Four different model structures, including conceptual and physically based approaches, are compared. In addition to runoff simulations, results for soil moisture and the runoff components of overland flow, interflow and base flow are analysed. Catchment runoff is simulated satisfactorily by all four model structures and shows only minor differences. Systematic deviations from runoff observations provide insight into model structural deficiencies. While physically based model structures capture some single runoff events better, they do not generally outperform conceptual model structures. Contributions to uncertainty in runoff simulations stemming from the choice of model structure show similar dimensions to those arising from parameter selection and the representation of precipitation input. Variations in precipitation mainly affect the general level and peaks of runoff, while different model structures lead to different simulated runoff dynamics. Large differences between the four analysed models are detected for simulations of soil moisture and, even more pronounced, runoff components. Soil moisture changes are more dynamical in the physically based model structures, which is in better agreement with observations. Streamflow contributions of overland flow are considerably lower in these models than in the more conceptual approaches. Observations of runoff components are rarely made and are not available in this study, but are shown to have high potential for an effective selection of appropriate model structures (author) [de

  3. Agent-based modeling of sustainable behaviors

    CERN Document Server

    Sánchez-Maroño, Noelia; Fontenla-Romero, Oscar; Polhill, J; Craig, Tony; Bajo, Javier; Corchado, Juan

    2017-01-01

    Using the O.D.D. (Overview, Design concepts, Detail) protocol, this title explores the role of agent-based modeling in predicting the feasibility of various approaches to sustainability. The chapters incorporated in this volume consist of real case studies to illustrate the utility of agent-based modeling and complexity theory in discovering a path to more efficient and sustainable lifestyles. The topics covered within include: households' attitudes toward recycling, designing decision trees for representing sustainable behaviors, negotiation-based parking allocation, auction-based traffic signal control, and others. This selection of papers will be of interest to social scientists who wish to learn more about agent-based modeling as well as experts in the field of agent-based modeling.

  4. Controlling of merging electric field and IMF magnitude on storm-time changes in thermospheric mass density

    Directory of Open Access Journals (Sweden)

    Y. L. Zhou

    2013-01-01

    Full Text Available The controls of merging electrical field, Em, and IMF (interplanetary magnetic field magnitude, B, on the storm-time changes in upper thermospheric mass density are statistically investigated using GRACE accelerometer observations and the OMNI data of solar wind and IMF for 35 great storms during 2002–2006. It reveals the following: (1 The correlation coefficients between the air mass density changes and the parameters of Em and B are generally larger at lower latitudes than at higher latitudes, and larger in noon and midnight sectors than in dawn and dusk. (2 The most likely delay time (MLDT of mass density changes in respect to Em is about 1.5 h (4.5 h at high (low latitudes, having no distinct local time dependence, while it is 6 h at middle latitudes in all the local time sectors except for noon, which is longer than at low latitudes. A similar fact of longer delay time at mid-latitude is also seen for B. The MLDTs for B at various latitudes are all local time dependent distinctly with shorter delay time in noon/midnight sector and larger in dawn/dusk. Despite of widely spread of the delay time, IMF B exhibits still larger correlation coefficients with mass density changes among the interplanetary parameters. (3 The linear control factor of B on the density changes increases for large B, in contrast to somewhat saturation trend for larger Em. (4 The influence of B and Em on the mass densities shows different behavior for different types of storms. The influence intensity of Em is much stronger for CIR-driven than for CME-driven storm, while it is not so distinct for B. On the local time asymmetry of the influence, both Em and B have largest influence at noon sector for CME-driven storms, while an obviously larger intensification of the influence is found in dawn/dusk sector during CIR storms, especially for parameter Em.

  5. Modeling Saturn's Inner Plasmasphere: Cassini's Closest Approach

    Science.gov (United States)

    Moore, L.; Mendillo, M.

    2005-05-01

    Ion densities from the three-dimensional Saturn-Thermosphere-Ionosphere-Model (STIM, Moore et al., 2004) are extended above the plasma exobase using the formalism of Pierrard and Lemaire (1996, 1998), which evaluates the balance of gravitational, centrifugal and electric forces on the plasma. The parameter space of low-energy ionospheric contributions to Saturn's plasmasphere is explored by comparing results that span the observed extremes of plasma temperature, 650 K to 1700 K, and a range of velocity distributions, Lorentzian (or Kappa) to Maxwellian. Calculations are made for plasma densities along the path of the Cassini spacecraft's orbital insertion on 1 July 2004. These calculations neglect any ring or satellite sources of plasma, which are most likely minor contributors at 1.3 Saturn radii. Modeled densities will be compared with Cassini measurements as they become available. Moore, L.E., M. Mendillo, I.C.F. Mueller-Wodarg, and D.L. Murr, Icarus, 172, 503-520, 2004. Pierrard, V. and J. Lemaire, J. Geophys. Res., 101, 7923-7934, 1996. Pierrard, V. and J. Lemaire, J. Geophys. Res., 103, 4117, 1998.

  6. Measurement-based reliability/performability models

    Science.gov (United States)

    Hsueh, Mei-Chen

    1987-01-01

    Measurement-based models based on real error-data collected on a multiprocessor system are described. Model development from the raw error-data to the estimation of cumulative reward is also described. A workload/reliability model is developed based on low-level error and resource usage data collected on an IBM 3081 system during its normal operation in order to evaluate the resource usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous behavior of the system are modeled. The results provide an understanding of the different types of errors and recovery processes. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A sensitivity analysis is performed to investigate the significance of using a semi-Markov process, as opposed to a Markov process, to model the measured system.

  7. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.

    Science.gov (United States)

    Zsuga, Judit; Biro, Klara; Papp, Csaba; Tajti, Gabor; Gesztelyi, Rudolf

    2016-02-01

    Reinforcement learning (RL) is a powerful concept underlying forms of associative learning governed by the use of a scalar reward signal, with learning taking place if expectations are violated. RL may be assessed using model-based and model-free approaches. Model-based reinforcement learning involves the amygdala, the hippocampus, and the orbitofrontal cortex (OFC). The model-free system involves the pedunculopontine-tegmental nucleus (PPTgN), the ventral tegmental area (VTA) and the ventral striatum (VS). Based on the functional connectivity of VS, model-free and model based RL systems center on the VS that by integrating model-free signals (received as reward prediction error) and model-based reward related input computes value. Using the concept of reinforcement learning agent we propose that the VS serves as the value function component of the RL agent. Regarding the model utilized for model-based computations we turned to the proactive brain concept, which offers an ubiquitous function for the default network based on its great functional overlap with contextual associative areas. Hence, by means of the default network the brain continuously organizes its environment into context frames enabling the formulation of analogy-based association that are turned into predictions of what to expect. The OFC integrates reward-related information into context frames upon computing reward expectation by compiling stimulus-reward and context-reward information offered by the amygdala and hippocampus, respectively. Furthermore we suggest that the integration of model-based expectations regarding reward into the value signal is further supported by the efferent of the OFC that reach structures canonical for model-free learning (e.g., the PPTgN, VTA, and VS). (c) 2016 APA, all rights reserved).

  8. The Use of Modeling-Based Text to Improve Students' Modeling Competencies

    Science.gov (United States)

    Jong, Jing-Ping; Chiu, Mei-Hung; Chung, Shiao-Lan

    2015-01-01

    This study investigated the effects of a modeling-based text on 10th graders' modeling competencies. Fifteen 10th graders read a researcher-developed modeling-based science text on the ideal gas law that included explicit descriptions and representations of modeling processes (i.e., model selection, model construction, model validation, model…

  9. Mars’ seasonal mesospheric transport seen through nitric oxide nightglow

    Science.gov (United States)

    Milby, Zachariah; Stiepen, Arnaud; Jain, Sonal; Schneider, Nicholas M.; Deighan, Justin; Gonzalez-Galindo, Francisco; Gerard, Jean-Claude; Stevens, Michael H.; Bougher, Stephen W.; Evans, J. Scott; Stewart, A. Ian; Chaffin, Michael; Crismani, Matteo; McClintock, William E.; Clarke, John T.; Holsclaw, Greg; Montmessin, Franck; Lefevre, Franck; Forget, Francois; Lo, Daniel Y.; Hubert, Benoît; Jakosky, Bruce

    2017-10-01

    We analyze the ultraviolet nightglow in the atmosphere of Mars through nitric oxide (NO) δ and γ band emissions as observed by the Imaging UltraViolet Spectrograph (IUVS) instrument onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft when it is at apoapse and periapse.In the dayside thermosphere of Mars, solar extreme-ultraviolet radiation dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried from the dayside to the nightside by the day-night hemispheric transport process, where they descend through the nightside mesosphere and can radiatively recombine to form NO(C2Π). The excited molecules rapidly relax by emitting photons in the UV δ and γ bands. These emissions are indicators of the N and O atom fluxes from the dayside to Mars’ nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017).Observations of these emissions are gathered from a large dataset spanning different seasonal conditions.We present discussion on the variability in the brightness and altitude of the emission with season, geographical position (longitude), and local time, along with possible interpretation by local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves forcing longitudinal variability and data-to-model comparisons indicating a wave-3 structure in Mars’ nightside mesosphere. Quantitative comparison with calculations of the Laboratoire de Météorologie Dynamique-Mars Global Climate Model (LMD-MGCM) suggests the model reproduces both the global trend of NO nightglow emission and its seasonal variation. However, it also indicates large discrepancies, with the emission up to a factor 50 times fainter in the model, suggesting that the predicted transport is too efficient toward the night winter pole in the thermosphere by

  10. Equatorial F-region plasma depletion drifts: latitudinal and seasonal variations

    Directory of Open Access Journals (Sweden)

    A. A. Pimenta

    2003-12-01

    Full Text Available The equatorial ionospheric irregularities have been observed in the past few years by different techniques (e.g. ground-based radar, digisonde, GPS, optical instruments, in situ satellite and rocket instrumentation, and its time evolution and propagation characteristics can be used to study important aspects of ionospheric dynamics and thermosphere-ionosphere coupling. At present, one of the most powerful optical techniques to study the large-scale ionospheric irregularities is the all-sky imaging photometer system, which normally measures the strong F-region nightglow 630 nm emission from atomic oxygen. The monochromatic OI 630 nm emission images usually show quasi-north-south magnetic field-aligned intensity depletion bands, which are the bottomside optical signatures of large-scale F-region plasma irregularities (also called plasma bubbles. The zonal drift velocities of the plasma bubbles can be inferred from the space-time displacement of the dark structures (low intensity regions seen on the images. In this study, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude, Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7° S to 28.7° S region. The east and west walls of the plasma bubble show a different evolution with time. The method used here is based on the western wall of the bubble, which presents a more stable behavior. Also, the observed zonal plasma bubble drift velocities are compared with the thermospheric zonal neutral wind velocities obtained from the HWM-90 model (Hedin et al., 1991 to investigate the thermosphere-ionosphere coupling. Salient features from this study are presented and discussed.Key words. Ionosphere (ionosphere-atmosphere interactions; ionospheric irregularities; instruments and techniques

  11. Short-term cyclic variations and diurnal variations of the Venus upper atmosphere

    Science.gov (United States)

    Keating, G. M.; Taylor, F. W.; Nicholson, J. Y.; Hinson, E. W.

    1979-01-01

    The vertical structure of the nighttime thermosphere and exosphere of Venus was discussed. A comparison of the day and nighttime profiles indicates, contrary to the model of Dickinson and Riley (1977), that densities (principally atomic oxygen) dropped sharply from day to night. It was suggested either that the lower estimates were related to cooler exospheric temperatures at night or that the atomic bulge was flatter than expected at lower altitudes. Large periodic oscillations, in both density and inferred exospheric temperatures, were detected with periods of 5 to 6 days. The possibility that cyclic variations in the thermosphere and stratosphere were caused by planetary-scale waves, propagated upward from the lower atmosphere, was investigated using simultaneous temperature measurements obtained by the Venus radiometric temperature experiment (VORTEX). Inferred exospheric temperatures in the morning were found to be lower than in the evening as if the atmosphere rotated in the direction of the planet's rotation, similar to that of earth. Superrotation of the thermosphere and exosphere was discussed as a possible extension of the 4-day cyclic atmospheric rotation near the cloud tops.

  12. Knowledge-Based Environmental Context Modeling

    Science.gov (United States)

    Pukite, P. R.; Challou, D. J.

    2017-12-01

    As we move from the oil-age to an energy infrastructure based on renewables, the need arises for new educational tools to support the analysis of geophysical phenomena and their behavior and properties. Our objective is to present models of these phenomena to make them amenable for incorporation into more comprehensive analysis contexts. Starting at the level of a college-level computer science course, the intent is to keep the models tractable and therefore practical for student use. Based on research performed via an open-source investigation managed by DARPA and funded by the Department of Interior [1], we have adapted a variety of physics-based environmental models for a computer-science curriculum. The original research described a semantic web architecture based on patterns and logical archetypal building-blocks (see figure) well suited for a comprehensive environmental modeling framework. The patterns span a range of features that cover specific land, atmospheric and aquatic domains intended for engineering modeling within a virtual environment. The modeling engine contained within the server relied on knowledge-based inferencing capable of supporting formal terminology (through NASA JPL's Semantic Web for Earth and Environmental Technology (SWEET) ontology and a domain-specific language) and levels of abstraction via integrated reasoning modules. One of the key goals of the research was to simplify models that were ordinarily computationally intensive to keep them lightweight enough for interactive or virtual environment contexts. The breadth of the elements incorporated is well-suited for learning as the trend toward ontologies and applying semantic information is vital for advancing an open knowledge infrastructure. As examples of modeling, we have covered such geophysics topics as fossil-fuel depletion, wind statistics, tidal analysis, and terrain modeling, among others. Techniques from the world of computer science will be necessary to promote efficient

  13. Evidence-based quantification of uncertainties induced via simulation-based modeling

    International Nuclear Information System (INIS)

    Riley, Matthew E.

