WorldWideScience

Sample records for thermophotovoltaic tpv power

  1. Thermophotovoltaic (TPV) technology development. Final report, May 15, 1995--December 1, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This program information release (PIR) summarizes work performed under Task Order Contract SF17787, Task Order 18: Thermophotovoltaic Technology Development, sponsored by the U.S. Department of Energy. The period of performance was 15 May 1995 to 1 December 1995. Under this task order, a system model for a thermophotovoltaic (MV) converter was implemented and used to compare a conceptual design for an advanced quaternary III-V cell with integral filter with results previously published for a binary GaSb cell with a freestanding filter. Model results were used to assess the merits of TPV conversion for meeting various levels of space power requirements, including low to medium power isotope applications and high-power reactor applications. A TPV cell development program was initiated to determine the feasibility of fabricating quaternary III-V cells by molecular beam epitaxy. Lastly, a conceptual design was completed for a low-cost demonstration system to test the performance of TPV converters at a multi-cell, sub-system level. The results of these efforts are reported briefly in an executive summary, then in somewhat more detail as a final briefing section in which charts have been reproduced. Additional technical detail is provided in the appendices

  2. Development of a novel cascading TPV and TE power generation system

    International Nuclear Information System (INIS)

    Qiu, K.; Hayden, A.C.S.

    2012-01-01

    Highlights: ► A novel cascading thermophotovoltaic (TPV) and thermoelectric (TE) power generation system is proposed and developed. ► The used heat stream is taken from the TPV and applied to the input of a TE converter in the system. ► A prototype was built and tested where GaSb TPV cells and PbSnTe-based TE converter were used. ► The TPV cells generate 123.5 We whereas the TE converter generates 306.2 We in the prototype. ► It is shown the cascading power generation is feasible in fuel-fired furnaces and can be applied to micro-CHP. -- Abstract: Thermophotovoltaic (TPV) cells can convert infrared radiation into electricity. They open up possibilities for silent and stand-alone power production in fuel-fired heating equipment. Similarly, thermoelectric (TE) devices convert thermal energy directly into electricity with no moving parts. However, TE devices have relatively low efficiency for electric power generation. In this study, the concept of cascading TPV and TE power generation was developed where the used heat stream is taken from the TPV and applied to the input of a TE converter. A prototype cascading TPV and TE generation system was built and tested. GaSb TPV cells and an integrated semiconductor TE converter were used in the cascading power system. The electric output characteristics of the TPV cells and the TE converter have been investigated in the power generation system at various operating conditions. Experimental results show that the cascading power generation is feasible and has the potential for certain applications.

  3. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    International Nuclear Information System (INIS)

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-01-01

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as ∼ 16 We/kg and ∼ 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is ∼ 640 m2 and ∼ 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is ∼ 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is ∼ 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems

  4. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    Science.gov (United States)

    Cockeram, Brian Vern

    2004-01-27

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  5. Toward high performance radioisotope thermophotovoltaic systems using spectral control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiawa, E-mail: xiawaw@mit.edu [Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Chan, Walker [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Stelmakh, Veronika [Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Fisher, Peter [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Physics Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States)

    2016-12-01

    This work describes RTPV-PhC-1, an initial prototype for a radioisotope thermophotovoltaic (RTPV) system using a two-dimensional photonic crystal emitter and low bandgap thermophotovoltaic (TPV) cell to realize spectral control. We validated a system simulation using the measurements of RTPV-PhC-1 and its comparison setup RTPV-FlatTa-1 with the same configuration except a polished tantalum emitter. The emitter of RTPV-PhC-1 powered by an electric heater providing energy equivalent to one plutonia fuel pellet reached 950 °C with 52 W of thermal input power and produced 208 mW output power from 1 cm{sup 2} TPV cell. We compared the system performance using a photonic crystal emitter to a polished flat tantalum emitter and found that spectral control with the photonic crystal was four times more efficient. Based on the simulation, with more cell areas, better TPV cells, and improved insulation design, the system powered by a fuel pellet equivalent heat source is expected to reach an efficiency of 7.8%.

  6. Thermophotovoltaic systems for civilian and industrial applications in Japan

    International Nuclear Information System (INIS)

    Yugami, Hiroo; Sasa, Hiromi; Yamaguchi, Masafumi

    2003-01-01

    The potential market for thermophotovoltaic (TPV) applications has been studied for civilian and industrial sectors in Japan. Comparing the performance of gas engines or turbines, as well as the underdeveloped power generation technologies such as fuel cells or chemical batteries, we have discussed the feasible application field of TPV systems to compete with those power generators. From the point of view of applicability for TPV systems in Japan, portable generators, co-generation systems and solar power plants are selected for our system analysis. The cost and performance targets of TPV systems for co-generation are also discussed by assuming a typical daily profile of electricity and hot water demands in Japanese homes. A progress report on the recent TPV research activities is given as well as a feasibility study concerning such TPV systems in Japan. (Author)

  7. Thermophotovoltaic Arrays for Electrical Power Generation

    International Nuclear Information System (INIS)

    Sarnoff Corporation

    2003-01-01

    Sarnoff has designed an integrated array of thermophotovoltaic (TPV) cells based on the In(Al)GaAsSb/GaSb materials system. These arrays will be used in a system to generate electrical power from a radioisotope heat source that radiates at temperatures from 700 to 1000 C. Two arrays sandwich the slab heat source and will be connected in series to build voltage. Between the arrays and the heat source is a spectral control filter that transmits above-bandgap radiation and reflects below-bandgap radiation. The goal is to generate 5 mW of electrical power at 3 V from a 700 C radiant source. Sarnoff is a leader in antimonide-based TPV cell development. InGaAsSb cells with a bandgap of 0.53 eV have operated at system conversion efficiencies greater than 17%. The system included a front-surface filter, and a 905 C radiation source. The cells were grown via organo-metallic vapor-phase epitaxy. Sarnoff will bring this experience to bear on the proposed project. The authors first describe array and cell architecture. They then present calculated results showing that about 80 mW of power can be obtained from a 700 C radiator. Using a conservative array design, a 5-V output is possible

  8. Fundamentals of thermophotovoltaic energy conversion

    CERN Document Server

    Chubb, Donald L

    2007-01-01

    This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Mathematica design programs for interference filters and a planar TPV system are included on a CD-Rom disk. Each chapter includes a summary and concludes with a set of problems. The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance t...

  9. Efficient Thermally Stable Spectral Control Filters for Thermophotovoltaics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The feasibility of radioisotope thermophotovoltaic (RTPV) power systems has been shown. The best efficiencies reported to date for a TPV module test include front...

  10. A review of recent advances in thermophotovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Coutts, T.J.; Wanlass, M.W.; Ward, J.S.; Johnson, S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    Thermophotovoltaic (TPV) generation of electricity is attracting attention because of advances in materials and devices and because of a widening appreciation of the large number of applications that may be addressed using TPV-based generators. The attractions include the wide range of fuel sources and the potentially high power density outputs. The two main approaches to TPV generators are (1) broadband radiators, coupled with converters with bandgaps in the range 0.4-0.7 eV, and (2) narrow-band emitters coupled with lower-cost silicon converters. The key issues in realizing a viable TPV system are the durability, efficiency, and properties of the radiant emitter; the recuperation of sub-bandgap photons; the optimization of the converter performance; and the recuperation of waste heat.

  11. Combustion powered thermophotovoltaic emitter system

    Energy Technology Data Exchange (ETDEWEB)

    McHenry, R.S. [Naval Academy, Annapolis, MD (United States). Naval Architecture, Ocean and Marine Engineering

    1995-07-01

    The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

  12. The Potential of Thermophotovoltaic Heat Recovery for the Glass Industry

    Science.gov (United States)

    Bauer, T.; Forbes, I.; Penlington, R.; Pearsall, N.

    2003-01-01

    This paper aims to provide an overview of heat recovery by thermophotovoltaics (TPV) from industrial high-temperature processes and uses the glass industry in the UK as an example. The work is part of a study of potential industrial applications of TPV in the UK being carried out by the Northumbria Photovoltaics Applications Centre. The paper reviews the relevant facts about TPV technology and the glass industry and identifies locations of use for TPV. These are assessed in terms of glass sector, furnace type, process temperature, impact on the existing process, power scale and development effort of TPV. Knowledge of these factors should contribute to the design of an optimum TPV system. The paper estimates possible energy savings and reductions of CO2 emissions using TPV in the glass industry.

  13. Development and characterization of a rare earth emitter for a thermophotovoltaic power generator

    Energy Technology Data Exchange (ETDEWEB)

    Durisch, W; Panitz, J C [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Energy conversion based on thermophotovoltaic (TPV) methods has recently attracted renewed interest. Efforts at PSI are directed towards the development of a modular TPV system based on existing technology to demonstrate the feasibility of this method. Here, we report first results obtained with a prototype TPV generator based upon a modified rare earth emitter, a heat reflecting filter and commercial silicon solar cells. The preparation of the modified emitter is described, and first results of spectroscopic and electrical characterization of the TPV system are presented. The introduction of the modified emitter leads to an efficiency gain of 30-40%. (author) 3 figs., 4 refs.

  14. Operating experience of a portable thermophotovoltaic power supply

    Science.gov (United States)

    Becker, Frederick E.; Doyle, Edward F.; Shukla, Kailash

    1999-03-01

    Two configurations of man-portable thermophotovoltaic (TPV) power supplies based on Thermo Power's supported continuous fiber emitter have been designed, built, and are being tested. The systems use narrow-band, fibrous, ytterbia emitters radiating to bandgap matched silicon photovoltaic arrays with dielectric stack filters for optical energy recovery and recuperators for thermal energy recovery. The systems have been designed for operation with propane and with combustion air preheat temperatures of up to 1250 K. To operate at air preheat temperatures above the auto-ignition temperature of the fuel, a unique fuel delivery system was devised which results in the micromixing and rapid combustion of the fuel and air right in the emitter fibers. This allows the ytterbia emitter fibers to run much hotter (˜2000 K) than any of the surrounding structure.

  15. Design and Optimization of Thermophotovoltaic System Cavity with Mirrors

    Directory of Open Access Journals (Sweden)

    Tian Zhou

    2016-09-01

    Full Text Available Thermophotovoltaic (TPV systems can convert radiant energy into electrical power. Here we explore the design of the TPV system cavity, which houses the emitter and the photovoltaic (PV cells. Mirrors are utilized in the cavity to modify the spatial and spectral distribution within. After discussing the basic concentric tubular design, two novel cavity configurations are put forward and parametrically studied. The investigated variables include the shape, number, and placement of the mirrors. The optimization objectives are the optimized efficiency and the extended range of application of the TPV system. Through numerical simulations, the relationship between the design parameters and the objectives are revealed. The results show that careful design of the cavity configuration can markedly enhance the performance of the TPV system.

  16. Micro combustion in sub-millimeter channels for novel modular thermophotovoltaic power generators

    International Nuclear Information System (INIS)

    Pan, J F; Tang, A K; Duan, L; Li, X C; Yang, W M; Chou, S K; Xue, H

    2010-01-01

    The performance of micro combustion-driven power systems is strongly influenced by the combustor structure. A novel modular thermophotovoltaic (TPV) power generator is presented, which is based on the sub-millimeter parallel plate combustor. It has the potential to achieve a high power density because of the high radiation energy per unit volume due to the high surface-to-volume ratio of the micro-combustor. The work experimentally investigated the ignition limitation for two micro-combustors. It also studied the effects of three major parameters on a sub-millimeter combustor, namely hydrogen to oxygen mixing ratio, hydrogen volumetric flow rate and nozzle geometry. The results show that the combustion efficiency decreases with the increase of the hydrogen flow rate, which is caused by reduced residence time. The average wall temperature with the rectangular nozzle is 25 K higher than that with the circle nozzle. The output electrical power and power density of the modular TPV power generator are projected to be 0.175 W and 0.0722 W cm −3 respectively. We experimentally achieve 0.166 W of electrical power, which is in good agreement with the model prediction

  17. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution

    International Nuclear Information System (INIS)

    Park, K.; Basu, S.; King, W.P.; Zhang, Z.M.

    2008-01-01

    This paper elucidates the energy transfer and conversion processes in near-field thermophotovoltaic (TPV) systems, considering local radiation absorption and photocurrent generation in the TPV cell. Radiation heat transfer in a multilayered structure is modeled using the fluctuation-dissipation theorem, and the electric current generation is evaluated based on the photogeneration and recombination of electron-hole pairs in different regions of the TPV cell. The effects of near-field radiation on the photon penetration depth, photocurrent generation, and quantum efficiency are examined in the spectral region of interest. The detailed analysis performed in the present work demonstrates that, while the near-field operation can enhance the power throughput, the conversion efficiency is not much improved and may even be reduced. Subsequently, a modified design of near-field TPV systems is proposed to improve the efficiency

  18. Development of a portable thermophotovoltaic power generator

    Science.gov (United States)

    Becker, Frederick E.; Doyle, Edward F.; Shukla, Kailash

    1997-03-01

    A 150 Watt thermophotovoltaic (TPV) power generator is being developed. The technical approach taken in the design focused on optimizing the integrated performance of the primary subsystems in order to yield high energy conversion efficiency and cost effectiveness. An important aspect of the approach is the use of a selective emitter radiating to a bandgap matched photovoltaic array to minimize thermal and optical recuperation requirements, as well as the non-recoverable heat losses. For the initial prototype system, fibrous ytterbia emitters radiating in a band centered at 980 nm are matched with high efficiency silicon photoconverters. The integrated system includes a dielectric stack filter for optical energy recovery and a ceramic recuperator for thermal energy recovery. The system has been operated with air preheat temperatures up to 1350K. The design of the system and development status are presented.

  19. 500 Watt Diesel Fueled TPV Portable Power Supply

    Science.gov (United States)

    Horne, W. E.; Morgan, M. D.; Sundaram, V. S.; Butcher, T.

    2003-01-01

    A test-bed 500 watt diesel fueled thermophotovoltaic (TPV) portable power supply is described. The goal of the design is a compact, rugged field portable unit weighing less than 15 pounds without fuel. The conversion efficiency goal is set at 15% fuel energy to electric energy delivered to an external load at 24 volts. A burner/recuperator system has been developed to meet the objectives of high combustion air preheat temperatures with a compact heat exchanger, low excess air operation, and high convective heat transfer rates to the silicon carbide emitter surface. The burner incorporates a air blast atomizer with 100% of the combustion air passing through the nozzle. Designed firing rate of 2900 watts at 0.07 gallons of oil per hour. This incorporates a single air supply dc motor/fan set and avoids the need for a system air compressor. The recuperator consists of three annular, concentric laminar flow passages. Heat from the combustion of the diesel fuel is both radiantly and convectively coupled to the inside wall of a cylindrical silicon carbide emitter. The outer wall of the emitter then radiates blackbody energy at the design temperature of 1400°C. The cylindrical emitter is enclosed in a quartz envelope that separates it from the photovoltaic (PV) cells. Spectral control is accomplished by a resonant mesh IR band-pass filter placed between the emitter and the PV array. The narrow band of energy transmitted by the filter is intercepted and converted to electricity by an array of GaSb PV cells. The array consists of 216 1-cm × 1-cm GaSb cells arranged into series and parallel arrays. An array of heat pipes couple the PV cell arrays to a heat exchanger which is cooled by forced air convection. A brief status of the key TPV technologies is presented followed by data characterizing the performance of the 500 watt TPV system.

  20. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    Science.gov (United States)

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  1. Power and hydrogen production from ammonia in a micro-thermophotovoltaic device integrated with a micro-reformer

    International Nuclear Information System (INIS)

    Um, Dong Hyun; Kim, Tae Young; Kwon, Oh Chae

    2014-01-01

    Power and hydrogen (H 2 ) production by burning and reforming ammonia (NH 3 ) in a micro-TPV (microscale-thermophotovoltaic) device integrated with a micro-reformer is studied experimentally. A heat-recirculating micro-emitter with the cyclone and helical adapters that enhance the residence time of fed fuel-air mixtures and uniform burning burns H 2 -added NH 3 -air mixtures. A micro-reformer that converts NH 3 to H 2 using ruthenium as a catalyst surrounds the micro-emitter as a heat source. The micro-reformer is surrounded by a chamber, the inner and outer walls of which have installations of gallium antimonide photovoltaic cells and cooling fins. For the micro-reformer-integrated micro-TPV device the maximum overall efficiency of 8.1% with electrical power of 4.5 W and the maximum NH 3 conversion rate of 96.0% with the H 2 production rate of 22.6 W (based on lower heating value) are obtained, indicating that the overall efficiency is remarkably enhanced compared with 2.0% when the micro-TPV device operates alone. This supports the potential of improving the overall efficiency of a micro-TPV device through integrating it with a micro-reformer. Also, the feasibility of using NH 3 as a carbon-free fuel for both burning and reforming in practical micro power and H 2 generation devices has been demonstrated. - Highlights: • Performance of micro-TPV device integrated with micro-reformer is evaluated. • Feasibility of using NH 3 –H 2 blends in integrated system has been demonstrated. • Integration with micro-reformer improves performance of micro-TPV device. • Maximum overall efficiency of 8.1% is found compared with 2.0% without integration

  2. Solid State Microchp Based On Thermophotovoltaic And Thermoelectric Conversion

    OpenAIRE

    Worek, William M.; Brown, Christopher; Trojanowski, Rebecca; Butcher, Thomas; Horne, Edward

    2012-01-01

    MicroCHP involves the coproduction of both heat and electric power in (typically) residential heating systems. A range of different energy conversion technologies are currently receiving attention for this application including Stirling engines, internal combustion engines, fuel cells, and Rankine cycles with steam or organic compounds as working fluids. In this work the use of ThermoPhotoVoltaic (TPV) and ThermoElectric (TE) conversion devices either alone or in combination for power product...

  3. Hybrid Back Surface Reflector GaInAsSb Thermophotovoltaic Devices

    International Nuclear Information System (INIS)

    RK Huang; CA Wang; MK Connors; GW Turner; M Dashiell

    2004-01-01

    Back surface reflectors have the potential to improve thermophotovoltaic (TPV) device performance though the recirculation of infrared photons. The ''hybrid'' back-surface reflector (BSR) TPV cell approach allows one to construct BSRs for TPV devices using conventional, high efficiency, GaInAsSb-based TPV material. The design, fabrication, and measurements of hybrid BSR-TPV cells are described. The BSR was shown to provide a 4 mV improvement in open-circuit voltage under a constant shortcircuit current, which is comparable to the 5 mV improvement theoretically predicted. Larger improvements in open-circuit voltage are expected in the future with materials improvements

  4. Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap

    Science.gov (United States)

    Lim, Mikyung; Song, Jaeman; Kim, Jihoon; Lee, Seung S.; Lee, Ikjin; Lee, Bong Jae

    2018-05-01

    The present work successfully achieves a strong enhancement in performance of a near-field thermophotovoltaic (TPV) system operating at low temperature and large-vacuum-gap width by introducing a hyperbolic-metamaterial (HMM) emitter, multilayered graphene, and an Au-backside reflector. Design variables for the HMM emitter and the multilayered-graphene-covered TPV cell are optimized for maximizing the power output of the near-field TPV system with the genetic algorithm. The near-field TPV system with the optimized configuration results in 24.2 times of enhancement in power output compared with that of the system with a bulk emitter and a bare TPV cell. Through the analysis of the radiative heat transfer together with surface-plasmon-polariton (SPP) dispersion curves, it is found that coupling of SPPs generated from both the HMM emitter and the multilayered-graphene-covered TPV cell plays a key role in a substantial increase in the heat transfer even at a 200-nm vacuum gap. Further, the backside reflector at the bottom of the TPV cell significantly increases not only the conversion efficiency, but also the power output by generating additional polariton modes which can be readily coupled with the existing SPPs of the HMM emitter and the multilayered-graphene-covered TPV cell.

  5. Integration between a thermophotovoltaic generator and an Organic Rankine Cycle

    International Nuclear Information System (INIS)

    De Pascale, Andrea; Ferrari, Claudio; Melino, Francesco; Morini, Mirko; Pinelli, Michele

    2012-01-01

    Highlights: ► A new energy system comprising a Thermo-Photo-Voltaic and Organic Rankine Cycle. ► An analytical model to calculate the performance of the system is introduced. ► The system shows promising results in terms of CHP performance. -- Abstract: The constant increase in energy need and the growing attention to the related environmental impact have given a boost to the development of new strategies in order to reduce the primary energy consumption and to improve its utilization. One of the possible strategies for achieving this aim is Combined Heat and Power (CHP) specially if coupled with the concept of on-site generation (also known as distributed generation). These approaches allow the reduction of fuel consumption and pollutant emissions and the increase of security in energy supply. This paper introduces the Thermophotovoltaic Organic Rankine Cycle Integrated System (TORCIS), an energy system integrating a ThermoPhotoVoltaic generator (TPV) and an Organic Rankine Cycle (ORC). This study represents the start-up of a research program which involves three research teams from IMEM – National Research Council, ENDIF – University of Ferrara and DIEM – University of Bologna. The aim of this research is the complete definition and the pre-prototyping characterization of this system covering all the unresolved issues in this field. More specifically, TPV is a system to convert the radiation emitted from an artificial heat source (i.e. the combustion of fuel) into electrical energy by the use of photovoltaic cells. In this system, the produced electrical power is strictly connected to the thermal one as their ratio is almost constant and cannot be changed without severe loss in performance. The coupling between TPV and ORC allows this limitation to be overcome by the realization of a CHP system which can be regulated with a large degree of freedom changing the ratio between the produced electrical and thermal power. In this study a thermodynamic

  6. Quaternary InGaAsSb Thermophotovoltaic Diodes

    International Nuclear Information System (INIS)

    MW Dashiell; JF Beausang; H Ehsani; GJ Nichols; DM Depoy; LR Danielson; P Talamo; KD Rahner; EJ Brown; SR Burger; PM Foruspring; WF Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; J Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryi

    2006-01-01

    In x Ga 1-x As y Sb 1-y thermophotovoltaic (TPV) diodes were grown lattice-matched to GaSb substrates by Metal Organic Vapor Phase Epitaxy (MOVPE) in the bandgap range of E G = 0.5 to 0.6eV. InGaAsSb TPV diodes, utilizing front-surface spectral control filters, are measured with thermal-to-electric conversion efficiency and power density of η TPV = 19.7% and PD =0.58 W/cm 2 respectively for a radiator temperature of T radiator = 950 C, diode temperature of T diode = 27 C, and diode bandgap of E G = 0.53eV. Practical limits to TPV energy conversion efficiency are established using measured recombination coefficients and optical properties of front surface spectral control filters, which for 0.53eV InGaAsSb TPV energy conversion is η TPV = 28% and PD = 0.85W/cm 2 at the above operating temperatures. The most severe performance limits are imposed by (1) diode open-circuit voltage (VOC) limits due to intrinsic Auger recombination and (2) parasitic photon absorption in the inactive regions of the module. Experimentally, the diode V OC is 15% below the practical limit imposed by intrinsic Auger recombination processes. Analysis of InGaAsSb diode electrical performance vs. diode architecture indicate that the V OC and thus efficiency is limited by extrinsic recombination processes such as through bulk defects

  7. Parametric investigation of nano-gap thermophotovoltaic energy conversion

    Science.gov (United States)

    Lau, Japheth Z.-J.; Bong, Victor N.-S.; Wong, Basil T.

    2016-03-01

    Nano-gap thermophotovoltaic energy converters have the potential to be excellent generators of electrical power due to the near-field radiative effect which enhances the transfer of energy from one medium to another. However, there is still much to learn about this new form of energy converter. This paper seeks to investigate three parameters that affect the performance of nano-gap thermophotovoltaic devices: the emitter material, the thermophotovoltaic cell material, and the cell thickness. Furthermore, the temperature profiles in insulated thin films (cells exposed to below-band gap near-field radiation) are analysed. It was discovered that an effective emitter material is one that has a high generalised emissivity value and is also able to couple with the TPV cell material through surface polaritons while a cell material's electrical properties and its thickness has heavy bearing on its internal quantum efficiency. In regards to the temperature profile, the heat-flux absorbed causes a rise in temperature across the thin film, but is insufficient to generate a temperature gradient across the film.

  8. Quaternary InGaAsSb Thermophotovoltaic Diode Technology

    International Nuclear Information System (INIS)

    M Dashiell; J Beausang; H Ehsani; G Nichols; D DePoy; L Danielson; P Talamo; K Rahner; E Brown; S Burger; P Fourspring; W Topper; P Baldasaro; C Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryl

    2005-01-01

    Thermophotovoltaic (TPV) diodes fabricated from InGaAsSb alloys lattice-matched to GaSb substrates are grown by Metal Organic Vapor Phase Epitaxy (MOVPE). 0.53eV InGaAsSb TPV diodes utilizing front-surface spectral control filters have been tested in a vacuum cavity and a TPV thermal-to-electric conversion efficiency (η TPV ) and a power density (PD) of η TPV = 19% and PD=0.58 W/cm 2 were measured for T radiator = 950 C and T diode = 27 C. Recombination coefficients deduced from minority carrier measurements and the theory reviewed in this article predict a practical limit to the maximum achievable conversion efficiency and power density for 0.53eV InGaAsSb TPV. The limits for the above operating temperatures are projected to be η TPV = 26% and PD = 0.75 W/cm 2 . These limits are extended to η TPV = 30% and PD = 0.85W/cm 2 if the diode active region is bounded by a reflective back surface to enable photon recycling and a two-pass optical path length. The internal quantum efficiency of the InGaAsSb TPV diode is close to the theoretically predicted limits, with the exception of short wavelength absorption in GaSb contact layers. Experiments show that the open circuit voltage of the 0.53eV InGaAsSb TPV diodes is not strongly dependent on the device architectures studied in this work where both N/P and P/N double heterostructure diodes have been grown with various acceptor and donor doping levels, having GaSb and AlGaAsSb confinement, and also partial back surface reflectors. Lattice matched InGaAsSb TPV diodes were fabricated with bandgaps ranging from 0.6 to 0.5eV without significant degradation of the open circuit voltage factor, quantum efficiency, or fill factor as the composition approached the miscibility gap. The key diode performance parameter which is limiting efficiency and power density below the theoretical limits in InGaAsSb TPV devices is the open circuit voltage. The open circuit voltages of state-of-the-art 0.53eV InGaAsSb TPV diode are ∼10

  9. Heat transfer modelling in thermophotovoltaic cavities using glass media

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, T.; Forbes, I.; Penlington, R.; Pearsall, N. [Northumbria University, Newcastle upon Tyne (United Kingdom). School of Engineering and Technology

    2005-08-15

    Optimisation of heat transfer, and in particular radiative heat transfer in terms of the spectral, angular and spatial radiation distributions, is required to achieve high efficiencies and high electrical power densities for thermophotovoltaic (TPV) conversion. This work examines heat transfer from the radiator to the PV cell in an infinite plate arrangement using three different arrangements of participating dielectric media. The modelling applies the Discrete Ordinates method and assumes fused silica (quartz glass) as the dielectric medium. The arrangement radiator-glass-PV cell (also termed dielectric photon concentration) was found to be superior in terms of efficiency and power density. (author)

  10. Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings

    International Nuclear Information System (INIS)

    Bianchi, Michele; Ferrari, Claudio; Melino, Francesco; Peretto, Antonio

    2012-01-01

    Highlights: ► The profitability of Thermo-Photo-Voltaic generator systems for a single-family dwelling is analyzed. ► Heat and electricity load profiles depending on hour of the day are considered for an entire year. ► The effect of Thermo-Photo-Voltaic generator size is evaluated for different household utilities. ► Results allow to identify the conditions for the energetic and economic convenience of Thermo-Photo-Voltaic system. -- Abstract: The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo-Photo-Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic gas furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. The aim of this study is the understanding of the behavior of a TPV in CHP application in case of residential buildings, under both the energetic and economical point of view; in particular a parametrical analysis is developed and discussed varying the TPV electrical efficiency, the thermal request and the apartment typology.

  11. Solid State Energy Conversion for Deep Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermophotovoltaic (TPV) devices employed in static radioisotope generators show great promise for highly efficient, reliable, and resilient power generation for...

  12. Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system

    International Nuclear Information System (INIS)

    Xu, Xiaojie; Ye, Hong; Xu, Yexin; Shen, Mingrong; Zhang, Xiaojing; Wu, Xi

    2014-01-01

    Highlights: • An accurate theoretical model for thermophotovoltaic system is constructed. • Parallel connected module is superior if radiator temperature is uneven. • Series connected module is superior if cell temperature is uneven. • Short circuit current of series module rises when the shunt resistance decreases. • Fill factor is not always accurate to evaluate the module performance. - Abstract: An experimental thermophotovoltaic (TPV) system with a cylindrical-geometry radiator was established to test the output performances of modules under different conditions. The results demonstrate that the output performance of a cell module decreases when the combustion power increases because of the uneven temperature of the radiator or cells. On this basis, a theoretical model for a TPV system was constructed to compare the performance under different conditions of the series-connected (SC) module and the parallel-connected (PC) module, and was verified by the experimental results. The influences of the temperature gradient of the radiator or the cell module, and the series and shunt resistance of the TPV cell on the module performance were analyzed in detail. The results demonstrate that the PC module can effectively reduce the mismatch loss of output power caused by the uneven radiator temperature. The PC module, for instance, has a maximum output power of 2.54 times higher than that of the SC module when the radiator temperature difference is 500 K. However, the output performance of the module connected in series is superior to the PC module while the cell temperature is non-uniform. The output power of the SC module is 9.93% higher than that of the PC module at the cell temperature difference of 125 K. The short circuit current of the SC module is sensitive to the series and shunt resistance if the radiator temperature distribution is non-uniform. As the shunt resistance falls from ∞ to 0.5 Ω, the current varies from 1.757 A to 4.488 A when the

  13. The design and numerical analysis of tandem thermophotovoltaic cells

    International Nuclear Information System (INIS)

    Yang Hao-Yu; Liu Ren-Jun; Wang Lian-Kai; Lü You; Li Tian-Tian; Li Guo-Xing; Zhang Yuan-Tao; Zhang Bao-Lin

    2013-01-01

    In this paper, numerical analysis of GaSb =(E g = 0.72 eV)/Ga 0.84 In 0.16 As 0.14 Sb 0.86 (E g = 0.53 eV) tandem thermophotovoltaic (TPV) cells is carried out by using Silvaco/Atlas software. In the tandem cells, a GaSb p-n homojunction is used for the top cell and a GaInAsSb p-n homojunction for the bottom cell. A heavily doped GaSb tunnel junction connects the two sub-cells together. The simulations are carried out at a radiator temperature of 2000 K and a cell temperature of 300 K. The radiation photons are injected from the top of the tandem cells. Key properties of the single- and dual-junction TPV cells, including I–V characteristic, maximum output power (P max ), open-circuit voltage (V oc ), short-circuit current (I sc ), etc. are presented. The effects of the sub-cell thickness and carrier concentration on the key properties of tandem cells are investigated. A comparison of the dual-TPV cells with GaSb and GaInAsSb single junction cells shows that the P max of tandem cells is almost twice as great as that of the single-junction cells. (interdisciplinary physics and related areas of science and technology)

  14. Recombination Processes on Low Bandgap Antimonides for Thermophotovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Saroop, Sudesh [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1999-09-01

    Recombination processes in antimonide-based (TPV) devices have been investigated using a technique, in which a Nd-YAG pulsed laser is materials for thermophotovoltaic radio-frequency (RF) photoreflectance used to excite excess carriers and the short-pulse response and photoconductivity decay are monitored with an inductively-coupled non-contacting RF probe. The system has been used to characterize surface and bulk recombination mechanisms in Sb-based materials.

  15. Measurements of Conversion Efficiency for a Flat Plate Thermophotovoltaic System Using a Photonic Cavity Test System

    International Nuclear Information System (INIS)

    Brown, E.J.; Ballinger, C.T.; Burger, S.R.; Charache, G.W.; Danielson, L.R.; DePoy, D.M.; Donovan, T.J.; LoCascio, M.

    2000-01-01

    The performance of a 1 cm 2 thermophotovoltaic (TPV) module was recently measured in a photonic cavity test system. A conversion efficiency of 11.7% was measured at a radiator temperature of 1076 C and a module temperature of 29.9 C. This experiment achieved the highest direct measurement of efficiency for an integrated TPV system. Efficiency was calculated from the ratio of the peak (load matched) electrical power output and the heat absorption rate. Measurements of these two parameters were made simultaneously to assure the validity of the measured efficiency value. This test was conducted in a photonic cavity which mimicked a typical flat-plate TPV system. The radiator was a large, flat graphite surface. The module was affixed to the top of a copper pedestal for heat absorption measurements. The heat absorption rate was proportional to the axial temperature gradient in the pedestal under steady-state conditions. The test was run in a vacuum to eliminate conductive and convective heat transfer mechanisms. The photonic cavity provides the optimal test environment for TPV efficiency measurements because it incorporates all important physical phenomena found in an integrated TPV system: high radiator emissivity and blackbody spectral shape, photon recycling, Lambertian distribution of incident radiation and complex geometric effects. Furthermore, the large aspect ratio between radiating surface area and radiator/module spacing produces a view factor approaching unity with minimal photon leakage

  16. Thermophotovoltaics, wood powder and fuel quality

    Energy Technology Data Exchange (ETDEWEB)

    Marks, J [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Operational Efficiency; Broman, L; Jarefors, K [Solar Energy Research Center, Borlaenge (Sweden)

    1998-06-01

    PV cells can be used for electricity production based on other heat sources than the sun. If the temperature of the source is around 1500 K it is possible to get reasonably high conversion efficiency from heat radiation to electricity. This is due to recent advances in low-bandgap PV cells and selectively emitting fibrous emissive burners. There are some different biomass fuels capable of producing this temperature in the flame, especially gas and liquid fuels of different kinds. Wood powder is the only solid wood fuel with a sufficiently stable quality and properties for this high temperature combustion. A joint project between SERC, SLU and National Renewable Energy Laboratory NREL in Golden, Colorado, USA aims at building a wood powder fuelled thermophotovoltaic (TPV) generator for cogeneration of heat and electricity. A stable flame temperature of 1500 K has been achieved in a prototype pilot-scale burner that includes feeder and combustion chamber. Furthermore, a setup for measuring TPV cell efficiency for a wide region of black body emitter temperatures and cell irradiation has been constructed and several 0.6 eV GaInAs TPV cells have been investigated. A setup for testing the chain IR emitter - selectively reflecting filter - TPV cell has been designed. In order to limit the region of filter incident angles, which will make the filter act more efficiently, a special geometry of the internally reflecting tube that transmits the radiation is considered 23 refs, 4 figs

  17. Analysis of a Concentrated Solar Thermophotovoltaic System with Thermal Energy Storage

    Science.gov (United States)

    Seyf, Hamid Reza; Henry, Asegun

    2017-01-01

    We analyzed a high temperature concentrated solar thermophotovoltaic (TPV) system with thermal energy storage (TES), which is enabled by the potential usage of liquid metal as a high temperature heat transfer fluid. The system concept combines the great advantages of TES with the potential for low cost and high performance derived from photovoltaic cells fabricated on reusable substrates, with a high reflectivity back reflector for photon recycling. The TES makes the electricity produced dispatchable, and thus the system studied should be compared to technologies such as concentrated solar power (CSP) with TES (e.g., using a turbine) or PV with electrochemical batteries, instead of direct and intermittent electricity generation from flat plate PV alone. Thus, the addition of TES places the system in a different class than has previously been considered and based on the model results, appears worthy of increased attention. The system level analysis presented identifies important cell level parameters that have the greatest impact on the overall system performance, and as a result can help to set the priorities for future TPV cell development.

  18. Minority-carrier transport in InGaAsSb thermophotovoltaic diodes

    International Nuclear Information System (INIS)

    Charache, G.; Martinelli, R.U.; Garbuzov, D.Z.; Lee, H.; Morris, N.; Odubanjo, T.; Connolly, J.C.

    1997-05-01

    Uncoated InGaAsSb/GaSb thermophotovoltaic (TPV) diodes with 0.56 eV (2.2 microm) bandgaps exhibit external quantum efficiencies of 59% at 2 microm. The devices have electron diffusion lengths as long as 29 microm in 8-microm-wide p-InGaAsSb layers and hole diffusion lengths of 3 microm in 6-microm-wide n-InGaAsSb layers. The electron and hole diffusion lengths appear to increase with increasing p- and n-layer widths. At 632.8 nm the internal quantum efficiencies of diodes with 1- to 8-microm-wide p-layers are above 89% and are independent of the p-layer width, indicating long electron diffusion lengths. InGaAsSb has, therefore, excellent minority carrier transport properties that are well suited to efficient TPV diode operation. The structures were grown by molecular-beam epitaxy

  19. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion

    OpenAIRE

    Datas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio

    2016-01-01

    A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and a...

  20. An integrated microcombustor and photonic crystal emitter for thermophotovoltaics

    Science.gov (United States)

    Chan, Walker R.; Stelmakh, Veronika; Allmon, William R.; Waits, Christopher M.; Soljacic, Marin; Joannopoulos, John D.; Celanovic, Ivan

    2016-11-01

    Thermophotovoltaic (TPV) energy conversion is appealing for portable millimeter- scale generators because of its simplicity, but it relies on a high temperatures. The performance and reliability of the high-temperature components, a microcombustor and a photonic crystal emitter, has proven challenging because they are subjected to 1000-1200°C and stresses arising from thermal expansion mismatches. In this paper, we adopt the industrial process of diffusion brazing to fabricate an integrated microcombustor and photonic crystal by bonding stacked metal layers. Diffusion brazing is simpler and faster than previous approaches of silicon MEMS and welded metal, and the end result is more robust.

  1. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    National Research Council Canada - National Science Library

    Presby, Andrew L

    2004-01-01

    .... This has potential benefits for space nuclear reactor power systems currently in development. The primary obstacle to space operation of thermophotovoltaic devices appears to be the low heat rejection temperatures which necessitate large radiator areas...

  2. An integrated microcombustor and photonic crystal emitter for thermophotovoltaics

    International Nuclear Information System (INIS)

    Chan, Walker R.; Stelmakh, Veronika; Joannopoulos, John D.; Celanovic, Ivan; Allmon, William R.; Waits, Christopher M.; Soljacic, Marin

    2016-01-01

    Thermophotovoltaic (TPV) energy conversion is appealing for portable millimeter- scale generators because of its simplicity, but it relies on a high temperatures. The performance and reliability of the high-temperature components, a microcombustor and a photonic crystal emitter, has proven challenging because they are subjected to 1000-1200°C and stresses arising from thermal expansion mismatches. In this paper, we adopt the industrial process of diffusion brazing to fabricate an integrated microcombustor and photonic crystal by bonding stacked metal layers. Diffusion brazing is simpler and faster than previous approaches of silicon MEMS and welded metal, and the end result is more robust. (paper)

  3. Cost estimate of electricity produced by TPV

    Science.gov (United States)

    Palfinger, Günther; Bitnar, Bernd; Durisch, Wilhelm; Mayor, Jean-Claude; Grützmacher, Detlev; Gobrecht, Jens

    2003-05-01

    A crucial parameter for the market penetration of TPV is its electricity production cost. In this work a detailed cost estimate is performed for a Si photocell based TPV system, which was developed for electrically self-powered operation of a domestic heating system. The results are compared to a rough estimate of cost of electricity for a projected GaSb based system. For the calculation of the price of electricity, a lifetime of 20 years, an interest rate of 4.25% per year and maintenance costs of 1% of the investment are presumed. To determine the production cost of TPV systems with a power of 12-20 kW, the costs of the TPV components and 100 EUR kW-1el,peak for assembly and miscellaneous were estimated. Alternatively, the system cost for the GaSb system was derived from the cost of the photocells and from the assumption that they account for 35% of the total system cost. The calculation was done for four different TPV scenarios which include a Si based prototype system with existing technology (etasys = 1.0%), leading to 3000 EUR kW-1el,peak, an optimized Si based system using conventional, available technology (etasys = 1.5%), leading to 900 EUR kW-1el,peak, a further improved system with future technology (etasys = 5%), leading to 340 EUR kW-1el,peak and a GaSb based system (etasys = 12.3% with recuperator), leading to 1900 EUR kW-1el,peak. Thus, prices of electricity from 6 to 25 EURcents kWh-1el (including gas of about 3.5 EURcents kWh-1) were calculated and compared with those of fuel cells (31 EURcents kWh-1) and gas engines (23 EURcents kWh-1).

  4. Front Surface Tandem Filters using Sapphire (Al2O3) Substrates for Spectral Control in thermophotovoltaic Energy Conversion Systems

    International Nuclear Information System (INIS)

    T Rahmlow, Jr.; J Lazo-Wasem; E Gratrix; P Fourspring; D DePoy

    2005-01-01

    Front surface filters provide an effective means of improving thermophotovoltaic (TPV) system efficiency through spectral control of incident radiant energy. A front surface filter reflects the below band gap photons that can not be converted by the TPV cell back towards the high temperature radiator and allows convertible above band gap photons to pass through the filter into the TPV cell for conversion to electricity. The best spectral control efficiency to date has been demonstrated by front surface, tandem filters that combine an interference filter and an InPAs layer (plasma filter) in series. The InPAs material is a highly doped, epitaxially grown layer on an InP substrate. These tandem filter designs have been fabricated with energy and angle weighted spectral efficiencies of 76% for TPV cells with a 2.08(micro)m (0.6eV) band gap [1]. An alternative to the InPAs layer on an InP substrate is an Al 2 O 3 (sapphire) substrate. The use of Al 2 O 3 may increase transmission of above band gap photons, increase the mechanical strength of the tandem filter, and lower the cost of the tandem filter, all at the expense of lower spectral efficiency. This study presents design and fabrication results for front surface tandem filters that use an Al 2 O 3 substrate for 2.08(micro)m band gap TPV cells

  5. Radiation Entropy and Near-Field Thermophotovoltaics

    Science.gov (United States)

    Zhang, Zhuomin M.

    2008-08-01

    Radiation entropy was key to the original derivation of Planck's law of blackbody radiation, in 1900. This discovery opened the door to quantum mechanical theory and Planck was awarded the Nobel Prize in Physics in 1918. Thermal radiation plays an important role in incandescent lamps, solar energy utilization, temperature measurements, materials processing, remote sensing for astronomy and space exploration, combustion and furnace design, food processing, cryogenic engineering, as well as numerous agricultural, health, and military applications. While Planck's law has been fruitfully applied to a large number of engineering problems for over 100 years, questions have been raised about its limitation in micro/nano systems, especially at subwavelength distances or in the near field. When two objects are located closer than the characteristic wavelength, wave interference and photon tunneling occurs that can result in significant enhancement of the radiative transfer. Recent studies have shown that the near-field effects can realize emerging technologies, such as superlens, sub-wavelength light source, polariton-assisted nanolithography, thermophotovoltaic (TPV) systems, scanning tunneling thermal microscopy, etc. The concept of entropy has also been applied to explain laser cooling of solids as well as the second law efficiency of devices that utilize thermal radiation to produce electricity. However, little is known as regards the nature of entropy in near-field radiation. Some history and recent advances are reviewed in this presentation with a call for research of radiation entropy in the near field, due to the important applications in the optimization of thermophotovoltaic converters and in the design of practical systems that can harvest photon energies efficiently.

  6. 0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology

    International Nuclear Information System (INIS)

    MW Dashiell; JF Beausang; G Nichols; DM Depoy; LR Danielson; H Ehsani; KD Rahner; J Azarkevich; P Talamo; E Brown; S Burger; P Fourspring; W Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Marinelli; D Donetski; S Anikeev; G Belenky; S Luryi; DR Taylor; J Hazel

    2004-01-01

    Thermophotovoltaic (TPV) diodes fabricated from 0.52eV lattice-matched InGaAsSb alloys are grown by Metal Organic Vapor Phase Epitaxy (MOVPE) on GaSb substrates. 4cm 2 multi-chip diode modules with front-surface spectral filters were tested in a vacuum cavity and attained measured efficiency and power density of 19% and 0.58 W/cm 2 respectively at operating at temperatures of T radiator = 950 C and T diode = 27 C. Device modeling and minority carrier lifetime measurements of double heterostructure lifetime specimens indicate that diode conversion efficiency is limited predominantly by interface recombination and photon energy loss to the GaSb substrate and back ohmic contact. Recent improvements to the diode include lattice-matched p-type AlGaAsSb passivating layers with interface recombination velocities less than 100 cm/s and new processing techniques enabling thinned substrates and back surface reflectors. Modeling predictions of these improvements to the diode architecture indicate that conversion efficiencies from 27-30% and ∼0.85 W/cm 2 could be attained under the above operating temperatures

  7. Appropriate materials and preparation techniques for polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1997-03-01

    Polycrystalline-thin-film thermophotovoltaic (TPV) cells have excellent potential for reducing the cost of TPV generators so as to address the hitherto inaccessible and highly competitive markets such as self-powered gas-fired residential warm air furnaces and energy-efficient electric cars, etc. Recent progress in polycrystalline-thin-film solar cells have made it possible to satisfy the diffusion length and intrinsic junction rectification criteria for TPV cells operating at high fluences. Continuous ranges of direct bandgaps of the ternary and pseudoternary compounds such as Hg1-xCdxTe, Pb1-xCdxTe, Hg1-xZnxTe, and Pb1-xZnxS cover the region of interest of 0.50-0.75 eV for efficient TPV conversion. Other ternary and pseudoternary compounds which show direct bandgaps in most of or all of the 0.50-0.75 eV range are Pb1-xZnxTe, Sn1-xCd2xTe2, Pb1-xCdxSe, Pb1-xZnxSe, and Pb1-xCdxS. Hg1-xCdxTe (with x~0.21) has been studied extensively for infrared detectors. PbTe and Pb1-xSnxTe have also been studied for infrared detectors. Not much work has been carried out on Hg1-xZnxTe thin films. Hg1-xCdxTe and Pb1-xCdxTe alloys cover a wide range of cut-off wavelengths from the far infrared to the near visible. Acceptors and donors are introduced in these materials by excess non-metal (Te) and excess metal (Hg and Pb) respectively. Extrinsic acceptor impurities are Cu, Au, and As while and In and Al are donor impurities. Hg1-xCdxTe thin films have been deposited by isothermal vapor-phase epitaxy (VPE), liquid phase epitaxy (LPE), hot-wall metalorganic chemical vapor deposition (MOCVD), electrodeposition, sputtering, molecular beam epitaxy (MBE), laser-assisted evaporation, and vacuum evaporation with or without hot-wall enclosure. The challenge in the preparation of Hg1-xCdxTe is to provide excess mercury incidence rate, to optimize the deposition parameters for enhanced mercury incorporation, and to achieve the requisite stoichiometry, grain size, and doping. MBE and MOCVD

  8. InGaAs/InP Monolithic Interconnected Modules (MIM) for Thermophotovoltaic Applications

    Science.gov (United States)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Scheiman, David A.; Murray, Christopher S.; Riley, David R.

    2004-01-01

    There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between systems efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) devices series -connected on a single semi-insulating indium phosphide (InP) substrate. The MIMs are exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight series interconnected cells. MIM devices, produced from 0,74 eV InGAAs, have demonstrated V(sub infinity) = 3.23 volts, J(sub sc) = 70 mA/sq cm and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurement (less than 2 microns) of these devices indicate a reflectivity of less than 82%. MIM devices produced from 0.55 eV InGaAs have also been den=monstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM1) have been demonstrated.

  9. A nanophotonic solar thermophotovoltaic device.

    Science.gov (United States)

    Lenert, Andrej; Bierman, David M; Nam, Youngsuk; Chan, Walker R; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N

    2014-02-01

    The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.

  10. Advanced radioisotope power source options for Pluto Express

    International Nuclear Information System (INIS)

    Underwood, M.L.

    1995-01-01

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors

  11. The Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corporation

    Energy Technology Data Exchange (ETDEWEB)

    EJ Brown; PF Baldasaro; SR Burger; LR Danielson; DM DePoy; JM Dolatowski; PM Fourspring; GJ Nichols; WF Topper; TD Rahmlow

    2004-07-29

    In a thermophotovoltaic (TPV) energy conversion system, a heated surface radiates in the mid-infrared range onto photocells which are sensitive at these energies. Part of the absorbed energy is converted into electric output. Conversion efficiency is maximized by reducing the absorption of non-convertible energy with some form of spectral control. In a TPV system, many technology options exist. Our development efforts have concentrated on flat-plate geometries with greybody radiators, front surface tandem filters and a multi-chip module (MCM) approach that allows selective fabrication processes to match cell performance. Recently, we discontinued development of GaInAsSb quaternary cell semiconductor material in favor of ternary GaInAs material. In our last publication (Ref. 1), the authors reported conversion efficiencies of about 20% (radiator 950 C, cells 22 C) for small modules (1-4 cm{sup 2}) tested in a prototypic cavity test environment. Recently, we have achieved measured conversion efficiencies of about 12.5% in larger ({approx}100 cm{sup 2}) test arrays. The efficiency reduction in the larger arrays was probably due to quality and variation of the cells as well as non-uniform illumination from the hot radiator to the cold plate. Modules in these tests used GaInAsSb cells with 0.52 eV bandgap and front surface filters for spectral control. This paper provides details of the individual system components and the rationale for our technical decisions. It also describes the measurement techniques used to record these efficiencies.

  12. Quantum-Well Thermophotovoltaic Cells

    Science.gov (United States)

    Freudlich, Alex; Ignatiev, Alex

    2009-01-01

    Thermophotovoltaic cells containing multiple quantum wells have been invented as improved means of conversion of thermal to electrical energy. The semiconductor bandgaps of the quantum wells can be tailored to be narrower than those of prior thermophotovoltaic cells, thereby enabling the cells to convert energy from longer-wavelength photons that dominate the infrared-rich spectra of typical thermal sources with which these cells would be used. Moreover, in comparison with a conventional single-junction thermophotovoltaic cell, a cell containing multiple narrow-bandgap quantum wells according to the invention can convert energy from a wider range of wavelengths. Hence, the invention increases the achievable thermal-to-electrical energy-conversion efficiency. These thermophotovoltaic cells are expected to be especially useful for extracting electrical energy from combustion, waste-heat, and nuclear sources having temperatures in the approximate range from 1,000 to 1,500 C.

  13. Solar-Powered, Micron-Gap Thermophotovoltaics for MEO Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an InGaAs-based, radiation-tolerant, micron-gap thermophotovoltaic (MTPV) technology. The use of a micron wide gap between the radiation...

  14. Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography

    Science.gov (United States)

    Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok

    2018-01-01

    Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.

  15. Photocell modelling for thermophotovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, J -C; Durisch, W; Grob, B; Panitz, J -C [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Goal of the modelling described here is the extrapolation of the performance characteristics of solar photocells to TPV working conditions. The model accounts for higher flux of radiation and for the higher temperatures reached in TPV converters. (author) 4 figs., 1 tab., 2 refs.

  16. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  17. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    International Nuclear Information System (INIS)

    Chubb, D.L.; Flood, D.J.; Lowe, R.A.

    1993-08-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source

  18. Hybrid thermionic-photovoltaic converter

    Energy Technology Data Exchange (ETDEWEB)

    Datas, A. [Instituto de Energía Solar, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-04-04

    A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligible electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, ∼1650 K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable.

  19. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology (Survey of peripheral element technologies - Survey of novel voltaic cell structure solar cell development); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu (shuhen yoso gijutsu ni kansuru chosa kenkyu - shinhatsuden soshi kozo taiyo denchi kaitaku no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The present state and trend are surveyed of organic ferroelectric thin films, new carbon materials, fullerene compounds, and thermophotovoltaic (TPV) power. In the study of organic ferroelectric thin-film solar cells, the effort still remains at the basic stage, with the conversion rate as low as 3% in Europe and 2% in Japan. The progress of basic studies, however, is worth attention. It is deemed that 15% is the photoconversion rate to be currently expected from new carbon material solar cells. Fullerene compounds include some semiconductors whose bandgap values may be controlled across a 0.75-1.95eV range, and they may find their place in thin-film solar cells. However, their physical properties are not fully known, and their development into devices such as solar cells is scarcely reported. The research and development of TPV in the U.S. is led by NASA (National Aeronautics and Space Administration) and NREL (National Renewable Energy Laboratory), with their efforts concentrated on the development of portable power sources utilizing combustion heat. In Europe, TPV application to small-scale residential cogeneration systems is under study. (NEDO)

  20. Photonic Crystal Emitters for Thermophotovoltaic Energy Conversion

    International Nuclear Information System (INIS)

    Stelmakh, Veronika; Chan, Walker R; Joannopoulos, John D; Celanovic, Ivan; Ghebrebrhan, Michael; Soljacic, Marin

    2015-01-01

    This paper reports the design, fabrication, and characterization of 2D photonic crystal (PhC) thermal emitters for a millimeter-scale hydrocarbon TPV microgenerator as a possible replacement for batteries in portable microelectronics, robotics, etc. In our TPV system, combustion heats a PhC emitter to incandescence and the resulting radiation is converted by a low-bandgap TPV cell. The PhC tailors the photonic density of states to produce spectrally confined thermal emission that matches the bandgap of the TPV cell, enabling high heat-to-electricity conversion efficiency. The work builds on a previously developed fabrication process to produce a square array of cylindrical cavities in a metal substrate. We will present ongoing incremental improvements in the optical and thermo-mechanical properties, the fabrication process, and the system integration, as recently combined with fabrication using novel materials, such as sputtered coatings, to enable a monolithic system. (paper)

  1. Analysis of solar thermophotovoltaic test data from experiments performed at McDonnell Douglas

    Energy Technology Data Exchange (ETDEWEB)

    Stone, K.W.; Kusek, S.M.; Drubka, R.E. [McDonnell Douglas, 5301 Bolsa Avenue, Huntington Beach, California 92647 (United States); Fay, T.D. [21911 Bacalar, Mission Viejo, California 92692 (United States)

    1995-01-05

    Solar thermophotovoltaic power systems offer potentially high system efficiency for solar energy to electrical energy conversion and attractive system advantages. McDonnell Douglas Corporation (MDC) has been investigating this technology for both space and terrestrial applications for several years. A testbed prototype was designed, built, and tested on a 90 kW{sub t} dish concentrator at the MDA solar test facility. Twelve experiments were conducted with absorber temperatures in excess of 1300 {degree}C being achieved using only a fraction of the reflected power from the 90 kW{sub t} dish concentrator. This paper discusses the solar thermophotovoltaic testbed prototype unit, test data, and presents an analysis of the unit`s performance. A combination of analytical analysis and test data is used to obtain an understanding of the system and subsystem performance. The preliminary results of these tests and analysis indicate a solar thermophotovoltaic power system can achieve high system performance. Furthermore, system demonstrations are possible utilizing a combination of current off-the-shelf hardware components and components currently being tested in laboratories. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  2. Selection of emitter material for application on a radioisotope thermophotovoltaic (RTPV) power system

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.P.; Frohlich, N.D.; Koehler, F.A.; Ruhkamp, J.D.; Miller, R.G.; McDougal, J.R.; Pugh, B.K.; Barklay, C.D.; Howell, E.I. [EGG Mound Applied Technologies Building 88, P.O. Box 3000 Miamisburg, Ohio45343 (United States)

    1997-01-01

    Radioisotope Thermophotovoltaic (RTPV) power systems are being considered for long duration space missions due to their predicted high thermal to electrical conversion efficiencies. One critical aspect of these power systems is the selection of an appropriate emitter material which will efficiently radiate the thermal energy generated by the heat source to the photovoltaics. The photovoltaics are {open_quotes}tuned{close_quotes} to convert the infrared wavelengths radiated by the emitter into electrical energy. The emphasis of this paper is on the selection and optimization of an appropriate emitter material which would meet all of the mission requirements. A Kepner Tregoe analysis was performed in order to rank the various candidate refractory materials in relationship to their physical and chemical properties. The results of the analysis and material recommendations are discussed. {copyright} {ital 1997 American Institute of Physics.}

  3. Triple-axis X-ray reciprocal space mapping of In{sub y}Ga{sub 1-y}As thermophotovoltaic diodes grown on (1 0 0) InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dashiell, M.W.; Ehsani, H.; Sander, P.C. [Lockheed Martin Corporation, Schenectady, NY 12301-1072 (United States); Newman, F.D. [Emcore Corporation, Albuquerque, NM 87123 (United States); Wang, C.A. [MIT Lincoln Laboratory, Lexington, MA 02420 (United States); Shellenbarger, Z.A. [Sarnoff Corporation, Princeton NJ, 08543-5300 (United States); Donetski, D.; Gu, N.; Anikeev, S. [Department of Electrical Engineering, State University of New York, Stony Brook, NY 11794-2350 (United States)

    2008-09-15

    Analysis of the composition, strain-relaxation, layer-tilt, and the crystalline quality of In{sub y}Ga{sub 1-y}As/InP{sub 1-x}As{sub x} thermophotovoltaic (TPV) diodes grown by metal-organic vapor phase epitaxy (MOVPE) is demonstrated using triple-axis X-ray reciprocal space mapping techniques. In{sub 0.53}Ga{sub 0.47}As (E{sub gap}=0.74 eV) n/p junction diodes are grown lattice matched (LM) to InP substrates and lattice-mismatched (LMM) In{sub 0.67}Ga{sub 0.33}As (E{sub gap}=0.6 eV) TPV diodes are grown on three-step InP{sub 1-x}As{sub x} (0TPV active layer and underlying InP{sub 1-x}As{sub x} buffers. Triple-axis X-ray rocking curves about the LMM In{sub 0.67}Ga{sub 0.33}As RELP show an order of magnitude increase of its full-width at half-maximum (FWHM) compared to that from the LM In{sub 0.53}Ga{sub 0.47}As (250 vs. 30 arcsec). Despite the significant RELP broadening, the photovoltaic figure of merits show that the electronic quality of the LMM In{sub 0.67}Ga{sub 0.33}As approaches that of the LM diode material. This indicates that misfit-related crystalline imperfections are not dominating the photovoltaic response of the optimized LMM In{sub 0.67}Ga{sub 0.33}As material compared with the intrinsic recombination processes and/or recombination through native point defects, which would be present in both LMM and LM diode material. However, additional RELP broadening in non-optimized LMM In{sub 0.67}Ga{sub 0.33}As n/p junction diodes does correspond to significant degradation of TPV diode open-circuit voltage and minority carrier lifetime demonstrating that there is correlation between X-ray FWHM and the electronic performance of the LMM TPV diodes. (author)

  4. Maximal near-field radiative heat transfer between two plates

    OpenAIRE

    Nefzaoui, Elyes; Ezzahri, Younès; Drevillon, Jérémie; Joulain, Karl

    2013-01-01

    International audience; Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the r...

  5. Heat Transfer Modelling of Glass Media within TPV Systems

    Science.gov (United States)

    Bauer, Thomas; Forbes, Ian; Penlington, Roger; Pearsall, Nicola

    2004-11-01

    Understanding and optimisation of heat transfer, and in particular radiative heat transfer in terms of spectral, angular and spatial radiation distributions is important to achieve high system efficiencies and high electrical power densities for thermophtovoltaics (TPV). This work reviews heat transfer models and uses the Discrete Ordinates method. Firstly one-dimensional heat transfer in fused silica (quartz glass) shields was examined for the common arrangement, radiator-air-glass-air-PV cell. It has been concluded that an alternative arrangement radiator-glass-air-PV cell with increased thickness of fused silica should have advantages in terms of improved transmission of convertible radiation and enhanced suppression of non-convertible radiation.

  6. Super-Planckian Thermophotovoltaics Without Vacuum Gaps

    Science.gov (United States)

    Mirmoosa, M. S.; Biehs, S.-A.; Simovski, C. R.

    2017-11-01

    We introduce the concept of a thermophotovoltaic system whose emitter is separated from the photovoltaic cell by an intermediate thick slab of gallium arsenide. Owing to the engineered structure of the emitter (a multilayer structure of negative- and positive-ɛ layers) together with a high refractiveindex and transparency of the intermediate slab, we achieve a super-Planckian and frequency-selective spectrum of radiative heat transfer which is desirable for the efficient performance of thermophotovoltaic systems.

  7. Effect of addition of organo clay on mechanical properties and dynamic-mechanical based TPV; Preparacao de termoplasticos vulcanizados dinamicamente (TPV) de NBR/PP com nanocargas de argila

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Luciana R.; Silva, Adriana A.; Soares, Bluma G. [Universidade Federal do Rio de Janeiro - UFRJ, Instituto de Macromoleculas Professora Eloisa Mano, Rio de Janeiro, RJ (Brazil); Soares, Ketly P. [Centro Universitario do Leste de Minas Gerais (UNILESTEMG) - Coronel Fabriciano, MG (Brazil)

    2011-07-01

    The effect of organophilic clay on the mechanical and dynamical-mechanical properties of thermoplastic elastomers based on polypropylene (PP) and nitrile rubber (NBR) was investigated. The addition of clay was performed from a master batch prepared by a solution intercalation of NBR inside the clay galleries. Since the PP/NBR blend is highly incompatible, PP functionalized with maleic anhydride (PP-g-MA) and carboxylated NBR (XNBR) were employed as compatibilizing system together with triethylene-tetramine (TETA) used as coupling agent. The addition of Clay inside the elastomeric phase of the TPV resulted in a significant decrease of the elongation at break without changes on the tensile strength. The presence of clay also promoted a slight increase of the storage modulus and the glass transition temperature. The small angle X ray scattering confirmed the high dispersion of clay inside the TPV. Analysis of light scattering small angle (SAXS) confirmed the high dispersion of clay in the matrix of the TPV. (author)

  8. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  9. High-Performance, 0.6-eV, GA0.32In0.68As/In0.32P0.68 Thermophotovoltaic Converters and Monolithically Interconnected Modules

    International Nuclear Information System (INIS)

    Duda, A.; Murray, C.S.

    1998-01-01

    Recent progress in the development of high-performance, 0.6-eV Ga0.32In0.68As/InAs0.32P0.68 thermophotovoltaic (TPV) converters and monolithically interconnected modules (MIMs) is described. The converter structure design is based on using a lattice-matched InAs0.32P0.68/Ga0.32In0.68As/InAs0.32P0.68 double-heterostructure (DH) device, which is grown lattice-mismatched on an InP substrate, with an intervening compositionally step-graded region of InAsyP1-y. The Ga0.32In0.68As alloy has a room-temperature band gap of 0.6 eV and contains a p/n junction. The InAs0.32P0.68 layers have a room-temperature band gap of 0.96 eV and serve as passivation/confinement layers for the Ga0.32In0.68As p/n junction. InAsyP1-y step grades have yielded DH converters with superior electronic quality and performance characteristics. Details of the microstructure of the converters are presented. Converters prepared for this work were grown by atmospheric-pressure metalorganic vapor-phase epitaxy (APMOVPE) and were processed using a combination of photolithography, wet-chemical etching, and conventional metal and insulator deposition techniques. Excellent performance characteristics have been demonstrated for the 0.6-eV TPV converters. Additionally, the implementation of MIM technology in these converters has been highly successful

  10. Solar thermophotovoltaic system using nanostructures.

    Science.gov (United States)

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

  11. Triple and Quadruple Junctions Thermophotovoltaic Devices Lattice Matched to InP

    Science.gov (United States)

    Bhusal, L.; Freundlich, A.

    2007-01-01

    Thermophotovoltaic (TPV) conversion of IR radiation emanating from a radioisotope heat source is under consideration for deep space exploration. Ideally, for radiator temperatures of interest, the TPV cell must convert efficiently photons in the 0.4-0.7 eV spectral range. Best experimental data for single junction cells are obtained for lattice-mismatched 0.55 eV InGaAs based devices. It was suggested, that a tandem InGaAs based TPV cell made by monolithically combining two or more lattice mismatched InGaAs subcells on InP would result in a sizeable efficiency improvement. However, from a practical standpoint the implementation of more than two subcells with lattice mismatch systems will require extremely thick graded layers (defect filtering systems) to accommodate the lattice mismatch between the sub-cells and could detrimentally affect the recycling of the unused IR energy to the emitter. A buffer structure, consisting of various InPAs layers, is incorporated to accommodate the lattice mismatch between the high and low bandgap subcells. There are evidences that the presence of the buffer structure may generate defects, which could extend down to the underlying InGaAs layer. The unusual large band gap lowering observed in GaAs(1-x)N(x) with low nitrogen fraction [1] has sparked a new interest in the development of dilute nitrogen containing III-V semiconductors for long-wavelength optoelectronic devices (e.g. IR lasers, detector, solar cells) [2-7]. Lattice matched Ga1-yInyNxAs1-x on InP has recently been investigated for the potential use in the mid-infrared device applications [8], and it could be a strong candidate for the applications in TPV devices. This novel quaternary alloy allows the tuning of the band gap from 1.42 eV to below 1 eV on GaAs and band gap as low as 0.6eV when strained to InP, but it has its own limitations. To achieve such a low band gap using the quaternary Ga1-yInyNxAs1-x, either it needs to be strained on InP, which creates further

  12. Effect of addition of organo clay on mechanical properties and dynamic-mechanical based TPV

    International Nuclear Information System (INIS)

    Honorato, Luciana R.; Silva, Adriana A.; Soares, Bluma G.; Soares, Ketly P.

    2011-01-01

    The effect of organophilic clay on the mechanical and dynamical-mechanical properties of thermoplastic elastomers based on polypropylene (PP) and nitrile rubber (NBR) was investigated. The addition of clay was performed from a master batch prepared by a solution intercalation of NBR inside the clay galleries. Since the PP/NBR blend is highly incompatible, PP functionalized with maleic anhydride (PP-g-MA) and carboxylated NBR (XNBR) were employed as compatibilizing system together with triethylene-tetramine (TETA) used as coupling agent. The addition of Clay inside the elastomeric phase of the TPV resulted in a significant decrease of the elongation at break without changes on the tensile strength. The presence of clay also promoted a slight increase of the storage modulus and the glass transition temperature. The small angle X ray scattering confirmed the high dispersion of clay inside the TPV. Analysis of light scattering small angle (SAXS) confirmed the high dispersion of clay in the matrix of the TPV. (author)

  13. Performance characteristics and parametric choices of a solar thermophotovoltaic cell at the maximum efficiency

    International Nuclear Information System (INIS)

    Dong, Qingchun; Liao, Tianjun; Yang, Zhimin; Chen, Xiaohang; Chen, Jincan

    2017-01-01

    Graphical abstract: The overall model of the solar thermophotovoltaic cell (STPVC) composed of an optical lens, an absorber, an emitter, and a photovoltaic (PV) cell with an integrated back-side reflector is updated to include various irreversible losses. - Highlights: • A new model of the irreversible solar thermophotovoltaic system is proposed. • The material and structure parameters of the system are considered. • The performance characteristics at the maximum efficiency are revealed. • The optimal values of key parameters are determined. • The system can obtain a large efficiency under a relative low concentration ratio. - Abstract: The overall model of the solar thermophotovoltaic cell (STPVC) composed of an optical lens, an absorber, an emitter, and a photovoltaic (PV) cell with an integrated back-side reflector is updated to include various irreversible losses. The power output and efficiency of the cell are analytically derived. The performance characteristics of the STPVC at the maximum efficiency are revealed. The optimum values of several important parameters, such as the voltage output of the PV cell, the area ratio of the absorber to the emitter, and the band-gap of the semiconductor material, are determined. It is found that under the condition of a relative low concentration ratio, the optimally designed STPVC can obtain a relative large efficiency.

  14. Thermal Fluid Analysis of the Heat Sink and Chip Carrier Assembly for a US Army Research Laboratory Liquid-Fueled Thermophotovoltaic Power Source Demonstrator

    Science.gov (United States)

    2016-09-01

    temperatures above 500 °C.1 Figure 1 describes the primary components of a TPV system : a heat source, an emitter, and a photovoltaic converter. The heat...carrier surface not covered by the photovoltaic cell. 4. Mesh The mesh was set to level 3 with the minimum gap size manually set to 0.01 inch. A...heat sink to control the temperature of the photovoltaic cell while exposed to radiation from the emitter. 15. SUBJECT TERMS TPV

  15. Nonlinear viscoelastic characterization of molten thermoplastic vulcanizates (TPV) through large amplitude harmonic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, Jean L. [University P. and M. Curie-Paris 6, Polymer Rheology and Processing, Vitry-sur-Seine (France)

    2007-10-15

    The so-called thermoplastic vulcanizates (TPV) are essentially blends of a crystalline thermoplastic polymer (e.g., polypropylene) and a vulcanizable rubber composition, prepared through a special process called dynamic vulcanization, which yields a fine dispersion of micron-size crosslinked rubber particles in a thermoplastic matrix. Such materials are by nature complex polymer systems, i.e., multiphase, heterogeneous, typically disordered materials for which structure is as important as composition. Correctly assessing their rheological properties is a challenging task for several reasons: first, even if the uniformity of their composition is taken for granted, TPV are indeed very complicated materials, not only heterogeneous but also with a morphology related to their composition; second, their morphology can be affected by the flow field used; third, the migration of small labile ingredients (e.g., oil, curative residue, etc.) can in the meantime significantly change the boundary flow conditions, for instance through self-lubrication due to phase separation of the oil, or wall slip, or both. The aims of the work reported were to investigate a series of commercial TPV through the so-called Fourier transform rheometry, a testing technique especially developed to accurately investigate the nonlinear viscoelastic domain. Results are tentatively interpreted in terms of material composition and structure. (orig.)

  16. A Monolithic Interconnected module with a tunnel Junction for Enhanced Electrical and Optical Performance

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Christopher Sean; Wilt, David Morgan

    1999-06-30

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMs), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  17. Performance of ultra high efficiency thin germanium p-n junction solar cells intended for solar thermophotovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Vera, E S; Loferski, J J; Spitzer, M; Schewchun, J

    1981-01-01

    The theoretical upper limit conversion efficiency as a function of cell thickness and junction position is calculated for a germanium p-n junction solar cell intended for solar thermophotovoltaic energy conversion which incorporates minority carrier mirrors and optical mirrors on both the front and back boundaries of the active part of the device. The optical mirrors provide light confinement reducing the thickness required for optimum performance while minority carrier mirrors diminish surface recombination of carriers which seriously reduce short circuit current and limit open circuit voltage. The role of non-ideal optical and minority carrier mirrors and the effect of resistivity variations are studied. The calculations are conducted under conditions of high incident power (2-25 W/cm/sup 2/) which are encountered in solar thermophotovoltaic energy conversion systems. 14 refs.

  18. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology - Research and survey of peripheral element technologies (Research and survey for development of solar cell of new power generation device structure); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu / shuhen yoso gijutsu ni kansuru chosa kenkyu (shinhatsuden soshi kozo taiyo denchi kaitaku no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Attention is paid to behavior at the molecular level with reference taken to the photosynthetic mechanism, and a behavioral mechanism is proposed, which incorporates, in place of the conventional band model, a concept of a molecular structure based on electron transfer, excitation energy transfer, and reactions of oxidation and reduction. Discussion is then made on elements of technology development for the embodiment of high-efficiency organic ferroelectric thin-film solar cells. The elements taken up include the feasibility of organic ferroelectric thin-film cells, photoelctric conversion systems of plants and photosynthetic bacteria, solar cells using donor-acceptor type dyes, organic thin-film solar cells using conductive polymers, and efficient photoexcitation of organic dyes. Fullerene compounds are semiconductive and their band gaps may be controlled to stay within the range of 0.75-1.9eV, and this justifies a hope that they will serve as solar cells. As for TPV (thermophotovoltaic) conversion, it is under development mainly at NASA (National Aeronautics and Space Administration) as a transportable power source based on heat of combustion. Efforts are also being exerted since 1990 in five European countries to develop TPV systems for small-scale cogeneration. (NEDO)

  19. Performance evaluation and parametric optimum design of a molten carbonate fuel cell-thermophotovoltaic cell hybrid system

    International Nuclear Information System (INIS)

    Yang, Zhimin; Liao, Tianjun; Zhou, Yinghui; Lin, Guoxing; Chen, Jincan

    2016-01-01

    Highlights: • A molten carbonate fuel cell-thermophotovoltaic cell hybrid system is established. • The performance characteristics of the hybrid system are systematically evaluated. • The optimal regions of the power output density and efficiency are determined. • The values of key parameters at the maximum power output density are calculated. • The proposed system is proved to have advantages over other hybrid systems. - Abstract: A new model of the hybrid system composed of a molten carbonate fuel cell (MCFC) and a thermophotovoltaic cell (TPVC) is proposed to recovery the waste heat produced by the MCFC. Expressions for the power output and the efficiency of the hybrid system are analytically derived. The performance characteristics of the hybrid system are evaluated. It is found that when the current density of the MCFC, voltage output of the TPVC, electrode area ratio of the MCFC to the TPVC, and energy gap of the material in the photovoltaic cell are optimally chosen, the maximum power output density of the hybrid system is obviously larger than that of the single MCFC. Moreover, the improved percentages of the maximum power output density of the proposed model relative to that of the single MCFC are calculated for differently operating temperatures of the MCFC and are compared with those of some MCFC-based hybrid systems reported in the literature, and consequently, the advantages of the MCFC-TPVC hybrid system are revealed.

  20. Graphene-on-Silicon Near-Field Thermophotovoltaic Cell

    NARCIS (Netherlands)

    Svetovoy, V. B.; Palasantzas, G.

    2014-01-01

    A graphene layer on top of a dielectric can dramatically influence the ability of the material for radiative heat transfer. This property of graphene is used to improve the performance and reduce costs of near-field thermophotovoltaic cells. Instead of low-band-gap semiconductors it is proposed to

  1. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    Science.gov (United States)

    Baldasaro, Paul F; Brown, Edward J; Charache, Greg W; DePoy, David M

    2000-01-01

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  2. Development of a small air-cooled ``midnight sun'' thermophotovoltaic electric generator

    Science.gov (United States)

    Fraas, Lewis M.; Xiang, Huang Han; Hui, She; Ferguson, Luke; Samaras, John; Ballantyne, Russ; Seal, Michael; West, Ed

    1996-02-01

    A natural gas fired thermophotovoltaic generator using infrared-sensitive GaSb cells and a silicon carbide emitter is described. The emitter is designed to operate at 1400 °C. Twelve GaSb receivers surround the emitter. Each receiver contains a string of series connected cells. Special infrared filters are bonded to each cell. These filters transmit short wavelength useful IR to the cells while reflecting longer wavelength IR back to the emitter. Combustion air is supplied to the burner through a counterflow heat exchanger where the air is preheated by the exhaust from the burner. The unit is air cooled and designed to produce approximately 100 Watts of electric power.

  3. Maximal near-field radiative heat transfer between two plates

    Science.gov (United States)

    Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2013-09-01

    Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.

  4. A three-dimensional computational model of H2–air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application

    International Nuclear Information System (INIS)

    Akhtar, Saad; Kurnia, Jundika C.; Shamim, Tariq

    2015-01-01

    Highlights: • Flow and flame behavior in a micro-combustor are studied. • Predictive capabilities of turbulence and chemistry sub-models are evaluated. • Thermal & hydraulic performance is tested for different combustor geometries. • Excellent outer wall prediction by RSM turbulence and EDC chemistry sub-model. • Enhanced heat transfer for triangular and trapezoid combustor geometries. - Abstract: Wall temperature uniformity and enhancement in a micro combustor for thermo photovoltaic (TPV) applications have attracted considerable attention from researchers in recent years because of their direct impact on efficiency and feasibility of desired energy conversion. In this regard, numerous experimental and numerical studies in micro-combustion application have been conducted and reported. However, most previous studies have been focused on geometrical configurations limited to planar and circular channels. It is therefore of interest to investigate the impact of different channel geometries on wall temperature distribution and energy conversion efficiency. This study addresses flow and flame behavior in a micro-combustor. By utilizing the well-established computational fluid dynamics (CFD) approach, the effect of geometrical parameters on the flow behavior and wall temperature is examined and evaluated. In order to improve the productive capability of the computational model, several steady state Reynolds Average Numerical Simulation (RANS) turbulence models alongside with different reaction rate formulations are evaluated. The results indicate that Reynolds Stress Model (RSM) with Eddy Dissipation Concept (EDC) provide the best quantitative prediction. The developed model is employed to investigate the effect of inlet velocity on flame structure and outer wall temperature. Furthermore, the effect of reactor cross sections, including circular, square, rectangular, triangular and trapezoidal, on the wall temperature is also evaluated. The results show that

  5. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    Science.gov (United States)

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVternary or quaternary III-V semiconductor active layers.

  6. Parametric characteristics of a solar thermophotovoltaic system at the maximum efficiency

    International Nuclear Information System (INIS)

    Liao, Tianjun; Chen, Xiaohang; Yang, Zhimin; Lin, Bihong; Chen, Jincan

    2016-01-01

    Graphical abstract: A model of the far-field TPVC driven by solar energy, which consists of an optical concentrator, an absorber, an emitter, and a PV cell and is simply referred as to the far-field STPVS. - Highlights: • A model of the far-field solar thermophotovoltaic system (STPVS) is established. • External and internal irreversible losses are considered. • The maximum efficiency of the STPVS is calculated. • Optimal values of key parameters at the maximum efficiency are determined. • Effects of the concentrator factor on the performance of the system are discussed. - Abstract: A model of the solar thermophotovoltaic system (STPVS) consisting of an optical concentrator, a thermal absorber, an emitter, and a photovoltaic (PV) cell is proposed, where the far-field thermal emission between the emitter and the PV cell, the radiation losses from the absorber and emitter to the environment, the reflected loss from the absorber, and the finite-rate heat exchange between the PV cell and the environment are taken into account. Analytical expressions for the power output of and overall efficiency of the STPVS are derived. By solving thermal equilibrium equations, the operating temperatures of the emitter and PV cell are determined and the maximum efficiency of the system is calculated numerically for given values of the output voltage of the PV cell and the ratio of the front surface area of the absorber to that of the emitter. For different bandgaps, the maximum efficiencies of the system are calculated and the corresponding optimum values of several operating parameters are obtained. The effects of the concentrator factor on the optimum performance of the system are also discussed.

  7. Modeling of InGaSb thermophotovoltaic cells and materials

    Energy Technology Data Exchange (ETDEWEB)

    Zierak, M.; Borrego, J.M.; Bhat, I.; Gutmann, R.J. [Rensselaer Polytechnic Inst., Troy, NY (United States); Charache, G. [Lockheed Martin, Inc., Schenectady, NY (United States)

    1997-05-01

    A closed form computer program has been developed for the simulation and optimization of In{sub x}Ga{sub 1{minus}x}Sb thermophotovoltaic cells operating at room temperature. The program includes material parameter models of the energy bandgap, optical absorption constant, electron and hole mobility, intrinsic carrier concentration and index of refraction for any composition of GaInSb alloys.

  8. Sunlight absorption engineering for thermophotovoltaics: contributions from the optical design.

    Science.gov (United States)

    Míguez, Hernán

    2015-03-01

    Nowadays, solar thermophotovoltaic systems constitute a platform in which sophisticated optical material designs are put into practice with the aim of achieving the long sought after dream of developing an efficient energy conversion device based on this concept. Recent advances demonstrate that higher efficiencies are at reach using photonic nanostructures amenable to mass production and scale-up. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Germanium Back Contact Type Thermophotovoltaic Cell

    International Nuclear Information System (INIS)

    Nagashima, Tomonori; Okumura, Kenichi; Yamaguchi, Masafumi

    2007-01-01

    A Ge back contact type photovoltaic cell has been proposed to reduce resistance loss for high current densities in thermophotovoltaic systems. The back contact structure requires less surface recombination velocities than conventional structures with front grid contacts. A SiO2/SiNx double anti-reflection coating including a high refractive index SiNx layer was studied. The SiNx layer has an enough passivation effect to obtain high efficiency. The quantum efficiency of the Ge cell was around 0.8 in the 800-1600 nm wavelength range. The conversion efficiency for infrared lights was estimated at 18% for a blackbody surface and 25% for a selective emitter by using the quantum efficiency and a simulation analysis

  10. Thermophotovoltaic cells based on In0.53Ga0.47As/InP heterostructures

    International Nuclear Information System (INIS)

    Karlina, L. B.; Vlasov, A. S.; Kulagina, M. M.; Timoshina, N. Kh.

    2006-01-01

    Reflection of infrared radiation from n-InP substrates with a rear MgF 2 /Au mirror is investigated in the wavelength range 1000-2200 nm. It is found that the reflectance weakly depends on substrate thickness and free-carrier concentration in the (0.1-6) x 10 18 cm -3 range. Thermophotovoltaic cells based on the InP/In 0.53 Ga 0.47 As lattice-matched heterostructure of p-n and n-p are fabricated by liquid-phase epitaxy and Zn and P diffusion from a gas phase. The characteristics of p-n and n-p thermophotovoltaic cells with an identical configuration of the contacts of 1 cm 2 area are determined. These characteristics are the open-circuit voltage U oc = 0.465 V, the filling factor FF = 64% at the current density of 1 A/cm 2 , and the reflectance R = 76-80% for wavelengths longer than 1.86 μm

  11. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology (Survey of peripheral element technologies - Survey of environmental adaptation of next-generation solar cell development); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu (shuhen yoso gijutsu ni kansuru chosa kenkyu - jisedai taiyo denchi kaihatsu kankyo tekioka chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Surveys are conducted of photovoltaic power system development projects and their utilization in Japan and overseas, and a discussion is made on the progress, technical challenges, effects, and implementation systems relating to the solar cell application technology development project under the New Sunshine Program. Compiled in the report are the results of surveys of the research and development of photovoltaic power systems and their diffusion in the U.S. and European nations, and the research and development strategies for and the trends of the development of various types of solar cells in these countries. The trends of research and development of non-conventional type solar cells are also collected, which include 3 cases of TPV (thermophotovoltaic) devices, 5 cases of new inorganic materials, 1 case of new organic materials, and 4 cases of dye-sensitized solar cells. In relation to the status of resources of crystalline compound-based solar cell materials, raw materials for solar cells other than silicon are taken up, and their reserves, manufacturing methods, quantities yielded and consumed, costs, etc., are surveyed. These are all taken into consideration in discussing the basic approach to the study of future research and development as it ought to be. (NEDO)

  12. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

    International Nuclear Information System (INIS)

    Wu, Chihhui; Neuner III, Burton; Shvets, Gennady; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve

    2012-01-01

    We present the concept of a solar thermo-photovoltaic (STPV) collection system based on a large-area, nanoimprint-patterned film of plasmonic structures acting as an integrated solar absorber/narrow-band thermal emitter (SANTE). The SANTE film concept is based on integrating broad-band solar radiation absorption with selective narrow-band thermal IR radiation which can be efficiently coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal (e.g., tungsten) as a plasmonic material, we demonstrate that the absorption spectrum of the SANTE film can be designed to be broad-band in the visible range and narrow-band in the infrared range. A detailed balance calculation demonstrates that the total STPV system efficiency exceeds the Shockley–Queisser limit for emitter temperatures above T e = 1200 K, and achieves an efficiency as high as 41% for T e = 2300 K. Emitter temperatures in this range are shown to be achievable under modest sun concentrations (less than 1000 suns) due to the thermal insulation provided by the SANTE film. An experimental demonstration of the wide-angle, frequency-selective absorptivity is presented

  13. Finite element analysis of ARPS structures

    International Nuclear Information System (INIS)

    Ruhkamp, J.D.; McDougal, J.R.; Kramer, D.P.

    1998-01-01

    Algor finite element software was used to determine the stresses and deflections in the metallic walls of Advanced Radioisotope Power Systems (ARPS) designs. The preliminary design review of these systems often neglects the structural integrity of the design which can effect fabrication and the end use of the design. Before finite element analysis (FEA) was run on the canister walls of the thermophotovoltaic (TPV) generator, hand calculations were used to approximate the stresses and deflections in a flat plate. These results compared favorably to the FEA results of a similar size flat plate. The AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells were analyzed by FEA and the results compared to two cells that were mechanically tested. The mechanically tested cells buckled in the thin sections, one at the top and one in the lower section. The FEA predicted similar stress and shape results but the critical buckling load was found to be very shape dependent

  14. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology (Survey and research on practical application - Volume 1); 1999 nendo taiyoko hatsauden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu (jitsuyoka kaiseki ni kansuru chosa kenkyu - 1)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A 'Sub-committee for investigation of crystalline compound semiconductor solar cells' was established with the participation of experts from the industrial, bureaucratic, and academic circles to support the manufacture of ultrahigh-efficiency crystalline compound solar cells, and a survey was conducted about technical trends relating to III-V group compound solar cells. In the study of the trends and tasks of the state of the art technology, it is stated that the III-V group compound semiconductor multi-junction solar cell was steadily improving in efficiency, that the InGaP/GaAs 2-junction cell on a Ge substrate and InGaP/GaAs/Ge 3-junction cell in particular were moving toward mass production, and that the target for the 4-junction cell to achieve was 40% or higher in efficiency. For cost reduction, investigations were made into the heteroepitaxial technology, dimensional enlargement, mass production, raw material cost reduction, feasibility of the polycrystalline thin-film technology, light concentration, etc. For efficiency improvement, boundary layer control, structure designs, etc., were studied. Investigations were also conducted into nitride semiconductors, superlattice construction, etc., which related to new materials for thin films. TPV (thermophotovoltaic) power, etc., were reviewed for their practical application. (NEDO)

  15. Rare Earth Garnet Selective Emitter

    Science.gov (United States)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  16. Performance evaluation of thermophotovoltaic GaSb cell technology in high temperature waste heat

    Science.gov (United States)

    Utlu, Z.; Önal, B. S.

    2018-02-01

    In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at high temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The high temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.

  17. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    Science.gov (United States)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  18. Examination of thermophotovoltaic GaSb cell technology in low and medium temperatures waste heat

    Science.gov (United States)

    Utlu, Z.; Önal, B. S.

    2018-02-01

    In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at low and medium temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The low and medium temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.

  19. Design of broadband absorber using 2-D materials for thermo-photovoltaic cell application

    Science.gov (United States)

    Agarwal, Sajal; Prajapati, Y. K.

    2018-04-01

    Present study is done to analyze a nano absorber for thermo-photovoltaic cell application. Optical absorbance of two-dimensional materials is exploited to achieve high absorbance. It is found that few alternating layers of graphene/transition metal dichalcogenide provide high absorbance of electromagnetic wave in visible as well as near infrared region. Four transition metal dichalcogenides are considered and found that most of these provide perfect absorbance for almost full considered wavelength range i.e. 200-1000 nm. Demonstrated results confirm the extended operating region and improved absorbance of the proposed absorber in comparison to the existing absorbers made of different materials. Further, absorber performance is improved by using thin layers of gold and chromium. Simple geometry of the proposed absorber also ensures easy fabrication.

  20. Advanced Radiative Emitters for Radioisotope Thermophotovoltaic Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radioisotope Power Systems (RPS) are critical for future flagship exploration missions in space and on planetary surfaces. Small improvements in the RPS performance,...

  1. Effect of updated data base and improved analysis on performance of radioisotope thermophotovoltaic converter

    International Nuclear Information System (INIS)

    Schock, A.; Or, C.T.

    1996-01-01

    Previous analyses of RTPV space power systems published by the authors were based on a number of approximations employed to permit early dissemination of preliminary results pending availability of fuller experimental data need3d to conduct more rigorous analyses. Among those approximations were: (1) the use of limited test data and optimistic projections of the spectral transmissivity of the RTPV's selective IR filters and of the spectral quantum efficiency of the GaSb PV cells; (2) the use of theoretical formulas instead of experimental measurements of the PV cell's open-circuit voltage, fill factor, and optimum voltage instead of its measured current-voltage characteristics; (3) rough estimates of the TPV converter's active-area fraction instead of computed values based on detailed designs; (4) inadequate accounting for the effect of radiation reflected by the IR filter and absorbed by the emitter in reducing the generator's required heat input; and (5) omission of the shadowing effect and ohmic losses caused by the PV cell's grid lines. The above-listed shortcomings of the previously published analyses are addressed in the present paper, which describes revised analyses based on recently obtained experimental data of IR filter reflectivities and PV cell quantum efficiencies and current-voltage characteristic, measured by EDTEK under an OSC-initiated subcontract to its ongoing DOE contract. Their test results show that EDTEK has been eminently successful in improving the reflectivities of the IR filters and in reproducing the quantum efficiencies of Boeing's best PV cells, but their initial (Dec-95) PV cell fell far short of matching the open-circuit voltages and fill factors predicted by theory

  2. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    Science.gov (United States)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under

  3. Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  4. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  5. ADAPTIVE FULL-SPECTRUM SOLOR ENERGY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood

    2004-04-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports solar light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of solar lighting and electric lighting. A benchmark prototype system has been developed to evaluate the HSL system. Sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. A secondary mirror consisting of eight planar-segmented mirrors directs the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic (TPV) array to produce electricity. During this reporting period, the project team made advancements in the design of the second generation (Alpha) system. For the Alpha system, the eight individual 12 mm fibers have been replaced with a centralized bundle of 3 mm fibers. The TRNSYS Full-Spectrum Solar Energy System model has been updated and new components have been added. The TPV array and nonimaging device have been tested and progress has been made in the fiber transmission models. A test plan was developed for both the high-lumen tests and the study to determine the non-energy benefits of daylighting. The photobioreactor team also made major advancements in the testing of model scale and bench top lab-scale systems.