    2015-01-01

    The quantification of uncertainties in simulation-based modeling traditionally focuses upon quantifying uncertainties in the parameters input into the model, referred to as parametric uncertainties. Often neglected in such an approach are the uncertainties induced by the modeling process itself. This deficiency is often due to a lack of information regarding the problem or the models considered, which could theoretically be reduced through the introduction of additional data. Because of the nature of this epistemic uncertainty, traditional probabilistic frameworks utilized for the quantification of uncertainties are not necessarily applicable to quantify the uncertainties induced in the modeling process itself. This work develops and utilizes a methodology – incorporating aspects of Dempster–Shafer Theory and Bayesian model averaging – to quantify uncertainties of all forms for simulation-based modeling problems. The approach expands upon classical parametric uncertainty approaches, allowing for the quantification of modeling-induced uncertainties as well, ultimately providing bounds on classical probability without the loss of epistemic generality. The approach is demonstrated on two different simulation-based modeling problems: the computation of the natural frequency of a simple two degree of freedom non-linear spring mass system and the calculation of the flutter velocity coefficient for the AGARD 445.6 wing given a subset of commercially available modeling choices. - Highlights: • Modeling-induced uncertainties are often mishandled or ignored in the literature. • Modeling-induced uncertainties are epistemic in nature. • Probabilistic representations of modeling-induced uncertainties are restrictive. • Evidence theory and Bayesian model averaging are integrated. • Developed approach is applicable for simulation-based modeling problems

  14. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    Full Text Available The companion paper by Zou et al. shows that the annual and semiannual variations in the peak F2-layer electron density (NmF2 at midlatitudes can be reproduced by a coupled thermosphere-ionosphere computational model (CTIP, without recourse to external influences such as the solar wind, or waves and tides originating in the lower atmosphere. The present work discusses the physics in greater detail. It shows that noon NmF2 is closely related to the ambient atomic/molecular concentration ratio, and suggests that the variations of NmF2 with geographic and magnetic longitude are largely due to the geometry of the auroral ovals. It also concludes that electric fields play no important part in the dynamics of the midlatitude thermosphere. Our modelling leads to the following picture of the global three-dimensional thermospheric circulation which, as envisaged by Duncan, is the key to explaining the F2-layer variations. At solstice, the almost continuous solar input at high summer latitudes drives a prevailing summer-to-winter wind, with upwelling at low latitudes and throughout most of the summer hemisphere, and a zone of downwelling in the winter hemisphere, just equatorward of the auroral oval. These motions affect thermospheric composition more than do the alternating day/night (up-and-down motions at equinox. As a result, the thermosphere as a whole is more molecular at solstice than at equinox. Taken in conjunction with the well-known relation of F2-layer electron density to the atomic/molecular ratio in the neutral air, this explains the F2-layer semiannual effect in NmF2 that prevails at low and middle latitudes. At higher midlatitudes, the seasonal behaviour depends on the geographic latitude of the winter downwelling zone, though the effect of the composition changes is modified by the large solar zenith angle at midwinter. The zenith angle effect is especially important in longitudes far from the magnetic

  15. Convex-based void filling method for CAD-based Monte Carlo geometry modeling

    International Nuclear Information System (INIS)

    Yu, Shengpeng; Cheng, Mengyun; Song, Jing; Long, Pengcheng; Hu, Liqin

    2015-01-01

    Highlights: • We present a new void filling method named CVF for CAD based MC geometry modeling. • We describe convex based void description based and quality-based space subdivision. • The results showed improvements provided by CVF for both modeling and MC calculation efficiency. - Abstract: CAD based automatic geometry modeling tools have been widely applied to generate Monte Carlo (MC) calculation geometry for complex systems according to CAD models. Automatic void filling is one of the main functions in the CAD based MC geometry modeling tools, because the void space between parts in CAD models is traditionally not modeled while MC codes such as MCNP need all the problem space to be described. A dedicated void filling method, named Convex-based Void Filling (CVF), is proposed in this study for efficient void filling and concise void descriptions. The method subdivides all the problem space into disjointed regions using Quality based Subdivision (QS) and describes the void space in each region with complementary descriptions of the convex volumes intersecting with that region. It has been implemented in SuperMC/MCAM, the Multiple-Physics Coupling Analysis Modeling Program, and tested on International Thermonuclear Experimental Reactor (ITER) Alite model. The results showed that the new method reduced both automatic modeling time and MC calculation time

  16. Model-based version management system framework

    International Nuclear Information System (INIS)

    Mehmood, W.

    2016-01-01

    In this paper we present a model-based version management system. Version Management System (VMS) a branch of software configuration management (SCM) aims to provide a controlling mechanism for evolution of software artifacts created during software development process. Controlling the evolution requires many activities to perform, such as, construction and creation of versions, identification of differences between versions, conflict detection and merging. Traditional VMS systems are file-based and consider software systems as a set of text files. File based VMS systems are not adequate for performing software configuration management activities such as, version control on software artifacts produced in earlier phases of the software life cycle. New challenges of model differencing, merge, and evolution control arise while using models as central artifact. The goal of this work is to present a generic framework model-based VMS which can be used to overcome the problem of tradition file-based VMS systems and provide model versioning services. (author)

  17. Effects of the midnight temperature maximum observed in the thermosphere-ionosphere over the northeast of Brazil

    Science.gov (United States)

    Figueiredo, Cosme Alexandre O. B.; Buriti, Ricardo A.; Paulino, Igo; Meriwether, John W.; Makela, Jonathan J.; Batista, Inez S.; Barros, Diego; Medeiros, Amauri F.

    2017-08-01

    The midnight temperature maximum (MTM) has been observed in the lower thermosphere by two Fabry-Pérot interferometers (FPIs) at São João do Cariri (7.4° S, 36.5° W) and Cajazeiras (6.9° S, 38.6° W) during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU = 10-22 W m-2 Hz-1). The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300), and ionospheric parameters, such as virtual height (h'F), the peak height of the F2 region (hmF2), and critical frequency of the F region (foF2), which were measured by a Digisonde instrument (DPS) at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011). The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012) model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s-1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s-1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to -50 m s-1. Our results indicate that the reversal (changes in equator to poleward flow) or abatement of the meridional winds is an important factor in

  18. Semi-Empirical, First-Principles, and Hybrid Modeling of the Thermosphere to Enhance Data Assimilation

    Science.gov (United States)

    2015-10-27

    number. The vertical temperature profile, T (z), required to carry out the integration in (2) is parameterized in the following form: T (z) = Tx + A...procedure is carried out separately for the ∆Tc and ∆Tx fields. Figures 3 and 4 show the first 9 PC expansion functions for ∆Tc and the first 4 PC...449. [28] Keating, G. M., E. J. Prior, D. S. McDougal , and J. I. Nicholson (1974), Critical evaluation of the OGO 6 helium model, in Space Research

  19. Culturicon model: A new model for cultural-based emoticon

    Science.gov (United States)

    Zukhi, Mohd Zhafri Bin Mohd; Hussain, Azham

    2017-10-01

    Emoticons are popular among distributed collective interaction user in expressing their emotion, gestures and actions. Emoticons have been proved to be able to avoid misunderstanding of the message, attention saving and improved the communications among different native speakers. However, beside the benefits that emoticons can provide, the study regarding emoticons in cultural perspective is still lacking. As emoticons are crucial in global communication, culture should be one of the extensively research aspect in distributed collective interaction. Therefore, this study attempt to explore and develop model for cultural-based emoticon. Three cultural models that have been used in Human-Computer Interaction were studied which are the Hall Culture Model, Trompenaars and Hampden Culture Model and Hofstede Culture Model. The dimensions from these three models will be used in developing the proposed cultural-based emoticon model.

  20. Least-squares model-based halftoning

    Science.gov (United States)

    Pappas, Thrasyvoulos N.; Neuhoff, David L.

    1992-08-01

    A least-squares model-based approach to digital halftoning is proposed. It exploits both a printer model and a model for visual perception. It attempts to produce an 'optimal' halftoned reproduction, by minimizing the squared error between the response of the cascade of the printer and visual models to the binary image and the response of the visual model to the original gray-scale image. Conventional methods, such as clustered ordered dither, use the properties of the eye only implicitly, and resist printer distortions at the expense of spatial and gray-scale resolution. In previous work we showed that our printer model can be used to modify error diffusion to account for printer distortions. The modified error diffusion algorithm has better spatial and gray-scale resolution than conventional techniques, but produces some well known artifacts and asymmetries because it does not make use of an explicit eye model. Least-squares model-based halftoning uses explicit eye models and relies on printer models that predict distortions and exploit them to increase, rather than decrease, both spatial and gray-scale resolution. We have shown that the one-dimensional least-squares problem, in which each row or column of the image is halftoned independently, can be implemented with the Viterbi's algorithm. Unfortunately, no closed form solution can be found in two dimensions. The two-dimensional least squares solution is obtained by iterative techniques. Experiments show that least-squares model-based halftoning produces more gray levels and better spatial resolution than conventional techniques. We also show that the least- squares approach eliminates the problems associated with error diffusion. Model-based halftoning can be especially useful in transmission of high quality documents using high fidelity gray-scale image encoders. As we have shown, in such cases halftoning can be performed at the receiver, just before printing. Apart from coding efficiency, this approach

  1. Model-based sensor diagnosis

    International Nuclear Information System (INIS)

    Milgram, J.; Dormoy, J.L.

    1994-09-01

    Running a nuclear power plant involves monitoring data provided by the installation's sensors. Operators and computerized systems then use these data to establish a diagnostic of the plant. However, the instrumentation system is complex, and is not immune to faults and failures. This paper presents a system for detecting sensor failures using a topological description of the installation and a set of component models. This model of the plant implicitly contains relations between sensor data. These relations must always be checked if all the components are functioning correctly. The failure detection task thus consists of checking these constraints. The constraints are extracted in two stages. Firstly, a qualitative model of their existence is built using structural analysis. Secondly, the models are formally handled according to the results of the structural analysis, in order to establish the constraints on the sensor data. This work constitutes an initial step in extending model-based diagnosis, as the information on which it is based is suspect. This work will be followed by surveillance of the detection system. When the instrumentation is assumed to be sound, the unverified constraints indicate errors on the plant model. (authors). 8 refs., 4 figs

  2. Model-Based Learning Environment Based on The Concept IPS School-Based Management

    Directory of Open Access Journals (Sweden)

    Hamid Darmadi

    2017-03-01

    Full Text Available The results showed: (1 learning model IPS-oriented environment can grow and not you love the cultural values of the area as a basis for the development of national culture, (2 community participation, and the role of government in implementing learning model of IPS-based environment provides a positive impact for the improvement of management school resources, (3 learning model IPS-based environment effectively creating a way of life together peacefully, increase the intensity of togetherness and mutual respect (4 learning model IPS-based environment can improve student learning outcomes, (5 there are differences in the expression of attitudes and results learning among students who are located in the area of conflict with students who are outside the area of conflict (6 analysis of the scale of attitudes among school students da SMA result rewards high school students to the values of unity and nation, respect for diversity and peaceful coexistence, It is recommended that the Department of Education authority as an institution of Trustees and the development of social and cultural values in the province can apply IPS learning model based environments.

  3. Model based process-product design and analysis

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper gives a perspective on modelling and the important role it has within product-process design and analysis. Different modelling issues related to development and application of systematic model-based solution approaches for product-process design is discussed and the need for a hybrid...... model-based framework is highlighted. This framework should be able to manage knowledge-data, models, and associated methods and tools integrated with design work-flows and data-flows for specific product-process design problems. In particular, the framework needs to manage models of different types......, forms and complexity, together with their associated parameters. An example of a model-based system for design of chemicals based formulated products is also given....

  4. A probabilistic graphical model based stochastic input model construction

    International Nuclear Information System (INIS)

    Wan, Jiang; Zabaras, Nicholas

    2014-01-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media

  5. Web Based VRML Modelling

    NARCIS (Netherlands)

    Kiss, S.; Sarfraz, M.

    2004-01-01

    Presents a method to connect VRML (Virtual Reality Modeling Language) and Java components in a Web page using EAI (External Authoring Interface), which makes it possible to interactively generate and edit VRML meshes. The meshes used are based on regular grids, to provide an interaction and modeling

  6. Physics Based Modeling of Compressible Turbulance

    Science.gov (United States)

    2016-11-07

    AFRL-AFOSR-VA-TR-2016-0345 PHYSICS -BASED MODELING OF COMPRESSIBLE TURBULENCE PARVIZ MOIN LELAND STANFORD JUNIOR UNIV CA Final Report 09/13/2016...on the AFOSR project (FA9550-11-1-0111) entitled: Physics based modeling of compressible turbulence. The period of performance was, June 15, 2011...by ANSI Std. Z39.18 Page 1 of 2FORM SF 298 11/10/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll PHYSICS -BASED MODELING OF COMPRESSIBLE

  7. Probabilistic reasoning for assembly-based 3D modeling

    KAUST Repository

    Chaudhuri, Siddhartha; Kalogerakis, Evangelos; Guibas, Leonidas; Koltun, Vladlen

    2011-01-01

    Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling

  8. Model Based Temporal Reasoning

    Science.gov (United States)

    Rabin, Marla J.; Spinrad, Paul R.; Fall, Thomas C.

    1988-03-01

    Systems that assess the real world must cope with evidence that is uncertain, ambiguous, and spread over time. Typically, the most important function of an assessment system is to identify when activities are occurring that are unusual or unanticipated. Model based temporal reasoning addresses both of these requirements. The differences among temporal reasoning schemes lies in the methods used to avoid computational intractability. If we had n pieces of data and we wanted to examine how they were related, the worst case would be where we had to examine every subset of these points to see if that subset satisfied the relations. This would be 2n, which is intractable. Models compress this; if several data points are all compatible with a model, then that model represents all those data points. Data points are then considered related if they lie within the same model or if they lie in models that are related. Models thus address the intractability problem. They also address the problem of determining unusual activities if the data do not agree with models that are indicated by earlier data then something out of the norm is taking place. The models can summarize what we know up to that time, so when they are not predicting correctly, either something unusual is happening or we need to revise our models. The model based reasoner developed at Advanced Decision Systems is thus both intuitive and powerful. It is currently being used on one operational system and several prototype systems. It has enough power to be used in domains spanning the spectrum from manufacturing engineering and project management to low-intensity conflict and strategic assessment.

  9. Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign

    Directory of Open Access Journals (Sweden)

    B. P. Williams

    2006-07-01

    Full Text Available The winter MaCWAVE (Mountain and convective waves ascending vertically rocket campaign took place in January 2003 at Esrange, Sweden and the ALOMAR observatory in Andenes, Norway. The campaign combined balloon, lidar, radar, and rocket measurements to produce full temperature and wind profiles from the ground to 105 km. This paper will investigate gravity wave propagation in the mesosphere and lower thermosphere using data from the Weber sodium lidar on 28–29 January 2003. A very large semidiurnal tide was present in the zonal wind above 80 km that grew to a 90 m/s amplitude at 100 km. The superposition of smaller-scale gravity waves and the tide caused small regions of possible convective or shear instabilities to form along the downward progressing phase fronts of the tide. The gravity waves had periods ranging from the Nyquist period of 30 min up to 4 h, vertical wavelengths ranging from 7 km to more than 20 km, and the frequency spectra had the expected –5/3 slope. The dominant gravity waves had long vertical wavelengths and experienced rapid downward phase progression. The gravity wave variance grew exponentially with height up from 86 to 94 km, consistent with the measured scale height, suggesting that the waves were not dissipated strongly by the tidal gradients and resulting unstable regions in this altitude range.

  10. Whole Atmosphere Simulation of Anthropogenic Climate Change

    Science.gov (United States)

    Solomon, Stanley C.; Liu, Han-Li; Marsh, Daniel R.; McInerney, Joseph M.; Qian, Liying; Vitt, Francis M.

    2018-02-01

    We simulated anthropogenic global change through the entire atmosphere, including the thermosphere and ionosphere, using the Whole Atmosphere Community Climate Model-eXtended. The basic result was that even as the lower atmosphere gradually warms, the upper atmosphere rapidly cools. The simulations employed constant low solar activity conditions, to remove the effects of variable solar and geomagnetic activity. Global mean annual mean temperature increased at a rate of +0.2 K/decade at the surface and +0.4 K/decade in the upper troposphere but decreased by about -1 K/decade in the stratosphere-mesosphere and -2.8 K/decade in the thermosphere. Near the mesopause, temperature decreases were small compared to the interannual variation, so trends in that region are uncertain. Results were similar to previous modeling confined to specific atmospheric levels and compared favorably with available measurements. These simulations demonstrate the ability of a single comprehensive numerical model to characterize global change throughout the atmosphere.

  11. SMLTM simulations of the diurnal tide: comparison with UARS observations

    Directory of Open Access Journals (Sweden)

    R. A. Akmaev

    1997-09-01

    Full Text Available Wind and temperature observations in the mesosphere and lower thermosphere (MLT from the Upper Atmosphere Research Satellite (UARS reveal strong seasonal variations of tides, a dominant component of the MLT dynamics. Simulations with the Spectral mesosphere/lower thermosphere model (SMLTM for equinox and solstice conditions are presented and compared with the observations. The diurnal tide is generated by forcing specified at the model lower boundary and by in situ absorption of solar radiation. The model incorporates realistic parameterizations of physical processes including various dissipation processes important for propagation of tidal waves in the MLT. A discrete multi-component gravity-wave parameterization has been modified to account for seasonal variations of the background temperature. Eddy diffusion is calculated depending on the gravity-wave energy deposition rate and stability of the background flow. It is shown that seasonal variations of the diurnal-tide amplitudes are consistent with observed variations of gravity-wave sources in the lower atmosphere.

  12. Econophysics of agent-based models

    CERN Document Server

    Aoyama, Hideaki; Chakrabarti, Bikas; Chakraborti, Anirban; Ghosh, Asim

    2014-01-01

    The primary goal of this book is to present the research findings and conclusions of physicists, economists, mathematicians and financial engineers working in the field of "Econophysics" who have undertaken agent-based modelling, comparison with empirical studies and related investigations. Most standard economic models assume the existence of the representative agent, who is “perfectly rational” and applies the utility maximization principle when taking action. One reason for this is the desire to keep models mathematically tractable: no tools are available to economists for solving non-linear models of heterogeneous adaptive agents without explicit optimization. In contrast, multi-agent models, which originated from statistical physics considerations, allow us to go beyond the prototype theories of traditional economics involving the representative agent. This book is based on the Econophys-Kolkata VII Workshop, at which many such modelling efforts were presented. In the book, leading researchers in the...

  13. A model-based framework for design of intensified enzyme-based processes

    DEFF Research Database (Denmark)

    Román-Martinez, Alicia

    This thesis presents a generic and systematic model-based framework to design intensified enzyme-based processes. The development of the presented methodology was motivated by the needs of the bio-based industry for a more systematic approach to achieve intensification in its production plants...... in enzyme-based processes which have found significant application in the pharmaceutical, food, and renewable fuels sector. The framework uses model-based strategies for (bio)-chemical process design and optimization, including the use of a superstructure to generate all potential reaction......(s)-separation(s) options according to a desired performance criteria and a generic mathematical model represented by the superstructure to derive the specific models corresponding to a specific process option. In principle, three methods of intensification of bioprocess are considered in this thesis: 1. enzymatic one...

  14. The control of auroral zone dynamics and thermodynamics by the interplanetary magnetic field dawn-dusk (Y) component

    International Nuclear Information System (INIS)

    Sica, R.J.; Hernandez, G.; Emery, B.A.; Roble, R.G.; Smith, R.W.; Rees, M.H.

    1989-01-01

    Previous theoretical and experimental studies have shown that the dawn-dusk component of the interplanetary magnetic field (IMF B y ) expands the classical symmetric two-cell convection pattern toward dusk (B y negative) or toward dawn (B y positive) in the northern hemisphere, altering the ion drag forcing on the neutral atmosphere. Measurements of the neutral dynamics associated with these convection patterns have been presented primarily at magnetic latitudes greater than 70 degree in the polar cap. In this study, nights with coincident IMF measurements have been selected from the extensive four-year auroral zone thermospheric wind and temperature data set derived from Fabry-Perot spectrometer measurements of the Doppler shifts and widths of the O( 1 D) 15,867 cm -1 (630.0 nm) emission from College, Alaska. Averages from 112 nights of measurements from College were also computed using a selection criterion that depended on the previous 2 hours of IMF measurements (case 2). This procedure yielded averages that differed at times from case 1. The wind and temperature averages for both cases show large variations with B y in the auroral zone. The wind averages for B y negative and positive are compared with National Center for Atmospheric Research thermospheric general circulation model predictions that use a B y -dependent model of ionospheric convection. The results for B y negative and positive are compared with National Center for Atmospheric Research thermospheric general circulation model predictions that use a B y -dependent model of ionospheric convection. The results for B y negative compare favorably with the averages, but there are significant differences between model calculations and averages for the B y positive case

  15. ANFIS-Based Modeling for Photovoltaic Characteristics Estimation

    Directory of Open Access Journals (Sweden)

    Ziqiang Bi

    2016-09-01

    Full Text Available Due to the high cost of photovoltaic (PV modules, an accurate performance estimation method is significantly valuable for studying the electrical characteristics of PV generation systems. Conventional analytical PV models are usually composed by nonlinear exponential functions and a good number of unknown parameters must be identified before using. In this paper, an adaptive-network-based fuzzy inference system (ANFIS based modeling method is proposed to predict the current-voltage characteristics of PV modules. The effectiveness of the proposed modeling method is evaluated through comparison with Villalva’s model, radial basis function neural networks (RBFNN based model and support vector regression (SVR based model. Simulation and experimental results confirm both the feasibility and the effectiveness of the proposed method.

  16. Using Model Replication to Improve the Reliability of Agent-Based Models

    Science.gov (United States)

    Zhong, Wei; Kim, Yushim

    The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.

  17. Skull base tumor model.

    Science.gov (United States)

    Gragnaniello, Cristian; Nader, Remi; van Doormaal, Tristan; Kamel, Mahmoud; Voormolen, Eduard H J; Lasio, Giovanni; Aboud, Emad; Regli, Luca; Tulleken, Cornelius A F; Al-Mefty, Ossama

    2010-11-01

    Resident duty-hours restrictions have now been instituted in many countries worldwide. Shortened training times and increased public scrutiny of surgical competency have led to a move away from the traditional apprenticeship model of training. The development of educational models for brain anatomy is a fascinating innovation allowing neurosurgeons to train without the need to practice on real patients and it may be a solution to achieve competency within a shortened training period. The authors describe the use of Stratathane resin ST-504 polymer (SRSP), which is inserted at different intracranial locations to closely mimic meningiomas and other pathological entities of the skull base, in a cadaveric model, for use in neurosurgical training. Silicone-injected and pressurized cadaveric heads were used for studying the SRSP model. The SRSP presents unique intrinsic metamorphic characteristics: liquid at first, it expands and foams when injected into the desired area of the brain, forming a solid tumorlike structure. The authors injected SRSP via different passages that did not influence routes used for the surgical approach for resection of the simulated lesion. For example, SRSP injection routes included endonasal transsphenoidal or transoral approaches if lesions were to be removed through standard skull base approach, or, alternatively, SRSP was injected via a cranial approach if the removal was planned to be via the transsphenoidal or transoral route. The model was set in place in 3 countries (US, Italy, and The Netherlands), and a pool of 13 physicians from 4 different institutions (all surgeons and surgeons in training) participated in evaluating it and provided feedback. All 13 evaluating physicians had overall positive impressions of the model. The overall score on 9 components evaluated--including comparison between the tumor model and real tumor cases, perioperative requirements, general impression, and applicability--was 88% (100% being the best possible

  18. Firm Based Trade Models and Turkish Economy

    Directory of Open Access Journals (Sweden)

    Nilüfer ARGIN

    2015-12-01

    Full Text Available Among all international trade models, only The Firm Based Trade Models explains firm’s action and behavior in the world trade. The Firm Based Trade Models focuses on the trade behavior of individual firms that actually make intra industry trade. Firm Based Trade Models can explain globalization process truly. These approaches include multinational cooperation, supply chain and outsourcing also. Our paper aims to explain and analyze Turkish export with Firm Based Trade Models’ context. We use UNCTAD data on exports by SITC Rev 3 categorization to explain total export and 255 products and calculate intensive-extensive margins of Turkish firms.

  19. Incident Duration Modeling Using Flexible Parametric Hazard-Based Models

    Directory of Open Access Journals (Sweden)

    Ruimin Li

    2014-01-01

    Full Text Available Assessing and prioritizing the duration time and effects of traffic incidents on major roads present significant challenges for road network managers. This study examines the effect of numerous factors associated with various types of incidents on their duration and proposes an incident duration prediction model. Several parametric accelerated failure time hazard-based models were examined, including Weibull, log-logistic, log-normal, and generalized gamma, as well as all models with gamma heterogeneity and flexible parametric hazard-based models with freedom ranging from one to ten, by analyzing a traffic incident dataset obtained from the Incident Reporting and Dispatching System in Beijing in 2008. Results show that different factors significantly affect different incident time phases, whose best distributions were diverse. Given the best hazard-based models of each incident time phase, the prediction result can be reasonable for most incidents. The results of this study can aid traffic incident management agencies not only in implementing strategies that would reduce incident duration, and thus reduce congestion, secondary incidents, and the associated human and economic losses, but also in effectively predicting incident duration time.

  20. NASA Software Cost Estimation Model: An Analogy Based Estimation Model

    Science.gov (United States)

    Hihn, Jairus; Juster, Leora; Menzies, Tim; Mathew, George; Johnson, James

    2015-01-01

    The cost estimation of software development activities is increasingly critical for large scale integrated projects such as those at DOD and NASA especially as the software systems become larger and more complex. As an example MSL (Mars Scientific Laboratory) developed at the Jet Propulsion Laboratory launched with over 2 million lines of code making it the largest robotic spacecraft ever flown (Based on the size of the software). Software development activities are also notorious for their cost growth, with NASA flight software averaging over 50% cost growth. All across the agency, estimators and analysts are increasingly being tasked to develop reliable cost estimates in support of program planning and execution. While there has been extensive work on improving parametric methods there is very little focus on the use of models based on analogy and clustering algorithms. In this paper we summarize our findings on effort/cost model estimation and model development based on ten years of software effort estimation research using data mining and machine learning methods to develop estimation models based on analogy and clustering. The NASA Software Cost Model performance is evaluated by comparing it to COCOMO II, linear regression, and K-­ nearest neighbor prediction model performance on the same data set.

  1. Modeling Guru: Knowledge Base for NASA Modelers

    Science.gov (United States)

    Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.

    2009-05-01

    Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at http://modelingguru.nasa.gov/), but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the

  2. Model-reduced gradient-based history matching

    NARCIS (Netherlands)

    Kaleta, M.P.