  6. Bridgman growth and characterization of bulk single crystals of Ga1-xInxSb for thermophotovoltaic applications

    International Nuclear Information System (INIS)

    Boyer, J.R.; Haines, W.T.

    1997-12-01

    Thermophotovoltaic generation of electricity is attracting renewed attention due to recent advances in low bandgap (0.5--0.7 eV) III-V semiconductors. The use of mixed pseudo-binary compounds allows for the tailoring of the lattice parameter and the bandgap of the material. Conventional deposition techniques (i.e., epitaxy) for producing such ternary or quaternary materials are typically slow and expensive. Production of bulk single crystals of ternary materials, for example Ga 1-x In x Sb, is expected to dramatically reduce such material costs. Bulk single crystals of Ga 1-x In x Sb have been prepared using a Bridgman technique in a two-zone furnace. These crystals are 19 mm in diameter by approximately 50 mm long and were produced using seeds of the same diameter. The effects of growth rate and starting materials on the composition and quality of these crystals will be discussed and compared with other attempts to produce single crystals of this material

  7. Proceedings of the 1998 oil heat technology conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  8. Comportamento sob fluência em elastômeros termoplásticos vulcanizados baseados em poliamida 6 e borracha nitrílica Creep behavior of polyamide 6/nitrylic rubber TPV's blends

    Directory of Open Access Journals (Sweden)

    Ana C. O. Gomes

    2009-01-01

    Full Text Available Os materiais testados neste trabalho são o resultado de um estudo do uso de aditivos e compatibilizantes na mistura de poliamida 6 (PA6 e borracha nitrílica (NBR, realizado com o objetivo de melhorar suas propriedades mecânicas e facilitar o processamento da mistura. Fluência ("creep" é um teste mecânico importante ao simular a aplicação final do material de engenharia, possibilitando a previsão do desempenho de modo comparativo. Entretanto, é um teste pouco explorado na caracterização de TPV's. A melhora nas propriedades com a adição de aditivos e a eficiência do processo de compatibilização pode ser observada através da variação na compliância das amostras analisadas. Os resultados são correlacionados usando testes de densidade, teor de gel, resistência à tração e microscopia eletrônica de varredura. O presente trabalho mostra que é possível avaliar um material em condições semelhantes à aplicação final em um teste rápido e com gasto mínimo de material.The materials tested in this work are the result of a study involving the use of additives and compatibilization in blends of PA6 and NBR, which was aimed at enhancing the mechanical properties and processability of the blend. Creep is an important mechanical test since it simulates the final application of the material, allowing a prediction of material performance, in a comparative way. However, this is a test seldom explored in the characterization of TPV's. The enhancement of the properties induced by additives and the efficiency of compatibilization process can be observed through the analysis of changes in the compliance of the samples. The results are correlated using measurements of density, gel content, tension strength and scanning electron microscopy. The present work shows it to be possible to evaluate a material under conditions similar to those in the final applications, in a fast test and with minimal material waste.

  9. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  10. Conversion of NIR-radiation to Electric Power in a Solar Greenhouse

    Science.gov (United States)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; Bot, G. P. A.; Flamand, G.

    2007-02-01

    The scope of this investigation is the development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high outdoor temperatures. As a first measure, the spectral selective cover material, which prevents the entrance of NIR radiation, is investigated. The special spectral selective reflectivity of these materials has to block up to 50% of the solar energy outside the greenhouse, which will reduce the needed cooling capacity. The second measure is the integration of a solar energy system. When the NIR reflecting coating is designed as a parabolic or circular shaped reflector integrated in the greenhouse, the reflected solar energy of a PV cell in the focus point delivers electric energy. With a ray tracing computer program the geometry of the reflector was optimally designed with respect to the maximum power level. The PV or TPV cells mounted in the focal point require cooling due to the high heat load of the concentrated radiation (concentration factor of 40-80). The properties of different materials, Ge, GaSb, CIS and Si cells were investigated to find the optimal cell for this application. For the second option a tubular collector is placed in the focus of the reflector. The collector contains thermal oil, which is heated up to a temperature of 400°C. This hot oil can be used for heating a Stirling motor or an Organic Rankine Cycle (ORC). The typical efficiencies and economic achievement of these systems including the tube collector are compared with the efficiencies of the TPV cells.

  11. Short communication: Phenotypic protease inhibitor resistance and cross-resistance in the clinic from 2006 to 2008 and mutational prevalences in HIV from patients with discordant tipranavir and darunavir susceptibility phenotypes.

    Science.gov (United States)

    Bethell, Richard; Scherer, Joseph; Witvrouw, Myriam; Paquet, Agnes; Coakley, Eoin; Hall, David

    2012-09-01

    To test tipranavir (TPV) or darunavir (DRV) as treatment options for patients with phenotypic resistance to protease inhibitors (PIs), including lopinavir, saquinavir, atazanavir, and fosamprenavir, the PhenoSense GT database was analyzed for susceptibility to DRV or TPV among PI-resistant isolates. The Monogram Biosciences HIV database (South San Francisco, CA) containing 7775 clinical isolates (2006-2008) not susceptible to at least one first-generation PI was analyzed. Phenotypic responses [resistant (R), partially susceptible (PS), or susceptible (S)] were defined by upper and lower clinical cut-offs to each PI. Genotypes were screened for amino acid substitutions associated with TPV-R/DRV-S and TPV-S/DRV-R phenotypes. In all, 4.9% (378) of isolates were resistant to all six PIs and 31.0% (2407) were resistant to none. Among isolates resistant to all four first-generation PIs, DRV resistance increased from 21.2% to 41.9% from 2006 to 2008, respectively, and resistance to TPV remained steady (53.9 to 57.3%, respectively). Higher prevalence substitutions in DRV-S/TPV-R isolates versus DRV-R/TPV-S isolates, respectively, were 82L/T (44.4% vs. 0%) and 83D (5.8% vs. 0%). Higher prevalence substitutions in DRV-R/TPV-S virus were 50V (0.0% vs. 28.9%), 54L (1.0% vs. 36.1%), and 76V (0.4% vs. 15.5%). Mutations to help predict discordant susceptibility to DRV and TPV in isolates with reduced susceptibility to other PIs were identified. DRV resistance mutations associated with improved virologic response to TPV were more prevalent in DRV-R/TPV-S isolates. TPV resistance mutations were more prevalent in TPV-R and DRV-S isolates. These results confirm the impact of genotype on phenotype, illustrating how HIV genotype and phenotype data assist regimen optimization.

  12. Combustion and direct energy conversion inside a micro-combustor

    International Nuclear Information System (INIS)

    Lei, Yafeng; Chen, Wei; Lei, Jiang

    2016-01-01

    Highlights: • The flammability range of micro-combustor was broadened with heat recirculation. • The quenching diameter decreased with heat recirculation compared to without recirculation. • The surface areas to volume ratio was the most important parameter affecting the energy conversion efficiency. • The maximum conversion efficiency (3.15%) was achieved with 1 mm inner diameter. - Abstract: Electrical energy can be generated by employing a micro-thermophotovoltaic (TPV) cell which absorbs thermal radiation from combustion taking place in a micro-combustor. The stability of combustion in a micro-combustor is essential for operating a micro-power system using hydrogen and hydrocarbon fuels as energy source. To understand the mechanism of sustaining combustion within the quenching distance of fuel, this study proposed an annular micro combustion tube with recirculation of exhaust heat. To explore the feasibility of combustion in the micro annular tube, the parameters influencing the combustion namely, quenching diameter, and flammability were studied through numerical simulation. The results indicated that combustion could be realized in micro- combustor using heat recirculation. Following results were obtained from simulation. The quenching diameter reduced from 1.3 mm to 0.9 mm for heat recirculation at equivalence ratio of 1; the lean flammability was 2.5%–5% lower than that of without heat recirculation for quenching diameters between 2 mm and 5 mm. The overall energy conversion efficiency varied at different inner diameters. A maximum efficiency of 3.15% was achieved at an inner diameter of 1 mm. The studies indicated that heat recirculation is an effective strategy to maintain combustion and to improve combustion limits in micro-scale system.

  13. 75 FR 81310 - In the Matter of Certain Digital Television Products and Certain Products Containing Same and...

    Science.gov (United States)

    2010-12-27

    ... Victory Electronics (Taiwan) Co., Ltd. (``Top Victory Electronics''); and Envision Peripherals, Inc. (``Envision''). Cease-and-desist orders were issued against Vizio, TPV USA, Envision, and SBC. Respondents Vizio, AmTran, TPV Technology, TPV USA, Top Victory Electronics, and Envision appealed to the United...

  14. Effect of Rubber Nanoparticle Agglomeration on Properties of Thermoplastic Vulcanizates during Dynamic Vulcanization

    Directory of Open Access Journals (Sweden)

    Hanguang Wu

    2016-04-01

    Full Text Available We previously reported that the dispersed rubber microparticles in ethylene-propylene-diene monomer (EPDM/polypropylene (PP thermoplastic vulcanizates (TPVs are actually agglomerates of rubber nanoparticles. In this study, based on this new understanding of the microstructure of TPV, we further revealed the microstructure-properties relationship of EPDM/PP TPV during dynamic vulcanization, especially the effect of the size of rubber nanoparticle agglomerates (dn, the thicknesses of PP ligaments (IDpoly and the rubber network on the properties of EPDM/PP TPV. We were able to simultaneously obtain a high tensile strength, elongation at break, elastic modulus, and elasticity for the EPDM/PP TPV by the achievement of a smaller dn, a thinner IDpoly and a denser rubber network. Interestingly, the effect of dn and IDpoly on the elastic modulus of EPDM/PP TPV composed of rubber nanoparticle agglomerates is different from that of EPDM/PP TPVs composed of rubber microparticles reported previously. The deformation behavior of the TPVs during stretching was studied to understand the mechanism for the achievement of good mechanical properties. Interestingly, the rubber nanoparticle agglomerates are oriented along the tensile direction during stretching. The TPV samples with smaller and more numerous rubber nanoparticle agglomerates can slow down the development of voids and cracks more effectively, thus leading to increase in tensile strength and elongation at break of the EPDM/PP TPV.

  15. Conjunction of Photovoltaic and Thermophotovoltaic Power Production in Spacecraft Power Systems

    Science.gov (United States)

    2015-09-01

    solar energy, having been converted by plants through photosynthesis to carbohydrates and cellulose, sometimes by animals into more carbohydrates and...the properties of materials specified in the device model that are either drawn from databases built into the software, databases that are closely...linked to the software—such as optical parameters drawn from the Sopra database —or that are specified by the user within the model itself [23]. When

  16. 5α-Reductase inhibitor is less effective in men with small prostate volume and low serum prostatic specific antigen level.

    Science.gov (United States)

    Lin, Victor C; Liao, Chun-Hou; Wang, Chung-Cheng; Kuo, Hann-Chorng

    2015-09-01

    Large total prostate volumes (TPVs) or high serum prostate-specific antigen (PSA) levels indicate high-risk clinical progression of benign prostatic hyperplasia. This prospective study investigated the treatment outcome of combined 5α-reductase inhibitor and α-blocker in patients with and without large TPVs or high PSA levels. Men aged ≥ 45 years with International Prostate Symptom scores (IPSS) ≥ 8, TPV ≥ 20 mL, and maximum flow rate ≤ 15 mL/s received a combination therapy (dutasteride plus doxaben) for 2 years. Patients with baseline PSA ≥ 4 ng/mL underwent prostatic biopsy for excluding malignancy. The changes in the parameters from baseline to 24 months after combination therapy were compared in those with and without TPV ≥ 40 mL or PSA levels ≥ 1.5 ng/mL. A total of 285 patients (mean age 72 ± 9 years) completed the study. Combination therapy resulted in significant continuous improvement in IPSS, quality of life index, maximum flow rate, and postvoid residual (all p < 0.0001) regardless of baseline TPV or PSA levels. However, only patients with baseline TPV ≥ 40 mL had significant improvements in IPSS-storage subscore, voided volume, reduction in TPV, transitional zone index, and PSA levels. In addition, patients with baseline TPV < 40 mL and PSA < 1.5 ng/mL had neither a reduction in TPV nor a decrease in serum PSA level. A high TPV indicates more outlet resistance, whereas elevated serum PSA level reflects glandular proliferation. Thus, patients with TPV<40 mL and low PSA levels has less benefit from 5α-reductase inhibitor therapy. The therapeutic effect of combined treatment may arise mainly from the α-blocker in these patients. Copyright © 2013. Published by Elsevier B.V.

  17. Advanced conversion technology review panel report

    International Nuclear Information System (INIS)

    Frazier, T.A.

    1998-01-01

    The Department of Energy (DOE), the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) established a DOE lead management team and an Advanced Conversion Technology Review Panel. The panel was tasked with providing the management team with an assessment and ranking of the three advanced conversion technologies. The three advanced conversion technologies were alkali metal thermal to electric converter (AMTEC), Stirling engine converter (SEC), and thermophotovoltaic (TPV). To rate and rank these three technologies, five criteria were developed: (1) Performance, (2) Development and Cost/Production and Cost/Schedule Risk, (3) Spacecraft Interface and Operations, (4) Ability to Scale Conversion, and (5) Safety. Discussed are the relative importance of each of these criteria and the rankings of the three advanced conversion technologies. It was the conclusion of the panel that the technology decision should be based on the risk that DOE and NASA are willing to accept. SEC is the most mature technology and would provide the lowest risk option. However, if more risk is acceptable, AMTEC not only provides benefits in the spacecraft interface but is also predicted to outperform the SEC. It was proposed that if AMTEC were selected, funding should be provided at a reasonable level to support back-up technology to be developed in a parallel fashion until AMTEC has proven its capability. The panel report and conclusion were provided to DOE in February 1997

  18. Urinary prostate-specific antigen: predictor of benign prostatic hyperplasia progression?

    Science.gov (United States)

    Pejcic, Tomislav P; Tulic, Cane Dz; Lalic, Natasa V; Glisic, Biljana D; Ignjatovic, Svetlana D; Markovic, Biljana B; Hadzi-Djokic, Jovan B

    2013-04-01

    Urinary prostate-specific antigen (uPSA) can be used as additional parameter of benign prostatic hyperplasia (BPH) progression. From January 2001 to December 2011, uPSA was determined in 265 patients with benign prostate. Based on total prostate volume (TPV), the patients with benign prostate were divided in two groups: TPV specificity of 0.83 and sensitivity of 0.67. The level of uPSA reflects prostatic hormonal activity and correlates with TPV, PSA and age. UPSA level ≥ 150 ng/mL can be used as additional predictive parameter of BPH progression.

  19. Association between metabolic syndrome and intravesical prostatic protrusion in patients with benign prostatic enlargement and lower urinary tract symptoms (MIPS Study).

    Science.gov (United States)

    Russo, Giorgio I; Regis, Federica; Spatafora, Pietro; Frizzi, Jacopo; Urzì, Daniele; Cimino, Sebastiano; Serni, Sergio; Carini, Marco; Gacci, Mauro; Morgia, Giuseppe

    2018-05-01

    To investigate the association between metabolic syndrome (MetS) and morphological features of benign prostatic enlargement (BPE), including total prostate volume (TPV), transitional zone volume (TZV) and intravesical prostatic protrusion (IPP). Between January 2015 and January 2017, 224 consecutive men aged >50 years presenting with lower urinary tract symptoms (LUTS) suggestive of BPE were recruited to this multicentre cross-sectional study. MetS was defined according to International Diabetes Federation criteria. Multivariate linear and logistic regression models were performed to verify factors associated with IPP, TZV and TPV. Patients with MetS were observed to have a significant increase in IPP (P < 0.01), TPV (P < 0.01) and TZV (P = 0.02). On linear regression analysis, adjusted for age and metabolic factors of MetS, we found that high-density lipoprotein (HDL) cholesterol was negatively associated with IPP (r = -0.17), TPV (r = -0.19) and TZV (r = -0.17), while hypertension was positively associated with IPP (r = 0.16), TPV (r = 0.19) and TZV (r = 0.16). On multivariate logistic regression analysis adjusted for age and factors of MetS, hypertension (categorical; odds ratio [OR] 2.95), HDL cholesterol (OR 0.94) and triglycerides (OR 1.01) were independent predictors of TPV ≥ 40 mL. We also found that HDL cholesterol (OR 0.86), hypertension (OR 2.0) and waist circumference (OR 1.09) were significantly associated with TZV ≥ 20 mL. On age-adjusted logistic regression analysis, MetS was significantly associated with IPP ≥ 10 mm (OR 34.0; P < 0.01), TZV ≥ 20 mL (OR 4.40; P < 0.01) and TPV ≥ 40 mL (OR 5.89; P = 0.03). We found an association between MetS and BPE, demonstrating a relationship with IPP. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  20. Device design of GaSb/CdS thin film thermal photovoltaic solar cells%基于GaSb/CdS薄膜热光伏电池的器件设计∗

    Institute of Scientific and Technical Information of China (English)

    吴限量; 张德贤; 蔡宏琨; 周严; 倪牮; 张建军

    2015-01-01

    基于GaSb薄膜热光伏器件是降低热光伏系统成本的有效途径之一,本文主要针对GaSb/CdS薄膜热光伏器件结构进行理论分析.采用AFORS-HET软件进行模拟仿真,分析GaSb和CdS两种材料各自的缺陷态密度、界面态对电池性能的影响.根据软件模拟可以得知,吸收层GaSb的缺陷态密度以及GaSb与CdS之间的界面态密度是影响电池性能的重要因素.当GaSb缺陷态增加时,主要影响电池的填充因子,电池效率明显下降.而作为窗口层的CdS缺陷态密度对电池性能影响不明显,当CdS缺陷态密度上升4个数量级时,电池效率仅下降0.11%.%Enthusiasm in the research of thermo-photovoltaic (TPV) cells has been aroused because the low bandwidth semi-conductors of III-V family are coming into use. GaSb, as a member of III-V family, has many merits such as high absorption coeffcient, and low band gap of 0.725 eV at 300 K etc.. At present thermo-photovoltaic cells are usually based on GaSb wafer, and it can be manufactured by the vertical Bridgeman method. Thermo-photovoltaic cell based on GaSb films is one of the effective ways to reduce the cost of the thermo-photovoltaic system. GaSb polycrystalline films can be grown by physical vapor deposition (PVD) which has advantages in using fewer materials and energy, and also in doing little harm to the environment. Because of residual acceptor defects VGaGaSb, GaSb thin film is usually of p-type semiconductor. So we should find n-type semiconductor material to form pn junction. We choose CdS as the emission layer of a cell structure. CdS belongs to n-type semiconductor with a narrow band gap of 2.4 eV and high light transmissivity. CdS thin film grown by chemical bath deposition (CBD) has passivation properties for GaSb. CdS layers can remove native oxides from GaSb surface and reduce the surface recombination velocity of GaSb. This paper focuses on theoretical analysis of GaSb/CdS thin film photovoltaic

  1. Effectiveness of tipranavir versus darunavir as a salvage therapy in HIV-1 treatment-experienced patients.

    Science.gov (United States)

    Domínguez-Hermosillo, Juan Carlos; Mata-Marin, José Antonio; Herrera-González, Norma Estela; Chávez-García, Marcelino; Huerta-García, Gloria; Nuñez-Rodríguez, Nohemí; García-Gámez, José Gerardo; Jiménez-Romero, Anai; Gaytán-Martínez, Jesús Enrique

    2016-09-30

    Although both tipranavir (TPV) and darunavir (DRV) represent important options for the management of patients with multi-protease inhibitor (PI)-resistant human immunodeficiency virus (HIV), currently there are no studies comparing the effectiveness and safety of these two drugs in the Mexican population. The aim of this study was to compare the effectiveness of TPV versus DRV as a salvage therapy in HIV-1 treatment-experienced patients. This was a comparative, prospective, cohort study. Patients with HIV and triple-class drug resistance evaluated at the Hospital de Infectología "La Raza", National Medical Center, were included. All patients had the protease and retrotranscriptase genotype; resistance mutation interpretation was done using the Stanford database. A total of 35 HIV-1 triple-class drug-resistant patients were analyzed. All of them received tenofovir and raltegravir, 22 received darunavir/ritonavir (DRV/r), and 13 received tipranavir/ritonavir (TPV/r) therapies. The median baseline RNA HIV-1 viral load and CD4+ cell count were 4.34 log (interquartile range [IQR], 4.15-4.72) and 267 cells/mm3 (IQR, 177-320) for the DRV/r group, and 4.14 log (IQR, 3.51-4.85) and 445 cells/mm3 (IQR, 252-558) for the TPV/r group. At week 24 of treatment, 91% of patients receiving DRV/r and 100% of patients receiving TPV/r had an RNA HIV-1 viral load HIV-1 patients who were highly experienced in antiretroviral therapy.

  2. Preparation and Properties of Novel Thermoplastic Vulcanizate Based on Bio-Based Polyester/Polylactic Acid, and Its Application in 3D Printing

    Directory of Open Access Journals (Sweden)

    Yu Gao

    2017-12-01

    Full Text Available Thermoplastic vulcanizate (TPV combines the high elasticity of elastomers and excellent processability of thermoplastics. Novel bio-based TPV based on poly (lactide (PLA and poly (1,4-butanediol/2,3-butanediol/succinate/itaconic acid (PBBSI were prepared in this research. PBBSI copolyesters were synthesized by melting polycondensation, and the molecular weights, chemical structures and compositions of the copolyesters were characterized by GPC, NMR and FTIR. Bio-based 2,3-butanediol was successfully incorporated to depress the crystallization behavior of the PBBSI copolyester. With an increase of 2,3-butanediol content, the PBBSI copolyester transformed from a rigid plastic to a soft elastomer. Furthermore, the obtained TPV has good elasticity and rheological properties, which means it can be applied as a 3D-printing material.

  3. Changes in Speckle Tracking Echocardiography Measures of Ventricular Function after Percutaneous Implantation of the Edwards SAPIEN Transcatheter Heart Valve in the Pulmonary Position

    Science.gov (United States)

    Chowdhury, Shahryar M.; Hijazi, Ziyad M.; Rhodes, John F.; Kar, Saibal; Makkar, Raj; Mullen, Michael; Cao, Qi-Ling; Mandinov, Lazar; Buckley, Jason; Pietris, Nicholas P.; Shirali, Girish S.

    2015-01-01

    Background Patients with free pulmonary regurgitation or mixed pulmonary stenosis and regurgitation and severely dilated right ventricles (RV) show little improvement in ventricular function after pulmonary valve replacement when assessed by traditional echocardiographic markers. We evaluated changes in right and left ventricular (LV) function using speckle tracking echocardiography in patients after SAPIEN transcatheter pulmonary valve (TPV) placement. Methods Echocardiograms were evaluated at baseline, discharge, 1 and 6 months after TPV placement in 24 patients from 4 centers. Speckle tracking measures of function included peak longitudinal strain, strain rate, and early diastolic strain rate. RV fractional area change, tricuspid annular plane systolic excursion, and left ventricular LV ejection fraction were assessed. Routine Doppler and tissue Doppler velocities were measured. Results At baseline, all patients demonstrated moderate to severe pulmonary regurgitation; this improved following TPV placement. No significant changes were detected in conventional measures of RV or LV function at 6 months. RV longitudinal strain (−16.9% vs. −19.6%, P echocardiography may be more sensitive than traditional measures in detecting changes in systolic function after TPV implantation. (Echocardiography 2015;32:461–469) PMID:25047063

  4. NREL preprints for the photovoltaic specialists conference of IEEE twenty-five

    Energy Technology Data Exchange (ETDEWEB)

    Gwinner, D. [ed.

    1996-05-01

    This volume contains 40 papers prepared for presentation at the conference. Topics include: material properties, fabrication of solar cells, thermophotovoltaics, performance efficiency of photovoltaic cells, gettering procedures, market development, and photovoltaic power supplies for remote areas. Materials for solar cells include: Si, CuInSe{sub 2}, CuInGaSe{sub 2}, GaInP, GaAs, CdTe, and CdS. Papers have been processed separately for inclusion on the data base.

  5. Measuring the health impact of human rights violations related to Australian asylum policies and practices: a mixed methods study

    Directory of Open Access Journals (Sweden)

    Mulholland Kim

    2009-02-01

    Full Text Available Abstract Background Human rights violations have adverse consequences for health. However, to date, there remains little empirical evidence documenting this association, beyond the obvious physical and psychological effects of torture. The primary aim of this study was to investigate whether Australian asylum policies and practices, which arguably violate human rights, are associated with adverse health outcomes. Methods We designed a mixed methods study to address the study aim. A cross-sectional survey was conducted with 71 Iraqi Temporary Protection Visa (TPV refugees and 60 Iraqi Permanent Humanitarian Visa (PHV refugees, residing in Melbourne, Australia. Prior to a recent policy amendment, TPV refugees were only given temporary residency status and had restricted access to a range of government funded benefits and services that permanent refugees are automatically entitled to. The quantitative results were triangulated with semi-structured interviews with TPV refugees and service providers. The main outcome measures were self-reported physical and psychological health. Standardised self-report instruments, validated in an Arabic population, were used to measure health and wellbeing outcomes. Results Forty-six percent of TPV refugees compared with 25% of PHV refugees reported symptoms consistent with a diagnosis of clinical depression (p = 0.003. After controlling for the effects of age, gender and marital status, TPV status made a statistically significant contribution to psychological distress (B = 0.5, 95% CI 0.3 to 0.71, p ≤ 0.001 amongst Iraqi refugees. Qualitative data revealed that TPV refugees generally felt socially isolated and lacking in control over their life circumstances, because of their experiences in detention and on a temporary visa. This sense of powerlessness and, for some, an implicit awareness they were being denied basic human rights, culminated in a strong sense of injustice. Conclusion Government asylum policies

  6. Measuring the health impact of human rights violations related to Australian asylum policies and practices: a mixed methods study.

    Science.gov (United States)

    Johnston, Vanessa; Allotey, Pascale; Mulholland, Kim; Markovic, Milica

    2009-02-03

    Human rights violations have adverse consequences for health. However, to date, there remains little empirical evidence documenting this association, beyond the obvious physical and psychological effects of torture. The primary aim of this study was to investigate whether Australian asylum policies and practices, which arguably violate human rights, are associated with adverse health outcomes. We designed a mixed methods study to address the study aim. A cross-sectional survey was conducted with 71 Iraqi Temporary Protection Visa (TPV) refugees and 60 Iraqi Permanent Humanitarian Visa (PHV) refugees, residing in Melbourne, Australia. Prior to a recent policy amendment, TPV refugees were only given temporary residency status and had restricted access to a range of government funded benefits and services that permanent refugees are automatically entitled to. The quantitative results were triangulated with semi-structured interviews with TPV refugees and service providers. The main outcome measures were self-reported physical and psychological health. Standardised self-report instruments, validated in an Arabic population, were used to measure health and wellbeing outcomes. Forty-six percent of TPV refugees compared with 25% of PHV refugees reported symptoms consistent with a diagnosis of clinical depression (p = 0.003). After controlling for the effects of age, gender and marital status, TPV status made a statistically significant contribution to psychological distress (B = 0.5, 95% CI 0.3 to 0.71, p basic human rights, culminated in a strong sense of injustice. Government asylum policies and practices violating human rights norms are associated with demonstrable psychological health impacts. This link between policy, rights violations and health outcomes offers a framework for addressing the impact of socio-political structures on health.

  7. Capillary zone electrophoresis method to assay tipranavir capsules and identification of oxidation product and organic impurity by quadrupole-time of flight mass spectrometry.

    Science.gov (United States)

    Lago, Matheus Wagner; Friedrich, Mariane Lago; Iop, Gabrielle Dineck; de Souza, Thiago Belarmino; de Azevedo Mello, Paola; Adams, Andréa Inês Horn

    2018-05-01

    Tipranavir (TPV) is one of the most recently developed protease inhibitors (PI) and it is specially recommended for treatment-experienced patients who are resistant to other PI drugs. In this work, a simple and friendly environmental CZE stability-indicating method to assay TPV capsules was developed and two TPV organic impurities were identified by high resolution mass spectrometry (HRMS). The optimized analytical conditions were: background electrolyte composed of sodium borate 50mM, pH 9.0 and 5% of methanol; voltage + 28kV; hydrodynamic injection of 5s (100mbar), detection wavelength 240nm, at 25°C. The separation was achieved in a fused silica capillary with 50µm × 40cm (inner diameter × effective length), using furosemide as internal standard. All the validation parameters were met and the method was specific, even in the presence of degradation products and impurities. Oxidation was indicated as the main degradation pathway among those evaluated in this study (acidic, alkaline, thermal, photolytic and oxidative) and it showed a second order degradation kinetic, under the conditions used in this study. The main oxidation product and an organic impurity detected in the standard were characterized by Q-TOF, and both of them correspond to oxidation products of TPV. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Stent fracture, valve dysfunction, and right ventricular outflow tract reintervention after transcatheter pulmonary valve implantation: patient-related and procedural risk factors in the US Melody Valve Trial.

    Science.gov (United States)

    McElhinney, Doff B; Cheatham, John P; Jones, Thomas K; Lock, James E; Vincent, Julie A; Zahn, Evan M; Hellenbrand, William E

    2011-12-01

    Among patients undergoing transcatheter pulmonary valve (TPV) replacement with the Melody valve, risk factors for Melody stent fracture (MSF) and right ventricular outflow tract (RVOT) reintervention have not been well defined. From January 2007 to January 2010, 150 patients (median age, 19 years) underwent TPV implantation in the Melody valve Investigational Device Exemption trial. Existing conduit stents from a prior catheterization were present in 37 patients (25%, fractured in 12); 1 or more new prestents were placed at the TPV implant catheterization in 51 patients. During follow-up (median, 30 months), MSF was diagnosed in 39 patients. Freedom from a diagnosis of MSF was 77±4% at 14 months (after the 1-year evaluation window) and 60±9% at 39 months (3-year window). On multivariable analysis, implant within an existing stent, new prestent, or bioprosthetic valve (combined variable) was associated with longer freedom from MSF (Pbioprosthetic valve was associated with lower risk of MSF and reintervention.

  9. Heat Recuperator Engineering for an ARL Liquid-Fueled Thermophotovoltaic Power Source Demonstrator

    Science.gov (United States)

    2014-09-01

    fabrication, such as direct metal laser sintering ( DMLS ), were considered. DMLS does not provide the tolerance control required, making post-machining...necessary prior to welding. In addition, parts designed for DMLS require material to be added in certain places to support the part during fabrication

  10. Kinematic characteristics of tenodesis grasp in C6 quadriplegia.

    Science.gov (United States)

    Mateo, S; Revol, P; Fourtassi, M; Rossetti, Y; Collet, C; Rode, G

    2013-02-01

    Descriptive control case study. To analyze the kinematics of tenodesis grasp in participants with C6 quadriplegia and healthy control participants in a pointing task and two daily life tasks involving a whole hand grip (apple) or a lateral grip (floppy disk). France. Four complete participants with C6 quadriplegia were age matched with four healthy control participants. All participants were right-handed. The measured kinematic parameters were the movement time (MT), the peak velocity (PV), the time of PV (TPV) and the wrist angle in the sagittal plane at movement onset, at the TPV and at the movement end point. The participants with C6 quadriplegia had significantly longer MTs in both prehension tasks. No significant differences in TPV were found between the two groups. Unlike control participants, for both prehension tasks the wrist of participants with C6 quadriplegia was in a neutral position at movement onset, in flexion at the TPV, and in extension at the movement end point. Two main kinematic parameters characterize tenodesis grasp movements in C6 quadriplegics: wrist flexion during reaching and wrist extension during the grasping phase, and increased MT reflecting the time required to adjust the wrist's position to achieve the tenodesis grasp. These characteristics were observed for two different grips (whole hand and lateral grip). These results suggest sequential planning of reaching and tenodesis grasp, and should be taken into account for prehension rehabilitation in patients with quadriplegia.

  11. Spin Caloritronic Transport of 1,3,5-Triphenylverdazyl Radical

    International Nuclear Information System (INIS)

    Wu Qiu-Hua; Zhao Peng; Liu De-Sheng

    2016-01-01

    We investigate theoretically the spin caloritronic transport properties of a stable 1,3,5-triphenylverdazyl (TPV) radical sandwiched between Au electrodes through different connection fashions. Obvious spin Seebeck effect can be observed in the para-connection fashion. Furthermore, a pure spin current and a completely spin-polarized current can be realized by tuning the gate voltage. Furthermore, a 100% spin polarization without the need of gate voltage can be obtained in the meta-connection fashion. These results demonstrate that TPV radical is a promising material for spin caloritronic and spintronic applications. (paper)

  12. Radioisotope thermal photovoltaic application of the GaSb solar cell

    Science.gov (United States)

    Morgan, M. D.; Horne, W. E.; Day, A. C.

    1991-01-01

    An examination of a RTVP (radioisotopic thermophotovoltaic) conceptual design has shown a high potential for power densities well above those achievable with radioisotopic thermoelectric generator (RTG) systems. An efficiency of 14.4 percent and system specific power of 9.25 watts/kg were predicted for a system with sixteen GPHS (general purpose heat source) sources operating at 1100 C. The models also showed a 500 watt system power by the strontium-90 isotope at 1200 C at an efficiency of 17.0 percent and a system specific power of 11.8 watts/kg. The key to this level of performance is a high-quality photovoltaic cell with narrow bandgap and a reflective rear contact. Recent work at Boeing on GaSb cells and transparent back GaAs cells indicate that such a cell is well within reach.

  13. EDITORIAL: The 7th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications (PowerMEMS 2007)

    Science.gov (United States)

    Hebling, C.; Woias, P.

    2008-10-01

    field trying to commercialize micro energy harvesting devices, micro thermo-photovoltaics or micro fuel cells in order to make an impact on our daily life. It is interesting to see the remarkable scientific dynamics and innovations in micro energy technology that have been mirrored in the scope of consecutive PowerMEMS workshops. Micro fuel cells, micro combustion systems and heat engines have been on-going topics from the beginning due to their promising power densities and high power levels up to hundreds of watts. At the other end of the power scale micro energy harvesting has entered the stage, with a remarkable growth rate of presentations during the last three workshops, towering over all other topics with 33 presentations at PowerMEMS 2007. Another significant trend is the slow but steady emergence of electronic energy management as a future key technology. As Guest Editors of this special issue we would like to express our appreciation to the members of the Organizing Committee and the Technical Program Committee of PowerMEMS for their on-going efforts. By selecting the research fields mentioned above they formed the PowerMEMS 2007 program as a comprehensive digest of today's micro energy technology that is reflected, along with selected high quality publications, in this special issue of JMM. We hope that this work will stimulate further innovative research in micro energy technology and will help to mark the trail for further progress in this exciting field of MEMS science and technology.

  14. Non-invasive clinical parameters for the prediction of urodynamic bladder outlet obstruction: analysis using causal Bayesian networks.

    Directory of Open Access Journals (Sweden)

    Myong Kim

    Full Text Available To identify non-invasive clinical parameters to predict urodynamic bladder outlet obstruction (BOO in patients with benign prostatic hyperplasia (BPH using causal Bayesian networks (CBN.From October 2004 to August 2013, 1,381 eligible BPH patients with complete data were selected for analysis. The following clinical variables were considered: age, total prostate volume (TPV, transition zone volume (TZV, prostate specific antigen (PSA, maximum flow rate (Qmax, and post-void residual volume (PVR on uroflowmetry, and International Prostate Symptom Score (IPSS. Among these variables, the independent predictors of BOO were selected using the CBN model. The predictive performance of the CBN model using the selected variables was verified through a logistic regression (LR model with the same dataset.Mean age, TPV, and IPSS were 6.2 (±7.3, SD years, 48.5 (±25.9 ml, and 17.9 (±7.9, respectively. The mean BOO index was 35.1 (±25.2 and 477 patients (34.5% had urodynamic BOO (BOO index ≥40. By using the CBN model, we identified TPV, Qmax, and PVR as independent predictors of BOO. With these three variables, the BOO prediction accuracy was 73.5%. The LR model showed a similar accuracy (77.0%. However, the area under the receiver operating characteristic curve of the CBN model was statistically smaller than that of the LR model (0.772 vs. 0.798, p = 0.020.Our study demonstrated that TPV, Qmax, and PVR are independent predictors of urodynamic BOO.

  15. Decentralised energy supply as our future energy supply system? - An interview with Prof. Alexander Wokaun

    International Nuclear Information System (INIS)

    Nagel, Ch.

    2002-01-01

    In this interview with Professor Alexander Wokaun, head of General Energy Research at the Paul Scherrer Institute (PSI) in Villigen, Switzerland, the decentralised use of small, gas-fired combined heat and power (CHP) units is discussed as a means of meeting Switzerland's Kyoto CO 2 commitments. The question on which of several new CHP technologies such as gas-fired engines and turbines, Stirling engines, fuel cells and thermo-photovoltaics will win the race is discussed. The efficiency and application areas of CHP technologies are examined and the problems involved when controlling complex electricity grids with many small decentrally placed generating facilities is discussed. Finally, Professor Wokaun is asked for his opinion on what the Swiss power mix will look like in 20 years

  16. Thermodynamic limits of energy harvesting from outgoing thermal radiation.

    Science.gov (United States)

    Buddhiraju, Siddharth; Santhanam, Parthiban; Fan, Shanhui

    2018-04-17

    We derive the thermodynamic limits of harvesting power from the outgoing thermal radiation from the ambient to the cold outer space. The derivations are based on a duality relation between thermal engines that harvest solar radiation and those that harvest outgoing thermal radiation. In particular, we derive the ultimate limit for harvesting outgoing thermal radiation, which is analogous to the Landsberg limit for solar energy harvesting, and show that the ultimate limit far exceeds what was previously thought to be possible. As an extension of our work, we also derive the ultimate limit of efficiency of thermophotovoltaic systems.

  17. High Efficiency Quantum Dot III-V Thermophotovoltaic Cell for Space Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Quantum dots are nanoscale materials that have already improved the performance of optical sensors, lasers, light emitting diodes and solar cells. The unique...

  18. Image quality of mean temporal arterial and mean temporal portal venous phase images calculated from low dose dynamic volume perfusion CT datasets in patients with hepatocellular carcinoma and pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X. [Radiology Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China); Henzler, T., E-mail: thomas.henzler@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Gawlitza, J.; Diehl, S. [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Wilhelm, T. [Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Schoenberg, S.O. [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Jin, Z.Y.; Xue, H.D. [Radiology Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China); Smakic, A. [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany)

    2016-11-15

    Purpose: Dynamic volume perfusion CT (dVPCT) provides valuable information on tissue perfusion in patients with hepatocellular carcinoma (HCC) and pancreatic cancer. However, currently dVPCT is often performed in addition to conventional CT acquisitions due to the limited morphologic image quality of dose optimized dVPCT protocols. The aim of this study was to prospectively compare objective and subjective image quality, lesion detectability and radiation dose between mean temporal arterial (mTA) and mean temporal portal venous (mTPV) images calculated from low dose dynamic volume perfusion CT (dVPCT) datasets with linearly blended 120-kVp arterial and portal venous datasets in patients with HCC and pancreatic cancer. Materials and methods: All patients gave written informed consent for this institutional review board–approved HIPAA compliant study. 27 consecutive patients (18 men, 9 women, mean age, 69.1 years ± 9.4) with histologically proven HCC or suspected pancreatic cancer were prospectively enrolled. The study CT protocol included a dVPCT protocol performed with 70 or 80 kVp tube voltage (18 spiral acquisitions, 71.2 s total acquisition times) and standard dual-energy (90/150 kVpSn) arterial and portal venous acquisition performed 25 min after the dVPCT. The mTA and mTPV images were manually reconstructed from the 3 to 5 best visually selected single arterial and 3 to 5 best single portal venous phases dVPCT dataset. The linearly blended 120-kVp images were calculated from dual-energy CT (DECT) raw data. Image noise, SNR, and CNR of the liver, abdominal aorta (AA) and main portal vein (PV) were compared between the mTA/mTPV and the linearly blended 120-kVp dual-energy arterial and portal venous datasets, respectively. Subjective image quality was evaluated by two radiologists regarding subjective image noise, sharpness and overall diagnostic image quality using a 5-point Likert Scale. In addition, liver lesion detectability was performed for each liver

  19. Image quality of mean temporal arterial and mean temporal portal venous phase images calculated from low dose dynamic volume perfusion CT datasets in patients with hepatocellular carcinoma and pancreatic cancer

    International Nuclear Information System (INIS)

    Wang, X.; Henzler, T.; Gawlitza, J.; Diehl, S.; Wilhelm, T.; Schoenberg, S.O.; Jin, Z.Y.; Xue, H.D.; Smakic, A.

    2016-01-01

    Purpose: Dynamic volume perfusion CT (dVPCT) provides valuable information on tissue perfusion in patients with hepatocellular carcinoma (HCC) and pancreatic cancer. However, currently dVPCT is often performed in addition to conventional CT acquisitions due to the limited morphologic image quality of dose optimized dVPCT protocols. The aim of this study was to prospectively compare objective and subjective image quality, lesion detectability and radiation dose between mean temporal arterial (mTA) and mean temporal portal venous (mTPV) images calculated from low dose dynamic volume perfusion CT (dVPCT) datasets with linearly blended 120-kVp arterial and portal venous datasets in patients with HCC and pancreatic cancer. Materials and methods: All patients gave written informed consent for this institutional review board–approved HIPAA compliant study. 27 consecutive patients (18 men, 9 women, mean age, 69.1 years ± 9.4) with histologically proven HCC or suspected pancreatic cancer were prospectively enrolled. The study CT protocol included a dVPCT protocol performed with 70 or 80 kVp tube voltage (18 spiral acquisitions, 71.2 s total acquisition times) and standard dual-energy (90/150 kVpSn) arterial and portal venous acquisition performed 25 min after the dVPCT. The mTA and mTPV images were manually reconstructed from the 3 to 5 best visually selected single arterial and 3 to 5 best single portal venous phases dVPCT dataset. The linearly blended 120-kVp images were calculated from dual-energy CT (DECT) raw data. Image noise, SNR, and CNR of the liver, abdominal aorta (AA) and main portal vein (PV) were compared between the mTA/mTPV and the linearly blended 120-kVp dual-energy arterial and portal venous datasets, respectively. Subjective image quality was evaluated by two radiologists regarding subjective image noise, sharpness and overall diagnostic image quality using a 5-point Likert Scale. In addition, liver lesion detectability was performed for each liver

  20. Thermoplastic Elastomers From Chemically or Irradiation Activated Polyolefin Wastes and Ground Tyre Rubber

    International Nuclear Information System (INIS)

    Tolstov, A.M.; Grigoryeva, A.L.; Bardash, O.P.

    2005-01-01

    Thermoplastic elastomers (TPE) are known as materials with unique combination of elastomeric properties and thermo plasticity. Among the TPE of different type the polymer blends of thermoplastics and rubbers are the most commonly used. Recently a very effective technology of dynamic vulcanization of rubber component inside thermoplastic matrix has been developed. As a result of rubber vulcanization and dispersion inside thermoplastic the new type of TPE so-called thermoplastic dynamic vulcanizations (TPV) are obtained. In our work we have applied the technology of dynamic vulcanization for recycled components (PP, HDPE, GTR). It has appeared that such components are not mixed well and the resulting TPV have poor mechanical properties. To solve a problem of poor compatibility of the components used we carried out a pre-modification (functionalization) of the component surfaces by gamma-irradiation or by chemically or gamma-irradiation induced grafting of reactive monomers. Both the polyolefin (HDPE) and GTR were functionalized before mixing. The monomers were selected by such a way that being grafted to be able to react to each other in interface during the components blending. For example, we used maleic anhydride and acrylamide. The effect of better compatibility has appeared in higher tensile characteristics of TPV synthesized

  1. Sarcopenia Adversely Impacts Postoperative Complications Following Resection or Transplantation in Patients with Primary Liver Tumors

    Science.gov (United States)

    Valero, Vicente; Amini, Neda; Spolverato, Gaya; Weiss, Matthew J.; Hirose, Kenzo; Dagher, Nabil N.; Wolfgang, Christopher L.; Cameron, Andrew A.; Philosophe, Benjamin; Kamel, Ihab R.