    2011-01-01

    Since the world's energy demand increases every year, the oil & gas industry makes a continuous effort to improve fossil fuel recovery. Physics-based petroleum reservoir modeling and closed-loop model-based reservoir management concept can play an important role here. In this concept measured data

  3. Stimulating Scientific Reasoning with Drawing-Based Modeling

    Science.gov (United States)

    Heijnes, Dewi; van Joolingen, Wouter; Leenaars, Frank

    2018-01-01

    We investigate the way students' reasoning about evolution can be supported by drawing-based modeling. We modified the drawing-based modeling tool SimSketch to allow for modeling evolutionary processes. In three iterations of development and testing, students in lower secondary education worked on creating an evolutionary model. After each…

  4. Model-Based Requirements Management in Gear Systems Design Based On Graph-Based Design Languages

    Directory of Open Access Journals (Sweden)

    Kevin Holder

    2017-10-01

    Full Text Available For several decades, a wide-spread consensus concerning the enormous importance of an in-depth clarification of the specifications of a product has been observed. A weak clarification of specifications is repeatedly listed as a main cause for the failure of product development projects. Requirements, which can be defined as the purpose, goals, constraints, and criteria associated with a product development project, play a central role in the clarification of specifications. The collection of activities which ensure that requirements are identified, documented, maintained, communicated, and traced throughout the life cycle of a system, product, or service can be referred to as “requirements engineering”. These activities can be supported by a collection and combination of strategies, methods, and tools which are appropriate for the clarification of specifications. Numerous publications describe the strategy and the components of requirements management. Furthermore, recent research investigates its industrial application. Simultaneously, promising developments of graph-based design languages for a holistic digital representation of the product life cycle are presented. Current developments realize graph-based languages by the diagrams of the Unified Modelling Language (UML, and allow the automatic generation and evaluation of multiple product variants. The research presented in this paper seeks to present a method in order to combine the advantages of a conscious requirements management process and graph-based design languages. Consequently, the main objective of this paper is the investigation of a model-based integration of requirements in a product development process by means of graph-based design languages. The research method is based on an in-depth analysis of an exemplary industrial product development, a gear system for so-called “Electrical Multiple Units” (EMU. Important requirements were abstracted from a gear system

  5. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2009-01-01

    The purpose of the paper is to obtain insight into and provide practical advice for event-based conceptual modeling. We analyze a set of event concepts and use the results to formulate a conceptual event model that is used to identify guidelines for creation of dynamic process models and static...... information models. We characterize events as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms of information structures. The conceptual event model is used to characterize a variety of event concepts and it is used to illustrate how events can...... be used to integrate dynamic modeling of processes and static modeling of information structures. The results are unique in the sense that no other general event concept has been used to unify a similar broad variety of seemingly incompatible event concepts. The general event concept can be used...

  6. Identification of walking human model using agent-based modelling

    Science.gov (United States)

    Shahabpoor, Erfan; Pavic, Aleksandar; Racic, Vitomir

    2018-03-01

    The interaction of walking people with large vibrating structures, such as footbridges and floors, in the vertical direction is an important yet challenging phenomenon to describe mathematically. Several different models have been proposed in the literature to simulate interaction of stationary people with vibrating structures. However, the research on moving (walking) human models, explicitly identified for vibration serviceability assessment of civil structures, is still sparse. In this study, the results of a comprehensive set of FRF-based modal tests were used, in which, over a hundred test subjects walked in different group sizes and walking patterns on a test structure. An agent-based model was used to simulate discrete traffic-structure interactions. The occupied structure modal parameters found in tests were used to identify the parameters of the walking individual's single-degree-of-freedom (SDOF) mass-spring-damper model using 'reverse engineering' methodology. The analysis of the results suggested that the normal distribution with the average of μ = 2.85Hz and standard deviation of σ = 0.34Hz can describe human SDOF model natural frequency. Similarly, the normal distribution with μ = 0.295 and σ = 0.047 can describe the human model damping ratio. Compared to the previous studies, the agent-based modelling methodology proposed in this paper offers significant flexibility in simulating multi-pedestrian walking traffics, external forces and simulating different mechanisms of human-structure and human-environment interaction at the same time.

  7. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  8. Multiagent-Based Model For ESCM

    Directory of Open Access Journals (Sweden)

    Delia MARINCAS

    2011-01-01

    Full Text Available Web based applications for Supply Chain Management (SCM are now a necessity for every company in order to meet the increasing customer demands, to face the global competition and to make profit. Multiagent-based approach is appropriate for eSCM because it shows many of the characteristics a SCM system should have. For this reason, we have proposed a multiagent-based eSCM model which configures a virtual SC, automates the SC activities: selling, purchasing, manufacturing, planning, inventory, etc. This model will allow a better coordination of the supply chain network and will increase the effectiveness of Web and intel-ligent technologies employed in eSCM software.

  9. SLS Navigation Model-Based Design Approach

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  10. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  11. Model-Based Security Testing

    Directory of Open Access Journals (Sweden)

    Ina Schieferdecker

    2012-02-01

    Full Text Available Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.

  12. Characterization, propagation, and simulation of sources and backgrounds II; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992

    Science.gov (United States)

    Clement, Dieter; Watkins, Wendell R.

    Consideration is given to a characterization of the environmental influence on targets, backgrounds, camouflage, and clutter; modeling of physically based dynamics of scene radiation and its propagation; and the relatively sophisticated real-time simulations/simulators for system observer display and testing of some of these dynamic and varied scene changes. Particular attention is given to the hardware-in-the-loop infrared projector technology, a strategic scene generation model, a comparison of night sky spectral radiance measurements with MODTRAN and LOWTRAN 7 predictions, spatiotemporal models for the simulation of infrared backgrounds, computer-based evaluation of camouflage, dual-band infrared polarization measurements of sun glint from the sea surface, an electron gun IR scenario simulator, relaxation processes of vibrationally excited species in the mesosphere and thermosphere, a fiber-optic-based device for the investigation of aerooptic effects, and luminous intensity measurements of sources using a new detector-based illuminance scale. (For individual items see A93-28623 to A93-28625)

  13. Model-based Abstraction of Data Provenance

    DEFF Research Database (Denmark)

    Probst, Christian W.; Hansen, René Rydhof

    2014-01-01

    to bigger models, and the analyses adapt accordingly. Our approach extends provenance both with the origin of data, the actors and processes involved in the handling of data, and policies applied while doing so. The model and corresponding analyses are based on a formal model of spatial and organisational......Identifying provenance of data provides insights to the origin of data and intermediate results, and has recently gained increased interest due to data-centric applications. In this work we extend a data-centric system view with actors handling the data and policies restricting actions....... This extension is based on provenance analysis performed on system models. System models have been introduced to model and analyse spatial and organisational aspects of organisations, to identify, e.g., potential insider threats. Both the models and analyses are naturally modular; models can be combined...

  14. From the Sun to the Earth: impact of the 27-28 May 2003 solar events on the magnetosphere, ionosphere and thermosphere

    Directory of Open Access Journals (Sweden)

    C. Hanuise

    2006-03-01

    Full Text Available During the last week of May 2003, the solar active region AR 10365 produced a large number of flares, several of which were accompanied by Coronal Mass Ejections (CME. Specifically on 27 and 28 May three halo CMEs were observed which had a significant impact on geospace. On 29 May, upon their arrival at the L1 point, in front of the Earth's magnetosphere, two interplanetary shocks and two additional solar wind pressure pulses were recorded by the ACE spacecraft. The interplanetary magnetic field data showed the clear signature of a magnetic cloud passing ACE. In the wake of the successive increases in solar wind pressure, the magnetosphere became strongly compressed and the sub-solar magnetopause moved inside five Earth radii. At low altitudes the increased energy input to the magnetosphere was responsible for a substantial enhancement of Region-1 field-aligned currents. The ionospheric Hall currents also intensified and the entire high-latitude current system moved equatorward by about 10°. Several substorms occurred during this period, some of them - but not all - apparently triggered by the solar wind pressure pulses. The storm's most notable consequences on geospace, including space weather effects, were (1 the expansion of the auroral oval, and aurorae seen at mid latitudes, (2 the significant modification of the total electron content in the sunlight high-latitude ionosphere, (3 the perturbation of radio-wave propagation manifested by HF blackouts and increased GPS signal scintillation, and (4 the heating of the thermosphere, causing increased satellite drag. We discuss the reasons why the May 2003 storm is less intense than the October-November 2003 storms, although several indicators reach similar intensities.

  15. Model Validation in Ontology Based Transformations

    Directory of Open Access Journals (Sweden)

    Jesús M. Almendros-Jiménez

    2012-10-01

    Full Text Available Model Driven Engineering (MDE is an emerging approach of software engineering. MDE emphasizes the construction of models from which the implementation should be derived by applying model transformations. The Ontology Definition Meta-model (ODM has been proposed as a profile for UML models of the Web Ontology Language (OWL. In this context, transformations of UML models can be mapped into ODM/OWL transformations. On the other hand, model validation is a crucial task in model transformation. Meta-modeling permits to give a syntactic structure to source and target models. However, semantic requirements have to be imposed on source and target models. A given transformation will be sound when source and target models fulfill the syntactic and semantic requirements. In this paper, we present an approach for model validation in ODM based transformations. Adopting a logic programming based transformational approach we will show how it is possible to transform and validate models. Properties to be validated range from structural and semantic requirements of models (pre and post conditions to properties of the transformation (invariants. The approach has been applied to a well-known example of model transformation: the Entity-Relationship (ER to Relational Model (RM transformation.

  16. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  17. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    Science.gov (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  18. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    Science.gov (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  19. Eddy turbulence parameters inferred from radar observations at Jicamarca

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2007-03-01

    Full Text Available Significant electron density striations, neutral temperatures 27 K above nominal, and intense wind shear were observed in the E-region ionosphere over the Jicamarca Radio Observatory during an unusual event on 26 July 2005 (Hysell et al., 2007. In this paper, these results are used to estimate eddy turbulence parameters and their effects. Models for the thermal balance in the mesosphere/lower thermosphere and the charged particle density in the E region are developed here. The thermal balance model includes eddy conduction and viscous dissipation of turbulent energy as well as cooling by infrared radiation. The production and recombination of ions and electrons in the E region, together with the production and transport of nitric oxide, are included in the plasma density model. Good agreement between the model results and the experimental data is obtained for an eddy diffusion coefficient of about 1×103 m2/s at its peak, which occurs at an altitude of 107 km. This eddy turbulence results in a local maximum of the temperature in the upper mesosphere/lower thermosphere and could correspond either to an unusually high mesopause or to a double mesosphere. Although complicated by plasma dynamic effects and ongoing controversy, our interpretation of Farley-Buneman wave phase velocity (Hysell et al., 2007 is consistent with a low Brunt-Väisälä frequency in the region of interest. Nitric oxide transport due to eddy diffusion from the lower thermosphere to the mesosphere causes electron density changes in the E region whereas NO density modulation due to irregularities in the eddy diffusion coefficient creates variability in the electron density.

  20. Eddy turbulence parameters inferred from radar observations at Jicamarca

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2007-03-01

    Full Text Available Significant electron density striations, neutral temperatures 27 K above nominal, and intense wind shear were observed in the E-region ionosphere over the Jicamarca Radio Observatory during an unusual event on 26 July 2005 (Hysell et al., 2007. In this paper, these results are used to estimate eddy turbulence parameters and their effects. Models for the thermal balance in the mesosphere/lower thermosphere and the charged particle density in the E region are developed here. The thermal balance model includes eddy conduction and viscous dissipation of turbulent energy as well as cooling by infrared radiation. The production and recombination of ions and electrons in the E region, together with the production and transport of nitric oxide, are included in the plasma density model. Good agreement between the model results and the experimental data is obtained for an eddy diffusion coefficient of about 1×103 m2/s at its peak, which occurs at an altitude of 107 km. This eddy turbulence results in a local maximum of the temperature in the upper mesosphere/lower thermosphere and could correspond either to an unusually high mesopause or to a double mesosphere. Although complicated by plasma dynamic effects and ongoing controversy, our interpretation of Farley-Buneman wave phase velocity (Hysell et al., 2007 is consistent with a low Brunt-Väisälä frequency in the region of interest. Nitric oxide transport due to eddy diffusion from the lower thermosphere to the mesosphere causes electron density changes in the E region whereas NO density modulation due to irregularities in the eddy diffusion coefficient creates variability in the electron density.

  1. Data-based Non-Markovian Model Inference

    Science.gov (United States)

    Ghil, Michael

    2015-04-01

    This talk concentrates on obtaining stable and efficient data-based models for simulation and prediction in the geosciences and life sciences. The proposed model derivation relies on using a multivariate time series of partial observations from a large-dimensional system, and the resulting low-order models are compared with the optimal closures predicted by the non-Markovian Mori-Zwanzig formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a very broad generalization and a time-continuous limit of existing multilevel, regression-based approaches to data-based closure, in particular of empirical model reduction (EMR). We show that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the Mori-Zwanzig formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are given for the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a very broad class of MSM applications. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. The resulting reduced model with energy-conserving nonlinearities captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lokta-Volterra model of population dynamics in its chaotic regime. The positivity constraint on the solutions' components replaces here the quadratic-energy-preserving constraint of fluid-flow problems and it successfully prevents blow-up. This work is based on a close

  2. An Emotional Agent Model Based on Granular Computing

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2012-01-01

    Full Text Available Affective computing has a very important significance for fulfilling intelligent information processing and harmonious communication between human being and computers. A new model for emotional agent is proposed in this paper to make agent have the ability of handling emotions, based on the granular computing theory and the traditional BDI agent model. Firstly, a new emotion knowledge base based on granular computing for emotion expression is presented in the model. Secondly, a new emotional reasoning algorithm based on granular computing is proposed. Thirdly, a new emotional agent model based on granular computing is presented. Finally, based on the model, an emotional agent for patient assistant in hospital is realized, experiment results show that it is efficient to handle simple emotions.