    2015-01-01

    Background Sarcopenia is a surrogate marker of patient frailty that estimates the physiologic reserve of an individual patient. We sought to investigate the impact of sarcopenia on short- and long-term outcomes in patients having undergone surgical intervention for primary hepatic malignancies. Methods Ninety-six patients who underwent hepatic resection or liver transplantation for HCC or ICC at the John Hopkins Hospital between 2000 and 2013 met inclusion criteria. Sarcopenia was assessed by the measurement of total psoas major volume (TPV) and total psoas area (TPA). The impact of sarcopenia on perioperative complications and survival was assessed. Results Mean age was 61.9 years and most patients were men (61.4 %). Mean adjusted TPV was lower in women (23.3 cm3/m) versus men (34.9 cm3/m) (Psarcopenia. The incidence of a postoperative complication was 40.4 % among patients with sarcopenia versus 18.4 % among patients who did not have sarcopenia (P=0.01). Of note, all Clavien grade ≥3 complications (n=11, 23.4 %) occurred in the sarcopenic group. On multivariable analysis, the presence of sarcopenia was an independent predictive factor of postoperative complications (OR=3.06). Sarcopenia was not associated with long-term survival (HR=1.23; P=0.51). Conclusions Sarcopenia, as assessed by TPV, was an independent factor predictive of postoperative complications following surgical intervention for primary hepatic malignancies. PMID:25389056

  2. Therapeutic potential of and treatment with boceprevir/telaprevir-based triple-therapy in HIV/chronic hepatitis C co-infected patients in a real-world setting.

    Science.gov (United States)

    Mandorfer, Mattias; Payer, Berit A; Niederecker, Alexander; Lang, Gerold; Aichelburg, Maximilian C; Strassl, Robert; Boesecke, Christoph; Rieger, Armin; Trauner, Michael; Peck-Radosavljevic, Markus; Reiberger, Thomas

    2014-05-01

    The aim of this study was to assess the therapeutic potential of telaprevir (TPV)/boceprevir (BOC)-based triple-therapy in a complete cohort of HIV/chronic hepatitis C co-infected patients (HIV/HCV). Moreover, a case series of four HIV/HCV genotype (HCV-GT)1 patients with rapid virologic response (RVR), who received only 28 weeks of BOC-based triple-therapy (BOCW28), was reported. 290/440 HIV-positive patients with positive HCV serology had at least one visit during the past 2 years, 142/290 had target detectable HCV-RNA with 64% (82/142) carrying HCV-GT1. While 18 HIV/HCV-GT1 displayed contraindications, 45% (64/142) of HIV/HCV were eligible for triple-therapy. Insufficiently controlled HIV-infection despite combined antiretroviral therapy (cART) (HIV-RNA treatment uptake rates (39% (25/64)) during the first 2 years of triple-therapy availability suggest that its benefit in HIV/HCV co-infected patients might fall short of expectations. Modification of cART or TPV dose adjustment would have been necessary in 61% and 84% of HIV/HCV-GT1 on cART eligible for triple-therapy using TPV and BOC, respectively, suggesting that drug-drug interactions with cART complicate management in the majority of patients. All four BOCW28 patients achieved a sustained virologic response. Prospective studies are necessary to validate our observations on the shortening of treatment duration in HIV/HCV-GT1 with RVR.

  3. Vpliv kaizna na proizvodno linijo podjetja TPV d.d.

    OpenAIRE

    Gramc, Nina

    2013-01-01

    Domnevamo lahko, da je filozofija Kaizen eden od vzrokov in hkrati motivator za dolgoročno konkurenčno prednost podjetja. Koncept je definiran kot obsežen organizacijski proces, osredotočen na kontinuiteto izboljšav in načrtno vključevanje vsakega posameznika v organizaciji v iskanje izboljšav. Zato je lahko prav Kaizen eden ključnih pokazateljev, ki loči med uspehom enih in odpovedjo oziroma propadom drugih podjetij. Razmere, ki jih dandanes srečujemo v podjetju (razne napake, strojelomi...

  4. Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)

    International Nuclear Information System (INIS)

    Barklay, Chadwick D.; Miller, Roger G.; Pugh, Barry K.; Howell, Edwin I.

    1997-01-01

    Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been 238 PuO 2 , its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the 'Pluto Express' mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS)

  5. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  6. Thought and Practice - Vol 6, No 1 (2014)

    African Journals Online (AJOL)

    A Critique of Foucault's Conception and Predictions of the Author-Function · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. J Situma, 9-24. http://dx.doi.org/10.4314/tp.v6i1.3 ...

  7. Inter-Scan Reproducibility of Carotid Plaque Volume Measurements by 3-D Ultrasound

    DEFF Research Database (Denmark)

    Sandholt, Benjamin V; Collet-Billon, Antoine; Entrekin, Robert

    2018-01-01

    (PPV) measure centered on MPT. Total plaque volume (TPV), PPV from a 10-mm segment and MPT were measured using dedicated semi-automated software on 38 plaques from 26 patients. Inter-scan reproducibility was assessed using the t-test, Bland-Altman plots and Pearson's correlation coefficient....... There was a mean difference of 0.01 mm in MPT (limits of agreement: -0.45 to 0.42 mm, Pearson's correlation coefficient: 0.96). Both volume measurements exhibited high reproducibility, with PPV being superior (limits of agreement: -35.3 mm3to 33.5 mm3, Pearson's correlation coefficient: 0.96) to TPV (limits...... of agreement: -88.2 to 61.5 mm3, Pearson's correlation coefficient: 0.91). The good reproducibility revealed by the present results encourages future studies on establishing plaque quantification as part of cardiovascular risk assessment and for follow-up of disease progression over time....

  8. 76 FR 6826 - Certain Display Devices Including Digital Televisions and Monitors; Notice of Commission...

    Science.gov (United States)

    2011-02-08

    ... Commission instituted this investigation on April 21, 2010, based on a complaint filed by Sony Corporation of Japan (``Sony''). 75 FR 20860-1. The complaint, as amended and supplemented, alleges violations of... Corporation and Innolux Corporation (collectively ``CMI''); TPV Technology Limited; Top Victory Electronics...

  9. 17th European photovoltaic solar energy conference and exhibition, Munich 22.-26.10.2001

    International Nuclear Information System (INIS)

    Nowak, S.

    2002-01-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the photovoltaics (PV) conference and exhibition held in Munich in October 2001 from the Swiss point of view. The contributions made by representatives of Swiss institutions and companies are presented including papers on the progress being made in third generation crystalline and multi-crystalline silicon technology, amorphous and micro-crystalline silicon solar cells, thin film solar cells based on compound semiconductors and thermo-photovoltaics. Further papers deal with PV modules on the market, building-integrated solar power systems and new developments in PV systems technology. The exhibition that accompanied the conference, including the 12 Swiss exhibitors who were present, is reviewed as are international market developments. Contributions concerning the application of photovoltaics in developing countries are also reviewed

  10. The 17{sup th} European photovoltaic solar energy conference and exhibition in Munich from a Swiss point of view; Die 17. europaeische Photovoltaikkonferenz in Muenchen aus Schweizer Sicht

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the photovoltaics (PV) conference and exhibition held in Munich in October 2001 from the Swiss point of view. The contributions made by representatives of Swiss institutions and companies are presented including papers on the progress being made in third generation crystalline and multi-crystalline silicon technology, amorphous and micro-crystalline silicon solar cells, thin film solar cells based on compound semiconductors and thermo-photovoltaics. Further papers deal with PV modules on the market, building-integrated solar power systems and new developments in PV systems technology. The exhibition that accompanied the conference, including the 12 Swiss exhibitors who were present, is reviewed as are international market developments. Contributions concerning the application of photovoltaics in developing countries are also reviewed.

  11. Endodoncia regenerativa: utilización de fibrina rica en plaquetas autóloga en dientes permanentes vitales con patología pulpar. Revisión narrativa de la literatura*

    Directory of Open Access Journals (Sweden)

    Tatiana Ramírez Giraldo

    2014-01-01

    Full Text Available Actualmente una de las mayores controversias en el tratamiento de dientes permanentes con diagnóstico de pulpitis está en la decisión de realizar una Terapia Pulpar Vital (TPV o un tratamiento convencional de conductos. Diferentes estudios han reportado que se pueden obtener resultados previsibles mediante la realización de una TPV. El éxito del tratamiento dependerá de una adecuada comprensión de la  biología pulpar, un estricto protocolo de tratamiento y una adecuada selección del caso. Con este fin, diferentes materiales han sido sugeridos. Recientemente se ha utilizado la Fibrina Rica en Plaquetas, biomaterial que cumple con propiedades biológicas para lograr una mayor rapidez y adecuada cicatrizacion del tejido. Es necesario desarrollar tratamientos dirigidos a preservar la vitalidad de la pulpa, evitando recurrir como primera opción al tratamiento convencional de conductos, teniendo como objetivo conservar o regenerar el complejo dentino pulpar.

  12. Endodoncia regenerativa: utilización de fibrina rica en plaquetas autóloga en dientes permanentes vitales con patología pulpar. Revisión narrativa de la literatura*

    Directory of Open Access Journals (Sweden)

    Tatiana Ramírez Giraldo

    2014-07-01

    Full Text Available Actualmente una de las mayores controversias en el tratamiento de dientes permanentes con diagnóstico de pulpitis está en la decisión de realizar una Terapia Pulpar Vital (TPV o un tratamiento convencional de conductos. Diferentes estudios han reportado que se pueden obtener resultados previsibles mediante la realización de una TPV. El éxito del tratamiento dependerá de una adecuada comprensión de la  biología pulpar, un estricto protocolo de tratamiento y una adecuada selección del caso. Con este fin, diferentes materiales han sido sugeridos. Recientemente se ha utilizado la Fibrina Rica en Plaquetas, biomaterial que cumple con propiedades biológicas para lograr una mayor rapidez y adecuada cicatrizacion del tejido. Es necesario desarrollar tratamientos dirigidos a preservar la vitalidad de la pulpa, evitando recurrir como primera opción al tratamiento convencional de conductos, teniendo como objetivo conservar o regenerar el complejo dentino pulpar.

  13. Graphene-based photovoltaic cells for near-field thermal energy conversion.

    Science.gov (United States)

    Messina, Riccardo; Ben-Abdallah, Philippe

    2013-01-01

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat.

  14. MRI to predict prostate growth and development in children, adolescents and young adults

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jing; Liu, Huijia; Wen, Didi; Huang, Xufang; Ren, Fang; Huan, Yi [Fourth Military Medical University, Department of Radiology, Xijing Hospital, Xi' an City (China); Wang, He [Fourth Military Medical University, Department of Urology, Tangdu Hospital, Xi' an City (China)

    2014-08-06

    The purpose of this study was to investigate the use of MRI in predicting prostate growth and development. A total of 1,500 healthy male volunteers who underwent MRI of the pelvis were included in this prospective study. Subjects were divided into five groups according to age (group A, 2-5 years; group B, 6-10 years; group C, 11-15 years; group D, 16-20 years; group E, 21-25 years). Total prostate volume (TPV) as well as prostate central zone (CZ) and peripheral zone (PZ) were measured and evaluated on MRI. Data of the different groups were compared using variance analysis, Scheffe's method, Kruskal-Wallis H-test, and Pearson's correlation. Statistical significance was inferred at P < 0.05. In groups A and B, the prostates were barely visible. In group C, although TPV was measured, it was hard to distinguish CZ and PZ. In group D, 136 CZ and PZ were clearly visible. In group E, 377 CZ and PZ were clearly visible on T2-weighted imaging (T2WI). The median TPVs of groups A, B, C, D, and E were 0.00 cm{sup 3}, 0.05 cm{sup 3}, 2.83 cm{sup 3}, 8.32 cm{sup 3,} and 11.56 cm{sup 3}, respectively, and the median prostate development scores were 0.08, 0.69, 1.56, 2.38, and 2.74, respectively. Both TPVs and zonal anatomy scores varied significantly among the five groups (P = 0.000). TPV and zonal anatomy score increased with increasing age. MRI provides a reliable quantitative reference for prostate growth and development. (orig.)

  15. Impact of pannus formation on hemodynamic dysfunction of prosthetic aortic valve: pannus extent and its relationship to prosthetic valve motion and degree of stenosis.

    Science.gov (United States)

    Koo, Hyun Jung; Ha, Hojin; Kang, Joon-Won; Kim, Jeong A; Song, Jae-Kwan; Kim, Hwa Jung; Lim, Tae-Hwan; Yang, Dong Hyun

    2018-02-19

    Although pannus is an important cause of prosthetic valve dysfunction, the minimum pannus size that can induce hemodynamic dysfunction has not yet been determined. This study investigated the correlation between the limitation of motion (LOM) of the prosthetic valve and pannus extent and determined the pannus extent that could induce severe aortic stenosis. This study included 49 patients who underwent mechanical aortic valve replacement (AVR) and showed pannus on cardiac computed tomography (CT). Pannus width, ratio of pannus width to valve diameter, pannus area, effective orifice area, encroachment ratio by pannus, pannus involvement angle and percent LOM of mechanical valves were evaluated on CT. Transvalvular peak velocity (TPV) and transvalvular pressure gradient (TPG) were measured by transesophageal echocardiography to determine the degree of aortic stenosis. The relationship between percent LOM of the prosthetic valve and pannus extent and the cut-off of pannus extent required to induce severe aortic stenosis were evaluated. The mean interval between AVR and pannus formation was 11 years and was longer in patients with than without severe aortic stenosis (14.0 vs. 7.3 years). On CT, the percent LOM of the prosthetic valve was significantly associated with the extent of pannus only in patients with pannus involvement angle > 180° (r = 0.55-0.68, P Pannus width, effective orifice area, and encroachment ratio were significantly associated with increased TPV and TPG (r = 0.51-0.62, P Pannus width > 3.5 mm, pannus width/valve inner diameter > 0.15, and encroachment ratio > 0.14 were significantly associated with severe aortic stenosis (TPV > 4 m/s; mean TPG ≥ 35 mmHg), with c-indices of 0.74-079 (P pannus extent parameters are good indicators of significant hemodynamic changes with increased TPV and mean TPG.

  16. A novel rapid direct haemagglutination-inhibition assay for measurements of humoral immune response against non-haemagglutinating Fowlpox virus strains in vaccinated chickens.

    Science.gov (United States)

    Wambura, Philemon N; Mzula, Alexanda

    2017-10-01

    Fowlpox (FP) is a serious disease in chickens caused by Fowlpox virus (FPV). One method currently used to control FPV is vaccination followed by confirmation that antibody titres are protective using the indirect haemagglutination assay (IHA). The direct haemagglutination inhibition (HI) assay is not done because most FPV strains do not agglutinate chicken red blood cells (RBCs). A novel FPV strain TPV-1 which agglutinates chicken RBCs was discovered recently and enabled a direct HI assay to be conducted using homologous sera. This study is therefore aimed at assessing the direct HI assay using a recently discovered novel haemagglutinating FPV strain TPV-1 in chickens vaccinated with a commercial vaccine containing a non-haemagglutinating FPV.Chicks vaccinated with FPV at 1 day-old had antibody geometric mean titres (GMT) of log 2 3.7 at 7 days after vaccination and log 2 8.0 at 28 days after vaccination when tested in the direct HI. Chickens vaccinated at 6 weeks-old had antibody geometric mean titres (GMT) of log 2 5.0 at 7 days after vaccination and log 2 8.4 at 28 days after vaccination when tested in the direct HI. The GMT recorded 28 days after vaccination was slightly higher in chickens vaccinated at 6-week-old than in chicks vaccinated at one-day-old. However, this difference was not significant (P > 0.05). All vaccinated chickens showed "takes". No antibody response to FPV and "takes" were detected in unvaccinated chickens (GMT 0.05). These findings indicate that a simple and rapid direct HI assay using the FPV TPV-1 strain as antigen may be used to measure antibody levels in chickens vaccinated with non-haemagglutinating strains of FPV, and that the titres are comparable to those obtained by indirect IHA.

  17. Impact of Physical and Relational Peer Victimization on Depressive Cognitions in Children and Adolescents

    Science.gov (United States)

    Sinclair, Keneisha R.; Cole, David A.; Dukewich, Tammy; Felton, Julia; Weitlauf, Amy S.; Maxwell, Melissa A.; Tilghman-Osborne, Carlos; Jacky, Amy

    2012-01-01

    The purpose of this study is to find longitudinal evidence of the effect of targeted peer victimization (TPV) on depressive cognitions as a function of victimization type and gender. Prospective relations of physical and relational peer victimization to positive and negative self-cognitions were examined in a 1-year, 2-wave longitudinal study.…

  18. Driving Roles of Tropospheric and Stratospheric Thermal Anomalies in Intensification and Persistence of the Arctic Superstorm in 2012

    Science.gov (United States)

    Tao, Wei; Zhang, Jing; Fu, Yunfei; Zhang, Xiangdong

    2017-10-01

    Intense synoptic-scale storms have been more frequently observed over the Arctic during recent years. Specifically, a superstorm hit the Arctic Ocean in August 2012 and preceded a new record low Arctic sea ice extent. In this study, the major physical processes responsible for the storm's intensification and persistence are explored through a series of numerical modeling experiments with the Weather Research and Forecasting model. It is found that thermal anomalies in troposphere as well as lower stratosphere jointly lead to the development of this superstorm. Thermal contrast between the unusually warm Siberia and the relatively cold Arctic Ocean results in strong troposphere baroclinicity and upper level jet, which contribute to the storm intensification initially. On the other hand, Tropopause Polar Vortex (TPV) associated with the thermal anomaly in lower stratosphere further intensifies the upper level jet and accordingly contributes to a drastic intensification of the storm. Stacking with the enhanced surface low, TPV intensifies further, which sustains the storm to linger over the Arctic Ocean for an extended period.

  19. Genetic parameters for different measures of feed efficiency and related traits in boars of three pig breeds

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Strathe, Anders Bjerring; Jensen, Just

    2013-01-01

    ) to 0.67 (LL) for BF, and from 0.13 (DD) to 0.19 (YY) for body conformation. Feeding behavior traits including DFI, number of visits to feeder per day (NVD), total time spent eating per day (TPD), feed intake rate (FR), feed intake per visit (FPV), and time spent eating per visit (TPV) were moderately...

  20. Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis

    Science.gov (United States)

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M.; Samala, Ravi K.

    2015-01-01

    Purpose: Detection of subtle microcalcifications in digital breast tomosynthesis (DBT) is a challenging task because of the large, noisy DBT volume. It is important to enhance the contrast-to-noise ratio (CNR) of microcalcifications in DBT reconstruction. Most regularization methods depend on local gradient and may treat the ill-defined margins or subtle spiculations of masses and subtle microcalcifications as noise because of their small gradient. The authors developed a new multiscale bilateral filtering (MSBF) regularization method for the simultaneous algebraic reconstruction technique (SART) to improve the CNR of microcalcifications without compromising the quality of masses. Methods: The MSBF exploits a multiscale structure of DBT images to suppress noise and selectively enhance high frequency structures. At the end of each SART iteration, every DBT slice is decomposed into several frequency bands via Laplacian pyramid decomposition. No regularization is applied to the low frequency bands so that subtle edges of masses and structured background are preserved. Bilateral filtering is applied to the high frequency bands to enhance microcalcifications while suppressing noise. The regularized DBT images are used for updating in the next SART iteration. The new MSBF method was compared with the nonconvex total p-variation (TpV) method for noise regularization with SART. A GE GEN2 prototype DBT system was used for acquisition of projections at 21 angles in 3° increments over a ±30° range. The reconstruction image quality with no regularization (NR) and that with the two regularization methods were compared using the DBT scans of a heterogeneous breast phantom and several human subjects with masses and microcalcifications. The CNR and the full width at half maximum (FWHM) of the line profiles of microcalcifications and across the spiculations within their in-focus DBT slices were used as image quality measures. Results: The MSBF method reduced contouring artifacts

  1. Entropy flow and generation in radiative transfer between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.M.; Basu, S. [Georgia Institute of Technolgy, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2007-02-15

    Entropy of radiation has been used to derive the laws of blackbody radiation and determine the maximum efficiency of solar energy conversion. Along with the advancement in thermophotovoltaic technologies and nanoscale heat radiation, there is an urgent need to determine the entropy flow and generation in radiative transfer between nonideal surfaces when multiple reflections are significant. This paper investigates entropy flow and generation when incoherent multiple reflections are included, without considering the effects of interference and photon tunneling. The concept of partial equilibrium is applied to interpret the monochromatic radiation temperature of thermal radiation, T{sub l}(l,{omega}), which is dependent on both wavelength l and direction {omega}. The entropy flux and generation can thus be evaluated for nonideal surfaces. It is shown that several approximate expressions found in the literature can result in significant errors in entropy analysis even for diffuse-gray surfaces. The present study advances the thermodynamics of nonequilibrium thermal radiation and will have a significant impact on the future development of thermophotovoltaic and other radiative energy conversion devices. (author)

  2. Synthesis of Zn-doped TiO{sub 2} microspheres with enhanced photovoltaic performance and application for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); Wang Lingling [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 (China); Liu Bingkun; Zhai Jiali; Fan Haimei; Wang Dejun; Lin Yanhong [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); Xie Tengfeng, E-mail: xietf@jlu.edu.cn [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China)

    2011-07-15

    Highlights: > Near-monodisperse Zn-doped TiO{sub 2} microspheres have been synthesized. > The photovoltaic properties of the samples were examined by SPS, FISPS and TPV measurements. > Surface photovoltage results revealed Zn doping can promote charge transfer in TiO{sub 2} film electrode. - Abstract: Zn-doped TiO{sub 2} microspheres have been synthesized by introducing a trace amount of zinc nitrate hexahydrate to the reaction system. Scanning electron microscope (SEM), field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) have been utilized to characterize the samples. Both surface photovoltage spectroscopy (SPS) technique based on lock-in amplifier and transient photovoltage (TPV) measurement reveal that the slight doping of Zn can promote the separation of photo-generated charges as well as restrain the recombination due to the strong interface built-in electric field and the decreasing of surface trap states. The photovoltaic parameters of dye-sensitized solar cells (DSSCs) based on Zn-doped TiO{sub 2} are significantly better, compared to that of a cell based on undoped TiO{sub 2}. The relation between the performance of DSSCs and their photovoltaic properties is also discussed.

  3. MRI to predict prostate growth and development in children, adolescents and young adults

    International Nuclear Information System (INIS)

    Ren, Jing; Liu, Huijia; Wen, Didi; Huang, Xufang; Ren, Fang; Huan, Yi; Wang, He

    2015-01-01

    The purpose of this study was to investigate the use of MRI in predicting prostate growth and development. A total of 1,500 healthy male volunteers who underwent MRI of the pelvis were included in this prospective study. Subjects were divided into five groups according to age (group A, 2-5 years; group B, 6-10 years; group C, 11-15 years; group D, 16-20 years; group E, 21-25 years). Total prostate volume (TPV) as well as prostate central zone (CZ) and peripheral zone (PZ) were measured and evaluated on MRI. Data of the different groups were compared using variance analysis, Scheffe's method, Kruskal-Wallis H-test, and Pearson's correlation. Statistical significance was inferred at P 3 , 0.05 cm 3 , 2.83 cm 3 , 8.32 cm 3, and 11.56 cm 3 , respectively, and the median prostate development scores were 0.08, 0.69, 1.56, 2.38, and 2.74, respectively. Both TPVs and zonal anatomy scores varied significantly among the five groups (P = 0.000). TPV and zonal anatomy score increased with increasing age. MRI provides a reliable quantitative reference for prostate growth and development. (orig.)

  4. Using an accelerometer for analyzing a reach-to-grasp movement after stroke

    Directory of Open Access Journals (Sweden)

    Stella Maris Michaelsen

    2013-12-01

    Full Text Available The purpose of this study was using an accelerometer to access the kinematics of reach-to-grasp movements in subjects with hemiparesis. Eight subjects (59.4 ± 6.9 years old with chronic hemiparesis (50.9 ± 25.8 months post-stroke participated in this study. Kinematic assessment was performed using a triaxial accelerometer (EMG Systems, Brazil attached to the subjects' forearm. Ten reach-to-grasp movements of grabbing a 500ml-size bottle were performed by the subjects with the paretic and the non-paretic upper limbs (ULs. The following space-temporal variables were calculated and used to compare the paretic and non-paretic ULs: movement time (MT, time to reach the peak velocity, absolute and relative (TPV and TPV%MT, relative deceleration duration (DEC%MT, time to peak acceleration (TPA and peak hand acceleration (PA. Movements were slower in the paretic UL with increased MT, TPA and DEC. The accelerometer allowed to identify of changes in reaching-to-grasp movements of subjects with hemiparesis. When complex systems are not available, accelerometers can be an alternative to measure UL movements.

  5. Overcoming black body radiation limit in free space: metamaterial superemitter

    Science.gov (United States)

    Maslovski, Stanislav I.; Simovski, Constantin R.; Tretyakov, Sergei A.

    2016-01-01

    Here, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff-Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermo-photovoltaic systems and other devices.

  6. Overcoming black body radiation limit in free space: metamaterial superemitter

    International Nuclear Information System (INIS)

    Maslovski, Stanislav I; Simovski, Constantin R; Tretyakov, Sergei A

    2016-01-01

    Here, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff–Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermo-photovoltaic systems and other devices. (paper)

  7. Relationship between Metabolic Syndrome and Predictors for Clinical Benign Prostatic Hyperplasia Progression and International Prostate Symptom Score in Patients with Moderate to Severe Lower Urinary Tract Symptoms.

    Science.gov (United States)

    Zhao, Sicong; Chen, Chao; Chen, Zongping; Xia, Ming; Tang, Jianchun; Shao, Sujun; Yan, Yong

    2016-06-28

    To investigate the association between metabolic syndrome (MetS) and the predictors of the progression of benign prostatic hyperplasia (BPH) and the corresponding frequency and severity of lower urinary tract symptoms (LUTS). A total of 530 men with moderate to severe International Prostate Symptom Score (IPSS) > 7 were recruited in the present study. The predictors for clinical BPH progression were defined as the total prostate volume (TPV) ≥ 31 cm3, prostate-specific antigen level (PSA) ≥ 1.6 ng/mL, maximal flow rate (Qmax) < 10.6 mL/s, postvoid residual urine volume (PVR) of ≥ 39 mL, and age 62 years or older. LUTS were defined according to the IPSS and MetS with the National Cholesterol Education Program-Adult Treatment Panel III guidelines. The Mantel-Haenszel extension test and the multivariate logistic regression analyses were used to statistically examine their relationships. The percentage of subjects with ≥ 1 predictors for clinical BPH progression, the percentage of subjects with a TPV ≥ 31 cm3, the percentage of subjects with a PVR ≥ 39 mL, and the percentage of subjects with a Qmax < 10.6 mL/s increased significantly with the increasing in the number of MetS components (all P < .05). After adjusting for age and serum testosterone level, the MetS were independently associated with the presence of TPV ≥ 31 cm3 (OR = 17.030, 95% CI: 7.495-38.692). Moreover, MetS was positively associated with the severity of LUTS (P < .001) and voiding scores (P < .001), and each individual MetS component appeared as an independent risk factor for severe LUTS (IPSS > 19, all P < .001). Our data have shown that the MetS significantly associated with the predictors for clinical BPH progression and the frequency and severity of LUTS, especially the voiding symptoms. The prevention of such modifiable factors by promotion of dietary changes and regular physical activity practice may be of great importance for public health. .

  8. Increased serum C-reactive protein level is associated with increased storage lower urinary tract symptoms in men with benign prostatic hyperplasia.

    Directory of Open Access Journals (Sweden)

    Shun-Fa Hung

    Full Text Available OBJECTIVE: Chronic inflammation is considered as one of the contributing mechanisms of lower urinary tract symptoms (LUTS. Serum C-reactive protein (CRP level is the widely used biomarker of inflammatory status. This study investigated the association between serum CRP level in men with benign prostatic hyperplasia (BPH and lower urinary tract symptoms (LUTS before and after medical treatment. METHODS: A total of 853 men with BPH and LUTS were enrolled. All patients completed the International Prostate Symptoms Score (IPSS questionnaire and urological examinations. The parameters of uroflowmetry (maximum flow rate, Qmax; voided volume, VV, post-void residual (PVR, total prostate volume (TPV and transition zone index (TZI, serum prostate specific antigen (PSA, and serum CRP levels were obtained. All patients were treated with alpha-blocker or antimuscarinic agent based on the IPSS voiding to storage subscore ratio (IPSS-V/S. Correlation analyses were performed between serum CRP levels with age, IPSS, TPV, TZI, Qmax, PVR, VV, PSA and between baseline and post treatment. RESULTS: The mean age was 66.9 ± 11.6 years old and the mean serum CRP levels were 0.31 ± 0.43 mg/dL. Univariate analyses revealed serum CRP levels were significantly associated with age (p<0.001, PSA levels (p = 0.005 and VV (p = 0.017, but not significantly associated with TPV (p = 0.854 or PVR (p = 0.068. CRP levels were positively associated with urgency (p<0.001 and nocturia (p<0.001 subscore of IPSS, total IPSS (p = 0.008 and storage IPSS (p<0.001 and negatively associated with IPSS- V/S ratio (p = 0.014. Multivariate analyses revealed that serum CRP levels were significantly associated with age (p = 0.004 and storage IPSS subscore p<0.001. Patients with IPSS-V/S<1 and treated with tolterodine for 3 months had significant decrease of CRP levels after treatment. CONCLUSION: Serum CRP levels are associated with storage LUTS and sensory bladder disorders, suggesting chronic

  9. Factors Influencing Nonabsolute Indications for Surgery in Patients With Lower Urinary Tract Symptoms Suggestive of Benign Prostatic Hyperplasia: Analysis Using Causal Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Myong Kim

    2014-12-01

    Full Text Available Purpose To identify the factors affecting the surgical decisions of experienced physicians when treating patients with lower urinary tract symptoms that are suggestive of benign prostatic hyperplasia (LUTS/BPH. Methods Patients with LUTS/BPH treated by two physicians between October 2004 and August 2013 were included in this study. The causal Bayesian network (CBN model was used to analyze factors influencing the surgical decisions of physicians and the actual performance of surgery. The accuracies of the established CBN models were verified using linear regression (LR analysis. Results A total of 1,108 patients with LUTS/BPH were analyzed. The mean age and total prostate volume (TPV were 66.2 (±7.3, standard deviation years and 47.3 (±25.4 mL, respectively. Of the total 1,108 patients, 603 (54.4% were treated by physician A and 505 (45.6% were treated by physician B. Although surgery was recommended to 699 patients (63.1%, 589 (53.2% actually underwent surgery. Our CBN model showed that the TPV (R=0.432, treating physician (R=0.370, bladder outlet obstruction (BOO on urodynamic study (UDS (R=0.324, and International Prostate Symptom Score (IPSS question 3 (intermittency; R=0.141 were the factors directly influencing the surgical decision. The transition zone volume (R=0.396, treating physician (R=0.340, and BOO (R=0.300 directly affected the performance of surgery. Compared to the LR model, the area under the receiver operating characteristic curve of the CBN surgical decision model was slightly compromised (0.803 vs. 0.847, P<0.001, whereas that of the actual performance of surgery model was similar (0.801 vs. 0.820, P=0.063 to the LR model. Conclusions The TPV, treating physician, BOO on UDS, and the IPSS item of intermittency were factors that directly influenced decision-making in physicians treating patients with LUTS/BPH.

  10. Climatology of Tibetan Plateau Vortices and connection to upper-level flow in reanalysis data and a high-resolution model simulation

    Science.gov (United States)

    Curio, Julia; Schiemann, Reinhard; Hodges, Kevin; Turner, Andrew

    2017-04-01

    The Tibetan Plateau (TP) and surrounding high mountain ranges constitute an important forcing of the atmospheric circulation over Asia due to their height and extent. Therefore, the TP impacts weather and climate in downstream regions of East Asia, especially precipitation. Mesoscale Tibetan Plateau Vortices (TPVs) are known to be one of the major precipitation-bearing systems on the TP. They are mainly present at the 500 hPa level and have a vertical extent of 2-3 km while their horizontal scale is around 500 km. Their average lifetime is 18 hours. There are two types of TPVs: the largest number originating and staying on the TP, while a smaller number is able to move off the plateau to the east. The latter category can cause extreme precipitation events and severe flooding in large parts of eastern and southern China downstream of the TP, e.g. the Yangtze River valley. The first aim of the study is to identify and track TPVs in reanalysis data and to connect the TPV activity to the position and strength of the upper-level subtropical jet stream, and to determine favourable conditions for TPV development and maintenance. We identify and track TPVs using the TRACK algorithm developed by Hodges et al. (1994). Relative vorticity at the 500 hPa level from the ERA-Interim and NCEP-CFSR reanalyses are used as input data. TPVs are retained which originate on the TP and which persist for at least two days, since these are more likely to move off the TP to the East. The second aim is to identify TPVs in a high-resolution, present-day climate model simulation of the MetOffice Unified Model (UPSCALE, HadGEM3 GA3.0) to assess how well the model represents the TPV climatology and variability. We find that the reanalysis data sets and the model show similar results for the statistical measures of TPVs (genesis, track, and lysis density). The TPV genesis region is small and stable at a specific region of the TP throughout the year. The reason for this seems to be the convergence

  11. Hybrid energy converter based on swirling combustion chambers: the hydrocarbon feeding analysis

    Directory of Open Access Journals (Sweden)

    Angelo Minotti

    2017-05-01

    Full Text Available This manuscript reports the latest investigations about a miniaturized hybrid energy power source, compatible with thermal/electrical conversion, by a thermo-photovoltaic cell, and potentially useful for civil and space applications. The converter is a thermally-conductive emitting parallelepiped element and the basic idea is to heat up its emitting surfaces by means of combustion, occurred in swirling chambers, integrated inside the device, and/or by the sun, which may work simultaneously or alternatively to the combustion. The current upgrades consist in examining whether the device might fulfill specific design constraints, adopting hydrocarbons-feeding. Previous papers, published by the author, demonstrate the hydrogen-feeding effectiveness. The project’s constraints are: 1 emitting surface dimensions fixed to 30 × 30 mm, 2 surface peak temperature T > 1000 K and the relative ∆T < 100 K (during the combustion mode, 3 the highest possible delivered power to the ambient, and 4 thermal efficiency greater than 20% when works with solar energy. To this end, a 5 connected swirling chambers configuration (3 mm of diameter, with 500 W of injected chemical power, stoichiometric conditions and detailed chemistry, has been adopted. Reactive numerical simulations show that the stiff methane chemical structure obliges to increase the operating pressure, up to 10 atm, and to add hydrogen, to the methane fuel injection, in order to obtain stable combustion and efficient energy conversion.

  12. Energy Converter with Inside Two, Three, and Five Connected H2/Air Swirling Combustor Chambers: Solar and Combustion Mode Investigations

    Directory of Open Access Journals (Sweden)

    Angelo Minotti

    2016-06-01

    Full Text Available This work reports the performance of an energy converter characterized by an emitting parallelepiped element with inside two, three, or five swirling connected combustion chambers. In particular, the idea is to adopt the heat released by H2/air combustion, occurring in the connected swirling chambers, to heat up the emitting surfaces of the thermally-conductive emitting parallelepiped brick. The final goal consists in obtaining the highest emitting surface temperature and the highest power delivered to the ambient environment, with the simultaneous fulfillment of four design constraints: dimension of the emitting surface fixed to 30 × 30 mm2, solar mode thermal efficiency greater than 20%, emitting surface peak temperature T > 1000 K, and its relative ∆T < 100 K in the combustion mode operation. The connected swirling meso-combustion chambers, inside the converter, differ only in their diameters. Combustion simulations are carried out adopting 500 W of injected chemical power, stoichiometric conditions, and detailed chemistry. All provide high chemical efficiency, η > 99.9%, and high peak temperature, but the emitting surface ∆T is strongly sensitive to the geometrical configuration. The present work is related to the “EU-FP7-HRC-Power” project, aiming at developing micro-meso hybrid sources of power, compatible with a thermal/electrical conversion by thermo-photovoltaic cells.

  13. Thermal to Electric Energy Conversion for Cyclic Heat Loads

    Science.gov (United States)

    Whitehead, Benjamin E.

    Today, we find cyclic heat loads almost everywhere. When we drive our cars, the engines heat up while we are driving and cool while parked. Processors heat while the computer is in use at the office and cool when idle at night. The sun heats the earth during the day and the earth radiates that heat into space at night. With modern technology, we have access to a number of methods to take that heat and convert it into electricity, but, before selecting one, we need to identify the parameters that inform decision making. The majority of the parameters for most systems include duty cycle, total cost, weight, size, thermal efficiency, and electrical efficiency. However, the importance of each of these will depend on the application. Size and weight take priority in a handheld device, while efficiency dominates in a power plant, and duty cycle is likely to dominate in highly demanding heat pump applications. Over the past decade, developments in semiconductor technology has led to the creation of the thermoelectric generator. With no moving parts and a nearly endlessly scalable nature, these generators present interesting opportunities for taking advantage of any source of waste heat. However, these generators are typically only capable of 5-8% efficiency from conversion of thermal to electric energy. [1]. Similarly, advancements in photovoltaic cells has led to the development of thermophotovoltaics. By heating an emitter to a temperature so it radiates light, a thermophotovoltaic cell then converts that light into electricity. By selecting materials that emit light in the optimal ranges of the appropriate photovoltaic cells, thermophotovoltaic systems can potentially exceed the current maximum of 10% efficiency. [2]. By pressurizing certain metal powders with hydrogen, hydrogen can be bound to the metal, creating a metal hydride, from which hydrogen can be later re-extracted under the correct pressure and temperature conditions. Since this hydriding reaction is

  14. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    International Nuclear Information System (INIS)

    Sidky, Emil Y.; Pan Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B.

    2009-01-01

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness when p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.

  15. MRI to predict prostate growth and development in children, adolescents and young adults.

    Science.gov (United States)

    Ren, Jing; Liu, Huijia; Wang, He; Wen, Didi; Huang, Xufang; Ren, Fang; Huan, Yi

    2015-02-01

    The purpose of this study was to investigate the use of MRI in predicting prostate growth and development. A total of 1,500 healthy male volunteers who underwent MRI of the pelvis were included in this prospective study. Subjects were divided into five groups according to age (group A, 2-5 years; group B, 6-10 years; group C, 11-15 years; group D, 16-20 years; group E, 21-25 years). Total prostate volume (TPV) as well as prostate central zone (CZ) and peripheral zone (PZ) were measured and evaluated on MRI. Data of the different groups were compared using variance analysis, Scheffé's method, Kruskal-Wallis H-test, and Pearson's correlation. Statistical significance was inferred at P development scores were 0.08, 0.69, 1.56, 2.38, and 2.74, respectively. Both TPVs and zonal anatomy scores varied significantly among the five groups (P = 0.000). TPV and zonal anatomy score increased with increasing age. MRI provides a reliable quantitative reference for prostate growth and development. • When and how the prostate develops after birth remains unclear. • Prostate volume increases rapidly after the age of 10 years. • MRI provides a reliable objective and quantitative reference for prostate growth and development.

  16. Beginning Power BI with Excel 2013 self-service business intelligence using Power Pivot, Power View, Power Query, and Power Map

    CERN Document Server

    Clark, Dan

    2014-01-01

    Understanding your company's data has never been easier than with Microsoft's new Power BI package for Excel 2013. Consisting of four powerful tools-Power Pivot, Power View, Power Query and Power Maps-Power BI makes self-service business intelligence a reality for a wide range of users, bridging the traditional gap between Excel users, business analysts and IT experts and making it easier for everyone to work together to build the data models that can give you game-changing insights into your business. Beginning Power BI with Excel 2013 guides you step by step through the process of analyzin

  17. Wind Power - A Power Source Enabled by Power Electronics

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe

    2004-01-01

    . The deregulation of energy has lowered the investment in bigger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production sources from......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. The production, distribution and the use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should be set up...... the conventional, fossil (and short term) based energy sources to renewable energy sources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...

  18. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  19. Semiconductor-based, large-area, flexible, electronic devices on {110} oriented substrates

    Science.gov (United States)

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110} textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  20. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  1. {100} or 45.degree.-rotated {100}, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100} or 45.degree.-rotated {100} oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  2. Heat meets light on the nanoscale

    Directory of Open Access Journals (Sweden)

    Boriskina Svetlana V.

    2016-06-01

    Full Text Available We discuss the state-of-the-art and remaining challenges in the fundamental understanding and technology development for controlling light-matter interactions in nanophotonic environments in and away from thermal equilibrium. The topics covered range from the basics of the thermodynamics of light emission and absorption to applications in solar thermal energy generation, thermophotovoltaics, optical refrigeration, personalized cooling technologies, development of coherent incandescent light sources, and spinoptics.

  3. Investigations on the role of mixed-solvent for improved efficiency in perovskite solar cell

    Science.gov (United States)

    Singh, Ranbir; Suranagi, Sanjaykumar R.; Kumar, Manish; Shukla, Vivek Kumar

    2017-12-01

    The morphology of the spin-coated photoactive layer is one of the major factors affecting the performance of perovskite solar cells. In this work, we have employed a mixed-solvent strategy to obtain a high quality MAPbI3 (MA = CH3NH3) perovskite film, without pinholes and reduced grain boundaries. Perovskite films formed with single and mixed-solvents are systematically characterized for their optical, structural, and morphological properties using UV-vis absorption, photoluminescence (PL), X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) tools. The power conversion efficiency (PCE) of the devices fabricated using the mixed-solvent showed better performance than the devices made using the single solvent. The best-optimized mixed-solvent perovskite film exhibited a PCE of 15.2% with uniform film coverage on the substrate, better charge generation, and a high hole mobility of 1.16 × 10-4cm2/V s. The disparities in photovoltaic properties have been analyzed with the intensity dependent current density-voltage (J-V), transient photovoltage (TPV), and relationship between photocurrent (Jph) and effective voltage (Veff).

  4. Introduction to electrical power and power electronics

    CERN Document Server

    Patel, Mukund R

    2012-01-01

    Power Generation, Distribution, and Utilization AC Power Fundamentals Common Aspects of Power Equipments AC Generator AC and DC Motors Transformer Power Cable Power Distribution Fault Current Analysis System ProtectionEconomic Use of PowerElectrochemical BatteryPower Electronics and Motor Drives Power Electronics Devices DC-DC Converters AC-DC-AC Converters Variable-Frequency Drives Quality of Power Power Converter CoolingAppendixIndex

  5. Power theories for improved power quality

    CERN Document Server

    Pasko, Marian

    2012-01-01

    Power quality describes a set of parameters of electric power and the load’s ability to function properly under specific conditions. It is estimated that problems relating to power quality costs the European industry hundreds of billions of Euros annually. In contrast, financing for the prevention of these problems amount to fragments of these costs. Power Theories for Improved Power Quality addresses this imbalance by presenting and assessing a range of methods and problems related to improving the quality of electric power supply. Focusing particularly on active compensators and the DSP based control algorithms, Power Theories for Improved Power Quality introduces the fundamental problems of electrical power. This introduction is followed by chapters which discuss: •‘Power theories’ including their historical development and application to practical problems, •operational principles of active compensator’s DSP control based algorithms using examples and results from laboratory research, and •t...

  6. Testosterone and dihydrotestosterone levels in the transition zone correlate with prostate volume.

    Science.gov (United States)

    Pejčić, Tomislav; Tosti, Tomislav; Tešić, Živoslav; Milković, Borivoj; Dragičević, Dejan; Kozomara, Milutin; Čekerevac, Milica; Džamić, Zoran

    2017-07-01

    There is still no consensus regarding intraprostatic androgen levels and the accumulation of androgens in the hyperplastic prostatic tissue. The current opinion is that intraprostatic dihydrotestosterone (DHT) concentrations are maintained but not elevated in benign prostatic hyperplasia (BPH), while there is no similar data concerning intraprostatic testosterone (T). Tissue T (tT) and tissue DHT (tDHT) concentration were determined in 93 patients scheduled for initial prostate biopsy. The criteria for biopsy were abnormal DRE and/or PSA > 4 ng/mL. Total prostate volume (TPV) was determined by transrectal ultrasound (TRUS). During TRUS- guided prostate biopsy, 10-12 samples were collected from the peripheral zone (PZ) and two additional samples were collected from the transition zone (TZ). The samples from the TZ were immediately frozen in liquid nitrogen at -70°C, and transported for tissue androgen determination, using liquid chromatography mass spectrometry (LC-MS). Pathological analysis revealed that prostate cancer (PCa) was present in 45 and absent in 48 patients. In the whole group, there were 42 men with small prostate (TPV prostate (TPV ≥ 31 mL). The overall average tT level was 0.79 ± 0.66 ng/g, while the average tDHT level was 10.27 ± 7.15 ng/g. There were no differences in tT and tDHT level in prostates with and without PCa. However, tT and tDHT levels were significantly higher in larger, than in smaller prostates (tT: 1.05 ± 0.75 and 0.46 ± 0.29 ng/g, and tDHT: 15.0 ± 6.09 and 4.51 ± 2.75 ng/g, respectively). There were strong correlations between tT and TPV (r = 0.71), and tDHT and TPV (r = 0.74). The present study confirmed that both T and DHT accumulated in the stroma of enlarged prostates; the degree of accumulation correlated with prostate volume. © 2017 Wiley Periodicals, Inc.

  7. Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials

    Science.gov (United States)

    Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin

    2017-12-01

    Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.

  8. Wind power - a power source now enabled by power electronics

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin

    2007-01-01

    energy at the end-user should be set up. Deregulation of energy has lowered the investment in larger power plants, which means the need for new electrical power sources may be increased in the near future. Two major technologies will play important roles to solve the future problems. One is to change......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. It is expected that it has to be doubled within 20 years. The production, distribution and use of the energy should be as technological efficient as possible and incentives to save...... the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most emerging...

  9. Comparison between Different Power Sources for Emergency Power Supply at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lenasson, Magnus

    2015-01-01

    Currently the Swedish nuclear power plants are using diesel generator sets and to some extent gas turbines as their emergency AC power sources and batteries as their emergency DC power sources. In the laws governing Swedish nuclear activity, no specific power sources are prescribed. On the other hand, diversification of safety functions should be considered, as well as simplicity and reliability in the safety systems. So far the choices of emergency power sources have been similar between different power plants, and therefore this project investigated a number of alternative power sources and if they are suitable for use as emergency power on nuclear power plants. The goals of the project were to: - Define the parameters that are essential for rending a power source suitable for use at a nuclear power plant. - Present the characteristics of a number of power sources regarding the defined parameters. - Compile the suitability of the different power sources. - Make implementation suggestions for the less conventional of the investigated power sources. (unconventional in the investigated application) 10 different power sources in total have been investigated and to various degrees deemed suitable Out of the 10 power sources, diesel generators, batteries and to some extent gas turbines are seen as conventional technology at the nuclear power plants. In relation to them the other power sources have been assessed regarding diversification gains, foremost with regards to external events. The power sources with the largest diversification gains are: Internal steam turbine, Hydro power, Thermoelectric generators. The work should first and foremost put focus on the fact that under the right circumstances there are power sources that can complement conventional power sources and yield substantial diversification gains. This paper is a shortened version of the report 'Comparison between different power sources for emergency power supply at nuclear power plants'. The

  10. Semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  11. Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film

    International Nuclear Information System (INIS)

    Wong, Basil T.; Francoeur, Mathieu; Bong, Victor N.-S.; Mengüç, M. Pinar

    2014-01-01

    Near-field thermal radiative exchange between two objects is typically more effective than the far-field thermal radiative exchange as the heat flux can increase up to several orders higher in magnitudes due to tunneling of evanescent waves. Such an interesting phenomenon has started to gain its popularity in nanotechnology, especially in nano-gap thermophotovoltaic systems and near-field radiative cooling of micro-/nano-devices. Here, we explored the existence of thermal gradient within an n-doped silicon thin film when it is subjected to intensive near-field thermal radiative heating. The near-field radiative power density deposited within the film is calculated using the Maxwell equations combined with fluctuational electrodynamics. A phonon Monte Carlo simulation is then used to assess the temperature gradient by treating the near-field radiative power density as the heat source. Results indicated that it is improbable to have temperature gradient with the near-field radiative heating as a continuous source unless the source comprises of ultra-short radiative pulses with a strong power density. - Highlights: • This study investigates temperature distribution in an n-doped silicon thin film. • Near-field radiative heating is treated as a volumetric phenomenon. • The temperature gradient is computed using phonon MC simulation. • Temperature of thin film can be approximated as uniform for radiation calculations. • If heat source is a pulsed radiation, a temperature gradient can be established

  12. The power of PowerPoint.

    Science.gov (United States)

    Niamtu , J

    2001-08-01

    Carousel slide presentations have been used for academic and clinical presentations since the late 1950s. However, advances in computer technology have caused a paradigm shift, and digital presentations are quickly becoming standard for clinical presentations. The advantages of digital presentations include cost savings; portability; easy updating capability; Internet access; multimedia functions, such as animation, pictures, video, and sound; and customization to augment audience interest and attention. Microsoft PowerPoint has emerged as the most popular digital presentation software and is currently used by many practitioners with and without significant computer expertise. The user-friendly platform of PowerPoint enables even the novice presenter to incorporate digital presentations into his or her profession. PowerPoint offers many advanced options that, with a minimal investment of time, can be used to create more interactive and professional presentations for lectures, patient education, and marketing. Examples of advanced PowerPoint applications are presented in a stepwise manner to unveil the full power of PowerPoint. By incorporating these techniques, medical practitioners can easily personalize, customize, and enhance their PowerPoint presentations. Complications, pitfalls, and caveats are discussed to detour and prevent misadventures in digital presentations. Relevant Web sites are listed to further update, customize, and communicate PowerPoint techniques.

  13. Water Power Research | Water Power | NREL

    Science.gov (United States)

    Water Power Research Water Power Research NREL conducts water power research; develops design tools ; and evaluates, validates, and supports the demonstration of innovative water power technologies. Photo of a buoy designed around the oscillating water column principle wherein the turbine captures the

  14. Power control device of an atomic power plant

    International Nuclear Information System (INIS)

    Ootsuka, Shiro; Ito, Takero.

    1980-01-01

    Purpose: To improve the power controllability of an atomic power plant by improving the controllability, response and stability of the recirculation flow rate. Constitution: The power control device comprises a power detector of the reactor, which detects and operates the reactor power from the thermal power, neutron flux or the process quantity controlling the same, and a deviation detector which seeks deviation between the power signal of the power detector and the power set value of the reactor or power station. By use of the power control device constituted in this manner, the core flow rate is regulated by the power signal of the deviation detector thereby to control the power. (Aizawa, K.)

  15. Characterization of tobacco geminiviruses in the Old and New World.

    Science.gov (United States)

    Paximadis, M; Idris, A M; Torres-Jerez, I; Villarreal, A; Rey, M E; Brown, J K

    1999-01-01

    Biological differences and molecular variability between six phenotypically distinct tobacco-infecting geminivirus isolates from southern Africa (Zimbabwe) and Mexico were investigated. Host range studies conducted with tobacco virus isolates ZIM H from Zimbabwe and MEX 15 and MEX 32 from Mexico indicated all had narrow host ranges restricted to the Solanaceae. Alignment of coat protein gene (CP) and common region (CR) sequences obtained by PCR, and phylogenetic analysis of the CP sequences indicated Zimbabwean isolates were distantly related to those from Mexico and that geographically proximal isolates shared their closest affinities with Old and New World geminiviruses, respectively. Zimbabwean isolates formed a distinct cluster of closely related variants (> 98% sequence identity) of the same species, while MEX 15 segregated independently from MEX 32, the former constituting a distinct species among New World geminiviruses, and the latter being a variant, Texas pepper virus-Chiapas isolate (TPV-CPS) with 95% sequence identity to TPV-TAM. Results collectively indicated a geographic basis for phylogenetic relationships rather than a specific affiliation with tobacco as a natural host. MEX 15 is provisionally described as a new begomovirus, tobacco apical stunt virus, TbASV, whose closest CP relative is cabbage leaf curl virus, and ZIM isolates are provisionally designated as tobacco leaf curl virus, TbLCV-ZIM, a new Eastern Hemisphere begomovirus, which has as its closest relative, chayote mosaic virus from Nigeria.

  16. DC power supplies power management and surge protection for power electronic systems

    CERN Document Server

    Kularatna, Nihal

    2011-01-01

    Modern electronic systems, particularly portable consumer electronic systems and processor based systems, are power hungry, compact, and feature packed. This book presents the most essential summaries of the theory behind DC-DC converter topologies of both linear and switching types. The text discusses power supply characteristics and design specifications based on new developments in power management techniques and modern semiconductors entering into the portable electronics market. The author also addresses off-the-line power supplies, digital control of power supply, power supply protection

  17. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  18. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  19. An Enhanced Islanding Microgrid Reactive Power, Imbalance Power, and Harmonic Power Sharing Scheme

    DEFF Research Database (Denmark)

    He, Jinwei; Lin, Yun Wei; Blaabjerg, Frede

    2015-01-01

    To address inaccurate power sharing problems in autonomous islanding microgrids, an enhanced droop control method through online virtual impedance adjustment is proposed. First, a term associated with DG reactive power, imbalance power, or harmonic power is added to the conventional real power...

  20. A PV temperature prediction model for BIPV configurations, comparison with other models and experimental results

    OpenAIRE

    Kaplanis, Socrates; Kaplani, Eleni

    2018-01-01

    The temperatures of c-Si and pc-Si BIPV configurations of different manufacturers were studied when operating under various environmental conditions. The BIPV configurations formed part of the roof in a Zero Energy Building, (ZEB), hanged over windows with varying inclination on a seasonal basis and finally two identical 0.5kWp PV generators were mounted on a terrace in two modes: fixed inclination and sun-tracking. The PV and ambient temperatures, Tpv and Ta, respectively, the intensity of t...

  1. Módulo de sincronización entre Tienda Online Prestashop y Unicenta POS

    OpenAIRE

    Sánchez Corredor, Montserrat

    2015-01-01

    [CASTELLÀ] Este proyecto consiste en la creación de un sistema que permite sincronizar los productos, categorías y stock, entre dos programas que gestionan tiendas. Estos programas son el TPV (Terminal Punto de Venta) uniCenta y el CMS (Content Management System) eCommerce (Electronic Commerce) Prestashop. [ANGLÈS] This project involves the creation of a system that synchronizes products, categories and stock between two programs that manage shops. These programs are the POS (Point of Sal...

  2. Electric power system / emergency power supply

    International Nuclear Information System (INIS)

    Dorn, P.G.

    1980-01-01

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  3. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  4. Stockholm Power Tech. Power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The proceedings from this symposium is presented in six volumes: Invited speakers` sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  5. Stockholm Power Tech. Power systems

    International Nuclear Information System (INIS)

    1995-01-01

    The proceedings from this symposium is presented in six volumes: Invited speakers' sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  6. Thermoelectric power generator for variable thermal power source

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  7. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  8. Power Burst Facility: power oscillation problem

    International Nuclear Information System (INIS)

    Lussie, W.G.; Wadkins, R.P.; Wells, R.A.

    1975-01-01

    In late 1973 PBF achieved a power level of 15 MW. During this period of operation fluctuations in reactor power were observed. Many possible causes of these fluctuations were considered and a number of nuclear and non-nuclear tests were conducted. Initial instrumentation installed in the core showed coolant outlet temperature variations of 10 0 F for several fuel cannisters and approximately 10 percent power variations at 15 MW. Power spectral density analysis showed a predominant frequency of 0.05 to 0.06 HZ. The testing program to determine the cause of the power oscillations is described

  9. PowerFactory applications for power system analysis

    CERN Document Server

    Gonzalez-Longatt, Francisco

    2014-01-01

    This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-

  10. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  11. An accurate autonomous islanding microgrid reactive power, imbalance power and harmonic power sharing scheme

    DEFF Research Database (Denmark)

    He, Jinwei; Li, Yun Wei; Blaabjerg, Frede

    2013-01-01

    To address inaccurate power sharing problems in autonomous islanding microgrids, an enhanced droop control method through adaptive virtual impedance adjustment is proposed. First, a term associated with DG reactive power, imbalance power or harmonic power is added to the conventional real power...

  12. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  13. Compensating active power imbalances in power system with large-scale wind power penetration

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2016-01-01

    Large-scale wind power penetration can affectthe supply continuity in the power system. This is a matterof high priority to investigate, as more regulating reservesand specified control strategies for generation control arerequired in the future power system with even more highwind power penetrat...

  14. Military power requirements and backup power considerations

    International Nuclear Information System (INIS)

    Botts, T.E.

    1986-01-01

    All US Air Force (USAF) facilities have certain critical power requirements that must be met in order to carry out their mission successfully. Internal USAF studies have shown that the mission can degrade precipitously as the available power decreases below the mission critical level. Now, more than ever before, the military and private industry are finding that certain functions, such as automated data processing and automated process control, respond catastrophically to power reductions. Furthermore, increased reliance on electrical power means, in the case of the Air Force, that critical power requirements are anticipated to increase by half over the next 15 yr. For these reasons and others, the USAF is investigating several means of improving the availability of electric power under adverse conditions above that which can be provided by an off-base supplier. Among the approaches to this problem being pursued at this time are a program to improve all sorts of generator sets on a service-wide basis and the Multimegawatt Terrestrial Power (MTP) Program, which is pursuing the design and testing of a small dedicated nuclear power source to provide critical mission power. The purpose of this paper is to provide some insight into some of the issues associated with USAF power programs

  15. Real-time impact of power balancing on power system operation with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2017-01-01

    Highly wind power integrated power system requires continuous active power regulation to tackle the power imbalances resulting from the wind power forecast errors. The active power balance is maintained in real-time with the automatic generation control and also from the control room, where...... power system model. The power system model takes the hour-ahead regulating power plan from power balancing model and the generation and power exchange capacities for the year 2020 into account. The real-time impact of power balancing in a highly wind power integrated power system is assessed...

  16. Hybrid wind power balance control strategy using thermal power, hydro power and flow batteries

    OpenAIRE

    Gelažanskas, Linas; Baranauskas, Audrius; Gamage, Kelum A.A.; Ažubalis, Mindaugas

    2016-01-01

    The increased number of renewable power plants pose threat to power system balance. Their intermittent nature makes it very difficult to predict power output, thus either additional reserve power plants or new storage and control technologies are required. Traditional spinning reserve cannot fully compensate sudden changes in renewable energy power generation. Using new storage technologies such as flow batteries, it is feasible to balance the variations in power and voltage within very short...

  17. Power manager and method for managing power

    NARCIS (Netherlands)

    Burchard, A.T.; Kersten, G.; Molnos, A.M.; Milutinovic, A.; Goossens, K.G.W.; Steffens, E.F.M.

    2009-01-01

    A power manager (106) and method for managing the power supplied to an electronic device is provided. Furthermore, a system wherein the power supplied to an electronic device is managed is provided. The power manager (106) is operative to monitor a hardware monitor (104) during a monitoring time

  18. Swirling Combustor Energy Converter: H2/Air Simulations of Separated Chambers

    Directory of Open Access Journals (Sweden)

    Angelo Minotti

    2015-09-01

    Full Text Available This work reports results related to the “EU-FP7-HRC-Power” project aiming at developing micro-meso hybrid sources of power. One of the goals of the project is to achieve surface temperatures up to more than 1000 K, with a ∆T ≤ 100 K, in order to be compatible with a thermal/electrical conversion by thermo-photovoltaic cells. The authors investigate how to reach that goal adopting swirling chambers integrated in a thermally-conductive and emitting element. The converter consists of a small parallelepiped brick inside two separated swirling meso-combustion chambers, which heat up the parallelepiped, emitting material by the combustion of H2 and air at ambient pressure. The overall dimension is of the order of cm. Nine combustion simulations have been carried out assuming detailed chemistry, several length/diameter ratios (Z/D = 3, 5 and 11 and equivalence ratios (0.4, 0.7 and 1; all are at 400 W of injected chemical power. Among the most important results are the converter surfaces temperatures, the heat loads, provided to the environment, and the chemical efficiency. The high chemical efficiency, h > 99.9%, is due to the relatively long average gas residence time coupled with the fairly good mixing due to the swirl motion and the impinging air/fuel jets that provide heat and radicals to the flame.

  19. Wireless powering for low-power distributed sensors

    Directory of Open Access Journals (Sweden)

    Popović Zoya B.

    2006-01-01

    Full Text Available In this paper, an overview of the field of wireless powering is presented with an emphasis on low-power applications. Several rectenna elements and arrays are discussed in more detail: (1 a 10-GHz array for powering sensors in aircraft wings; (2 a single antenna in the 2.4-GHz ISM band for low-power assisted-living sensors; and (3 a broadband array for power harvesting in the 2-18GHz frequency range.

  20. Impacts of Wind Power on Power System Stability

    NARCIS (Netherlands)

    Vittal, E.; Keane, A.; Slootweg, J.G.; Kling, W.L.; Ackermann, T.

    2012-01-01

    This chapter examines how wind power will impact the stability of power systems. It focuses on the three aspects of power system stability: voltage stability, rotor angle stability and frequency stability. It completes a detailed analysis as to how wind power in power systems will impact the

  1. Nuclear power/water pumping-up composite power plant

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi.

    1995-01-01

    In a nuclear power/water pumping-up composite power plant, a reversible pump for pumping-up power generation connected to a steam turbine is connected to an upper water reservoir and a lower water reservoir. A pumping-up steam turbine for driving the turbine power generator, a hydraulic pump for driving water power generator by water flowing from the upper water reservoir and a steam turbine for driving the pumping-up pump by steams from a nuclear reactor are disposed. When power demand is small during night, the steam turbine is rotated by steams of the reactor, to pump up the water in the lower water reservoir to the upper water reservoir by the reversible pump. Upon peak of power demand during day time, power is generated by the steams of the reactor, as well as the reversible pump is rotated by the flowing water from the upper water reservoir to conduct hydraulic power generation. Alternatively, hydraulic power generation is conducted by flowing water from the upper reservoir. Since the number of energy conversion steps in the combination of nuclear power generation and pumping-up power generation is reduced, energy loss is reduced and utilization efficiency can be improved. (N.H.)

  2. Comprehensive Power Losses Model for Electronic Power Transformer

    DEFF Research Database (Denmark)

    Yue, Quanyou; Li, Canbing; Cao, Yijia

    2018-01-01

    and considering the impact of the non-unity power factor and the three-phase unbalanced current, the overall power losses in the distribution network when using the EPT to replace the conventional transformer is analyzed, and the conditions in which the application of the EPT can cause less power losses...... reduced power losses in the distribution network require a comprehensive consideration when comparing the power losses of theEPT and conventional transformer. In this paper, a comprehensive power losses analysis model for the EPT in distribution networks is proposed. By analyzing the EPT self-losses......The electronic power transformer (EPT) has highe rpower losses than the conventional transformer. However, the EPT can correct the power factor, compensate the unbalanced current and reduce the line power losses in the distribution network.Therefore, the higher losses of the EPT and the consequent...

  3. Comprehensive Power Losses Model for Electronic Power Transformer

    DEFF Research Database (Denmark)

    Yue, Quanyou; Li, Canbing; Cao, Yijia

    2018-01-01

    The electronic power transformer (EPT) has highe rpower losses than the conventional transformer. However, the EPT can correct the power factor, compensate the unbalanced current and reduce the line power losses in the distribution network.Therefore, the higher losses of the EPT and the consequent...... reduced power losses in the distribution network require a comprehensive consideration when comparing the power losses of theEPT and conventional transformer. In this paper, a comprehensive power losses analysis model for the EPT in distribution networks is proposed. By analyzing the EPT self......-losses and considering the impact of the non-unity power factor and the three-phase unbalanced current, the overall power losses in the distribution network when using the EPT to replace the conventional transformer is analyzed, and the conditions in which the application of the EPT can cause less power losses...

  4. Selectivity of power system protections at power swings in power system

    Directory of Open Access Journals (Sweden)

    Jan Machowski

    2012-12-01

    Full Text Available The paper discusses out-of-step protection systems such as: generator pole slip protections, out of step tripping protections, distance protections of step-up transformer, distance protections of transmission lines and transformers, power swing blocking, and special out-of-step protection. It is shown that all these protections make up a protection system, to which a setting concept uniform for the entire power system has to be applied. If a power system is inappropriately equipped with these protections, or their settings are inappropriate, they may operate unselectively, thus contributing to the development of power system blackouts. In the paper the concepts for a real power system are given for the two stages: target stage fully compliant with selectivity criteria, and transitional stage between the current and target stages.

  5. Power Ramp Limitation capabilities of Large PV Power Plants with Active Power Reserves

    DEFF Research Database (Denmark)

    Bogdan, Craciun; Kerekes, Tamas; Sera, Dezso

    2017-01-01

    Power Ramp Limitation (PRL) is likely to become a requirement for large scale photovoltaic power plants (LPVPPs) in order to allow the increase of PV penetration levels. Especially in islands with reduced inertia capability, this problem is more stringent: high power ramp can be caused by either...... fast irradiance changes or other participant generators for example wind power, or loads. In order to compensate for the power mismatch, LPVPPs must use Active Power Reserve (APR), by either curtailment or auxiliary storage. The paper proposes a PRL control structure for dynamic APR sizing...... and deployment. The selected test case is the power system of Puerto Rico (PREPA), modeled using the modified IEEE 12 bus benchmark system, with different levels of PV penetration. It is shown that LPVPP with PRL can effectively reduce the ramping rate of the participating generators. Considering that the large...

  6. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  7. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  8. A Review of Power Electronics for Wind Power

    Institute of Scientific and Technical Information of China (English)

    Zhe CHEN

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems.Main wind turbine systems with different generators and power electronic converters are described.The electrical topologies of wind farms with power electronic conversion are discussed.Power electronic applications for improving the performance of wind turbines and wind farms in power systems have been illustrated.

  9. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable....... It is thus a central point that power is not necessarily something that breaks down and represses. On the contrary, an explicit focus on the dynamics of power in relation to creativity can be productive for the organisation. Our main focus is to elaborate the implications of this for practice and theory...

  10. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  11. AC Power Local Network with Multiple Power Routers

    Directory of Open Access Journals (Sweden)

    Ryo Takahashi

    2013-12-01

    Full Text Available Controlling power flow and achieving appropriate matching between power sources and loads according to the quality of energy is expected to be one of the approaches to reduce wasted energy consumption. A power router, proposed recently, has the capability of realizing circuit switching in a power distribution network. This study focuses on the feasibility of an AC power routing network system composed of multiple power routers. To evaluate the feasibility, we experimentally confirm the circuit switching operation of the parallel and series configurations of the power routers, so that the network system can be designed by the combination of parallel and series configurations.

  12. Similarities and differences between conventional power and nuclear power

    International Nuclear Information System (INIS)

    Wang Yingrong

    2011-01-01

    As the implementation of the national guideline of 'proactively promoting nuclear power development', especially after China decided in 2006 to introduce Westinghouse's AP1000 technology, some of the power groups specialized in conventional power generation, have been participating in the preliminary work and construction of nuclear power projects in certain degrees. Meanwhile, such traditional nuclear power corporations as China National Nuclear Corporation (CNNC) and China Guangdong Nuclear Power Corporation (CGNPC) have also employed some employees with conventional power generation experience. How can these employees who have long been engaged in conventional power generation successfully adapt to the new work pattern, ideology, knowledge, thinking mode and proficiency of nuclear power, so that they can fit in with the work requirements of nuclear power and become qualified as soon as possible? By analyzing the technological, managerial and cultural features of nuclear power, as well as some issues to be kept in mind when engaged in nuclear power, this paper intends to make some contribution to the nuclear power development in the specific period. (author)

  13. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  14. Pragmatic power

    CERN Document Server

    Eccles, William

    2008-01-01

    Pragmatic Power is focused on just three aspects of the AC electrical power system that supplies and moves the vast majority of electrical energy nearly everywhere in the world: three-phase power systems, transformers, and induction motors. The reader needs to have had an introduction to electrical circuits and AC power, although the text begins with a review of the basics of AC power. Balanced three-phase systems are studied by developing their single-phase equivalents. The study includes a look at how the cost of ""power"" is affected by reactive power and power factor. Transformers are cons

  15. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal......The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  16. Investigating power control in autonomous power systems with increasing wind power penetration

    Energy Technology Data Exchange (ETDEWEB)

    Margaris, Ioannis D. [National Technical Univ. of Athens (Greece). Electric Energy Systems Lab.; Hansen, Anca D.; Sorensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Hatziargyriou, Nikos D. [National Technical Univ. of Athens (Greece). Electric Energy Systems Lab.; Public Power Corporation S.A., Athens (Greece)

    2009-07-01

    Increasing levels of wind penetration in autonomous power systems has set intensively high standards with respect to wind turbine technology during the last years. Special features of non-interconnected power systems make security issues rather critical, as the operation of large wind farms like conventional power plants is becoming a necessity. This paper includes the study case of Rhodos island, in Greece, where rapidly increasing wind penetration has started to impose serious security issues for the immediate future. The scenarios studied here correspond to reference year of study 2012 and include wind farms with three different wind turbine technologies - namely Doubly Fed Induction Generator (DFIG), Permanent Magnet Synchronous Generator (PMSG) and Active Stall Induction Generator (ASIG) based wind turbines. Aggregated models of the wind farms are being used and results for different load cases are being analyzed and discussed. The ability of wind farms to assist in some of the power system control services traditionally carried out by conventional synchronous generation is being investigated and discussed. The power grid of the island, including speed governors and automatic voltage regulators, is simulated in the dedicated power system simulation program Power Factory from DIgSILENT. (orig.)

  17. Sexual aggression when power is new: Effects of acute high power on chronically low-power individuals.

    Science.gov (United States)

    Williams, Melissa J; Gruenfeld, Deborah H; Guillory, Lucia E

    2017-02-01

    Previous theorists have characterized sexually aggressive behavior as an expression of power, yet evidence that power causes sexual aggression is mixed. We hypothesize that power can indeed create opportunities for sexual aggression-but that it is those who chronically experience low power who will choose to exploit such opportunities. Here, low-power men placed in a high-power role showed the most hostility in response to a denied opportunity with an attractive woman (Studies 1 and 2). Chronically low-power men and women given acute power were the most likely to say they would inappropriately pursue an unrequited workplace attraction (Studies 3 and 4). Finally, having power over an attractive woman increased harassment behavior among men with chronic low, but not high, power (Study 5). People who see themselves as chronically denied power appear to have a stronger desire to feel powerful and are more likely to use sexual aggression toward that end. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Power system stabilizer control for wind power to enhance power system stability

    OpenAIRE

    Domínguez García, José Luís; Gomis Bellmunt, Oriol; Bianchi, Fernando Daniel; Sumper, Andreas

    2011-01-01

    The paper presents a small signal stability analysis for power systems with wind farm interaction. Power systems have damping oscillation modes that can be excited by disturbance or fault in the grid. The power converters of the wind farms can be used to reduce these oscillations and make the system more stable. These ideas are explored to design a power system stabilized (PSS) for a network with conventional generators and a wind farm in order to increase the damping of the oscillation...

  19. Wind farm - A power source in future power systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    wind turbines and wind farms, and then introduces the wind power development and wind farms. An optimization platform for designing electrical systems of offshore wind farms is briefed. The major issues related to the grid connection requirements and the operation of wind turbines/farms in power......The paper describes modern wind power systems, introduces the issues of large penetration of wind power into power systems, and discusses the possible methods of making wind turbines/farms act as a power source, like conventional power plants in power systems. Firstly, the paper describes modern...... systems are illustrated....

  20. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    CERN Document Server

    Ahuja, Sumit; Shukla, Sandeep Kumar

    2012-01-01

    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  1. Effect of extender oils on the stress relaxation behavior of thermoplastic vulcanizates

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The long term mechanical behavior of oil extended thermoplastic vulcanizates (TPV based on polypropylene (PP and acrylonitrile-butadiene rubber (NBR has been characterized by means of stress relaxation experiments. The morphology of TPV and the phase specific oil distribution which depend on the content and type of oil as well as on the mixing regime have been characterized by means of Atomic Force Microscopy (AFM, Dynamic Mechanical Thermal Analysis (DMTA and Differential Scanning Calorimetrie (DSC. The discussion of the stress relaxation behavior was carried out using the two-component model, which allows splitting the initial stress into two components: a thermal activated stress component and an athermal one. A master curve was created by shifting the relaxation curves vertically and horizontally towards the reference curve. The vertical shift factor bT is a function of the temperature dependence of the athermal stress components. It was found that the oil distribution strongly affects the athermal stress component which is related to the contribution of the structural changes, e.g. crystallinity of the PP phase and the average molecular weight between the crosslinks of the NBR phase. From the temperature dependence of the horizontal shift factor aT the main viscoelastic relaxation process was determined as the α-relaxation process of the crystalline PP phase. It is not dependent on the polarity and content of the oil as well as the mixing regime.

  2. A Review of Power Electronics for Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems. Main wind turbine systems with different generators and power electronic converters are described. The electrical topologies of wind farms with power electronic conversion are discussed. Power electronic applications...

  3. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  4. Power Electronics

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....

  5. Nuclear and thermal power plant power ramping capability

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1983-01-01

    The possibilities of step power increase by NPP and TPP units under emergency conditions of power grids operation are considered. The data analysis has shown that power units ramping capability with WWER-440, WWER-1000 and RBMK-1000 reactors is higher than that of 300 MW power units on fossil fuel, at the initial time interval (0-30 s). These NPP power units satisfy as to ramping capability the energy system requirements. Higher NPP power units ramping capability is explained by the fact that relative pressure before turbine valves is decreased less than in straight-through boilers while the steam volumes time constant of steam separator-superheaters is less than that of intermediate superheatings. Higher power unit ramping capability with WWER-440 and RBMK-1000 reactors as compared with the WWER-1000 reactor is pointed out as well as the increase of WWER-1000 power unit capability using high-speed turbines

  6. Some power uprate issues in nuclear power plants

    International Nuclear Information System (INIS)

    Tipping, Philip

    2008-01-01

    Issues and themes concerned with nuclear power plant uprating are examined. Attention is brought to the fact that many candidate nuclear power plants for uprating have anyway been operated below their rated power for a significant part of their operating life. The key issues remain safety and reliability in operation at all times, irrespective of the nuclear power plant's chronological or design age or power rating. The effects of power uprates are discussed in terms of material aspects and expected demands on the systems, structures and components. The impact on operation and maintenance methods is indicated in terms of changes to the ageing surveillance programmes. Attention is brought to the necessity checking or revising operator actions after power up-rating has been implemented

  7. Power market model with energy- and power dimension

    International Nuclear Information System (INIS)

    Johnsen, T.A.; Larsen, B.M.

    1995-01-01

    This report discusses a mathematical model of the Norwegian power market. The year is divided into three seasons. Each season is subdivided into a high-load period and a low-load period according to the demand. High-load occurs in daytime on workdays while low-load occurs at night and on holidays. The model is intended to be a tool for studying variations in prices, production, demand and trade throughout the year in a market of free competition. The model establishes equilibrium prices of electricity in Norway in high-load and low-load periods. Equilibrium prices with added transport tariffs and charges give customer an indication of the cost of using electricity. And the equilibrium prices indicate to the power producers the value of further energy or power capacity. Examples of calculations using the model show that extended export and import between Norway and other countries affect power prices and production in Norway. In the examples, power intensive industry and wood processing are subjected to market prices on energy. World market prices which give unilateral power export in the high-load periods cause the Norwegian power prices to rise strongly. If to the export from Norway in periods of high-load there corresponds import in periods of low-load, then the pressure on the prices in the power market is significantly reduced. A more extensive power exchange implies that foreign power producers may use the Norwegian power system to avoid large variations in their thermal power production. 23 refs., 21 figs., 1 tab

  8. Fuel-cell based power generating system having power conditioning apparatus

    Science.gov (United States)

    Mazumder, Sudip K.; Pradhan, Sanjaya K.

    2010-10-05

    A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

  9. High impact data visualization with Power View, Power Map, and Power BI

    CERN Document Server

    Aspin, Adam

    2014-01-01

    High Impact Data Visualization with Power View, Power Map, and Power BI helps you take business intelligence delivery to a new level that is interactive, engaging, even fun, all while driving commercial success through sound decision-making. Learn to harness the power of Microsoft's flagship, self-service business intelligence suite to deliver compelling and interactive insight with remarkable ease. Learn the essential techniques needed to enhance the look and feel of reports and dashboards so that you can seize your audience's attention and provide them with clear and accurate information. Al

  10. Nuclear power and other thermal power

    International Nuclear Information System (INIS)

    Bakke, J.

    1978-01-01

    Some philosophical aspects of mortality statistics are first briefly mentioued, then the environmental problems of, first, nuclear power plants, then fossil fuelled power plants are summarised. The effects of releases of carbon dioxide, sulphur dioxide and nitrogen oxides are briefly discussed. The possible health effects of radiation from nuclear power plants and those of gaseous and particulate effluents from fossil fuel plants are also discussed. It is pointed out that in choosing between alternative evils the worst course is to make no choice at all, that is, failure to install thermal power plants will lead to isolated domestic burning of fossil fuels which is clearly the worst situation regarding pollution. (JIW)

  11. Bidding Strategy of Virtual Power Plant with Energy Storage Power Station and Photovoltaic and Wind Power

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2018-01-01

    Full Text Available For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.

  12. Power Quality in DC Power Distribution Systems and Microgrids

    Directory of Open Access Journals (Sweden)

    Stephen Whaite

    2015-05-01

    Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.

  13. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... and unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility......, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented to increase...

  14. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  15. Balancing computation and communication power in power constrained clusters

    Science.gov (United States)

    Piga, Leonardo; Paul, Indrani; Huang, Wei

    2018-05-29

    Systems, apparatuses, and methods for balancing computation and communication power in power constrained environments. A data processing cluster with a plurality of compute nodes may perform parallel processing of a workload in a power constrained environment. Nodes that finish tasks early may be power-gated based on one or more conditions. In some scenarios, a node may predict a wait duration and go into a reduced power consumption state if the wait duration is predicted to be greater than a threshold. The power saved by power-gating one or more nodes may be reassigned for use by other nodes. A cluster agent may be configured to reassign the unused power to the active nodes to expedite workload processing.

  16. Critical success factors for BOT electric power projects in China: Thermal power versus wind power

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhen-Yu. [School of Business Administration, North China Electric Power University, Beijing 102206 (China); Zuo, Jian; Zillante, George [School of Natural and Built Environments, University of South Australia, Adelaide 5001 (Australia); Wang, Xin-Wei [Shandong Nuclear Power Equipment Manufacturing Co. Ltd, Haiyang, Shandong 265118 (China)

    2010-06-15

    Chinese electric power industry has adopted Build-Operate-Transfer (BOT) approach in a number of projects to alleviate the pressure of sole state-owned investment. The Chinese government has taken enormous efforts to create an environment to facilitate the application of BOT approach in electric power projects. Moreover, the growing attention on the sustainability issues puts the traditional major source of electricity - thermal power project under more strict scrutiny. As a result, various renewable energy projects, particularly the wind power projects have involved private sector funds. Both thermal power and wind power projects via BOT approach have met with a varying degree of success. Therefore, it is imperative to understand the factors contributing towards the success of both types of BOT power projects. Using an extensive literature survey, this paper identifies 31 success factors under 5 categories for Chinese BOT electric power projects. This is followed by a questionnaire survey to exam relative significance of these factors. The results reveal the different levels of significance of success factors for BOT thermal power projects versus wind power projects. Finally, survey results were analyzed to explore the underlying construction and distributions among the identified success factors. This study provides a valuable reference for all involved parties that are interested in developing BOT electric power projects in China. (author)

  17. An ecological solution in power development strategy: hydroelectric Power

    International Nuclear Information System (INIS)

    Ionescu, S.; Teodorescu, D.

    1994-01-01

    One of the fundamental criteria in establishing the power development strategy is represented by the environmental protection. Besides increasing the power efficiency for users, the hydro power stands for a handy alternative to generate thermal power. Comparatively, if hydro power is properly planed and developed, it could allow conservation of fossil fuel resources (as it makes use of a renewable resources) and avoids air and water pollution and in addition would lead to certain positive effects upon the natural and anthropic environment (flood routing, optimizes the power supply-demand relationship, and so on). By making use of the data available in the international specific literature and the information on the power development strategy in Romania the effects incurred by hydro power are both qualitatively and quantitatively emphasized as compared to alternative power generation by fossil fuel combustion. The proposal is made to adopt certain law regulations as well as a methodology to evaluate the general efficiency of various types of power generating devices suiting the particular conditions of Romania and taking into account the social cost as well as environmental effects. Hence a power development strategy could be undertaking at the national level provided it meets the requirements of both power system and environment protection. (Author)

  18. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  19. Power Talk

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Stefanovic, Cedomir; Popovski, Petar

    2016-01-01

    A standard way to realize communication in microgrid control is to use an external communication network, such as modems for wireless or power-line communication, whose implementation may be inefficient in terms of deployment cost, complexity, and system stability. In this chapter we present......, while its reliability and availability draw on the reliability and availability of the microgrid power transmission system....... a communication solution, denoted as power talk, which is solely based on the use of the existing microgrid power equipment (i.e., power electronics and buses). The pivotal idea is to modulate information in the power-related parameters of the microgrid buses by use of the flexibility of power electronic...

  20. Switching power converters medium and high power

    CERN Document Server

    Neacsu, Dorin O

    2013-01-01

    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  1. Power in Households: Disentangling Bargaining Power

    OpenAIRE

    Mabsout, Ramzi; Staveren, Irene

    2009-01-01

    textabstractIntroduction Within the household bargaining literature, bargaining power is generally understood in terms of economic resources, such as income or assets. Empirical analyses of women’s bargaining power in households in developed and developing countries find that, in general, higher female incomes lead to higher bargaining power, which in turn tends to increase women’s relative wellbeing (Quisumbing, 2003). For assets, the empirical literature comes up with similar results, indic...

  2. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  3. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-01

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  4. Power conditioning unit for photovoltaic power systems

    Science.gov (United States)

    Beghin, G.; Nguyen Phuoc, V. T.

    Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.

  5. When Power Shapes Interpersonal Behavior: Low Relationship Power Predicts Men’s Aggressive Responses to Low Situational Power

    Science.gov (United States)

    Overall, Nickola C.; Hammond, Matthew D.; McNulty, James K.; Finkel, Eli J.

    2016-01-01

    When does power in intimate relationships shape important interpersonal behaviors, such as psychological aggression? Five studies tested whether possessing low relationship power was associated with aggressive responses, but (1) only within power-relevant relationship interactions when situational power was low, and (2) only by men because masculinity (but not femininity) involves the possession and demonstration of power. In Studies 1 and 2, men lower in relationship power exhibited greater aggressive communication during couples’ observed conflict discussions, but only when they experienced low situational power because they were unable to influence their partner. In Study 3, men lower in relationship power reported greater daily aggressive responses toward their partner, but only on days when they experienced low situational power because they were either (a) unable to influence their partner or (b) dependent on their partner for support. In Study 4, men who possessed lower relationship power exhibited greater aggressive responses during couples’ support-relevant discussions, but only when they had low situational power because they needed high levels of support. Study 5 provided evidence for the theoretical mechanism underlying men’s aggressive responses to low relationship power. Men who possessed lower relationship power felt less manly on days they faced low situational power because their partner was unwilling to change to resolve relationship problems, which in turn predicted greater aggressive responses to their partner. These results demonstrate that fully understanding when and why power is associated with interpersonal behavior requires differentiating between relationship and situational power. PMID:27442766

  6. Power oscillation suppression by robust SMES in power system with large wind power penetration

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Cuk Supriyadi, A.N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions

  7. Power oscillation suppression by robust SMES in power system with large wind power penetration

    Science.gov (United States)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  8. Is power-space a continuum? Distance effect during power judgments.

    Science.gov (United States)

    Jiang, Tianjiao; Zhu, Lei

    2015-12-01

    Despite the increasing evidence suggesting that power processing can activate vertical space schema, it still remains unclear whether this power-space is dichotomic or continuous. Here we tested the nature of the power-space by the distance effect, a continuous property of space cognition. In two experiments, participants were required to judge the power of one single word (Experiment 1) or compare the power of two words presented in pairs (Experiment 2). The power distance was indexed by the absolute difference of power ratings. Results demonstrated that reaction time decreased with the power distance, whereas accuracy increased with the power distance. The findings indicated that different levels of power were presented as different vertical heights, implying that there was a common mechanism underlying space and power cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The electric power engineering handbook power systems

    CERN Document Server

    2012-01-01

    Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheble, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse arr

  10. Power electronics and control for wind power systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    energy at the end-user should be set up. Deregulation of energy has lowered the investment in larger power plants, which means the need for new electrical power sources may be increased in the near future. Two major technologies will play important roles to solve the future problems. One is to change......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. It is expected that it has to be doubled within 20 years. The production, distribution and use of the energy should be as technological efficient as possible and incentives to save...... the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most emerging...

  11. Normative Power

    DEFF Research Database (Denmark)

    's normative power than any other academic journal, including a special issue on "What Kind of Power?" in 2006. As the leading journal in the debate, this special issue brings together seven normative power articles published in JEPP since the 2006 special issue, together with Ian Manners' ‘Normative power......The social sciences have many different understandings of ‘normative power', but in European Union (EU) studies normative power has three particular meanings. The first meaning of normative power is its emphasis on normative theory, that is, how we judge and justify truth claims in social science...... effects of EU relations with the world in areas ranging from inter-regional relations, through traditional diplomacy, to environmental politics. Research areas of particular interest include the study of the interplay between physical, material and normative forms of power, as well as the constitutive...

  12. Agent-based power sharing scheme for active hybrid power sources

    Science.gov (United States)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  13. Power in Bourdieu and Foucault: considerations about symbolic power and disciplinary power

    Directory of Open Access Journals (Sweden)

    Tiago Barros Rosa

    2017-06-01

    Full Text Available This article aims to present some of conceptions about power, which are present in the thoughts of two contemporary classics from Social Science: Pierre Bourdieu and Michel Foucault. Most specifically, we will analyze the foundations of the notions of symbolic power and disciplinary power, developed, respectively, on their work. Despite the theoretical and methodological differences in both authors, we attend to approach the distinct notions of power in their scientific projects and to confront them to the currently dominant tendency, whose fundamental assumption are supported by the Weberian theory. The idea of imposition of will, as discussed in Weber’s classic formulation of power, brings in itself, indelibly, the awareness, calculation and intentionality by the social actors. Both Foucault and Bordieu, the individuals - subjects and social agents – are conditioned and constrained by external relation and forces, which are often not consciously perceived.

  14. Integrating wind power in the (French) power system

    International Nuclear Information System (INIS)

    Pellen, A.

    2007-03-01

    RTE and EDF have no other technological option than to restrain the contribution of the French wind power fleet to base-load generation where it comes in direct competition with the nuclear power plants. The author aims to explain this situation and answer the following questions. Why the fossil fueled reactor fleet in France will not be affected by an evolution of the wind power capacity? Why, in France electric power generation-demand SYSTEM wind power cannot be a substitute for fossil fueled thermal units? (A.L.B.)

  15. Power quality in power systems and electrical machines

    CERN Document Server

    Fuchs, Ewald

    2015-01-01

    The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable

  16. Adaptive Reactive Power Control of PV Power Plants for Improved Power Transfer Capability under Ultra-Weak Grid Conditions

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng

    2018-01-01

    with the unity power factor. Then, considering the reactive power compensation from PV inverters, the minimum SCR in respect to Power Factor (PF) is derived, and the optimized coordination of the active and reactive power is exploited. It is revealed that the power transfer capability of PV power plant under...... of a 200 MW PV power plant demonstrate that the proposed method can ensure the rated power transfer of PV power plant with the SCR of 1.25, provided that the PV inverters are operated with the minimal PF=0.9.......This paper analyzes the power transfer limitation of the PV power plant under the ultra-weak grid condition, i.e., when the Short-Circuit Ratio (SCR) is close to 1. It explicitly identifies that a minimum SCR of 2 is required for the PV power plant to deliver the rated active power when operating...

  17. Enhancing radiative energy transfer through thermal extraction

    Directory of Open Access Journals (Sweden)

    Tan Yixuan

    2016-06-01

    Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.

  18. Control of power plants and power systems. Proceedings

    International Nuclear Information System (INIS)

    Canales-Ruiz, R.