  3. CEAI: CCM based Email Authorship Identification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah

    2013-01-01

    In this paper we present a model for email authorship identification (EAI) by employing a Cluster-based Classification (CCM) technique. Traditionally, stylometric features have been successfully employed in various authorship analysis tasks; we extend the traditional feature-set to include some...... more interesting and effective features for email authorship identification (e.g. the last punctuation mark used in an email, the tendency of an author to use capitalization at the start of an email, or the punctuation after a greeting or farewell). We also included Info Gain feature selection based...... reveal that the proposed CCM-based email authorship identification model, along with the proposed feature set, outperforms the state-of-the-art support vector machine (SVM)-based models, as well as the models proposed by Iqbal et al. [1, 2]. The proposed model attains an accuracy rate of 94% for 10...

  4. Individual-based modeling of fish: Linking to physical models and water quality.

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.A.

    1997-08-01

    The individual-based modeling approach for the simulating fish population and community dynamics is gaining popularity. Individual-based modeling has been used in many other fields, such as forest succession and astronomy. The popularity of the individual-based approach is partly a result of the lack of success of the more aggregate modeling approaches traditionally used for simulating fish population and community dynamics. Also, recent recognition that it is often the atypical individual that survives has fostered interest in the individual-based approach. Two general types of individual-based models are distribution and configuration. Distribution models follow the probability distributions of individual characteristics, such as length and age. Configuration models explicitly simulate each individual; the sum over individuals being the population. DeAngelis et al (1992) showed that, when distribution and configuration models were formulated from the same common pool of information, both approaches generated similar predictions. The distribution approach was more compact and general, while the configuration approach was more flexible. Simple biological changes, such as making growth rate dependent on previous days growth rates, were easy to implement in the configuration version but prevented simple analytical solution of the distribution version.

  5. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding...

  6. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek; Mü nch, Andreas; Sü li, Endre; Wagner, Barbara

    2016-01-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  7. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek

    2016-04-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  8. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Application of model-based and knowledge-based measuring methods as analytical redundancy

    International Nuclear Information System (INIS)

    Hampel, R.; Kaestner, W.; Chaker, N.; Vandreier, B.

    1997-01-01

    The safe operation of nuclear power plants requires the application of modern and intelligent methods of signal processing for the normal operation as well as for the management of accident conditions. Such modern and intelligent methods are model-based and knowledge-based ones being founded on analytical knowledge (mathematical models) as well as experiences (fuzzy information). In addition to the existing hardware redundancies analytical redundancies will be established with the help of these modern methods. These analytical redundancies support the operating staff during the decision-making. The design of a hybrid model-based and knowledge-based measuring method will be demonstrated by the example of a fuzzy-supported observer. Within the fuzzy-supported observer a classical linear observer is connected with a fuzzy-supported adaptation of the model matrices of the observer model. This application is realized for the estimation of the non-measurable variables as steam content and mixture level within pressure vessels with water-steam mixture during accidental depressurizations. For this example the existing non-linearities will be classified and the verification of the model will be explained. The advantages of the hybrid method in comparison to the classical model-based measuring methods will be demonstrated by the results of estimation. The consideration of the parameters which have an important influence on the non-linearities requires the inclusion of high-dimensional structures of fuzzy logic within the model-based measuring methods. Therefore methods will be presented which allow the conversion of these high-dimensional structures to two-dimensional structures of fuzzy logic. As an efficient solution of this problem a method based on cascaded fuzzy controllers will be presented. (author). 2 refs, 12 figs, 5 tabs

  10. The MIGHTI Wind Retrieval Algorithm: Description and Verification

    Science.gov (United States)

    Harding, Brian J.; Makela, Jonathan J.; Englert, Christoph R.; Marr, Kenneth D.; Harlander, John M.; England, Scott L.; Immel, Thomas J.

    2017-10-01

    We present an algorithm to retrieve thermospheric wind profiles from measurements by the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on NASA's Ionospheric Connection Explorer (ICON) mission. MIGHTI measures interferometric limb images of the green and red atomic oxygen emissions at 557.7 nm and 630.0 nm, spanning 90-300 km. The Doppler shift of these emissions represents a remote measurement of the wind at the tangent point of the line of sight. Here we describe the algorithm which uses these images to retrieve altitude profiles of the line-of-sight wind. By combining the measurements from two MIGHTI sensors with perpendicular lines of sight, both components of the vector horizontal wind are retrieved. A comprehensive truth model simulation that is based on TIME-GCM winds and various airglow models is used to determine the accuracy and precision of the MIGHTI data product. Accuracy is limited primarily by spherical asymmetry of the atmosphere over the spatial scale of the limb observation, a fundamental limitation of space-based wind measurements. For 80% of the retrieved wind samples, the accuracy is found to be better than 5.8 m/s (green) and 3.5 m/s (red). As expected, significant errors are found near the day/night boundary and occasionally near the equatorial ionization anomaly, due to significant variations of wind and emission rate along the line of sight. The precision calculation includes pointing uncertainty and shot, read, and dark noise. For average solar minimum conditions, the expected precision meets requirements, ranging from 1.2 to 4.7 m/s.

  11. A hybrid agent-based approach for modeling microbiological systems.

    Science.gov (United States)

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  12. Cognitive components underpinning the development of model-based learning.

    Science.gov (United States)

    Potter, Tracey C S; Bryce, Nessa V; Hartley, Catherine A

    2017-06-01

    Reinforcement learning theory distinguishes "model-free" learning, which fosters reflexive repetition of previously rewarded actions, from "model-based" learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9-25, we examined whether the abilities to infer sequential regularities in the environment ("statistical learning"), maintain information in an active state ("working memory") and integrate distant concepts to solve problems ("fluid reasoning") predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. An Agent-Based Monetary Production Simulation Model

    DEFF Research Database (Denmark)

    Bruun, Charlotte

    2006-01-01

    An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable......An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable...

  14. Information modelling and knowledge bases XXV

    CERN Document Server

    Tokuda, T; Jaakkola, H; Yoshida, N

    2014-01-01

    Because of our ever increasing use of and reliance on technology and information systems, information modelling and knowledge bases continue to be important topics in those academic communities concerned with data handling and computer science. As the information itself becomes more complex, so do the levels of abstraction and the databases themselves. This book is part of the series Information Modelling and Knowledge Bases, which concentrates on a variety of themes in the important domains of conceptual modeling, design and specification of information systems, multimedia information modelin

  15. Evaluating Emulation-based Models of Distributed Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Stephen T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Cyber Initiatives; Gabert, Kasimir G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Cyber Initiatives; Tarman, Thomas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Emulytics Initiatives

    2017-08-01

    Emulation-based models of distributed computing systems are collections of virtual ma- chines, virtual networks, and other emulation components configured to stand in for oper- ational systems when performing experimental science, training, analysis of design alterna- tives, test and evaluation, or idea generation. As with any tool, we should carefully evaluate whether our uses of emulation-based models are appropriate and justified. Otherwise, we run the risk of using a model incorrectly and creating meaningless results. The variety of uses of emulation-based models each have their own goals and deserve thoughtful evaluation. In this paper, we enumerate some of these uses and describe approaches that one can take to build an evidence-based case that a use of an emulation-based model is credible. Predictive uses of emulation-based models, where we expect a model to tell us something true about the real world, set the bar especially high and the principal evaluation method, called validation , is comensurately rigorous. We spend the majority of our time describing and demonstrating the validation of a simple predictive model using a well-established methodology inherited from decades of development in the compuational science and engineering community.

  16. Model-Based Reasoning in Humans Becomes Automatic with Training.

    Directory of Open Access Journals (Sweden)

    Marcos Economides

    2015-09-01

    Full Text Available Model-based and model-free reinforcement learning (RL have been suggested as algorithmic realizations of goal-directed and habitual action strategies. Model-based RL is more flexible than model-free but requires sophisticated calculations using a learnt model of the world. This has led model-based RL to be identified with slow, deliberative processing, and model-free RL with fast, automatic processing. In support of this distinction, it has recently been shown that model-based reasoning is impaired by placing subjects under cognitive load--a hallmark of non-automaticity. Here, using the same task, we show that cognitive load does not impair model-based reasoning if subjects receive prior training on the task. This finding is replicated across two studies and a variety of analysis methods. Thus, task familiarity permits use of model-based reasoning in parallel with other cognitive demands. The ability to deploy model-based reasoning in an automatic, parallelizable fashion has widespread theoretical implications, particularly for the learning and execution of complex behaviors. It also suggests a range of important failure modes in psychiatric disorders.

  17. Modeling and simulation of complex systems a framework for efficient agent-based modeling and simulation

    CERN Document Server

    Siegfried, Robert

    2014-01-01

    Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard

  18. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  19. Flow Formulation-based Model for the Curriculum-based Course Timetabling Problem

    DEFF Research Database (Denmark)

    Bagger, Niels-Christian Fink; Kristiansen, Simon; Sørensen, Matias

    2015-01-01

    problem. This decreases the number of integer variables signicantly and improves the performance compared to the basic formulation. It also shows competitiveness with other approaches based on mixed integer programming from the literature and improves the currently best known lower bound on one data...... instance in the benchmark data set from the second international timetabling competition.......In this work we will present a new mixed integer programming formulation for the curriculum-based course timetabling problem. We show that the model contains an underlying network model by dividing the problem into two models and then connecting the two models back into one model using a maximum ow...

  20. Titan 2D: Understanding Titan’s Seasonal Atmospheric Cycles

    Science.gov (United States)

    Wong, Michael; Zhang, X.; Li, C.; Hu, R.; Shia, R.; Newman, C.; Müller-Wodarg, I.; Yung, Y.

    2013-10-01

    In this study, we present results from a novel two-dimensional (2D) model that simulates the physics and chemistry of Titan’s atmosphere. Despite being an icy moon of Saturn, Titan is the only Solar System object aside from Earth that is sheathed by a thick nitrogen-dominated atmosphere. This vulnerable gaseous envelope—an embodiment of a delicate coupling between photochemistry, radiation, and dynamics—is Nature’s laboratory for the synthesis of complex organic molecules. Titan’s large obliquity generates pronounced seasonal cycles in its atmosphere, and the Cassini spacecraft has been observing these variations since 2004. In particular, Cassini measurements show that the latitudinal distribution of Titan’s rich mélange of hydrocarbon species follows seasonal patterns. The mixing ratios of hydrocarbons increase with latitude towards the winter pole, suggesting a pole-to-pole circulation that reverses after equinox. Using a one-dimensional photochemical model of Titan’s atmosphere, we show that photochemistry alone cannot produce the observed meridional hydrocarbon distribution. This necessitates the employment of a 2D chemistry-transport model that includes meridional circulation as well as diffusive processes and photochemistry. Of additional concern, no previous 2D model of Titan extends beyond 500 km altitude—a critical limitation since the peak of methane photolysis is at 800 km. Our 2D model is the first to include Titan’s stratosphere, mesosphere, and thermosphere. The meridional circulation in our 2D model is derived from the outputs of two general circulation models (GCMs): the TitanWRF GCM (Newman et al. 2011) covering the troposphere, stratosphere, and lower mesosphere, and a thermosphere general circulation model (TGCM) covering the remainder of the atmosphere through the thermosphere (Müller-Wodarg et al. 2003; 2008). This presentation will focus on the utilization of these advances applied to the 2D Caltech/JPL KINETICS model to

  1. Model-based reasoning technology for the power industry

    International Nuclear Information System (INIS)

    Touchton, R.A.; Subramanyan, N.S.; Naser, J.A.

    1991-01-01

    This paper reports on model-based reasoning which refers to an expert system implementation methodology that uses a model of the system which is being reasoned about. Model-based representation and reasoning techniques offer many advantages and are highly suitable for domains where the individual components, their interconnection, and their behavior is well-known. Technology Applications, Inc. (TAI), under contract to the Electric Power Research Institute (EPRI), investigated the use of model-based reasoning in the power industry including the nuclear power industry. During this project, a model-based monitoring and diagnostic tool, called ProSys, was developed. Also, an alarm prioritization system was developed as a demonstration prototype

  2. Structure-Based Turbulence Model

    National Research Council Canada - National Science Library

    Reynolds, W

    2000-01-01

    .... Maire carried out this work as part of his Phi) research. During the award period we began to explore ways to simplify the structure-based modeling so that it could be used in repetitive engineering calculations...

  3. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...

  4. Advanced solar irradiances applied to satellite and ionospheric operational systems

    Science.gov (United States)

    Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave

    Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.

  5. Model-based Prognostics with Concurrent Damage Progression Processes

    Data.gov (United States)

    National Aeronautics and Space Administration — Model-based prognostics approaches rely on physics-based models that describe the behavior of systems and their components. These models must account for the several...

  6. Probabilistic Model-based Background Subtraction

    DEFF Research Database (Denmark)

    Krüger, Volker; Anderson, Jakob; Prehn, Thomas

    2005-01-01

    is the correlation between pixels. In this paper we introduce a model-based background subtraction approach which facilitates prior knowledge of pixel correlations for clearer and better results. Model knowledge is being learned from good training video data, the data is stored for fast access in a hierarchical...

  7. Model-based optimization biofilm based systems performing autotrophic nitrogen removal using the comprehensive NDHA model

    DEFF Research Database (Denmark)

    Valverde Pérez, Borja; Ma, Yunjie; Morset, Martin

    Completely autotrophic nitrogen removal (CANR) can be obtained in single stage biofilm-based bioreactors. However, their environmental footprint is compromised due to elevated N2O emissions. We developed novel spatially explicit biochemical process model of biofilm based CANR systems that predicts...