    1996-01-01

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for the three papers relating to nuclear power plants. (UK)

  19. The development of Chinese power industry and its nuclear power

    International Nuclear Information System (INIS)

    Zhou Dabin

    2002-01-01

    The achievements and disparity of Chinese power industry development is introduced. The position and function of nuclear power in Chinese power industry is described. Nuclear power will play a role in ensuring the reliable and safe supply of primary energy in a long-term and economic way. The development prospects of power source construction in Chinese power industry is presented. Challenge and opportunity in developing nuclear power in China are discussed

  20. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1991-01-01

    This Safety Guide was prepared as part of the Nuclear Safety Standards programme for establishing Codes and Safety Guides relating to nuclear power plants (NPPs). The first edition of the present Safety Guide was developed in the early 1980s. The text has now been brought up-to-date, refined in several details and amended to include non-electrical diverse and independent power sources. This Guide applies to NPP for which the total power supply comprises a normal power supply and an emergency power supply (EPS), which may be electrical or a combination of electrical and non-electrical. The Guide provides general guidance for all types of EPS and specific guidance on the design safety requirements and the features of the electrical and non-electrical portions of the EPS. 9 figs, 2 tabs

  1. Space solar power for powering a space elevator

    Energy Technology Data Exchange (ETDEWEB)

    Laubscher, B. E. (Bryan E.); Kellum, M. J. (Mervyn J.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. If the SE's promise of low cost access can be realized, everything becomes economically more feasible to accomplish in space. In this paper we describe a Space Solar Power (SSP) system capable of powering the climbers of an SE. The initial SE will use laser power beaming from floating platforms near the SE platform. This study outlines an SSP system, based near the SE at geosynchronous altitude (GEO), which powers the climbers traversing the elevator. Such a system would reduce the SE system's dependence on fuel supply from land for its power beaming facilities. Moreover, since deploying SSP systems is anticipated to be a major use for SE's, SSP's could represent an elegant solution to the problem of SE energy consumption. SSP systems for sending usable power to Earth have been designed for well over 30 years. Technologies pertinent to SSP systems are continually evolving. This slightly different application carries the added requirements of aiming the beamed power at a moving target and sending the power in a form the climbers can use. Systems considered include beaming power to the climbers directly from a traditional SSP and reflecting sunlight onto the climbers. One of our designs includes a very new technology, optical rectennas. Mars SEs are conceived as having space-based power systems. Therefore, it is important to consider the problems that will be encountered in these types of applications.

  2. high power facto high power factor high power factor hybrid rectifier

    African Journals Online (AJOL)

    eobe

    increase in the number of electrical loads that some kind of ... components in the AC power system. Thus, suppl ... al output power; assuring reliability in ... distribution systems. This can be ...... Thesis- Califonia Institute of Technology, Capitulo.

  3. O Electromagnetic Power Waves and Power Density Components.

    Science.gov (United States)

    Petzold, Donald Wayne

    1980-12-01

    On January 10, 1884 Lord Rayleigh presented a paper entitled "On the Transfer of Energy in the Electromagnetic Field" to the Royal Society of London. This paper had been authored by the late Fellow of Trinity College, Cambridge, Professor J. H. Poynting and in it he claimed that there was a general law for the transfer of electromagnetic energy. He argued that associated with each point in space is a quantity, that has since been called the Poynting vector, that is a measure of the rate of energy flow per unit area. His analysis was concerned with the integration of this power density vector at all points over an enclosing surface of a specific volume. The interpretation of this Poynting vector as a true measure of the local power density was viewed with great skepticism unless the vector was integrated over a closed surface, as the development of the concept required. However, within the last decade or so Shadowitz indicates that a number of prominent authors have argued that the criticism of the interpretation of Poynting's vector as a local power density vector is unjustified. The present paper is not concerned with these arguments but instead is concerned with a decomposition of Poynting's power density vector into two and only two components: one vector which has the same direction as Poynting's vector and which is called the forward power density vector, and another vector, directed opposite to the Poynting vector and called the reverse power density vector. These new local forward and reverse power density vectors will be shown to be dependent upon forward and reverse power wave vectors and these vectors in turn will be related to newly defined forward and reverse components of the electric and magnetic fields. The sum of these forward and reverse power density vectors, which is simply the original Poynting vector, is associated with the total electromagnetic energy traveling past the local point. Another vector which is the difference between the forward

  4. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  5. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  6. Power affects performance when the pressure is on: evidence for low-power threat and high-power lift.

    Science.gov (United States)

    Kang, Sonia K; Galinsky, Adam D; Kray, Laura J; Shirako, Aiwa

    2015-05-01

    The current research examines how power affects performance in pressure-filled contexts. We present low-power-threat and high-power-lift effects, whereby performance in high-stakes situations suffers or is enhanced depending on one's power; that is, the power inherent to a situational role can produce effects similar to stereotype threat and lift. Three negotiations experiments demonstrate that role-based power affects outcomes but only when the negotiation is diagnostic of ability and, therefore, pressure-filled. We link these outcomes conceptually to threat and lift effects by showing that (a) role power affects performance more strongly when the negotiation is diagnostic of ability and (b) underperformance disappears when the low-power negotiator has an opportunity to self-affirm. These results suggest that stereotype threat and lift effects may represent a more general phenomenon: When the stakes are raised high, relative power can act as either a toxic brew (stereotype/low-power threat) or a beneficial elixir (stereotype/high-power lift) for performance. © 2015 by the Society for Personality and Social Psychology, Inc.

  7. Ownership structure and market power in the nordic power market

    International Nuclear Information System (INIS)

    Amundsen, E.S.; Bergman, L.

    1999-01-01

    The opening of Nord Pool in 1996 seriously constrained the power companies' ability to exercise market power within their national borders. Currently there is an integration process going on among the power companies in the Nord Pool area. It manifest itself in terms of take-over and reciprocal acquisition of shares in the power companies - nationally and abroad. This process may undo what the introduction of the common power market achieved in curtailing market power. The aim of this paper is to investigate the effects on market power of increased cross- ownership in the Nordic power market. (au)

  8. Strategic wind power trading considering rival wind power production

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers, uncert...... depending on the rival’s wind generation, given that its own expected generation is not high. Finally, as anticipated, expected system cost is higher when both wind power producers are expected to have low wind power generation......In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers......, uncertainty of rival wind power generation should also be considered. Under this context, this paper addresses the impact of rival wind producers on the offering strategy and profits of a pricemaker wind producer. A stochastic day-ahead market setup is considered, which optimizes the day-ahead schedules...

  9. Custom power - the utility solution to distribution power quality

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, N H [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1997-04-01

    The design of custom power products for electric power distribution system was discussed. Problems with power quality that result in loss of production to critical processes are costly and create a problem for the customer as well as the electric utility. Westinghouse has developed power quality improvement equipment for customers and utilities, using new technologies based on power electronics concepts. The Distribution Static Compensator (DSTATCOM) is a fast response, solid-state power controller that provides flexible voltage control for improving power quality at the point of connection to the utility`s 4.16 to 69 kV distribution feeder. STATCOM is a larger version of the DSTATCOM that can be used to solve voltage flicker problems caused by electric arc furnaces. Westinghouse has also developed a Dynamic Voltage Restorer (DVR) which protects a critical customer plant load from power system voltage disturbances. Solid-State Breakers (SSB) have also been developed which offer a solution to many of the distribution system problems that result in voltage sags, swells, and power outages. 6 refs., 8 figs.

  10. On energy efficient power allocation for power-constrained systems

    KAUST Repository

    Sboui, Lokman

    2014-09-01

    Recently, the energy efficiency (EE) has become an important factor when designing new wireless communication systems. Due to economic and environmental challenges, new trends and efforts are oriented toward “green” communication especially for energy-constrained applications such as wireless sensors network and cognitive radio. To this end, we analyze the power allocation scheme that maximizes the EE defined as rate over the total power including circuit power. We derive an explicit expression of the optimal power with instantaneous channel gain based on EE criterion. We show that the relation between the EE and the spectral efficiency (SE) when the optimal power is adopted is strictly increasing in contrast with the SE-EE trade-off discussed in the literature. We also solve a non-convex problem and compute explicitly the optimal power for ergodic EE under either a peak or an average power constraint. When the instantaneous channel is not available, we provide the optimal power equation and compute simple sub-optimal power. In the numerical results, we show that the sup-optimal solution is very close to the optimal solution. In addition, we show that the absence of the channel state information (CSI) only affects the EE and the SE performances at high power regime compared to the full CSI case.

  11. WhalePower tubercle blade power performance test report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-15

    Toronto-based WhalePower Corporation has developed turbine blades that are modeled after humpback whale flippers. The blades, which incorporate tubercles along the leading edge of the blade, have been fitted to a Wenvor 25 kW turbine installed in North Cape, Prince Edward Island at a test site for the Wind Energy Institute of Canada (WEICan). A test was conducted to characterize the power performance of the prototype wind turbine. This report described the wind turbine configuration with particular reference to turbine information, power rating, blade information, tower information, control systems and grid connections. The test site was also described along with test equipment and measurement procedures. Information regarding power output as a function of wind speed was included along with power curves, power coefficient and annual energy production. The results for the power curve and annual energy production contain a level of uncertainty. While measurements for this test were collected and analyzed in accordance with International Electrotechnical Commission (IEC) standards for performance measurements of electricity producing wind turbines (IEC 61400-12-1), the comparative performance data between the prototype WhalePower wind turbine blade and the Wenvor standard blade was not gathered to IEC data standards. Deviations from IEC-61400-12-1 procedures were listed. 6 tabs., 16 figs., 3 appendices.

  12. Wireless Power Transmission Options for Space Solar Power

    Science.gov (United States)

    Potter, Seth; Davis, Dean; Born, Martin; Bayer, Martin; Howell, Joe; Mankins, John

    2008-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 40 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.

  13. Power import or domestic power generation using gas?

    International Nuclear Information System (INIS)

    Saettler, M.; Bohnenschaefer, W.; Schlesinger, M.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents expert opinion on the question of how Switzerland could meet its demands for power in the future. The results of the analysis of two options - the import of electrical power or its generation using natural-gas-fired power stations - made in the light of gas market liberalisation are presented. These include the assessment of the use of 'GuD' (combined gas and steam-turbine) power stations in the 100 MW e l to 400 MW e l class regarding their cost, their emissions and primary energy consumption. The authors discuss the assessments from the political and economic points of view. An appendix supplies characteristic data for 'GuD' power stations and an example of a model calculation for a 400 MW e l 'GuD' power station

  14. Power Electronics Control of Wind Energy in Distributed Power System

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....

  15. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  16. Power enhancement of piezoelectric transformers for power supplies

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Steenstrup, Anders Resen; Zhang, Zhe

    2016-01-01

    This paper studies power enhancement of piezoelectric transformers to be used in inductorless, half-bridge, piezoelecteric-based switch mode power supplies for driving a piezo actuator motor system in a high strength magnetic environment for magnetic resonance imaging and computed tomography...... applications. A new multi element-piezo transformer solution is proposed along with a dual mode piezo transformer, providing power scaling and potentially improving the internal heat-up of a high power piezo transformer system....

  17. When power does not corrupt: superior individuation processes among powerful perceivers.

    Science.gov (United States)

    Overbeck, J R; Park, B

    2001-10-01

    To examine whether powerful people fail to individuate the less powerful, the authors assigned participants to either a high-power or low-power role for a computer E-mail role play. In 3 studies, participants in the high-power role made decisions and determined the outcomes of interactions; low-power role players had no power and relied on high-power targets for outcome decisions. Studies I and 2 found that high-power perceivers better individuated low-power targets. Study 3 demonstrated that high-power role players' superior judgment can be impaired by including a task that directs their responsibility toward organizational rather than interpersonal concerns. In all, results suggest that the effect of power on social judgment may be more complex and multifaceted than has previously been acknowledged.

  18. Hydro power flexibility for power systems with variable renewable energy sources: an IEA Task 25 collaboration: Hydro power flexibility for power systems

    Energy Technology Data Exchange (ETDEWEB)

    Huertas-Hernando, Daniel [Department of Energy Systems, SINTEF, Trondheim Norway; Farahmand, Hossein [Department of Electric Power Engineering, Norwegian University of Science and Technology (NTNU), Trondheim Norway; Holttinen, Hannele [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Kiviluoma, Juha [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Rinne, Erkka [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Söder, Lennart [Department of Electrical Engineering, KTH University, Stockholm Sweden; Milligan, Michael [Transmission and Grid Integration Group, National Renewable Energy Laboratory' s National Wind Technology Center, Golden CO USA; Ibanez, Eduardo [Transmission and Grid Integration Group, National Renewable Energy Laboratory' s National Wind Technology Center, Golden CO USA; Martínez, Sergio Martín [Department of Electrical Engineering, Electronics, Automation and Communications, Universidad de Castilla-La Mancha, Albacete Spain; Gomez-Lazaro, Emilio [Department of Electrical Engineering, Electronics, Automation and Communications, Universidad de Castilla-La Mancha, Albacete Spain; Estanqueiro, Ana [National Laboratory of Energy and Geology - LNEG, Lisbon Portugal; Rodrigues, Luis [National Laboratory of Energy and Geology - LNEG, Lisbon Portugal; Carr, Luis [Research Association for Energy Economics (FfE GmbH), Munich Germany; van Roon, Serafin [Research Association for Energy Economics (FfE GmbH), Munich Germany; Orths, Antje Gesa [Energinet.dk, Fredericia Denmark; Eriksen, Peter Børre [Energinet.dk, Fredericia Denmark; Forcione, Alain [Hydro Quebec, Montréal Canada; Menemenlis, Nickie [Hydro Quebec, Montréal Canada

    2016-06-20

    Hydro power is one of the most flexible sources of electricity production. Power systems with considerable amounts of flexible hydro power potentially offer easier integration of variable generation, e.g., wind and solar. However, there exist operational constraints to ensure mid-/long-term security of supply while keeping river flows and reservoirs levels within permitted limits. In order to properly assess the effective available hydro power flexibility and its value for storage, a detailed assessment of hydro power is essential. Due to the inherent uncertainty of the weather-dependent hydrological cycle, regulation constraints on the hydro system, and uncertainty of internal load as well as variable generation (wind and solar), this assessment is complex. Hence, it requires proper modeling of all the underlying interactions between hydro power and the power system, with a large share of other variable renewables. A summary of existing experience of wind integration in hydro-dominated power systems clearly points to strict simulation methodologies. Recommendations include requirements for techno-economic models to correctly assess strategies for hydro power and pumped storage dispatch. These models are based not only on seasonal water inflow variations but also on variable generation, and all these are in time horizons from very short term up to multiple years, depending on the studied system. Another important recommendation is to include a geographically detailed description of hydro power systems, rivers' flows, and reservoirs as well as grid topology and congestion.

  19. The Pervasive Power of PowerPoint

    DEFF Research Database (Denmark)

    Schoeneborn, Dennis

    2013-01-01

    This paper examines the pervasive role of Microsoft’s presentation software PowerPoint as a genre of professional and organizational communication. Frequently, PowerPoint is not only used for the primary function it was initially designed for, i.e., facilitating live presentations, but also...... for alternative purposes such as project documentation. Its application in a neighboring domain, however, poses a functional dilemma: does the PowerPoint genre preserve the features of its primary function, i.e., presentation, or rather adapt to the new function, i.e., documentation? By drawing on a communication......-centered perspective, this paper examines PowerPoint’s role in the domain of project documentation as a clash between the constitutive affordances of professional and of organizational communication. To investigate this issue empirically, I conducted a case study at a multinational business consulting firm. The study...

  20. Power fluctuation reduction methodology for the grid-connected renewable power systems

    Science.gov (United States)

    Aula, Fadhil T.; Lee, Samuel C.

    2013-04-01

    This paper presents a new methodology for eliminating the influence of the power fluctuations of the renewable power systems. The renewable energy, which is to be considered an uncertain and uncontrollable resource, can only provide irregular electrical power to the power grid. This irregularity creates fluctuations of the generated power from the renewable power systems. These fluctuations cause instability to the power system and influence the operation of conventional power plants. Overall, the power system is vulnerable to collapse if necessary actions are not taken to reduce the impact of these fluctuations. This methodology aims at reducing these fluctuations and makes the generated power capability for covering the power consumption. This requires a prediction tool for estimating the generated power in advance to provide the range and the time of occurrence of the fluctuations. Since most of the renewable energies are weather based, as a result a weather forecast technique will be used for predicting the generated power. The reduction of the fluctuation also requires stabilizing facilities to maintain the output power at a desired level. In this study, a wind farm and a photovoltaic array as renewable power systems and a pumped-storage and batteries as stabilizing facilities are used, since they are best suitable for compensating the fluctuations of these types of power suppliers. As an illustrative example, a model of wind and photovoltaic power systems with battery energy and pumped hydro storage facilities for power fluctuation reduction is included, and its power fluctuation reduction is verified through simulation.

  1. 14 CFR 27.695 - Power boost and power-operated control system.

    Science.gov (United States)

    2010-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  2. 14 CFR 29.695 - Power boost and power-operated control system.

    Science.gov (United States)

    2010-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  3. POSSPOW: Possible Power of Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Giebel, Gregor; Göçmen, Tuhfe; Sørensen, Poul Ejnar

    2013-01-01

    Introduction In recent years, the very large offshore wind farms were designed as wind power plants, including possibilities to contribute to the stability of the grid by offering grid services (also called ancillary services). One of those services is reserve power, which is achieved by down......-regulating the wind farm from its maximum possible power. The power can be ramped up quite quickly, but the influence of wakes makes it difficult to assess the exact amount of down-regulation available to sell. Currently, Transmission System Operators (TSOs) have no real way to determine exactly the possible power...... will be verified on some of the large offshore wind farms owned by Vattenfall, and possibly in a DONG Energy wind farm too. Dedicated experiments to the wind flow in large offshore wind farms are planned. Main body of abstract Modern wind turbines have a SCADA signal called possible power. In normal operation...

  4. Reactive Power Pricing Model Considering the Randomness of Wind Power Output

    Science.gov (United States)

    Dai, Zhong; Wu, Zhou

    2018-01-01

    With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.

  5. Power system stabilization by SMES using current-fed pwm power conditioner

    International Nuclear Information System (INIS)

    Ishikawa, T.; Akita, S.; Taniguchi, H.; Kosho, S.; Tanaka, T.

    1988-01-01

    A superconducting magnetic energy storage (SMES) unit, consisted of superconducting coil and AC/DC power conditioner, can be used to suppress various kinds of instability that may cause service interruption in electric power system as it has high controllability of input/output electric power. Power system stabilizing ability of SMES has been examined experimentally by using model power system and small SMES unit. Current-fed PWM power conditioner was used to obtain maximum stabilizing effect by controlling active and reactive power simultaneously and independently. Power conditioner configuration, operating characteristics and control scheme for power system stabilization are also described. Results from experiments show the effectiveness of SMES on power system stabilization

  6. 7 CFR 1710.303 - Power cost studies-power supply borrowers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Power cost studies-power supply borrowers. 1710.303... AND GUARANTEES Long-Range Financial Forecasts § 1710.303 Power cost studies—power supply borrowers. (a... facilities shall be supported by a power cost study to demonstrate that the proposed generation and...

  7. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  8. Power in Households: Disentangling Bargaining Power

    NARCIS (Netherlands)

    R. Mabsout (Ramzi); I.P. van Staveren (Irene)

    2009-01-01

    textabstractIntroduction Within the household bargaining literature, bargaining power is generally understood in terms of economic resources, such as income or assets. Empirical analyses of women’s bargaining power in households in developed and developing countries find that, in general, higher

  9. Power corrupts

    International Nuclear Information System (INIS)

    Bacon, H.; Valentine, J.

    1981-01-01

    The subject is covered in chapters, entitled: radiation (hazards associated with nuclear power production); wastes (radioactive wastes); accidents (actual and postulated, resulting in the release of radiation); the FBR and the plutonium cycle; costs (economics of nuclear power); spent fuel transport; civil liberties; doing without nuclear power (UK power demand; low energy strategy; energy policy; government policies; alternative energy sources). (U.K.)

  10. Power control of the Angra-2 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Souza Mendes, J.E. de

    1986-01-01

    The systems for the power control of the Nuclear Power Plant Angra 2 have a high degree of automation so that few operator actions are required during power operation. The power control strategy and the operation principles of the control systems, here presented, make possible a great flexibility of the Plant operation. (Author) [pt

  11. Calculation of Wind Power Limit adjusting the Continuation Power Flow

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio

    2012-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  12. Reactor power control method upon accidents of electrical power system

    International Nuclear Information System (INIS)

    Hirose, Masao.

    1983-01-01

    Purpose: To enable to continue the operation of a BWR type reactor by avoiding the scram while suppressing the reactor power, just after the external disturbance such as earth-trouble in power-transmission network. Method: Steep power drop of an electrical generator is to be detected not only by a current-type power-load-unbalance relay but also with a power-type power-load-unbalance-relay. If steep power-drop was detected by the latter relay, a previously selected control rod is rapidly inserted into the reactor. In this way, in the case where there is a possibility of the reactor scram, the scram can be avoided by suppressing the reactor power, thus the reactor operation can be continued. (Kamimura, M.)

  13. Possible Power Estimation of Down-Regulated Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe

    The penetration of offshore wind power is continuously increasing in the Northern European grids. To assure safety in the operation of the power system, wind power plants are required to provide ancillary services, including reserve power attained through down-regulating the wind farm from its...... power plant. The developed procedure, the PossPOW algorithm, can also be used in the wind farm control as it yields a real-time wind farm power curve. The modern wind turbines have a possible power signal at the turbine level and the current state of the art is to aggregate those signals to achieve...... the wind farm scale production capacity. However the summation of these individual signals is simply an over-estimation for the wind power plant, due to reduced wake losses during curtailment. The determination of the possible power with the PossPOW algorithm works as follows: firstly the second...

  14. Special Issue on the Second International Workshop on Micro- and Nano-Scale Thermal Radiation

    Science.gov (United States)

    Zhang, Zhuomin; Liu, Linhua; Zhu, Qunzhi; Mengüç, M. Pinar

    2015-06-01

    Micro- and nano-scale thermal radiation has become one of the fastest growing research areas because of advances in nanotechnology and the development of novel materials. The related research and development includes near-field radiation transfer, spectral and directional selective emitters and receivers, plasmonics, metamaterials, and novel nano-scale fabrication techniques. With the advances in these areas, important applications in energy harvesting such as solar cells and thermophotovoltaics, nanomanufacturing, biomedical sensing, thermal imaging as well as data storage with the localized heating/cooling have been pushed to higher levels.

  15. Space Photovoltaic Research and Technology 1995

    Science.gov (United States)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  16. Research Developments on Power System Integration of Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe; Hansen, Jens Carsten; Wu, Qiuwei

    2011-01-01

    variability and prediction, wind power plant ancillary services, grid connection and operation, Smart grids and demand side management under market functionality. The topics of the first group of PhD program starting 2011 under the wind energy Sino-Danish Centre for Education & Research (SDC) are also......This paper presents an overview on the recent research activities and tendencies regarding grid integration of wind power in Denmark and some related European activities, including power electronics for enhancing wind power controllability, wind turbines and wind farms modeling, wind power...

  17. Power, stability of power, and creativity

    NARCIS (Netherlands)

    Sligte, Daniel J.; de Dreu, Carsten K. W.; Nijstad, Bernard A.

    Power hierarchies are an essential aspect of social organization, create stability and social order, and provide individuals with incentives to climb the hierarchical ladder. Extending previous work on power and creativity, we put forward that this relationship critically depends on both the

  18. Power, stability of power, and creativity

    NARCIS (Netherlands)

    Sligte, D.J.; de Dreu, C.K.W.; Nijstad, B.A.

    2011-01-01

    Power hierarchies are an essential aspect of social organization, create stability and social order, and provide individuals with incentives to climb the hierarchical ladder. Extending previous work on power and creativity, we put forward that this relationship critically depends on both the

  19. Power quality load management for large spacecraft electrical power systems

    Science.gov (United States)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  20. The electric power engineering handbook power system stability and control

    CERN Document Server

    Grisby, Leonard L

    2012-01-01

    With contributions from worldwide leaders in the field, Power System Stability and Control, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) updates coverage of recent developments and rapid technological growth in essential aspects of power systems. Edited by L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Miroslav Begovic, Prabha Kundur, and Bruce Wollenberg, this reference presents substantially new and revised content. Topics covered include: * Power System Protection * Power System Dynamics and Stability *

  1. Self-powered detectors for power reactors: an overview

    International Nuclear Information System (INIS)

    Ma, J.

    2006-01-01

    In this paper, Self-Powered Detectors (SPDs) for applications in nuclear power reactors have been reviewed. Based on their responses to radiation, these detectors can be divided into delayed response Self-Powered Neutron Detector (SPND), prompt response SPND and Self-Powered Gamma Detector (SPGD). The operational principles of these detectors are presented and their distinctive characteristics are examined accordingly. The analytical models and Monte Carlo method to calculate the responses of these detectors to neutron flux and external gamma rays are reviewed. The paper has also considered some related signal processing techniques, such as detector calibrations and detector signal compensations. Furthermore, a couple of failure modes have also been analyzed. Finally, applications of SPD in nuclear power reactors are summarized. (author)

  2. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  3. Self-powered detectors for power reactors: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J. [Univ. of Western Ontario, Dept. of Mechanical and Materials Engineering, London, Ontario (Canada)]. E-mail: jma64@uwo.ca

    2006-07-01

    In this paper, Self-Powered Detectors (SPDs) for applications in nuclear power reactors have been reviewed. Based on their responses to radiation, these detectors can be divided into delayed response Self-Powered Neutron Detector (SPND), prompt response SPND and Self-Powered Gamma Detector (SPGD). The operational principles of these detectors are presented and their distinctive characteristics are examined accordingly. The analytical models and Monte Carlo method to calculate the responses of these detectors to neutron flux and external gamma rays are reviewed. The paper has also considered some related signal processing techniques, such as detector calibrations and detector signal compensations. Furthermore, a couple of failure modes have also been analyzed. Finally, applications of SPD in nuclear power reactors are summarized. (author)

  4. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  5. Reactive power management of power networks with wind generation

    CERN Document Server

    Amaris, Hortensia; Ortega, Carlos Alvarez

    2012-01-01

    As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key

  6. Wind power and the conditions at a liberalized power market

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    2003-01-01

    Wind power is undergoing a rapid development nationally as well as globally and in a number of countries covers an increasing part of the power supply. At the same time an ongoing liberalization of power markets is taking place and to an increasing extent the owners of wind power plants will themselves have to be responsible for trading the power at the spot market and financially handling the balancing. In the western part of Denmark (Jutland/Funen area), wind-generated power from time to time covers almost 100% of total power consumption. Therefore some examples are chosen from this area to analyse in more detail how well large amounts of wind power in the short-term are handled at the power spot market. It turns out that there is a tendency that more wind power in the system in the short run leads to relatively lower spot prices, while less wind power implies relatively higher spot prices, although, with the exception of December 2002, in general no strong relationship is found. A stronger relationship is found at the regulating market, where there is a fairly clear tendency that the more wind power produced, the higher is the need for down-regulation, and, correspondingly, the less wind power produced, the higher is the need for up-regulation. In general for the Jutland/Funen area the average cost of down-regulation is calculated as 1 2 c euros/kWh regulated for 2002, while the cost of up-regulation amounts to 0 7 c euros/kWh regulated. (author)

  7. Novel thermoplastic vulcanizates (TPVs based on silicone rubber and polyamide exploring peroxide cross-linking

    Directory of Open Access Journals (Sweden)

    K. Naskar

    2014-04-01

    Full Text Available Novel thermoplastic vulcanizates (TPVs based on silicone rubber (PDMS and polyamide (PA12 have been prepared by dynamic vulcanization process. The effect of dynamic vulcanization and influence of various types of peroxides as cross-linking agents were studied in detail. All the TPVs were prepared at a ratio of 50/50 wt% of silicone rubber and polyamide. Three structurally different peroxides, namely dicumyl peroxide (DCP, 3,3,5,7,7-pentamethyl 1,2,4-trioxepane (PMTO and cumyl hydroperoxide (CHP were taken for investigation. Though DCP was the best option for curing the silicone rubber, at high temperature it suffers from scorch safety. An inhibitor 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO was added with DCP to stabilize the radicals in order to increase the scorch time. Though CHP (hydroperoxide had higher half life time than DCP at higher temperature, it has no significant effect on cross-linking of silicone rubber. PMTO showed prolonged scorch safety and better cross-linking efficiency rather than the other two. TPVs of DCP and PMTO were made up to 11 minutes of mixing. Increased values of tensile strength and elongation at break of PMTO cross-linked TPV indicate the superiority of PMTO. Scanning electron micrographs correlate with mechanical properties of the TPVs. High storage modulus (E' and lower loss tangent value of the PMTO cross-linked TPV indicate the higher degree of cross-linking which is also well supported by the overall cross-link density value. Thus PMTO was found to be the superior peroxide for cross-linking of silicone rubber at high temperature.

  8. Operating modes and practical power flow analysis of bidirectional isolated power interface for distributed power systems

    International Nuclear Information System (INIS)

    Wen, Huiqing; Su, Bin

    2016-01-01

    Highlights: • Four operating modes of Dual-Phase-Shift control for Dual Active Bridge converter are presented. • Effects of “minor parameters” such as the deadtime and power device voltage drops are analyzed. • Accurate power flow models with Dual-Phase-Shift control are developed and verified with experimental results. • Optimal operating mode is determined with respect to the efficiency improvement. • Measured efficiency of the Dual Active Bridge converter is improved up to 14%. - Abstract: Due to the intermittent nature of the renewable energy sources including photovoltaic and wind energy, the energy storage systems are essential to stabilize dc bus voltage. Considering the discharge depth of super-capacitors and energy-storage batteries, the bidirectional isolated power interface will operate for a wide range of voltage and power. This study focuses on in-depth analysis of the dual-active-bridge dc–dc converter that is controlled by the dual-phase-shift scheme to improve the conversion efficiency in distributed power system. The power flow of each operating mode with dual-phase-shift control is characterized based on a detailed analysis of the effects of “minor parameters”, including the deadtime and power device voltage drops. The complete output power plane of the dual-active-bridge converter with dual-phase-shift control is obtained and compared with experimental results. The optimal operating mode is determined according to the practical output power range and the power flow characteristics. Experimental evaluation shows the effectiveness of the proposed power flow model with dual-phase-shift control and significant efficiency improvement using the optimal mode of dual-phase-shift compared with the conventional phase shift control.

  9. Power and revenge.

    Science.gov (United States)

    Strelan, Peter; Weick, Mario; Vasiljevic, Milica

    2014-09-01

    We took an individual differences approach to explain revenge tendencies in powerholders. Across four experimental studies, chronically powerless individuals sought more revenge than chronically powerful individuals following a high power episode (Studies 1 and 2), when striking a powerful pose (Study 3), and when making a powerful hand gesture (Study 4). This relationship vanished when participants were not exposed to incidental power. A meta-analysis revealed that, relative to a lack of power or a neutral context, exposure to incidental power increased vengeance among the chronically powerless and reduced vengeance among the chronically powerful. These findings add to previous research on relations between power and aggression, and underscore the role of individual differences as a determinant of powerholders' destructive responses. © 2013 The British Psychological Society.

  10. Power marketing

    International Nuclear Information System (INIS)

    Sioshansi, F.P.; Altman, A.M.

    1998-01-01

    One of the most significant developments in the US electric power industry in recent years has been the phenomenal growth of power marketing. What was barely a blimp on the radar screen in 1992 has turned out to be a jumbo jet. This article explains what is power marketing who are power marketers, what role play these players and what will be their longer-term impact on the traditional industry [it

  11. Active Power Controls from Wind Power: Bridging the Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fleming, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Y. C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singh, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muljadi, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scholbrook, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aho, J. [Univ. of Colorado, Boulder, CO (United States); Buckspan, A. [Univ. of Colorado, Boulder, CO (United States); Pao, L. [Univ. of Colorado, Boulder, CO (United States); Singhvi, V. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Tuohy, A. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Pourbeik, P. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Brooks, D. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Bhatt, N. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  12. Minimum critical power ratio control device for nuclear power plants

    International Nuclear Information System (INIS)

    Kurosawa, Tsuneo.

    1991-01-01

    Reactor core flowrate is determined by comparing a minimum critical power ratio calculated based on the status amount of a nuclear power plant and a control value for the minimum critical power ratio that depends on the reactor core flowrate. Further, the minimum critical power ratio and a control value for the minimum critical power ratio that depends on the reactor thermal power are compared to set a reactor thermal power converted to a reactor core flowrate. Deviation between the thus determined reactor core flowrate and the present reactor core flowrate is calculated. When the obtained deviation is lower than a rated value, a reactor core flowrate set signal is generated to a reactor flowrate control means, to control the reactor power by a recycling flowrate control system of the reactor. On the other hand, when the deviation exceeds the determined value, the reactor core flowrate set signal is converted into a reactor thermal power, to control the position of control rods and control the reactor power. Then, monitor and control can be conducted safely and automatically without depending on operator's individual ability over the entire operation range corresponding to load following operation. (N.H.)

  13. Efficient power supply using Power over Ethernet; Effiziente Stromversorgung mittels Power over Ethernet (PoE)

    Energy Technology Data Exchange (ETDEWEB)

    Huser, A.

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at methods of supplying small equipment such as Internet telephones, web cams, hubs, hard discs, audio equipment, point-of-sale terminals, game consoles etc. with power via their Ethernet connections. A short comparison is presented between Power over Ethernet (PoE) and other methods of supplying power along with data, including Universal Serial Bus (USB), FireWire and Powerline systems. The advantages of PoE over the use of separate power supply units are discussed and recommendations are made to the manufacturers and users of small peripheral equipment regarding the dimensioning and loading of such power supply systems.

  14. Multi-time scale dynamics in power electronics-dominated power systems

    Science.gov (United States)

    Yuan, Xiaoming; Hu, Jiabing; Cheng, Shijie

    2017-09-01

    Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.

  15. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  16. With power comes responsibility: motorcycle engine power and power-to-weight ratio in relation to accident risk.

    Science.gov (United States)

    Mattsson, Markus; Summala, Heikki

    2010-02-01

    Current European legislation allows the EU member states to restrict the maximum power output of motorcycles to 74 kW even though evidence supporting the limit is scarce and has produced mixed results-perhaps because motorcycle performance has been measured by engine displacement, not engine power, in most of the previous studies. This study investigates the relationship of motorcycle engine power and power-to-weight ratio to risk of fatal and nonfatal crashes in Finland. The fatality rate (number of fatal accidents/number of registered motorbikes) for riders of different ages riding bikes belonging to different power and power-to-weight ratio classes was examined using a comprehensive in-depth database. Data on nonfatal accidents were acquired from a Web questionnaire (N = 2708), which also served as a basis for estimating riders' annual mileage. Mileage data allowed the calculation of accident risk per kilometer ridden for bikes differing in power and power-to-weight ratio. The fatality risk per number of registered motorcycles and per kilometer ridden increases both with power and power-to-weight ratio, independently of rider's age. No relationship between performance and risk of a less severe crash was found. The pre-accident speed of the most powerful bikes was 20 km/h or more over the speed limit in a large proportion of the fatal accidents (odds ratio = 4.8 for > 75 kW motorbikes; odds ratio = 6.2 for > 0.3 kW/kg motorbikes). The risk of being involved in a fatal crash is higher among the riders of powerful motorcycles. However, it is not clear whether the results are related to the riding habits of the riders that choose the most powerful bikes available or whether the high risk is due to the properties of the bikes themselves. Therefore, further research is needed before considering legal limits on motorcycle performance.

  17. Green power programs in Canada : 2003 : overview of Government green power policies, utility green power implementation initiatives, green power and certificate marketing programs, and their benefits

    International Nuclear Information System (INIS)

    Whitmore, J.; Bramley, M.; Holmes, R.

    2004-09-01

    Green power is defined as electricity produced from renewable sources, and whose production has low adverse impacts on the environment, human health and communities. Green power has near-zero greenhouse gas (GHG) emissions and includes sources such as wind, hydro, and solar power. It offers several environmental benefits, as well as the enhancement of energy security, regional development, economic diversification and the creation of skilled jobs. There are four categories of programs related to green power development in Canada: government green power policies, utility green power development programs, green power marketing initiatives, and green power certificate marketing initiatives. Most of the activities in Canada associated with these four categories in 2003 were discussed in this report. However, difficulties with quantification prevented the inclusion of some green power activities such as (1) the generation of green power not certified or identified by the generator as green power, (2) industry or residential self-generation, (3) net metering, and (4) small government programs. Green power generation facilities in 2003 totaled 775 MW of capacity compared to 539 MW in 2002. Hydro capacity represented 41 per cent, followed by wind capacity at 40 per cent and wood waste at 17 per cent. Most of the green power generation facilities in 2003 were located in Alberta, followed by British Columbia, Ontario and Quebec. 230 refs., 8 tabs., 1 fig

  18. Non-power application as an entry point to nuclear power program

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    2009-01-01

    Nuclear power is usually viewed as the flagship of nuclear technology. A nuclear power plant complex, visible and prominence, is iconic of the technology. That image makes its presence common knowledge to the extent that nuclear technology is equated almost totally with nuclear power by the general public. The downside of this visibility is that it becomes easy target in public misinformation programs. The non-power applications however are not visible, and devoid of icon. The non-power applications, therefore, can grow quite smoothly, attracting only little attention in the negative and in the positive senses. According to a study conducted in the USA in 2000 and in Japan in 2002, the socio-economic impact of non-power and power applications of nuclear technology are comparable. Involvement in non-power applications can be a good grounding for moving into power applications. This paper discusses the non-power nuclear technology applications and in what manner it can serve to prepare the introduction of nuclear power program. (Author)

  19. Power generation

    International Nuclear Information System (INIS)

    Nunez, Anibal D.

    2001-01-01

    In the second half of twentieth century, nuclear power became an industrial reality. Now the operating 433 power plants, the 37 plants under construction, near 9000 years/reactor with only one serious accident with emission of radioactive material to the environment (Chernobyl) show the maturity of this technology. Today nuclear power contribute a 17% to the global generation and an increase of 75 % of the demand of electricity is estimated for 2020 while this demand is expected to triplicate by 2050. How this requirement can be satisfied? All the indicators seems to demonstrate that nuclear power will be the solution because of the shortage of other sources, the increase of the prices of the non renewable fuels and the scarce contribution of the renewable ones. In addition, the climatic changes produced by the greenhouse effect make even more attractive nuclear power. The situation of Argentina is analyzed and compared with other countries. The convenience of an increase of nuclear power contribution to the total national generation seems clear and the conclusion of the construction of the Atucha II nuclear power plant is recommended

  20. Multimode power processor

    Science.gov (United States)

    O'Sullivan, George A.; O'Sullivan, Joseph A.

    1999-01-01

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  1. Credit Risk Evaluation of Large Power Consumers Considering Power Market Transaction

    Science.gov (United States)

    Fulin, Li; Erfeng, Xu; ke, Sun; Dunnan, Liu; Shuyi, Shen

    2018-03-01

    Large power users will participate in power market in various forms after power system reform. Meanwhile, great importance has always attached to the construction of the credit system in power industry. Due to the difference between the awareness of performance and the ability to perform, credit risk of power customer will emerge accordingly. Therefore, it is critical to evaluate credit risk of large power customers in the new situation of power market. Firstly, this paper constructs index system of credit risk of large power customers, and establishes evaluation model of interval number and AHP-entropy weight method.

  2. Dynamic Influences of Wind Power on The Power System

    DEFF Research Database (Denmark)

    Rosas, Pedro Andrè Carvalho

    2004-01-01

    between different wind turbines.Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suit-able to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power systemquality and stability...... integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting largeamount of wind power showed very small voltage variations. The frequency variations analysed from the Nordel showed also small varia...

  3. Will cross-ownership reestablish market power in the Nordic power market?

    International Nuclear Information System (INIS)

    Amundsen, Eirik S.; Bergman, Lars

    2000-01-01

    The integration of the power markets in Norway and Sweden in 1996 significantly constrained the major power companies' ability to exercise market power within their national borders. In recent years, however, mergers and reciprocal acquisition of shares have reduced the number of independent players on the Norwegian-Swedish power market. The aim of this paper is to explore to what extent increasing cross-ownership among major power companies in Norway and Sweden might re-establish the market power that was lost when the two national power markets were integrated. The analysis is based on a numerical model, assuming Cournot quantity setting behaviour, of the Norwegian-Swedish power market. The simulation results suggest that partial ownership relations between major generators and other power-producing firms tend to increase horizontal market power and thus the market price of electricity. (author)

  4. High power fast ramping power supplies

    Energy Technology Data Exchange (ETDEWEB)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  5. Characterization of power IGBTs under pulsed power conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E [Los Alamos National Laboratory; Vangordon, James [UNIV OF MISSOURI; Kovaleski, Scott [UNIV OF MISSOURI

    2009-01-01

    The power insulated gate bipolar transistor (IGBT) is used in many types of applications. Although the use of the power IGBT has been well characterized for many continuous operation power electronics applications, little published information is available regarding the performance of a given IGBT under pulsed power conditions. Additionally, component libraries in circuit simulation software packages have a finite number of IGBTs. This paper presents a process for characterizing the performance of a given power IGBT under pulsed power conditions. Specifically, signals up to 3.5 kV and 1 kA with 1-10 {micro}s pulse widths have been applied to a Powerex QIS4506001 IGBT. This process utilizes least squares curve fitting techniques with collected data to determine values for a set of modeling parameters. These parameters were used in the Oziemkiewicz implementation of the Hefner model for the IGBT that is utilized in some circuit simulation software packages. After the nominal parameter values are determined, they can be inserted into the Oziemkiewicz implementation to simulate a given IGBT.

  6. Green power programs in Canada : 2002 : Overview of Government green power policies, utility green power development programs, green power and certificate marketing initiatives, and their benefits

    International Nuclear Information System (INIS)

    Bramley, M.; Boustie, S.; Vadgama, J.; Wieler, C.; Pape-Salmon, A.; Holmes, R.

    2003-11-01

    Green power is generally defined as electricity produced from renewable sources, and whose production has low adverse impacts on the environment, human health and communities. Green power has near-zero greenhouse gas (GHG) emissions and includes sources such as wind, hydro, and solar power. Green power offers several environmental benefits, as well as the enhancement of energy security, regional development, economic diversification and the creation of skilled jobs. There are four categories of programs related to green power development in Canada: government green power policies, utility green power development programs, green power marketing initiatives, and green power certificate marketing initiatives. Most of the activities associated with these four categories in 2002 were discussed in this report. However, difficulties with quantification prevented the inclusion of some green power activities in the report, such as (1) the generation of green power not certified or identified by the generator as green power, (2) industry or residential self-generation, (3) net metering, and (4) small government programs. Each category was presented in detail. The information included in the report was based on surveys sent to each program proponent. Follow-up communications and other publicly available information was also included. New programs operating in 2003 or currently under development were listed. refs., 8 tabs

  7. Felt power explains the link between position power and experienced emotions.

    Science.gov (United States)

    Bombari, Dario; Schmid Mast, Marianne; Bachmann, Manuel

    2017-02-01

    The approach/inhibition theory by Keltner, Gruenfeld, and Anderson (2003) predicts that powerful people should feel more positive and less negative emotions. To date, results of studies investigating this prediction are inconsistent. We fill this gap with four studies in which we investigated the role of different conceptualizations of power: felt power and position power. In Study 1, participants were made to feel more or less powerful and we tested how their felt power was related to different emotional states. In Studies 2, 3, and 4, participants were assigned to either a high or a low power role and engaged in an interaction with a virtual human, after which participants reported on how powerful they felt and the emotions they experienced during the interaction. We meta-analytically combined the results of the four studies and found that felt power was positively related to positive emotions (happiness and serenity) and negatively to negative emotions (fear, anger, and sadness), whereas position power did not show any significant overall relation with any of the emotional states. Importantly, felt power mediated the relationship between position power and emotion. In summary, we show that how powerful a person feels in a given social interaction is the driving force linking the person's position power to his or her emotional states. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Power Outages

    Science.gov (United States)

    ... Publications Emergency Alerts Preparedness Portal Preparedness Messaging Calendar Social Media Preparedness Toolkits Preparedness News Languages About Us Build a Kit Close Search Enter Search Term(s): Main Content Home Be Informed Power Outages Power Outages Extended power outages may impact ...

  9. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  10. Power control strategy of a photovoltaic power plant for microgrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Francois, Bruno [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Degobert, Philippe [Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Robyns, Benoit [Hautes Etudes d' Ingenieur, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP)

    2008-07-01

    Photovoltaic power plants operates currently maximal power point tracking (MPPT). For microgrid applications, however, a PV power plant can not operate in the MPPT mode in all conditions. When a microgrid is islanded from the grid with few loads, a limitation of the produced power by PV plants is required and prescribed by the Distribution System Operator. This paper proposes a power control technique integrated into a dynamic model of a PV power plant by using equivalent continuous models of power electronic converters. The power limitation mode of the PV is performed by applying the correct PV terminal voltage, which corresponds to the prescribed power reference. The proposed global model is validated by simulations with the help of Matlab-Simulink trademark. (orig.)

  11. How to Integrate Variable Power Source into a Power Grid

    Science.gov (United States)

    Asano, Hiroshi

    This paper discusses how to integrate variable power source such as wind power and photovoltaic generation into a power grid. The intermittent renewable generation is expected to penetrate for less carbon intensive power supply system, but it causes voltage control problem in the distribution system, and supply-demand imbalance problem in a whole power system. Cooperative control of customers' energy storage equipment such as water heater with storage tank for reducing inverse power flow from the roof-top PV system, the operation technique using a battery system and the solar radiation forecast for stabilizing output of variable generation, smart charging of plug-in hybrid electric vehicles for load frequency control (LFC), and other methods to integrate variable power source with improving social benefits are surveyed.

  12. Power that Builds Others and Power that Breaks: Effects of Power and Humility on Altruism and Incivility in Female Employees.

    Science.gov (United States)

    Yoon, David J; Farmer, Steven M

    2018-01-02

    Building on the approach/inhibition theory of power and the situated focus theory of power, we examine the roles of positional and personal power on altruism and incivility in workplace dyads. Results from a field study in daycare centers showed that legitimate power (a dimension of positional power) was positively associated with incivility. In contrast, personal power-referent power and expert power-was positively associated altruism and was negatively associated with incivility. Referent power was a stronger predictor of both altruism and incivility for individuals with low humility than those with high humility. Coercive power was a stronger predictor of incivility for individuals with high humility than those with low humility.

  13. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Science.gov (United States)

    2011-12-15

    ... Service Oglethorpe Power Corporation; Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA... related to possible financial assistance to Oglethorpe Power Corporation's (Oglethorpe) for the... online at the following Web site: http://www.rurdev.usda.gov/UWP-OglethorpePower.html and at the: Warren...

  14. Impact of Wind Power Generation on European Cross-Border Power Flows

    DEFF Research Database (Denmark)

    Zugno, Marco; Pinson, Pierre; Madsen, Henrik

    2013-01-01

    analysis is employed in order to reduce the problem dimension. Then, nonlinear relationships between forecast wind power production as well as spot price in Germany, by far the largest wind power producer in Europe, and power flows are modeled using local polynomial regression. We find that both forecast...... wind power production and spot price in Germany have substantial nonlinear effects on power transmission on a European scale.......A statistical analysis is performed in order to investigate the relationship between wind power production and cross-border power transmission in Europe. A dataset including physical hourly cross-border power exchanges between European countries as dependent variables is used. Principal component...

  15. Monitor de Control Integral

    OpenAIRE

    García Corominas, Estefania

    2016-01-01

    Control Integral es un programa informático especializado en gestión de ferreterías, bricolaje, suministros industriales y centros de construcción. Este programa está formado por dos ejecutables: el primero de ellos es el de ‘Gestión' y el segundo es el llamado ‘Monitor'. El módulo de gestión se compone de diferentes características para satisfacer las necesidades de los clientes, actualización automática de precios de los artículos, terminal punto de venta (TPV) este permite la creación e im...

  16. Instantaneous power theory and applications to power conditioning

    CERN Document Server

    Akagi, Hirofumi; Aredes, Mauricio

    2017-01-01

    This new edition, written by a team of experts in the field, is fully updated with information on the latest electric power technology. The instantaneous power theory, or “the p-q theory,” makes clear the physical meaning of what instantaneous real and imaginary power is in a three-phase circuit. Moreover, it provides insight into how energy flows from a source to a load, or circulates between phases, in a three-phase circuit. This theory can be used in the design and understanding of FACTS (Flexible AC Transmission System) compensators. The book introduces many concepts in the field of active filtering that are unique to this edition. It provides a study tool for final year undergraduate students, graduate students and engineers dealing ith harmonic pollution problems, reactive power compensation or power quality in general.

  17. Power from waste. [Power plant at landfill site

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1991-01-01

    Base Load Systems Ltd, a company in the United Kingdom, has just commissioned a power plant in Leicestershire which uses waste gases from a landfill site. The gases power two specially modified turbo charged engine and generator packages. The plant will use approximately 100 cu meters of landfill gas per hour and is expected to feed 1.5MW of electrical power into the supply network of East Midlands Electricity. Once the landfill site has been completely filled and capped with clay, it is estimated that the electrical power output will be 4 MW. At present, since their are no customers for heat in the vicinity, 100 KW of the electricity produced are used to run fans to dissipate the 2.5 MW of waste heat. Base load is also involved elsewhere in combined heat and power projects. (UK).

  18. Power generation statistics

    International Nuclear Information System (INIS)

    Kangas, H.

    2001-01-01

    The frost in February increased the power demand in Finland significantly. The total power consumption in Finland during January-February 2001 was about 4% higher than a year before. In January 2001 the average temperature in Finland was only about - 4 deg C, which is nearly 2 degrees higher than in 2000 and about 6 degrees higher than long term average. Power demand in January was slightly less than 7.9 TWh, being about 0.5% less than in 2000. The power consumption in Finland during the past 12 months exceeded 79.3 TWh, which is less than 2% higher than during the previous 12 months. In February 2001 the average temperature was - 10 deg C, which was about 5 degrees lower than in February 2000. Because of this the power consumption in February 2001 increased by 5%. Power consumption in February was 7.5 TWh. The maximum hourly output of power plants in Finland was 13310 MW. Power consumption of Finnish households in February 2001 was about 10% higher than in February 2000, and in industry the increase was nearly zero. The utilization rate in forest industry in February 2001 decreased from the value of February 2000 by 5%, being only about 89%. The power consumption of the past 12 months (Feb. 2000 - Feb. 2001) was 79.6 TWh. Generation of hydroelectric power in Finland during January - February 2001 was 10% higher than a year before. The generation of hydroelectric power in Jan. - Feb. 2001 was nearly 2.7 TWh, corresponding to 17% of the power demand in Finland. The output of hydroelectric power in Finland during the past 12 months was 14.7 TWh. The increase from the previous 12 months was 17% corresponding to over 18% of the power demand in Finland. Wind power generation in Jan. - Feb. 2001 was exceeded slightly 10 GWh, while in 2000 the corresponding output was 20 GWh. The degree of utilization of Finnish nuclear power plants in Jan. - Feb. 2001 was high. The output of these plants was 3.8 TWh, being about 1% less than in Jan. - Feb. 2000. The main cause for the

  19. Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2015-01-01

    wind turbines especially wind farms with additional grid support functionalities like dynamic support (e,g dynamic reactive power support etc.) and ii) refurbishment of existing conventional central power plants to synchronous condensers could be one of the efficient, reliable and cost effective option......Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...

  20. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  1. Rethinking Family Power.

    Science.gov (United States)

    Kranichfeld, Marion L.

    1987-01-01

    Men's power is emphasized in the family power literature on marital decision making. Little attention has been paid to women's power, accrued through their deeper embeddedness in intrafamilial roles. Micro-level analysis of family power demonstrates that women's positions in the family power structure rest not on the horizontal marital tie but…

  2. Thermoelectric self-cooling for power electronics: Increasing the cooling power

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Astrain, David; Aranguren, Patricia

    2016-01-01

    Thermoelectric self-cooling was firstly conceived to increase, without electricity consumption, the cooling power of passive cooling systems. This paper studies the combination of heat pipe exchangers and thermoelectric self-cooling, and demonstrates its applicability to the cooling of power electronics. Experimental tests indicate that source-to-ambient thermal resistance reduces by around 30% when thermoelectric self-cooling system is installed, compared to that of the heat pipe exchanger under natural convection. Neither additional electric power nor cooling fluids are required. This thermal resistance reaches 0.346 K/W for a heat flux of 24.1 kW/m"2, being one order of magnitude lower than that obtained in previous designs. In addition, the system adapts to the cooling demand, reducing this thermal resistance for increasing heat. Simulation tests have indicated that simple system modifications allow relevant improvements in the cooling power. Replacement of a thermoelectric module with a thermal bridge leads to 33.54 kW/m"2 of top cooling power. Likewise, thermoelectric modules with shorter legs and higher number of pairs lead to a top cooling power of 44.17 kW/m"2. These results demonstrate the applicability of thermoelectric self-cooling to power electronics. - Highlights: • Cooling power of passive systems increased. • No electric power consumption. • Applicable for the cooling of power electronics. • Up to 44.17 kW/m"2 of cooling power, one order of magnitude higher. • Source-to-ambient thermal resistance reduces by 30%.

  3. Operating experience feedback on lose of offsite power supply for nuclear power plant

    International Nuclear Information System (INIS)

    Jiao Feng; Hou Qinmai; Che Shuwei

    2013-01-01

    The function of the service power system of a nuclear power plant is to provide safe and reliable power supply for the nuclear power plant facilities. The safety of nuclear power plant power supply is essential for nuclear safety. The serious accident of Fukushima Daiichi nuclear power plant occurred due to loss of service power and the ultimate heat sink. The service power system has two independent offsite power supplies as working power and auxiliary power. This article collected events of loss of offsite power supply in operating nuclear power plants at home and abroad, and analyzed the plant status and cause of loss of offsite power supply events, and proposed improvement measures for dealing with loss of offsite power supply. (authors)

  4. Power System Operation with Large-Scale Wind Power in Liberalised Environments

    International Nuclear Information System (INIS)

    Ummels, B.C.

    2009-01-01

    The disadvantages of producing electricity from fossil fuels are that their supply is finite and unevenly distributed across the earth. Conventional power stations also emit greenhouse gases. Therefore, sustainable alternatives must be developed, such as wind power. The disadvantages of wind are that it may or may not blow and that it is unpredictable. Th generation of electricity must however always equal the consumption. This makes the integration of wind power in the electricity system more difficult. This thesis investigates the integration of wind power into the existing power system. Simulation models are developed and used to explore the operation of power systems with a lot of wind power. The simulations provide a picture of the reliability, cost and emission of CO2 of the generation of electricity, with and without wind power. The research also takes into account electricity exchange on international markets. Possible solutions for integrating wind power, such as flexible power plants and energy storage, are investigated as well

  5. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  6. SNS AC Power Distribution and Reliability of AC Power Supply

    CERN Document Server

    Holik, Paul S

    2005-01-01

    The SNS Project has 45MW of installed power. A design description under the Construction Design and Maintenance (CDM) with regard to regulations (OSHA, NFPA, NEC), reliability issues and maintenance of the AC power distribution system are herewith presented. The SNS Project has 45MW of installed power. The Accelerator Systems are Front End (FE)and LINAC KLYSTRON Building (LK), Central Helium Liquefier (CHL), High Energy Beam Transport (HEBT), Accumulator Ring and Ring to Target Beam Transport (RTBT) Support Buildings have 30MW installed power. FELK has 16MW installed, majority of which is klystron and magnet power supply system. CHL, supporting the super conducting portion of the accelerator has 7MW installed power and the RING Systems (HEBT, RING and RTBT) have also 7MW installed power.*

  7. Wireless power pad with local power activation for portable devices

    NARCIS (Netherlands)

    Waffenschmidt, E.; Zheglov, V.

    2007-01-01

    Wireless power transfer by magnetic induction offers a simple to use way to recharge mobile devices like e.g. mobile phone, music players or medical sensors. As shown by a previous report and an existing Power Pad demonstrator, wireless inductive power transfer is possible with a good power

  8. Power quality improvement of unbalanced power system with distributed generation units

    DEFF Research Database (Denmark)

    Hu, Y.; Chen, Zhe; Excell, P.

    2011-01-01

    This paper presents a power electronic system for improving the power quality of the unbalanced distributed generation units in three-phase four-wire system. In the system, small renewable power generation units, such as small PV generator, small wind turbines may be configured as single phase...... and control of the converter are described. Simulation results have demonstrated that the system can effectively correct the unbalance and enhance the system power quality....... generation units. The random nature of renewable power sources may result in significant unbalance in the power network and affect the power quality. An electronic converter system is proposed to correct the system unbalance and harmonics so as to deal with the power quality problems. The operation...

  9. Impact of Offshore Wind Power Integrated by VSC-HVDC on Power Angle Stability of Power Systems

    Science.gov (United States)

    Lu, Haiyang; Tang, Xisheng

    2017-05-01

    Offshore wind farm connected to grid by VSC-HVDC loses frequency support for power system, so adding frequency control in wind farm and VSC-HVDC system is an effective measure, but it will change wind farm VSC-HVDC’s transient stability on power system. Through theoretical analysis, concluding the relationship between equivalent mechanical power and electromagnetic power of two-machine system with the active power of wind farm VSC-HVDC, then analyzing the impact of wind farm VSC-HVDC with or without frequency control and different frequency control parameters on angle stability of synchronous machine by EEAC. The validity of theoretical analysis has been demonstrated through simulation in PSCAD/EMTDC.

  10. Power quality assessment

    International Nuclear Information System (INIS)

    Fathi, H.M.E.

    2012-01-01

    The electrical power systems are exposed to different types of power quality disturbances problems. Assessment of power quality is necessary for maintaining accurate operation of sensitive equipment's especially for nuclear installations, it also ensures that unnecessary energy losses in a power system are kept at a minimum which lead to more profits. With advanced in technology growing of industrial / commercial facilities in many region. Power quality problems have been a major concern among engineers; particularly in an industrial environment, where there are many large-scale type of equipment. Thus, it would be useful to investigate and mitigate the power quality problems. Assessment of Power quality requires the identification of any anomalous behavior on a power system, which adversely affects the normal operation of electrical or electronic equipment. The choice of monitoring equipment in a survey is also important to ascertain a solution to these power quality problems. A power quality assessment involves gathering data resources; analyzing the data (with reference to power quality standards); then, if problems exist, recommendation of mitigation techniques must be considered. The main objective of the present work is to investigate and mitigate of power quality problems in nuclear installations. Normally electrical power is supplied to the installations via two sources to keep good reliability. Each source is designed to carry the full load. The Assessment of power quality was performed at the nuclear installations for both sources at different operation conditions. The thesis begins with a discussion of power quality definitions and the results of previous studies in power quality monitoring. The assessment determines that one source of electricity was deemed to have relatively good power quality; there were several disturbances, which exceeded the thresholds. Among of them are fifth harmonic, voltage swell, overvoltage and flicker. While the second

  11. Dynamic Reactive Power Control in Offshore HVDC Connected Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Cutululis, Nicolaos Antonio; Rather, Zakir Hussain

    2016-01-01

    This paper presents a coordinated reactive power control for a HVDC connected cluster of offshore wind power plants (WPPs). The reactive power reference for the WPP cluster is estimated by an optimization algorithm aiming at minimum active power losses in the offshore AC Grid. For each optimal......, such as wind turbine (WT) terminal, collector cable, and export cable, on the dynamic voltage profile of the offshore grid is investigated. Furthermore, the dynamic reactive power contribution from WTs from different WPPs of the cluster for such faults has also been studied....... reactive power set point, the OWPP cluster controller generates reactive power references for each WPP which further sends the AC voltage/ reactive power references to the associated WTs based on their available reactive power margin. The impact of faults at different locations in the offshore grid...

  12. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  13. Reactor power control systems in nuclear power plants

    International Nuclear Information System (INIS)

    Nakajima, Kazuo.

    1980-01-01

    Purpose: To enable power control by automatic control rod operation based on the calculated amounts of operation for the control rods determined depending on a power set value from reactor operators or on power variation amounts from other devices. Constitution: When an operator designates an automatic selection by way of a control rod operation panel, automatic signals are applied to a manual-automatic switching circuit and the mode judging circuit of a rod pattern control device. Then, mode signals such as for single operation, load setting, load following and the like produced by the operator are judged in a circuit, wherein a control rod pattern operation circuit calculates the designation for the control rods and the operation amounts for the control rods depending on the designated modes and automatic control is conducted for the control rods by a rod position control circuit, a rod drive control device and the like connected at a rod position monitor device. The reactor power is thus controlled automatically to reduce the operator's labours. The automatic power control can also be conducted in the same manner by the amount of power variations applied to the device from the external device. (Yoshino, Y.)

  14. Reactor power control device in BWR power plant

    International Nuclear Information System (INIS)

    Kurosawa, Tsuneo.

    1997-01-01

    The present invention provides a device for controlling reactor power based on a start-up/shut down program in a BWR type reactor, as well as for detecting deviation, if occurs, of the power from the start-up/shut down program, to control a recycling flow rate control system or control rod drive mechanisms. Namely, a power instruction section successively executes the start-up/shut down program and controls the coolant recycling system and the control rod driving mechanisms to control the power. A current state monitoring and calculation section receives a process amount, calculates parameters showing the plant state, compares/monitors them with predetermined values, detecting the deviation, if occurs, of the plant state from the start-up/shut down program, and prevents output of a power increase control signal which leads to power increase. A forecasting and monitoring/calculation section forecasts and calculates the plant state when not yet executed steps of the start-up/shut down program are performed, stops the execution of the start-up/shut down program in the next step in a case of forecasting that the results of the calculation will deviate from the start-up/shut down program. (I.S.)

  15. Wind power and market power in competitive markets

    International Nuclear Information System (INIS)

    Twomey, Paul; Neuhoff, Karsten

    2010-01-01

    Average market prices for intermittent generation technologies are lower than for conventional generation. This has a technical reason but can be exaggerated in the presence of market power. When there is much wind smaller amounts of conventional generation technologies are required, and prices are lower, while at times of little wind prices are higher. This effect reflects the value of different generation technologies to the system. But under conditions of market power, conventional generators with market power can further depress the prices if they have to buy back energy at times of large wind output and can increase prices if they have to sell additional power at times of little wind output. This greatly exaggerates the effect. Forward contracting does not reduce the effect. An important consequence is that allowing market power profit margins as a support mechanism for generation capacity investment is not a technologically neutral policy.

  16. TinyPowerPower conversion on a tiny scale

    DEFF Research Database (Denmark)

    Han, Anpan; Jørgensen, Anders Michael

    2014-01-01

    The world surrounding us is filled with devices relying on electrical power and the rise of internet-of-thingswill mean that powering devices will remain important in the future. The size and cost of the power supplyhas become a dominant factor in many applications. At the same time, most of the ...... project is an ambitious approach to taking miniature power converters into a new domainand the trickle-down effect on micro fabricated inductors can hopefully benefit other projects....

  17. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  18. Two wind power prognosis criteria and regulating power costs

    DEFF Research Database (Denmark)

    Nielsen, Claus S.; Ravn, Hans F.; Schaumburg-Müller, Camilla

    2003-01-01

    . Basically, the choice is between focusing on predicting the energy content of the wind and focusing on the cost of buying regulating power to compensate for the prognosis errors. It will be shown that it can be expected that the two power curves thus estimated will differ, and that therefore also the hourly......The objective of the present work is to investigate the consequences of the choice of criterion in short-term wind power prognosis. This is done by investigating the consequences of choice of objective function in relation to the estimation of the power curve that is applied in the prognoses...... wind power production predicted will differ. In turn this will influence the operation and economics of the system. The consequences of this are illustrated by application to the integration of wind power in the Danish parts of the Nordpool area, using recent data. Using a regression analysis...

  19. Effects of a power shortage in the Tokyo metropolitan area on awareness of nuclear power generation and power savings behavior

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2004-01-01

    The shutdown of a number of nuclear power stations of the Tokyo Electric Power Company in the summer of 2003 caused a power shortage problem in the Tokyo Metropolitan area. To examine the effects of the power shortage, in September 2003 a survey was conducted in the service areas of the Kansai Electric Power Company (Kansai region) and the Tokyo Electric Power Company (Kanto region). This survey was part of a wider opinion survey begun in 1993 concerning nuclear power generation. The results of the September 2003 survey are as follows: The degree of recognition of the power shortage problem in the Metropolitan area was high, with 40% of respondents in the Kansai region and nearly 70% in the Kanto region understanding that the shortage was caused by the shutdown of several nuclear power station. The overall awareness of nuclear power generation was little affected in both the Kansai and Kanto regions, though the sense of a shortage of the generating capacity had been raised slightly. Once respondents knew about the power shortage problem, they estimated the likelihood of an occurrence of large-scale service interruption to be low, nearly at an even chance, and they had been only slightly worried about it, essentially viewing the problem optimistically. In the Kanto region, where public relations activities for power savings had been actively pursued, the frequency of experiencing exposure to such public relations activities was remarkably higher than in the Kansai region. The relation between exposure to public relations activities for power savings and power savings behavior was analyzed using quantification method II. Analysis results suggest that public relations activities for power savings in the Kanto region had the effect of urging power savings behavior. However, the difference in the rate of putting power savings behavior into practice was small between the Kanto and Kansai regions, indicating that public relation activities for power savings in the Kanto

  20. Power system damping - Structural aspects of controlling active power

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, O.

    1997-04-01

    Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs

  1. Financing the electric power utilities, especially the nuclear power in Japan

    International Nuclear Information System (INIS)

    Tajima, T.

    1975-04-01

    Electric power demands in Japan have shown a remarkable growth at an annual rate of 12% since 1965. Nine electric power companies have invested large amounts of money so far, amounting to over 1 trillion yen every year since 1972. A survey of the electric power supply system and an estimation of the electric power demands in 1980 and in 1985 are given. It is expected that the main portion of electric power in the future will gradually be generated by nuclear plants. Financial features of the electrical power utilities, the credit risk of the electric power utilities, and the raising of funds by electric power utilities are discussed. It is concluded that it will be necessary (1) to expand the capital market, (2) to enable the electric power companies to issue a sufficient amount of bonds, (3) to make the Government financing institutions, such as the Japan Development Bank, provide the electric power companies with larger funds on a long-term and low-interest rate basis, and (4) even to take such drastic steps as subsidizing interest on private loans to the electric power companies. (B.P.)

  2. China's power policy

    International Nuclear Information System (INIS)

    Mayer, M.

    2006-01-01

    Whether the People's Republic of China may develop to an economical super-government in future depends on the amount of power and resources of this land. The security of power supply is in an extremely prominent position in the Agenda of the Chinese government. Under this aspect the author of the contribution under consideration reports on the power policy of China. The main aspects of this contribution are: (a) Trends of power consumption, productions and imports of power; (b) Power political targets, measures and instruments of China; (c) Characteristics, national and international impacts of the power policy of China. Due to the economical activities of the chinese oil industry worldwide as well as due to the increasing dependence from imports of petroleum and natural oil, China becomes a global player. Thus, one may expect an intensification of Beijing's economical activities with an increased military component. Nevertheless, the power policy of China is an important factor in the global competition according to fossil resources. In order to understand the future behaviour of China's power policy, one may have to take notice of the strategies relating the power policy and relating to foreign affairs. Furthermore, trends and problematic areas concerning the securitization of the power supply in the national area have to be observed

  3. On grid-connected power electronic systems: power quality improvement application

    International Nuclear Information System (INIS)

    Etxeberria-Otadui, I.

    2003-09-01

    The present PhD thesis deals with distribution grid-connected power electronic devices. The main focus has been power quality improvement with power electronic devices. The theoretical aspects and the power quality improvement techniques are presented and discussed. Power electronic devices are then presented, modelled and controlled. Original disturbance identification, power management and current/voltage control methods have been proposed, tested and analysed. A flexible test-bench, composed of a series and a shunt compensator, has been designed and built in order to test the studied control algorithms. These tests have permitted to experimentally evaluate and validate the proposed control algorithms and to make evident several problems that are not always visible on the theory. The conclusions outline the main short and mid term objectives and challenges in the field of power quality improvement devices. (author)

  4. Power quality enhancement of renewable energy source power network using SMES system

    International Nuclear Information System (INIS)

    Seo, H.R.; Kim, A.R.; Park, M.; Yu, I.K.

    2011-01-01

    Power quality enhancement of a renewable energy source power network is performed by a real-toroidal-type SMES coil. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation. The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality. This paper deals with power quality enhancement of renewable energy source power network using SMES system and describes the operation characteristics of HTS SMES system using real-toroidal-type SMES coil for smoothening the fluctuation of large-scale renewable energy source such as photovoltaic (PV) power generation system. It generates maximum power of PV array under various weather conditions. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The SMES unit is controlled according to the PV array output and the utility power quality conditions. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation (PHILS). The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality in power network including large-scale renewable energy source, especially PV power generation system.

  5. Generalized Power Domination

    OpenAIRE

    Omerzel, Aleš

    2014-01-01

    The power domination problem is an optimization problem that has emerged together with the development of the power networks. It is important to control the voltage and current in all the nodes and links in a power network. Measuring devices are expensive, which is why there is a tendency to place a minimum number of devices in a power network so that the network remains fully supervised. The k-power domination is a generalization of the power domination. The thesis represents the rules of th...

  6. Power Quality Issues on Wind Power Installations in Denmark

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio; Lund, Torsten

    2007-01-01

    offshore wind farms connected at transmission level. In this perspective, the power quality issues are divided into local issues particularly related to the voltage quality in the distribution systems and global issues related to the power system control and stability. Power quality characteristics of wind...

  7. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  8. Damping of Low Frequency Power System Oscillations with Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz

    of wind power plants on power system low frequency oscillations and identify methods and limitations for potential contribution to the damping of such oscillations. Consequently, the first part of the studies focuses on how the increased penetration of wind power into power systems affects their natural...... oscillatory performance. To do so, at first a generic test grid displaying a complex inter-area oscillation pattern is introduced. After the evaluation of the test grid oscillatory profile for various wind power penetration scenarios, it is concluded that full-converter based wind power plant dynamics do......-synchronous power source. The main body of the work is devoted to the damping control design for wind power plants with focus on the impact of such control on the plant operation. It can be expected that the referred impact is directly proportional to the control effort, which for power processing devices should...

  9. Green Power Partnership 100 Green Power Users

    Science.gov (United States)

    EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. Partners on this list use green power to meet 100 of their U.S. organization-wide electricity use.

  10. A high-power versatile wireless power transfer for biomedical implants.

    Science.gov (United States)

    Jiang, Hao; Zhang, Jun Min; Liou, Shy Shenq; Fechter, Richard; Hirose, Shinjiro; Harrison, Michael; Roy, Shuvo

    2010-01-01

    Implantable biomedical actuators are highly desired in modern medicine. However, how to power up these biomedical implants remains a challenge since most of them need more than several hundreds mW of power. The air-core based radio-frequency transformer (two face-to-face inductive coils) has been the only non-toxic and non-invasive power source for implants for the last three decades [1]. For various technical constraints, the maximum delivered power is limited by this approach. The highest delivered power reported is 275 mW over 1 cm distance [2]. Also, the delivered power is highly vulnerable to the coils' geometrical arrangement and the electrical property of the medium around them. In this paper, a novel rotating-magnets based wireless power transfer that can deliver ∼10 W over 1 cm is demonstrated. The delivered power is significantly higher than the existing start-of-art. Further, the new method is versatile since there is no need to have the impedance matching networks that are highly susceptible to the operating frequency, the coil arrangement and the environment.

  11. Space power plants and power-consuming industrial systems

    International Nuclear Information System (INIS)

    Latyshev, L.; Semashko, N.

    1996-01-01

    An opportunity to create the space power production on the basis of solar, nuclear and fusion energies is analyzed. The priority of solar power production as the most accessible and feasible in comparison with others is emphasized. However, later on, it probably will play an auxiliary role. The possibilities of fusion power production, as a basic one in future, are also considered. It is necessary to create reactors using the fueling cycle with helium-3 (instead of tritium and deuterium, later on). The reaction products--charged particles, mainly--allow one to organize the system of direct fusion energy conversion into electricity. The produced energy is expected not to be transmitted to Earth, but an industry in space is expected to be produced on its basis. The industrial (power and science-consuming) objects located on a whole number of space apparatus will form a single complex with its own basic power plant. The power transmission within the complex will be realized with high power density fluxes of microwave radiation to short distances with their receivers at the objects. The necessary correction of the apparatus positions in the complex will be done with ion and plasma thrusters. The materials present on the Moon, asteroids and on other planets can serve as raw materials for industrial objects. Such an approach will help to improve the ecological state on Earth, to eliminate the necessity in the fast energy consumption growth and to reduce the hazard of global thermal crisis

  12. Methods for Estimation of Market Power in Electric Power Industry

    Science.gov (United States)

    Turcik, M.; Oleinikova, I.; Junghans, G.; Kolcun, M.

    2012-01-01

    The article is related to a topical issue of the newly-arisen market power phenomenon in the electric power industry. The authors point out to the importance of effective instruments and methods for credible estimation of the market power on liberalized electricity market as well as the forms and consequences of market power abuse. The fundamental principles and methods of the market power estimation are given along with the most common relevant indicators. Furthermore, in the work a proposal for determination of the relevant market place taking into account the specific features of power system and a theoretical example of estimating the residual supply index (RSI) in the electricity market are given.

  13. Handbook of power systems engineering with power electronics applications

    CERN Document Server

    Hase, Yoshihide

    2012-01-01

    Formerly known as Handbook of Power System Engineering, this second edition provides rigorous revisions to the original treatment of systems analysis together with a substantial new four-chapter section on power electronics applications. Encompassing a whole range of equipment, phenomena, and analytical approaches, this handbook offers a complete overview of power systems and their power electronics applications, and presents a thorough examination of the fundamental principles, combining theories and technologies that are usually treated in separate specialised fields, in a single u

  14. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  15. Industrial power distribution

    CERN Document Server

    Fehr, Ralph

    2016-01-01

    In this fully updated version of Industrial Power Distribution, the author addresses key areas of electric power distribution from an end-user perspective for both electrical engineers, as well as students who are training for a career in the electrical power engineering field. Industrial Power Distribution, Second Edition, begins by describing how industrial facilities are supplied from utility sources, which is supported with background information on the components of AC power, voltage drop calculations, and the sizing of conductors and transformers. Important concepts and discussions are featured throughout the book including those for sequence networks, ladder logic, motor application, fault calculations, and transformer connections. The book concludes with an introduction to power quality, how it affects industrial power systems, and an expansion of the concept of power factor, including a distortion term made necessary by the existence of harmonic.

  16. Power control and management of the grid containing largescale wind power systems

    Science.gov (United States)

    Aula, Fadhil Toufick

    The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two

  17. Adaptive reactive power control of PV power plants for improved power transfer capability under ultra-weak grid conditions

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng

    2017-01-01

    The Photovoltaic (PV) power plants are usually deployed in remote areas with the high solar irradiance, and their power transfer capabilities can be greatly limited by the large impedance of long-distance transmission lines. This paper investigates first the power transfer limit of the PV power p...

  18. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G

    2012-01-01

    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  19. Estimation of power system variability due to wind power

    NARCIS (Netherlands)

    Papaefthymiou, G.; Verboomen, J.; Van der Sluis, L.

    2007-01-01

    The incorporation of wind power generation to the power system leads to an increase in the variability of the system power flows. The assessment of this variability is necessary for the planning of the necessary system reinforcements. For the assessment of this variability, the uncertainty in the

  20. Power generation using photovoltaic induction in an isolated power network

    International Nuclear Information System (INIS)

    Kalantar, M.; Jiang, J.

    2001-01-01

    Owing to increased emphasis on renewable resources, the development of suitable isolated power generators driven by energy sources, the development of suitable isolated power generators driven by energy sources such as photovoltaic, wind, small hydroelectric, biogas and etc. has recently assumed greater significance. A single phase capacitor self excited induction generator has emerged as a suitable candidate of isolated power sources. This paper presents performance analysis of a single phase self-excited induction generator driven by photovoltaic (P V) system for low power isolated stand-alone applications. A single phase induction machine can work as a self-excited induction generator when its rotor is driven at suitable speed by an photovoltaic powered do motor. Its excitation is provided by connecting a single phase capacitor bank at a stator terminals. Either to augment grid power or to get uninterrupted power during grid failure stand-alone low capacity ac generators are used. These are driven by photovoltaic, wind power or I C engines using kerosene, diesel, petrol or biogas as fuel. Self-excitation with capacitors at the stator terminals of the stator terminals of the induction machines is well demonstrated experimentally on a P V powered dc motor-induction machine set. The parameters and the excitation requirements of the induction machine run in self-excited induction generator mode are determined. The effects of variations in prime mover speed,terminal capacitance and load power factor on the machine terminal voltage are studied

  1. Reusing balanced power flow object components for developing harmonic power flow

    Energy Technology Data Exchange (ETDEWEB)

    Nadarajah, S. [Peninsular Malaysia Electric Utility Co., Kuala Lumpur (Malaysia). Tenaga Nasional Berhad; Nor, K.M.; Abdel-Akher, M. [Malaysia Univ., Kuala Lumpur (Malaysia). Dept. of Electrical Engineering

    2005-07-01

    Harmonic power flows are used to examine the effects of nonlinear loads on power systems. In this paper, component technology was re-used for the development of a harmonic power flow. The object-oriented power system model (OO-PSM) was developed separately from a solution algorithm. Nodes, lines, and transformers were modelled as entity objects by classes. Power flow solution algorithms were modelled as control objects and encapsulated inside independent software components within the power system component software architecture (PS-COM). Both the OO-PSM and the PS-COM of the balanced power flow were re-used for developing the proposed harmonic power flow. A no-interaction hypothesis was used to consider both fundamental voltages and nonlinear device data dependence. A direct solution voltage node method was also used. The accuracy of the method was demonstrated using IEEE 14 bus and 30 bus test systems. It was concluded that component technology can be used to develop harmonic power flow programs. 7 refs., 2 tabs., 9 figs.

  2. Software-Based Wireless Power Transfer Platform for Various Power Control Experiments

    Directory of Open Access Journals (Sweden)

    Sun-Han Hwang

    2015-07-01

    Full Text Available In this paper, we present the design and evaluation of a software-based wireless power transfer platform that enables the development of a prototype involving various open- and closed-loop power control functions. Our platform is based on a loosely coupled planar wireless power transfer circuit that uses a class-E power amplifier. In conjunction with this circuit, we implement flexible control functions using a National Instruments Data Acquisition (NI DAQ board and algorithms in the MATLAB/Simulink. To verify the effectiveness of our platform, we conduct two types of power-control experiments: a no-load or metal detection using open-loop power control, and an output voltage regulation for different receiver positions using closed-loop power control. The use of the MATLAB/Simulink software as a part of the planar wireless power transfer platform for power control experiments is shown to serve as a useful and inexpensive alternative to conventional hardware-based platforms.

  3. Synthesizing modeling of power generation and power limits in energy systems

    International Nuclear Information System (INIS)

    Sieniutycz, Stanislaw

    2015-01-01

    Applying the common mathematical procedure of thermodynamic optimization the paper offers a synthesizing or generalizing modeling of power production in various energy generators, such as thermal, solar and electrochemical engines (fuel cells). Static and dynamical power systems are investigated. Dynamical models take into account the gradual downgrading of a resource, caused by power delivery. Analytical modeling includes conversion efficiencies expressed in terms of driving fluxes. Products of efficiencies and driving fluxes determine the power yield and power maxima. While optimization of static systems requires using of differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. In reacting mixtures balances of mass and energy serve to derive power yield in terms of an active part of chemical affinity. Power maximization approach is also applied to fuel cells treated as flow engines driven by heat flux and fluxes of chemical reagents. The results of power maxima provide limiting indicators for thermal, solar and SOFC generators. They are more exact than classical reversible limits of energy transformation. - Highlights: • Systematic evaluation of power limits by optimization. • Common thermodynamic methodology for engine systems. • Original, in-depth study of power maxima. • Inclusion of fuel cells to a class of thermodynamic power systems

  4. Power Constrained High-Level Synthesis of Battery Powered Digital Systems

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Madsen, Jan

    2003-01-01

    We present a high-level synthesis algorithm solving the combined scheduling, allocation and binding problem minimizing area under both latency and maximum power per clock-cycle constraints. Our approach eliminates the large power spikes, resulting in an increased battery lifetime, a property...... of utmost importance for battery powered embedded systems. Our approach extends the partial-clique partitioning algorithm by introducing power awareness through a heuristic algorithm which bounds the design space to those of power feasible schedules. We have applied our algorithm on a set of dataflow graphs...

  5. Reduction technique of drop voltage and power losses to improve power quality using ETAP Power Station simulation model

    Science.gov (United States)

    Satrio, Reza Indra; Subiyanto

    2018-03-01

    The effect of electric loads growth emerged direct impact in power systems distribution. Drop voltage and power losses one of the important things in power systems distribution. This paper presents modelling approach used to restructrure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructrure electrical network was aimed to analyse and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP Power Station Software. Based on result of simulation and real measurement precentage of drop voltage and total power losses were mismatch with SPLN (Standard PLN) 72:1987. After added a new distribution transformer and restructrured electricity network configuration, the result of simulation could reduce drop voltage from 1.3 % - 31.3 % to 8.1 % - 9.6 % and power losses from 646.7 watt to 233.29 watt. Result showed, restructrure electricity network configuration and added new distribution transformer can be applied as an effective method to reduce drop voltage and reduce power losses.

  6. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  7. Power Electronics

    Indian Academy of Sciences (India)

    They cover a wide spectrum of areas from power supplies to power system ... Ramanarayanan describe the modelling and design of a family of soft transition ... of power when the drive is operating in the braking mode and fast dynamic response. ... time models are extremely important, as they can be included in real time ...

  8. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  9. The Power Quality Compensation Strategy for Power Distribution System Based on Hybrid Parallel Active Power Filters

    Directory of Open Access Journals (Sweden)

    Rachid DEHINI

    2010-12-01

    Full Text Available In this paper, the main aim is to confront the performance of shunt active power filter (SAPF and the shunt hybrid active power filter (SHAPF to achieve flexibility and reliability of the filter devices. Both of the two devices used the classical proportional-integral controller for pulse generation to trigger the inventers MOSFET’s. In the adopted hybrid active filter there is a passive power filter with high power rating to filter the low order harmonies and one active filter with low power rating to filter the other high order harmonies. In order to investigate the effectiveness of (SHAPF, the studies have been accomplished using simulation with the MATLAB-SIMULINK. The results show That (SHAPF is more effective than (SAPF, and has lower cost.

  10. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter......This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...

  11. Characteristics of self-powered neutron detectors used in power reactors

    International Nuclear Information System (INIS)

    Todt, W.H.

    1997-01-01

    Self-Powered Neutron Detectors have been used effectively as in-core flux monitors for over twenty-five years in nuclear power reactors world-wide. The basic properties of these radiation sensors are described including their nuclear, electrical and mechanical characteristics. Recommendations are given for the proper choice of the self-powered detector emitter to provide the proper response time and radiation sensitivity desired for use in an effective in-core radiation monitoring system. Examples are shown of specific self-powered detector designs which are being effectively used in in-core instrumentation systems for pressurised water, heavy water and graphite moderated light water reactors. Examples are also shown of the mechanical configurations of in-core assemblies of self-powered detectors combined with in-core thermocouples presently used in pressurised water and heavy water reactors worldwide. This paper is a summary of a new IEC standard to be issued in 1996 describing the characteristics and test methods of self-powered detectors used in nuclear power reactors. (author)

  12. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  13. Power and death: Mortality salience increases power seeking while feeling powerful reduces death anxiety.

    Science.gov (United States)

    Belmi, Peter; Pfeffer, Jeffrey

    2016-05-01

    According to Terror Management Theory, people respond to reminders of mortality by seeking psychological security and bolstering their self-esteem. Because previous research suggests that having power can provide individuals a sense of security and self-worth, we hypothesize that mortality salience leads to an increased motivation to acquire power, especially among men. Study 1 found that men (but not women) who wrote about their death reported more interest in acquiring power. Study 2A and Study 2B demonstrated that when primed with reminders of death, men (but not women) reported behaving more dominantly during the subsequent week, while both men and women reported behaving more prosocially during that week. Thus, mortality salience prompts people to respond in ways that help them manage their death anxiety but in ways consistent with normative gender expectations. Furthermore, Studies 3-5 showed that feeling powerful reduces anxiety when mortality is salient. Specifically, we found that when primed to feel more powerful, both men and women experienced less mortality anxiety. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Keys to success for wind power in isolated power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J C; Lundsager, P; Bindner, H; Hansen, L; Frandsen, S [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    It is generally expected that wind power could contribute significantly to the electricity supply in power systems of small and medium sized isolated communities. The market for such applications of wind power has not yet materialized. Wind power in isolated power systems have the main market potentials in developing countries. The money available world-wide for this technological development is limited and the necessary R and D and pilot programmes have difficult conditions. Consequently, technology developed exclusively for developing countries rarely becomes attractive for consumers, investors and funding agencies. A Danish research project is aimed at studying development of methods and guidelines rather than `universal solutions` for the use of wind energy in isolated communities. This paper report on the findings of the project regarding barriers removal and engineering methods development, with a focus on analysis and specification of user demand and priorities, numerical modeling requirements as well as wind power impact on power quality and power system operation. Input will be provided on these subjects for establishing of common guidelines on relevant technical issues, and thereby enabling the making of trustworthy project preparation studies. (au) EFP-97. 12 refs.

  15. Power generation and power system development for the period after 2000

    International Nuclear Information System (INIS)

    Fushtikj, Vangel

    1998-01-01

    The paper presents an overview of the power generation and power system development worldwide in terms of forecast power and energy production. The conditions of power system ability to meet the changes, caused by the new technologies development and regulatory policy, in the next intensive energy period are also considered. Identified key issues are used to emphasize the guided concepts and principles in power system evolution. (Author)

  16. Personal power systems

    Energy Technology Data Exchange (ETDEWEB)

    Dunn-Rankin, Derek; Leal, Elisangela Martins; Walther, David C. [Mechanical and Aerospace Engineering Department, University of California, Irvine, CA 92697 (United States)

    2005-07-01

    The lack of compact, efficient, human compatible, lightweight power sources impedes the realization of machine-enhanced human endeavor. Electronic and communication devices, as well as mobile robotic devices, need new power sources that will allow them to operate autonomously for periods of hours. In this work, a personal power system implies an application of interest to an individual person. The human-compatible gravimetric energy density spans the range from 500 to 5000Wh/kg, with gravimetric power density requirements from 10 to 1000W/kg. These requirements are the primary goals for the systems presented here. The review examines the interesting and promising concepts in electrochemical, thermochemical, and biochemical approaches to small-scale power, as well as their technological and physical challenges and limitations. Often it is the limitations that dominate, so that while the technology to create personal autonomy for communications, information processing and mobility has accelerated, similar breakthroughs for the systems powering these devices have not yet occurred. Fuel cells, model airplane engines, and hummingbird metabolism, are three promising examples, respectively, of electrochemical, thermochemical, and biochemical power production strategies that are close to achieving personal power systems' power demands. Fuel cells show great promise as an energy source when relatively low power density is demanded, but they cannot yet deliver high peak powers nor respond quickly to variable loads. Current small-scale engines, while achieving extraordinary power densities, are too inefficient to achieve the energy density needed for long-duration autonomous operation. Metabolic processes of flying insects and hummingbirds are remarkable biological energy converters, but duplicating, accelerating, and harnessing such power for mobility applications is virtually unexplored. These challenges are significant, and they provide a fertile environment for

  17. The end of cheap electric power from nuclear power plants. 2. ed.

    International Nuclear Information System (INIS)

    Franke, J.; Viefhues, D.

    1984-04-01

    The economic efficiency of a nuclear power plant is compared with that of a coal-fired power plant of the same size. A technical and economic computer model was developed which took account of the power plant and all its units as well as the fuel cycle (including intermediate storage and reprocessing). It was found that future nuclear power plants will be inferior to coal-fired power plants in all economic respects. Further, there was no load range in which the cost of electric power generation was more favourable in nuclear power plants than in coal-fired power plants. (orig./HSCH) [de

  18. Dynamic impedance compensation for wireless power transfer using conjugate power

    Science.gov (United States)

    Liu, Suqi; Tan, Jianping; Wen, Xue

    2018-02-01

    Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.

  19. Dynamic impedance compensation for wireless power transfer using conjugate power

    Directory of Open Access Journals (Sweden)

    Suqi Liu

    2018-02-01

    Full Text Available Wireless power transfer (WPT via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.

  20. Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation

    International Nuclear Information System (INIS)

    Taghavi, Reza; Seifi, Ali Reza; Samet, Haidar

    2015-01-01

    Environmental concerns besides fuel costs are the predominant reasons for unprecedented escalating integration of wind turbine on power systems. Operation and planning of power systems are affected by this type of energy due to the intermittent nature of wind speed inputs with high uncertainty in the optimization output variables. Consequently, in order to model this high inherent uncertainty, a PRPO (probabilistic reactive power optimization) framework should be devised. Although MC (Monte-Carlo) techniques can solve the PRPO with high precision, PEMs (point estimate methods) can preserve the accuracy to attain reasonable results when diminishing the computational effort. Also, this paper introduces a methodology for optimally dispatching the reactive power in the transmission system, while minimizing the active power losses. The optimization problem is formulated as a LFP (linear fuzzy programing). The core of the problem lay on generation of 2m + 1 point estimates for solving PRPO, where n is the number of input stochastic variables. The proposed methodology is investigated using the IEEE-14 bus test system equipped with HVDC (high voltage direct current), UPFC (unified power flow controller) and DFIG (doubly fed induction generator) devices. The accuracy of the method is demonstrated in the case study. - Highlights: • This paper uses stochastic loads in optimization process. • AC–DC load flow is modified to use some advantages of DC part in optimization process. • UPFC and DFIG are simulated in a way that could be effective in optimization process. • Fuzzy set has been used as an uncertainty analysis tool in the optimization

  1. Optimal Power Flow Control by Rotary Power Flow Controller

    Directory of Open Access Journals (Sweden)

    KAZEMI, A.