  8. Probabilistic reasoning for assembly-based 3D modeling

    KAUST Repository

    Chaudhuri, Siddhartha

    2011-01-01

    Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling is the identification of relevant components to be presented to the user. In this paper, we introduce a probabilistic reasoning approach to this problem. Given a repository of shapes, our approach learns a probabilistic graphical model that encodes semantic and geometric relationships among shape components. The probabilistic model is used to present components that are semantically and stylistically compatible with the 3D model that is being assembled. Our experiments indicate that the probabilistic model increases the relevance of presented components. © 2011 ACM.

  9. Multi-Domain Modeling Based on Modelica

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2016-01-01

    Full Text Available With the application of simulation technology in large-scale and multi-field problems, multi-domain unified modeling become an effective way to solve these problems. This paper introduces several basic methods and advantages of the multidisciplinary model, and focuses on the simulation based on Modelica language. The Modelica/Mworks is a newly developed simulation software with features of an object-oriented and non-casual language for modeling of the large, multi-domain system, which makes the model easier to grasp, develop and maintain.It This article shows the single degree of freedom mechanical vibration system based on Modelica language special connection mechanism in Mworks. This method that multi-domain modeling has simple and feasible, high reusability. it closer to the physical system, and many other advantages.

  10. Testing R&D-Based Endogenous Growth Models

    DEFF Research Database (Denmark)

    Kruse-Andersen, Peter Kjær

    2017-01-01

    R&D-based growth models are tested using US data for the period 1953-2014. A general growth model is developed which nests the model varieties of interest. The model implies a cointegrating relationship between multifactor productivity, research intensity, and employment. This relationship...... is estimated using cointegrated VAR models. The results provide evidence against the widely used fully endogenous variety and in favor of the semi-endogenous variety. Forecasts based on the empirical estimates suggest that the slowdown in US productivity growth will continue. Particularly, the annual long...

  11. PV panel model based on datasheet values

    DEFF Research Database (Denmark)

    Sera, Dezso; Teodorescu, Remus; Rodriguez, Pedro

    2007-01-01

    This work presents the construction of a model for a PV panel using the single-diode five-parameters model, based exclusively on data-sheet parameters. The model takes into account the series and parallel (shunt) resistance of the panel. The equivalent circuit and the basic equations of the PV cell....... Based on these equations, a PV panel model, which is able to predict the panel behavior in different temperature and irradiance conditions, is built and tested....

  12. Springer handbook of model-based science

    CERN Document Server

    Bertolotti, Tommaso

    2017-01-01

    The handbook offers the first comprehensive reference guide to the interdisciplinary field of model-based reasoning. It highlights the role of models as mediators between theory and experimentation, and as educational devices, as well as their relevance in testing hypotheses and explanatory functions. The Springer Handbook merges philosophical, cognitive and epistemological perspectives on models with the more practical needs related to the application of this tool across various disciplines and practices. The result is a unique, reliable source of information that guides readers toward an understanding of different aspects of model-based science, such as the theoretical and cognitive nature of models, as well as their practical and logical aspects. The inferential role of models in hypothetical reasoning, abduction and creativity once they are constructed, adopted, and manipulated for different scientific and technological purposes is also discussed. Written by a group of internationally renowned experts in ...

  13. Image based 3D city modeling : Comparative study

    Directory of Open Access Journals (Sweden)

    S. P. Singh

    2014-06-01

    Full Text Available 3D city model is a digital representation of the Earth’s surface and it’s related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India. This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can’t do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good

  14. Equatorial F-region plasma depletion drifts: latitudinal and seasonal variations

    Directory of Open Access Journals (Sweden)

    A. A. Pimenta

    Full Text Available The equatorial ionospheric irregularities have been observed in the past few years by different techniques (e.g. ground-based radar, digisonde, GPS, optical instruments, in situ satellite and rocket instrumentation, and its time evolution and propagation characteristics can be used to study important aspects of ionospheric dynamics and thermosphere-ionosphere coupling. At present, one of the most powerful optical techniques to study the large-scale ionospheric irregularities is the all-sky imaging photometer system, which normally measures the strong F-region nightglow 630 nm emission from atomic oxygen. The monochromatic OI 630 nm emission images usually show quasi-north-south magnetic field-aligned intensity depletion bands, which are the bottomside optical signatures of large-scale F-region plasma irregularities (also called plasma bubbles. The zonal drift velocities of the plasma bubbles can be inferred from the space-time displacement of the dark structures (low intensity regions seen on the images. In this study, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude, Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7° S to 28.7° S region. The east and west walls of the plasma bubble show a different evolution with time. The method used here is based on the western wall of the bubble, which presents a more stable behavior. Also, the observed zonal plasma bubble drift velocities are compared with the thermospheric zonal neutral wind velocities obtained from the HWM-90 model (Hedin et al., 1991 to investigate the thermosphere-ionosphere coupling. Salient features from this study are presented

  15. Model-Based Integration and Interpretation of Data

    DEFF Research Database (Denmark)

    Petersen, Johannes

    2004-01-01

    Data integration and interpretation plays a crucial role in supervisory control. The paper defines a set of generic inference steps for the data integration and interpretation process based on a three-layer model of system representations. The three-layer model is used to clarify the combination...... of constraint and object-centered representations of the work domain throwing new light on the basic principles underlying the data integration and interpretation process of Rasmussen's abstraction hierarchy as well as other model-based approaches combining constraint and object-centered representations. Based...

  16. CEAI: CCM-based email authorship identification model

    Directory of Open Access Journals (Sweden)

    Sarwat Nizamani

    2013-11-01

    Full Text Available In this paper we present a model for email authorship identification (EAI by employing a Cluster-based Classification (CCM technique. Traditionally, stylometric features have been successfully employed in various authorship analysis tasks; we extend the traditional feature set to include some more interesting and effective features for email authorship identification (e.g., the last punctuation mark used in an email, the tendency of an author to use capitalization at the start of an email, or the punctuation after a greeting or farewell. We also included Info Gain feature selection based content features. It is observed that the use of such features in the authorship identification process has a positive impact on the accuracy of the authorship identification task. We performed experiments to justify our arguments and compared the results with other base line models. Experimental results reveal that the proposed CCM-based email authorship identification model, along with the proposed feature set, outperforms the state-of-the-art support vector machine (SVM-based models, as well as the models proposed by Iqbal et al. (2010, 2013 [1,2]. The proposed model attains an accuracy rate of 94% for 10 authors, 89% for 25 authors, and 81% for 50 authors, respectively on Enron dataset, while 89.5% accuracy has been achieved on authors’ constructed real email dataset. The results on Enron dataset have been achieved on quite a large number of authors as compared to the models proposed by Iqbal et al. [1,2].

  17. Guidelines for visualizing and annotating rule-based models.

    Science.gov (United States)

    Chylek, Lily A; Hu, Bin; Blinov, Michael L; Emonet, Thierry; Faeder, James R; Goldstein, Byron; Gutenkunst, Ryan N; Haugh, Jason M; Lipniacki, Tomasz; Posner, Richard G; Yang, Jin; Hlavacek, William S

    2011-10-01

    Rule-based modeling provides a means to represent cell signaling systems in a way that captures site-specific details of molecular interactions. For rule-based models to be more widely understood and (re)used, conventions for model visualization and annotation are needed. We have developed the concepts of an extended contact map and a model guide for illustrating and annotating rule-based models. An extended contact map represents the scope of a model by providing an illustration of each molecule, molecular component, direct physical interaction, post-translational modification, and enzyme-substrate relationship considered in a model. A map can also illustrate allosteric effects, structural relationships among molecular components, and compartmental locations of molecules. A model guide associates elements of a contact map with annotation and elements of an underlying model, which may be fully or partially specified. A guide can also serve to document the biological knowledge upon which a model is based. We provide examples of a map and guide for a published rule-based model that characterizes early events in IgE receptor (FcεRI) signaling. We also provide examples of how to visualize a variety of processes that are common in cell signaling systems but not considered in the example model, such as ubiquitination. An extended contact map and an associated guide can document knowledge of a cell signaling system in a form that is visual as well as executable. As a tool for model annotation, a map and guide can communicate the content of a model clearly and with precision, even for large models.

  18. Automated extraction of knowledge for model-based diagnostics

    Science.gov (United States)

    Gonzalez, Avelino J.; Myler, Harley R.; Towhidnejad, Massood; Mckenzie, Frederic D.; Kladke, Robin R.

    1990-01-01

    The concept of accessing computer aided design (CAD) design databases and extracting a process model automatically is investigated as a possible source for the generation of knowledge bases for model-based reasoning systems. The resulting system, referred to as automated knowledge generation (AKG), uses an object-oriented programming structure and constraint techniques as well as internal database of component descriptions to generate a frame-based structure that describes the model. The procedure has been designed to be general enough to be easily coupled to CAD systems that feature a database capable of providing label and connectivity data from the drawn system. The AKG system is capable of defining knowledge bases in formats required by various model-based reasoning tools.

  19. From the Sun to the Earth: impact of the 27-28 May 2003 solar events on the magnetosphere, ionosphere and thermosphere

    Directory of Open Access Journals (Sweden)

    C. Hanuise

    2006-03-01

    Full Text Available During the last week of May 2003, the solar active region AR 10365 produced a large number of flares, several of which were accompanied by Coronal Mass Ejections (CME. Specifically on 27 and 28 May three halo CMEs were observed which had a significant impact on geospace. On 29 May, upon their arrival at the L1 point, in front of the Earth's magnetosphere, two interplanetary shocks and two additional solar wind pressure pulses were recorded by the ACE spacecraft. The interplanetary magnetic field data showed the clear signature of a magnetic cloud passing ACE. In the wake of the successive increases in solar wind pressure, the magnetosphere became strongly compressed and the sub-solar magnetopause moved inside five Earth radii. At low altitudes the increased energy input to the magnetosphere was responsible for a substantial enhancement of Region-1 field-aligned currents. The ionospheric Hall currents also intensified and the entire high-latitude current system moved equatorward by about 10°. Several substorms occurred during this period, some of them - but not all - apparently triggered by the solar wind pressure pulses. The storm's most notable consequences on geospace, including space weather effects, were (1 the expansion of the auroral oval, and aurorae seen at mid latitudes, (2 the significant modification of the total electron content in the sunlight high-latitude ionosphere, (3 the perturbation of radio-wave propagation manifested by HF blackouts and increased GPS signal scintillation, and (4 the heating of the thermosphere, causing increased satellite drag. We discuss the reasons why the May 2003 storm is less intense than the October-November 2003 storms, although several indicators reach similar intensities.

  20. Model-based accelerator controls: What, why and how

    International Nuclear Information System (INIS)

    Sidhu, S.S.

    1987-01-01

    Model-based control is defined as a gamut of techniques whose aim is to improve the reliability of an accelerator and enhance the capabilities of the operator, and therefore of the whole control system. The aim of model-based control is seen as gradually moving the function of model-reference from the operator to the computer. The role of the operator in accelerator control and the need for and application of model-based control are briefly summarized

  1. Néron Models and Base Change

    DEFF Research Database (Denmark)

    Halle, Lars Halvard; Nicaise, Johannes

    Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented...... on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions...

  2. Self-consistent Non-LTE Model of Infrared Molecular Emissions and Oxygen Dayglows in the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, Artem G.; Yankovsky, Valentine A.; Pesnell, William D.; Kutepov, Alexander A.; Goldberg, Richard A.; Mauilova, Rada O.

    2007-01-01

    We present the new version of the ALI-ARMS (for Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) model. The model allows simultaneous self-consistent calculating the non-LTE populations of the electronic-vibrational levels of the O3 and O2 photolysis products and vibrational level populations of CO2, N2,O2, O3, H2O, CO and other molecules with detailed accounting for the variety of the electronic-vibrational, vibrational-vibrational and vibrational-translational energy exchange processes. The model was used as the reference one for modeling the O2 dayglows and infrared molecular emissions for self-consistent diagnostics of the multi-channel space observations of MLT in the SABER experiment It also allows reevaluating the thermalization efficiency of the absorbed solar ultraviolet energy and infrared radiative cooling/heating of MLT by detailed accounting of the electronic-vibrational relaxation of excited photolysis products via the complex chain of collisional energy conversion processes down to the vibrational energy of optically active trace gas molecules.

  3. Learning of Chemical Equilibrium through Modelling-Based Teaching

    Science.gov (United States)

    Maia, Poliana Flavia; Justi, Rosaria

    2009-01-01

    This paper presents and discusses students' learning process of chemical equilibrium from a modelling-based approach developed from the use of the "Model of Modelling" diagram. The investigation was conducted in a regular classroom (students 14-15 years old) and aimed at discussing how modelling-based teaching can contribute to students…

  4. Model predictive control based on reduced order models applied to belt conveyor system.

    Science.gov (United States)

    Chen, Wei; Li, Xin

    2016-11-01

    In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Multivariate statistical modelling based on generalized linear models

    CERN Document Server

    Fahrmeir, Ludwig

    1994-01-01

    This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...