    2011-05-01

    Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.

  2. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Costa, L.M.

    2008-12-01

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  3. Reactor power control device

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Arita, Setsuo; Miyamoto, Yoshiyuki; Fukazawa, Yukihisa; Ishii, Kazuhiko

    1998-01-01

    The present invention provides a reactor power control device capable of enhancing an operation efficiency while keeping high reliability and safety in a BWR type nuclear power plant. Namely, the device of the present invention comprises (1) a means for inputting a set value of a generator power and a set value of a reactor power, (2) a means for controlling the reactor power to either smaller one of the reactor power corresponding to the set value of the generator power and the set value of the reactor power. With such procedures, even if the nuclear power plant is set so as to operate it to make the reactor power 100%, when the generator power reaches the upper limit, the reactor power is controlled with a preference given to the upper limit value of the generator power. Accordingly, safety and reliability are not deteriorated. The operation efficiency of the plant can be improved. (I.S.)

  4. Power, right, and truth: Foucault's triangle as a model for clinical power.

    Science.gov (United States)

    Polifroni, E Carol

    2010-01-01

    Power has historically been viewed from a position of dominance and authority. Using this lens leads one to a destiny wherein one individual or society has power over another. The power over approach is a hierarchical view, one that leads to someone else being oppressed, and one wherein the prevailing hegemony continues. If a different lens is used, wherein power does not reside within a position, but rather, within a person and within a relationship bounded by knowledge, a new destiny of power to and power of is created. These two approaches to power are examined and clinical power is offered as a lens that culminates in the understanding of power as a right and as truth imbedded with awareness and relationships.

  5. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  6. Fusion-power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.; Neef, W.S.; Moir, R.W.; Campbell, R.B.; Botwin, R.; Clarkson, I.R.; Carpenter, T.J.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  7. Fusion power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  8. EVALUATING DEGREE OF ACTIVE POWER LOSSES REDUCTION IN THE ELECTRIC POWER LINES WITH REACTIVE POWER COMPENSATION

    Directory of Open Access Journals (Sweden)

    V. N. Radkevich

    2016-01-01

    Full Text Available The paper considers evaluation procedure for the degree of active power losses reduction in the power transmission lines under 1 kV and 6–10 kV of the systems of electric power supply of industrial enterprises with compensating installations mounted at the side of the customer. The capacitor installations conform to the applied voltage level and factor in dielectric losses in the capacitors. The voltage at the compensating device terminal changes from 0.95 to 1.05 of the capacitors nominal voltage. The study did not account for reactive power losses in the line, nor did it for its charge capacity, conditioned by relative shortness of the cable lines generally operating in the mains of industrial enterprises. For this reason, the quantities of reactive power being consumed and generated by the transmission line are negligible and do not significantly affect the reactive power flux. The researchers obtain functional relations that allow estimating the degree of power loss reduction in the transmission line factoring in its explicit initial data. They perform mathematical analysis of the obtained functional relations and study the function by means of derivatives. The function extremum points are found as well as the intervals of its increment and decrement. A graphical research of the obtained functional relation is performed. It is ascertained that reduction of the active power losses is contingent on the line and the capacitor-installation engineering factors, the electrical energy consumer reactive load value as well as the voltage applied to the capacitor installation. The functional relations presented in the article can be employed in scoping calculation necessary for decision making on the reactive power compensation in systems of the industrial facilities electric power supply. Their account will allow a more accurate estimate of technical and economic effect of the capacitor bank installation in the electrical mains under 1 kV and 6

  9. High power communication satellites power systems study

    International Nuclear Information System (INIS)

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  10. Impact of wind power in autonomous power systems—power fluctuations—modelling and control issues

    DEFF Research Database (Denmark)

    Margaris, Ioannis D.; Hansen, Anca Daniela; Cutululis, Nicolaos Antonio

    2011-01-01

    for diesel and steam generation plants are applied. The power grid, including speed governors, automatic voltage regulators, protection system and loads is modelled in the same platform. Results for different load and wind profile cases are being presented for the case study of the island Rhodes, in Greece......This paper describes a detailed modelling approach to study the impact of wind power fluctuations on the frequency control in a non-interconnected system with large-scale wind power. The approach includes models for wind speed fluctuations, wind farm technologies, conventional generation...... technologies, power system protection and load. Analytical models for wind farms with three different wind turbine technologies, namely Doubly Fed Induction Generator, Permanent Magnet Synchronous Generator and Active Stall Induction Generator-based wind turbines, are included. Likewise, analytical models...

  11. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    International Nuclear Information System (INIS)

    Holcomb, R.S.

    1992-01-01

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion system was carried out in the 1960's which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper

  12. Cost-effectiveness of low-power nuclear power plants

    International Nuclear Information System (INIS)

    Mitenkov, F.M.; Vostokov, V.S.; Drozhkin, V.N.; Samoilov, O.B.

    1994-01-01

    Many potential consumers of electricity and heat, consuming several thousands of kilowatts (up to 10-15 MW), have now been identified. This is significant primarily for regions far from power grids and other centralized sources of energy, such as, for example, Yakutiya, Northeastern Siberia, and elsewhere. These consumers are now supplied with fossil fuel, which is often difficult and expensive to deliver. For this reason it is very important to develop low-power nuclear power plants for remote regions

  13. Wind Power Now!

    Science.gov (United States)

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  14. Human Powered Centrifuge

    Science.gov (United States)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  15. Coupled energy and reactive power market clearing considering power system security

    International Nuclear Information System (INIS)

    Rabiee, Abdorreza; Shayanfar, Heidarali; Amjady, Nima

    2009-01-01

    In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System

  16. Coupled energy and reactive power market clearing considering power system security

    Energy Technology Data Exchange (ETDEWEB)

    Rabiee, Abdorreza; Shayanfar, Heidarali [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran (Iran); Amjady, Nima [Department of Electrical Engineering, Semnan University, Semnan (Iran)

    2009-04-15

    In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System. (author)

  17. Comparative studies between nuclear power plants and hydroelectric power plants

    International Nuclear Information System (INIS)

    Menegassi, J.

    1984-01-01

    This paper shows the quantitative evolution of the power plants in the main countries of the world. The Brazilian situation is analysed, with emphasys in the technical and economical aspects related to power production by hidroelectric or nuclear power plants. The conclusion is that the electricity produced by hidro power plants becomes not economics when is intended to be produced at large distances from the demand centers. (Author) [pt

  18. UPWARD POWER TENDENCIES IN A HIERARCHY - POWER DISTANCE THEORY VERSUS BUREAUCRATIC RULE

    NARCIS (Netherlands)

    WILKE, HAM

    1993-01-01

    Two contrasting notions concerning upward power tendencies within hierarchically structured groups are investigated. Power Distance Theory assumes that people have a desire for power that results in a tendency to reduce the power distance towards a more powerful other, and this tendency is assumed

  19. Power monitors: A framework for system-level power estimation using heterogeneous power models

    NARCIS (Netherlands)

    Bansal, N.; Lahiri, K.; Raghunathan, A.; Chakradhar, S.T.

    2005-01-01

    Paper analysis early in the design cycle is critical for the design of low-power systems. With the move to system-level specifications and design methodologies, there has been significant research interest in system-level power estimation. However, as demonstrated in this paper, the addition of

  20. Modern nuclear power-green power of the millennium

    International Nuclear Information System (INIS)

    Biswas, R.N.

    2003-01-01

    In India, as well as many developing countries, the demand for power continues to race ahead of the supply position. Our present generating capacity of about 1,08,000 MW needs to be increased by another 1 lac MW during 10th and 11th 5-year plans. Whereas more friendly renewable energy may reach about 10-12%, the rest has to come from conventional thermal, hydel or nuclear energy. Thermal energy actually needs low investment per MW but it is the least eco-friendly. Hydel power is green and clean power but the actual energy generated depends on the water quantity available, hence not fully dependable. Therefore in short, nuclear energy available in abundance, has no option for meeting the increasing base demand, as has been proved in Britain, USA, France, Japan and other countries. This paper gives the latest improvements in nuclear power plant design and construction for improved efficiency, operating safety and safe waste storage facilities and explains that nuclear power is affordable and indispensable

  1. Smart power. Great leaders know when hard power is not enough.

    Science.gov (United States)

    Nye, Joseph S

    2008-11-01

    The next U.S. administration will face enormous challenges to world peace, the global economy, and the environment. Exercising military and economic muscle alone will not bring peace and prosperity. According to Nye, a former U.S. government official and a former dean at Harvard University's John F. Kennedy School of Government, the next president must be able to combine hard power, characterized by coercion, and what Nye calls "soft" power, which relies instead on attraction. The result is smart power, a tool great leaders use to mobilize people around agendas that look beyond current problems. Hard power is often necessary, Nye explains. In the 1990s, when the Taliban was providing refuge to Al Oaeda, President Clinton tried---and failed--to solve the problem diplomatically instead of destroying terrorist havens in Afghanistan. In other situations, however, soft power is more effective, though it has been too often overlooked. In Iraq, Nye argues, the use of soft power could draw young people toward something other than terrorism. "I think that there's an awakening to the need for soft power as people look at the crisis in the Middle East and begin to realize that hard power is not sufficient to resolve it," he says. Solving today's global problems will require smart power--a judicious blend of the other two powers. While there are notable examples of men who have used smart power--Teddy Roosevelt, for instance--it's much more difficult for women to lead with smart power, especially in the United States, where women feel pressure to prove that they are not "soft." Only by exercising smart power, Nye says, can the next president of the United States set a new tone for U.S. foreign policy in this century.

  2. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  3. Routing power flows in distribution networks using locally controlled power electronics

    NARCIS (Netherlands)

    Hamelink, J.; Nguyen, P.H.; Kling, W.L.; Ribeiro, P.F.; Groot, de R.J.W.

    2012-01-01

    The power grid has gradually changed its operation during the recent decades. These developments have encouraged a shift from centralized to decentralized power flow control. A research has been carried out to investigate the possibilities to control power flows using the Smart Power Router (SPR) in

  4. Active power line conditioners design, simulation and implementation for improving power quality

    CERN Document Server

    Revuelta, Patricio Salmeron; Litrán, Salvador Pérez

    2015-01-01

    Active Power Line Conditioners: Design, Simulation and Implementation for Improving Power Quality presents a rigorous theoretical and practical approach to active power line conditioners, one of the subjects of most interest in the field of power quality. Its broad approach offers a journey that will allow power engineering professionals, researchers, and graduate students to learn more about the latest landmarks on the different APLC configurations for load active compensation. By introducing the issues and equipment needs that arise when correcting the lack of power quality in power grids

  5. Multi-port power router and its impact on resilient power grid systems

    Science.gov (United States)

    Kado, Yuichi; Iwatsuki, Katsumi; Wada, Keiji

    2016-02-01

    We propose a Y-configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y-configuration power router controls the direction and magnitude of power flow among three ports regardless of DC and AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y-configuration power router and tested the power flow control operation. Experimental results revealed that our methodology based on the governing equation was appropriate for the power flow control of the three-way DC/DC converter. In addition, the hexagonal distribution network composed of the power routers has the ability to easily interchange electric power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flow in a coordinated manner and its impact on resilient power grid systems.

  6. Power uprates in nuclear power plants: international experiences and approaches for implementation

    International Nuclear Information System (INIS)

    Kang, Ki Sig

    2008-01-01

    The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants

  7. Applications of power beaming from space-based nuclear power stations

    International Nuclear Information System (INIS)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000 0 K and a liquid drop radiator to reject heat at temperatures of approx. 500 0 K. Higher RBR coolant temperatures (up to approx. 3000 0 K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel

  8. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show......Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...

  9. Financing of nuclear power plant using resources of power generation

    International Nuclear Information System (INIS)

    Slechta, V.; Milackova, H.

    1987-01-01

    It is proved that during the lifetime of a power plant, financial resources are produced from depreciation and from the profit for the delivered electrical power in an amount allowing to meet the cost of construction, interests of credits, the corporation taxes, and the means usable by the utility for simple reproduction of the power plant, additional investment, or for the ultimate decommissioning of the nuclear power plant. The considerations are simplified to 1 MW of installed capacity of a WWER-440 nuclear power plant. The breakdown is shown of the profit and the depreciation over the power plant lifetime, the resources of regular payments of credit instalments for the construction and the method of its calculation, and the income for the state budget and for the utility during the plant liofetime. (J.B.). 5 tabs., 5 refs

  10. Multiobjective clearing of reactive power market in deregulated power systems

    International Nuclear Information System (INIS)

    Rabiee, A.; Shayanfar, H.; Amjady, N.

    2009-01-01

    This paper presents a day-ahead reactive power market which is cleared in the form of multiobjective context. Total payment function (TPF) of generators, representing the payment paid to the generators for their reactive power compensation, is considered as the main objective function of reactive power market. Besides that, voltage security margin, overload index, and also voltage drop index are the other objective functions of the optimal power flow (OPF) problem to clear the reactive power market. A Multiobjective Mathematical Programming (MMP) formulation is implemented to solve the problem of reactive power market clearing using a fuzzy approach to choose the best compromise solution according to the specific preference among various non-dominated (pareto optimal) solutions. The effectiveness of the proposed method is examined based on the IEEE 24-bus reliability test system (IEEE 24-bus RTS). (author)

  11. Employing modern power plant simulators in nuclear power plants

    International Nuclear Information System (INIS)

    Niedorf, V.; Storm, J.

    2005-01-01

    At the present state of the art, modern power plant simulators are characterized by new qualitative features, thus enabling operators to use them far beyond the traditional field of training. In its first part, this contribution presents an overview of the requirements to be met by simulators for multivalent uses. In part two, a survey of the uses and perspectives of simulation technology in power plants is presented on the basis of experience accumulated by Rheinmetall Defence Electronics (RDE).Modern simulators are shown to have applications by far exceeding traditional training areas. Modular client - sever systems on standard computers allow inexpensive uses to be designed at several levels, thus minimizing maintenance cost. Complex development and running time environments, like the SEMS developed by RDE, have made power plant simulators the workhorses of power plant engineers in all power plant areas. (orig.)

  12. Power Oscillation Damping from VSC-HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Eriksson, Robert; Goumalatsos, Spyridon

    2016-01-01

    The implementation of power oscillation damping service on offshore wind power plants connected to onshore grids by voltage-source-converter-based high voltage direct current transmission is discussed. Novel design guidelines for damping controllers on voltage-source converters and wind power plant...... regarding real wind power plants are discussed: 1) robustness against control/communication delays; 2) limitations due to mechanical resonances in wind turbine generators; 3) actual capability of wind power plants to provide damping without curtailing production; and 4) power-ramp rate limiters....... controllers are derived, using phasor diagrams and a test network model and are then verified on a generic power system model. The effect of voltage regulators is analyzed, which is important for selecting the most robust damping strategy. Furthermore, other often disregarded practical implementation aspects...

  13. Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters

    DEFF Research Database (Denmark)

    Fang, Jingyang; Li, Hongchang; Tang, Yi

    2018-01-01

    Renewable energy sources (RESs), e.g. wind and solar photovoltaics, have been increasingly used to meet worldwide growing energy demands and reduce greenhouse gas emissions. However, RESs are normally coupled to the power grid through fast-response power converters without any inertia, leading...... to decreased power system inertia. As a result, the grid frequency may easily go beyond the acceptable range under severe frequency events, resulting in undesirable load-shedding, cascading failures, or even large-scale blackouts. To address the ever-decreasing inertia issue, this paper proposes the concept...... of distributed power system virtual inertia, which can be implemented by grid-connected power converters. Without modifications of system hardware, power system inertia can be emulated by the energy stored in the dc-link capacitors of grid-connected power converters. By regulating the dc-link voltages...

  14. Environmental Assessment for power marketing policy for Southwestern Power Administration

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Southwestern Power Administration (Southwestern) needs to renew expiring power sales contracts with new term (10 year) sales contracts. The existing contracts have been in place for several years and many will expire over the next ten years. Southwestern completed an Environmental Assessment on the existing power allocation in June, 1979 (a copy of the EA is attached), and there are no proposed additions of any major new generation resources, service to discrete major new loads, or major changes in operating parameters, beyond those included in the existing power allocation. Impacts from a no action plan, proposed alternative, and market power for less than 10 years are described.

  15. Environmental Assessment for power marketing policy for Southwestern Power Administration

    International Nuclear Information System (INIS)

    1993-01-01

    Southwestern Power Administration (Southwestern) needs to renew expiring power sales contracts with new term (10 year) sales contracts. The existing contracts have been in place for several years and many will expire over the next ten years. Southwestern completed an Environmental Assessment on the existing power allocation in June, 1979 (a copy of the EA is attached), and there are no proposed additions of any major new generation resources, service to discrete major new loads, or major changes in operating parameters, beyond those included in the existing power allocation. Impacts from a no action plan, proposed alternative, and market power for less than 10 years are described

  16. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  17. Power beaming providing a space power infrastructure

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Coomes, E.P.

    1992-01-01

    This paper, based on two levels of technology maturity, applied the power beaming concept to four panned satellite constellations. The analysis shows that with currently available technology, power beaming can provide mass savings to constellations in orbits ranging from low-Earth orbit to geosynchronous orbit. Two constellations, space surveillance and tracking system and space-based radar, can be supported with current technology. The other two constellations, space-based laser array and boost surveillance and tracking system, will require power and transmission system improvements before their breakeven specific mass is achieved. A doubling of SP-100 conversion efficiency from 10 to 20% would meet or exceed breakeven for these constellations

  18. Innovation of power management structure in Czechoslovakia and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Cibula, M

    1979-01-01

    The estimate is briefly indicated of power demand in Czechoslovakia till 1990 with the objective of attaining 142 mil. tonnes of specific fuel in that year. The demand will be met from domestic resources by 49%, exports by 44.2% and nuclear power by 6.8%. A brief comparison is presented of capital and fuel costs of brown coal fired power plants, hydroelectric plants and nuclear power plants in Czechoslovakia in 1990.

  19. Innovative use of power integrated modules for DC power supplies

    DEFF Research Database (Denmark)

    Ørndrup Nielsen, Rasmus; Elkiær, Alexander; Munk-Nielsen, Stig

    2013-01-01

    In this article several innovative ways of utilizing Power Integrated Modules (PIM) as switching device in a DC power supply are presented. PIM have advantages in compactness of design, cost and fast prototype due to easier PCB layout. A PIM converter topology is chosen and designed resulting...... in an experimental setup. Results from the setup are presented showing the feasibility of using a PIM module as almost all power semiconductors in a DC power supply....

  20. Fusion Power Deployment

    International Nuclear Information System (INIS)

    Schmidt, J.A.; Ogden, J.M.

    2002-01-01

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment

  1. Electrical Power Conversion of River and Tidal Power Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-11-21

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  2. Sea water pumping-up power plant system combined with nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Tanaka, Masayuki.

    1991-01-01

    It is difficult to find a site suitable to construction for a sea water pumping-up power plant at a place relatively near the electric power consumption area. Then, a nuclear power plant is set at the sea bottom or the land portion of a sea shore near the power consumption area. A cavity is excavated underground or at the bottom of the sea in the vicinity of the power plant to form a lower pond, and the bottom of the sea, as an upper pond and the lower pond are connected by a water pressure pipe and a water discharge pipe. A pump water turbine is disposed therebetween, to which electric power generator is connected. In addition, an ordinary or emergency cooling facility in the nuclear power plant is constituted such that sea water in the cavity is supplied by a sea water pump. Accordingly, the sea water pumping-up plant system in combination with the nuclear power plant is constituted with no injuring from salts to animals and plants on land in the suburbs of a large city. The cost for facilities for supplying power from a remote power plant to large city areas and power loss are decreased and stable electric power can be supplied. (N.H.)

  3. Low-power laser therapy for carpal tunnel syndrome: effective optical power

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-01-01

    Full Text Available Low-power laser therapy has been used for the non-surgical treatment of mild to moderate carpal tunnel syndrome, although its efficacy has been a long-standing controversy. The laser parameters in low-power laser therapy are closely related to the laser effect on human tissue. To evaluate the efficacy of low-power laser therapy, laser parameters should be accurately measured and controlled, which has been ignored in previous clinical trials. Here, we report the measurement of the effective optical power of low-power laser therapy for carpal tunnel syndrome. By monitoring the backside reflection and scattering laser power from human skin at the wrist, the effective laser power can be inferred. Using clinical measurements from 30 cases, we found that the effective laser power differed significantly among cases, with the measured laser reflection coefficient ranging from 1.8% to 54%. The reflection coefficient for 36.7% of these 30 cases was in the range of 10–20%, but for 16.7% of cases, it was higher than 40%. Consequently, monitoring the effective optical power during laser irradiation is necessary for the laser therapy of carpal tunnel syndrome.

  4. Power reserve provision with wind farms. Grid integration of wind power

    Energy Technology Data Exchange (ETDEWEB)

    Gesino, Alejandro J.

    2011-07-01

    Wind power is, admittedly, different from other power technologies and integrating large amounts of it in the existing power systems is a challenge that requires innovative approaches to keep the sustainability of the power system operation. In the coming years its contribution to the system security will become mandatory as far as the trend goes towards more decentralized structures and an increase in complexity due to a higher number of market participants. This PhD addresses one of the fundamental ancillary services researching about a secure and flexible methodology for power reserve provision with wind farms. Based on the current needs and security standards of those highly developed European grid codes, a new model for power reserve provision with wind power is developed. This methodology, algorithms and variables are tested based on real scenarios from five German wind farm clusters. Finally, once the methodology for power reserve provision with wind power has been tested, real control capabilities from already installed wind farms in Germany and Portugal are analyzed. Their capabilities of following control commands as well as an error deviation analysis are also presented. (orig.)

  5. Unified Power Flow Controller Placement to Improve Damping of Power Oscillations

    OpenAIRE

    M. Salehi; A. A. Motie Birjandi; F. Namdari

    2015-01-01

    Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is pro...

  6. Power distribution arrangement

    DEFF Research Database (Denmark)

    2010-01-01

    An arrangement and a method for distributing power supplied by a power source to two or more of loads (e.g., electrical vehicular systems) is disclosed, where a representation of the power taken by a particular one of the loads from the source is measured. The measured representation of the amount...... of power taken from the source by the particular one of the loads is compared to a threshold to provide an overload signal in the event the representation exceeds the threshold. Control signals dependant on the occurring of the overload signal are provided such that the control signal decreases the output...... power of the power circuit in case the overload signal occurs...

  7. Power grid complexity

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Shengwei; Zhang, Xuemin [Tsinghua Univ., Beijing, BJ (China). Dept. of Electrical Engineering; Cao, Ming [Groningen Univ. (Netherlands). Faculty of Mathematics and Natural Sciences

    2011-07-01

    ''Power Grid Complexity'' introduces the complex system theory known as self-organized criticality (SOC) theory and complex network theory, and their applications to power systems. It studies the network characteristics of power systems, such as their small-world properties, structural vulnerability, decomposition and coordination strategies, and simplification and equivalence methods. The book also establishes four blackout models based on SOC theory through which the SOC of power systems is studied at both the macroscopic and microscopic levels. Additionally, applications of complex system theory in power system planning and emergency management platforms are also discussed in depth. This book can serve as a useful reference for engineers and researchers working with power systems. (orig.)

  8. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Science.gov (United States)

    2011-04-13

    ... DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA. ACTION: Notice of Availability of a Draft... financial assistance to Oglethorpe Power Corporation (Oglethorpe) for the construction of a 100 megawatt (MW...

  9. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  10. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  11. Impact of integrating wind power in the Norwegian power system

    International Nuclear Information System (INIS)

    Tande, John Olav

    2006-04-01

    Wind power may in the future constitute a significant part of the Norwegian electricity supply. 20 TWh annual wind generation is a realistic goal for 2020 assuming wind farms on-land and offshore. The development of grid codes for wind farms is sound. It is recognising that large wind farms are basically power plants and may participate in securing efficient and stable power system operation. Modern wind farms may control the reactive power or voltage as any other power plant, and may also control active power or frequency as long as wind conditions permits. Grid code requirements must however be carefully assessed and possibly adjusted over time aiming for overall least cost solutions. Development of wind farms are today to some degree hindered by conservative assumptions being made on operation of wind farms in areas with limited power transfer capacity. By accepting temporary grid congestions, however, a large increase installed wind power is viable. For grid congestion that appears a few hours per year only, the cost of lost generation will be modest and may be economic over the alternatives of limiting wind farm capacities or increasing the grid transfer capacity. Wind generation impact on power system operation and adequacy will be overall positive. Combining wind and hydro provides for a more stable annual energy supply than hydro alone, and wind generation will generally be higher in the winter period than in the summer. Wind will replace the generation with the highest operating cost, and reduce the average Nord Pool spot market price. 20 TWh wind will reduce price with about 3 oere/kWh and CO 2 emissions by 12-14 million tons for the case of replacing coal, and about 6 million tons for replacing natural gas. Wind impact on need for balancing power is small, i.e. the extra balancing cost is about 0,8 oere per kWh wind, and about half if investment in new reserve capacity is not needed. In summary this report demonstrates options for large scale integration

  12. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    International Nuclear Information System (INIS)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.; Barsukov, I. V.

    2009-01-01

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests of the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.

  13. Green Certificates and Market Power on the Nordic Power Market

    International Nuclear Information System (INIS)

    Bergman, Lars; Amundsen, Eirik S

    2007-06-01

    In Sweden a market for Tradable Green Certificates (TGCs) was introduced in 2003. The purpose was to stimulate investments in electricity generation based on renewable energy sources without using direct governmental subsidies to renewable energy. More precisely the aim is to create a market where different types of renewable electricity can compete on equal terms, thus relieving governments and public agencies from being directly involved in power industry investment decisions. The purpose of this study is to elucidate under which circumstances, how, and to what extent market power in the TGC market can be used to affect the entire electricity market. There are basically two reasons for being concerned with market power in TGC markets. The first is the fact that the industry average cost curve for 'green' electricity tends to be upward sloping. This is because the cost of wind power, the main source of green electricity, depends on the location of the power plants, and that the availability of first rate sites that do not involve sizable investments in new transmission and network infrastructure, is limited. The situation is similar for environmentally friendly hydro power, and, to some extent, for other types of 'green' electricity. Thus, given the state of technology and an upper cost limit, there is a maximum amount of 'green' electricity that can be produced within a country. This means that some generators, by getting access to the suitable sites, will become dominating producers of 'green' electricity and thus may be able to exercise market power in the TGC market. The second reason for being concerned with market power in a TGC market is that, as a result of the percentage requirement, the withdrawal of a given number of TGCs from the market forces a much larger reduction of electricity consumption. Thus relatively modest exercise of market power in the TGC market may have a significant impact on the price of electricity and the allocation of resources in

  14. Power facility plan and power supply plan of Japan in 1988

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Shoji; Makino, Masao

    1988-06-01

    The power facility plan and the power supply plan for 1988 are described. The demand by non-industrial use will grow at an average of 3.8% for the 1986-97 period due to changes in the life style, construction and extension of buildings and increasing use of OA equipment although the power conservation is promoted. The industrial consumption will increase at only 1.2% a year due to the slowed growth and energy saving. As a result, the total demand will be 778,200 million kWh in 1997 with annual growth of 2.4%. The maximum demand will be 151,210 kW in 1997 with annual growth of 2.9%. The annual load rate will decrease to 56.9%, showing a continuously worsening utilization efficiency of power facilities. The development of 29 power units with total capacity of 2,760 MW is planned in 1988 for a stable power supply with a sufficient margin regarding maximum demand. The plan requires the investment of 3,700 billion yen, including the power transmission systems and substations. The power supply plan in 1988 is aimed at the effective operation of facilities and cost reduction by regional management under proper recognition of local characteristics of each power source, while maintaining a stable power supply with specified margins. (1 fig, 11 tabs)

  15. Cooperation of nuclear, thermal and hydroelectric power plants in the power system

    International Nuclear Information System (INIS)

    1984-01-01

    The conference heard 36 papers of which 23 were incorporated in INIS. The subjects discussed were: the development of power industry in Czechoslovakia, methods of statistical analysis of data regarding nuclear power plant operation, the incorporation of WWER nuclear power plants in the power supply system, the standardization of nuclear power plants, the service life of components, use of nuclear energy sources, performance of the reactor accident protection system, the use of nuclear power and heating plants in Hungary, risk analysis, optimization of nuclear power plants, accidents caused by leakage of the primary and secondary circuit. (J.P.)

  16. Solar thermal power: the seamless solar link to the conventional power world

    International Nuclear Information System (INIS)

    Geyer, Michael; Quaschning, Volker

    2000-01-01

    This article focuses on solar thermal power generation and describes two solar thermal power concepts, namely, the parabolic trough or solar farm, and the solar central receiver or power tower. Details are given of grid-connected parabolic trough power plants in California and recent developments in collector design and absorber tubes, and the operation of power tower plants with different heat transfer media. Market issues are discussed, and solar thermal power projects under development, and application for support for solar thermal power projects under the Global Environment Facility's Operational Programme by Egypt, India, Iran, Mexico and Morocco are reported

  17. Photonic-powered cable assembly

    Science.gov (United States)

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  18. Women, Power, and Libraries.

    Science.gov (United States)

    Schuman, Patricia Glass

    1984-01-01

    Discusses the concept of power in the context of women and the library profession, citing views of power by Max Weber, John Kenneth Galbraith, Letty Cottin Pogrebin, and Rosabeth Moss Kantor. Male power and female submission, defining power, organizing for power, and sharing power are highlighted. A 12-item bibliography is included. (EJS)

  19. A study on electric power management for power producer-suppliers utilizing output of megawatt-solar power plants

    Directory of Open Access Journals (Sweden)

    Hirotaka Takano

    2016-01-01

    Full Text Available The growth in penetration of photovoltaic generation units (PVs has brought new power management ideas, which achieve more profitable operation, to Power Producer-Suppliers (PPSs. The expected profit for the PPSs will improve if they appropriately operate their controllable generators and sell the generated electricity to contracted customers and Power Exchanges together with the output of Megawatt-Solar Power Plants (MSPPs. Moreover, we can expect that the profitable cooperation between the PPSs and the MSPPs decreases difficulties in the supply-demand balancing operation for the main power grids. However, it is necessary that the PPSs treat the uncertainty in output prediction of PVs carefully. This is because there is a risk for them to pay a heavy imbalance penalty. This paper presents a problem framework and its solution to make the optimal power management plan for the PPSs in consideration with the electricity procurement from the MSPPs. The validity of the authors’ proposal is verified through numerical simulations and discussions of their results.

  20. Robust Power Control of Microgrid based on Hybrid Renewable Power Generation Systems

    Directory of Open Access Journals (Sweden)

    A. Hajizadeh

    2013-03-01

    Full Text Available This paper presents modeling and control of a hybrid distributed energy sources including photovoltaic (PV, fuel cell (FC and battery energy storage (BES in a microgrid which provides both real and reactive power to support an unbalanced utility grid. The overall configuration of the microgrid including dynamic models for the PV, FC, BES and its power electronic interfacing are briefly described. Then controller design methodologies for the power conditioning units to control the power flow from the hybrid power plant to the unbalanced utility grid are presented. In order to distribute the power between power sources, the neuro-fuzzy power controller has been developed. Simulation results are presented to demonstrate the effectiveness and capability of proposed control strategy.

  1. Tasks of a power engineer in future thermal power plants

    International Nuclear Information System (INIS)

    Freymeyer, P.; Scherschmidt, F.

    1982-01-01

    Today already the power plants provide plenty of tasks and problems to the electrical engineer in the fields of power and conductive engineering. A completely new orientation of power engineering leads to larger, more complex system and even to systems unknown so far. In conductive engineering entirely new solutions have come in view. There are a lot of interesting topics for the electrical engineer in the rearrangement and advance into virgin territory of thermal power plants. (orig.) [de

  2. Dynamic impedance compensation for wireless power transfer using conjugate power

    OpenAIRE

    Suqi Liu; Jianping Tan; Xue Wen

    2018-01-01

    Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a c...

  3. Different Frequencies between Power and Efficiency in Wireless Power Transfer

    OpenAIRE

    Muhammad Afnan, Habibi; Hodaka, Ichijo

    2017-01-01

    Wireless Power Transfer (WPT) has been recognized as a common power transfer method because it transfers electric power without any cable from source to the load. One of the physical principle of WPT is the law of electromagnetic induction, and the WPT system is driven by alternative current power source under specific frequency. The frequency that provides maximum gain between voltages or currents is called resonance frequency. On the other hand, some studies about WPT said that resonance fr...

  4. Pulsed power

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The key element of our pulsed power program is concentration of power in time and space by suppression of breakdown in dielectrics and in vacuum. Magnetically insulated vacuum transmission lines and magnetic suppression of insulator flashover have continued as the main reserch directions. Vacuum insulated line studies at Physics International have been expanded and a test bed at Sandia, called MITE (Magnetically Insulated Transmission Experiment), is under development. The choice for the baseline EBFA design will depend on the outcome of these studies and should be made in July 1977. The slow and intermediate speed pulsed power approaches to EBFA will be based on Proto I and Proto II results and several of the projected EBFA subsystems are presently being tested in Proto II. A further stage of power concentration, within the vacuum diode itself, would considerably ease the burden on dielectrics; methods of power multiplication involving magnetically imploded plasmas are being considered and tests have begun using the Ripple III apparatus

  5. Power without Glory

    DEFF Research Database (Denmark)

    Jørgensen, Kenneth Mølbjerg

    This book is about power and language in organizations. Its purpose is, more specifically, to develop and apply a method for exploring power in organizations where organizations are conceptualized by drawing on Wittgenstein’s concept of language games. The method is genealogy and is closely linked...... to Foucault’s conception of power. The book is written with one main purpose—to highlight some aspects of Foucault’s conception of power that, in my opinion, are not sufficiently explored in extant organization studies: Genealogy and the practices of power....

  6. Power system relaying

    CERN Document Server

    Horowitz, Stanley H; Niemira, James K

    2013-01-01

    The previous three editions of Power System Relaying offer comprehensive and accessible coverage of the theory and fundamentals of relaying and have been widely adopted on university and industry courses worldwide. With the third edition, the authors have added new and detailed descriptions of power system phenomena such as stability, system-wide protection concepts and discussion of historic outages. Power System Relaying, 4th Edition continues its role as an outstanding textbook on power system protection for senior and graduate students in the field of electric power engineering and a refer

  7. Simulation of the energy - environment economic system power generation costs in power-stations

    International Nuclear Information System (INIS)

    Weible, H.

    1978-09-01

    The costs of power generation are an important point in the electricity industry. The present report tries to supply a model representation for these problems. The costs of power generation for base load, average and peak load power stations are examined on the basis of fossil energy sources, nuclear power and water power. The methods of calculation where dynamic investment calculation processes are used, are given in the shape of formulae. From the point of view of long term prediction, power generation cost sensitivity studies are added to the technical, economic and energy-political uncertainties. The sensitivity of models for calculations is examined by deterministic and stochastic processes. In the base load and average region, power generation based on nuclear power and water power is economically more favourable than that from fossilfired power stations. Even including subsidies, this cost advantage is not in doubt. In the peak load region, pumped storage power stations are more economic than fossilfired power stations. (orig.) [de

  8. Radiation effects on power cables for nuclear power plants

    International Nuclear Information System (INIS)

    Arora, R.; Munshi, P.; Badshah, M.G.Q.

    1988-01-01

    A large number of power and control cables, insulated with organic/polymeric materials, are installed quite near the reactor in nuclear power plants. The reliability of electrical equipment, receiving power through these cables, is critically important for the design and safety of the power stations. The radiation intensity inside the containment varies significantly from one location to another. The extent of material degradation is associated with the local radiation intensity. The cables used in the nuclear environment require several unique properties, the most obvious of these being radiation resistance, fire resistance, and the ability to withstand the loss-of-coolant accident in a nuclear power plant as specified in Institute of Electrical and Electronics Engineers (IEEE) Standard 383. In this study, four specific electrical power cable samples insulated with polyethylene, polyvinyl chloride, ethylene propylene rubber, and silicone rubber were chosen to investigate the effect of radiation in reactor environments on the electrical properties of the samples. Voltage breakdown tests and dielectric loss factor (tan δ) and conductor resistance measurements were carried out on each sample before and after irradiating them to near lifetime doses at ambient temperatures in atmospheric conditions

  9. Load following operation of nuclear power plants for meeting power system requirements

    International Nuclear Information System (INIS)

    Isoda, Hachiro

    1987-01-01

    This paper describes a calculating program on the availability factors of nuclear, thermal and pumed storage hydro power stations and some calculated results for typical three load factors, 55 %, 60 % and 71 %, are provided when the share of the nuclea power station in the generation facilities is increased. The load following requirement of the nuclear power station is also provided. Load following requirement: If there is a 10 % pumped storage hydro power station, the nuclear power station enables to be operated with its rated output up to 30 % - 35 % of its share. Its daily load following operation for 40 % and 50 % nuclear power station needs every weekend and every day respectively. Availability factor: The availability factor of the nuclear power station manages to get 80 % (maximum availability factor of the nuclear power station in this study) up to 30 % share of it with 10 % pumpued storage hydro power station. When the nuclear power station shares 40 % and 50 %, its availability factor decreases down 1 % and 5 % respectively. (author)

  10. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  11. Characterization and design of a low-power wireless power delivery system

    Science.gov (United States)

    Falkenstein, Erez Avigdor

    There is an increased demand for wireless sensors for data gathering and transmission where running wires to power a device or changing/charging batteries is difficult. Often the data is gathered at locations that are difficult to access, that need to be covert, and/or where the sensors cannot be easily maintained. Some examples are implanted sensors for medical diagnostics and therapy, structural monitoring sensors, sensors inside hazardous manufacturing or other hazardous environments, etc. For any low power sensor that operates at a low duty cycle, and in an environment with low levels of light or vibration, RF wireless powering offers the potential for maintenance-free operation. The thesis focuses on a design methodology for low-power non-directional far-field wireless powering. The power receiver consists of one or more antennae which receive plane waves transmitted by the powering source, and deliver the RF power to a rectifying element. The resulting DC power is optimally transferred to the electronic application via a power management circuit. The powering is independent of the electronic application which can include wireless transmission of sensor data. The design and implementation of an integrated rectifier-antenna at low incident power densities (from 25--200 muW/cm2) is presented. Nonlinear source-pull measurements and harmonic balance simulations are used for finding the optimal rectifying device RF and DC impedances for efficient rectification. Experimental results show that an antenna design with a specific complex impedance reaches the highest rectification efficiency. Several examples of the design methodology will be shown. In specific, characterization of a rectifying patch antenna at frequency of 2.45GHz will be detailed, with an optimal RF impedance of 137+j149O and an optimal DC load of 365O resulting in RF to DC conversion efficiency of 63% for the rectifier alone and 56% for the total rectifying antenna.

  12. Implementing low power consumption in standby mode in the case of power supplies with power factor correction

    OpenAIRE

    Martín, Kevin; F., Pablo; G., Diego; Sebastián, Javier; Álvarez, Santiago

    2017-01-01

    This work analyzes different options to implement low power consumption in Switching Mode Power Supplies (SMPSs) with Power Factor Correction (PFC) when they are in standby mode. The standard SMPSs for power levels higher than 100 W are made up of two stages: a classical PFC stage based on a Boost Converter operating in the Continuous Conduction Mode and a second stage based on any type of isolated DC-DC converter. The value of the resistive sensors needed by the PFC control stage determines ...

  13. Technical report on dc power supplies in nuclear power plants

    International Nuclear Information System (INIS)

    1977-06-01

    Emergency electrical power supplies, both a.c. and d.c. for nuclear power plants are important to safety. For this reason, the electric power systems for operating nuclear plants and those plants under licensing review have been required to provide a high degree of reliability. It is this high reliability that provides confidence that sufficient safety margin exists against loss of all d.c. power for extended periods of time to allow an orderly examination of safety issues, such as this. However, because of the importance of the a.c. and d.c. power systems, the staff has been expending effort to review the reliability of these systems and shall continue to do so in the future

  14. Solar Power Sources

    DEFF Research Database (Denmark)

    Kim, Katherine A.; Mentesidi, Konstantina; Yang, Yongheng

    2017-01-01

    a significant change. Beyond this energy transition, the still declining cost of the solar technology has become an important driving force for more solar-powered systems. However, high penetration of solar-powered systems also brings technical challenges to the entire energy systems. In order to fully address......Solar power is highly abundant, relatively reliable, and not limited to a geographic region, making it one of the most important renewable energy sources. Catering for a clean and green energy system, solar energy will be an active player in the future mixed power grid that is also undergoing...... those issues, the technological properties of solar power should be investigated. Thus, the basics of solar power technology will be introduced and discussed in this chapter....

  15. The Power of Pictures : Vertical Picture Angles in Power Pictures

    NARCIS (Netherlands)

    Giessner, Steffen R.; Ryan, Michelle K.; Schubert, Thomas W.; van Quaquebeke, Niels

    2011-01-01

    Conventional wisdom suggests that variations in vertical picture angle cause the subject to appear more powerful when depicted from below and less powerful when depicted from above. However, do the media actually use such associations to represent individual differences in power? We argue that the

  16. Russia power engineering and power safety

    International Nuclear Information System (INIS)

    D'yakov, A.F.

    1995-01-01

    Results of work of the International consultative meeting: Russian-Europe: strategy of energy safety is described. The purpose of the meeting consisted in discussion of energy situation in Russia and Europe, prospects for provision of reliability, efficiency and safety of fuel and power supply in Russia and the role of the Russian fuel and power resonances in energy supply of Europe. The reporters at the meeting dealt with various aspects related to energy safety

  17. Reactive Power Management in Electric Power Systems

    African Journals Online (AJOL)

    (Ferranti effect) would limit the power transfer and the transmission range in the absence of any compensation measures. Journal of EAEA, Vol 14, 1997. In this paper, the management of the reactive power is explored with the aim of improving the quality and the reliability of the supply in the EELPA's interconnected system ...

  18. Medlay: A Reconfigurable Micro-Power Management to Investigate Self-Powered Systems

    Directory of Open Access Journals (Sweden)

    Jan Kokert

    2018-01-01

    Full Text Available In self-powered microsystems, a power management is essential to extract, transfer and regulate power from energy harvesting sources to loads such as sensors. The challenge is to consider all of the different structures and components available and build the optimal power management on a microscale. The purpose of this paper is to streamline the design process by creating a novel reconfigurable testbed called Medlay. First, we propose a uniform interface for management functions e.g., power conversion, energy storing and power routing. This interface results in a clear layout because power and status pins are strictly separated, and inputs and outputs have fixed positions. Medlay is the ready-to-use and open-hardware platform based on the interface. It consists of a base board and small modules incorporating e.g., dc-dc converters, power switches and supercapacitors. Measurements confirm that Medlay represents a system on one circuit board, as parasitic effects of the interconnections are negligible. The versatility regarding different setups on the testbed is determined to over 250,000 combinations by layout graph grammar. Lastly, we underline the applicability by recreating three state-of-the-art systems with the testbed. In conclusion, Medlay facilitates building and testing power management in a very compact, clear and extensible fashion.

  19. Advanced Power Converter for Universal and Flexible Power Management in Future Electricity Network

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede; Bassett, R.

    2007-01-01

    converters for grid connection of renewable sources will be needed. These power converters must be able to provide intelligent power management as well as ancillary services. This paper presents the overall structure and the control aspects of an advanced power converter for universal and flexible power......More "green" power provided by Distributed Generation will enter into the European electricity network in the near future. In order to control the power flow and to ensure proper and secure operation of this future grid, with an increased level of the renewable power, new power electronic...

  20. Virginia power nuclear power station engineer training program

    International Nuclear Information System (INIS)

    Williams, T.M.; Haberstroh-Timpano, S.

    1987-01-01

    In response to the Institute of Nuclear Power Operations (INPO) accreditation requirements for technical staff and manager, Virginia Power developed the Nuclear Power Station Engineer Training Programs (NPSETP). The NPSETP is directed toward enhancing the specific knowledge and skills of company engineers, especially newly hired engineers. The specific goals of the program are to promote safe and reliable plant operation by providing engineers and appropriate engineering technicians with (1) station-specific basic skills; (2) station-specific specialized skills in the areas of surveillance and test, plant engineering, nuclear safety, and in-service inspection. The training is designed to develop, maintain, and document through demonstration the required knowledge and skills of the engineers in the identified groups at North Anna and Surry Power Stations. The program responds to American National Standards Institute, INPO, and US Nuclear Regulatory Commission standards