  6. The Design of Model-Based Training Programs

    Science.gov (United States)

    Polson, Peter; Sherry, Lance; Feary, Michael; Palmer, Everett; Alkin, Marty; McCrobie, Dan; Kelley, Jerry; Rosekind, Mark (Technical Monitor)

    1997-01-01

    This paper proposes a model-based training program for the skills necessary to operate advance avionics systems that incorporate advanced autopilots and fight management systems. The training model is based on a formalism, the operational procedure model, that represents the mission model, the rules, and the functions of a modem avionics system. This formalism has been defined such that it can be understood and shared by pilots, the avionics software, and design engineers. Each element of the software is defined in terms of its intent (What?), the rationale (Why?), and the resulting behavior (How?). The Advanced Computer Tutoring project at Carnegie Mellon University has developed a type of model-based, computer aided instructional technology called cognitive tutors. They summarize numerous studies showing that training times to a specified level of competence can be achieved in one third the time of conventional class room instruction. We are developing a similar model-based training program for the skills necessary to operation the avionics. The model underlying the instructional program and that simulates the effects of pilots entries and the behavior of the avionics is based on the operational procedure model. Pilots are given a series of vertical flightpath management problems. Entries that result in violations, such as failure to make a crossing restriction or violating the speed limits, result in error messages with instruction. At any time, the flightcrew can request suggestions on the appropriate set of actions. A similar and successful training program for basic skills for the FMS on the Boeing 737-300 was developed and evaluated. The results strongly support the claim that the training methodology can be adapted to the cockpit.

  7. Quality prediction modeling for sintered ores based on mechanism models of sintering and extreme learning machine based error compensation

    Science.gov (United States)

    Tiebin, Wu; Yunlian, Liu; Xinjun, Li; Yi, Yu; Bin, Zhang

    2018-06-01

    Aiming at the difficulty in quality prediction of sintered ores, a hybrid prediction model is established based on mechanism models of sintering and time-weighted error compensation on the basis of the extreme learning machine (ELM). At first, mechanism models of drum index, total iron, and alkalinity are constructed according to the chemical reaction mechanism and conservation of matter in the sintering process. As the process is simplified in the mechanism models, these models are not able to describe high nonlinearity. Therefore, errors are inevitable. For this reason, the time-weighted ELM based error compensation model is established. Simulation results verify that the hybrid model has a high accuracy and can meet the requirement for industrial applications.

  8. Facilitating Change to a Problem-based Model

    DEFF Research Database (Denmark)

    Kolmos, Anette

    2002-01-01

    The paper presents the barriers which arise during the change process from a traditional educational system to a problem-based educational model.......The paper presents the barriers which arise during the change process from a traditional educational system to a problem-based educational model....

  9. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....

  10. Differential equation of exospheric lateral transport and its application to terrestrial hydrogen

    Science.gov (United States)

    Hodges, R. R., Jr.

    1973-01-01

    The differential equation description of exospheric lateral transport of Hodges and Johnson is reformulated to extend its utility to light gases. Accuracy of the revised equation is established by applying it to terrestrial hydrogen. The resulting global distributions for several static exobase models are shown to be essentially the same as those that have been computed by Quessette using an integral equation approach. The present theory is subsequently used to elucidate the effects of nonzero lateral flow, exobase rotation, and diurnal tidal winds on the hydrogen distribution. Finally it is shown that the differential equation of exospheric transport is analogous to a diffusion equation. Hence it is practical to consider exospheric transport as a continuation of thermospheric diffusion, a concept that alleviates the need for an artificial exobase dividing thermosphere and exosphere.

  11. Pixel-based meshfree modelling of skeletal muscles.

    Science.gov (United States)

    Chen, Jiun-Shyan; Basava, Ramya Rao; Zhang, Yantao; Csapo, Robert; Malis, Vadim; Sinha, Usha; Hodgson, John; Sinha, Shantanu

    2016-01-01

    This paper introduces the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-based modeling of skeletal muscles. This approach allows for construction of simulation model based on pixel data obtained from medical images. The material properties and muscle fiber direction obtained from Diffusion Tensor Imaging (DTI) are input at each pixel point. The reproducing kernel (RK) approximation allows a representation of material heterogeneity with smooth transition. A multiphase multichannel level set based segmentation framework is adopted for individual muscle segmentation using Magnetic Resonance Images (MRI) and DTI. The application of the proposed methods for modeling the human lower leg is demonstrated.

  12. Correlation between the model accuracy and model-based SOC estimation

    International Nuclear Information System (INIS)

    Wang, Qianqian; Wang, Jiao; Zhao, Pengju; Kang, Jianqiang; Yan, Few; Du, Changqing

    2017-01-01

    State-of-charge (SOC) estimation is a core technology for battery management systems. Considerable progress has been achieved in the study of SOC estimation algorithms, especially the algorithm on the basis of Kalman filter to meet the increasing demand of model-based battery management systems. The Kalman filter weakens the influence of white noise and initial error during SOC estimation but cannot eliminate the existing error of the battery model itself. As such, the accuracy of SOC estimation is directly related to the accuracy of the battery model. Thus far, the quantitative relationship between model accuracy and model-based SOC estimation remains unknown. This study summarizes three equivalent circuit lithium-ion battery models, namely, Thevenin, PNGV, and DP models. The model parameters are identified through hybrid pulse power characterization test. The three models are evaluated, and SOC estimation conducted by EKF-Ah method under three operating conditions are quantitatively studied. The regression and correlation of the standard deviation and normalized RMSE are studied and compared between the model error and the SOC estimation error. These parameters exhibit a strong linear relationship. Results indicate that the model accuracy affects the SOC estimation accuracy mainly in two ways: dispersion of the frequency distribution of the error and the overall level of the error. On the basis of the relationship between model error and SOC estimation error, our study provides a strategy for selecting a suitable cell model to meet the requirements of SOC precision using Kalman filter.

  13. 3-D model-based vehicle tracking.

    Science.gov (United States)

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  14. Sandboxes for Model-Based Inquiry

    Science.gov (United States)

    Brady, Corey; Holbert, Nathan; Soylu, Firat; Novak, Michael; Wilensky, Uri

    2015-04-01

    In this article, we introduce a class of constructionist learning environments that we call Emergent Systems Sandboxes ( ESSs), which have served as a centerpiece of our recent work in developing curriculum to support scalable model-based learning in classroom settings. ESSs are a carefully specified form of virtual construction environment that support students in creating, exploring, and sharing computational models of dynamic systems that exhibit emergent phenomena. They provide learners with "entity"-level construction primitives that reflect an underlying scientific model. These primitives can be directly "painted" into a sandbox space, where they can then be combined, arranged, and manipulated to construct complex systems and explore the emergent properties of those systems. We argue that ESSs offer a means of addressing some of the key barriers to adopting rich, constructionist model-based inquiry approaches in science classrooms at scale. Situating the ESS in a large-scale science modeling curriculum we are implementing across the USA, we describe how the unique "entity-level" primitive design of an ESS facilitates knowledge system refinement at both an individual and social level, we describe how it supports flexible modeling practices by providing both continuous and discrete modes of executability, and we illustrate how it offers students a variety of opportunities for validating their qualitative understandings of emergent systems as they develop.

  15. Dynamic modeling method for infrared smoke based on enhanced discrete phase model

    Science.gov (United States)

    Zhang, Zhendong; Yang, Chunling; Zhang, Yan; Zhu, Hongbo

    2018-03-01

    The dynamic modeling of infrared (IR) smoke plays an important role in IR scene simulation systems and its accuracy directly influences the system veracity. However, current IR smoke models cannot provide high veracity, because certain physical characteristics are frequently ignored in fluid simulation; simplifying the discrete phase as a continuous phase and ignoring the IR decoy missile-body spinning. To address this defect, this paper proposes a dynamic modeling method for IR smoke, based on an enhanced discrete phase model (DPM). A mathematical simulation model based on an enhanced DPM is built and a dynamic computing fluid mesh is generated. The dynamic model of IR smoke is then established using an extended equivalent-blackbody-molecule model. Experiments demonstrate that this model realizes a dynamic method for modeling IR smoke with higher veracity.

  16. Ratio-based vs. model-based methods to correct for urinary creatinine concentrations.

    Science.gov (United States)

    Jain, Ram B

    2016-08-01

    Creatinine-corrected urinary analyte concentration is usually computed as the ratio of the observed level of analyte concentration divided by the observed level of the urinary creatinine concentration (UCR). This ratio-based method is flawed since it implicitly assumes that hydration is the only factor that affects urinary creatinine concentrations. On the contrary, it has been shown in the literature, that age, gender, race/ethnicity, and other factors also affect UCR. Consequently, an optimal method to correct for UCR should correct for hydration as well as other factors like age, gender, and race/ethnicity that affect UCR. Model-based creatinine correction in which observed UCRs are used as an independent variable in regression models has been proposed. This study was conducted to evaluate the performance of ratio-based and model-based creatinine correction methods when the effects of gender, age, and race/ethnicity are evaluated one factor at a time for selected urinary analytes and metabolites. It was observed that ratio-based method leads to statistically significant pairwise differences, for example, between males and females or between non-Hispanic whites (NHW) and non-Hispanic blacks (NHB), more often than the model-based method. However, depending upon the analyte of interest, the reverse is also possible. The estimated ratios of geometric means (GM), for example, male to female or NHW to NHB, were also compared for the two methods. When estimated UCRs were higher for the group (for example, males) in the numerator of this ratio, these ratios were higher for the model-based method, for example, male to female ratio of GMs. When estimated UCR were lower for the group (for example, NHW) in the numerator of this ratio, these ratios were higher for the ratio-based method, for example, NHW to NHB ratio of GMs. Model-based method is the method of choice if all factors that affect UCR are to be accounted for.

  17. Agent Based Modeling Applications for Geosciences

    Science.gov (United States)

    Stein, J. S.

    2004-12-01

    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in

  18. Segment-based Eyring-Wilson viscosity model for polymer solutions

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat

    2005-01-01

    A theory-based model is presented for correlating viscosity of polymer solutions and is based on the segment-based Eyring mixture viscosity model as well as the segment-based Wilson model for describing deviations from ideality. The model has been applied to several polymer solutions and the results show that it is reliable both for correlation and prediction of the viscosity of polymer solutions at different molar masses and temperature of the polymer

  19. Language acquisition is model-based rather than model-free.

    Science.gov (United States)

    Wang, Felix Hao; Mintz, Toben H

    2016-01-01

    Christiansen & Chater (C&C) propose that learning language is learning to process language. However, we believe that the general-purpose prediction mechanism they propose is insufficient to account for many phenomena in language acquisition. We argue from theoretical considerations and empirical evidence that many acquisition tasks are model-based, and that different acquisition tasks require different, specialized models.

  20. Drawing-Based Procedural Modeling of Chinese Architectures.

    Science.gov (United States)

    Fei Hou; Yue Qi; Hong Qin

    2012-01-01

    This paper presents a novel modeling framework to build 3D models of Chinese architectures from elevation drawing. Our algorithm integrates the capability of automatic drawing recognition with powerful procedural modeling to extract production rules from elevation drawing. First, different from the previous symbol-based floor plan recognition, based on the novel concept of repetitive pattern trees, small horizontal repetitive regions of the elevation drawing are clustered in a bottom-up manner to form architectural components with maximum repetition, which collectively serve as building blocks for 3D model generation. Second, to discover the global architectural structure and its components' interdependencies, the components are structured into a shape tree in a top-down subdivision manner and recognized hierarchically at each level of the shape tree based on Markov Random Fields (MRFs). Third, shape grammar rules can be derived to construct 3D semantic model and its possible variations with the help of a 3D component repository. The salient contribution lies in the novel integration of procedural modeling with elevation drawing, with a unique application to Chinese architectures.

  1. Agent-based Modeling Methodology for Analyzing Weapons Systems

    Science.gov (United States)

    2015-03-26

    technique involve model structure, system representation and the degree of validity, coupled with the simplicity, of the overall model. ABM is best suited... system representation of the air combat system . We feel that a simulation model that combines ABM with equation-based representation of weapons and...AGENT-BASED MODELING METHODOLOGY FOR ANALYZING WEAPONS SYSTEMS THESIS Casey D. Connors, Major, USA

  2. Population PK modelling and simulation based on fluoxetine and norfluoxetine concentrations in milk: a milk concentration-based prediction model.

    Science.gov (United States)

    Tanoshima, Reo; Bournissen, Facundo Garcia; Tanigawara, Yusuke; Kristensen, Judith H; Taddio, Anna; Ilett, Kenneth F; Begg, Evan J; Wallach, Izhar; Ito, Shinya

    2014-10-01

    Population pharmacokinetic (pop PK) modelling can be used for PK assessment of drugs in breast milk. However, complex mechanistic modelling of a parent and an active metabolite using both blood and milk samples is challenging. We aimed to develop a simple predictive pop PK model for milk concentration-time profiles of a parent and a metabolite, using data on fluoxetine (FX) and its active metabolite, norfluoxetine (NFX), in milk. Using a previously published data set of drug concentrations in milk from 25 women treated with FX, a pop PK model predictive of milk concentration-time profiles of FX and NFX was developed. Simulation was performed with the model to generate FX and NFX concentration-time profiles in milk of 1000 mothers. This milk concentration-based pop PK model was compared with the previously validated plasma/milk concentration-based pop PK model of FX. Milk FX and NFX concentration-time profiles were described reasonably well by a one compartment model with a FX-to-NFX conversion coefficient. Median values of the simulated relative infant dose on a weight basis (sRID: weight-adjusted daily doses of FX and NFX through breastmilk to the infant, expressed as a fraction of therapeutic FX daily dose per body weight) were 0.028 for FX and 0.029 for NFX. The FX sRID estimates were consistent with those of the plasma/milk-based pop PK model. A predictive pop PK model based on only milk concentrations can be developed for simultaneous estimation of milk concentration-time profiles of a parent (FX) and an active metabolite (NFX). © 2014 The British Pharmacological Society.

  3. GPU-accelerated 3-D model-based tracking

    International Nuclear Information System (INIS)

    Brown, J Anthony; Capson, David W

    2010-01-01

    Model-based approaches to tracking the pose of a 3-D object in video are effective but computationally demanding. While statistical estimation techniques, such as the particle filter, are often employed to minimize the search space, real-time performance remains unachievable on current generation CPUs. Recent advances in graphics processing units (GPUs) have brought massively parallel computational power to the desktop environment and powerful developer tools, such as NVIDIA Compute Unified Device Architecture (CUDA), have provided programmers with a mechanism to exploit it. NVIDIA GPUs' single-instruction multiple-thread (SIMT) programming model is well-suited to many computer vision tasks, particularly model-based tracking, which requires several hundred 3-D model poses to be dynamically configured, rendered, and evaluated against each frame in the video sequence. Using 6 degree-of-freedom (DOF) rigid hand tracking as an example application, this work harnesses consumer-grade GPUs to achieve real-time, 3-D model-based, markerless object tracking in monocular video.

  4. Towards a standard model for research in agent-based modeling and simulation

    Directory of Open Access Journals (Sweden)

    Nuno Fachada

    2015-11-01

    Full Text Available Agent-based modeling (ABM is a bottom-up modeling approach, where each entity of the system being modeled is uniquely represented as an independent decision-making agent. ABMs are very sensitive to implementation details. Thus, it is very easy to inadvertently introduce changes which modify model dynamics. Such problems usually arise due to the lack of transparency in model descriptions, which constrains how models are assessed, implemented and replicated. In this paper, we present PPHPC, a model which aims to serve as a standard in agent based modeling research, namely, but not limited to, conceptual model specification, statistical analysis of simulation output, model comparison and parallelization studies. This paper focuses on the first two aspects (conceptual model specification and statistical analysis of simulation output, also providing a canonical implementation of PPHPC. The paper serves as a complete reference to the presented model, and can be used as a tutorial for simulation practitioners who wish to improve the way they communicate their ABMs.

  5. Model simulations of line-of-sight effects in airglow imaging of acoustic and fast gravity waves from ground and space

    Science.gov (United States)

    Aguilar Guerrero, J.; Snively, J. B.

    2017-12-01

    Acoustic waves (AWs) have been predicted to be detectable by imaging systems for the OH airglow layer [Snively, GRL, 40, 2013], and have been identified in spectrometer data [Pilger et al., JASP, 104, 2013]. AWs are weak in the mesopause region, but can attain large amplitudes in the F region [Garcia et al., GRL, 40, 2013] and have local impacts on the thermosphere and ionosphere. Similarly, fast GWs, with phase speeds over 100 m/s, may propagate to the thermosphere and impart significant local body forcing [Vadas and Fritts, JASTP, 66, 2004]. Both have been clearly identified in ionospheric total electron content (TEC), such as following the 2013 Moore, OK, EF5 tornado [Nishioka et al., GRL, 40, 2013] and following the 2011 Tohoku-Oki tsunami [e.g., Galvan et al., RS, 47, 2012, and references therein], but AWs have yet to be unambiguously imaged in MLT data and fast GWs have low amplitudes near the threshold of detection; nevertheless, recent imaging systems have sufficient spatial and temporal resolution and sensitivity to detect both AWs and fast GWs with short periods [e.g., Pautet et al., AO, 53, 2014]. The associated detectability challenges are related to the transient nature of their signatures and to systematic challenges due to line-of-sight (LOS) effects such as enhancements and cancelations due to integration along aligned or oblique wavefronts and geometric intensity enhancements. We employ a simulated airglow imager framework that incorporates 2D and 3D emission rate data and performs the necessary LOS integrations for synthetic imaging from ground- and space-based platforms to assess relative intensity and temperature perturbations. We simulate acoustic and fast gravity wave perturbations to the hydroxyl layer from a nonlinear, compressible model [e.g., Snively, 2013] for different idealized and realistic test cases. The results show clear signal enhancements when acoustic waves are imaged off-zenith or off-nadir and the temporal evolution of these

  6. Model-based Sensor Data Acquisition and Management

    OpenAIRE

    Aggarwal, Charu C.; Sathe, Saket; Papaioannou, Thanasis G.; Jeung, Ho Young; Aberer, Karl

    2012-01-01

    In recent years, due to the proliferation of sensor networks, there has been a genuine need of researching techniques for sensor data acquisition and management. To this end, a large number of techniques have emerged that advocate model-based sensor data acquisition and management. These techniques use mathematical models for performing various, day-to-day tasks involved in managing sensor data. In this chapter, we survey the state-of-the-art techniques for model-based sensor data acquisition...

  7. INDIVIDUAL-BASED MODELS: POWERFUL OR POWER STRUGGLE?

    Science.gov (United States)

    Willem, L; Stijven, S; Hens, N; Vladislavleva, E; Broeckhove, J; Beutels, P

    2015-01-01

    Individual-based models (IBMs) offer endless possibilities to explore various research questions but come with high model complexity and computational burden. Large-scale IBMs have become feasible but the novel hardware architectures require adapted software. The increased model complexity also requires systematic exploration to gain thorough system understanding. We elaborate on the development of IBMs for vaccine-preventable infectious diseases and model exploration with active learning. Investment in IBM simulator code can lead to significant runtime reductions. We found large performance differences due to data locality. Sorting the population once, reduced simulation time by a factor two. Storing person attributes separately instead of using person objects also seemed more efficient. Next, we improved model performance up to 70% by structuring potential contacts based on health status before processing disease transmission. The active learning approach we present is based on iterative surrogate modelling and model-guided experimentation. Symbolic regression is used for nonlinear response surface modelling with automatic feature selection. We illustrate our approach using an IBM for influenza vaccination. After optimizing the parameter spade, we observed an inverse relationship between vaccination coverage and the clinical attack rate reinforced by herd immunity. These insights can be used to focus and optimise research activities, and to reduce both dimensionality and decision uncertainty.

  8. Hybrid modelling framework by using mathematics-based and information-based methods

    International Nuclear Information System (INIS)

    Ghaboussi, J; Kim, J; Elnashai, A

    2010-01-01

    Mathematics-based computational mechanics involves idealization in going from the observed behaviour of a system into mathematical equations representing the underlying mechanics of that behaviour. Idealization may lead mathematical models that exclude certain aspects of the complex behaviour that may be significant. An alternative approach is data-centric modelling that constitutes a fundamental shift from mathematical equations to data that contain the required information about the underlying mechanics. However, purely data-centric methods often fail for infrequent events and large state changes. In this article, a new hybrid modelling framework is proposed to improve accuracy in simulation of real-world systems. In the hybrid framework, a mathematical model is complemented by information-based components. The role of informational components is to model aspects which the mathematical model leaves out. The missing aspects are extracted and identified through Autoprogressive Algorithms. The proposed hybrid modelling framework has a wide range of potential applications for natural and engineered systems. The potential of the hybrid methodology is illustrated through modelling highly pinched hysteretic behaviour of beam-to-column connections in steel frames.

  9. The Whole Atmosphere Community Climate Model

    Science.gov (United States)

    Boville, B. A.; Garcia, R. R.; Sassi, F.; Kinnison, D.; Roble, R. G.

    The Whole Atmosphere Community Climate Model (WACCM) is an upward exten- sion of the National Center for Atmospheric Research Community Climate System Model. WACCM simulates the atmosphere from the surface to the lower thermosphere (140 km) and includes both dynamical and chemical components. The salient points of the model formulation will be summarized and several aspects of its performance will be discussed. Comparison with observations indicates that WACCM produces re- alistic temperature and zonal wind distributions. Both the mean state and interannual variability will be summarized. Temperature inversions in the midlatitude mesosphere have been reported by several authors and are also found in WACCM. These inver- sions are formed primarily by planetary wave forcing, but the background state on which they form also requires gravity wave forcing. The response to sea surface temperature (SST) anomalies will be examined by com- paring simulations with observed SSTs for 1950-1998 to a simulation with clima- tological annual cycle of SSTs. The response to ENSO events is found to extend though the winter stratosphere and mesosphere and a signal is also found at the sum- mer mesopause. The experimental framework allows the ENSO signal to be isolated, because no other forcings are included (e.g. solar variability and volcanic eruptions) which complicate the observational record. The temperature and wind variations asso- ciated with ENSO are large enough to generate significant perturbations in the chem- ical composition of the middle atmosphere, which will also be discussed.

  10. Cluster Based Text Classification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases...... the accuracy at the same time. The test example is classified using simpler and smaller model. The training examples in a particular cluster share the common vocabulary. At the time of clustering, we do not take into account the labels of the training examples. After the clusters have been created......, the classifier is trained on each cluster having reduced dimensionality and less number of examples. The experimental results show that the proposed model outperforms the existing classification models for the task of suspicious email detection and topic categorization on the Reuters-21578 and 20 Newsgroups...

  11. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  12. Evolutionary modeling-based approach for model errors correction

    Directory of Open Access Journals (Sweden)

    S. Q. Wan

    2012-08-01

    Full Text Available The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963 equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data."

    On the basis of the intelligent features of evolutionary modeling (EM, including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.

  13. Model-Based Reconstructive Elasticity Imaging Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Salavat R. Aglyamov

    2007-01-01

    Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.

  14. System Dynamics as Model-Based Theory Building

    OpenAIRE

    Schwaninger, Markus; Grösser, Stefan N.

    2008-01-01

    This paper introduces model-based theory building as a feature of system dynamics (SD) with large potential. It presents a systemic approach to actualizing that potential, thereby opening up a new perspective on theory building in the social sciences. The question addressed is if and how SD enables the construction of high-quality theories. This contribution is based on field experiment type projects which have been focused on model-based theory building, specifically the construction of a mi...

  15. Search-based model identification of smart-structure damage

    Science.gov (United States)

    Glass, B. J.; Macalou, A.

    1991-01-01

    This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.

  16. Research on Turbofan Engine Model above Idle State Based on NARX Modeling Approach

    Science.gov (United States)

    Yu, Bing; Shu, Wenjun

    2017-03-01

    The nonlinear model for turbofan engine above idle state based on NARX is studied. Above all, the data sets for the JT9D engine from existing model are obtained via simulation. Then, a nonlinear modeling scheme based on NARX is proposed and several models with different parameters are built according to the former data sets. Finally, the simulations have been taken to verify the precise and dynamic performance the models, the results show that the NARX model can well reflect the dynamics characteristic of the turbofan engine with high accuracy.

  17. Effects of D-region RF heating studied with the Sodankylä Ion Chemistry model

    Directory of Open Access Journals (Sweden)

    C.-F. Enell

    2005-07-01

    Full Text Available The upper mesosphere and lower thermosphere, or ionospheric D region, is an atmospheric layer which is difficult to access experimentally. A useful method that also has a large potential for further studies is artificial heating of electrons by means of powerful radio transmitters. Here we estimate the effect of D-region heating for a few typical cases of high electron density – daylight, typical auroral electron precipitation, and a solar proton event – by coupling a model of RF electron heating to the Sodankylä Ion Chemistry (SIC model. The predicted effects are among others an increase in the ratio of the concentration of negative ions to that of free electrons, and an increase in the absorption of cosmic noise as measured by riometers. For the model runs presented in this paper we have calculated the absorption for the frequency (38.2MHz of the IRIS imaging riometer in Kilpisjärvi, Finland, as observing the ionosphere above the EISCAT Heater in Tromsø, Norway. The predicted enhancements of the absorption are 0.2–0.8dB, an effect which is clearly detectable.

    Keywords. Ionosphere (Active experiments; Ion chemistry and composition; Wave propagation

  18. Effects of D-region RF heating studied with the Sodankylä Ion Chemistry model

    Directory of Open Access Journals (Sweden)

    C.-F. Enell

    2005-07-01

    Full Text Available The upper mesosphere and lower thermosphere, or ionospheric D region, is an atmospheric layer which is difficult to access experimentally. A useful method that also has a large potential for further studies is artificial heating of electrons by means of powerful radio transmitters. Here we estimate the effect of D-region heating for a few typical cases of high electron density – daylight, typical auroral electron precipitation, and a solar proton event – by coupling a model of RF electron heating to the Sodankylä Ion Chemistry (SIC model. The predicted effects are among others an increase in the ratio of the concentration of negative ions to that of free electrons, and an increase in the absorption of cosmic noise as measured by riometers. For the model runs presented in this paper we have calculated the absorption for the frequency (38.2MHz of the IRIS imaging riometer in Kilpisjärvi, Finland, as observing the ionosphere above the EISCAT Heater in Tromsø, Norway. The predicted enhancements of the absorption are 0.2–0.8dB, an effect which is clearly detectable. Keywords. Ionosphere (Active experiments; Ion chemistry and composition; Wave propagation

  19. Linking agent-based models and stochastic models of financial markets.

    Science.gov (United States)

    Feng, Ling; Li, Baowen; Podobnik, Boris; Preis, Tobias; Stanley, H Eugene

    2012-05-29

    It is well-known that financial asset returns exhibit fat-tailed distributions and long-term memory. These empirical features are the main objectives of modeling efforts using (i) stochastic processes to quantitatively reproduce these features and (ii) agent-based simulations to understand the underlying microscopic interactions. After reviewing selected empirical and theoretical evidence documenting the behavior of traders, we construct an agent-based model to quantitatively demonstrate that "fat" tails in return distributions arise when traders share similar technical trading strategies and decisions. Extending our behavioral model to a stochastic model, we derive and explain a set of quantitative scaling relations of long-term memory from the empirical behavior of individual market participants. Our analysis provides a behavioral interpretation of the long-term memory of absolute and squared price returns: They are directly linked to the way investors evaluate their investments by applying technical strategies at different investment horizons, and this quantitative relationship is in agreement with empirical findings. Our approach provides a possible behavioral explanation for stochastic models for financial systems in general and provides a method to parameterize such models from market data rather than from statistical fitting.

  20. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning.

    Science.gov (United States)

    Doll, Bradley B; Bath, Kevin G; Daw, Nathaniel D; Frank, Michael J

    2016-01-27

    Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by "model-free" learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by "model-based" learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes